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Summary

In order to gain insight in the behaviour of cyclists on intersections, which may lead
to fewer accidents, Mindhash developed mobile LiDAR platforms for temporary ob-
servation of traffic situations. Light Detection And Ranging (LiDAR) is a laser-based
distance measurement technique that is further developed to use multiple vertical
channels and rotate rapidly to form three-dimensional point clouds of the sensor’s
surroundings. The overarching topics in this thesis are computer vision and data
processing.

The main goal of this thesis is to implement an autonomous data processing
pipeline that converts sequential series of LiDAR-generated point clouds into a list
of tracked objects. During the implementation a new background removal method
(BRM) is developed and the idea of using multiple dimensions estimation techniques
is tested, leading to the following sub research questions:

• Does the use of a two-dimensional background model improve background
removal performance over three-dimensional models with a rotational LiDAR
sensor?

• Does applying different bounding box methods per traffic type improve the abil-
ity to estimate an object’s orientation?

Based on related work a high-level data processing structure is designed and for
each processing step multiple methods are compared. The data processing steps
that are taken are:

1. Background identification & -removal
2. Point clustering
3. Object tracking
4. Classification
5. Orientation estimation

iii



IV SUMMARY

During the implementation a new BRM is developed called Peak Detection (PD).
PD generates a two-dimensional model from a recording based on the combined
measurements of an individual LiDAR angle. Whenever a significant number of dis-
tance readings are within a predefined distance from each other the measurement
’peak’ is considered a stationary object and all measurements from that point and
beyond are considered background. PD is tested against three existing methods to
compare its background removal precision and recall, and processing speed.

Because all traffic types have vastly different dimensions and shapes, this thesis
introduces the use of class-based bounding box methods for orientation estimation.
Rotating calipers, Principal Component Analysis, and Minimum Error Rectangle are
implemented and tested on pedestrians, two-wheelers, and vehicles. The estimated
orientation, based on the alignment of the bounding box, is evaluated by calculating
the alignment with an object’s next location.

Each data processing step is validated in terms of expected outcome and usabil-
ity for further testing. Both the BRMs and the orientation estimation are evaluated
in-depth to provide statistically significant answers to the research questions. For the
evaluation four 15 minute recordings are used, totalling more than 35.000 frames.

Results show that all implemented data processing steps function as expected
and can reliably track objects. However, the clustering and tracking are prone to
errors with closely grouped objects or occlusion. PD proves to be significantly faster
than state of the art three-dimensional BRMs at an insignificant precision and recall
loss. The model generation and background removal are 44% and 88% faster on
average. For the orientation estimation it is determined that the differences between
bounding box methods is significant for each object type. Principal Component Anal-
ysis and Minimum Error Rectangle perform especially well on two-wheelers and ve-
hicles respectively with half of the measurements falling within a 9◦ alignment error.

The project goal is successfully reached and all requirements have been met.
A fully autonomous data processing pipeline is designed and implemented and is
able to produce a list of tracked objects. The data can also be visualised to show
objects and their bounding box, class, velocity, and path. It is proven that the use of
a two-dimensional background model does improve background identification and -
removal by significantly increasing the processing speed at an insignificant precision
and recall loss. It is also proven that using class-based bounding boxes improves
the orientation estimation.
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Chapter 1

Introduction

In this research a fully autonomous point cloud data processing pipeline is imple-
mented that extracts tracked and classified objects from a stationary mounted Li-
DAR. Additionally, a background removal method is developed that performs on
par with state of the art methods, but at a significantly higher processing speed.
And finally, it is found that using different bounding box methods based on the ob-
ject’s class improves the estimated orientation, determined by the correspondence
between the orientation and next location. This project is done in assignment of
Mindhash, an innovation agency located in Hengelo, the Netherlands.

1.1 Context

The Netherlands counted 678 lethal traffic accidents in 2018 and it is estimated that
there have been 21,700 accidents that resulted in severe injury [1], [2]. With an
average cost of over 300,000 euros per accident with severe injury and 2.8 million
euros per lethal accident this sums up to a total cost of approximately 8.4 billion
euros. The total cost involved with all accidents in the Netherlands: between 15.8
and 18.6 billion euros [3].

A third of the lethal accidents and, based on LBZ registrations, almost two thirds
of the severe injury accidents involve cyclists [2], [4]. The Institute for Road Safety
Research (SWOV) in the Netherlands performs extensive research on cyclist safety,
as it is one of the primary means of transportation. In a research on cycling ac-
cidents it is found that the most dangerous locations for cyclists are intersections.
Between 52% and 65% of the lethal cycling accidents took place on intersections
between 2000 and 2009 [5].

Increasing the safety and decreasing the number of accidents that lead to ei-
ther severe injury or death can rapidly become a financially viable investment when

1



2 CHAPTER 1. INTRODUCTION

taking the reduction in costs into account. The World Health Organizations states:

”When safety is taken into consideration during the planning, design and operation
of roads, substantial contributions can be made to reducing road traffic deaths and

injuries.” [6]

However, in order to be able to improve upon the safety of a given traffic situation,
first it has to be known where the issues lie. Currently, little information is known
about bicycle locations due to a lack of proper automated measurement methods
and lack of records of non-severe injuries [5]. I.e. if an individual cyclist rides into
the roadside he will likely not register the incident. Using automated measurement
methods these less severe incidents can also be observed and analysed for a more
in-depth understanding.

1.2 Project goal

The goal of this research is to implement a functional data processing pipeline to
detect, classify, and track traffic from LiDAR-generated point clouds. The resulting
data should enable data analysts and traffic experts to (automatically) analyse the
data for relevant metrics or situations and behaviour of interest.

The high-level scope of this research is defined by the commissioner, which is
Mindhash1. A mobile platform on which a LiDAR sensor is mounted is provided
for the recording of data. The resulting data is to distinguish between pedestrians,
two-wheelers, and vehicles and contain their direction and velocity. An additional
requirement is that all traffic must be detected, even if the classification is incorrect.
Furthermore, the resulting data must be visualised in a way that enables manual
examination and validation. The data processing does not have to run real-time,
however, with future development in mind the processing speed can be a decisive
factor as a high processing time per frame is problematic for longer recordings.

During the design and development of the processing pipeline potential points
of improvement have been discovered, of which two are researched in-depth. The
first point is that most background identification and removal methods use three-
dimensional models, while Light Detection And Ranging (LiDAR) output can be con-
sidered two-dimensional. If the two-dimensional model does not decrease perfor-
mance significantly, the potential processing speed is large. Leading to RQ1 as
stated below. The second point is that relevant literature often use a single bound-
ing box method for all objects, while varying traffic types produce differently shaped

1https://www.mindhash.nl/
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point clusters. Having a specialised bounding box method for each traffic type may
improve orientation estimation, leading to RQ2 as stated below.

The aforementioned goal and scope are combined into the following research
question: How to autonomously detect, distinguish, and track traffic using a
rotational LiDAR. To which an answer will be researched based on the following
sub research questions (RQ):

• RQ1: Does the use of a two-dimensional background model improve back-
ground removal performance over three-dimensional models with a rotational
LiDAR sensor?

• RQ2: Does applying different bounding box methods per traffic type improve
the ability to estimate an object’s orientation?

1.3 Method

To answer the aforementioned research questions a literature study in combination
with an iterative development cycle is used, of which the final iteration is presented
in this document. The full system is validated using manually labelled data sets. For
the sub questions more in-depth evaluation tests are designed and performed.

1.4 Report organisation

The context, goal, and research questions of this research are stated in the Intro-
duction. Next, a Background chapter provides an explanation on what LiDAR is and
why it is chosen. In Related work comparable research is discussed with respect
to the main goal, leading to a processing pipeline design. For each step in the data
processing multiple existing methods are compared. The System chapter states the
final implementation of the system as it is used for answering the research ques-
tions. The Method & Results chapter describe the validation and evaluation tests
and their results. Whether the results are as expected, provide an answer to the re-
search questions, and show any anomalies is put in the Discussion. The Conclusion
provides a concise answer to the achievement of the project goal and all research
questions. Finally, recommendations are made on how to continue this research in
the Future work chapter.
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Chapter 2

Background

In this chapter the basic principle of LiDAR and its application in the used sensor is
explained as it is fundamental to this research. Alternatives to LiDAR are discussed
after.

2.1 Light Detection And Ranging

Light Detection And Ranging (LiDAR) is a remote sensing method that uses the
light of a laser to measure ranges (variable distances) to reflective surfaces. Using
a receiver the return of the reflection of the light is timed and thus the range is
measured. Besides the duration, also the intensity of the returning light is often
captured which is affected by the reflectivity of the measured surface. LiDAR has
many applications, of which the automotive industry is currently the most popular
due to the use of LiDAR for autonomous driving.

The most common implementation of LiDAR is in the so-called rotational LiDAR
sensor. The rotational LiDAR sensor uses multiple vertically arranged lasers in a
rotational motion in order to measure the surroundings of the sensor. This generates
what is called a point cloud and represents the surroundings of the sensor as a three
dimensional image consisting of measurement points as shown in figure 2.1. All
measurements are stored in a spherical coordinate system with a radial distance r,
polar angle θ, and azimuthal angle φ. For the conversion to Carthesian coordinates
formula 2.1 can be used.

x = r cosφ sinθ

y = r sinφ sinθ

z = r cosθ

(2.1)

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: Example of a LiDAR generated point cloud

Depending on the specifications of the LiDAR sensor large amounts of data can
be collected. Most rotational LiDARs range have a vertical resolution of 16, 32,
64, or 128 and a horizontal resolution of up to ∼4500. Rotational speeds (frame
rate) are mostly between 5 and 20Hz, meaning that the most high-end sensors can
record well above two million points per second. The high frame rates make them
suitable for tracking objects and deriving measurements like velocity. More in-depth
specifications for the used LiDAR sensors are given in section 4.2.

The LiDAR sensor generated image is sometimes called ’2.5D’ as objects are
always partially visualised due to occlusion as shown in figure 2.2. It also prevents
the observation of objects that are overlapping with respect to the sensor. The latter
problem could be partially solved by placing the LiDAR sensor higher, however, this
would also reduce the number of points representing the objects thus decreasing
definition and range. Another option would be the use of multiple LiDAR sensors
observing the same area from different angles and combining the point clouds. This
concept is discussed further in section 9.

2.2 LiDAR alternatives

Multiple other technologies besides LiDAR are already being used or are actively
researched for the observation of traffic. Even though the choice of LiDAR is al-
ready fixed, this section shows what potent technology it is with respect to existing
alternatives. The most common type of traffic observation is determining the volume
by counting objects. Table 2.1 shows a list of commonly used methods for count-
ing vehicles either by detecting presence or sensing passing axles. However, most
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Figure 2.2: Objects within line of sight of the LiDAR sensor (b) prevent any mea-
surement beyond the object (c), which is called occlusion. Sourced
from [7].

of these technologies are solely designed for detecting objects in one location and
cannot provide any other information besides count, classification, number of axles,
or weight, depending on the sensor. As LiDAR is not only capable of counting traffic
but also tracking it throughout 3D space, it is capable of providing a wider variety of
measurements and even behavioural data. Sensing technologies for tracking traf-
fic like video, Radio Detection And Ranging (RADAR), and LiDAR provide far more
potential compared to counting only variants.

Methods for observing traffic behaviour on road segments are stationary cam-
eras, cameras mounted on a Unmanned Aerial Vehicle (UAV) and RADAR. Re-
search has shown that hovering over road segments using UAV-mounted cameras
is an effective method for observing traffic [9]–[11]. Wang et al. [10] are capable of
observing a road segment of up to 285m with 96.1% accuracy. However, UAVs and
cameras have multiple limitations and/or problems [10], [11]:

• Cameras only provide 2-dimensional data
• Cameras are heavily light and weather dependent
• Wind can influence the position of the UAV and introduce a perspective change
• Untethered UAVs have limited battery capacity and therefore limited flight time

As for RADAR, Akita & Mita [12] & Zhao et al. [13] prove to be capable of identifying
and tracking objects using millimeter-wave RADAR. While Zhao et al. [13] only have
a usable range of approximately 5m, Akita & Mita [12] show a range of up to 40m.
The latter also reach a 98.67% classification accuracy for distinction between car,
pedestrian, bicycle, and parked car. Millimeter-wave RADAR has the same char-
acteristic as LiDAR where resolution decreases over distance, thus distant objects
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Table 2.1: List of available technologies for counting traffic [8]
Presence Sensing Technologies Axle Sensing Technologies
Inductive loops Infrared
Magnetic Laser
Video detection system Piezo-electric
Acoustic Quartz sensor
Ultrasonic Fiber optic
Microwave RADAR Capacitance mats
Laser RADAR Bending plates
Passive infrared Load cells

Inductive Signatures
Contact switch closures (e.g., road tubes)

easily blob together making it harder to distinguish, identify, and track individual ob-
jects.

Extensive research between LiDAR and RADAR is done by Ryde & Hillier [14]
and based on their conclusions LiDAR is more applicable for precise recognition
and tracking of objects. They conclude that RADAR is robust to visually obstructing
weather conditions like mist and rain, but has low precision measurements which are
relatively spare. While LiDAR is more easily interpreted and provides high precision
and accuracy, but at the cost of being more affected by adverse weather conditions.
This makes LiDAR the better option for dimension estimation and classification.



Chapter 3

Related Work

The first step to answer the main research question is to look at existing literature
with overlapping interest. If literature does already exist on the detection, tracking,
and classification of objects the question is whether it is applicable for this research’
specific case, and if so, whether it is available. If no directly comparable literature is
available an alternative source of information is two-dimensional image based com-
puter vision. Initially, literature overlapping with the main research question is looked
for. After that, literature overlapping with individual sub questions is researched.

3.1 LiDAR-based traffic analysis

Using a stationary LiDAR to observe traffic is a recent development compared to
image-based traffic observation, however, literature does exist on this topic. Tarko
et al. [15], Wu [16], Zhao et al. [17], and Cui et al. [18] all use a roadside 360◦

LiDARs for the detection, tracking, and classification of traffic. Another closely re-
lated research is the detection of crossing deer using LiDAR [19]. Noteworthy is that
they all use a combination of background removal, point clustering, object tracking,
and object classification. And, all except Zhao et al. [17] also use ground- or lane
identification.

Especially the combination of background removal and point clustering are re-
markable as most recent developments in object recognition and classification in
point clouds mostly aim at using some form of Machine Learning (ML) [20]–[24].
These ML implementations are trained to detect and classify objects directly from
a point cloud collected from a moving platform. However, when looking at afore-
mentioned research using stationary LiDAR platforms a more traditional Computer
Vision (CV) approach is used starting with background removal (now referred to
as traditional CV methods) [15]–[18]. An often used explanation for a traditional

9
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CV approach is the ability to determine the background given the stationary LiDAR,
however, this does not explain why ML is not used.

One potential explanation why ML is not used for object detection with stationary
LiDARs is given by Cui et al. [18], mentioning that LiDARs mounted on a mobile
platform require dense point clusters to detect objects. This results in a lower usable
range due to the increasing sparsity of LiDAR based point clouds. Using background
removal and point clustering would increase the range and/or enable the use of more
cost-effective LiDARs with a lower resolution. However, neither of these claims are
addressed by Cui et al. [18].

An advantage of traditional CV methods over a ML approach is that unclassified
objects can still be detected. This advantage is twofold as distant, low resolution
objects are not immediately filtered out and unknown objects are detected even
though they might be wrongly classified. However, the inverse is also true as un-
filtered background can result in falsely detected objects. As ML approaches are
trained to recognise expected patterns, the low resolution of distant objects can de-
crease the confidence of a recognised pattern significantly. Also, patterns that are
relevant but never seen before can be overlooked. Assuming a flawless background
removal method, one can be positive that the remaining point clusters are indeed
relevant objects.

That a cost-effective LiDAR is sufficient for the detection and tracking of objects
using tradition CV methods is already confirmed, however, whether this is also true
for ML methods is more difficult to prove. Rotational LiDARs often come with a
vertical resolution of 16, 32, 64, or 128 channels, with a exponential increase in
price for each doubling in resolution. Meaning that the lowest resolution LiDARs will
be the most cost-effective if proven to be sufficient. Wu [16], Zhao et al. [17], and
Cui et al. [18] already show that a 16-channel LiDAR is sufficient using traditional
CV methods by detecting and tracking objects up to 30m.

Many ML methods for object recognition are done using a 64-channel as they
are evaluated using the KITTI dataset [25]. As the dataset contains point cloud data
from a moving vehicle traditional CV methods cannot be applied, making it difficult to
compare traditional CV and ML methods. As the goal of this research is to implement
functional object detection, tracking, and classification using a low resolution LiDAR,
the reasoning why ML is not used is not further explored.

Why ML methods are not used for object recognition from point clouds cannot
be clarified from literature, however, there are advantages with using traditional CV
methods. As recognising objects from a point cloud is no trivial task, the imple-
mentation of a traditional CV method is less resource and time intensive since it is
already proven to work. Also, traditional methods do not require a large amount of
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training data and can almost directly be used. Traditional CV methods can also be
used to automatically gather training data for a future ML implementation instead of
manually classifying it. In order to develop a complete processing pipeline from point
clouds to tracked objects within the available time frame the traditional CV approach
is used.

3.2 Object detection

This section provides a starting point to solve the problem of distinguishing the traffic
from the environment. Arguably, this is the most important and difficult step due
to the requirement of the processing being fully autonomous. Based on existing
literature the choice is made to first remove the background and then, from the
remaining points, determine what objects are present in the point cloud instead of
identifying objects using expected patterns. After the background is removed each
remaining point needs to be associated to its corresponding object which is done
using a clustering algorithm. The background identification & removal and clustering
are separately discussed.

3.2.1 Background identification & removal

All aforementioned literature that use a stationary LiDAR ( [15]–[19]) agree that for
the detection of objects first the background has to be identified, then removed, and
finally the remaining points clustered into objects. Other methods do exist, Kidono et
al. [26] and Liu et al. [27] both determine the ground plane first after which Kidono et
al. [26] generate an occupancy map for clustering and Liu et al. [27] apply template
matching. Template matching is not a possibility as one of the requirements is that
all traffic must be recognised, even if the classification is wrong. The occupancy
map has a similar problem where the characteristics of objects need to be known
before they can be detected. Thus, background identification and removal is used.

A perfect background identification and removal method keeps all points belong-
ing to traffic and removes all other points belonging to e.g. roads, houses, and trees
without any manual input. It is often a trade-off between removing too little, i.e. not
removing all the noise, and removing too much, i.e. removing points from objects of
interest. The following background identification methods are considered based on
their applicability in this research and the requirements described in section 1.2.

One of the requirements is that the background identification is completely au-
tonomous. Both ’azimuth-height background filtering’ and ’background filtering based
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on point association’, by Zhao et al. [17] and Zhang et al. [28] respectively, require
the input of an empty frame which is manually selected. As scanning through the
frames can be a time consuming process, these methods are not considered.

Another method is ’slice-based projection filtering’ by Lin et al. [29] which not only
detects dynamic objects, but also points of interest like curbs and trees. However,
as the recorded data is stored these features can always be extracted when needed
and are currently not of interest, making the more conservative method undesirable.

3.2.1.1 TSC

The implementation of Tarko et al. [15] uses two background identification methods,
one based on a manually selected region of interest and one that is autonomous.
The autonomous method is called Threshold in Spherical Coordinates (TSC) and
generates a background model by determining a maximum distance threshold in
which a measurement is considered dynamic for each LiDAR angle. The exact per-
formance is not mentioned, however, it is not expected to perform well as the max-
imum distance threshold calculation is not robust when traffic is passing. What is
interesting is that the resulting background model is two-dimensional and in spheri-
cal coordinates, therefore potentially fast in terms of processing speed. By improving
the method for determining the maximum distance threshold a sufficiently perform-
ing and fast background removal method could be uncovered.

3.2.1.2 3D-DSF & RA

The last two methods are 3D Density Statistic Filtering (3D-DSF) and Raster-based
Algorithm (RA) and are both fully autonomous background identification methods.
RA is a continuation of 3D-DSF and uses the same idea of generating a background
model by dividing the 3D space into equally sized cubes which are labelled either
background or foreground [30], [31]. 3D-DSF has already been proven effective,
however, noteworthy is that the method itself and the implementations are done by
overlapping authors [16], [18], [19]. Even though RA shows to be more effective
than 3D-DSF by their own validation, both methods are considered as 3D-DSF is
already proven and RA has the potential to be even more effective.

3.2.1.3 Comparison

Compared to TSC, 3D-DSF & RA are expected to have higher background removal
performance but with significantly slower processing speed. For 3D-DSF & RA the
point cloud needs to be converted to Cartesian coordinates first and then checked
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with the 3D matrix. 3D-DSF & RA both claim to be usable in real-time as the average
background removal duration for one frame is 100ms on average. However, this
leaves no room for any additional processing as the frame rate of the used LiDAR
sensor is 10Hz. If the performance of (a variation of) TSC matches that of 3D-DSF
or RA it expected that TSC is the better choice due to faster processing times.

As the performance of the background identification & removal is a vital part of
the data processing all three methods, TSC, 3D-DSF & RA, are all implemented and
evaluated. The main point of evaluation is the performance in terms of object point
retention and background point removal. However, a second subject of interest is the
expected trade-off between the processing speed and performance of 2D- and 3D-
based background models. The best performing method is chosen after evaluation,
given that the increased performance does not come at a detrimental processing
speed decrease.

3.2.2 Point clustering

After the background is removed from a point cloud all that remains are points
that are assumed to represent objects of interest and need to be clustered per
object. Multiple methods are available: Tarko et al. [15] use Triangulation-Based
Clustering (TBC) with Delaunay triangulation, Kidono et al. [26] cluster all points
within a predefined range (threshold clustering), however, the majority uses Density-
Based Spatial Clustering Applications with Noise (DBSCAN) [16], [17], [19], [28]. A
combination between Delaunay triangulation and DBSCAN is presented by Kim &
Cho [32] called Delaunay Triangulation-based Spatial Clustering of Application with
Noise (DTSCAN). Both triangulation-based clustering and DBSCAN are considered
an improvement over threshold clustering, therefore threshold clustering is not con-
sidered.

3.2.2.1 TBC & DBSCAN

The fundamental difference between TBC and DBSCAN is that they are reduction-
and expansion-based respectively. TBC creates connections between any point
and its neighbours and prunes connections based on two criteria. The first is a
predefined maximum connection length and the second is a maximum connection
length based on the average length within the point’s cluster. Points that remain
connected are considered clusters.

DBSCAN starts by selecting a point and determining its neighbours within a dis-
tance measure ε. If the number of neighbours (including itself) exceeds a minimum
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number of points (MinPts) than the selected point is considered a ’core point’ and its
neighbours’ neighbours are also determined. Neighbours that exceed MinPts also
become core points and repeat the process, while those with too few neighbours are
marked as ’border points’ and are not expanded. A cluster is completed whenever
no new core points are found.

While DBSCAN has an inherent noise rejection characteristic, both DBSCAN
and TBC are extended to mark clusters that do not exceed a minimum number of
points to be considered an object as noise. This minimum number of points is not
the same as MinPts for DBSCAN, but applies to the finished cluster. Cui et al. [18]
also note that due to the point cloud’s increasing sparsity MinPts has to decrease as
a function of distance. Zhao et al. [17] come to the same conclusion but, opt for a
solution that divides the range into three rings with corresponding values to prevent
needing to calculate MinPts for each point or cluster. As the distance between points
is dependant on the specifications of the LiDAR sensor, the minimum point function
has to be calibrated.

The increasing point sparsity over distance also affects the performance of a
chosen value for ε in DBSCAN. Again, both Cui et al. [18] and Zhao et al. [17] solve
this by making the value distance dependant. On this part TBC has an advantage
as it calculates the average point distance within each cluster which has a similar
effect as DBSCAN’s ε. The disadvantage is that TBC provides less control and
thus potentially falsely detects clusters. Whether there is a significant difference in
performance between TBC and DBSCAN has to be tested.

Figure 3.1: Simulated spatial data and its clustering. (a) original data; (b) Delaunay
triangulation; (c) Triangulation after removing cluster-bridging connec-
tions. Sourced from [32].
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Figure 3.2: Touching problem in simulated data solved by DTSCAN. (a) and (b) are
enlarged illustrations of figure 3.1c; (c) clustering result of DTSCAN.
Sourced from [32].

3.2.2.2 DTSCAN

The third clustering algorithm is a combination of TBC and DBSCAN, called DTSCAN,
developed by Kim & Cho [32]. By combining the methods DTSCAN has an improved
ability to separate adjacent clusters that make contact (figure 3.1 & 3.2). The method
starts of similar as TBC as all point connections are calculated using Delaunay tri-
angulation (figure 3.1b). Connections between clusters are removed based on the
size of the triangle that forms between edge points of clusters, which are relatively
wide or long (red triangle in figure 3.1b). The result is shown in figure 3.1c. Then,
a variant of DBSCAN is applied on the connected points using MinPts, but not use
ε. Select a point, if the number of connected neighbours exceeds MinPts it is con-
sidered a core point. Neighbouring nodes are added to the cluster and those that
exceed MinPts are also core points. This process is repeated as with DBSCAN. The
result is shown in figure 3.2c.

The ability to separate adjacent clusters that are touching is based on the fact
that bridging points between clusters are likely to have fewer connection nodes than
points within a cluster. Figure 3.2a and b show enlarged illustrations of the indicated
areas in figure 3.1c. The nodes at the center of both bridging points only have five
connected nodes (C2 & C3 in figure 3.2) surrounding them as opposed to more with
most points within the cluster (C1). Thus, by tuning MinPts closely located objects
like a group of pedestrians can be separated using DTSCAN.

3.2.2.3 Comparison

Based on the results of Kim & Cho [32] it is expected that DTSCAN will outperform
both TBC and DBSCAN. However, as with background identification & removal, also
the processing speed is a relevant metric to take into account. As both TBC and



16 CHAPTER 3. RELATED WORK

DBSCAN are combined into DTSCAN all three methods can be evaluated based
on clustering performance, noise reduction, and processing speed. As most related
literature uses DBSCAN it is expected to be an improvement over TBC when applied
to LiDAR-based point clouds. All three methods will be implemented for further
research.

3.3 Object orientation & tracking

To find out whether bounding box methods align better with certain object classes
multiple methods are required. Beside the bounding box methods also a tracking
method is required, which will later be used to evaluate the orientation estimation.
After an object is detected in a point cloud the next step is to associate said object
with itself in the next frame, also known as object tracking. Having more information
on an object’s current state provides the ability to more accurately predict its next
state and thus improve the tracking capability. Knowing the orientation of an object
is valuable as it provides the option to determine the rotational velocity alongside the
translational velocity of a tracked object. The orientation of an object can be deter-
mined in two ways: based on the rotational angle in the trajectory or by estimating
the orientation based on the observed point cluster.

Both orientation estimation options are on opposite sides of a balance between
real-time information and accuracy. Using the rotational angle of the trajectory to de-
termine the orientation of an object is a reliable method as the estimation is based on
the known locations. This also means that the orientation can only estimated when
the next location is known which means that the estimation always lags behind. This
does not have to be a significant problem with objects that do not change direction
quickly or have expected moving patters, however, as this research includes pedes-
trians and cyclists this may not be the case. By determining the orientation using
the observed point cluster of an object a real-time estimation is made. This has
as disadvantage that the estimation is less reliable than using the rotational angle
because only part of the object is visible. However, if a sufficient estimation can
be made, the expectation is that the trajectory of an object can be predicted more
reliably.

To evaluate whether the bounding box-based orientation estimation aligns with
the actual orientation, and thus answer RQ2, the alignment between the estimation
and the trajectory is evaluated. This alignment is evaluated on a per object class
basis. Therefore, this section compares multiple bounding box-, tracking, and clas-
sification methods.
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3.3.1 Orientation estimation

To estimate the orientation of a detected object a bounding box is aligned with its
point cluster. As mentioned in section 2.1, a LiDAR sensor only observes part of the
outer shell of an object making it more difficult to enclose the cluster in a bounding
box that represents the orientation of the object. Pedestrians are the most difficult
due to the organic and dynamic shape, while two-wheelers and vehicles have a
more consistent and geometric shape. To determine the orientation three bounding
box methods are presented: rotating calipers, Principal Component Analysis (PCA),
and Minimum Error Rectangle (MinErrorRect).

An initial test is done to form a hypothesis on which method is expected to result
in the closest approximation of the actual orientation. The methods are visually
evaluated when applied to pedestrians, bicycles, and cars. All methods are applied
in two dimensions, which means that the points are projected on a plane parallel
to the z-axis (or ground plane). First, the three methods are elaborated upon, and
after, a comparison is shown.

Rotating calipers The Rotating calipers method is an algorithm that can be used
to determine the width or diameter of a set of points. It is called the rotating calipers
method as it resembles rotating a set of calipers around a polygon. The method
is first explained by Shamos [33]. Using the method a minimum bounding box or
minimum-area enclosing rectangle around the point cluster is computed. When a
full outer-shell point cluster exists of an object the minimum bounding box is likely
to align well with the actual orientation, however, as mentioned in section 2.1 LiDAR
sensors only observe part of the outer shell. This can lead to a bounding box that
lays down diagonally with respect to the actual orientation as it forms the rectangle
with the smallest area.

3.3.1.1 PCA

PCA is a method for the reduction of dimensionality of data, however, can also be
used to form bounding boxes around point clusters. Sidharth et al. [34] provide an
in-depth explanation of PCA and state: ”The central idea of PCA is to reduce the
dimensionality of a data set consisting of a large number of interrelated variables,
while retaining as much as possible of the variation present in the data set.” As the
point clusters are already two dimensional due to projection, it is not necessary to
reduce the dimensionality. But, as both vehicles and two-wheelers are often longer
than they wide, the first Principal Component (PC) is likely to correspond with the
direction. A bounding box is created by fitting a rectangle at the end of the first and
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second PC. However, the same problem applies as with Rotating calipers, the outer
shell is not fully visible and thus the first PC may not correspond with the actual
direction.

3.3.1.2 MinErrorRect

The Minimum Error Rectangle (MinErrorRect) method by Tarko et al. [15] is an al-
teration on the minimum area bounding box (Rotating calipers). Tarko et al. [15]
recognised that the minimum area bounding box is often not ideal and presented an
improved method by using a minimum error bounding box with respect to one of the
edges of the object. This ensures that the bounding box is parallel to at least one
of the edges of the object. The Euclidean distance between all the points and the
specified edge are summed as the cost function and that cost function is minimised.
Making the bounding box parallel to one of the edges of the point clusters solves
the problem of only observing part of the outer shell of an object. It does not work
for organic shapes as they do not have straight edges, however, it is expected to
perform well on vehicles.

3.3.1.3 Comparison

All three methods are implemented and applied to a set of point clusters repre-
senting pedestrians, bicycles, and cars and the alignment of the bounding boxes is
visually evaluated. An example of the result of each method is shown in figure 3.3.
Rotating calipers performed the worst as almost all bounding boxes are misaligned.
The problem with having only part of the outer shell in combination with the smallest
area rectangle is visible in figure 3.3 where Rotating calipers is applied to a car. The
same is true when Rotating calipers is applied to a bicycle or pedestrian.

PCA and MinErrorRect both provide a solution for different object classes. As
expected with MinErrorRect, it performs well on rectangular shaped objects like ve-
hicles as the cost function is minimal when aligned with a straight edge. Due to the
rhombus shape of a cyclist’s point cluster MinErrorRect does not align with the di-
rection, but PCA does. The relatively long and small point cluster of a cyclist makes
it so that the first PC aligns with the length, and thus the direction.

For pedestrians neither of the three methods performs particularly well as they
are oval-shaped and have dynamic dimensions when walking. Moving arms and
legs drastically change a pedestrian’s profile when viewed from above. Both Rotat-
ing Calipers and MinErrorRect resulted in seemingly random bounding boxes due to
the constant changing of shape. PCA is somewhat consistent as most pedestrians
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are wider than they are long when standing still and the first PC corresponds with
the width.

For the implementation both PCA and MinErrorRect are used with PCA for pedes-
trians and bicycles and MinErrorRect for vehicles. As the choice is made based on
empirical evidence, further testing is required to determine whether this is the opti-
mal solution. If the evaluation shows that the observed orientation of objects does
correspond with the future location, it also means that the chosen bounding box
method performs as expected.

Figure 3.3: Comparison between Rotating calipers, PCA, and MinErrorRect for
drawing bounding boxes around point clusters applied on a bicycle, car,
and pedestrian. All objects are facing upwards and angled slightly to
the right.

3.3.2 Tracking

The tracking of objects over time is a well research topic in computer vision and,
as it is mostly independent of the used observation technology, many methods are
available. Within LiDAR-based research multiple options have already been imple-
mented, with the most common method being Global Nearest Neighbour (GNN)
[16]–[19]. GNN does not require any input beside the locations of objects in the cur-
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rent and previous frame. This makes it relatively easy to implement, but susceptible
to incorrect track association. Besides GNN another method using a Kalman filter
is considered, which is expected to perform better than GNN at the cost of more
implementation time. Further options will only be considered if neither option proves
to be sufficient.

3.3.2.1 GNN

Whenever there is a small number of objects within sight it is highly probable that
the object in frame N corresponds to the closest object in frame N+1. However,
when more objects are involved or closely located the association becomes less
probably and path prediction can provide a solution. There are examples where
path prediction is not necessary and a relatively basic tracking algorithm like GNN
is considered sufficient.

Many aforementioned researches [16]–[18] refer to image 3.4 and state that the
travel distance of a vehicle between frames at 10Hz is significantly smaller than
the distance between following vehicles, thus GNN will suffice. The expectation is
that this claim does not hold when taking groups of cyclists and pedestrians into
account. Chen et al. [19] already note that when deer are moving at high speed and
close to others that GNN could not always track them correctly. Especially in the
Netherlands it is common to have groups of recreational- or student cyclists move in
a tightly packed formation. Therefore, the more advanced Kalman filter tracking is
considered that predicts the location of an object in the next frame.

3.3.2.2 Kalman filter for object tracking

Another method that is commonly used to improve object tracking is the Kalman
filter, which can be considered an extension to GNN. In short, the Kalman filter
models the trajectory of an object as a linear dynamical model and predicts the next
location based on previous locations. The observed object that is closest to the
predicted location is associated and the Kalman filter updates its state using both
the observed and predicted location according to an observation- and measurement
inaccuracy. Tarko et al. [15] applied this method to LiDAR-based data with success.

A drawback of the Kalman filter’s linear dynamical model is that it does not con-
sider rotational velocity. The predicted location always lays in line with the last ob-
served direction, making it difficult to track objects that are turning. It is possible that
the lack of vertical velocity is compensated by the fact that at 10Hz the deviation
from a linear model is insignificant. The linearity is addressed by further developed
methods called Extended- and Unscented Kalman Filter. However, this could also
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Figure 3.4: Comparison of frame-to-frame travel distance and distances between
different vehicles in the same lane. Sourced from [17].

be addressed by using the point cluster-based orientation estimation if proven to be
relevant.

3.3.3 Object classification

Because different orientation estimation methods are used depending on the object
class, an object classification is required. As it is not the goal of this research to
improve the classification of LiDAR data, a simple yet effective method is sought. All
objects are to be divided into pedestrians, two-wheelers, and vehicles. Implementing
a functional classifier consists of two parts: finding differentiating metrics between
classes and choosing a classification method.

3.3.3.1 Differentiating features

Finding relevant features that can be used to differentiate between the object classes
is vital for the performance of the classifier. An advanced classification method might
be able to find a correlation where human interpretation cannot, but if a chosen
feature is not consistent within one class and between classes than no classification
method will be effective. E.g. trying to differentiate between cars and bikes based on
color. First, a list is made of features used by related literature on the classification
of LiDAR-based objects [15], [17]–[19], [35].



22 CHAPTER 3. RELATED WORK

• Dimensions
• Velocity
• Acceleration
• Number of points in cluster
• Primary direction of the point distribution
• Distance to the LiDAR sensor
• Intensity extremes, average, and variance
• 3D covariance of clusters
• Convex hull features
• Positioning on road

Comparing classification methods shows that the choice between frame-by-frame
object classification and post-tracking classification has significant influence on the
choice of features. Whenever an object is far away from the LiDAR sensor it is diffi-
cult to make an accurate estimation of the dimensions based on a single frame. It is
significantly easier when multiple frames of the same object are available at different
ranges due to tracking. In case frame-by-frame classification is used, the previous
frames, if available, can also be used making the classification more reliable over
time. Having the possibility to classify after an object is tracked is beneficial as it
provides overall more data and more reliable data than a single frame and requires
less processing.

Because of the differences in dimensions between pedestrians, two-wheelers,
and vehicles it is expected that a combination of length, width, and height are valu-
able features to create a classifier. Table 3.1 shows the average dimensions of
pedestrians, two-wheelers, and vehicles, and their maximum allowed dimensions if
applicable. Tarko et al. [15] estimate the dimensions using all observed point clus-
ters of an object and report that on average the estimated dimensions were 38cm
and 15cm shorter for the length and width respectively. Using a combination of di-
mensions, velocity, and positioning on the road they achieved a 98% classification
accuracy between pedestrians, bicycles, and vehicles.

Pedestrians differ from the other classes as they are significantly taller than long
or wide. Zhao et al. [17] show that the distribution of the clustered points for pedes-
trians lay in the direction of the z-axis, while that of vehicles lays in the x- and y-axis.
The average dimensions of pedestrians in table 3.1 are when standing straight and
stationary and will increase, especially in length, for a moving pedestrian. However,
if the height of an object is larger than the length of an object it is likely a pedestrian.
Two-wheelers and vehicles are more similar in shape, but do differ in absolute size.
Both bicycles and motorcycles are shorter and smaller than vehicles and approxi-
mately as tall when including the driver.
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Table 3.1: Average and maximum dimensions of common traffic types. The maxi-
mum dimensions are based on Dutch law. Note: the average dimensions
are not scientifically proven and only act as an indication. [36]–[42]

Dimensions (m)
Length Width Height

Average Max Average Max Average Max
Pedestrian* 0.3 - 0.5 - 1.8 -
Bicycle 1.9 - 0.5 0.75 0.9** -

Class Motorcycle 2.1 4 0.7 2 1.2** 2.5
Car 4.7 12 1.7 2.55 1.5 4
Heavy vehicles -*** 18.75 -*** 2.55 -*** 4

*
**

***

Men standing with arms beside body
Excluding driver
Varies heavily with vehicle type

As there is a significant difference in shape and dimensions between pedestri-
ans, two-wheelers, and vehicles it is expected that no other features are necessary
for classification. One problematic situation would be whenever objects keep a rel-
atively large distance to the LiDAR sensor and only few points represent an object.
However, as the observations are done on intersections traffic is expected to cross it
and thus move close to the LiDAR sensor if positioned correctly. Using only dimen-
sions does mean that a robust dimension estimation method is required.

3.3.3.2 Classification method

For the classification of objects a manually assigned decision tree is used. Due to
the time limitations of this research a basic and easily implemented classification
method is chosen. As described in the previous section the differentiation between
pedestrians, two-wheelers, and vehicles is based on two decisions. The first sepa-
ration of objects is done based on the ratio between the height and length of objects,
all objects that are taller than they are long are considered pedestrians.

The remaining objects are divided into two-wheelers and vehicles based on the
width. Even though the average dimensions of two-wheelers and vehicles differ
enough to differentiate them, the maximum allowed dimensions of motorcycles do
overlap with the expected dimensions of small vehicles. The maximum allowed
width of a motorcycle does include a sidecar, thus, most motorcycles will be signifi-
cantly smaller. Almost all small city cars have a width of at least 1.6m1, making the
difference between vehicles large enough to be used as a differentiating feature.

1https://www.automobiledimension.com/city-cars.php
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3.3.4 Dimension estimation

To classify the objects based on their dimensions a dimension estimation method
is required. As only a part of the outer shell of a LiDAR-observed object is visible
per frame the dimension estimation is expected to improve when based on multiple
observations at varying angles. This is only true for the length and width of an object
as the height is never occluded from a sideways perspective. The precision of the
estimation is mostly relevant to differentiate between two-wheelers and vehicles.
Three methods are presented: the first uses the maximum observed dimensions,
the second excludes a top percentage of the observations, and the last method
aligns all observations and encloses a percentage.

3.3.4.1 Maximum observed dimensions

The simplest method to determine the dimensions of an object is to take the max-
imum observed values of a tracked object. The method is based on the fact that a
LiDAR sensor can never observe more than the complete object, but it can observe
only a part. Before the maximum value can be determined it must be known which
measurements correspond to the length or the width of an object. This can be done
by calculating the angle between the orientation of the length and width, and the tra-
jectory. The side that aligns with the trajectory is the length of the object. Combining
the maximum observed length, width, and height determine the dimensions of the
object.

3.3.4.2 Nth percentile observations

A slight alteration to the maximum observed dimensions is to take a high percentile
of the measurements, excluding the largest observations. This prevents incorrect
measurements from dictating the estimated dimensions of an object. E.g. if multiple
cyclists are grouped in a frame due to close proximity, the estimated dimensions
should not change to those of a double-wide bicycle. However, this is likely to in-
crease the underestimation of the dimensions. The robustness to incorrect mea-
surements and the degree of underestimation is a trade-off that can be tuned. An
alternative is to exclude any calculated dimensions that deviate significantly, this
adds an extra processing step but it is expected to result in the most accurate di-
mensions.
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3.3.4.3 Enclosing percentage

The last method is presented by Tarko et al. [15] alongside the MinErrorRect method
and overlays all measurements aligned by one edge. When estimating the dimen-
sion using the MinErrorRect method, the angle with which the object should be
rotated in order to align the leading edge parallel to the x-axis is known. Then, the
clusters representing the object in each frame are laid on top of each other aligned
by the leading edge. To estimate the dimensions a bounding box is drawn with one
corner aligned to the combined cluster and the size is determined by covering a
predefined percentage (95% [15]) of the points in the combined cluster.

3.3.4.4 Comparison

The method that is chosen is the Nth percentile observations method based on uni-
versal applicability and robustness to incorrect measurements. The maximum ob-
served dimensions method does not leave any room for incorrect clustering, which
is not desired as it is expected that some incorrect clustering will appear. With the
enclosing percentage method it should be considered is that all measurements of
an object are aligned in order to estimate the dimensions. If MinErrorRect is im-
plemented, this alignment is already done when drawing the bounding box. If not,
the alignment has to be implemented along the enclosing percentage method, thus
increasing implementation and processing time. In section 3.3.1 is determined that
a combination of PCA and MinErrorRect is used for the orientation estimation and
thus the alignment is not known for pedestrians and two-wheelers. Nth percentile ob-
servations can be used independent of what orientation estimation method is used
and can be tuned to be more precise or more robust.
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Chapter 4

System

The system chapter describes the final version of the implemented system that is
developed throughout this research. First, a complete system overview is given.
Second, the data collection process described. And finally, each step of the data
processing pipeline is explained.

4.1 System overview

Before all parts of the implemented system are described in detail, a general overview
of the complete system is given. Fundamentally the system consists of three steps:
data acquisition, data processing, and data analysis. The data acquisition step con-
verts the raw LiDAR sensor readings into a usable data format. The data processing
step processes the sequential point clouds to tracked objects that appear throughout
the recording. The processing steps are: background identification and -removal,
point clustering, object tracking, and object classification. The process is visualised
in figure 4.1, including the data analysis step representing what can be done with
the processed data.

4.2 Data collection

In this section the hard- and software setup that are used for collecting LiDAR data
is described. Two almost identical setups are used, one on a car and one on a
pole in a mobile metal enclosure as shown in figures 4.2a and 4.2b respectively.
As the platforms are described, differences between the platforms will be noted
whenever applicable. The data flow through the relevant hardware is shown in the
data acquisition section of figure 4.1.

27
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Figure 4.1: Simplified system overview of the complete data flow.

The LiDAR sensor is the source of all collected data and mounted at the highest
point on each platform. The LiDAR sensor is also one of the main differences be-
tween the platforms as the car contains an OS1-32 sensor, while the pole contains
an OS1-16 sensor, both from Ouster1. The relevant specifications of each LiDAR are
stated in table 4.1. Within both LiDAR units an Inertial Measurement Unit (IMU) is
present. Each sensor is connected to an interface box that provides connections for
power and Ethernet. Power is supplied by a 12V battery through a voltage converter
making it 24V. The Ethernet output is directly connected to the embedded computer.

The embedded computer used for receiving and storing the data from the LiDAR
is a UDOO2 X86 II ULTRA with a quad core 2.56GHz processor running Ubuntu
20.04. Connected to the computer is an external SSD for storing the LiDAR data.
Relatively large storage is required as the OS1-32 can generate up to a gigabyte of
data per minute. As the UDOO accepts 12V it is directly connected to the battery.
Both LiDAR and IMU data is sent to the computer via Ethernet.

On the software side the communication, coordinate conversion, and storing is
done using Robotic Operating System (ROS)3, which runs on the UDOO. ROS is a
set of software libraries and tools aimed at building robot applications. Each mea-

1https://ouster.com
2https://www.udoo.org
3https://www.ros.org/
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(a) Mobile steel casing with
the LiDAR mounted on
an extendable pole

(b) Car with a LiDAR on a rigid roof mount

Figure 4.2: Hardware platforms used for data collection.

Table 4.1: Hardware specifications of both the Ouster OS1-16 and OS1-32
Sensor OS1-16 OS1-32
Range (80%
Lambertian Reflectivity)

110 m 100 m

Range (10%
Lambertian Reflectivity)

50 m 45 m

Range accuracy
±5 cm - lambertian targets
±10 cm - retroreflectors

±3 cm - lambertian targets
±10 cm - retroreflectors

Precision

0.8 - 1 m: ± 1 cm
1 - 20 m: ± 1.1 cm
20 - 50 m ± 3 cm
>50 m: ± 5 cm

0.3 - 1 m: ± 0.7 cm
1 - 20 m: ± 1 cm
20 - 50 m ± 2 cm
>50 m: ± 5 cm

Range resolution 0.3 cm 0.3 cm
Vertical resolution 16 32
Horizontal resolution 1024 or 2048* 1024 or 2048*
Rotation rate 10 Hz or 20 Hz* 10 Hz or 20 Hz*

Field of view
Vertical: ±16.6° (33.2°)
Horizontal: 360°

Vertical: ±22.5° (45°)
Horizontal: 360°

Angular sampling accuracy
Vertical: ±0.01°
Horizontal: ±0.01°

Vertical: ±0.01°
Horizontal: ±0.01°

Points per second 327,680 655,360
* A horizontal resolution of 2048 can only be run at 10 Hz
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surement of the LiDAR consists of positional data, namely range, vertical channel,
and azimuth angle, and measurement data, namely intensity, reflectivity, ambient
near-infrared, and time stamp. The ROS driver4 provided by Ouster converts the
UDP data stream from the LiDAR to a universal ROS data format called PointCloud2,
which contains the point cloud in Cartesian coordinates and any additional provided
data per point.

During the recording the point clouds are stored on an SSD in a Rosbag format.
The Rosbag format is useful as the recording can be played back at a later points as
if it is a live data stream. The recording is split into separate 15 minute files to prevent
significant data loss during longer recordings and optimise the data processing.

4.3 Data processing

The pith of the matter of this research is the processing of the LiDAR recording into
a list of tracked objects. A simplified overview of the processing steps is shown in
the data processing section of figure 4.1. A visualisation of the resulting data after
the data processing is shown in figure 4.3. The processing steps are discussed in
order of data flow.

Figure 4.3: Visualisation of the resulting data (right) after all processing steps ap-
plied to the raw point cloud (left).

4https://github.com/ouster-lidar/ouster example/
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Figure 4.4: Example of the remaining data (right) after applying a BRM to a raw
point cloud (left).

4.3.1 Background removal

Presented in this section are four Background Removal Method (BRM)s of which
three are from related literature and one is a method developed during this research.
The sought-after effect of a BRM is to remove all points corresponding to the back-
ground and keep those that correspond to objects as shown in figure 4.4. The first
two methods, Threshold in Spherical Coordinates (TSC) and Peak Detection (PD),
determine a range threshold for each measurement angle of the LiDAR. The re-
maining two methods, 3D Density Statistic Filtering (3D-DSF) and Raster-based
Algorithm (RA), divide 3D space into equally sized cubes and individually label them
as back- or foreground. The implementation of each method and any alterations that
are made are described in this section.

4.3.1.1 Threshold in spherical coordinates

Threshold in Spherical Coordinates (TSC) is a method that generates a background
model by determining the maximum range for each LiDAR angle in which a mea-
surement is considered dynamic. As mentioned in chapter 3 TSC is developed by
Tarko et al. [15]. TSC starts by taking a recording of at least 3000 frames, prefer-
ably during low traffic. In this research the LiDAR data is also processed after it
is recorded and the 3000 frames are selected randomly from the recording. Then,
for each angle of the LiDAR all measurements are grouped and for each group the
mean and standard deviation are calculated using formula 4.1 and 4.2 respectively.
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Finally, the range threshold is determined by the mean minus three times the stan-
dard deviation (formula 4.3).

The calculated range thresholds are stored in a two-dimensional matrix with iden-
tical dimensions to the sensor resolution. When the background of a new frame is fil-
tered, the measured range of each LiDAR angle is compared against its correspond-
ing range threshold. All measurements within the corresponding range threshold are
kept as dynamic points.

µi,α =

∑n=k
n=1Di,α,n

b
(4.1)

Equation 4.1 computes the mean of a group of measurements for laser i at angle α
where:

µi,α is the mean value of a group of readings from laser i at angle α
Di,α,n is the distance reading given by laser i when fired at angle α in frame n
k is the total number of frames in the batch
b is the number of non-zero distance readings in the batch because a zero
distance value means a null or no return

σi,α =

√∑n=k
n=1(Di,α,n − µi,α)2

b
(4.2)

Equation 4.2 computes the standard deviation of each group of measurements
where σi,α is the standard deviation value of a group of readings from laser i at
angle α.

ci,α = µi,α − 3σi,α (4.3)

Formula 4.3 describes the calculation for the range threshold c from laser i at angle
α.

4.3.1.2 Peak detection

Peak Detection (PD) is a new BRM that is developed during the this research aimed
at improving the background identification performance of TSC, while maintaining
the processing speed as much as possible. Like TSC, PD generates a background
model by determining the maximum range for each LiDAR angle in which a mea-
surement is considered dynamic. PD also aims at improving the robustness with
respect to the traffic intensity during the model generation.

While initial testing shows that TSC is capable of removing static objects that
are never occluded, both dynamic- and occluded background objects result in large
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standard deviations and thus in over-restrictive background models. PD combines
close measurements in clusters and determines the relevance of said cluster based
on the number of measurements. Traffic will pass by and generate a small mea-
surement peak at a relatively short distance and background objects generate large
measurement peaks as they are continually measured. The background model is
generated using a random selection of frames to prevent stationary vehicles from
generating large measurement peaks.

The PD method consists of four steps to determine the background model. The
first step is to process the recording and store all measurements per LiDAR an-
gle. Then, for each LiDAR angle close measurements are grouped together and
too small peaks are removed. Third, based on predefined conditions a measure-
ment group is selected (if present) and considered as background. And finally, the
minimum range of the selected measurement group is taken and decreased by the
range measurement inaccuracy of the LiDAR sensor as the maximum range thresh-
old. Each step is explained in more detail next.

As with TSC, 3000 frames are randomly selected from a recording and used for
determining the background model. For each LiDAR angle a histogram is gener-
ated using the Freedman-Diaconis rule [43] (equation 4.4) to compute the bin width.
Whenever a measurement does not return any values due to range limitations it is
discarded. Theoretically there are four types of measurement distributions possible
(figure 4.5):

1. No measurements at all
2. Only measurements of passing traffic (figure 4.5a)
3. Only background measurements (figure 4.5b)
4. Background and passing traffic measurements (figure 4.5c)

Non-empty bins that are within three bin-widths of each other are grouped and their
values summed. Whenever the summed value of a combined peak is larger than
N% of the amount of selected frames it is considered a potential background ele-
ment. This value is called the Relevant Peak Percentage (RPP). All peaks smaller
than the RPP are removed. The result of this process is shown in figure 4.6. The
optimal value for RPP is found to be 15% (see results section 6.1.2).

Bi,α = 2
IQR(Di,α)

3
√
k

(4.4)

Equation 4.4 computes the width of the bins Bi,α to be used in a histogram, where
IQR(Di,α) is the interquartile range of the group of readings Di,α from laser i at
angle α and k is the total number of frames in the batch.

When all peaks are detected within a group of measurements, a range threshold
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Figure 4.5: Examples of measurements from a single LiDAR angle. (a) Only pass-
ing traffic is observed (b) Only a static object is observed (c) both a
static object and passing traffic is observed.

Figure 4.6: Histogram peaks are clustered together and clusters with a frequency
lower than N% (here 30%) are removed (red), while bigger peaks are
kept (green).
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is determined if only one relevant peak is found. The distance to the closest side
of the peak identified as the background determines the base background threshold
value, which is lowered according to the range measurement inaccuracy at that
distance of the used LiDAR sensor as shown in table 4.1. Both sensors have a
maximum range accuracy of ±10cm. Whenever no peaks are available at all the
range threshold is set to infinite. All range thresholds are stored in a matrix identical
in size to the sensor resolution, which represents the background model.

There are two situations in which additional processing is done to further im-
prove the performance. The first situation is when no peaks larger than the RPP
are present while having a significant amount of measurements in total (≥RPP). For
example, this could happen whenever the recording is made in a forest and leaves
continually move in and out of the observation line of the LiDAR angle. In this case
the range threshold should not be infinite as it will result in many unfiltered back-
ground measurements. An option is to leave the range threshold infinite and let the
point clustering method in section 4.3.2 deal with the noise. However, again in case
of a forest this can result in many background points close to each other, resulting
in a falsely detected object. Thus, the LiDAR angle is considered too noisy and the
range threshold is set to the shortest range measurement, reduced by the sensor’s
range accuracy.

The second situation is when multiple relevant peaks are present. This is the
case when e.g. many vehicles pass the same location and both that location and the
background generate a significant peak. In this case it is vital that the background
peak is chosen correctly as otherwise all passing traffic is filtered out. Two conditions
have been added to solve this problem, the first is that whenever there is a peak
that is larger than 50% of the total number of measurements, it is considered the
background peak. The second condition is that if there are multiple peaks, non
of which larger than 50%, the peak furthest away is chosen as the background
peak. The reasoning is that if a peak is present behind another peak, the peak in
front cannot be a static object. Exceptions for this also exist, e.g. a flag in front
of a building. However, given the presence of traffic, it is expected to improve the
background model.

4.3.1.3 3D density statistic filtering

The 3D-DSF method is a method developed by Wu et al. [30] and divides the
3D space around the LiDAR in equally sized cubes labelled either background or
not. 3D-DSF excludes background points based on the spatial distribution of laser
points. Generally, the point density of background cubes is higher compared to
non-background cubes due to the consistency of measurements within that cube. A



36 CHAPTER 4. SYSTEM

matrix is generated representing all (non-)background cubes which is used to filter
new frames.

The method consists of four steps, the first being frame aggregation which is sim-
ilar to the grouping of measurements per point as for TSC and PD. The difference
begin that the aggregated frames are not stored per measurement angle, but per
cube in 3D space as explained in the next step. As the implementation of this Grad-
uation Project is not time critical, the recommended amount of frames determined
by Wu et al. [30] is 3500, however, for consistency with the previous methods 3000
is used which is still within their recommendation.

In the second step, point statistics, the 3D space is divided into continuous cubes
that can either represent background or not. All cubes in the space are stored in a
3D matrix and each matrix entry records the number of aggregated points in the cor-
responding cube. The size, and thus number, of cubes is a parameter that influences
the ratio between processing speed and performance. More, smaller cubes results
in better performing background identification but with a higher processing time. The
recommended cube size by Wu et al. [30] is 0.1m. The size of the complete matrix
is determined by the usable detection range of the LiDAR, measurements outside
the matrix are filtered out.

The third step is Threshold (TD) learning where the density of each cube in
space is calculated using the aggregated 3D points. A point density threshold of the
cubes (TD) is determined to differentiate between background and non-background
cubes. Cubes with a density higher than the TD are considered background cubes.
Tweaking the TD parameter is a trade-off between considering slow-moving objects
as background when it is too low and not excluding the distant background when it
is too high.

Before the TD is determined the Field Of View (FOV) of the LiDAR is divided into
multiple ranges to compensate for the points getting more sparse further away from
the LiDAR. Six ranges are chosen (10, 15, 20, 30, 40 & 50) and for each range a
TD is calculated using the following formula:

slope =
Fi − Fi−1

Ni −Ni−1

(4.5)

”...where Ni is the ith number of points per cube (from lowest to highest), and F is
the frequency of ith number of points per cube. When the slope first becomes 0 or
positive, the frequency of number of points per cube in equation 4.5 (F ) is used as
TD.” [30]
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Adjustment An adjustment has been made to the 3D-DSF algorithm in order to
improve performance. During initial testing it is discovered that the slope used for
determining the TD is not a smooth decreasing line. Whenever there is a small peak
in the slope, the TD is set to that frequency which is likely too low. Thus, a moving
average filter is applied over the slope, increasing the average TD. Results show that
increasing the moving average filter width improves recall at the cost of precision. A
filter width of one (direct neighbours only) is used.

When all the cubes are labeled either background or not using the determined
TD the positions of the background cubes are stored in a 3D matrix. The final step
is to exclude any LiDAR points that fall within a cube labeled as background for each
new incoming frame.

4.3.1.4 Raster-based algorithm

The same authors of the 3D-DSF method developed a further improved method
called Raster-based Algorithm (RA), based on the principles of 3D-DSF, by looking
at the change in point density per cube [31]. This has as advantage over 3D-DSF
that no threshold has to be determined. RA consists of 5 steps: Region Of Interest
(ROI) selection, frame aggregation, point statistics, background area detection, and
background exclusion.

Before the frame aggregation and point statistics, as with 3D-DSF, an initial step
is added for determining the ROI. As the height of the ROI is determined by us-
ing the angle of the laser aimed most vertically upwards in combination with the
maximum detection range it results in a relatively high vertical limit. As vehicles in
the Netherlands are not allowed to be taller than 4.0m there is no reason to set the
height of the ROI higher5. This can significantly decrease the number of cubes in the
matrix and thus increase the processing speed. The used ROI is l/w/h 50m/50m/4m,
or when applicable the dimensions of the ROI are stated.

The frame aggregation is almost identical to 3D-DSF, with the only difference be-
ing that RA uses sequential frames instead of random ones. This makes it possible
to detect peaks and valleys in the point density for each cube whenever an object
passes or it is occluded. The point statistics step is identical to 3D-DSF.

The final step is the background area detection where each cube is labelled
either background or not based on the change in point density over the aggre-
gated frames. Lv et al. [31] claim that the point density of background cubes never
changes more than two between consecutive frames when a vehicle passes, while

5https://www.om.nl/onderwerpen/beleidsregels/aanwijzingen/verkeer—vervoer/instructie-
voertuigafmetingen-2017i007
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non-background cubes can (see table 2 in [31]). The table present the number of
cubes that have a change in point density of one to four between consecutive frames
while a vehicle passes. None of the background cube point densities change more
than two points, while those of the non-background cubes do.

An exception occurs when a background point is occluded, making the point
density zero, then visible again, returning the point density to its original value which
is potentially larger than two. It is assumed that, due to the length of the recording,
a background point is only occluded for a small percentage of the measurements.
With this assumption an extra distinction can be made by comparing the number
of frames in which the point density is zero (D0) against when it is larger than zero
(D+). When D+ > D0, the cube is assumed to be background.

Initial testing showed that the RA method as presented by Lv et al. [31] did not
perform as expected, potentially due to interpretation and/or writing errors. The
pseudocode shown in algorithm 1 is the algorithm that labels all cubes either back-
ground or foreground as interpreted from the paper. Section 6.1.4 elaborates on
why the result is not as expected. Some effort is made to adopt the concept stated
in the paper and implement a better performing version.

The adjusted cube labelling algorithm is shown in algorithm 2. It works opposite
of the the original method as in this case all cubes are initially considered fore-
ground. All cubes where D+ > D0 are considered background cubes based on the
assumption that foreground cubes are not occupied more than half the frames. All
remaining cubes that have at least 15% non-zero densities (Pmin in algorithm 2)
are checked for the minimum density change (∆D). The ∆D is initially set to two,
however, it can be adjusted. If any of the sequential density changes exceeds ∆D

the cube is kept foreground, otherwise it is background.

Algorithm 1 Original foreground cube identification.
Dif = density D of cube i in frame f
if min(Di) == 0 then

if count(Di != 0) < count(Di == 0) then
i is a foreground cube

end
else

if Di(f+1) - Dif > 2 then
i is a foreground cube

end
end
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Algorithm 2 Adjusted RA cube identification.
Dif = density D of cube i in frame f
Pmin = Percentage P (15%)
∆D = Minimum density change

if count(Di != 0) > count(Di == 0) then
i is background cube

else if count(Di != 0) > (Pmin · count(Di)) then
if Di(f+1) - Dif > ∆D then

i is a foreground cube
else

i is a background cube
end

else
i is a foreground cube

end

4.3.2 Clustering

When all background points are removed the remaining points need to be clustered
into groups corresponding with objects. The effect of clustering is visualised in figure
4.7. Due to time constraints only one clustering method presented in section 3.2.2 is
implemented, which is DBSCAN, for its proven functionality and general applicability.

4.3.2.1 Density-based spatial clustering Applications with noise

The clustering algorithm that is used is the Density-Based Spatial Clustering Ap-
plications with Noise (DBSCAN) algorithm [44] with improvements. This algorithm
starts at a randomly selected point as well, and requires two parameters: epsilon
(ε), which represents the radius around the initial point that will be considered,
and MinPts, which represents the minimum number of points (including the starting
point) that must be present within ε (called core points) for a cluster to be formed.
Then, all points within a radius ε around the core points are also added to the cluster
(called border points). This process is then also repeated for the border points until
no new points are within range. After a cluster is complete, a new starting point is
chosen and the process is repeated. This is done until all points are considered.

All points are projected on a plane parallel to the z-axis as it is assumed that
traffic never vertically overlaps. This has the advantages that all points belonging to
the same object are closer, and thus more likely to be clustered.
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Figure 4.7: The goal of clustering is to assign closely located points to the same
group to form objects and remove noise that does not belong to objects.
Left shows the data before clustering and right shows the data after.

Originally, DBSCAN does not adjust for the sparsity over distance of a LiDAR
generated point cloud. This is solved by making the parameters MinPts and ε de-
pendant on the distance to the LiDAR. A separate MinPts function is fitted for both
LiDAR sensors due to the increased resolution of the OS1-32. Formula 4.6 and 4.7
are for the OS1-16 and OS1-32 respectively. For ε a single function is defined as the
horizontal resolution is identical, which is formula 4.8.

MinPts =
500

1.3d
− 12 (4.6)

MinPts =
500

1.3d
− 5 (4.7)

ε = .03 ∗ d (4.8)

Where d is the distance to the LiDAR sensor.

4.3.3 Object tracking

After all objects in each frame have been detected, individual objects that appear in
sequential frames need to be tracked as shown in figure 4.8. The tracking method
Global Nearest Neighbour is chosen in combination with a Kalman filter. GNN asso-
ciates objects with the smallest distance measure, in this case between a predicted
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Figure 4.8: By drawing a line between the previous locations of a tracked object a
’path’ is generated visualising the result of object tracking.

location and an actual measurement. The Kalman filter both predicts the location
of an object based on previous states and updates the state using the prediction
and the associated measurement. Both the object association using GNN and the
Kalman filter are explained individually.

4.3.3.1 Object association

The GNN algorithm starts by considering all Detected Objects (DO)s in the first
frame as new Actively Tracked Objects (ATO)s. In the following frame DOs are
compared to the predicted locations of the ATOs (see next section for location pre-
dictions). Using the Euclidean Distance (ED) (equation 4.9) the distance between
the location of all DOs and ATOs’ predictions is calculated. The shortest distance is
chosen, given that it falls within a predetermined range which is based on the maxi-
mum expected travel distance between frames. The maximum speed limit within city
limits in the Netherlands is 50km/h (1.39 meter per frame), however, to ensure that
all cars are properly tracked a velocity of 70km/h (1.94 meter per frame) is chosen
as maximum travel distance between frames.

The ED is the length of a line segments between two points in Euclidean space
and is calculated using the following formula for the distance d(p, q) between points
p and q:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (4.9)



42 CHAPTER 4. SYSTEM

The are situations where the number of DOs is not equal to the number of ATOs
or not all DOs are associated with the ATOs. In case an DO is not associated with
any ATO, the DO is considered a new ATO. Any ATO needs to be recognised in
at least 20 frames for it to be considered an actual object of interest. If an ATO
is not associated with any DO, the ATO is updated as empty and not immediately
removed. If an ATO is not associated for 10 consecutive frames it is removed. Each
ATO has a unique ID and all ATOs with the required minimum amount of frames are
stored.

4.3.3.2 Kalman Filter

To predict the next location and estimate the actual location of an object a Kalman
filter is used. The GNN implementation as described in the previous section is com-
bined with a pre-made two-dimensional Kalman filter by Sadli6 to provide the objects’
predicted location. An in-depth explanation of the provided Kalman filter is also pro-
vided by Sadli.

The state vector Xk is:

Xk = (px vx py vy)
T (4.10)

Where px, vx represent the position and velocity respectively in the x-direction and
py, vy in the y-direction.

The standard deviation of the measurements in both x- and y-direction are set
to 0.15m based on the combination of the precision and accuracy as given in table
4.1. The magnitude of the process noise is set to one using the given value by Sadli
and has not been tested further due to time limitations.

4.3.4 Orientation & dimension estimation

To determine the orientation and estimate the dimensions of objects four methods
are implemented: Rotating calipers, Principal Component Analysis (PCA), Minimum
Error Rectangle (MinErrorRect), and Nth percentile dimensions. The first three are
bounding box methods that estimate the orientation of objects in each frame, while
Nth percentile dimensions estimates the actual dimensions of an object based on all
its observations. They are explained in the order as introduced.

6https://github.com/RahmadSadli/2-D-Kalman-Filter/blob/master/KalmanFilter.py
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Figure 4.9: The left image shows the clustered points for which bounding boxes
are calculated, the middle image shows the application of PCA for all
objects and the right image shows the application of MinErrorRect on
all vehicles and PCA for the remaining objects.

4.3.4.1 Rotating calipers

Even though Rotating calipers is already written of in the literature study, it is still
included as a reference for evaluation. The method works by first computing the
convex hull of the point cluster, creating a polygon. Then, a rectangular bounding
box is aligned with each edge of the polygon, enveloping all points in the cluster.
Finally, the rectangle with the smallest surface is chosen as the bounding box.

4.3.4.2 Principal component analysis

Principal Component Analysis (PCA) is not a bounding box estimation method by
design, however, the first and second Principal Component (PC) of two-dimensional
point clusters can be used to estimate the dimensions and orientation of objects.
PCA starts by centering the point cluster of interest around the origin, subtracting
the mean from the point coordinates but keeping the relative distances between the
data. Then a line is drawn through the origin that best fits the data. The best fit is
determined by rotating the line and minimises the sum of the squared distances from
the projected points to the origin. The line with the lowest sum of squared distances
is called PC1. Any additional PC also goes through the origin, is perpendicular to
the previous PCs, and minimises the sum of squared distances.

Because the cluster points only have two variables: x and y, only two PCs can
be made. This also means that, after PC1 is found, PC2 has only one possible
orientation. Given that the shape of most vehicles and cyclists is that they are longer
than they are wide and symmetric along the length, PC1 is also centered along
the length of the object and lies in the direction of movement. The length of PC1
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represents the length of the object and PC2 is perpendicular and thus its length
represents the width. By aligning a rectangle around the endpoints of PC1 & 2 a
bounding box is created.

4.3.4.3 Minimum Error Rectangle

The dimension estimate using edge angles from the Minimum Error Rectangle (Min-
ErrorRect) method by Tarko et al. [15] is an alteration on the minimum area bounding
box (determined using the Rotating calipers method). Tarko et al. [15] recognised
that the minimum area bounding box is not always ideal and present an improved
method by using a minimum error bounding box with respect to one of the edges of
the object. The Euclidean distance between all the points and the specified edge are
summed as the cost function, which is minimised. This ensures that the bounding
box is parallel to at least one of the edges of the object.

In the related work chapter it is stated that both PCA and MinErrorRect are used
as bounding box methods based on the object class. This means that the object
class has to be known before a bounding box method can be applied. In the data
processing this is solved by first applying PCA to all objects, and when later classi-
fied as vehicle, the bounding boxes are redrawn using MinErrorRect.

4.3.4.4 Nth percentile dimensions

The Nth percentile dimensions method makes a dimension estimation by combining
all length or width measurements of one object and considers the Nth percentile as
the closest approximation. The first step is to align all bounding boxes of an object
to decide which measurements correspond to the width or length. This is done
by measuring the angle between either parallel side of the bounding box and the
tracked path between the current and previous frame as visualised in figure 4.10.
Assuming all objects move forward, the side that aligns closest with the object’s
direction (α in figure 4.10) is the length. The second step is to take all length or width
measurements and determine the Nth percentile. If no previous location is known,
i.e. the first observation, than the longer side is chosen as the width. Even though
objects are often longer than wide, the first observation is often at a relatively large
distance and the object is facing towards the LiDAR on an intersection. This means
that only the front, and thus the width, of an object is observed. The percentile that
is initially chosen is 96th based on the findings of Tarko et al. [15] for their enclosing
percentage method.
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Figure 4.10: Calculating the angle between the parallel sides of the bounding box
and the object’s track. In this example α is smaller than β and thus
the longer side of the bounding box is associated with the length of the
object.

4.3.5 Object classification

The classification of objects is done using a manually defined decision tree based
on an object’s dimensions. The decision tree is shown in figure 4.11. The values
chosen are based on the analyses in section 3.3.3.2 and of table 3.1.

Figure 4.11: Visualisation of the decision tree used to classify each object, where
H is height, L is length, and W is width.
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Chapter 5

Method

The method describes what tests are done and what data is used in order to an-
swer the research questions. The chapter is divided in two types of tests: system
validation- and research tests. The research tests are designed to answer RQ1 &
2. In order to perform these tests a data processing pipeline is required, which is
to be determined sufficient based on system validation tests. If the system is ca-
pable of outputting tracked and classified objects consistently, the main project goal
is fulfilled. The combination of answering the RQs and implementing a functional
pipeline are the backbone of answering the main research question.

Because the research tests require the system validation tests, all tests are done
in order of data processing as described in the system chapter. The system vali-
dation also includes calibration of each processing step. Before the tests are de-
scribed, first an overview of the used evaluation data is given.

5.1 Evaluation data

The implemented system is tested using a set of four recordings which are manu-
ally processed. The recordings are chosen based on the magnitude of movement
from background objects and the amount of traffic during the recording. For each
recording the date, location, duration, traffic composition, and background type is
stated below in table 5.1. The traffic composition consists of pedestrians (P), bikes
(B), cars (C), and trains (T). All two-wheeled vehicles are categorised as bikes.

All data processing has been limited to a range of 50m as beyond this distance
the sparsity of the point cloud is too great to observe any objects with confidence.
For the performance evaluation a couple of frames from each recording have been
manually processed to identify all points belonging to traffic (object points). Table
5.2 shows the number of object- and background points for each frame. The frames
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are visualised in appendix A, where red dots indicate object points and black dots
indicate background points.

Table 5.1: Specifications of the data used for the evaluation of the implementation.
Name Eikstraat Kettingbrugweg
Sensor OS1-16 OS1-16
Resolution 2048x16 2048x16
Frame rate 10 10
Date 29th of March 2021 at 12:31:44 29th of March 2021 at 11:37:57
Coordinates 52°16’07.0”N 6°47’40.3”E 52°14’52.6”N 6°49’17.8”E
Duration ∼15m (8997 frames) ∼15m (8998 frames)
Traffic 30P, 43B, 17C 11P, 35B, 5C, 4T
Background Buildings only (mostly static) Buildings and greenery (lightly dynamic)

Name Holterbergweg Torenstraat
Sensor OS1-16 OS1-32
Resolution 2048x16 2048x32
Frame rate 10 10
Date 18th of April 2021 at 09:57:39 23rd of April 2021 at 10:06:40
Coordinates 52°17’55.1”N 6°25’11.7”E 53°06’24.5”N 6°06’03.3”E
Duration ∼15m (9001 frames) ∼14m 40s (8807 frames)
Traffic 4P, 53B, 30C 39P, 82B, 158C
Background Greenery only (very dynamic) Buildings only (mostly static)

Table 5.2: Specifications of the two frames per recording used for the evaluation of
the implementation.

Dataset Eikstraat Kettingburgweg Holterberg Torenstraat
Frame 1620 2623 1330 2998 384 1398 3748 4513
Total points <50m 32576 32574 32469 32469 32569 32501 64916 64858
Background points 32252 31324 31849 32238 32031 32159 62876 64816
Dynamic points 324 1250 620 231 538 342 2040 42
% Dynamic 0.99% 3.84% 1.91% 0.71% 1.65% 1.05% 3.14% 0.06%
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5.2 Background identification & removal

The background identification & removal is the first segment of the implementation
that is evaluated both with a validation- and research test. First, all BRMs are cali-
brated and validated. Then, the BRMs are compared in terms of performance and
processing speed. The results of this test are used to answer RQ1. The best per-
forming BRM is also used for any further testing.

5.2.1 Evaluation criteria

In order to evaluate the BRMs performance metrics are defined. The performance
of the BRMs is tested similarly between existing literature with variances based on
the use case. 3D-DSF is tested by measuring the exclusion percentage for both the
background- and object points [30]. RA is tested based on the exclusion percentage
of background points and observed objects, not mentioning what percentage of each
object point is remaining. Another research by Wu et al. [45] using an alteration
of 3D-DSF measures performance based on absolute numbers for the remaining
background- and object points and a type 1 and type 2 error. To objectively evaluate
the implemented BRMs four performance measures are calculated: precision, recall,
and the type 1 and 2 errors.

The formulas for all performance measures are given by formula 5.1 to 5.4. Each
frame has a number of Background Points (BP) and Object Points (OP) before fil-
tering. The points after filtering are labelled Background Points Filtered (BPF) and
Object Points Filtered (OPF) for background- and object points respectively. The pre-
cision (formula 5.1) calculates what percentage of the remaining points after filtering
are actually a subset of OP. The recall (formula 5.2) calculates what percentage of
OP remains after filtering. The type 1 error (formula 5.3) calculates what percentage
of BP remains after filtering. Finally, the type 2 error (formula 5.4) calculates what
percentage of OP is lost after filtering.

Precision =
OPF

OPF +BPF
· 100% (5.1)

Recall =
OPF

OP
· 100% (5.2)

Type 1 error =
BPF

BP
· 100% (5.3)

Type 2 error =
OP −OPF

OP
· 100% (5.4)
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The processing speed evaluation is based on both a background model generation
time and a background removal time. For each BRM a background model is gen-
erated using each data set five times using randomly selected frames, and each
data set is fully processed to calculate the average background removal speed. The
randomly selected frames are kept consistent between the BRMs. As the complete
implemented system is not time critical, but does benefit from higher processing
speeds, the evaluation of each BRM is biased towards the background removal per-
formance. However, if multiple BRMs perform similar, the processing speed is a
decisive factor.

5.2.2 Calibration & validation

The calibration is done to find optimal parameter values for each BRM that are used
for further testing. Optimal parameters for TSC and RA are already given, however,
due to hardware differences these values are validated. Each BRM has at least one
tuneable parameter that determines the balance between precision and recall of the
background removal.

In this research the calibrated BRM has the highest recall in combination with
a manageable precision. Meaning that as much relevant data is kept as possible,
while the following processing steps can deal with the noise. However, a precision
percentage does not indicate the distribution of the noise throughout the FOV. I.e.
a high precision in combination with dense noise clusters is more problematic than
a low precision with evenly distributed noise. As it is currently unknown how a low
precision will affect the results, the BRMs are calibrated at the ’elbow’ of the recall
curve where a decrease in precision does not yield a significant increase in recall.

All BRMs are calibrated using two manually labelled frames per recording (table
5.1 & 5.2) three times, using three different sample sets for the background gener-
ation. A visualisation of each frame can be found in appendix A. The sample sets
used for the background generation are consistent between the BRMs. RA is the
only method that must use consecutive frames, which are also varied between runs.
The average precision, recall, and type 1 & 2 error are calculated for each parameter
value for each BRM.

TSC The adjustable parameter of TSC is the Standard Deviation Multiplication
(SDM), which is multiplied with the standard deviation and then subtracted from
the mean distance measurement to determine the distance threshold for the back-
ground model. Further explanation on how the method works is described in section
4.3.1.1. The recommended multiplication value given by Tarko et al. [15] is three. A
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calibration test is done to see whether three is also the optimal value in this research.

PD The adjustable parameter of PD is the percentage at which a peak in the dis-
tance measurement histogram is considered to be a relevant peak, called Relevant
Peak Percentage (RPP). Further explanation on how the method works is described
in section 4.3.1.2. As the method is developed during this research there is no rec-
ommended value for the RPP.

3D-DSF By adding a moving average filter to 3D-DSF the width of the filter is the
adjustable parameter that is calibrated. Further explanation on how the method
works is described in section 4.3.1.3. As the method originally does not include a
moving average filter, there is no recommended value for the width of the filter.

RA The adjustable parameter of RA is the minimum density increase between con-
secutive frames for a cube to be considered non-background. Further explanation
on how the method works is described in section 4.3.1.4. The recommended value
given by Lv et al. [31] is three. A calibration test is done to see whether three is also
the optimal value in this research.

The calibration of each BRM also acts as the validation. As a different data set
is used it is difficult to compare the results against those of the original authors.
However, based on the resulting performance metrics a substantiated claim can be
made on whether the BRMs function as expected.

5.2.3 Comparison

The comparison of the BRMs is based on the performance as well as the process-
ing speed. First, the optimal performing BRM configurations are used to determine
the processing speed for both the background model generation and background
removal times. After both tests are done, one BRM is chosen that is used for fur-
ther testing. The choice is based on both results, however, it is biased towards
background removal performance as the implementation is not time critical.
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Independent two-sample t-tests are done between methods to determine whether
the difference is statistically significant. All tests are done at a significance level of
0.05. One-tailed tests are done for testing whether one method is statistically better,
using the following hypotheses:

H0 : µ1 > µ2

Ha : µ1 ≤ µ2

5.3 Clustering

The dynamic DBSCAN clustering method is both calibrated and validated using the
four data sets in table 5.1. The calibration consists of fitting an ε and MinPts curve
as a function of distance. Initially, an empirically determined value for ε is used as a
starting point. The function for ε is:

ε = .03 ∗ d (5.5)

Where d is the distance to the LiDAR sensor in meters. A minimum cluster size of
five points is chosen to limit the noise coming through.

MinPts The function for MinPts is fitted to the data according to the cluster size of
pedestrians. As pedestrians are the smallest object type that has to be detected in
both length and width, the MinPts function may filter out all clusters that are smaller.
A number of pedestrians are manually selected from the data sets and their number
of points plotted against the distance to the LiDAR sensor. It is expected that this plot
will form a relatively consistent curve to which a MinPts function can be fitted. After
the implementation of the MinPts function a validation plot is made to determine
whether it functions as expected.

Epsilon A similar process as determining the MinPts function is used to determine
ε as a function of the distance to the LiDAR sensor. The goal of calibrating the
dynamic ε is twofold. The first is to verify that a dynamic ε is an improvement over a
static value. If so, the second is to calibrate the function for ε. To evaluate the results
of multiple values of ε the distance between neighbouring points is calculated using
Delaunay triangulation for each cluster extracted from the data sets in table 5.1. The
15th, 50th (mean), and 85th percentile of distances between points within a cluster
over distance are plotted. the 15th and 85th percentile are included to represent
the minimum and maximum distance within a cluster as the percentiles exclude
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vertically overlapping and neighbouring border points respectively. There are no
expected results for the point distances within clusters, thus the results are visually
examined.

To validate if DBSCAN and the calibrated functions for ε and MinPts perform as
expected, it is applied to the eight manually labelled frames from table 5.2. The vali-
dation is done based on the number of objects that are correctly clustered, merged,
split, or not detected at all.

5.4 Tracking

The performance of the implemented Kalman filter tracking is validated by compar-
ing the number of tracked objects to the number of manually determined objects
within each data set. The goal is not to provide an in-depth analysis of the tracking
algorithm, but to confirm that performance is sufficient for further testing. The track-
ing data is also visualised as a video and manually examined to substantiate why
the number of tracked objects may not correspond to the expectations.

5.5 Classification

The goal of the classification of objects is not only to identify the object type, but also
determines what orientation estimation method is applied. As time limitations did not
allow for an extensive classification method, its primary goal is to differentiate be-
tween pedestrians & two-wheelers, and vehicles for the validation of the orientation
estimation. Both pedestrians and two-wheelers use PCA as orientation estimation
and vehicles use MinErrorRect. The validation of the classification method deter-
mines whether its performance is sufficient to evaluate the orientation estimation.

To validate the classification the processed data is visualised and manually checked.
Each data set is rendered as a video and for all tracked objects the determined ob-
ject class is compared against the actual object class. The tracked objects are the
result of the implemented algorithm, meaning that objects are often split into multi-
ple tracked objects. Therefore, the number of classified objects can be higher than
the number of actual objects in the data sets. Tracked objects that do not represent
traffic and grouped objects with multiple classes are ignored. Grouped objects of the
same class are kept and labelled as their corresponding class. Besides a numerical
validation the data is also observed for anecdotal evidence.

The results consist out of two parts: the performance of applying the correct ob-
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ject class and of applying the correct orientation estimation method. The difference
being that for the orientation estimation performance the pedestrian and two-wheeler
classes are combined. The performance is measured based on precision and re-
call. The precision calculates what percentage of all objects labelled as class X also
belong to class X. The recall calculates what percentage of all objects belonging to
class X is also labelled as X. The performance of the orientation estimation dictates
whether performance is sufficient for testing the orientation estimation.

5.6 Orientation estimation

To answer RQ2 on whether class-based bounding box methods perform better in es-
timating the orientation the orientation is compared against an object’s next location.
The assumption is that if the angle between the object’s estimated orientation and
the angle between the current and next location is equal, the estimation orientation
is correct. This research test aims at evaluating how well the three implemented
bounding box methods align with the next location of an object and whether using
different methods per object class improves alignment.

To evaluate the performance of each bounding box method the angle between
the orientation of the object and its next location is used as performance metric.
This means that if the next location lays on the line of the orientation (if extended),
the difference in angle is 0◦and the orientation aligns perfectly. If the next location
does not lay on the line, the angle difference indicates how many degrees the object
orientation needs to be rotated in order to align them.

The method in section 4.3.4.4 is used to determine which side of the bounding
box is the length and thus represents the direction. This is validated by plotting the
angle difference between the chosen direction and the previous location, if function-
ing correctly, all angles fall within ±45◦. Then, the angle difference between the
orientation and the next location is calculated. The resulting angles lie in a range of
±180◦. This calculation is done for each object in each frame, given that the object
has both a previous and next location.

To determine the difference between the bounding box methods, each method
is applied to every object class. Then, paired t-tests1 are done between methods
applied to the same object class at a 0.05 significance level. The paired t-test cal-
culates the difference between the absolute angle differences of the tested methods
for every sample and determines the average µd. This average is used for the one-
tailed hypotheses:

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttestrel.html
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H0 : µd = 0

Ha : µd > 0

The absolute angle differences are also visualised in a histogram, including a
mean and median for easier visual comparison. All measurements are divided into
five ranges between 0 and 50m to find correlation between the angle difference
and distance to the sensor. A lower average does not necessarily indicate better
performance, as a few large angle differences can significantly increase the average.
Therefore, the median is also of interest. The lower the average and the more right-
skewed (median < mean) the results the better.
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Chapter 6

Results

6.1 Background identification & removal

6.1.1 TSC calibration

It is expected that a small Standard Deviation Multiplication (SDM) value results in
a relatively mild filter as the range threshold lies close to the mean of the aggre-
gated measurements. Whenever a list of aggregated measurements only contains
measurements of a static background and the SDM is one, the standard deviation is
smaller than the measurement precision of the LiDAR leading to false positive mea-
surements and a low precision, but a high recall. A high SDM is expected to result
in an aggressive filter that also filters out OP and thus gives a high precision, but a
low recall.

To verify whether three is indeed the optimal value, multiplication values between
five and one are tested and the results are shown in table 6.1 and figure 6.1. The
values of which table 6.1 is derived can be found in appendix B. The turning point
where the precision decreases more than the recall increases is at an SDM of three,
thus agreeing with the recommended value of three.

Table 6.1: TSC calibration. Average performance results of applying TSC at eight
different frames three times using a standard deviation between 5 and 1.

SD 5 4 3 2 1
Precision 81.31% 79.74% 72.89% 53.02% 27.95%
Recall 48.43% 55.70% 65.88% 73.80% 83.88%
Type 1 error 0.05% 0.09% 0.27% 1.37% 5.52%
Type 2 error 51.57% 44.30% 34.12% 26.20% 16.12%

57
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Figure 6.1: This graph is a visual representation of the performance metrics in table
6.1.

6.1.2 PD calibration

It is expected that both a low and high Relevant Peak Percentage (RPP) result in
a low precision with high recall and that the inverse is true between those values.
Starting with a high RPP, only the most certain background measurements are fil-
tered out and thus most object points are kept in combination with many background
points. This is also expected to be true for low RPP values as this results in many
relevant peaks of which the furthest back is chosen.

For the calibration of PD 14 RPP values are tested and the results are shown in
table 6.2 and figure 6.2. The values of which table 6.2 is derived can be found in
appendix C. As can be seen in figure 6.2, the elbow of the recall curve lies at an
RPP of 15%, which is adopted as the optimal value.

6.1.3 3D-DSF calibration

It is expected that by increasing the width of the moving average filter the threshold
for a cube to be considered background decreases. Which in turn results in fewer
background cubes and thus a higher recall and lower precision. Because the mov-
ing average smooths out the curve on which the threshold is based, the threshold
calculation is less affected by unexpected peaks in the curve.

For the calibration of 3D-DSF five moving average widths are tested and the
results are shown in table 6.3 and figure 6.3. A width of one means that both neigh-
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Table 6.2: PD calibration. Average performance results of applying PD at eight dif-
ferent frames three times using a minimum peak percentage between 1%
and 50%

RPP (%) 1 2 3 4 5 10 15
Precision 84.80% 81.66% 79.90% 78.95% 77.36% 71.19% 67.37%
Recall 72.93% 75.61% 77.59% 80.52% 81.73% 86.50% 93.09%
Type 1 error 0.07% 0.12% 0.17% 0.20% 0.23% 0.37% 0.49%
Type 2 error 27.07% 24.39% 22.41% 19.48% 18.27% 13.50% 6.91%

RPP (%) 20 25 30 35 40 45 50
Precision 64.88% 62.66% 61.15% 59.72% 58.59% 57.80% 57.62%
Recall 93.03% 92.66% 92.72% 92.02% 91.52% 92.23% 92.66%
Type 1 error 0.57% 0.63% 0.69% 0.73% 0.77% 0.81% 0.82%
Type 2 error 6.97% 7.34% 7.28% 7.98% 8.48% 7.77% 7.34%

Figure 6.2: This graph is a visual representation of the performance metrics in table
6.2

Table 6.3: 3D-DSF calibration. Average performance results of applying 3D-DSF at
eight different frames three times without and with a moving average filter
width from 0 to 4.

MA filter width 0 1 2 3 4
Precision 74.72% 70.16% 66.69% 64.68% 63.48%

Recall 85.30% 92.77% 93.97% 94.34% 94.70%
Type 1 error 0.31% 0.44% 0.55% 0.61% 0.65%
Type 2 error 14.70% 7.23% 6.03% 5.66% 5.30%
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Figure 6.3: This graph is a visual representation of the performance metrics in table
6.3

bours of a value are included in the average. The values of which table 6.3 is derived
can be found in appendix D. The elbow of the recall curve lies at a moving average
filter width of one, thus chosen as optimal value.

6.1.4 Raster-based algorithm

The implementation of the RA method does not perform as expected and will there-
fore also not be calibrated for further use. An example of the application of algorithm
1 and its result are shown in figure 6.4. As mentioned in 4.3.1.4 it is possible that the
order of processing steps is interpreted incorrectly and thus the RA method is ad-
justed accordingly as stated in algorithm 2. However, even after these adjustments
there are fundamental problems with RA.

The most prominent problem with RA is that it does not account for the sparsity
of a LiDAR generated point cloud. Lv et al. [31] show that the density of background
cubes does not change more than two points between consecutive frames. How-
ever, figure 6.5 shows that increasing the minimum density change for a cube to
be foreground decreases the number of background points left in the resulting point
cloud. This proves that the density of background cubes (especially close to the
LiDAR sensor) does change more than two.

Figure 6.5 also shows that increasing the minimum density change decreases
the number of remaining object points (dp in figure titles) as it becomes increasingly
more improbable for cubes to have a density change higher than the minimum and
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Figure 6.4: The left image shows a raw point cloud and the right image shows the
result after applying the original RA method.

Figure 6.5: Here the effect of increasing RA’s minimum density increase parame-
ter is shown. The top-left image shows the raw point cloud while the
remaining images show a minimum density increase value between 3
and 7 from top-middle to bottom-right.
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Figure 6.6: The left image shows an estimation of the expected background model
using the RA method as each black dot is a cube that corresponds to a
background object. The right image shows the actual model generated
by the RA method and shows that all moving traffic is also labelled as
background.

thus be labelled as foreground. This is also clearly visible when visualising the
background model instead of the resulting point cloud as shown in figure 6.6. Here
the thick black lines indicate where traffic is passing and should be excluded from the
background model based on the density increase, however, as the density increase
does not exceed the threshold the corresponding cubes are labelled as background.

Using geometry the maximum distance for a cube to have at least a density of 3 is
calculated. Based on the specifications of the OS1-32 in table 4.1 the angle between
vertical measurements is 0.176◦ and 1.406◦ between horizontal measurements. For
a cube with 10cm sides the vertical and horizontal diagonal are 14.142cm. Meaning
that the distance between two horizontal points can be at most 7.071cm to fit 3
horizontal points in 1 cube. This can only happen within a distance of 23.019m. The
other option is 14.142cm between horizontal- and vertical points to fit 2 horizontal-
and 1 vertical point, giving a maximum distance of 5.763m due to the larger vertical
angle. Doing the same calculations for the sensor used by Lv et al. [31] (Velodyne
VLP-32c) results in a maximum distance of 40.514m for 3 vertical points. Due to
the limitations of the LiDAR sensor used in this research the RA method will not be
considered from this point.



6.1. BACKGROUND IDENTIFICATION & REMOVAL 63

6.1.5 Processing speed

In this section the results of the processing speed are presented for both PD and
3D-DSF. Due to time limitations, PD being better than TSC across the board, and
expected similar processing times, TSC has not been evaluated in terms of process-
ing speed.

It is expected that for the PD method the background model generation may dif-
fer slightly between data sets as the algorithm benefits from angles that observe
stationary objects or no objects at all. The more the measurements of one angle
are distributed over the range, the more processor cycles are required to determine
the peaks within the range. Angles that did not receive a significant amount of mea-
surements are skipped entirely. The same is expected for the 3D-DSF method as
a more dynamic environment results in more cubes within the background matrix
having density measures and thus requiring processor cycles. All cubes within the
matrix that do not have any density measurements are skipped. Thus, more dy-
namic scenes are expected to result in longer processing times for both background
model generation methods. The background removal duration for a single frame is
expected to be dependent on the number of measurements that fall within the de-
fined ROI for both BRMs. All points within a new frame that do not fall within the ROI
are immediately removed and thus speed up the process.

Between PD and 3D-DSF it is expected that PD is the faster method in both back-
ground model generation and background removal. This hypothesis is based on the
fact that PD generates a 2D matrix with the dimensions of the LiDAR’s resolution,
while 3D-DSF generates a 3D matrix. Given the OS1-32 and a ROI of 50m hori-
zontally and 4m vertically, PD and 3D-DSF generate a matrix containing 65,536 and
up to 10,000,000 values respectively. Both generating and using the larger matrix is
expected to be slower.

The results of the processing speed evaluation are shown in table 6.4. The aver-
age model generation speed for PD is 28.00s and 55.55s for the OS1-16 and OS1-
32 respectively. For 3D-DSF this is 50.61s and 95.85s respectively. The background
removal times are on average 13.5ms & 27.2ms for PD and 111.6ms & 204.2ms for
3D-DSF for the OS1-16 and OS1-32 respectively.
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Table 6.4: Average processing speeds of PD and 3D-DSF for the background model
generation using 3000 frames and the background removal of one frame.

PD 3D-DSF
Model

generation
(s)

Background
removal

(ms)

Model
generation

(s)

Background
removal

(ms)
Dataset µ σ µ σ µ σ µ σ

Eikstraat 35.33 0.19 13.4 0.4 52.70 0.39 116.8 3.3
Kettingbrugweg 25.37 0.13 13.6 0.4 44.49 0.40 98.7 0.9
Holterbergweg 23.31 0.65 13.5 0.4 54.63 0.48 119.5 1.0
Torenstraat 55.55 1.46 27.2 1.1 95.85 0.60 204.2 3.0

6.1.6 Comparison

The results of the performance and processing speed tests are summarised in table
6.5. For each BRM the optimal performing parameters are used. The processing
speeds are the averages of table 6.4.

The comparison is done between PD and 3D-DSF. Between TSC and PD, PD
always outperforms TSC based on the trade-off between recall and precision. TSC
has a higher precision than PD at 79.31%. However, looking at table 6.2 PD with
an RPP of 5% has both a higher precision (82.85%) and a higher recall (86.13%),
making TSC irrelevant.

In terms of background removal performance PD and 3D-DSF perform fairly sim-
ilar. 3D-DSF has a 4.06% higher precision, while PD has a 0.34% higher recall. The
difference between the precision and recall of both BRMs is tested at a 0.05 signif-
icance level. 3D-DSF’s precision is not significantly higher (t(46) = 0.46, p = 0.32).
PD’s recall is also not significantly higher (t(44) = 0.07, p = 0.47)

On average the model generation- and background removal times for PD are
43.82% and 87.53% faster than 3D-DSF respectively. For both PD and 3D-DSF the
difference between using a vertical resolution of 16 and 32 is approximately a factor
two for model generation- and background removal time. The difference between the
background model generation and -removal speeds are tested at a 0.05 significance
level with the hypothesis that PD is faster than 3D-DSF. The difference in processing
speed is significant in the following four situations:

• Background model generation OS1-16: t(26) = −0.46, p < 1.00 · 10−5

• Background model generation OS1-32: t(5) = −57.09, p < 1.00 · 10−5

• Background removal OS1-16: t(29975) = −9229.30, p < 1.00 · 10−5

• Background removal OS1-32: t(12756) = −4978.61, p < 1.00 · 10−5
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Table 6.5: Performance comparison between the calibrated background removal
methods.

Method TSC PD 3D-DSF
Precision 72.89% 67.37% 70.16%
Recall 65.88% 93.09% 92.77%
Type 1 error 0.27% 0.49% 0.44%
Type 2 error 34.12% 6.91% 7.23%
Model generation - 34.89s 61.92s
Background removal - 16.93ms 134.80ms

6.2 Clustering

The clustering method is applied to frames processed using the PD method with an
RPP of 15% for background identification & removal.

6.2.1 Dynamic MinPts

The results for the data set(s) using the OS1-16 and OS1-32 are shown in figure
6.7. To understand which clusters are of interest three pedestrians are selected and
plotted in the same manner as shown in figure 6.8. As pedestrians are the smallest
objects of interest, any clusters smaller than a pedestrian can be filtered out. Based
on the results of the pedestrians’ clusters threshold functions for both LiDAR sensors
are determined, which are stated in formula 4.6 and 4.7 for the OS1-16 and OS1-32
respectively.

The threshold function that is fitted filters out all clusters that are too small con-
sidering the distance to the LiDAR sensor. The results after the implementation of
both filter functions is shown in figure 6.9. Both thresholds filter the clusters that are
considered too small as expected.

6.2.2 Dynamic epsilon

Figure 6.10 shows the application of multiple functions for ε. The 15th, 50th (average),
and 85th percentile of distances between points within a cluster over distance are
plotted to exclude the distances between overlapping points and outer-shell points.
The used function for ε is plotted as a black line and a red line indicates the minimum
distance possible between two horizontally adjacent LiDAR angles.

Whether the addition of a dynamic value for ε is an improvement is evaluated by
first using static values. Figure 6.10a & 6.10b show an ε of 0.2 and 1.0 respectively.
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Having a low static ε of 0.2 clearly shows that the maximum range is decreased,
while a high value of 1.0 introduces peaks with higher average point distance.

As mentioned in the previous section the empirically determined function for ε is
given by formula 5.5, which resulted in figure 6.10d. The 15th percentile aligns with
the minimum horizontal point distance. The 15th percentile point distance can be
lower due to the stacking of vertical LiDAR angles. Distances can also be higher
than ε due to neighbouring border points. It seems like the ε function prevents less
dense clusters from forming due to the average distance lying relatively close to the
corresponding ε.

Varying the function of ε (figures 6.10c-6.10e) shows that the average point
distance may be significantly influenced by neighbouring border points. E.g. a
crescent-shaped cluster can be formed by the proximity of the points, however, cal-
culating the average point distance using Delaunay triangulation will also include the
distances within the concave part of the crescent, which are larger. If neighbouring
border points do have influence, the average point distance will be relatively unre-
sponsive to a change in ε. This is tested by changing the multiplier of ε to 0.015 and
0.06, as shown in figure 6.10c and 6.10e respectively.

The results of varying the function for ε are similar, apart from the additional
peaks in 6.10e. As expected, the average point distance does not necessarily in-
crease after increasing the ε multiplier. This can best be seen by the distance be-
tween ε and the average point distance, which increases when ε increases. The new
peaks in figure 6.10e are the same as in figure 6.10b. Which function for ε is optimal
is determined based on the eight manually labelled frames of table 5.2.

(a) OS1-16 (b) OS1-32

Figure 6.7: Scatter plot of the number of points in each cluster against the distance
of the cluster’s centroid to the LiDAR sensor.
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(a) OS1-16 (b) OS1-32

Figure 6.8: Scatter plot of the number of points in each cluster of 3 pedestrians
against the distance of each cluster’s centroid to the LiDAR sensor.

(a) OS1-16 (b) OS1-32

Figure 6.9: Scatter plot of the number of points in each cluster against the distance
of the cluster’s centroid to the LiDAR sensor, including a filter. The
black line indicates the division, green points are kept, and red points
are filtered out.
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(a) ε = 0.2 (b) ε = 1.0

(c) ε = 0.015 · d (d) ε = 0.03 · d

(e) ε = 0.06 · d

Figure 6.10: Scatter plot of the distance between points within a cluster. The black
line shows the function of ε and the red line shows the minimum dis-
tance between horizontally adjacent LiDAR angles.
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Table 6.6: Comparison between the clustering performance of three functions for ε
using table 5.2.

ε Ground truth 0.015 · d 0.030 · d 0.060 · d
Clustered points 5387 5055 5276 5374
Clustered objects 46 44 40 37
Missing objects 0 5 5 5
Merged objects 0 0 1 6
Seperated objects 0 3 0 0

Table 6.7: Comparison between how many objects passed through the FOV of the
LiDAR and how many objects are identified and tracked using data pro-
cessing.

Data set Expected Tracked
Eikstraat 90 166
Kettingbrugweg 55 85
Holterbergweg 87 78
Torenstraat 279 527

The three functions for ε presented are tested against the eight manually labelled
frames from table 5.2. The results are shown in table 6.6 and display expected
behaviour in that a too small ε results in cluster separation and a too large ε in
cluster merging. Notable is that all three functions have five missing objects, which
corresponds to five objects that contain fewer than five points and thus fewer than
the lower limit of MinPts. This makes ε = 0.03 · d the preferred function and is used
for the remainder of the evaluation.

6.3 Tracking

Given ideal circumstances the tracking performs as expected, however, the imper-
fect background removal and clustering introduce additional tracked objects. The
results of the number of tracked objects are shown in table 6.7 and in most cases
the number of tracked objects is significantly higher than expected. Visual examina-
tion reveals three situations that account for a significant part of the increase in the
number of tracked objects: incorrect clustering, distance to the LiDAR sensor, and
occlusion.

The two ways that incorrect clustering results in an increase in the number of
tracked objects are the separation of a single object into multiple objects and the
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(a) Incorrect clustering (b) Double tracking

Figure 6.11: Incorrect clustering of objects (6.11a) can lead to two tracks represent-
ing the same object (6.11b).

grouping of multiple objects into a single cluster. Whenever an object is split into
multiple clusters an additional possible association is created. Whenever the object
stays separated, multiple objects are tracked. If it happens only once, the track-
ing algorithm can alternate between the two created tracked objects as an object
that disappears is not immediately removed. Resulting in an individual object rep-
resented by two tracks as shown in figure 6.11. When multiple objects are grouped
the track for one of the objects can be lost, and when they are separated again the
object is considered a new object.

Objects both too close or too far away from the LiDAR sensor can also result
in an increased number of tracked objects as they cannot be detected. The LiDAR
sensors have a so-called dead zone close to the sensor in which no measurements
can be done. Objects that stay within the dead zone too long are registered as new
tracked objects when they are observed again. Objects that move at the edge of the
LiDAR’s FOV are most difficult to identify due to sparsity and may not be consistently
detected and thus incorrectly tracked.

Occlusion is a well-known issue within the area of computer vision and also ap-
plies to LiDAR-based data by covering (part of) an object. Occlusion can result in
both incorrect clustering and lost tracks. When an object is partly occluded, e.g.
passing a road sign, it can be split into multiple clusters representing the same
object. When an object is completely occluded, e.g. passing behind a truck, the
object’s track can be lost and is considered a new object when coming into view
again.

Most objects are tracked correctly, but the increase in the number of observed
objects is largely due to groups of objects that are incorrectly tracked. An example of
such a situation is shown in figure 6.12, where a group of pedestrians move tightly
packed. Incorrect clustering, occlusion, and incorrect association all occur within
this group, rapidly increasing the number of observed objects. Due to occlusion
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(a) (b)

Figure 6.12: Incorrect clustering of a group of pedestrians creating multiple short
tracks. Both images show the same group of pedestrians at two differ-
ent moments in time.

fewer pedestrians are visible in 6.12b and in both images multiple pedestrians are
grouped.

6.4 Classification

To evaluate the classification the processed data is visualised and manually checked.
The combined results are shown in table 6.8. Tracked objects that did not represent
traffic and grouped objects with multiple classes were ignored. Grouped objects of
the same class were kept and labelled as their corresponding class. In total 59 ob-
jects are ignored, which is 6.89%. Anecdotal evidence shows that object tracks that
keep a relatively large distance to the LiDAR sensor are often classified incorrectly.

The weighted precision of the classifier for distinguishing between pedestrians,
two-wheelers, and vehicles is 81.30%. However, when considering the goal of ori-
entation estimation only the classification between pedestrians/two-wheelers and
vehicles is relevant. Table 6.9 shows the results when splitting the object classes
between PCA and MinErrorRect as the orientation estimation method. In this case
the weighted average precision is 93.35%.

Table 6.8: Classification results of the evaluation using all data sets.
Combined Classified as

Pedestrian Two-wheeler Vehicle Recall
Pedestrian 257 42 9 83.44%

Class Two-wheeler 54 159 7 72.27%
Vehicle 11 26 232 86.25%
Precision 79.81% 70.04% 93.55%
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Table 6.9: Results of the evaluation of the applied method for the dimension estima-
tion.
Combined Applied method

PCA MinErrorRect Recall
Expected
method

PCA 512 16 96.97%
MinErrorRect 37 232 86.25%
Precision 93.26% 93.55%

6.5 Orientation estimation

Preceding the results o the correlation between an object’s orientation and next
location, is the validation of the selection of the bounding box side representing the
object’s direction. As mentioned in the method, the selection is correct if all values
fall within ±45◦. The result is shown in figure 6.13. The results are separated per
bounding box methods per object class for later comparison. All measurements do
fall within the expected ±45◦ range.

It is expected that both PCA and MinErrorRect outperform Rotating calipers in
all situations. Based on the initial results of figure 3.3 PCA is expected to perform
well on two-wheelers and MinErrorRect on vehicles. For pedestrians none of the
methods is expected to perform well. However, as pedestrians do have some con-
sistency in shape PCA is expected to align slightly better than the others. Reasoning
for these hypotheses can be found in section 3.3.1.

The results of testing the orientation estimation against an object’s next location
are shown figure 6.14. Each histogram shows the distribution of angle difference
between the orientation and next location split between five distance segments. The
mean and median of the absolute angle differences are visualised in figure 6.14b
and noted in table 6.10. The more the distribution in figure 6.14b is skewed to the
right, the better the orientation corresponds with the next location.

For pedestrians all three bounding box methods performed similar with a rela-
tively high mean and median compared to the other object classes. This is in line
with the results in figure 6.13, where the variation of the alignment between the pre-
vious location and the direction is high. PCA does perform best when comparing
mean and median values. This is also confirmed using one-tailed paired t-tests:
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• Rot Calp - PCA: With t(49087) = 15.24 and p < 1.00 · 10−5 the average angle
difference of Rotating calipers is statistically larger than PCA.

• PCA - MinErrorRect: With t(49087) = −16.50 and p < 1.00 · 10−5 the average
angle difference of PCA is statistically smaller than MinErrorRect.

• Rot Calp - MinErrorRect: With t(49087) = −1.32 and p = 9.40 · 10−2 the
average angle difference of Rotating calipers is not statistically smaller than
MinErrorRect.

For two-wheelers PCA performed on average almost 2◦ better than both Rotating
calipers and MinErrorRect. Again, the differences between the methods are tested:

• Rot Calp - PCA: With t(23336) = 29.73 and p < 1.00 · 10−5 the average angle
difference of Rotating calipers is statistically larger than PCA.

• PCA - MinErrorRect: With t(23336) = −28.63 and p < 1.00 · 10−5 the average
angle difference of PCA is statistically smaller than MinErrorRect.

• Rot Calp - MinErrorRect: With t(23336) = −1.42 and p = 1.56 · 10−1 the
average angle difference of Rotating calipers is not statistically smaller than
MinErrorRect.

These results again show that PCA is a significant improvement over both Rotat-
ing calipers and MinErrorRect. Both the lower mean and median, and the larger
difference between the mean and median substantiate the improvement.

Finally, for vehicles MinErrorRect performs best and shows an improvement of
almost 5◦ on average. Paired t-tests results:

• Rot Calp - PCA: With t(21820) = 32.43 and p < 1.00 · 10−5 the average angle
difference of Rotating calipers is statistically larger than PCA.

• PCA - MinErrorRect: With t(21820) = 47.53 and p < 1.00 · 10−5 the average
angle difference of PCA is statistically larger than MinErrorRect.

• Rot Calp - MinErrorRect: With t(21820) = 64.86 and p < 1.00·10−5 the average
angle difference of Rotating calipers is statistically larger than MinErrorRect.

As expected, MinErrorRect performs best on vehicles and shows the largest im-
provement over the other methods between object classes. Especially the low me-
dian reflects how right-skewed the absolute histogram is. Also here, the lower mean
and median, and the larger difference between the mean and median substantiate
the improvement.
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Figure 6.13: Histograms of the angle difference between the selected side of an ob-
ject’s bounding box determining its direction and its previous location.

Table 6.10: Mean and median values of the absolute angle difference between the
object orientation and the next location per bounding box method per
object class between 0 and 180◦.

Class Pedestrian Two-wheeler Vehicle
Metric Mean Median Mean Median Mean Median
Rot Calp 34.31 23.07 18.33 12.30 25.82 15.88
PCA 33.26 21.17 16.50 9.00 23.69 11.96
MinErrorRect 34.40 23.19 18.43 12.57 19.90 6.93
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(a) All values

(b) Absolute values between 0 - 50◦

Figure 6.14: Overview of histograms that show the angle difference between the
estimated orientation and the next location of an object using mul-
tiple bounding box methods and object classes. The results per
method/class combination are split into five equal ranges between 0
and 50m.
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Chapter 7

Discussion

In this chapter the results are discussed and how they provide an answer to the
overall goal and research questions. The discussion chapter is divided into system
validation, background identification & removal, and orientation estimation.

7.1 System validation

To answer the main research question on autonomous object detection and tracking
using LiDAR a full data processing pipeline is required, resulting in the main project
goal. Using knowledge and experience from existing work and by developing new
methods a system is designed and implemented that processes point clouds into
tracked objects. Whether this system is sufficient for answering the main- and sub
research questions is determined using validation tests for each processing step. All
processing steps are discussed apart from background identification & removal and
orientation estimation as they are discussed in-depth later in this chapter.

7.1.1 Clustering

The implemented DBSCAN method including a dynamic function for both MinPts
and ε functions correctly and is capable of clustering points that represent objects
and discarding noise. First, the alignment of the MinPts functions function as ex-
pected as shown in figure 6.9. All clusters below the threshold are filtered. Due
to limited time the functions are aligned based on a limited number of manually
selected pedestrians and also include a margin to prevent unwanted exclusion of
clusters. The margin is also included in order to prevent partially occluded objects
from being filtered out. More testing is required in order to get a better fitting MinPts
function for both LiDARs.
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The calibration of ε shows that using a distance-dependant function results in an
improvement over using a static value. Because the point cloud is projected parallel
to the ground plane before clustering it, the distance between points could have
been decreased enough for a static ε to be sufficient. However, figure 6.10 indicates
that this is not the case. First, a too low static ε cuts the usable range with respect
to the LiDAR sensor (figure 6.10a). Second, the hypothesis is that a too large ε

merges or creates new clusters incorrectly, as displayed in figures 6.10b and 6.10e.
This hypothesis is backed by the results from table 6.6 where the largest function for
ε results in merged clusters. Table 6.6 also provides evidence that using a dynamic
function results in improvements as ε = 0.03 ·d results in a limited amount of merged
clusters while not limiting the usable range.

From the three tested functions for ε the best performing is ε = 0.03 · d based
on the results of table 6.6. The smallest value for ε = 0.015 · d resulted in the least
amount of remaining points and cars being split into multiple objects. ε = 0.06 · d
resulted in the most remaining points, however, did cluster groups of objects. ε =

0.03 ·d strikes a balance between point retention and correct clustering. Later testing
does show that this function for ε still struggles with groups as shown by figure 6.12.
The results of using DBSCAN in combination with dynamic functions for MinPts and
ε are considered sufficient for further use.

7.1.2 Tracking

The results of the tracking method (section 6.3) show that in an ideal situation it is
capable of correctly tracking an object, however, in more challenging situations it
often results in an increased number of objects. For the evaluation of the orientation
estimation it is not a problem if objects are split into multiple tracks, as long as the
tracking itself and classification are correct. It is also better to have more objects
than expected instead of too few, because this means most objects are detected
and need better association instead of objects not being detected. As the object
classification is dependent on all dimension estimations of an object, split tracks
can also lead to incorrect classification and in turn incorrect orientation estimation.
The test results of the classification already showed this not to be a problem, as is
discussed in the next section.

The lack of rotational velocity in the Kalman filter increases the difficulty of track-
ing grouped objects. The prediction for an object’s next location is based on the
continuation in a straight line from the last known location. When a group of objects
starts turning this often results in incorrect association when the path of object A
crosses the predicted path of object B.
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The tracking is considered sufficient for the evaluation of the orientation estima-
tion, however, for automatic traffic analysis anomalies can be problematic. As the
path of objects is tracked, may it not be in one go, and the correct bounding box
method can be applied based on the observed clusters within most tracks, the track-
ing does suffice for object orientation estimation. Whenever the path of an object is
represented by multiple tracks it becomes more difficult to analyse the full path of
that object without manual input.

7.1.3 Classification

The implemented classification method performs reasonably well for distinguishing
between object classes and is sufficient for evaluating the orientation estimation.
Due to time limitations the relatively basic classification method is mostly aimed at
the evaluation of the orientation estimation. One of the requirements is to differen-
tiate between pedestrians, two-wheelers, and vehicle and thus this performance is
also discussed.

Anecdotal evidence shows that objects that are split in multiple tracks are often
incorrectly classified due to the distance to the sensor. Because of the distance
no accurate dimension estimation can be made and thus no correct classification.
Especially the vertical resolution is a limiting factor at range, conflicting with classi-
fication of pedestrians which is fully based on the height of an object. This explains
why pedestrians are often classified as two-wheelers at range. Improvement of the
tracking algorithm will likely lead to improved classification.

The classification of two-wheelers is always a challenging situation given its di-
mensions and the used method. On city bikes where the rider is sitting straight up
the difference between the length and the height of bicycle, including rider, is small.
This can lead to two-wheelers being classified as pedestrians, especially when the
bicycle is always observed from an angle. The resolution of the LiDAR does remedy
this problem somewhat, because the vertical resolution is significantly lower than
the horizontal, meaning it is more likely to observe the full length of the bike over the
full height.

Combining the results of table 6.8 and the anecdotal evidence that distant ob-
jects are often incorrectly classified due to split tracks, the classification method
performs as expected. For determining whether to apply PCA or MinErrorRect the
classification works well at a precision of 93.35%, as most incorrect classifications
are between pedestrians and two-wheelers.
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7.2 Background identification & removal

The results in section 6.1 show that the newly introduced PD method has a signif-
icant computational advantage over 3D-DSF at an insignificant performance loss.
The PD method originated by trying to improve TSC as the potential processing
speed was promising, but initial results were unreliable. RA is determined unusable
in combination with the used hardware and not discussed further.

TSC was not expected to outperform either PD or 3D-DSF and it did not. The
most significant problem with TSC is that it is heavily affected by passing traffic and
dynamic background. Both situations increase the standard deviation significantly,
often placing the threshold too close to the sensor and filtering out relevant data.

Both PD and 3D-DSF are capable of filtering out passing traffic, but struggle
with traffic that is stationary for extended periods of time. In frame 3748 of the
Torenstraat data set a truck is present, which is unloading for the majority of the
recording. Both BRMs filter out a significant number of points associated to the
truck and also all other objects moving through the space when there is no truck.
This is also a situation where the difference in dimensionality shows, as 3D-DSF
labels the space occluded by the truck as foreground and PD labels it background.
There is no clear advantage to either situation as PD removes relevant info, while
3D-DSF may keep irrelevant data.

The use of a a two-dimensional background model has a clear computational
benefit over a three-dimensional model when using a rotational LiDAR, without sig-
nificant performance loss. This improvement is not only a result of the reduced
dimensionality, but also of not having to convert coordinates from spherical to Carte-
sian. The number of entries in the background model of 3D-DSF is potentially 300
times larger than that of PD, which does slow down both background model gener-
ation and -removal. This also means that the 3D-DSF model is more detailed and
may perform better in more specialised situations.

Between PD and 3D-DSF it was expected that the former would outperform the
latter in terms of processing speed, while the question remained if and, if so, by
how much the background identification performance would suffer. In section 6.1.6
is determined that the performance difference between the BRMs is not significant
and the speed increase of PD over 3D-DSF is significant in all scenarios. With an
average processing speed of 14ms against 112ms for PD and 3D-DSF using the
OS1-16 respectively, PD leaves significantly more room for further processing at a
LiDAR output of 10Hz. Therefore, PD with an RPP of 15% is chosen to be used for
the implementation.
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7.3 Orientation estimation

The results in figure 6.14 and table 6.10 show that for all object classes different
bounding box methods align better to an object’s next location. This confirms what
was expected based on the results of figure 3.3.

For pedestrians none of the bounding box methods showed a clear improvement
initially, however, PCA is determined to be statistically better. Even though the differ-
ence is significant, the alignment error is still almost double that of the two-wheelers.
Meaning that the direction based on the estimated orientation may still be very un-
reliable.

The overall poor orientation estimation results for pedestrians is expected to be
caused by their continuously changing shape and 360◦ mobility. When viewed from
above, a walking pedestrian is moving arms and legs in an alternating motion. A
stationary pedestrian with its arms along its sides is often wider than it is long, while
it is the other way around when moving. Due to the ever changing shape it is difficult
to find one bounding box method that aligns best with all potential shapes. The
second problem is that pedestrians can move in any direction, may it be forwards,
backwards, or sideways. By not being able to consistently estimate the orientation
of a pedestrian and knowing the actual orientation does not necessarily represent
its direction, the results are explainable.

The improvement of PCA over MinErrorRect when applied to two-wheelers is
statistically significant and shows from the shape of the histogram in figure 6.14b.
It is more right-skewed than the other two. Numerically the mean and median are
10% and 27% lower respectively than the second best method Rotating calipers.
Meaning a larger amount of measurements have a small angle difference and thus
align better with an object’s next location.

A similar difference between methods is found for vehicles, with in this case Min-
ErrorRect being the better performer. It shows a statistically significant improvement
over both other methods. Compared to PCA, MinErrorRect has a 16% lower mean
and 42% lower median.

Interesting it that MinErrorRect applied to vehicles has a higher mean and lower
median than PCA applied to two-wheelers. This is visible in figure 6.14b as Min-
ErrorRect has an almost exponential decrease in number of measurements per an-
gle difference. Looking closely at the histograms of both PCA and MinErrorRect in
6.14a shows that MinErrorRect has substantially more measurements outside±50◦,
probably explaining the larger mean.

A possible cause of large angle differences for vehicles with is noise. If enough
noise passes the background removal in roughly the same location it can result
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in a tracked object. This false object moves randomly and thus results in large
angle differences. These false objects have been observed in the processed data
and were often at large range or around very dynamic backgrounds like bushes. A
case can also be made for why more noise is labelled as vehicle than two-wheeler.
Because the movement of the noise is random, the dimension estimation does also
not work properly. This can easily result in an object wider than 1.5m, acquiring the
vehicle label.

The results of section 6.5 prove that using class-dependant bounding box meth-
ods improves the ability to estimate the orientation of all object types. The shape of
pedestrians is too inconsistent and the mobility too unpredictable for any of the used
methods to be as reliable as for the other classes. For two-wheelers and vehicles
PCA and MinErrorRect align more consistent than other methods respectively.



Chapter 8

Conclusion

The presented research meets all of its goals and provides answers to the research
questions stated in the introduction. A completely autonomous data processing
pipeline is built that extracts information on a per object basis from a sequence of
point clouds. A new background identification and removal method is developed that
significantly improves the processing speed. And, it is shown to be an improvement
to use different bounding box methods per object class to estimate the orientation.

Each object is detected, tracked, and classified, and for each object the location,
velocity, and direction are known within each frame. From the processed data a
video can be generated which shows the point cluster of each object surrounded by
a bounding box and a trail is drawn based on the travelled path. The object data
allows for numerous types of analysis like heat maps, directionality maps, per class
velocities, et cetera.

The validation of each part of the data processing pipeline shows that the overall
performance is sufficient for answering all RQs. The background of each frame is
removed with an average precision and recall of 67% and 93% respectively. The
parameters of the clustering method are dynamically altered based on the distance
to the LiDAR, resulting in consistent object detection throughout the LiDAR’s FOV.
However, closely grouped objects and occlusion do result in incorrect clustering.
Given an ideal situation the tracking method performs as intended, but with errors in
preceding processing steps objects are often split into multiple tracks. For the clas-
sification of objects a manually defined decision tree was able to correctly classify
object 81% of the time, while applying the correct bounding box method in 93% of
the cases.

During the implementation of the data processing pipeline a new Background
Removal Method (BRM) is developed called Peak Detection (PD). Four BRMs are
compared to answer the sub question whether a two-dimensional (2D) background
model can improve performance over a three-dimensional (3D) model. Two meth-
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ods generating a 2D model and two generating a 3D model are compared. Results
show that using PD, a 2D model, does not reduce detection and removal perfor-
mance significantly compared against state of the art 3D methods. On average PD
does increase model generation and removal speed with 44% and 88% against 3D
models respectively. Thus, 2D background identification and -removal methods do
outperform 3D alternatives given a rotational LiDAR.

Based on an initial comparison of bounding box methods it was hypothesised
that selecting a method on a per object class basis would improve orientation esti-
mation performance. Using almost 100,000 measurements it is proven that apply-
ing a PCA-based bounding box significantly improves alignment with both pedestri-
ans’ and two-wheelers’ next location, while MinErrorRect aligns better with vehicles.
Thus, confirming that selecting a bounding box method based on the object class
for the orientation estimation can improve performance.



Chapter 9

Future work

In this chapter recommendations are made for points of improvement in future work.
The chapter is divided into three sections. The first section describes a number of
improvements that would have been implemented given more time. These are not
discussed in detail as they are already discussed earlier in this research. The sec-
ond section presents multiple directions for improving the PD background detection
and -removal method. And the final section discusses the potential improvement of
clustering based on an object’s expected dimensions.

9.1 General improvements

There are multiple adjustments that are recommended for evaluation as they are
expected to improve overall performance.

Clustering Presented in section 3.2.2.2 is a clustering method called DTSCAN.
The related work chapter already discusses that DTSCAN is expected to be an
improvement over DBSCAN, however, due to time constraints it has not been im-
plemented. The ability to separate merged objects due to bridging points will help
separate grouped objects like in figure 6.12b.

Tracking Even though Kalman filter tracking is a capable tracking method, some
situations have been found during the evaluation indicating potential performance
gains. The exclusive association of existing objects with newly detected objects
makes association in groups difficult due to occlusion, especially closely located
groups like pedestrians. The addition of probability, like the Joint Probabilistic Data
Association can help in these situations. Another potential improvement for the

85



86 CHAPTER 9. FUTURE WORK

tracking method is the addition of an Interactive Multiple Model method, that can
better predict an object’s future location using multiple motion modes.

Classification For the initial implementation of the data processing pipeline a
manually defined classifier proved to be usable. However, now that classified data is
available classification models can be trained. Especially between the limited num-
ber of classes defined in this research a higher classification precision is achievable.
A second improvement would be to introduce more specified object classes for more
detailed object information.

Hardware Tuning the vertical FOV of the LiDAR will increase the number of usable
points and thus the number of points representing objects. As with all technology,
LiDAR sensors also improve over time and increase their vertical resolution. How-
ever, in case of the used OS1-XX sensors, they both have a vertical FOV that aims
equally upwards as downwards. At the height the sensor is mounted on the pole
and car the upward facing LiDAR angles are often measuring outside the area of
interest. Lowering the overall vertical FOV by reducing the upwards facing angle will
increase vertical point density in the area of interest without significantly affecting
usability.

9.2 Improving PD

The PD background identification and removal method presented in this research
already performs well, but there are ideas on how to improve it further. In this section
multiple ideas are discussed which may lead to increased detection and removal
performance.

9.2.1 Peak selection

The implementation of PD (section 4.3.1.2) states that whenever multiple peaks
between the RPP and 50% are found, the last peak is chosen as background. This
choice is made based on the idea that no detection is possible behind a background
object. However, this is not true in case of dynamic background. In this research no
testing is done to evaluate the effect of choosing the last peak, potentially leading to
unfiltered background points. Therefore, it is recommended to investigate whether
the increase in noise is worth the potential increase in recall.
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9.2.2 Multiple peak model

The aforementioned choice on which peak should be selected if multiple peaks are
present can be resolved by allowing multiple peaks to be selected. Using multiple
range threshold per LiDAR angle does change PD from a two-dimensional into a
three-dimensional model. However, it is expected that this will still result in a signif-
icantly smaller model than e.g. 3D-DSF. With a multiple peak model all peaks that
are larger than the RPP are selected as background, and the background model
contains sets of exclusion ranges instead of a maximum detection range.

Using the multiple peak model allows for the detection of objects between and
beyond ranges identified as background. If a flag is positioned in front of a house,
the space between them should still be usable when the flag is not occluding it. This
is one of the advantages the implemented three-dimensional methods have over
PD.

9.2.3 Peak characteristics

In the current implementation of PD only the sum of measurements of each detected
peak is used to label it, even though more information is available. This section notes
two more characteristics that could be used to determine whether a peak represents
background or foreground. Taking it a step further, the characteristics can also be
combined and having a trained classifier determine what peaks are background.

Peak shape When observing the histogram of a single LiDAR angle after aggre-
gating the frames used to determine the background, all kinds of peak shapes are
shown. The wall of a building will generate a tall and narrow peak due to the consis-
tency of the measurements, while a road will generate a lower and wider peak due
to the varying positions of traffic. Understanding the causation of peak shapes can
help classifying which are background.

Measurement intensity Each measurement made by the LiDAR also includes the
intensity of the light that is reflected back. E.g. road signs are manufactured to have
high reflectivity and reflect more light than a curtain made for blocking out the light.
It is difficult to differentiate background from foreground based on the intensity value
alone, however, the consistency can provide more information. A stationary object
is likely to have a consistent intensity value, while passing traffic will vary because
of different materials and colors.
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9.2.4 Real-time model adjustments

Using a recording-based background model in a real-time situation introduces the
problem of not being able to adapt to a changing environment. Parked vehicles or
weather conditions like snow can deviate the generated model from the physical
situation. By utilising the ever increasing number of processing cores available on
modern processing units, the background model can be updated in parallel to the
background removal process.

One implementation is that for every X minutes a percentage of frames is aggre-
gated and compared against the background model. If during the initial background
generation a vehicle is parked, the background model will exclude all measurements
at the vehicle and beyond. If at a later time the vehicle moves and the newly col-
lected frames do not show any sign of the vehicle, the model may be updated to find
a new background threshold.

9.3 Dimensions-based clustering

An issue that remains, no matter how well the clustering parameters are tuned,
is the incorrect merging and splitting of object clusters. Objects can be split due to
occluding road signage or other traffic, buses show interior clusters due to large win-
dows, et cetera. Similar processing steps are already researched and implemented
in related work. Tarko et al. [15] implemented an iteration process, not unlike the
one presented in this section, and loop over the clusters until the number of objects
corresponds to the number of tracked objects.

The clustering performance can be improved by introducing a dimension check
on objects that have already been tracked for multiple frames. Whenever multiple
clusters fit within the dimensions (and orientation) of a tracked object, it is likely
they belong to the same vehicle. By aligning a bounding box using the expected
dimensions of an object any corresponding clusters are expected to fall within it.
This will in turn improve the tracking performance as less confusion is created by
suddenly emerging new clusters.

The expected dimensions bounding box can also be used to split any merging
objects. If two cyclists ride side by side, their steering wheels may form a bridging
point that results in one large cluster. Projecting an expected bounding box on the
large cluster shows a too large object. This can be solved by either re-clustering the
points with finer parameters, or allowing multiple active tracks to be associated with
the cluster so that the tracking continues correctly.
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Appendix A

Evaluation frames images

(a) (b)

Figure A.1: Evaluation frames for the Eikstraat recording.
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(a) (b)

Figure A.2: Evaluation frames for the Kettingbrugweg recording.

(a) (b)

Figure A.3: Evaluation frames for the Holterbergweg recording.
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(a) (b)

Figure A.4: Evaluation frames for the Torenstraat recording.
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