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Abstract—The unavailability of a significant number of anno-
tated images is affecting the medical imaging area of computer
vision. This unavailability is because of the fact that labelling a
medical image is a time consuming task as it requires careful
analysis of the whole image and can only be done by an expert.
Supervised learning method will not give good results due to
lack of input-output pairs. Self-supervised learning gives us a
way out by transforming the images themselves to labels thus
not requiring human-annotated labels in larger amounts.

This paper proposes a self-supervised strategy for representa-
tion learning which can be further used for other downstream
tasks. In our method we integrate colorization task into BYOL
which is a contrastive learning method. The resulting self-
supervised method is trained on cem500k dataset with two
different encoders namely resnet50 and stand alone self-attention.

The encoders trained through our self-supervised training
method achieved comparable results to the encoders trained with
the original BYOL. Further, the self-attention model pre-trained
using our method performed better than the rest of the encoders
on the semantic segmentation task. We analyzed the Class Acti-
vation Map(CAM) and found that the self-attention encoder(pre-
trained using our method) activates visually important regions
on the image.

Index Terms—Computer Vision, Semantic Segmentation, Self-
supervised Learning, Self-attention, Medical Imaging

I. INTRODUCTION

Semantic segmentation is one of the most complicated but
at the same time important task of computer vision. It is
challenging because of the pixel level operation where a label
is assigned to each pixel belonging to a particular class. It is
important because of its application in autonomous driving [4],
categorizing clothing items [7], efficient agriculture [18] and
in the medical domain for organ segmentation [31] or cellular
level segmentation [2].

Deep convolution networks have achieved great results in
semantic segmentation by using supervised learning [4] [17]
[30] [24]. The networks proposed in [4] [17] [30] are trained
on natural images data sets which contain large amounts of
high quality accurately labelled images. These images can be
easily collected and labelling does not require any expertise.
In the case of medical images, firstly acquiring a large number
of images is impossible and secondly only an expert can
label these images. And labelling medical images is a time
consuming task. In the paper [2], authors reported that experts
spent 32-36 hours annotating a microscopy data-set consisting
of 165 images.

Self-supervised learning is a type of unsupervised learning
where data itself provides supervision. This supervision is
provided by devising a task called pre-text task that the
network solves on a large unlabelled data set in a supervised
manner. The network with the learned representation is then
fine-tuned on a small labelled data for downstream tasks
like segmentation, classification etc. This kind of training
method has gained popularity and has achieved results [11]
[12] comparable to the supervised state-of-the-art approach.
Although a self-supervised learning method requires a lot of
data to learn the features, the data need not be labelled. And
due to this self-supervised learning method can be used to
learn representation from these unlabelled images.

In this research, a self-supervised pre-training method to
learn representation from unlabelled microscopy images has
been proposed. First, we perform a analysis of various self-
supervised methods. Next, we propose a new method and
devise the following question to test our new method: Can a
self-supervised learning method with a self-attention model
learn a robust representation for semantic segmentation?
The research question has been divided into the following sub-
question:

R1): What are the different methodologies in the field of
semantic segmentation?
a) What are the different methods in semantic segmenta-
tion?
What are the different self-supervised methods devel-
oped in the computer vision domain?
c) What are the different methodologies developed for
self-supervised semantic segmentation?

b)

R2): How does a model with pre-trained BYOL features com-

pare against traditional supervised convolution network?

a) How does the encoders derived from incorporating

colorization task in BYOL pre-training method perform

on semantic segmentation benchmark datasets?

What difference in performance does the byol pre-

trained encoder have on the semantic segmentation

task?

¢) To what extent does the inclusion of colorization task
in BYOL pre-training affect the ability of the encoder
to learn relevant features?

d) What does the self-attention model see in an image to
make a prediction?

b)



We answer the research question by reviewing the relevant
work done in Section II. In addition to this we also show
the motivation for our method in section IIl. In section IV
we discuss the proposed method in detail followed by dataset
description and experiment setup in section V. Next, we
discuss the results obtained in our experiment in section VI
and finally conclude our findings in section VII.

II. RELATED WORK
A. Supervised Learning

Supervised learning is a training method that learns a
function for mapping an input to an output. The training is
carried out on well annotated data meaning that for every
input data that the function takes there is already an output.
This makes the learning process more accurate. In case of
image segmentation, learning to predict accurate masks is of
utmost importance and that is the reason why models such as
FCN [17], U-Net [24], DeepLab [4] trained using supervised
learning methods have gained popularity. All these models
have an Encoder-Decoder architecture where the encoder
network extracts features from the input image and feeds it
into the decoder to reconstruct the segmentation mask.

U-Net: This architecture is the most popular supervised
segmentation technique which was developed on medical data
sets but has been extended to other domains as well [25].
It has a symmetric architecture of encoder and decoder with
skip connections between them. The encoder is usually a
pre-trained deep neural network like resnet or VGG which
learns the features. The decoder consists of up-sampling and
concatenation of features learned by the encoder part. The
skip connection helps to combine low and high level features
together. The end result of this architecture is a dense rep-
resentation. The paper [24] reports that the proposed method
achieves state-of-the-art results on three different data sets.

Attention-UNet: Skip-connections used in up-sampling in
traditional U-net [24] provide spatial information but the
regions highlighted in the input image by it can be imprecise.
The authors of [21], proposed a method where they applied
an attention layer to the skip connections to provide only
the important region of interest. The addition of an attention
layer leads to better performance but at the expense of more
computation time and parameters.

Since the conception of traditional U-net, there have been
many variants developed and applied outside the medical
domain [1]. Other than U-Net, deeplab [4] is a very popular
network for semantic segmentation that has been trained for
scene understanding in autonomous driving.

B. Self-supervised Learning

Self-supervised learning leverages the data itself to make
predictions without the need of human annotated labels. Since
there are no labels available for the model to learn from, self-
supervised learning consists of pretext downstream tasks.

Pretext tasks are pre-designed tasks for networks to solve
and in process learn visual features about the image. These

tasks are designed on the image data itself (usually unlabelled
data).

Downstream tasks such as segmentation, classification are
computer vision applications that are used to evaluate the
quality of features learned by self-supervised learning [14].

Pretext task is the main component in self-supervised learn-
ing and the choice of task determines the performance of the
learned model on the downstream task. Some of the popular
tasks are colorization [29] [16], image inpainting [22], jigsaw
puzzle [20] [15], image generation [10] [32].

Colorization as a pre-text task involves predicting the color
version of the image given the grayscale image. [29]in his
work converts the original image into Lab space and then
given the L space of the image, the model is trained to predict
the ab space. The authors have defined this as a multinomial
classification problem with class re-balancing to distribute the
predicted ab values evenly.

Another important pre-text task is Context Prediction. In
[22], the authors proposed a method to predict image context
by training a CNN to in-paint a missing patch in the image.
They reported that if the patch was created in the center of
the image then the network would learn about the features
in the center. They proposed to create random patches for
the network to learn better features. But this random creation
of patches results in intensity change. The resultant image
belongs to a different domain and the features learned may
not be useful.

The pretext task of solving the Jigsaw Puzzle consists of
predicting the correct order of jumbled patches of an image.
The authors of [19] proposed a method where a random crop
in the image was selected. This cropped image is divided into
9 equal shaped patches and then permuted as per pre-defined
order. The task of the deep neural network is to predict the
order of permutation and in the process learn features. The
performance of the proposed method solely depends on the
order in which the shuffle is performed and it can be an
expensive process to find the perfect shuffle order.

C. Contrastive Learning

It is a machine learning technique used to learn represen-
tation such that similar images stay together and dissimilar
images are far apart. It is used in both supervised and unsu-
pervised approaches. It is more useful to use this methodology
in the self-supervised setting in the absence of labels. SImCLR,
MoCo, BYOL are some popular contrastive learning methods.

SimCLR: SimCLR is an acronym for Simple framework
for Contrastive Learning. It learns visual representation by
maximizing loss between dissimilar images (negative pair) and
minimizing loss between similar images(positive pair). In the
paper [6], authors sampled N images from the dataset and
applied two augmentations to each of the N images. After this
augmentation each image has 2 positive images(called positive
pair) because two different augmentations were applied. And
each of the positive pairs has 2(/N — 1) negative images. Each
image in a positive pair is passed through an encoder to get im-
age representations. The encoder used in the paper is ResNet50



but it can be any convolution architecture. This representation
is passed through a series of non linear transformations to
get an embedding vector. Thus for each augmented image an
embedding vector is retrieved. Contrastive loss is calculated
using the calculated embedding vectors minimizing distance
between positive images and maximizing distance between the
negative images. This method relies on negative samples and
the batch size has to be large to have enough negative samples
for the network to learn.

BYOL: The authors of [11] points out that [6] is sensitive
to the choice of data augmentation and mentions that if color
distortion is removed the method does not perform as well as
it does with its inclusion. This can also bring systematic bias
to the model. They proposed a method that discards dissimilar
images and only relies on two networks that interact with each
other to learn representation. This strategy makes the training
process efficient and removes the possibility of systematic bias.
The paper reports that this method achieves 74% when pre-
trained on ImageNet [8] using ResNet50 as a backbone model.

The architecture of the model is shown in fig 1. The method
of BYOL is very simple. First we take one image, apply aug-
mentations or a set of augmentations on the image to get two
different views of the same image. These two views are then
passed through two different identical network architectures
separately, ResNet50 is the backbone as mentioned in the
paper. The output of both the networks is passed through
a Multi Layer Perceptron(MLP). The output of the online
network(upper network in the Figl) is again passed through a
MLP and the output is compared with the second network’s
(lower network in Figl) MLP output using L2 loss. The
weights of the online network are updated by gradient descent
and that of the target network through the exponential moving
average(EMA) of the online network.

D. Attention

Attention mechanism in computer vision is divided into
two parts: hard and soft attention. Hard attention focuses
on a subset of an image, and this makes this approach
compute and memory efficient. But one downside of this
approach is that these models are difficult to train as the
image cropped or sliced (operation that achieve hard attention)
may or may not contain relevant features. Soft attention on
the other hand acts upon the whole image and is hence
memory and computation expensive but the model can be
trained using back-propagation. Soft attention has been widely
used in computer vision tasks like image classification [28],
recognition and segmentation [21] because of its ability to
capture long range contextual relationships. Next, we describe
different soft attention models.

1) Self-Attention: It is a type of self-attention where the
attention is computed by taking the image itself as input.
Mathematically, given an input tensor from a previous layer
of shape (H,W,F) where H, W and F are the height, width and
number of input filters. The tensor is then flattened to a matrix
X € REWXF The formula to compute the self-attention is:

op = softmax(%)(XWv)

h
k

where W,, W, eRF* 4" are query and key weight matrices
and W, eR¥*dv" is value matrix. oy, is the attention score
per head. d,, and dj denotes the depth of the value and key,
query. And d," denotes the depth of key for each attention
head. XW,, XW} and XW, gives the query @, key K and
value V.

2) Criss-cross Attention: The conventional self-attention
[27] establishes contextual information of an image but this
information calculated is both memory and computation ex-
pensive. The self-attention has complexity of O(NN?), where
N denotes the number of pixels in an image. Criss-Cross
attention [13] module on the other hand calculates the feature
map by considering only the horizontal and vertical positions
for a given position. This strategy reduces the complexity to
O(v/N) and the memory consumption is also reduced. This
method has achieved state of the art results for semantic and
instance segmentation tasks on Cityscapes, ADE20K, COCO,
LIP and CamVid.

3) Stand Alone Self-attention: : Convolution operation con-
sists of multiplying a filter of fixed size (3x3, 5x5 etc) with
each and every position of an input tensor. Convolution layers
are translation equivariant but lack the property of capturing
long range interaction. Global attention [27] which captures
these long range dependencies are computationally expensive.
The authors of this paper replaced the convolution layer in the
neural network with local self-attention which can be applied
to both small and large images. The proposed attention layer
performs computation on a small neighbourhood called the
memory block. And for each memory block, a single headed
attention is computed. The input feature is divided depth-
wise into N groups, attention is computed on each group and
concatenated. On top of this, positional information is added
by computing the relative distance of (4, j) to every pixel. The
row and column distances are computed separately and later
multiplied with the query matrix.

This approach reduces the number of parameters and the
attention is computed for a small block instead of the whole
input tensor. The paper compares two types of network ar-
chitecture, wherein the first model has all the convolution
layers replaced by attention and the second where convolution
at the top of the layer is preserved and rest is replaced by
attention. The latter performed better owing to the fact that
the convolution layer better captures the local features.

E. Transformer Model

The Transformer [27] model became popular after its usage
in the NLP (Natural Language Processing) domain for solving
machine translation tasks and later used in other NLP tasks.
The architecture of a transformer consists of encoder and
decoder modules and each of these modules further consists
of several encoder and decoder models. Each encoder and
decoder consists of self-attention and feed forward networks.
Feed forward network consists of non linear activation ap-
plied on a linear transformation. The training process of the
transformer model consists of a pre-training step followed by
fine tuning of the model on the downstream task. Pre-training
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Fig. 1: BYOL Architecture: BYOL consists of two identical networks which takes in 2 different augmented views of the same
image. The upper part of the network is the online network and the lower side of the network is the target network. The
output of the encoder in the online network is passed to 2 MLPs and that of the target encoder is passed through 1 MLP. The
output of the online network after the 2 MLPs and that of target network after 1| MLP are compared with L2 loss function.
The weights of the online network are updated through gradient descent and that of target network are updated as exponential

moving average of the online network.

is done on a large data set in an unsupervised way and the
weights learned are fine-tuned on a small data set.

1) Vision Transformer: It is acronym-ed as ViT [9] is the
first application of transformers in the computer vision domain.
The architecture of the model is similar to the one in [27]
with the difference in the encoder’s input. The 2D image is
divided into patches and each patch is flattened, a positional
embedding is added and fed into the encoder. The positional
embedding helps to retain the positional information about
the sequence of the flattened patch. The encoder consists of
alternating layers of self-attention and feed forward network.
This model is first pre-trained on larger data and later fine-
tuned on Imagenet. One downside of the transformer is its
lack of vision related inductive bias. And it is due to this
shortcoming that the pre-training phase requires larger data.

Transformer models achieve good results but at the expense
of computation cost [5] and large training data. Transformers
lack inductive bias, hence requires large amounts of data to
train and this can be a shortcoming that is very difficult to
subdue.

F. Self-Supervised Semantic Segmentation

In the method proposed in [22], a patch in the image is
created for the model to predict and learn important features.
But this patch created changes the intensity of the image.
The resultant image belongs to a domain different from that
of the original image. The authors of [3] proposed a novel
method to overcome shortcoming of [22]. The method selects
random two isolated small patches in a given image and swap
their context. Repeat these operations a number of times,
till the intensity distribution is still preserved, but its spatial

information is altered. The model consists of two parts namely
analysis and reconstruction. In the analysis part the features
are learned from the disordered image and later these learned
features are used to reconstruct images. One problem with this
method is that it uses L2 loss which blurs the image.

In [26], the authors used image inpainting as a pretext
task. The network consists of coach and in-painting networks
that compete against each other. Coach network learns to
create difficult patches for the in-painting model to predict
and the in-painting model in return learns features that it uses
in the reconstruction of the image. The paper proposed to
use ResNet-18 instead of AlexNet, removed the bottleneck
layer and used a pre-trained encoder decoder. Coach Network
on the other hand also used ResNet-18 to learn features.
The loss functions for the inpainting model consists of a
reconstruction loss and a context loss. The loss function of the
coach network is adversarial to the reconstruction loss function
thus creating a competition between the two networks. Their
model performed better than popular self-supervised methods
on potsdam, SpaceNet and DG Roads datasets.

Also, the representation learned by byol method is later
used for semantic segmentation on cityscape data set and this
method of pre-training performs better than the pre-training
method of Simclr [6] and moco [12].

III. MOTIVATION

We have made certain design choice and here we motivate
these choices in detail.

A. Medical Image Scarcity

Acquisition of large amounts of medical images is a difficult
task as compared to natural images. And even if acquired
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Fig. 2: Modified BYOL Architecture: The proposed method replaces the augmentation with the colorization task and keeps
the entire BYOL architecture intact. That means the loss is computed by comparing the representation of online and target
network which takes grayscale and colored image as input respectively. Similar to the original BYOL method, another loss is
computed by interchanging the inputs to the online and target network. The addition of these two losses are backpropagated
to the online network. And the wieghts of the target network are the exponential average of the online.

in large numbers labelling the images is a time consuming
process as it can only be done by an expert. Hence, to
overcome this issue we will have opted to use a self-supervised
approach [11] [29] thus requiring no labels.

B. Colorization as a pretext task

Colorization as a pretext task: Colorization task will allow
the model to learn local features of the image. By local features
we mean the cellular structures present in the image. This
assumption is based on the fact that in an image a particular
artifact will have the same color, so the model will learn about
the pixels that constitute the artifact group them together and
will apply the same color.

C. BYOL for self-supervised learning

The performance of BYOL is superior to other contrastive
methods and it also does not require negative samples (Section
II). Microscopy images have cellular structures of different
sizes and we want to leverage BYOL method of representation
learning to learn those features.

D. Stand Alone Self-Attention as Encoder

The main function of Self-Attention is to highlight the
prominent features of an image. Our data set consists of
cellular level images and the shape of the cell varies with each
image and each image can have numerous cellular structures.
The use of Self-Attention will give more importance to the
cellular structure. Also, the self-attention method in [23] is
computationally less expensive and can be applied to the
whole image without down-sampling. Traditional Convolution
networks lack the ability to long-range interaction and its fixed
filter size makes it a template matching task and does not

capture semantic features. Also, the global self-attention [27]
can only be used after the image has been sampled down and is
computationally expensive. But the stand alone Self-Attention
is computationally less expensive than self-attention [27] and
has less number of parameters than ResNet50.

IV. METHOD

In this section we discuss the proposed self-supervised
learning method and further elaborate on the downstream tasks
devised to evaluate the performance of self-supervised strategy.

A. Self-supervised training

Fig. 2 shows the architecture of our self-supervised method.
Our method consists of the following components.

« Colorization: The colorization task converts the single-
channel grayscale image to a three-channel Lab image.
The pre-trained model proposed in [29] has been used
to convert the image (cem500k dataset) from grayscale
space to Lab space. The gray-scale and the colorized
image forms an input-target pair for the encoders as
shown in fig. 6.

o Encoders: The choice of encoders is an important
aspect of this method. In this experiment, Resnet50
and stand-alone self-attention has been used to learn
representation. While resnet50 is a well-known resnet
network, stand-alone self-attention is a modification
of traditional resnet50 where the convolution layer is
replaced by the attention layer except in the first layer.

e BYOL: The architecture of our proposed self-supervised
learning method is shown in fig 2. The original BYOL
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Fig. 3: Downstream Tasks: The above figure shows the architecture of the downstream tasks. The representation learned through
our self-supervised learning strategy is evaluated using these two tasks. (a) The pre-trained encoder takes an image (cem500k
dataset) as input and outputs a representation which acts as input to the logistic regression classifier. The classifier is now
trained in a supervised manner to predict the class of the organisms the cellular image belongs. (b) U-net is the base model used
to design the semantic segmentation architecture. The encoders are pre-trained using our method and the decoder is randomly
initialized. Lucchi++ and Kasthuri++ are used to perform semantic segmentation. During the training, only the weights of the

decoder are updated.
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Fig. 4: Classification Dataset: The figure depicts example of
images belonging to the subset of cem500k data-set used for
the classification task. Each image bears the name of the
organism to which it belongs.

architecture has been preserved which consists of two
identical encoder networks(online and the target).

The online network learns from the representation of the
target network. That means, the online network takes
an image as input and the target network takes the
augmented view of the same image as input. In our work,
the augmented view has been replaced with the colorized
image and the original image is gray-scale which is the
input to the online network.

The weights of the online network is updated by

back-propagating the loss(L2 loss) which is calculated
by comparing the representation of the online and target
network. And the weights of the target network are
updated as the exponential weighted average of the
online network.

B. Downstream Tasks

The evaluation of the self-supervised method takes place
by using the representation learned during pre-training to
perform downstream tasks like classification and segmentation.
In our experiment we have chosen to perform classification and
semantic segmentation.

« Classification: The classification task is performed by
training a linear classifier on top of a pre-trained encoder.
Fig 3a shows the architecture of the classifier used in
our experiment. The pre-trained encoder takes in input
an image and the output of the encoder which is of
size 2048 is used as input for the logistic regression
model. Other than this, the regression model also takes
the target value in the form of 'name of the organism’
(Humans, mouse, c.elegans) to which the image belongs.
The logistic regression model is trained to predict the
type of organisms(the name of the organisms to which
the cellular images belong.). The images used for training
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Fig. 5: Semantic Segmentation sample: The above figure
shows the image and its segmentation mask of Lucchi++ data
set. Fig 5a shows the captured cellular level image of the brain
cells of a mouse. Fig 5b shows the segmentation mask of the
cellular image.

the classifier belong to a subset of the cem500k data set.
Its distribution is shown in Fig. 7a and Fig. 4 shows 3
images belonging to that subset used in this downstream
task.

o Semantic Segmentation: Semantic segmentation is the
task of grouping together similar parts of the image
that belong to the same class. The architecture of the
segmentation model is shown in Fig. 3b. It consists of two
parts namely the encoder and decoder. The encoder takes
in the image and its corresponding mask as input. The
output of the encoder acts as input for the decoder and
eventually the decoder predicts the segmentation mask.
The encoder in the architecture is pre-trained in a self-
supervised manner. During the training, the weights of
the encoder remain unchanged and only the decoder’s
weights are updated by back-propagation. This method
allows us to evaluate the representation learned during

Fig. 6: Pre-training dataset sample: The images present in the
cem500k dataset are gray-scaled asshown in (a). The self-
supervised method proposed in this paper requires grayscale
and color image pair. The pre-trained network proposed in the
paper [29] has been used to convert the grayscale to color
image as shown in (b)

pre-training. U-net architecture has been chosen as the
base model for this task. Resnet-50 and stand alone self-
attention are the encoders for two different U-nets.

V. EXPERIMENTS

A. Dataset

The CEMS500k dataset consists of around 500,000 cellu-
lar level microscopic grayscale images taken from different
organisms and captured with different kinds of microscope.
Fig. 7 shows the distribution of the dataset in terms of types
of organisms. In total there are 8§ known types of organisms
and a small portion contains organisms of unknown type. The
diverse nature of the data set will allow the network to learn
robust features.



Dataset Train Size | Test Size Modality Usage
CEMS500K 500,000 0 Microscopic Pre-training
Lucchi++ 165 165 Microscopic | Segmentation
Kasthuri++ 85 75 Microscopic | Segmentation

TABLE I: Dataset Description: The table shows the different data sets and its properties. CEM500k contains 500000 images
and it will be used for pre-training using BYOL Method. Other datasets will be used for segmentation task
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Fig. 7: Distribution of CEM500K: CEMS500k dataset consists
of microscopy images from 10 different organisms. The or-
ganisms Mouse,Human and C. elegans constitute majority of
the images. The dataset has been divided into two parts. Fig 7a
shows the organisms comprising the first part of the dataset.
This part has been used for the classification task. Fig 7b shows
the organisms comprising the second part of the dataset. This
part has been used in pre-training task.

Other than this, two benchmark datasets Kasthuri++ and
Lucchi++ [2] have been chosen for the segmentation task.
Both these datasets contain cellular level images of the mouse
brain and the task is to segment mitochondria. Lucchi++
contains 165 training and testing images with annotations and

Kasthuri++ contains 85 training and 75 testing images with
annotations. Fig. 5a shows one of the images of Lucchi++
and fig. 5b shows the mask of the same image.

B. Implementation Details
« Pre-training:

— Data set: As mentioned above CEMS500k has been
divided into two parts. Fig. 7b shows the distribution
of the images used for BYOL pre-training task. Out of
500,000 which is the total size of the data-set, 150,000
have been used for the pre-training. As part of the
pre-processing step, each gray-scale image have been
resized to 128x128 px and concatenated across three
channels to form a 3-channel image. Similarly, the
colorized image is obtained by feeding the grayscale
image to the colorizer network [29].

— Training: Resnet50 and stand-alone self-attention
[23] have been used as encoders in two separate
pieces of training. The architecture of MLP is the
same as that in the original BYOL method. The
weights of the online network have been updated by
back-propagating the loss calculated by comparing the
output of online and target network. And the weights
of the target network is the exponential average of
the online network. Adam optimizer have been used
with a constant learning rate of 0.0003. The training
was first carried for 50 and then extended to 100
epochs. The batch size was set to 20. The parameters
mentioned above were constant for resnet50 and
stand-alone self-attention encoders.

o Downstream Task:

— Classification: The subset of the CEMS500k dataset
shown in fig. 7a have been used to perform the
classification task. Predicting which type of organism
the image belongs to is part of this task. 100,000
images from this subset have been used for this task.
The architecture of the classifier is shown in fig.
3a. Features extracted from the encoders (pre-trained
using our method) are fed into the logistic regression
model. Out of 100,000, 70,000 images have been
selected for training, 10,000 for validatoin and 20,000
for testing. Cross-entropy loss function and adam
optimizer with a learning rate of 0.0003 have been
used to train the classifier. Accuracy have been used
as a metrics to evaluate the classification results



and a confusion matrix have been used to visually
understand the classification results of each encoder.

— Semantic Segmentation: Benchmark data sets Luc-

chi++ and Kasthuri++ have been used to perform
semantic segmentation. Encoders derived from self-
supervised pre-training have been incorporated into a
U-net architecture. The dataset was divided by 75-25
split meaning 75% of the data was reserved for training
and 25% for validation. The images were resized to 224
X 224 px and augmentations in the form of horizontal
flip, vertical flip, rotation, gaussian blur were applied.
The selection of the augmentations were random with
the intention of robust training.
The results achieved were best when trained for 200
epochs with a batch size of 4. The loss function and
optimizer used were dice-bce loss and adam optimizer
with starting learning rate of 0.0005 and decreasing if
there is no change in validation loss for 15 epochs.

C. Metrics

In this section we discuss about the metrics that were used
to evaluate our results.

« mloU: This metric is popular in semantic segmentation
and it stands for mean Intersection over Union. First
IoU is calculated for each class followed by the mean
across all the classes. TP is the region that has been
correctly predicted. FN is the region that belongs to the
class but is incorrectly predicted as a different class and
FP are those regions that belong to a different class but
are predicted as the class.

TP

IoU = 7prrprrn

D. Evaluation

The results obtained from our experiment were evaluated
on the following parameters:

1) Compare the performance of the proposed method
on benchmark data-sets: The U-net constructed from the
encoders derived from our pre-training method have been
tested on benchmark data sets Lucchi++ and Kasthuri++.
Further, the results obtained have been compared against the
results obtained in the paper [2]. The results obtained from
this evaluation are shown in table V.

2) Compare the performance of encoders pre-trained using
our method on the segmentation task: The purpose of this
evaluation is to understand the difference in the performance
of a segmentation model with and without our self-supervised
pre-trained encoders. The encoders (resnet50 and stand-alone
self-attention) derived from the pre-training have been used
in U-net architecture to perform semantic segmentation. In

this evaluation, the weights of both the encoder and decoder
were updated through back-propagation. Similarly, U-net with
resnet50 (Imagenet pre-trained) and traditional U-net have
been constructed to perform segmentation and compare results
with the byol pre-trained encoders. The results obtained from
this evaluation is shown in table II.

3) Compare the representation learning capability of our
self-supervised method against Original BYOL: The purpose
of this evaluation was to quantify the representation learned
using our method. This evaluation was carried out by test-
ing the encoders on classification and semantic segmentation
downstream tasks.

The encoders from our pre-trained method and the original
BYOL were used to construct the Unet architecture for the
task of semantic segmentation. The encoders were frozen(that
means the weights of the encoder would not change during
training) and the mloU score was calculated to evaluate the
results.

And for the task of classification, encoders from our
pre-trained method, original BYOL, encoders from the Unet
mentioned in the paper [2], resnet50 (Imagenet), stand
alone self-attention (randomly initialized). Features have
been extracted from each encoder and passed to the logistic
regression model. The results from this evaluation is shown
in table IIT and table IV.

VI. RESULTS AND DISCUSSION

In this section we list out all the results for our experiment
and discuss them in detail. The name of the encoders men-
tioned under U-net Encoder or Encoder column name in Table
IL, 111, IV, V follow the nomenclature of Encoder name(ours),
Encoder name(BYOL), Encoder name(traditional). Encoder
name(ours) refers to the encoders used in self-supervised pre-
training using our method. Encoder name(BYOL) refers to
the encoder used in the self-supervised pre-training using
the original BYOL method. An Encoder name(traditional)
refers to the encoder either pre-trained on Imagenet or ran-
dom initialised. Other than that we have also mentioned
Encoder(Paper) which refers to the network mentioned in the
paper [2]. This network is an improved version of original
U-net in terms of parameters.

In our experiment we have used two encoders resnet50
which is pre-trained on Imagenet and stand alone self-attention
[23] with randomly initialised weights.

A. Results

Table II shows the results obtained by encoders from
our pre-training strategy and the obtained results have been
compared against traditional U-net and resnet50 (Imagenet
pre-trained) based U-net. The resnet-50 encoder pre-trained
using our method achieves mloU of 0.7896 for Lucchi++ and
0.77 for Kasthuri++. Stand Alone Self-attention-based pre-
trained encoder on the other hand achieves 0.7325 and 0.75
on Lucchi++ and Kasthuri++ respectively.



On the other hand, traditional U-net achieves a mIoU score
of 0.58 and 0.55 on Lucchi++ and Kasthuri++ respectively.
And Resnet50 based U-net achieves mloU score of 0.5821
and 0.62 on Lucchi++ and Kasthuri++ respectively. Overall
our encoders performed better than the traditional U-net
as well as the resnet50 based U-net. The difference in
performance can be attributed to our pre-training method.

Dataset U-net Encoder mloU
Lucchi++ Resnet50 (Our) 0.7896
Self-Attention (Our) 0.7325
U-net (traditional) 0.58
Resnet50 (traditional) | 0.5821
Kasthuri++ | Resnet50 (Our) 0.77
Self-Attention (Our) 0.75
U-net (traditional) 0.55
Resnet50 (traditional) 0.62

TABLE II: Comparison of Semantic Segmentation Results
with and without pre-trained encoders: The table shows the
results of the semantic segmentation on the Lucchi++ and
kasthuri++. The encoders derived from pre-training are fine-
tuned on both the datasets.

In Table III, the results obtained by our pre-training method
is compared against the original BYOL pre-training method.
The encoders from the pre-training were trained for semantic
segmentation with frozen encoders. This means that only the
weights of the decoder will be updated and that of the encoder
will be same(frozen) throughout the training on segmentation
datasets. Encoders Self-Attention and Resnet50 derived from
our pre-training achieve mloU score of 0.7034 and 0.6593 on
Lucchi++ and 0.7167 and 0.6839 on Kasthuri++ data set.

Dataset U-net Encoder mloU
Lucchi++ Resnet50 (Our) 0.6593
Self-Attention (Our) 0.7034
Resnet50 (BYOL) 0.6743
Self-Attention (BYOL) | 0.6530
Kasthuri++ | Resnet50 (Our) 0.6839
Self-Attention (Our) 0.7167
Resnet50 (BYOL) 0.7036
Self-Attention (BYOL) | 0.6849

TABLE III: Comparison of our pre-training strategy with
BYOL pre-training: The table shows the results of semantic
segmentation when the encoders pre-trained with our pre-
training strategy is compared against the BYOL. The weights
of the encoders are not updated during the training on semantic
segmentation dataset.

Further, the original BYOL [11] method was used to
pre-train the two encoders (resnet50 and stand-alone self-
attention) on the same data sets as our method. Resnet50
encoder achieves mloU of 0.6743 and 0.7036 on Lucchi++
and Kasthuri++ respectively. Self-Attention encoder achieves
mloU of 0.6530 and 0.6849 on Lucchi++ and Kasthuri++
respectively.

The scores achieved by resnet50 encoder(original BYOL)
based U-net is comparable on kasthuri++ dataset but lags
behind the best performing attention model(pre-trained using
our method) by 3% on Lucchi++. Stand-alone self-attention
encoder from the original BYOL achieved a mloU score of
0.6849 which is less than our self-attention results by 0.0318
or 3%.

The use of colorization in our pre-training method instead
of a combination of augmentations gives comparable results
on the Lucchi++ and is at times better than the original
method(BYOL).

Next, we use the pre-trained encoders for the classification
task and the results are shown in Table IV. The stand-alone
self-attention model(our method) achieved an accuracy of
59.03%. Self-attention encoder derived from the original byol
pre-training achieved an accuracy of 75.67% which is an
improvement of 16.64% on our method. But the encoder from
our method improves upon the performance of the randomly
initialized stand-alone self-attention encoder by 3.71%.

Encoder Accuracy(%)
Resnet50 (Our) 71.75
Resnet50 (BYOL) 72.3
Resnet50 (traditional) 70.715
Self-Attention (Our) 59.03
Self-Attention (BYOL) 75.67
Self-Attention (traditional) | 55.32
Encoder (Paper) 36.83

TABLE IV: Classification Results on cem500k dataset: The
table shows the results of classification on cem500k dataset.

The resnet50 encoder derived from our BYOL pre-training
achieves an accuracy of 71.75% which is less than the
performance of resnet50 derived from the original method
by 0.8%. Again, our recent encoder performs better than
the imagenet trained resnet50 by 1%. The encoder from the
network proposed in [2] achieved an accuracy of 36.83%
which is lower than our resnet model by 36.14% and the self-
attention model by 22.2%. Fig 8 shows the way the resnet50
encoder(our method) shows the percentage of images classified
accurately. It can be seen that the encoder is able to classify
the mouse class with the highest accuracy and the C.elegans
with the lowest accuracy. The miss-classification accuracy of
the encoder does not go above 20%. The confusion matrix
for self-attention encoders is shown in Fig 9. The encoder
correctly classifies the human class with the highest accuracy
and C.elegans class with the lowest accuracy.

In the end, the mIoU score obtained by the proposed method
is compared against the results mentioned in the paper [2] as
shown in Table V. Our resnet method achieves a mloU of
0.7896 which is less than the results in the paper by 0.1564
and 0.15 for Lucchi++ and Kasthuri++. And the mloU score
of our self-attention model is less than the paper’s [2] results
by 0.226 and 0.17 on Lucchi++ and Kasthuri++ respectively.



Dataset U-net Encoder mloU | mloU(paper)

lucchi++ Resnet50 (Our) 0.7896 0.946
Self-Attention (Our) | 0.7325

Kasthuri++ | Resnet50 (Our) 0.77 0.92
Self-Attention (Our) 0.75

TABLE V: Comparison of segmentation results with bench-
mark results: The table shows the results obtained by our
method and compared against the results obtained in the paper
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Fig. 8: Confusion matrix of our resnet50 pre-trained encoder:
The figure shows the confusion matrix for classification by
resnet50 derived from our byol method.

Overall, the resnet50 encoder works well in conjunction
with our pre-training strategy across all the experiments.
The self-attention model on the other hand works well on
the semantic segmentation task but performs poorly on the
classification task. The poor performance cannot be directly
related to the architecture of stand-alone self-attention. This
is because the same self-attention architecture has been pre-
trained with the old byol method and has achieved the highest
classification accuracy. Next, we analyze the CAM of the last
layer of stand-alone self-attention pre-trained using the BYOL
and our method. Fig 10 shows the microscopy image and Fig
11 shows the class activation map of the pre-trained encoders.
The CAM of the self-attention encoder pre-trained using our
method is shown in Fig. 11a. From the figure it can be seen
that the encoder focuses on the cellular structures present in
the image. Similarly, in Fig. 11b the activated region generated
by the self-attention encoder pre-trained using BYOL is also
some parts of a cellular structure. The regions activated by
the self-attention model pre-trained using both the methods
are visually similar.

A similar observation can be seen in the CAM of the
resnet50 model. The CAM of the resnet50 pre-trained using
our method as shown in Fig 11c activates a cellular structure
in the image. And the resnet50 model pre-trained using BYOL
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Fig. 9: Confusion matrix of our self-attention pre-trained en-
coder: The figure shows the confusion matrix for classification
by stand alone self-attention derived from our byol method.

Fig. 10: Image: The figure shows the Image that is used to
obtain the class activation map of the last layer of the pre-
trained encoders.

also focuses on a cellular structure in a different part of the
image. Overall, the investigation of CAM led us to believe that
all the encoders activate visually relevant parts of the image.

VII. CONCLUSIONS

In this paper, we addressed the issue of scarcity of labeled
images in the medical domain by proposing a self-supervised
method for feature learning. Initially, we performed a literature
review of the semantic segmentation methods. Further, we
compared various self-supervised pre-text tasks and made
a hypothesis that colorization tasks can be used to learn
useful representation for microscopy medical images. Next, we
reviewed contrastive learning methods and concluded that the
BYOL method of contrastive learning is better than SimCLR
in terms of efficiency and performance. We made another hy-



(d)

Fig. 11: Class Activation Map: The figure shows the class activation map generated by the last layer of the pre-trained encoders.
(a) In Fig 11a, the Class Activation Map of the self-attention model pre-trained using our method is shown. (b) In Fig 11b,
the Class Activation Map of the self-attention model pre-trained using BYOL method is shown. (c¢) In Fig 1lc, the Class
Activation Map of the resnet50 model pre-trained using our method is shown. (d) In Fig 11d, the Class Activation Map of the

resnet50 model pre-trained using BYOL method is shown.

pothesis about self- attention-based architecture that it would
work better than convolution-based architecture owing to its
ability to capture global features.

The encoders from our pre-training strategy were used to
model an Unet. This Unet was further fine-tuned on two
semantic segmentation benchmark data sets. Both the Unets
(resnet50 and stand-alone self-attention) from our pre-training
method performed better than the traditional U-net by a
significant margin on both the data sets. Further, our encoders
performed better than Imagenet pre-trained resnet50 based
Unet. Overall, resnet50 (our method) based Unet performed
better than the stand-alone self-attention (our method) based
Unet by a score difference of 0.0571 on Lucchi++ and 0.02 on
Kasthuri++. This result contradicts our assumption that self-
attention based encoder will perform better than convolutional
encoder.

Further, we evaluated the effect of colorization in our pre-
training strategy by comparing it against the original BYOL
method. The encoders were frozen and only the weights of the
decoder part of the U-net were updated. Unet with stand-alone
self-attention encoder pre-trained using our method performed
best on both the data sets with mloU score of 0.7034 and

0.7167 on Lucchi++ and Kasthuri++ respectively. The results
of reset50 encoder pre-trained using our pre-training strategy
and that from original BYOL were comparable with original
BYOL getting better results by a very fine margin on both
the datasets. These results help us conclude that the features
learned by the self-attention encoder trained using our strategy
is better than that of other encoders.

With this conclusion, we moved on to the next downstream
task intending to make our conclusion full proof. In the
classification task, stand-alone self-attention derived from the
original BYOL performed best with the accuracy of 79.28%
while our stand-alone self-attention scored 54.23%. On the
other hand, resnet50 derived from our method scores 71.75%
which is less than resnet50 derived from original BYOL by
0.595%. But at the same time, the results obtained by resnet50
are an improvement over the Imagenet pre-trained resnet50 by
1.04%. Also, both our models’ resnet50 and stand-alone self-
attention perform better than the encoder from the paper by
34.92% and 17.4% respectively.

Based on the two experiments, we get contrasting results.
The self-attention gets good results on the semantic seg-
mentation task but fails to classify the images with good



accuracy. So, we further analyze the CAM of the self-attention
encoder to understand these contrasting results. We find that
the features learned by all the encoders are visually similar
and all the encoders activate important cellular structures in
an image. Thus the dip in performance can be because of the
hyperparameters of the logistic regression model.

Overall, the self-attention model pre-trained using our
method performed better on semantic segmentation task when
the weights of the encoder was not being updated(that is the
encoder was frozen) as shown in Table III. And resnet50 pre-
trained using our method, performed comparably to the best
performing encoder on both the tasks. So, we conclude that
inclusion of colorization task has assisted the encoders to learn
relevant features and has performed better than the BYOL
method on semantic segmentation task.

In the end, we compared our semantic segmentation results
against the results obtained using the supervised learning
approach. Our resnet50 based encoder achieved a mloU score
that was less than that of the supervised approach by 0.1564
on Lucchi++ and by 0.15 on Kasthuri++. The results obtained
through our method are less in comparison to the supervised
results. But, our encoders achieved better results on the im-
age classification task than the encoder from the supervised
approach.

With the results from our experiment, we answer the re-
search question Can a self-supervised learning method with
a self-attention model develop a robust representation for
semantic segmentation? The stand-alone self-attention model
pre-trained using our method was the best performing model
on both the benchmark data-sets with frozen encoders and
scored comparably with unfrozen encoders. In future work,
different types of encoders like resnet200 can be pre-trained
with different pre-text tasks instead of colorization to see if
encoders learn better representation.
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