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Abstract

The recent development in urbanization has led to a persistent increase in road traffic vol-
ume and traffic accidents. Bicycles and Electric Bikes (e-bikes) are highly recommended
due to the pollution generated by high-end automobiles, and they are also cost-effective,
environmentally friendly, and have health advantages. The increase in traffic volume
and accidents has fueled the research on Forward Collision Warning (FCW) systems in
automobiles for proper safety of the driver. Forward collision occurs more frequently
which leads to fatality on both sides. However, adapting the FCW systems in high-end
automobiles to bicycles has limitations due to complexity, cost, and size.

In this master thesis, a multi-sensor integrated forward collision warning(FCW) sys-
tem with visual distraction detection is developed. The system uses Millimeter Wave
(mmWave) radar module for detecting the vehicle in the front and a camera module to
estimate the head pose of the rider. The Time-To-Collision (TTC) and Minimum Safe
Distance (MSD) metrics are then used to assess the threat and alert the rider. The
Threshold of the TTC is varied based on the alertness of the rider. This method shows
good performance with an accuracy of 96.7% in shared road scenarios.
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Chapter 1

Introduction

The rapid growth in urbanization has led to more and more people moving to cities,
around 1.3 million people move into cities every day. With the help of Information
and Communication Technology (ICT), cities have evolved to smart cities to tackle the
problems that occur due to urbanization. The funding for the smart city initiative has
been forecasted to increase from 80billion to 189.5billion by 2023 [11]. The transformation
of urban cities to smart cities considers cost optimization rather than sustainability goals.
Transportation has played a major role in urban sustainability. According to [12], every
day 4.5 million trips are made by bus, tram, and metro in the Netherlands, one million
are made by train and no fewer than 14.5 million by bicycle.

Urbanization has also led to an increase in desk-bound works such as obesity, diabetes,
and hypertension. Hence physical activity is encouraged to overcome these metabolic
diseases. Road traffic contributes 17.2%of greenhouse gas emissions in the Netherlands
in 2019 [13]. Electric Vehicles play a key role in the reduction of air pollution in urban
areas. To date, 17 countries have announced 100% zero-emission vehicle targets or the
phase-out of internal combustion engine vehicles through 2050 [13].

Bicycles and e-bikes play an integral part in the transport system globally. It is
considered to reduce traffic congestion in big cities, avoid dependencies on the metros and
other transport systems during peak hours. Cycling is one of the most preferred physical
activities as it aids both transportation and health benefits. With the recent trend of
renting bikes, bicycles have gained interest as it enhances mobility and is economical.
Bicycles are the Eco-friendly transportation that will be the smartest way to commute
in smart cities. Sales of e-bikes are high across Europe indicating that this will slowly
become the future at global level as it eases riding through automatized pedaling [14].

An increase in road transportation can increase the number of road accidents. Approx-
imately 1.35 million people experience road accidents every year. In 2019, an estimated
number of 21,400 road users were seriously injured in Dutch traffic [15]. This has led
to the consideration of safety measures inbuilt in vehicles to reduce human error. The
implementation of advanced driver warning systems in smart vehicles is done to counter-
act human error. Currently, bicycle accidents are responsible for over 7% of all severely
injured traffic participants in the Netherlands [16]. Severe injury as a result of bicycle
accidents has increased by 35% in the last 10 years [17].

To reduce the accidents, Advanced Driver Assistance Systems (ADAS) are introduced
which helps in a mitigating collision or in rare cases reduce bodily injuries. The increase
in ADAS implementation in vehicles in the recent decades shows the acceptability of the
system by the people. According to [18], ADAS vehicles showed a 27% reduction in bodily
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injury claim frequency and a 19% reduction in property damage frequency. The ADAS
systems that are implemented in vehicles are categorized into 6 levels of automation by the
Society of Automotive Engineers (SAE). The levels of automation that are implemented
is shown in Fig. 1.1 The levels of ADAS are introduced in high-end vehicles to reduce

Figure 1.1: Levels of Advanced Driver Assistance Systems [1]

the number of accidents and provide automatic driving. The recent implementation of
ADAS systems in high-end vehicles includes automatic cruise control, collision awareness
and mitigation, and driver monitoring system. Combining ADAS system and bicycles
will lead to safe and Eco-friendly transportation in the near future. Smart bikes seem to
be an easy solution as it aids a physical activity and a safer ride.

1.1 Motivation

The frontal collision accounts for 56% of all the fatal accidents that occurred in 2019 [19].
In this forward collision, distraction contributes to 4% where the driver is distracted
from driving by phone, talking, eating, gazing outside events. The driver’s attentiveness
in the road plays a crucial role in avoiding collision. The recent implementation of ADAS
systems in vehicles are based on collision awareness and mitigation but does not account
for the driver distraction and whether or not the driver is aware of the object in the front.
The risk assessment of the forward-collision warning system doesn’t take into account the
driver’s distraction which leads to more false alarms when the driver is aware of the object
but warnings are generated.

The Table 1.1 explains the scenarios considered in a forward-collision warning system
in bicycles. The recent implementation of Forward Collision Warning Systems for Bi-
cycles takes into account only scenario 1 which works without consideration of cyclist’s
awareness. The deviation of attention from primary tasks such as driving, pedaling and
being aware of the surroundings to texting, prolonged gazing on objects in the road and
cognitive thinking would lead to road accidents. The distraction of a cyclist in an urban
environment not only constitutes an everlastingly latent factor for road users, but they
also have a proven association with the probability of being involved in a traffic crash [20].
Furthermore, given cyclists’ high physical vulnerability in traffic crashes, distraction sig-
nificantly increases the risk of severe injuries or death. Approximately 71% of traffic
crashes are preceded by a mistake made by one of the parties involved, and distractions
have been shown to cause about 17% of driving errors in experimental tests. The crucial
part of distraction is the types of distractions that are being faced by a cyclist on road.
In the study by Useche [20], data was collected from 1064 cyclists to determine the type
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Scenario Description Diagram
Scenario 1 Host Bicycle trying to overtake the target bicycle.

Host
Bicycle

Target
Bicycle

Scenario 2
Host Bicycle traveling along the
same direction as the target bicycle.
A scenario where the cyclist is distracted.

Host
Bicycle

Target
Bicycle

Scenario 3
Host bicycle traveling towards a still object
and the cyclist is distracted.

Host
Bicycle

Scenario 4
Host bicycle traveling along the same direction
as target bicycle with TTC>5 seconds

Host
Bicycle

Target
Bicycle

Table 1.1: Traffic Scenarios
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of distractions that they faced, It can be seen from Table 1.2, that visual distraction ac-

Types Percentage Reported
Text messages or chats 46.4
Phone calls 64.9
Billboards 34.7
My own thoughts or concerns 55.1
Weather conditions 68.5
The behavior of other users of the road 83.6
The obstacles in the way 83.5

Table 1.2: Descriptive data on cycling distractions

counts for around 34.7% and 83.6% of all the distractions experienced by a cyclist. The
driver monitoring systems implemented for high-end automobiles detects the eye gazing,
head movement, drowsiness, usage of phones, and heart rate of the driver which in turn
helps in alerting the driver. Such systems are not yet implemented in bicycles to improve
safety. Adapting such systems done for high-end automobiles in bikes needs attention on
the position of the sensor, accuracy that can be achieved, and types of sensors needed.

Hence implementing a visual distraction detection system with forward collision warn-
ing in bikes is needed for the safety of the rider and reducing traffic accidents.

1.2 Objective

The implementation of ADAS in bicycles needs to be energy-efficient, cost-effective, and
lightweight which doesn’t affect the functioning of the cyclist. The system should be
less complicated in both hardware and software without sacrificing accuracy. Although
the forward-collision warning system with head pose estimation is present in high-end
automobiles, they are not feasible for bikes. Adapting the Forward collision Warning
Systems implemented in High-end Vehicles to bicycles has limitations. The primary goal
of this research is the implementation of a Forward Collision Warning System that detects
the forward collision threads and visual distractions seen in cyclists through the use of
sensor technology which helps in increasing the safety of the rider. Thus, the question that
will be addressed in this research is “How to provide a forward-collision warning
system with visual distraction detection on bikes?”.
The key sub-questions that will be addressed in this research are:

• What are the suitable sensors for visual distraction detection and forward-collision
warning system?

• How to combine forward object detection and head pose estimation to make a
reliable warning system suitable for bikes?

• What is the performance of the designed system in real scenarios?

14



1.3 Contribution

In this section, the contributions done by this research are explained. The questions listed
in Section 1.2 are addressed in chapters 2 to 5. The conclusion and future work of the
research are addressed in Section 7.1 and Section 7.2. The contributions are summarized
as follows:

• A complete multi-sensor integrated forward-collision warning system with visual
distraction detection in bikes using mmWave radar and camera sensor is designed.
The data processing and threat assessment are done in the raspberry pi single board
computer.

• The radar sensor was carefully configured to achieve maximum range and veloc-
ity with low power and low computational complexity. A suitable face detection
technique with reduced computational load was used for head pose estimation.

• A combined threat assessment was developed using TTC and MSD for assessing
the threat in front of the bicycle.

• A warning algorithm was designed based on the head pose and forward object de-
tection. This functionality is expected to improve safety and increase acceptability
by warning the rider about potential threats.

• The proposed system was tested in different scenarios to evaluate the performance.
The proposed system shows an accuracy of 96.7% in a real road scenario. The early
warning for different thresholds ranges between 0.5 seconds and 4.5 seconds. This
exhibits the performance and effectiveness of the system.

15



Chapter 2

System Requirements

2.1 Overview

In this chapter, the forward-collision warning system with a driver monitoring system is
introduced and the requirements of each component of the system are explained.

2.2 Forward collision warning system with driver mon-

itoring system

The forward-collision warning system with driver monitoring consists of three compo-
nents. The data acquisition block consists of two components,namely driver monitoring
and object detection. There are various methods in detecting the object in front which
helps in analyzing the situation. The driver monitoring system helps in constantly moni-
toring the driver and taking action in uncertain situations. The second block is responsible
for processing the sensor data and generating threats based on the data. The third part is
the response part where a warning is given to the driver through audio, visual, or haptic
response. The framework of the whole system is shown in Fig. 2.1

Evaluation

Driver
monitoring 

Object Detection

Response

Forward Collision warning system with driver monitoring

Data
Acquisition

Figure 2.1: Forward Collision Warning System with driver monitoring system
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2.2.1 Criteria to evaluate the proposed system

The performance of Forward collision warning system are usually measured using metrics
derived from the confusion matrix. Same will be used for evaluating the performance of
the proposed system which includes:

• Accuracy: Accuracy is defined as the fraction of correct predictions by the system.
This values determines the overall correctness of the system. It is anticipated that
the accuracy of the proposed system should be high.

• Precision: Precision is defined as the quality of the classification done by the
system. This metrics quantifies the number of true positive predictions made. It is
also known as detection rate of the system. The precision is expected to be high.

• Sensitivity : The Sensitivity is to indicate how good the system is at recognizing
the positive occurrences. It is also known as True positive rate. The sensitivity of
the system should be moderate to high so that the system is not too susceptible to
errors.

2.2.2 Data Acquisition

The data acquisition block for the designed forward-collision warning system with driver
monitoring consists of two components as Driver monitoring and forward object detection.
This block plays a crucial role in acquiring the environmental information related to the
bicycle and the rider. This block determines the overall performance of the system. The
information extracted using this block is used in assessing the potential threat.

Requirements for Driver monitoring system

The criteria such as accuracy, sensitivity to external conditions, cost, and complexity
needed for this block as explained as follow:

• Accuracy: Accuracy is defined as the sensor’s ability to detect the distrac-
tion experienced by the rider. Since there are many distractions that a rider can
experience, the accuracy is determined for each distraction and compared. A high-
accuracy sensor helps in better detection of distraction and assessment. Needless
higher the accuracy can lead to more complexity in implementation and comput-
ing. For this system, moderate accuracy sensor technology is needed to detect
distractions in riders.

• Cost: Cost is defined as the price of the sensor that is needed for the system. The
cost of the sensor must be addressed because this technology is aimed at bicycles.
This method requires a low-cost sensor.

• Complexity : The sensor’s implementation complexity is critical for this system.
Component constraints, energy consumption, and processing difficulty all rise as
the system’s complexity grows. This project necessitates a sensor that is easier to
deploy.

• External Sensitivity: External Sensitivity to environmental conditions plays a
crucial role in sensor performance. External sensitivity is defined as the sensor’s
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ability to detect distraction in the rider without being affected by environmental
conditions. The proposed system needs a moderate sensitivity that can work in all
conditions. This criteria also depends on the type of distraction that needs to be
detected.

Requirements for Forward object detection

The death fatality due to forward collision has fueled the implementation of a forward-
collision warning system to detect and mitigate from objects in the path. This block
contains the sensor technology that is utilized to detect the object in the rider’s path.
The vulnerability of a rider to detect the object in the path when distracted increases the
severity of the accident. The object in the path of the rider is detected by various sensor
technology. This detected object is assessed in the algorithm to determine whether the
object is a threat or not. The criteria for selecting the suitable sensor technology are
discussed below:

1. Range: The range is the maximum distance up to which the sensor can detect an
object. This maximum range is calculated based on the threat assessment technique
and maximum speed of the host vehicle. Range lesser than this can result in low
reaction time for an object in front of the rider. The sensor should have long range
to generate warnings ahead of collision.

2. Field of View: The Field of View of a sensor determines the coverage area. Wider
the coverage area, too many objects in the detected frame and the processing of
each object increases the complexity. Hence a considerable field of view is needed
by this research.

3. Accuracy: The accuracy of the system plays a crucial role in detecting the poten-
tial threats in the environment. Accuracy is the measure of correctness in detecting
the object in the path. Having a high accuracy can help in reducing the false
detection done by the sensor. Hence higher the accuracy, the better the detection.

4. Cost: Since this system is targeted at a low-end vehicle, the cost of the sensor
needs to be considered. A low-cost sensor is needed for this system.

5. Complexity : Complexity plays a vital role in implementation. As the complexity
of the system increases, the component constrains, energy usage and computation
load increases. This project requires a sensor with less complexity in implementa-
tion.

6. Sensitivity to external conditions: The sensitivity to external conditions plays
an important role in the proper working of the system in all conditions. Suscepti-
bility to weather can affect the functioning of the sensor. The sensor for detecting
the object in the front needs to be less susceptible to weather conditions.

7. Estimation Capability: Estimation capability is the sensor’s ability to extract
characteristic features such as distance, speed, and position of the target. These
features help in the better judgement of the object and judge the severity of the
threat.
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2.2.3 Evaluation

The Evaluation block consists of Driver Distraction Evaluation and Threat Assessment
block. The data gathered from the data acquisition block is processed and the severity
of the threat is assessed in this block.

Driver Distraction Evaluation

This block is responsible for the evaluation of the data gathered from the sensors to
determine the distraction level of the rider. Some of these most used methods and
algorithms are analyzed to find the challenges in implementing for bicycles in the next
chapter. In this component, the requirements of the algorithm for driver monitoring
systemn are explored. The algorithm’s accuracy, complexity, resource usage are explored.

1. Accuracy: The accuracy of the algorithm plays a crucial role in driver monitoring
system. The accuracy of the algorithm should be high to have more accurate results
but the higher the accuracy, the higher the resource usage and complexity. For this
system moderate to high-level accuracy is needed to balance the trade-off between
accuracy and complexity.

2. Complexity: The complexity of the algorithm is important to the implementation.
With high complexity, the computing power, resource usage will increase. For this
system, a low complexity algorithm is needed to balance the complexity of the
forward obstacle detection and driver monitoring system.

3. Resource usage: The resource usage by the algorithm is directly linked to the
accuracy and complexity. For a low-end device, the resources are constrained, hence
the algorithm needed should be able to work in low-resource constrain devices.

Threat Assessment Evaluation

This block is in charge of assessing the threat by evaluating the data collected from the
sensors. The requirements of the threat assessment used for assessing the object in the
path of the rider are explored. The requirements of the threat assessment to be used are
explained.

1. Accuracy: The accuracy of the threat assessment, is the proper assessment of a
potential threat. The accuracy of the algorithm for assessing the threat should be
moderate to high.

2. Complexity:The algorithm’s complexity has an impact on its implementation. As
both the driver monitoring and forward object detection are working simultaneously
,the complexity of the threat assessment should be low to balance the complexity
by the driver monitoring system.

3. Acceptability: The Acceptability of the threat assessment algorithm is important.
Choosing an algorithm that warns with a very low time for reaction can affect
the system’s functionality. The system needs to have good acceptability since the
warnings are based on this algorithm.
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2.2.4 Response

This block is responsible for conveying the warnings to the rider. This block needs to be
user-friendly, not overly distractive, low cost, and less complex. This block can have two
types of implementation based on the type of the assistance system. The two types of
systems are as follows:

1. Feedback: These systems warn the driver of any potential danger via the optical,
acoustic, or tactile sensory channels of human beings. These warning systems are
primarily concerned with delivering supporting information to the driver so that he
or she may make better decisions for safer driving. The driver is still responsible
for making good use of the information to increase overall safety.

2. Automatic Response: These systems take over vehicle control from the driver
during a potential threat. The system gathers information from the environment,
assesses the threat, and makes essential vehicle actions such as applying brakes or
changing the vehicle’s trajectory.

Due to time constraints and complexity in choosing an optimal method, this block was
not explored in the proposed system. The warnings generated by the system were stored
in a csv file and used to compare with ground truth.
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Chapter 3

State of art and critical analysis

3.1 Overview

The types of sensors and evaluation techniques used in forward collision warning system
and driver monitoring system are explained and critically analysed.

3.2 Driver Monitoring System

There has been significant growth in the ADAS systems in automobiles in sensing the
environment and taking necessary measures when the driver is distracted. The sensor
technology needed for driver monitoring plays a crucial role in the performance of the
system. The Distraction that a rider experiences on road are categorized into three types
such as Fig. 3.1.

Distraction

Visual Cognitive Manual

Figure 3.1: Types of Distractions

• Visual Distraction: Distraction due to change of focus on the road to secondary
tasks.

• Manual Distraction:Distraction due to lack of hands on the steering wheel.

• Cognitive Distraction: Distraction caused by Prolonged thinking, mind-wandering,
Stress, and Cognitive load.

All these types of Distractions lead to less response time to an obstacle on road. De-
pending on the type of Distraction, the sensing mechanism responsible for it changes and
evaluation changes.
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3.2.1 Sensor Technologies and Evaluation Techniques in Driver
monitoring system

As mentioned in the above section, the sensing technology depends on the type of dis-
traction that is needed to be evaluated. Each technology has its pros and cons associated
with it. Thus, it is necessary to analyze different technologies to understand the trade-offs
and select the best-suited sensor. In this section, a brief description of the three major
categories of sensor technologies in driver monitoring systems is given to gain a better
understanding of the following literature.
The three major categories of sensor technologies in Driver Monitoring systems are as
follows:

• Vision-based Monitoring: This category includes sensors that are used to cap-
ture the facial features and evaluate the distraction level through Image processing
algorithms for eye tracking, drowsiness detection, and head movement. These sen-
sors are versatile and can provide much useful information about the driver. Such
vision-based systems are prone to weather conditions, lighting conditions, and the
position of the sensors. The operation of a vision-based monitoring system is shown
in Fig. 3.2.

Figure 3.2: Vision-based Monitoring [2]

• Physiological Sensors: This category includes sensors that capture the vital signs
of the driver to deliver the distraction level. These types of systems are gaining
increasing popularity due to the discovery of miniaturized sensors in the biomedical
domain. Such systems can accurately determine the distraction of a driver through
the use of signal processing algorithms. The physiological sensor-based monitoring
system is shown in Fig. 3.3. Some of the common psychological sensing technologies
to detect Distraction are:

– Electrocardiogram(ECG): The Electrocardiogram (ECG) signals are used
to determine the Heart rate variability of the driver. Heart rate variability
is the variation of time intervals between heartbeats. According to the heart
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Figure 3.3: Physiological sensing [3]

rate variability metrics calculated through frequency domain such as Low Fre-
quency (LF),High Frequency (HF),LF/HF power density values, the cognitive
load, stress, fatigue, and Drowsiness of the driver can be determined.

– Electroencephalogram (EEG): The Electroencephalogram (EEG) signals
are electrical signals detected due to the electrical activity of the brain. This
signal when processed in the frequency domain, three major rhythms are seen
which can be used to denote the cognitive distractions in humans. The three
rhythms used are alpha(8-13Hz), beta(13-30Hz), and delta(¡3Hz).

– Electromyography (EMG) : Electromyogram (EMG) is a diagnostic pro-
cedure that evaluates the health condition of muscles and the nerve cells that
control them. These nerve cells are known as motor neurons. They trans-
mit electrical signals that cause muscles to contract and relax. These signals
are used to detect muscle activity near the eyes which helps in determining
whether the person is sleeping or not.

• Manual Distraction : The manual distraction of a driver depends on the control
of the steering wheel. This type of distraction is detected through the use of Inertial
Measurement Unit (IMU) sensors, pressure and vibration sensors on the vehicle and
steering wheel to detect the sudden change of driver’s control on the vehicle.

3.2.2 Existing Solutions on Driver Monitoring systems

In this sub-section, the existing driver monitoring systems that are related to the research
are studied and criticized.

Physiological Sensing

According to the article[21], the author presents an Enhanced Random Forest algorithm
to detect the attention level in drivers using ECG data from physiological sensors. ECG,
EMG, timestamp, foot Galvanic skin response (GSR), hand GSR, Intermittent Heart
Rate Intermittent Heart Rate (IHR), respiration, and marker data were collected from
the driver who was monitored in different environments(rest, City, Highway) and the
stress levels in the drivers were calculated. In article[22], the data from the previous
research was used with galvanic skin resistance data to detect stress levels in drivers.
The R-R intervals were calculated for the Heart rate Variability to categories the driver
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into low, medium, high levels of stress. William J. Horrey et al proposes a system[23]
in cars to detect the level of engagement and distraction of the drivers. The cerebral
oxygenated hemoglobin, heart rate, and eye movement of the driver are detected during
driving simulation. The drivers are subjected to distraction through auditory materials.
Three different classifications are done such as interesting, boring, and baseline.
To summarize, physiological-based driver monitoring systems as a wide range of applica-
tions. The system has high accuracy in detecting different distractions seen by the driver
but there are some shortcomings. The system is highly sensitive to external factors such
as weather and illumination. As the physiological sensors are used in vehicles where the
rider is still and no physical activities are done, adapting this system to bikes will affect
the performance of the system. Thus, it can be concluded that physiological sensing is
not suitable for this research.

Vision Based Solutions

The system presented in [24] depends on the movement of eyelids to detect the drowsiness
of the driver. A camera is used to detect the real-time video processing, the camera
is placed in front of the dashboard through which the video is captured, this data is
processed in raspberry pi and if the eyelids are closed, an alarm is given through the
speaker. This device is designed specifically for cars. Ashish Kumar et al proposes a
system for the detection of drowsiness and distraction in car drivers [25]. A camera
sensor is used to detect the face in the frame and a Histogram of Oriented Gradients is
used. An Support Vector Machine (SVM) classifier is used to classify faces depending on
HOG features. Landmark detection is done on the face detected frames which help to
detect the eye aspect ratio, mouth opening ratio, and head bending. With these data,
the system is trained for a threshold, and drowsiness and distraction are detected. The
system is tested on a laptop for real-time acquisition of camera data from the webcam.
The complexity of implementing the system in an embedded device is not discussed
as the environment variables play a crucial role when implementing it in cars. The
performance of the system can degrade when implemented in an embedded device due
to the complexity of the system. Vaibhav Rathod et al proposes a system for detection
of distraction on drivers using a camera [26]. The camera is mounted on the front of the
driver and the movement of the driver is tracked and a corresponding alert is given when
the driver is distracted from driving. Haar cascade classifier is used to detect and track
the motion of the driver and an alert is given using an Liquid Crystal Display (LCD).
An alcohol sensor is also provided to detect whether the driver has consumed alcohol.
The environmental variables such as placement of the camera, camera calibration, and
lighting are not considered in this system. The classifier used has less accuracy compared
to other classifiers used in other systems .
To summarize, vision-based sensing technology are seen to be straight forward approach
for a driver monitoring system. The complexity of the system depends on the image
processing algorithm. The system is flexible, low cost, and highly accurate compared
to other monitoring systems. Due to the wide range of algorithms present for driver
monitoring systems with high accuracy and less complexity. The system can be adapted
to low-end automobiles. Hence, a camera-based driver monitoring system is suitable for
this research.
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Non-Vision Based Solutions

Jaehoon Jung et al proposes a driver monitoring system using mmWave radar [27]. The
frequency spectrum of the Intermediate Frequency (IF) signal is monitored for different
head movements of the driver. A 2D rectangular window function is applied for the
spectrum and slid at an interval of 0.5s to capture the movement of the head. The data
collected are stored and used to train a Convolutional Neural Network (CNN) for differ-
ent movements of the head. The CNN architecture was used to classify the four types of
driver’s motions. The classification results showed that the trained CNN model can clas-
sify four types of driver’s motions with over 80% of accuracy. The system can detect the
movement of the driver but doesn’t estimate the yaw, pitch, roll angle of the head. The
use of CNN for classifying the driver’s head movement increases computing complexity.
Rachel Chae et al proposes a radar-based driver monitoring system for head pose estima-
tion [28]. A coherent Frequency Modulated Continuous Wave (FMCW) radar was used
to detect the movement of the driver such as dorsal flexion, dorsal hyperextension, lateral
bending, and rotation. A Range-Doppler evolution was created from the range profile
and used to detect the movement of the head. The system was not able to distinguish
all the movements of the head. The system was not tested in real-time.
To summarize, non-vision-based driver monitoring systems are an upcoming research
domain due to their less sensitivity to the environment. The system shows moderate ac-
curacy but lacks the classification of different head movements. The classification of the
head pose can be done by high computational algorithms. The system as such increases
in cost and complexity when used for the classification of head pose. Thus, it can be
concluded that non-vision-based sensing technology is not suitable for this research.

3.2.3 Comparison of Driver monitoring system

Physiological Sensing is gaining increasing popularity in a wide range of applications.
These systems have high accuracy in monitoring the driver but suffer from high com-
plexity and adverse weather conditions. These sensors need contact with the skin which
increases complexity in using them in low-end automobiles. The algorithm used for moni-
toring the driver suffers from the cyclist functioning and needs more validation techniques
for the data acquired. The sensing technology is affected by adverse weather conditions
and the algorithm has high computing complexity when used in low-end automobiles.
This method of sensing technology is not ideal for this research. Non-Vision sensors such
as radar for driver monitoring systems are newly emerging sensor technology in ADAS.
These systems have less accuracy and high computing complexity. The sensing technol-
ogy needs high computation to classify the distraction detected. The existing algorithms
have issues in differentiating the action of the driver. The accuracy of such a system
is low compared to other sensing technologies. This makes this sensor technology not
suitable for this research.
Camera-based driver monitoring systems are widely used in high-end automobiles for the
past decade. The complexity of the system can be altered based on the image processing
algorithm. The accuracy, performance, and cost of the system depend on the algorithm
and can be configured. It can be concluded that Visual sensor technology is more suit-
able for this research. The suitable algorithm for this research has to be planned based
on the accuracy, computational complexity, and performance needed. The comparison
between the different sensors used for driver monitoring is shown in Fig. 3.4. Though
radar has good working in external conditions, it suffers due to the complexity of the
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Figure 3.4: Sensor Technology study-1

system. Combining the radar system in front and the driver monitoring system needs to
have low computing complexity and cost.

3.3 Sensor Technologies and Evaluation Techniques

in Forward Collision Warning Systems

The sensing technology for forward collision warning systems depends majorly on the
range, accuracy, and target’s characteristics needed. Thus, it is necessary to analyze
different technologies to understand the trade-offs and select the best-suited sensor. In
this section, a brief description of the three major categories of sensor technologies in
Forward Collision Detection is given to gain a better understanding of the following
literature.
The three major categories of sensor technologies in Driver Monitoring systems are as
follows:

• Visual Sensors: In this category, the obstacle in the front of the vehicle is tracked
using a camera. This system depends on the lighting of the environment, weather
conditions. The accuracy of the system to calculate the velocity of the obstacle
is based on approximation. A Camera sensor made up of Charge Coupled Device
(CCD) or Complementary Metal-Oxide Semiconductor (CMOS) technology helps
in recognizing vehicles, obstacles, and lane markers. The range of the sensor purely
depends on the camera capability and the image processing technique used which is
generally up to 50m. Types of Visual Sensors used for Forward Collision Warning
systems are

– Stereo Camera: The stereo camera consists of two camera sensors that are
separated horizontally by a predefined distance. The range of the object in
the frame is measured depending on the position of the object in both the
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cameras. Image processing is used to detect the type of object in the image.
The accuracy of the system depends on the resolution of the camera.

– Monocular Camera: A Monocular Camera uses a single camera sensor to
detect obstacles in the front. The range of the obstacle from the host vehicle
is estimated based on the size and position of the object in the frame using
pinhole geometry. The speed of the vehicle is also calculated by the change of
pixel and/or the change in the size of the object in the frame. The problem
with this type of sensing is its estimation of range and speed reduces the
accuracy and increases the load on the system.

• Non-Visual Sensors: This category includes sensors that capture the obstacle
in the front through wave propagation technologies. These types of systems are
gaining increasing popularity due to their lightweight, low energy consumption, and
robustness. Such systems can accurately determine the range, velocity, and angle
of the obstacle in the front. Some of the common wave propagation technologies
used in forward-collision warning system are as follow

– Ultrasonic Sensor: Ultrasonic sensors are the most cost-effective technol-
ogy used for a long time in ADAS systems. The system generates a bust
of ultrasound which gets reflected by the object. This echo signal received
time is used to calculate the distance between the host vehicle and the target
object. The distance of the object from the host vehicle is calculated from
the time taken for the signal to receive and the speed of sound in the air.
The range of the ultrasonic sensor is short-ranged around 2 meters and this is
affected by environmental variables such as humidity, temperature, and wind
speed. The operation of an Ultrasonic Sensor Technology is shown in Fig. 3.5.

Figure 3.5: Ultrasonic Sensor Working [4]
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– Radio Detection and Ranging (RADAR): RADAR sensors are electro-
magnetic sensors that transform microwave echo signals into electrical signals.
Radar can help in detecting the motion, position, shape, and motion trajec-
tory of the object. It has a higher range compared to ultrasonic sensors and is
safer for humans and animals. Through the use of Doppler effect, the motion
and velocity of the object can be detected using radar. The object’s relative
distance and relative velocity can be detected using radar sensors. A FMCW
RADAR uses carrier frequency modulation between a bandwidth to detect the
velocity and range of the object through frequency comparison. The factors
such as physical size, transmitted power, antenna beamwidth, and atmospheric
attenuation vary with frequency. As the frequency is higher, the shorter the
wavelength hence the Physical size reduces but transmit power increases. The

Figure 3.6: Radar Sensor Working [5]

operation of a Radar sensor Technology is shown in Fig. 3.6. The new FMCW
radar uses a millimeter-wave band. The millimeter-wave band has a shorter
wavelength due to which the system is small and has high detection accuracy.
The mmWave RADAR has a Lower radar cross-section (greater stealthiness),
Long target-detection range, All-weather capabilities, and greater reliability.

– LIDAR : LIDAR is a remote sensing method that uses light in the form
of a pulsed laser to measure the distance between the host vehicle and the
object. It forms a pixel-type view of the world known as a point cloud. The
LIDAR generates high-speed pulses of laser around 150,000 pulses per second.
LIDAR uses eye-safe laser beams to create a 3D representation of the surveyed
environment. The time it took for each pulse to return is used to calculate the
distance it has traveled. A LIDAR instrument principally consists of a laser
and a scanner. The level of accuracy can vary from sensor to sensor depending
on the power, configuration, and resolution of the unit. The operation of a
LIDAR Sensor is shown in Fig. 3.7. LIDAR technology works well in rain
and snow but suffers during adverse weather conditions. The disadvantage of
the system is its propagation through materials. If the unit is obscured by an
object in close range then there will be a loss of data. The cost of an LIDAR
technology is high compared to other technologies used in ADAS systems.

• Vehicular Communication : A vehicular Communication system is the most
popular new generation technology that is being implemented in automotive ve-
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Figure 3.7: LIDAR Sensor Working [6]

hicles for communicating the ongoing traffic and safety warnings. The vehicular
Communication system used in accident prevention is further categorized into the
following

– Vehicle-to-Vehicle (V2V): V2V communication system enables communi-
cation between vehicles in real-time. The vital information such as steering
angle, braking, speed, ongoing traffic, driver’s behavior can be communicated
to the nearby vehicles. This information can help the driver in judging the
situation and taking action.

– Vehicle-to-Road Infrastructure (V2I): V2I communication system en-
ables the communication between vehicles and road infrastructure. This is a
bidirectional data exchange where the vehicle communicates the vital infor-
mation of the vehicle while the infrastructure communicates the traffic lights,
lane markers speed limits to the vehicle.

– Vehicle to Pedestrian (V2P): V2P communication system enables the
communication between vehicles and pedestrians. The information such as
walking pedestrians, children on the road are communicated to the vehicle to
avoid accidents.

The operation of a Vehicular Communication Technology is shown in Fig. 3.8. The
major disadvantage of this system is that all the vehicle in the environment needs
to implement the same communication system to avoid accidents. The data traffic
due to frequent communication can lead to data packet loss and communication
errors.

3.3.1 Existing Solutions for Forward Collision Warning Systems

In this section, the Existing Forward Collision Warning system solutions related to the
research are examined and criticized.

Vision Based Solutions

Shivam Kumar et al proposes a system for forward collision warning system [29]. The
system detects the car in front of the host vehicle with the use of a camera. For identifying
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Figure 3.8: Vehicular Communication [7]

the distance between the cars, the system employs a CNN. The spacing between the cars
is fixed at 1 meter, 1.5 meters, 2 meters, and 2.5 meters. When the gap between the
cars is less than 1 meter, a warning is provided. This system was trained using two-car
images and the threshold value changes depending upon the car model. The system was
evaluated on a laptop, and no optimizations were made to make it suitable for use in an
embedded device.

Huieun Kim et al proposes a system for vehicle and lane detection for forward collision
warning [30]. The car is recognized and tracked in the second stage using the Hough for-
est algorithm and Kalman filter. This algorithm has a greater lane detection and vehicle
detection accuracy with fewer false positives. When utilized in embedded devices, the
system has a reduced frame rate, and the accuracy of the system is entirely dependent
on camera calibration and illumination. The illumination in the surroundings affects ve-
hicle and lane detection. Wai Chun Phoon et al proposes a system for detecting Forward
collision [31]. Using a camera sensor, the system recognizes the vehicle in front of it and
determines a safe distance between the host and target vehicles. The alert is sent using
a buzzer. The system was tested in different lighting scenarios to increase the accuracy.
The technique was incorporated into an embedded device and tested in real-time. The
system suffers from issues such as the lighting conditions and the environmental noise
which greatly influences the system’s performance. The warning methodology given can
greatly influence the driver’s attention and led to distraction. Qun Lim et al, proposes
a system using a monocular camera for Forward Collision warning [32]. The distance
between the host car and the leading vehicle is measured using the camera sensor. The
width of the vehicle is assumed as 1.8m and the width of the vehicle in the pixel is de-
tected through the camera The camera data is double filtered using the Kalman filter to
better estimate the distance and velocity between the target vehicle and the host. The
accuracy of the system is affected by lighting, camera calibration, and focal length of the
lens. Yuwei Lu et al proposes a system for forward collision warning using camera [33].
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The device detects automobiles using a camera sensor. The camera is calibrated first,
and then the car is detected. The camera’s calibration ignores extension distortion, which
leads to increased aspect ratio inaccuracies. In addition, the system was created on a
laptop and not tested on an embedded device. Yeong-Kang Lai et al proposes a forward-
collision warning system using camera [34]. The system uses a camera sensor for forward
vehicle detection. HAAR algorithm is used to detect the features of the camera data
and this is given as input to the cascade classifier. The target vehicle’s rectangle bounds
are produced, and the Euclidean distance between the target car and the host vehicle is
determined. This Euclidean distance is used to determine the time to contact, which is
used to issue a warning. Because the system relies on a camera, it is subject to camera
calibration, weather, and illumination challenges, all of which impair the accuracy of ve-
hicle detection. Sunghoon Hong et al proposes a forward collision warning system [35].
The system detects and tracks the vehicle in front using a camera sensor. Haar feature-
based cascade classifier is used to extract the car in the sensor data. SMID processing is
used to increase the processing speed and the multi-thread method is done to reduce the
complexity of the algorithm. The system, complexity is high and the warnings method is
not clear. The accuracy of the system is less compared to other FCW algorithms using
a camera.

To summarize, vision-based forward-collision warning systems are upcoming driver
assistance systems in automobiles. The vision-based system designed for high-end auto-
mobiles can help in obstacle classification and trajectory estimation. The accuracy of the
system directly depends on the computing power and image processing techniques. The
vision-based systems are affected by poor lighting and adverse weather conditions. The
approximation of speed and distance can affect the performance of the system. For good
performance of the system, high computational algorithms are needed to calculate the
distance and speed. This research requires sensors that can provide considerably good
accuracy, relatively lower computational complexity, and work in all adverse conditions.
Hence, it can be concluded that this type of sensor technology is not suitable for this
research.

Non-Vision Based Solutions

L.H. Eriksson et al proposes a forward-collision warning system using mmWave RADAR [36].
The radar-based system was used to gather, analyses, and tracks the object in front of
it. The threat is assessed using the relative velocity and range between the host vehi-
cle and the target vehicle. The system was tested in various weather conditions to test
the performance of system. The system had low degradation in performance in adverse
weather conditions. The lack of a risk assessment technique and restriction of the field
of view leads to an increase in false alarms. P. Ganci et al proposes a forward-collision
warning system using 77 GHz RADAR [37]. The mmWave RADAR detects and tracks
the vehicle in front. The vehicle’s relative velocity and range are determined. Before
deciding whether a vehicle is in the same lane as the host car or not, the lateral distance
to the vehicle ahead is determined using the Curve Algorithm, which is independent of
road curvature. When compared to other forward collision warning systems, the system
has a high level of accuracy, range, and cost. The technology was put to the test in both
controlled and high-traffic environments. The system lacks a risk assessment technique
to distinguish threat and non-threat vehicles which leads to a higher number of false
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alerts. Thomas Fitzgerald Stevens proposes a system for forward collision warning using
LIDAR [38]. This system uses the LIDAR sensor to obtain point clouds of data that rep-
resent the surrounding environment. These point clouds are segmented and obstacles are
parsed out. The obstacle properties are searched in order to differentiate between haz-
ardous obstacles and cone obstacles that mark the road boundaries. The system doesn’t
consider moving vehicles. The proposed system is expensive and has high computing
complexity. Henrik Clasen et al propose a system for Forward and rear collision warning
in e-bikes [39]. The system uses mmWave radar for forward and rear vehicle detection
and tracking. Depending on the Time to Collision statistic, the rider receives a visual
and auditory warning. For a 360° vision, two radars are used at the forward and back
ends, and the radars are adjusted to detect up to 93m. The system expresses a lower
number of tracking compared to other approaches due to the complexity of the algorithm
utilized. The alerting mechanisms might be a source of additional distraction for both
the host and the pursuing vehicle while driving.
To summarize, non-vision-based forward-collision warning systems are existing driver
assistance systems in automobiles. These systems are tested in all adverse weather con-
ditions and delivers a relatively good performance. The sensors in this category have their
own set of advantages in terms of cost, detection range, accuracy, resolution, and sus-
ceptibility to bad weather. The computing complexity of the system is low compared to
other sensor technologies. The speed and distance of the target object are given without
the use of high computational algorithms. Hence, it can be concluded that non-vision-
based sensors are suitable for this research. The sensors in non-vision technology are
further compared in terms of range, accuracy, cost, and susceptibility to external factors
are done in order to find the suitable sensor for this research.

Sensor Fusion Systems

Yimin Wei et al[40] proposes a sensor fusion system for frontal collision warning. The
proposed system uses radar and LIDAR for estimating the longitudinal and lateral po-
sition of the target in cars. In an ideal situation, the data from both sensors are used
for tracking the target’s position. The gyroscope, accelerometer, speedometer data from
the car are used to detect the motion of the target which is used for neglecting the un-
necessary warning during turning or accelerating. Brake, throttle sensor data are used
for validating the driver’s behavior before and after the warning is given. The warnings
are given when the Time to Collision is lesser than 2 seconds. This system has higher
accuracy compared to other single sensor systems and avoids unnecessary warning during
turning and acceleration. This system lacks the prediction of the driver’s intention and
whether or not the obstacle is seen by the driver. Moreover, the system warnings are
given through a Human interface which might lead to more distraction of the driver.

Shigetaka Suzuki et al proposed a system based on camera and radar for pedestrian
collision warning system [41]. The camera sensor is used to detect the crosswalk present in
the field of view and combined with the radar sensor data, the position of the pedestrian
and crossing speed of the pedestrian are calculated. The warnings are given if the Time
to Collision is lesser than 4 seconds. This system detects and tracks the movement of a
pedestrian in a crosswalk only. The warning is given irrespective of the driver’s awareness
of the object.
To summarize, sensor fusion technology used in forward-collision warning system show
high accuracy compared to other systems. Sensor fusion technology has a wider range of
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applications in ADAS-enabled automobiles. The existing sensor fusion technologies are
mainly focused on increasing accuracy and performance which increases the computing
complexity and cost of the system. Hence, the existing sensor fusion technologies are not
suitable for this research.

V2V Communication

Xiang Yang et al proposes a system for forward-collision warning system using Zigbee
technology [42]. The system communicates with the target car using two techniques
and estimates the distance between them based on which warning is delivered. This
technique was also employed during overtaking maneuvers when communication between
the host and target vehicles assisted in avoiding collisions. All cars should be equipped
with ZigBee technology as part of this system. If there is no communication between
them, they may collide, resulting in an unending cycle. The host can only use the
Received Signal Strength Indicator (RSSI) of a ZigBee if the target vehicle is in line
of sight. The RSSI signal is packed with noise at greater ranges, which can lead to
errors. Tangtao Yang et al proposed a system for forward collision warning using V2V
technology [43]. For improved accuracy, the system employs Dedicated Short-Range
Communications (DSRC) technology in conjunction with Differential Global Positioning
System (DGPS). The DGPS calculates the car’s longitudinal and latitudinal coordinates
and sends them to the rear vehicle. The relative distance and Time to Collision metrics
are determined using this sensor data. The TTC threshold is set at 2s, and if it drops
below that, a warning is issued. The DGPS technology has a lower error rate than other
technologies, and the system’s precision is greater than other systems. Replacement of
DGPS receivers with higher performance can also increase DGPS location accuracy. This
system can only be implemented in a smart city and if and only if all the vehicles are
equipped with it.

Ahmed Hosny et al proposes a forward collision avoidance algorithm using V2V com-
munication technology [44]. The technology communicates acceleration, direction, and
braking information, as well as Global Positioning System (GPS) data, to the following
vehicle, which aids in the calculation of the Distance to Collision statistic. Three levels
of warning are given by visual and audio signals depending on the distance between the
leading and following vehicle. This system only functions in an infrastructure where all
vehicles are equipped with communication radios. Because the warning signs include
both a visual and an audible warning, they might be disturbing to the rider.
To summarize, Vehicular Communication is an upcoming research field in ADAS. The
systems use inboard sensors to gather data and communicate to the outside environment.
Vehicular Communication systems lack the basic infrastructure which increases the cost
of implementation. All automobiles need to be equipped with the same vehicular com-
munication system to enable the proper functioning of the system. Hence, it can be
concluded that this type of sensor technology is not suitable for this research.

3.3.2 Comparison of Forward Collision Warning Systems

The comparison of different types of sensors that are used in forward-collision warning
systems is concluded in this section. The vision-based system designed for high-end auto-
mobiles can help in obstacle classification and trajectory estimation. The accuracy of the
system directly depends on the computing power and image processing techniques. The
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vision-based systems are affected by poor lighting and adverse weather conditions. It can
be concluded that vision-based systems are not suitable for this project due to their poor
performance in adverse weather conditions and low range. The approximations did for
calculating the range and speed of a vehicle reduce the accuracy of the system. Sensor
fusion technology has a wider range of applications in ADAS-enabled automobiles. The
existing sensor fusion technologies are mainly focused on increasing accuracy and per-
formance trading the computing complexity and cost of the system. The existing sensor
fusion discussed in the literature is considered to be not suitable for this research. It
can be seen that these sensor fusion system increases the computing complexity of the
system and cost of implementation. Vehicular Communication systems are the new gen-
eration sensor technologies used in ADAS. Vehicular Communication systems lack the
basic infrastructure which increases the cost of implementation. All automobiles need to
be equipped with the same vehicular communication system to enable the proper func-
tioning of the system. The methods discussed in vehicular Communication are considered
to be not suitable for this research. These methods need pre-existing infrastructure for
good performance.

Figure 3.9: Sensor Technology study-2

The non-vision-based system has been used in ADAS for the past decade. The sen-
sors in this category have their own set of advantages in terms of cost, detection range,
accuracy, resolution, and susceptibility to bad weather. The computing complexity of the
system is low compared to other sensor technologies. It can be concluded that Non-vision
based systems are the ideal choice for this research due to their low cost, high accuracy,
high range, and less complexity. The type of sensor in non-vision technology needs a bit
more examination. The comparison between the sensor technologies is shown in Fig. 3.9.
It can be concluded that mm-wave radar aligns with the requirements of this project.
Though the LIDAR has a higher Field of View and Accuracy, the cost of the equipment
and the sensitivity to external conditions makes it less suitable for this project.
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3.4 Threat Assessment

The Risk Assessment system is used to determine the risk of collision from the target ob-
ject. There are several techniques for risk assessment we will be addressing Deterministic
approach

• Deterministic Approach: In Deterministic Approach, the warning is given as
a binary value based on whether the collision will occur or not. It is a rule-based
system that computes the output prediction by comparing a conservative estimate
of prospective exposure to the threshold risk value. Most of the forward collision
warning and mitigation systems implement a Deterministic Approach. The draw-
back in such an approach is its inability to explicitly model the uncertainties of its
input data.

– Time-Headway (THW): THW is calculated by dividing the range between
the target vehicle and host vehicle divided by the velocity of the host vehicle.
For safe driving, most Departments of Motor Vehicles suggests that drivers
maintain a two-second time headway. Time-headway is a useful metric because
it corresponds to the amount of time the driver of a host vehicle has to match
the braking profile of the lead vehicle.

– Time To Collision(TTC): Using a time-to-collision criterion for triggering
forward collision warning alerts is based on the theory that humans directly
perceive time-to-collision. Time-to-collision is calculated by dividing the range
between the host vehicle and the target vehicle to the relative velocity between
them.

– Kinematic Constraints Criterion (KCC): Using the instantaneous target-
and host-vehicle speeds and accelerations, these algorithms calculate the min-
imum collision-avoidance range that will result in the host vehicle missing the
lead vehicle by a specified margin. The minimum collision-avoidance range is
calculated by assuming the brake rate and brake reaction time of the vehicle.

– Minimum Safe Distance(MSD): This algorithm is based on distance. It is
calculated as the minimum distance that needs to be between the host vehicle
and the target vehicle.

• Probabilistic Approach: The probabilistic approach is used to get more precise
estimates of danger frequency and damages. Probabilistic assessment depends on
uncertainty and randomness of the danger. Probabilistic assessment simulates the
disaster that how likely it would occur. The algorithm takes into account all the
possible scenarios and occurrences of an accident. The algorithm suffers from the
computing complexity and training of the algorithm. Fuzzy logic, Markov processes,
and Bayesian networks are some of the most common methods used in probabilistic
approaches.

3.4.1 Comparison of Threat Assessment Techniques

A Threat Assessment Technique is needed to identify potential threats and alert the
rider. A Threat Assessment algorithm calculates the risk of collision of the host vehi-
cle from the target object. Existing solutions for threat assessment are categorized into
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probabilistic and deterministic approaches. The probabilistic approach are complex and
has high computing power. They are termed to be not suitable for this research. The
Deterministic Approach are less complex and has good performance.

Figure 3.10: Deterministic Approach Metrics Comparison

The Fig. 3.10 shows the comparison of the commonly available metrics. The KCC
metric calculates the minimum collision avoidance range through the use of parameters
such as brake rate, brake reaction time, and acceleration of the host and the target
vehicle. This makes the algorithm too complex for a low-end vehicle. The THW metrics
takes into consideration only the host vehicle speed which reduces the accuracy of the
system. Thus, MSD and TTC have good accuracy and performance for long-range and
short-range warnings. Combining these methods leads to less complex threat assessment
metric which would help for long range and short range.
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Chapter 4

Theory and Background

4.1 Radar Fundamentals

The IWR1642 uses Millimeter-wave radar technology to detect an object in real-time.
Millimeter-wave radar uses short-wavelength electromagnetic waves for determining the
range, velocity, and angle of the object. As the mmWave radar uses wavelength in the
millimeter range, the size of the system and antenna are small compared to other radar
systems. The operating frequency of a mmWave radar is from 76-80 GHz. The system
overview is shown in Fig. 4.1. IWR1642 is an FMCW radar that transmits frequency-
modulated signals continuously to measure angle, range, and velocity.

Oscillator

ADC

Chirp Generator

FFT

TX Antenna

RX Antenna

Chirp

Mixer

Transmitted Chirp

Received Signal

Figure 4.1: Radar System Overview

In FMCW radar, a chirp signal is transmitted to obtain the velocity, range, and angle
of the object. A chirp is a signal in which the frequency increases gradually. The chirp
signal is transmitted and on reflection from an object, the reflected chirp is received by
the radar. The transmitted signal and received signal is combined in the mixer. The
signal from the mixer which is the combination of the transmitted and received signal is
called the IF signal.

IF = sin[(ω1 − ω2)t+ (ϕ1 − ϕ2)] (4.1)

The phase of the Intermediate Frequency(IF) is the phase difference between the transmit-

37



ted and received signal. The time delay in the received signal is formulated in Eq. (4.2),
where d is the distance to the object and c is the speed of light.

τ =
2d

c
(4.2)

The initial phase of the IF signal is the difference between the phase of the Transmitter
(TX) chirp and the Receiver (RX) chirp at that time instant corresponding to the start
of the IF signal. The initial phase of the IF signal is given by

ϕ0 =
4πd

λ
(4.3)

where d is the distance from the object and λ is the wavelength of the signal. The IF
signal is given as

IF = Asin(2πf0t+ ϕ0) (4.4)

This IF signal is processed using Fourier Transform to separate different tones. On
Fourier Transforming the result signal consists of peaks of different tones which denotes
each object detected. The range, velocity, angle estimation that was done using the
received signal is discussed in the following section.

4.1.1 Range Estimation

Range plays a significant role in forward collision warning systems. The maximum range
of a radar system depends on the Signal to Noise Ratio (SNR) and the maximum in-
termediate Frequency(IF) supported by the system. The beat frequency is the absolute
difference between the transmitted and received chirp. The beat frequency is directly
proportional to the distance of the system. The formula to determine the beat frequency
is given is Eq. (4.5).

fb =
S2d

c
(4.5)

Therefore the maximum range Rmax can be derived from Eq. (4.6) depending on its
maximum IF bandwidth by

Rmax =
IFmaxc

2S
(4.6)

Where S is the slope of the transmitted chirp and c is the speed of light. The maximum
range that can be detected also depends on the SNR of the signal. The Rmax is given
by the formula Eq. (4.7)

Rmax = 4

√
PtxGtxGrxλ2NTcσ

(4π)3SNRminkTF
(4.7)

Where Ptx is the transmission power, Gtx and Grx are the transmitter and receiver
antenna gain,σ is the Radar Cross Section (RCS) of the object to be detected, k is
Boltzman Constant, T is antenna temperature, λ is the wavelength ,Tc is Chirp Time, N
is number of chrips in a period. The maximum IF bandwidth of a system is limited by

IFBW = 0.9 ∗ ADCsampling (4.8)
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4.1.2 Velocity Estimation

To detect the velocity of the target object, the FMCW radar transmits two chirps sepa-
rated by a time Tc. On processing the received signal to detect the range of the object
through Fast Fourier Transform (FFT), the velocity of the signal can be calculated from
the difference in phase of the signals. The phase difference is formulated as

∆ϕ =
4πvTc

λ
(4.9)

The velocity of the detected object can be calculated from the above formula such as

v =
∆ϕλ

4πTc

(4.10)

For higher velocity, the transmission time is reduced. In real-time to detect the velocity
of multiple objects, N equally spaced chirps are transmitted. The Range-FFT results in
a set of N peaks with a different phase which incorporates the velocity of the detected
objects. The Range-FFT of two objects in equal distance is shown in Fig. 4.3, it shows

Figure 4.2: Radar Frame [8]

the phase contributions of each object. On applying a second FFT named Doppler-FFT
on the Range-FFT to separate the two objects.

Figure 4.3: Objects in equal distance [8]
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4.1.3 Angle Estimation

An FMCW RADAR can be used to estimate the angle of the reflected signal. Angular
estimation is based on the observation that a small change in the distance of the object
results in a phase change in the Range-FFT peak. On using at least two RX antennas,
the differential distance from the object to each of the antennas results in a phase change
in the peak of Range FFT. The angle of Arrival is calculated as

θ = sin−1(
λ∆ϕ

2πl
) (4.11)

Object

TX Antenna RX Antenna

d d+Δd

Figure 4.4: Forward Collision Warning system

4.2 Head Pose estimation Fundamentals

The Head pose of the rider is estimated by using three components such as face detector,
landmark predictor, and Perspective -N- Point(PNP) method.

4.2.1 Face Detection Algorithms

This section explains the background on the different face detection algorithms present
and the performance of the system for the research question at hand.

HAAR Cascade Based Face Detector

The first-ever object detector was proposed by Viola and Jones which was based on
HAAR Wavelets [45]. A HAAR Wavelet is an array of square-shaped functions. This
feature continuously transverses through the image to find the change in intensity of the
pixels. The darker pixels are given a value of 1 and lighter pixels are given a value of 0.
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Other intensities are given a value between 0 to 1. The difference between the sum of
the darker pixels and the lighter pixels is used to detect edges in the image and by which
the outline of the image can be estimated. An AdaBoost Technique was used to apply
180,000 features on the image to create separate Learners which helps in reducing the set
of features to 6000 features. These features are separated into stages and continuously
transverse on the image to detect facial features. As the feature set increases each stage
it reduces the false positives.

Histograms of Oriented Gradients for Face Detection

A HOG feature descriptor-based object detector is widely used in computer vision. The
HOG feature descriptor is used in object detection algorithms for high accuracy and less
computing complexity. The change in intensity helps in detecting the edges of an object
in images. A Gradient is calculated within an image per block. A block is a grid of pixels
in an image with magnitude and direction based on the difference in intensity of the
pixel inside that block. For face detection, a window size of 128 x 144 is used to match
the aspect ratio of the face. The HOG descriptors are calculated for 8 x 8 dimensions
of pixels. This 8 x 8 pixel is called a block. Each descriptor value in the blocks are
quantized into bins which represents the directional angle and magnitude which is the
summation of all values in the bin. The histogram values are normalized over a 16 x 16
size to minimize the accuracy drop due to light conditions. An SVM model is trained
using a number of HOG vectors for multiple faces.

Deep Learning Methods

Deep Learning methods of face detection have a lot of advantages such as high accuracy,
robustness, and precision. The existing state-of-the-art algorithms used are discussed in
this section.

CNN based face detector

The Multi-task Cascade Convolutional Networks (MTCNN) is a popular algorithm that
is based on [46]. The algorithm consists of three stages of convolutional networks for
detecting faces. The MTCNN is a faster approach in CPU compared to other algorithms
and can detect landmarks such as eyes, nose, and mouth. In the first stage, a shallow
CNN is used to quickly produce the candidate windows. In the second stage, the windows
without the face are refined through a more complex CNN. In the third stage, more
complex and powerful CNN is used to refine the result.

In Stage 1, a fully convolutional network named Proposal Network(P-Net) is used to
obtain the windows and the bounding box regression vector. A Non-Maximum Suppres-
sion (NMS) is used to merge the overlapped bounding boxes.

In Stage 2, Refine Network(R-Net) is used to reject the false positives and perform
calibration with the bounding box regression and NMS merges.

In Stage 3, more refining is done to the candidate window to find the landmarks in
the face.

The filters used in the algorithm are reduced to 3x3 filters to reduce the computing
complexity while increasing the depth for better performance. Initially, the image is
resized for the first stage. The stages in the model are not connected instead, the outputs
of the previous stage are fed to the next stage. The Accuracy of the system is high
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compared to Viola and Jones method and the HOG+SVM method. But in real-time the
frames per system are low.

Deep Neural Network (DNN) based face detector

Deep Neural Network-based face detectors are of high accuracy and robust compared
to other existing solutions. The most commonly used face detector using Deep Neural
Network is based on the Caffe model. A Caffe model is based on Single Shot Detector
(SSD) which is the top layer. The backbone of the model uses ResNet-10 or Visual
Geometry Group (VGG)-16.

To the base VGG network, additional convolutional layers are added at the end of the
base network for detection. The Convolutional layers decrease in size gradually till the end
which helps in the detection of objects at multiple scales. The feature map size decreases
progressively which helps in finding objects more accurately. The base network performs
the feature extraction and creates multi boxes on the image. During training, the boxes
with the highest overlap are chosen where Intersection over union (IOU) between the
predicted boxes and ground truth should be more than 0.5. To the predicted boxes,
Non-Max suppression is done to reduce the number of detection. Initially, the image is
divided into grids, and the location of an object is done in these grids. SSD-based DNN
face detectors are of high accuracy and robustness but introduce latency in real-time
when used in embedded devices.

4.2.2 Histogram of Oriented Gradients Face Detection

Various Face detection algorithms are used in computer vision for an accurate estimate
of head pose estimation of the rider. The algorithm used are explained in Section 4.2.1.
Histogram of Gradient Orientation is used in this algorithm since it has moderate accuracy
and good frames per second compared to other algorithms. The Histogram of Oriented
Gradient method was suggested by Dalal and Triggs [47]. The face detection system is
shown in Fig. 4.5
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over overlapping
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Figure 4.5: Face Detection Flow

Gamma/Colour Normalization

The Gamma/Colour normalization is used to improve the performance of the algorithm.
A Gamma/Colour normalization block reduces the impact of light on the image. The
input image should be in RGB or LAB color as this method has good results in these
metrics compared to grayscale images.

Gradient Computation

Gradient computation helps in extracting useful information from the image such as
silhouettes, contour, and textures. This information is used to determine the object to
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uncentered [-1,1]
centered [-1,0,1]
cubic-corrected [1,-8,0,8,-1]

Table 4.1: Derivative masks

be detected. The gradient computation is done using Gaussian smoothing followed by a
derivative mask. Many derivative masks are used, some are listed in Section 4.2.2. The
most common derivative used is the 1-D

[
−1, 0, 1

]
mask. However, it was shown in [2]

that the most effective technique for gradient computation is the application of a 1-D,
centered, point discrete derivative mask to filter the color or intensity of the image. The
gradient magnitude and direction are calculated in each pixel using Eq. (4.12).

Gradient Magnitude =
√

g2x + g2y

Gradient Angle = arctan(
gy
gx

)
(4.12)

The gx and gy are the respective horizontal and vertical components of the change in
pixel intensity.

Spatial/Orientation Binning

The magnitude and angle computed in the gradient computation part are used in this
block to generate the histogram of oriented gradient. The picture is divided into small
spatial sections called cells and a local 1-D histogram of gradient orientation is accumu-
lated in a 1D histogram with a predefined number of bins. According to its orientation,
each pixel votes for one of the histogram bins, and the magnitude is increased. These ori-
entation bins are uniformly spaced from 0 to 180. The Histogram of Oriented Gradients
with SVM method consists of 9 bins for spatial/orientation binning.

Normalization and Descriptor Blocks

Gradient strengths vary over a wide range due to the light variations, hence normaliza-
tion is used to reduce these issues and increase performance. The cells are grouped into
blocks. Two arrangements are used for normalization, Rectangular-Histogram of Ori-
ented Gradients (R-HOG) and Circular-Histogram of Oriented Gradients (C-HOG) The
R-HOG are calculated using n×n pixel cells and histogram bins in m×m grids (m being
the number of cells in each block). The 2× 2 cells of 8× 8 pixels with histogram bins are
used idly in this algorithm.

Detector Window and Context

A Detection window of 64x128 pixels is used for detecting the object. Decreasing this
window affects the performance of the system Decreasing it from 16 to 8 pixels reduces
the performance by 6%.

Classifier and Non-Maximum Separation Algorithm

A soft linear with SVM Light is trained using the input for high performance. A Gaussian
kernel SVM is used when performance is to be increased. The SVM algorithm creates a
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hyperplane that separates the data into classes. Support vectors are the data points closer
to the hyperplane. These points help in defining the separating line better by calculating
margins. The raw data produced by the Histogram of Oriented Gradients are given to
the SVM to classify the points as a face or not. The non-Maximum Separation Algorithm
is used to reduce the number of bounding boxes generated for an object. The predicted
boxes are compared and IOU values are compared. If the IOU is greater than a threshold
then that prediction is selected, The threshold set is 0.5%. Hence, the confidence values
greater than this threshold are selected. An example of an image after applying the HOG
filter is shown in Fig. 4.6

Figure 4.6: HOG feature example [9]

4.2.3 Landmark Prediction

The landmark prediction is an algorithm that is a part of the head pose estimation
process. The most commonly used landmarks are the 68 landmarks present in the face.

The vector of all landmarks is denoted by S=
(
xT
1 , x

T
2 , ..., x

T
p

)T
ϵR2p where xi denotes the

x, y coordinates of the landmark. The Ŝ(t) is used to denote the current estimate of S.
A cascade of regressor tree is used to predict the landmark. Each regressor predicts an
update vector and is added to Ŝ(t) to improve the estimate. The regressor predictions are
based on pixel intensity. The initial landmark vector is chosen by the mean shape of the
training data-centered and scaled according to the bounding box output of the generic
face detector., The regressor is trained using a gradient tree boosting algorithm with the
sum of square error loss. The training data set is made into triplets of face images to
generate the regressor function. This triplet of face images is updated for each regressor
until a cascade of regressors are learned which when combined gives high accuracy.

Each regression function rt is built around the tree-based regressors that were fitted
to the residual targets during the gradient boosting procedure. In the regression tree,
at each split node, a decision is made based on thresholding the intensities difference
of two pixels. The input image is warped to the mean shape depending on the current
shape estimate. The sum of square error is computed between the mean-shape facial
landmark points and the warped shape. A random set of candidate split is used to train
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the regression tree where the candidate with minimum mean square error is selected.
The gradient boosting algorithm is modified to account for weight factors due to missing
labels. This is done by initializing the model with a weighted average of targets and
fitting regression trees to the weighted residuals.

4.2.4 PNP method

Perspective-n-Point(PNP) is the most common method is estimating the pose of an ob-
ject. On using landmark predictor, the 2d projections of the landmarks are given. This
2d projection and the 3d points of those projects in the real world are used to estimate the
pose of the object. The camera has to be calibrated for this method to work. 6 degrees
of freedom are given based on this method such as the rotation vector and translation
vector. The rotation and translation vector with respect to the world is given by

s pc = K [R |T ] pw. (4.13)

where pw =
[
x y z 1

]T
is the 3d coordinates of the object,pc =

[
u v 1

]T
is the

corresponding image point, K is the calibrated camera parameters, s is the scalar factor
for the image point and R, T are the rotation and translation vector of the 3d coordinates
in real time. The Eq. (4.13) can be transformed into:

s

uv
1

 =

fx γ u0

0 fy v0
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1

 (4.14)

where fx and fy are the focal length in x and y direction and v0, v0 are the optical center
of the camera. This equation is solved by using Direct Linear Transform (DLT). Direct
Linear Transform(DLT) is used in solving the above equation and finding the unknowns
when ≥ 6 points are given. The observed image coordinates is given by

xi = PXi (4.15)

where on expanding the matrix we get

xi = P3x4Xi =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

Xi (4.16)

Combining the rows as vectors such as A, B, C and substituting in Eq. (4.16), the equa-

tion becomes, xi =

AT

BT

CT

Xi combining the elements of P into a vector we get p =

AB
C


This helps in simplifying the equation into aTxi

p = 0 and aTyip = 0 Each point generates
these two equations. This equation is solved using Singular Vector Decompositions which
is a standard method. On using the singular vector decomposition approach, the singular
values of the vector p are found. As P is a combination of the Rotation vector, intrin-
sic parameters, and Translation vector. On solving, p, rotation vector, and translation
vector are found. Since DLT is not very accurate, Levenburg -Marquardt Optimization
method is used to reduce reprojection errors. The Levenburg -Marquardt Optimization
randomly changes the pose and the reprojection error is checked. If the reprojection error
is decreased, then this estimate is accepted as a new estimate of the pose. If not, the
pose is changed again until the reprojection error reduces.
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Chapter 5

Proposed Forward Collision Warning
System with visual distraction
detection in bikes

In this chapter, a brief description of the system model, challenges in implementation,
and the design trade-off considered in order to maximize the performance of the system
are discussed.

5.1 System Model

The Forward Collision Warning System algorithm considers the RADAR data and Cam-
era data to estimate the level of warning that is needed in the situation. The proposed
system is made up of three parts such as Data Acquisition, Data Processing, and Thread
Assessment. The overview of the System model is shown in Fig. 5.1. The Data Acquisi-
tion part consists of the RADAR module for detecting the object in front and a camera
module is used to detect the head pose of the rider. Data Processing consist of two parts,
namely RADAR data processing, and camera data processing.

Data ProcessingData Acquisition

Camera Sensor

mmWave Radar 
Sensor

MIPI

Head pose estimation

Radar Data
Processing

Threat Assessment and  
Warning Generation

UART

Figure 5.1: System Overview

The radar data processing consists of processing the frame acquired from the radar front-
end and the Time to Collision(TTC) calculation. The camera data processing consists
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of a face detection module, landmark detection, and head pose estimation. The data
acquired from the radar-backend and camera are processed using a raspberry pi Single
Board Computer. The following section explains in-depth the system’s components and
the implementation.

5.2 Data Acquisition

The sensing technology used in detecting the obstacle in the front and head pose of the
rider is done in this component of the system. The camera data acquired is transmitted
through Mobile Industry Processor Interface (MIPI) protocol and for mmWave radar
Universal Asynchronous Receiver Transmitter (UART) protocol is used. The radar and
camera sensor data acquisition is explained in the following section.

5.2.1 Radar Data Acquisition

The IWR1642 mmWave radar sensor from Texas Instrument is used in sensing the en-
vironment. IWR1642 booster pack consists of a single chip mmWave radar sensor with
Digital Signal Processor (DSP) module, ARM processor. The IWR1642 uses Frequency
Modulated Continuous Wave radar technology. FMCW radar has higher accuracy, ro-
bustness, and rapid sensing. The range calculation for a Continuous Wave radar lacks
timing marks which reduce the accuracy compared to FMCW radars. The Ti RADAR
module which uses RFCMOS mmWave sensor can store 512 chirps before the frame starts
compared to SiGe-based solutions which are limited in the storage of chirps. The Ti radar
can be configured with multiple configurations settings which helps in extracting more
data from the environment. The radar system consists of a front end and a back end.
The IWR1642 is a self-contained, single-chip solution that facilitates the deployment of
mmWave sensors in the 76 to 81 GHz frequency range. A monolithic implementation of
a 2TX, 4RX system with built-in Phase-Locked Loop (PLL) and A2D converters are in-
cluded in the IWR1642. The radar signal processing is handled by TI’s high-performance
C674x DSP. Front-end configuration, control, and calibration are handled by an R4F-
based CPU subsystem. The Micro Controller Unit (MCU) and DSP peripherals can be
programmed with integrated peripherals(UART, Controller Area Network (CAN), Inter-
Integrated Circuit (I2C)). The IWR1642 sensor evaluation board is flexible and easy to
use which eases the complexity in prototyping.

The IWR1642 sensor consists of two components such as a front end and a back end.
The front end defines the sensing capabilities of the system. The tuning of the RF radio
for the transmission and reception of the radar frames is done in the front end of the
system.

As discussed in Chapter 4, the maximum velocity and range that can be detected
are computed. The configuration for the system is shown in Table 5.1. Using this
configuration results in a 5000ksps sampling rate in ADC. The maximum range that
can be achieved is theoretically computed as 120m. Increasing the range of the system
reduces the resolution of the system. Which leads to reduced resolution in the near field.
Increasing the Resolution decreases the maximum distance that can be detected. The
received signal is processed and the environment information is extracted in the back end
of the system. The configuration of the front end and the data transfer is done on the
integrated ARM R4F microcontroller.
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Parameter Value
Start Frequency (GHz) 76.01

Analog-to-Digital
Converter (ADC) start time (s)

4.8

Ramp end time (s) 56
Number of ADC samples 256
Frequency slope (MHz/s) 5.6

ADC sampling frequency (ksps) 5000
Bandwidth (MHz) 409

Table 5.1: Front-end configuration

5.2.2 Camera Data Acquisition

A raspberry pi camera is used in collecting the head pose of the rider. Raspberry pi
camera consists of Sony IMX219 8-megapixel sensor. The Sony IMX219 sensor has high
image quality, color fidelity, and low light performance and supports 1080p resolution at
30 frames per second and 720 resolution at 60 frames per second. IMX219 sensor consists
of CMOS active pixel sensor. The sensor has low power consumption, high sensitivity.
The preexisting method for acquiring the camera data is through the OpenCV library
method. This method has a low frame rate issue due to its blocking operation. Creating
a separate thread to access the latest frame from the camera helps in reducing the latency
between frames. This method of accessing the camera was used in this model to reduce
latency in the camera processing.

5.3 Data Processing

This block is responsible for analyzing the data acquired from the sensors. It consists
of a Camera and radar processing components. The camera data processing component
consists of a face detector, face landmark predictor, and head pose estimator. The radar
processing component consists of the radar back-end responsible for estimating the range,
velocity, and position of the detected object.

5.3.1 Camera Data Processing for head pose estimation

In this component, the frames acquired from the camera are processed using a face
detection and prediction algorithm. The face detection is done using the Histogram of
Oriented Gradient method combined with SVM. The face detection algorithm was custom
trained. The custom-trained algorithm was combined with a preexisting algorithm used
by dlib library for better performance.

Face Detector

This section explains the method in finding the suitable face detector algorithm for our
system. There are various methods in detecting the face in a frame in real-time. The
background on these methods are discussed in Section 4.2.1. The Face detection is done
using Histograms of Oriented Gradients(HOG) with Support vector machines(SVM). The
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Figure 5.2: Camera data processing

dlib method which uses the HOG+SVM algorithm is implemented in this system due to
its accuracy and high frames per second in embedded devices.

The face detector was trained using dlib library training dataset and custom dataset.
A custom dataset was created from a video captured during cycling for training the
algorithm. The detection rate of the existing face detector and custom dataset trained
face detector was observed. The custom face detector shows a high detection rate and
score compared to the existing dlib face detector.

Face Landmark Predictor

Facial Landmarks are shown in Fig. 5.3, these landmarks are used in detecting the head
pose of the person. The face detector returns a rectangle with x, y, w, h parameters

Figure 5.3: 68 Facial Landmarks [10]

which are used in this algorithm. The x, y, w, h coordinates of the face in the frame
is parsed to the predictor algorithm to specify the region of interest where the face is
present. The algorithm is trained using a labeled facial landmarks dataset that contains
the x, y coordinates of each landmark in a pts format. This dataset is used to train an
ensemble of regression trees to estimate the facial landmark position. Each regressor in
the cascade is used to predict an updated value to the current shape estimate in order to
improve the estimate. The regressor predictions of the features in the image are based
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on the pixel intensity value. This algorithm was pre-trained using 300W Dataset[48] and
its mirror images for high accuracy and precision.

Head Pose Estimation

The Head pose estimation is done using the Perspective-n-Point method. The Perspective-
n-point problem helps in generating the Rotation and Translation Vector of the object. A
Rotation Vector is the rotation of the camera with respect to a still object and vice versa.
The Translation Vector is the movement of the camera from its previous coordinates to a
new location. The Rotation and Translation Vector has three degrees of freedom in X, Y,
and Z coordinates. The Perspective-n-point problem is done assuming that the camera
is calibrated. To compute the head pose of the person in the frame, the 3d coordinate
and the 2d coordinate of the facial landmarks are needed. The 2d coordinates of the
facial landmarks in the image are generated by the face landmark predictor. The 3D
coordinates of the facial landmarks are derived from an anthropometric 3D rigid model
of the human head [49]. The anthropometric 3D rigid model as 58 3D coordinates which
is shown in Fig. 5.4 The estimation done using the 2d and 3d coordinates is used to

Figure 5.4: Anthropometric 3D rigid model

track the head movement. The rotation vector gives the rotation in 9 axes which are
converted to 3axis such as pitch, yaw, and roll. This angle is used to denote the head
movement of the rider. On testing the systems depending on the movement of the head,
a threshold was set for left and right movement. This change in head movement is taken
into consideration during the thread assessment.

5.3.2 Radar Data Processing

The processing of the RX signal is done by the integrated C674x DSP. The Back-end
is responsible for the processing of the frames from the front end. The data received
from the front-end is processed through Range FFT and Doppler FFT to estimate the
Range and Velocity of the object. This data is pruned using the Constant False Alarm
Rate(Constant False Alarm Rate (CFAR)) algorithm to detect and group the range and
velocity estimates. CFAR is an adaptive algorithm used to detect target data against
noise, clutter, and interference. The process chain with the front end is shown in Fig. 5.5.
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For range direction cell-average smallest of- CFAR is used. The cell-average-smallest-
of(Cell Averaging Smallest Of (CASO))-CFAR takes into consideration the side of the
reference window which holds the smaller averaging value which minimizes the over-
filtration of reflections from objects. Then Cell-Averaging-(CFAR) is done for estimating
the velocity direction. The determined value is multiplied by the threshold scaling factor
for determining the detection threshold. The detectability of the radar is determined by
this threshold scaling factor. This threshold depends on the Radar Cross Section(RCS)
of the target.

1D-FFT 
Range

2-D FFT 
Velocity PRUNING Angle Estimation Clustering Tracking

DSP

mmWave  
Front End

Object Data to
UART

Figure 5.5: Radar processing chain

The Radar Cross Section is the ability of an object to reflect the radar signal towards
the radar. The RCS value of the target as to be determined. Depending on the target, the
RCS value changes where car and truck have a high RCS of value 5 sq.m and 100 sq.m.
The RCS value of bicycles is assumed to be 1.5 sq.m which is higher than pedestrians and
lower than cars. Pruning is done on the data to remove clutter from the target. The angle
of Arrival of the points are estimated and the position of the points are mapped in X and Y
locations in meters. Clustering is done on the point data to reduce the number of reflected
points from one target. The clustering is done using the Density Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm. The algorithm groups together point
based on a minimal distance and speed between them. On using this algorithm, the mean
location of the target object and the X and Y locations are determined.

The tracking of the object is done using the Extended Kalman Filter which has four
states as X-position, Y-position, relative velocity along the respective direction. Further
Pruning is done to this data to reduce false detection by the radar. The velocity of
the object in the front is detected as negative sing which is due to the anti-clockwise
movement of the IF signal phasor. The object that has no movement are also detected
as the relative velocity between the still object and the bicycle is the velocity of the
bicycle. The x-axis has a constraint of 20cm to the right and left which is the width
of the bicycle. This helps in reducing the warnings for objects parked on the side and
vehicles in other lanes. Time to Collision is calculated for the target object based on the
relative velocity and longitudinal range of the object from the host vehicle. This process
is done in the mmWave radar DSP chipset and the x location, y location, range, speed,
and TTC calculated for each of the target objects are sent to the raspberry pi through
UART protocol.
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5.4 Threat Assessment

In this section, the threat assessment of a potential thread based on the radar data and the
camera data is done. The warning algorithm for the system is shown in Algorithm 1. The

Algorithm 1 Forward Collision Warning System with Adaptive Threshold

1: At time t
2: Get TTC(t)
3: Get Head Pose status(t)
4: Initialize TTC 1 = 5
5: Initialize TTC 2 = 3.5
6: Initialize Warning 1 = False
7: Initialize Warning 2 = False
8: if TTC(t) <= 5seconds then
9: if Head Pose status = Distracted then
10: Warning 1 = True
11: if TTC(t) < 3.5seconds then
12: Warning 2 = True
13: end if
14: else if Head Pose status = Forward then
15: Warning 1 = False
16: if TTC(t) < 3.5seconds then
17: Warning 2 = True
18: end if
19: else if Head Pose status = Unknown then
20: Warning 1 = True
21: if TTC(t) < 3.5seconds then
22: Warning 2 = True
23: end if
24: end if
25: else
26: Warning 1 = False
27: Warning 2 = False
28: end if

Warning Algorithm uses the Time to Collision(TTC) metric and the head pose to assess
the threat. The minimum reaction time of a rider on a bicycle is 2 seconds. On testing
the system, the time to collision (TTC) for the bicycle is set as 5 seconds for distracted
riders and 3.5 seconds for alert riders. For an inattentive rider, the system alerts the
rider for an object with TTC less than 5 seconds which helps to increase the system’s
safety. For an alert rider, the system warns only for TTC less than 3.5 seconds, which
helps to increase the acceptability of the system. In this system, a Fail-safe algorithm is
implemented in case the face detection fails due to external circumstances. This Fail-Safe
method consists of a counter that counts down until the face detection work is recovered
and then raises an exception. During that time, the threat is evaluated and a warning is
issued based only on radar data. The head pose task returns a 0 when the camera sensor
fails to capture the head pose of the rider.
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Chapter 6

Testing and Results

In this chapter, the testing results of the individual components of the system and system
as a whole is briefly explained. The mounting of the system on the bicycle are shown in
Fig. 6.1.

(a) Radar sensor mount-
ing

(b) Camera sensor mount-
ing

(c) Camera sensor mount-
ing(angle changed)

Figure 6.1: System

6.1 Camera Sensor Performance

An algorithm for face detection is required to estimate the rider’s head pose during cycling
in order to assess the situation and deliver the warning. We first compare the frames per
second and the complexity of the algorithm. It is shown in Section 6.1. Complexity
is the measure of implementation difficulty, training time, and resources needed by the
algorithm. It can be concluded that the deep learning methods have high accuracy

Algorithm
Frames per second

Complexity
(Intel core i7) Raspberry pi

HAAR Face Detector 29 15 Low
HOG+SVM Face Detector 24 12 Moderate
CNN Face Detector 13 3 Very High
DNN Face Detector 15 2 Very High

Table 6.1: Comparison of Face Detection Algorithm

in face detection,but the computing complexity of the model are high which makes it
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less adaptable to embedded devices. Dalal and Triggs method of face detection using
HOG and SVM has moderate accuracy and less complexity which suits this research
project. The algorithm was implemented in raspberry pi and tested for its accuracy
and capability of detection. A dataset captured during testing was used to train the
face detector. A new dataset was made to validate the custom-trained face detector and
existing dlib face detector. It was inferred that the custom-trained algorithm shows a
good detection rate and confidence score compared to the existing face detector. The
angle of the camera was changed for the maximum detection rate. The results of testing
the face detection algorithm in bicycles are shown in Table 6.2. The detection rate of
the custom-trained algorithm is higher compared to the pre-existing dlib face detector
algorithm. The custom-trained face detection algorithm was tested in different lighting
conditions and it was inferred that the face detection algorithm suffered during poor
lighting conditions. Though the dlib pre-existing algorithm has a low detection rate, the
sensitivity to change in lighting conditions was low. Hence to increase the performance
of the system, both the custom-trained algorithm and dlib face detection algorithm were
used to detect the face of the rider.

Algorithm Detection Rate(%) Confidence Score
Custom Trained
HOG+SVM

99.6 1.0

dlib face detector 48.32 0.9584

Table 6.2: Face Detection Algorithm Performance

6.2 mmWave Radar Sensor Performance

The mmWave radar was tested in different real-time scenarios for determining the per-
formance of the system. The RADAR was mounted in the front of a dutch bicycle and
connected to a laptop to visualize the radar data received during testing through MAT-
LAB Graphical User Interface (GUI). A mobile phone was mounted in front to record
the objects in front of the cycle for ground truth. The maximum distance up to which
the radar as to detect for each TTCThreshold is calculated and shown in Table 6.3. It is
assumed that the maximum speed achievable and the average speed of a bicycle as 7m/s
and 3m/s. The maximum range for the radar to detect a bicycle is 20m and 14m in
the case where the bicycle in front is traveling at average speed and the host bicycle is
traveling at maximum speed. The detection range of the system was tested in different

Parameter TTC=5s TTC=3.5s
Maximum Speed(m/s) 7 7
Average Speed (m/s) 3 3
Maximum Range (m) 20 14

Table 6.3: Maximum Distance for each Time to collision(TTC)

real-road scenarios for targets such as cars, bicycles, scooters, and humans. The three
lane scenarios tested are shown in Fig. 6.2.
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(a) Shared Road with bicycle
lane

(b) Separate Bicycle lane (c) Shared Road without bicy-
cle lane

Figure 6.2: Road Scenarios

1. Shared Road with bicycle lane scenario: This scenario is shown in Fig. 6.2a
where there is a bicycle lane but it is shared with other vehicles. In this scenario,
5 objects were detected and tracked. The average range of detection was 35.1m.
Cars, buses, and bicycles were the target of interest in this scenario.

2. Separate Bicycle Lane scenario: This scenario is shown in Fig. 6.2b in which
there is a separate bicycle lane outside of other vehicle lanes. In this lane, the
bicycles are the object of interest. In this scenario,7-objects were detected at an
average range of 46.0m.

3. Shared Road without Bicycle Lane : This scenario is shown in Fig. 6.2c where
there are no separate bicycle lane markings. This scenario is common in inner parts
of cities. In this scenario, all types of vehicles are to be considered. The average
detection range was 39.6m.

6.3 Total System Performance

The system was tested in different scenarios to evaluate the performance metrics. A
confusion matrix was drawn based on the data acquired. This confusion matrix helps in
calculating the performance of the system. The warning generated was stored in a csv
file and validated. Two cameras were used to validate the warnings generated by the
system. One camera was installed in front of the bicycle to record the test ride and the
other camera was installed facing the rider to validate the head pose estimated done by
the system. The terms used in the confusion matrix are explained below:

1. True Positive(True Positive (TP)): True Positive is the total number of times
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the warning system warned the rider depending on the obstacle in front and the
head pose of the rider.

2. True Negative(True Negative (TN)): True Negative is the total number of
datapoints where the warnings were not generated when there were no object in
the path of the rider The head pose of the driver is also taken into account during
this calculation.

3. False Positive(False Positive (FP)): The total number of times a warning was
provided without an object in the rider’s path is termed as False Positive. This
might happen as a result of the clutter in the environment.

4. False Negative(False Negative (FN)): The number of times the rider was not
given a warning despite the presence of an object in the rider’s path is termed as
False Negative. This figure also includes the total number of times the face was not
identified in such scenarios.

The performance metrics used for evaluating the performance are shown in Table 6.4.

Performance Metrics Description Formula

Accuracy
Accuracy is defined as the number of
correctly categorized data instances
divided by the total number of data instances.

TP+TN
Total

Precision
Precision is a statistic that measures how
many correct positive predictions have been made.

TP
TP+FP

Sensitivity
Sensitivity is a metric that indicates how
good a model is at recognizing positive
occurrences. It is also known as True Positive Rate

TP
TP+FN

Specificity

Specificity is defined as the proportion
of real negative situations that were predicted as
negative by our model. It is also known as
True Negative Rate.

TN
FP+TN

Misclassification rate
Misclassification rate is defined as the amount
of incorrectness in the system. It is the fraction
of predictions where the actual value is incorrect.

FP+FN
Total

Table 6.4: Performance metric description

6.3.1 Testing Scenario

The Forward collision warning system with distraction detection was tested by the fol-
lowing scenarios. Since there are no standard test procedures for this type of system
in International Organization for Standardization (ISO),National Highway Traffic Safety
Administration (NHTSA), European New Car Assessment Programme (EURO NCAP).
The following scenarios were tested which were adapted from NHTSA and EURO NCAP [50].
The scenarios tested for forward-collision warning system are

1. Scenario 1: The Host Vehicle (HV) and Leading Vehicle (LV) travel in the same
direction with TTC >5 seconds. The leading vehicle stops suddenly and the system
is checked whether warnings are generated.
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2. Scenario 2: In this scenario, the host vehicle and leading vehicle travel at a con-
stant speed. The leading vehicle slows down gradually and the system is checked
whether warnings are generated or not.

3. Scenario 3: The HV and LV travel in the same direction. The leading vehicle
travels at a constant speed and the host vehicle accelerates and the systm is checked
for warnings.

4. Scenario 4: In this scenario, the host vehicle is traveling in one direction and the
target vehicle is traveling in the opposite direction. The system is tested to neglect
such tracking and detect the object in the path.

Since the system uses head pose estimation data to refine the warnings, the system was
tested in the same scenario including the head-pose data. The scenarios are shown in
Fig. 6.3

Host
Bicycle

Leading
BicycleTTC > 5seconds

VLB=0

VLB=Velocity of Leading

Bicycle 
VHB=Velocity of Host  

Bicycle 
TTC=Time to Collision 

(a) Scenario 1

Host
Bicycle

Lead
Bicycle

VLB < VHB

VLB=Velocity of Leading

Bicycle 
VHB=Velocity of Host  

Bicycle 

(b) Scenario 2

Host
Bicycle

Lead
Bicycle

VLB = Constant

VHB > VLB

VLB=Velocity of Leading

Bicycle 
VHB=Velocity of Host  

Bicycle 

(c) Scenario 3

Host
Bicycle

Target
Bicycle

VTB >VHB
VTB=Velocity of Leading

Bicycle 
VHB=Velocity of Host  

Bicycle 

(d) Scenario 4

Figure 6.3: Scenarios

The Table 6.5 shows the detection distance and the time of collision of the object in
the testing scenarios. Scenario 4 was tested in real-time and it was observed that the
vehicles traveling towards the host vehicle in the adjacent lane doesn’t trigger warnings.
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The radar configuration to omit detection beyond 20cm in the x-axis helps in neglecting
the objects detected in adjacent lanes which doesn’t affect the rider. The potential threats
are detected and the warnings are delivered to the rider with time to mitigate the collision.
These results demonstrate the effectiveness of the proposed system in forward collision
situations.

Relative Distance(m) Time to Collision(s)
8.1 3.6
1.1 1
3.7 1.2

(a) Scenario 1

Relative Distance(m) Time to Collision(s)
8.1 3.6
3.4 3.4
9.3 3.7

(b) Scenario 2

Relative Distance(m) Time to Collision(s)
12.2 4.9
9.2 4.3
3 3
1.8 1.2

(c) Scenario 3

Table 6.5: Testing results
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6.3.2 Real-road Scenario with different lighting conditions

The system was tested in different light conditions to evaluate the performance of the
system. The testing scenario consist of shared road with bicycle lane and without bicycle
lane road infratructure.

1. Day Light condition(12:00pm-3:00pm): In this condition, the system shows
good performance. More extensive testing was done in this condition to evaluate
the head pose estimation component of the system. The precision of the system
is comparatively high in this condition. The face detection rate in this scenario
is moderate. This degradation of face detection rate is due to the change of light
conditions while riding the bicycle. The system performance is shown in Table 6.6

2. Twilight condition(4:30 pm-5:30 pm): Twilight light condition is the time of
the day between daylight and darkness. There was a good performance shown by
the system in this condition. The precision and sensitivity of the system degrades
in this condition. The face detection rate in this condition is better compared to
night time due to the normal lighting conditions without sunlight influence. The
system performance is shown in Table 6.6

3. Night condition(6:00 pm onwards): The camera suffers during the poor light
condition. The system throws more exceptions due to the problem in face detection.
Fail-safe algorithm implemented to compensate this limitation helps in generating
warnings in this scenario. The sensitivity of the system is low in this condition due
to the low face detection rate. The system performance is shown in Table 6.6

Performance Metrics Day-light Condition Twilight Condition Night Condition
Accuracy 0.97 0.96 0.97
Precision 0.93 0.88 0.89
Sensitivity 0.67 0.64 0.57
Specificity 0.995 0.99 0.99

Misclassification rate 0.03 0.04 0.03

Table 6.6: Performance of the system in different lighting conditions

The accuracy of the system is maximum at the day-light condition and this is due to the
steady camera’s performance.

6.3.3 Overall Performance

The overall performance of the system was tested and validated. The system was tested
at Schiedam, the Netherlands. The testing procedure was conducted on November,2021.
The testing process was 4 minutes and the testing area is shown in Fig. 6.4. This process
was repeated for 9-times. Each testing process covered 1.34km. This area consists of both
the shared road with a bicycle lane and without bicycle lane scenarios. The data obtained
for every 100m was considered as a dataset for this analysis. A total of 113 datasets was
obtained from this experiment. The mean values of the performance metrics are shown
in Table 6.7.
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Figure 6.4: Testing Area Map

Performance Metrics Mean S.D 1-sigma LCL 1-sigma UCL
Accuracy 0.967 0.0321 0.9349 0.9991
Precision 0.8945 0.277 0.6175 1
Sensitivity 0.627 0.433 0.194 1
Specificity 0.9943 0.0139 0.9804 1

Table 6.7: Performance Metrics

Fig. 6.5 shows the distribution of Time to Collision(TTC) for object assessed as a
threat. It can be inferred that the system provides 77.54% of warnings before 2 sec-
onds which helps the rider to mitigate the collision. 44.89% of the warnings are given
3.5-5seconds earlier before the collision. These warnings are initial warnings that are
generated when the rider is distracted. The second warning where the time to collision is
less than 3.5seconds accounts for 55.1% of the total warnings generated. These warnings
are crucial regardless of the rider’s attention level.
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Figure 6.5: Histogram of Time to Collision Data

Figure 6.6: Histogram of Range Data

The distribution of range data for each object termed as a threat is shown in Fig. 6.6.
It can be inferred that 69.4% of the detection are above 7.7m. 46.94% of the object
assessed as a threat are at a range of 7.7-14.3m. About 30.6% of data fall in the minimum
range and the minimum range of the object detected as a threat is 1.1m.
The normal distribution of Accuracy is shown in Fig. 6.7. The average accuracy of the
system is 0.967(96.7%). One sigma standard deviation was done to the accuracy of the
system and 68% of the data falls in this control limits. The accuracy is distributed
with a standard deviation of 0.0322(3.2%). The system has high accuracy in the tested
area, however the sensitivity of the system degrades due to performance of the camera,
configuration of the radar, and the sampling rate. The low lighting conditions and angle
of the camera led to low face detection in this experiment. The configuration of radar
to detect an object in long-range leads to less resolution in short-range scenarios. Hence
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Figure 6.7: Analysis of Accuracy of the system

the warnings generated for a vehicle reduces when the vehicle is in this short range.
The relative velocity in the shared road scenario is low compared to the dedicated lane
scenario. Hence the warnings generated in this scenario is low.

Figure 6.8: Distribution of Accuracy
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6.4 Limitation

The system shows good performance in the real-road scenario where the warning are
given according to the object in front and head pose of the rider. However, the system
has limitations that reduce the sensitivity of the system. The face detection done using
a camera has a high dependency on the illumination of the environment. The warnings
generated when the face is not detected lead to False Negatives. This restricts the system
from being used at all times. This can be solved by using a robust dataset collected during
a low light situation and training the model. Moreover, the angle of the camera plays a
major role in the detection of the head pose of the rider. The placement of the camera
was changed until face detection had maximum true positives. Since this plays a crucial
role in the development of this system, a structure can be used to mount the camera to
increase the sensitivity of the system. More accurate face detection algorithms such as
CNN and DNN can be trained and pruned to work in low-end embedded devices which
would help in reducing the false negatives.

The mmWave radar for forward collision detection, has a longer range, high accuracy,
and precision but lacks resolution in the near-field. As mentioned in Section 5.2.1, to
acquire a high range, the resolution of the detection in near-field reduces. Though the
object is detected from a long distance and tracked, the objects in the near field are not
detected by the radar and leads to more false negatives. This is due to the configuration
of the radar. This limitation can be solved by changing the configuration of the radar
which will reduce the maximum range that can be detected. The sampling rate of the
system can be altered to overcome the range resolution issue but this can lead to a delayed
warning.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this research, a multi-sensor forward-collision warning system was implemented and
tested in real-road scenarios. The system uses a sensor fusion of camera and mmWave
radar. The mmWave radar is used to detect the object in path of the bicycle. The camera
is used to detect the head pose of the rider to detect whether the rider is aware of the
obstacle in front. The mmWave radar detects an object with higher accuracy and preci-
sion which helps in warning assessment. The TTC and MSD metrics are used to assess
the object in front. The mmWave radar helps in providing the range, speed, position of
the object in path of the rider, which helps in calculating the Time To Collision(TTC).
The camera was used to detect the yaw, pitch, and roll angle of the rider which helps in
detecting whether the rider was aware of the object or not. The system shows a mean
accuracy of 96.7% in shared road scenarios. Implementation of ADAS system in bicycles
improves the safety of the rider. Nearly 70% of the warnings generated by the system
was at a range of greater than 7m with Time To Collision(TTC) more than 2.5seconds.
The limitation in the system are explained in Section 6.4. The fail-safe algorithm used in
the system helps in overcoming the limitations due to the camera in low-light scenarios.
The research outcomes motivate more research that has to be done in rider monitoring
systems for distraction detection. The threat assessment threshold used help in main-
taining the balance between safety and acceptability. More surveys should be done in the
threshold values to make the system more acceptable for the rider.
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7.2 Future Work

Due to the limitations in the system discussed in Section 6.4. There are a lot of improve-
ments that can be done to the system to increase its performance. A method to detect
the type of lane can help in altering the range of the radar which increases accuracy and
precision. The angle of the camera affects the detection of the head pose estimation. De-
termining the correct angle of the camera that provides a relatively higher face detection
rate can help in improving the performance of the whole system. A method to detect the
illumination in the environment and increase the visibility of the camera during low light
situations can help in increasing the accuracy of the system and reducing the situations
when face detection fails. Estimating the gaze angle of the rider and the angle of the
vehicle can help in reducing the warnings and widen the scenarios in which this system
can be used. Due to the sensitivity of the camera sensor on the environment, training the
head pose estimation algorithm with dataset from different lighting conditions can help
in increasing the face detection rate in low light conditions. The deep learning algorithms
for head pose estimation can be implemented on this system after pruning for increasing
the accuracy of the camera component. Housing for the radar and the camera should be
incorporated to reduce the effect of environmental conditions on the system.
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Appendix

Real-time testing in different lighting conditions

The different lighting conditions in the overall performance testing are shown in Sec-
tion 7.2. It is clear that the light condition is better in twilight and daylight which helps
in increasing the face detection rate.

(a) Daylight (b) Twilight (c) Night

Real-time testing on different lighting conditions

Total System Performance

The accuracy of the system was analysed statistically ,the control chart of the accuracy
calculated for the system is shown in Section 7.2. The specificity parameter gathered
during the tested scenario is statistically analyzed. The average specificity of the system
is 0.994 with standard deviation of 0.0139.
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Statistical Analysis of Accuracy of the system

Statistical Analysis of Specificity of the system
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