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Management Summary
Returnable Transport Items (RTIs) are load carriers on which products are loaded for efficient
and practical transport between supplier and consumer. RTIs play a role in both the forward
and the reverse logistics of a supply chain. Reverse logistics, however, are often overlooked as
a trivial part of the supply chain. As such, RTIs are subject to long idle periods where they can
not contribute to the value-adding activities of a supply chain. In this study, we investigate how
to improve RTI management in the horticultural industry. More specifically, we address how
the utilization of RTIs can be increased by strategically repositioning RTIs within the supply
chain, answering to the dynamic demand of the supply chain. Our research topic is titled

In what way and to what extent can dynamic RTI repositioning
improve the efficiency of RTI logistics?

Consider a supply chain network with multiple users and a single depot, the latter serving
as a central empty RTI storage location. Each day, some users have products that need to be
transported to other users. As part of the forward logistics, these products are loaded on RTIs
such that the filled RTIs can flow between users in the supply chain. To fulfill product demand,
the origin users require an inventory of empty RTIs, which they can then load products on.
Similarly, the destination locations unload products from the received RTIs but are left with an
inventory of empty RTIs they might not necessarily require. The reverse logistics are concerned
with the recollection of unused empty RTI and the reintroduction of these empty RTI back to
where they are needed. In such a supply chain network, the management of RTIs dictates
how RTIs are distributed to those who need them and collected from those who do not. Both
the forward logistics and the reverse logistics are based on pickup and delivery requests,
where routes must be created to efficiently pick up filled or empty RTIs and deliver them to
another location. The complexity lies in the fact that both forward and reverse logistics must
be executed in the same routes. Coincidentally, the empty RTI inventory of all locations must
also be managed.

Under the current RTI management, the concept of RTI trading addresses the PDIRP: when
filled RTIs are picked from a user an equal number of empty RTIs are delivered, and when filled
RTI are delivered to a user an equal number of empty RTIs is picked. The delivered empty
RTIs originate from the depot, whereas the picked empty RTI are destined to the depot. In
this study, we introduce a forecast-based RTI management that implements RTI repositioning.
RTI repositioning consists of picking empty RTI from a user that does not require them and
transporting them to a user that might, thus repositioning an RTI from one user’s inventory
to another. By directly repositioning RTIs from one user to the next, RTIs do not need to be
brought back to the depot, omitting a day of depot storage as well as the handling of RTI within
this depot. To analyze the potential of RTI repositioning, we propose four types of reverse RTI
strategies:

• Pure depot delivery: a strategy where all reserve logistics are performed by delivering
empty RTIs from the depot. This strategy is considered as the current RTI management
and used as a baseline to compare the other strategies.

• Pure RTI repositioning: a strategy where all reserve logistics are performed by reposi-
tioning empty RTIs between users. In this strategy, no empty RTIs are delivered from the
depot except for emergency deliveries.

• Semi-hybrid: this strategy mainly implements RTI repositioning, but also performs depot
deliveries for users that require RTIs on a short-term.

• Fully hybrid: this strategy implements both RTI repositioning and depot deliveries, pri-
oritizing RTI repositioning as long as RTIs are available to be repositioned.
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Reverse RTI strategy Pure RTI
Repositioning Semi-hybrid Fully hybrid

Required RTIs -21.66% -13.45% -19.59%
Kilometers driven 0.40% 0.96% -0.90%
Depot activity -91.86% -82.87% -59.65%
Emergency deliveries 26.52% -52.04% -35.71%

TABLE 1: Relative average performance of each reverse RTI strategy compared to
pure depot delivery strategy

The sequential model relies on forecasts of expected empty RTI inventories to identify the
supply and demand of empty RTI in the supply chain. A series of hyper-parameters define
amongst others the length of the short-term and long-term planning horizon, as well as the
picking forecasting horizon. Respectively, these hyper-parameters determine the short-term
and long-term empty RTI demand of all users or their empty RTI supply that is available for
picking. Through the Hierarchical Knowledge Gradient algorithm, the values for these hyper-
parameters are optimized. With the proposed model, we extend the available literature by
incorporating multiple pickup and delivery routing structures in a single solution. Forward
logistics are based on a 1-1 routing structure. The reverse logistics’ routing structure depends
on the adopted reverse RTI strategy: the pure depot delivery strategy has a 1-M-1 routing
structure, the pure RTI repositioning strategy has an M-M routing structure, and the hybrid
methods consist of a combination of both.

In our experimentation, we find that all strategies with RTI repositioning (pure, semi-
hybrid, or fully hybrid) result in improved RTI utilization. In Table 1, most performance in-
dicators show a decrease compared to the pure depot delivery strategy. The strategies with RTI
repositioning show a significant reduction in the total number of RTIs required whilst barely
introducing additional distances driven. These strategies also reduce the total activity within
the depot. The pure depot delivery does increase the total number of emergency deliveries
due to the limited options with which this strategy can perform reverse logistics. The hybrid
strategies, on the other hand, significantly fewer emergency deliveries. Total costs are based on
the weighted sum of the total RTI renting costs, the forward and reverse logistics distance costs,
the depot activity costs, and the emergency delivery costs. Weights are defined within a specific
region in discussion with COMPANY B. Based on the observed KPIs score and least favorable
weight values, strategies with RTI repositioning always result in a reduction of costs and thus
an increase in efficiency when compared to the pure depot delivery strategy. Specifically, the
semi-hybrid strategy shows the most promising results: with a 95% confidence interval, an
increase in efficiency between 10.04% and 20.78% is observed. For each instance, the average
increase in efficiency is 11.69%, 18.46%, and 16.74% respectively.

Based on this observation, we conclude that RTI repositioning increases the efficiency of RTI
logistics. However, RTI repositioning must be considered along with depot deliveries. Costs
can significantly be reduced by renting less RTI and requiring fewer handling activities at the
dept. Additionally, inventory reliability is increased by minimizing the number of emergency
deliveries.
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FIGURE 1: Increase in efficiency of the pure RTI repositioning strategy (F1), the
semi-hybrid strategy (F2) and the fully hybrid strategy (F3) compared to the

depot only strategy.
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List of Definitions

• Returnable Transport Items (RTI): Reusable load carriers used for moving or transport-
ing goods. Within the horticultural industry, CC-containers (CC) and Auction Trolleys
(AT) are generally used.

• Forward Logistics:Forward Logistics are used to manage the forward movement of goods
from raw materials to the consumer.

• Reverse Logistics: Reverse Logistics are those used to manage the ‘reverse’ movement of
goods, from the end user to the manufacturer.

• User : A party in the supply chain that uses RTIs for their forward logistics.

• Logistical Service Provider (LSP): The party charged with all logistics in the supply
chain.

• Forward RTI flows: All transport flows aimed at transporting filled RTI between users.

• Reverse RTI flows: All transport flows aimed at transporting empty RTI between users
and the depot.

• Depot deliveries: Reverse RTI flow charged with delivering empty RTI from the depot
to a user.

• Depot returns: Reverse RTI flow charged with delivering empty RTI from a user to the
depot.

• RTI Repositioning: Reverse RTI flow charged with reallocation empty RTIs between
users.

• One-to-One (1-1): Pickup and delivery routing structure in which each commodity has a
single pickup location and a single delivery location.

• One-to-Many-to-One (1-M-1): Pickup and delivery routing structure in which commodi-
ties are picked at the depot, to be delivered at customer locations or, alternatively, the
customers might have commodities that must be picked and delivered at the depot.

• Many-to-Many (M-M): Pickup and Delivery routing structure in which commodities are
picked at the depot, to be delivered at customer locations or, alternatively, the customers
might have commodities that must be picked and delivered at the depot.

• Reverse RTI strategy: Set of reverse flow hyper-parameters that define a specific type of
RTI management.

• Reverse flow hyper-parameter: Hyper-parameter defining which reverse RTI flows may
be used in a simulation.

• Forecasting horizon hyper-parameter: Hyper-parameter defining the length of a fore-
casting parameter
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Chapter 1

Research Proposal

Over the years, the logistics industry has been transitioning towards sustainable processes.
This has led to the appearance of closed-loop supply chains, and the elimination of single-way
packaging. As a sustainable alternative, the industry has seen the rise of Returnable Transport
Items (RTIs). RTIs allow for better transportation and storage of various products. Well-known
examples of RTIs are pallets and crates. Reverse logistics, charged with recuperating used RTIs
for a new cycle, present the supply chain with new challenges. In this research, we analyse
improvements in the closed-loop supply chain of the Horticultural industry. More specifically,
we investigate the potential of RTI repositioning in a Pick-up & Delivery Inventory Routing
Problem (PDIRP). In this chapter, we present our research design. In Section 1.1, we introduce
the host institution of this research. In Section 1.2, we give a glimpse of the supply chain around
RTIs. In Section 1.3, we present the horticultural industry and the involved stakeholders. In
Section 1.4, the research design is presented.

1.1 Host institution

The research is hosted by COMPANY A, a start-up company located in Venlo, The Netherlands.
With “Stay Curious” as their motto, COMPANY A develops new logistics technologies. With
their experience in the logistics industry and awareness of what could be improved, they
collaborate with various parties around the Netherlands to modernize the industry.

Some examples of COMPANY A’s products include Brightsite and Rail-easy. Brightsite
is designed to monitor and predict conditions in controlled atmosphere warehouses. Based
on live data from COMPANY A sensors combined with historic and external data, Brightsite
alarms when the conditions reach early warning levels and enable the user to take action.
Within Rail-easy, smart IoT sensors provide live insight into the traffic on specific railway tracks
or rail yards. Additional features increase the safety on site with monitoring of switches and
predictive maintenance of railway wagons. A third type of products offered by COMPANY
A is encompassed under Smart Packaging solutions, where all types of product packaging are
modernized. This research is involved with a specific product within the Smart Packaging
solutions: the PRODUCT X system. PRODUCT X is a system that provides autonomous RTI
management and end-to-end RTI visibility. The RTI itself tells the system where and in which
conditions it is, based on which the system calculates rent, predicts when it will be empty or
plan transport in the most cost-efficient and sustainable way.

1.2 RTI Logistics

In this section, the general logistics around RTIs are introduced. A more thorough analysis of
the RTI supply chain is provided in Chapter 2. We start with an introduction of the origin of
RTIs, and their function. Next, we describe the supply chain in which RTIs are used, along with
the different actors in this supply chain.



2 Chapter 1. Research Proposal

1.2.1 Returnable Transport Items

Increased attention to the environmental impact of industrial activities has given birth to the
concept of closed-loop supply chain (Iassinovskaia et al., 2017). A closed-loop supply chain
refers to all forwards logistics, as well as the reverse logistics (Raj Kumer and Satheesh Kumar,
2013). As defined by Pival (2019), Forward Logistics are used to manage the forward movement
of goods from raw materials to the consumer, and Reverse Logistics are those used to manage
the ‘reverse’ movement of goods, from the end-user to the manufacturer. Besides the collection
of used products and recyclable waste, packaging is also part of the reverse movement within
Reverse Logistics. In operations management, product packaging is organized at a primary,
secondary, and tertiary level. The primary package is in direct contact with the contents,
whose structural design also serve to differentiate products. The secondary package is used
to group primary packages (and their contents) together, and also relates to the issues of visual
communication. Finally, the tertiary package is used for warehouse storage, transport and
shipping (Regattieri and Santarelli, 2013). Primary packaging is generally used as single-way
packaging, whereas secondary and tertiary packaging can be used as both single-way and
returnable packaging. Early research has shown that the usage of returnable packaging has
more environmental and logistics benefits as opposed to using single-way packaging, such
as cardboard boxes (Kroon and Vrijens, 1995). Returnable packaging falls under the more
general term Returnable Packaging Items, and are used for moving or transporting goods (GS1,
n.d.). Alternative expressions for Returnable Transport Items are any combination based of
Returnable/Reusable Transport/Logistical Items/Packaging (Iassinovskaia et al., 2017). For
the sake of consistency, the term Returnable Transport Items (RTI) will be used throughout.

1.2.2 Transportation Logistics

An RTI closed-loop supply chain is a supply chain where RTIs are used for shipping products
along different stages of the chain (Glock, 2017). Ownership of RTIs remains with a single party,
whilst being rented out to the logistics service providers in the supply chain. Various authors
have provided a general description of the closed-loop supply chain. Using the descriptions of
Glock (2017), Ilic et al. (2009) and LogicaCMG (2003), the supply chain can be represented as
in Figure 1.1. In this representation, a distinction is made between the Operator Domain and
the User Domain. The first domain consists of all parties that are charged with RTI operations
such as RTI supply and transport. The User Domain consists of the parties by which RTIs are
required for their forward logistics.

Operator
Domain User

Domain

RTI Pool
Owner

Origin

Intermediaries

Destination

RTI
Supplier

RTI
Maintenance

Logistics
Service

Provider

Full RTI transport Empty RTI transport Service

FIGURE 1.1: Representation of the RTI closed-loop supply chain
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The Operator Domain consists of suppliers, maintenance, a Pool Owner and Logistics Ser-
vice Providers (LSPs). These parties will be addressed as ‘Operators’. Suppliers are responsible
for the supply of RTIs. They sell them to the Pool Owner, who manages an RTI pool and make
them available to the remainder of the supply chain. LSPs rent RTIs from the Pool Owner to
perform the logistic processes (e.g., transport, storage, handling). Multiple LSPs can collaborate
with a Pool Owner, and each is responsible for a non-exclusive User Domain. Sometimes,
an actor is both Pool Owner and LSP. Maintenance is charged with the repair of RTIs. RTI
ownership remains at the RTI Pool Owner at all time. They rent the RTIs to the LSP, which is
responsible for the flow of RTIs within the user domain.

The User Domain consists of all parties that require RTIs to have their products transported.
It includes manufacturers, distribution centres (DCs), retailers and various other types of par-
ties. They will be referred to as ‘Users’. Upon request, empty RTIs are transported to an origin
location, which fills the RTI with their produce. Filled RTIs are pick-up and transported to the
destination. Occasionally, the RTIs also pass through various intermediate locations, where
intermediate operations are performed. Once RTIs are unloaded at their destination, thus
ending the produce’s forward logistics, they are collected and returned to the Pool Owner.

How RTI flows betwee users and the operator domain are managed depends on the RTI
control strategy in use. Glock and Kim (2014) differentiates between three types of RTI control
strategies: a switch-pool system, a transfer system and a depot system. In the switch-pool
system, all users are allocated a portion of all RTIs in circulation. With every pickup and
delivery, RTIs are switched: upon delivery of filled RTIs, the receiving locations traded an
equal number of RTIs to be returned to the origin location. In the transfer system, each origin
location is responsible for tracking, administering, maintaining and storing RTIs. In the depot
system, origin locations are provided RTIs from the depot and RTIs are recollected at the end of
the forward supply chain. The latter RTI control strategy is most common is larger closer-loop
supply chain, such as the one addressed in this study.

As mentioned, the LSP is responsible for the flow of RTIs within the user domain. They
ensure all forward and reverse logistics are executed. In this type of supply chain, the LSP
uses a central RTI storage for RTIs not used by the user domain: an RTI depot. We differentiate
between three types of RTI flow organized by the LSP: the forward RTI flow, the depot delivery
flow and the depot return flow. The forward RTI flow consists of all RTI that all transported to
fulfill the forward logistics between users. The depot delivery flow consists of all empty RTI
being introduced in the user domain from the RTI depot. The depot return flow consists of all
RTIs collected at the end of their forward flow, to be returned to the RTI depot.

RTI depot

User

User

User

Forward RTI flow (forward)

Depot delivery flow (reverse)
Depot return flow (reverse)

FIGURE 1.2: Types of forward logistics and reverse logistics RTI flows

1.3 Context & Stakeholders

In the previous section, we introduced RTI logistics. Different parties in the supply chain were
briefly described. In this section, we introduce the research context. Next, we introduce the
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various stakeholders, along with their roles within the supply chain. Finally, we dive into the
problems currently experienced.

1.3.1 Context

In this research, we perform a case study within the horticultural industry. Even after the
impact of the global pandemic, this industry remains the largest export industry of the Nether-
lands, representing 9.5 billion euros in 2020 (1.2% GDP) (CBS, 2021). Multiple parties play a
role in the Dutch horticultural industry. A well-known name is that of Royal FloraHolland, the
largest flower auction in the world with a turnover of 4.7 billion euros in 2020. This research is
limited to the market of COMPANY B (presented in the next section). Generally, two types of
RTIs are used: Auction Trolleys and CC-Containers. The horticultural industry is unique due to
its strong seasonality. A large majority of all sales are done in high season, between March and
May. The remainder of the year is considered low season. Industry-specific RTI characteristics
will further be described in Chapter 2.

1.3.2 Stakeholders

The Operator Domain consists of COMPANY C and COMPANY B. COMPANY C is the RTI
Pool Owner within this Supply Chain and the owner of the so-called ‘COMPANY C Pool
System’, the largest RTI pooling system in both the European and Northern-American hor-
ticulture industry. Their closed-loop supply chain is organized with various LSPs, amongst
which COMPANY B (referred to as COMPANY B). COMPANY B closely collaborates with the
Pool Owner. Besides the pick-up and delivery of empty RTIs, they are also responsible for
the transport of filled RTIs. Within their fleet, COMPANY B works with numerous trucks and
three central depots, respectively located in Venlo, The Netherlands and Kevelaer, Germany.
Both these depots serve as a central storage location for RTIs provided by the COMPANY C.
RTI supply and maintenance are performed by external parties.

The User Domain consists of various nurseries, plant & flower auction halls and retailers.
They are located throughout the Netherlands, Germany and Belgium. Nurseries are flower,
plant and tree growers. They require RTIs to transport their produce to retailers or follow-up
nurseries. The latter term refers to nurseries that cultivate plants after an initial growth phase in
another nursery: some plants have multiple specialized growing stages, performed by various
specialized nurseries. While on their way to their destination, some RTIs pass through auction
halls. Auction halls serve as a marketplace where potential buyers (e.g., retailers) can bid on
various produce. Finally, upon arrival at their final destination, produce are unloaded by the
receiving location. After a specific time, RTIs are empty and ready for collection once again,
ending the RTI cycle.

1.3.3 Current RTI management

COMPANY B functions according to a depot system with switch-pool characteristics. Although
depots serve as RTI storage locations, an RTI trading practice is in place in which empty RTIs
are traded for filled RTIs at each pickup and delivery. Every user is allocated an RTI balance
which is kept at a constant levels as much as possible. This process reduces transport for
delivery and pickup of empty RTIs only (trips are combined with forward logistics trips), and
simplifies administration as a user’s RTI balance is kept unchanged as much as possible. By
minimizing the risk of human administrative errors, missing RTIs are more easily detected in
case of a imbalance between administrative and physical RTI inventory. Under this current RTI
management, COMPANY B observes high costs which results from a high RTI loss rate and
high renting costs.
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Although RTI loss is prevented through the current RTI management system, it is still
accounts for a lot of costs. Up to 11.7% of all RTIs are lost on a yearly basis within COMPANY
C pool. (C, 2020). Loss of RTIs is mainly caused by a lack of RTI visibility, i.e., the awareness
of RTI locations. Within the horticultural industry, passive RFID tracking is widely applied.
Elaborated on in Section 2.2.2, passive tracking requires manual labour which is subject to
human errors. COMPANY B rents their RTIs from COMPANY C, which are then used by
users in the pool through a service agreement. COMPANY B remains, however, responsible
for all costs of lost RTIs. COMPANY B’s service agreement with RTI users excludes renting
costs, which are thus paid in full by COMPANY B. Although renting costs are factored in some
form within the service agreement, users observe no consequence for large RTI inventories.
An argument in defense of such a system is that RTI trading should not result in financial
consequences for users: RTI trading is used to improve COMPANY B’s RTI management and
should not require unfavorable consequences for the users. As a result, however, RTIs remain
idle for longer period of time which reduces RTI utilization. Additionally, all RTIs are returned
to the depot at the end of a forward logistics cycle. As RTIs remain in the depot at least for a
time, idle time is further increase resulting in a decrease of utilization.

High costs

Renting costs

RTI loss

Inventory
idle time

Depot
idle time

Low
utilization

Poor RTI
management

Poor RTI
visibility

FIGURE 1.3: Problem cluster

Loss of RTIs is direct consequence for a lack of RTI visibility. High renting costs, on the other
hand, follow from poor RTI management. Currently, however, improving RTI management
is operationally difficult due to this poor RTI visibility: better management requires a better
information stream of where RTIs are located. The core problem is thus defined as

Poor RTI management and poor RTI visibility results in high costs
caused by a high RTI loss-rate and low RTI utilization.

Through COMPANY A’ PRODUCT X system, RTI visibility can be improved. Their system
relies on active RTI tracking which, in turns, allows for further improvements in RTI manage-
ment. In this study, we focus on improving RTI management. Specifically, we research how the
practice of RTI repositioning can improve RTI utilization and reduce RTI related costs.

1.4 Research description

The goal of COMPANY A’ PRODUCT X system is to design an autonomous IoT RTI system.
Digitally connected RTIs provide live locational information, handled by a central intelligence.
The latter autonomously forecasts various logistic events, according to which an optimized
planning is designed. Additionally, various logistics improvements can be implemented. Such
an implementation can solve the addressed core problem. RTI visibility, RTI repositioning
and RTI supply and demand forecast are possibilities to address the core problem; they are
currently absent in the supply chain.
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1.4.1 RTI repositioning

RTI repositioning consists of reallocating empty RTI inventory directly between users. In
Figure 1.4, we extend the prior Figure 1.2 to include repositioning flows. Repositioning flows
allow RTI to be reused without passing through the depot, reducing idle time by at least a
day. Repositioning, in this study, is therefore defined as the pickup and delivery of empty
RTI between users. Asides from the efficient allocation of RTIs, RTI repositioning should also
consider the operational effects on routing and, more importantly, the trade-off between a
better RTI utilization and potential added costs due to transport.

RTI depot

User

User

User

Forward RTI flow (forward)

Depot delivery flow (reverse)
Depot return flow (reverse)

Repositioning flow (reverse)

FIGURE 1.4: Types of forward logistics and reverse logistics RTI flows

1.4.2 Scope of research

An effective implementation of RTI repositioning requires both accurate RTI visibility and
forecast of RTI needs. In this study, COMPANY A’s PRODUCT X system is considered imple-
mented, allowing for full RTI visibility. Additionally, we estimate forecasts based on historical
data provided by COMPANY B, but do not elaborate on forecasting methods. Rather, the
scope of the research is to analyse how RTI visibility and RTI forecasts are used to implement a
dynamic RTI repositioning system.

Dynamic RTI repositioning is the process of proactively repositioning RTIs whilst in an RTI
cycle: instead of returning an RTI to the depot at the end of the cycle, a new, closer-by, user
might require the RTI, preventing excessive transport. Given non-deterministic pick-up and
delivery requests, effective proactive repositioning requires accurate RTI requirement forecasts.
A repositioning system processes these forecasts into a dynamic RTI planning: not only should
it consider what to do with today’s RTIs, but it should think days ahead. Live data, obtained
through RTI visibility, present clear inventory information, but might also enable a feedback
loop to further improve forecasts for future extensions of the PRODUCT X system.

During this research, we analyse the benefits of the operational implementation of dynamic
RTI repositioning in the current supply chain. Therefore, the strategic and tactical decisions,
such as the number of trucks available in depots, are left out of scope. We will also restrict
ourselves to the supply chain organized by COMPANY C & COMPANY B, which is classified
as a Pick-up and Delivery Inventory Routing Problem (PDIRP) (Iassinovskaia et al., 2017).

1.4.3 Research design

In the research scope, dynamic RTI repositioning is proposed as a solution for the core problem.
Accordingly, this research will investigate how to implement such a system, and analyse its
potential. Meanwhile, considerations are kept for the desire for eventual real-world imple-
mentation in the PRODUCT X system. As such, we define the following research question:

In what way and to what extent can dynamic RTI repositioning
improve the efficiency of RTI logistics?
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To support this research question, we define a few sub-questions that contribute to the
answer. First, the current supply chain needs to be analysed further. A better understanding of
the supply chain is necessary to chart the decision-making method currently employed. This
representation will serve as a baseline to recreate the current situation. Although partially
answered in the current chapter, Chapter 2 fully addresses the following question:

1. What operational decision-making methods are currently used by the RTI Operator Do-
main to organize RTI transport, and what is their effect on the supply chain’s perfor-
mance?

Next, we investigate insights literature has to offer. In Chapter 3, we research existing
methods and applications for dynamic RTI repositioning. To do so, we break the literature
review down into three sections. First, we investigate PDIRP studies in general. We also
research repositioning in routing problems. Extending on our literature, we also investigate
parameter tuning methods.

2. What insights can literature offer on PDIRP problems, and which methods have been
used to address these problems?

3. How are routing problems with repositioning requirements addressed, according to lit-
erature?

4. Which methods have been used to tune parametric algorithms in similar problem set-
tings?

In Chapter 4, we define our solution approach. With insights from the previous sub-
questions, a method is proposed that integrated RTI repositioning in the supply chain. In
Chapter 5, we define an experimentation strategy and discuss its results and sensitivity. Whilst
answering the following sub-questions, we keep in mind the required characteristics for an
eventual implementation:

5. How can dynamic RTI repositioning be implemented in the analysed horticultural supply
chain?

6. To what extend does an autonomous dynamic RTI repositioning system improve the
analysed horticultural supply chain?

The solution design in Chapter 4 and results in Chapter 5 serve as a proof of concept for
the PRODUCT X system. In Chapter 6, we provide our conclusion and recommendations.
Additionally, we reflect on the potential steps required for full implementation of the system
in a near future, given the technologies currently available at COMPANY A:

7. How can an autonomous dynamic RTI repositioning system be implemented in a real-
world situation?

1.4.4 Deliverables

Deliverables for this research consist of a Proof of Concept for an autonomous dynamic RTI
repositioning system. Along with a proposal for the implementation of such a system in the
PRODUCT X system will be delivered.

1.4.5 Research design

This research will be conducted using an analytical model, in which the supply chain is repli-
cated. We use the analytical model to perform an analysis of the baseline scenario and the
various proposed solutions. In this analytical model, we can assume full implementation
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of the PRODUCT X system, providing the necessary RTI visibility. To obtain the necessary
knowledge to replicate the supply chain, a thorough analysis of the RTI supply chain is per-
formed. Information is found in literature, electronic sources and information provided by
COMPANY B. The latter has provided a data set of all transportation orders in 2020, which
allows for the design of various scenarios. The baseline is created by translating the current
pick-up and delivery practices into methods that can be implemented analytically. To design
dynamic RTI repositioning solutions, literature research is performed. From the literature, we
seek insights to design an algorithm that uses RTI visibility and empty RTI supply and demand
forecasts. These forecasts are used for effective proactive RTI repositioning. The whole will be
implemented in an algorithm that, trained against the provided data set, will arrange filled RTI
transport & empty RTI repositioning. To conclude, various instances and solution methods are
run in the analytical model. Numerical outputs will be analysed to make comparisons and
analyse the sensitivity of the solutions. Finally, conclusions are drawn based on the data, and
final advice regarding the implementation of dynamic RTI repositioning is given.
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Chapter 2

Current RTI management

In the previous chapter, we introduced what Returnable Transport Items are, how they are
used and which parties are generally involved in their management. In this chapter, we elab-
orate on the characteristics of RTIs within the analysed RTI pool. In Section 2.1, we shortly
summarize the information provided in Chapter 1. In Section 2.2, we address the specifics of
RTIs within the horticultural industry, as well as the current RTI management by COMPANY
B. In Section 2.3, we provide a theoretical numerical example to substantiate the potential of
RTI repositioning.

2.1 Summary

In the previous chapter, we broadly introduced the logistics around Returnable Transport Items:
RTIs serve as load carriers to efficiently transport produce from origin to destination. RTIs
are designed to practically carry multiple products and facilitate more efficient loading and
unloading from transport vehicles. RTIs are used by parties in the so-called User Domain, but
owned and managed by parties in the Operator Domain. The user domain consists of all those
who require RTIs for the transport of their products. This includes both the product suppliers
as well as the product receivers and users providing intermediate value-adding activities. The
Operator Domain consists of multiple parties. The Pool Owner is the owner of the RTI pool.
They rent out the RTIs to the user domain. Often, a Logistics Service Provider (LSP) is charged
with the logistics within the user domain. They ensure RTIs are made available to the user
domain and are charged with transport and (empty) RTI storage.

Within RTI logistics, a distinction is made between forward logistics and reverse logistics.
Forward logistics consists of all activities that manage the forward movement of goods, from
raw materials to consumers. Reverse logistics consists of all activities that manage the reverse
movement of goods, from the consumer back to the manufacturer (Pival, 2019). With the
management of RTIs, forward logistics consist of all activities that ensure loaded RTIs flow
between an origin location to a final destination. Reverse logistics concern all activities that
ensure RTIs are recollected at the end of the forward flow and made available again within
the user domain. Sometimes, the reverse logistics process might include temporary storage or
cleaning and repair of RTIs. The forward and reverse logistics are materialized by flows of RTI,
indicating between which locations RTI may flow, as shown in Figure 1.4.

2.2 Horticulture Pool

As introduced in Section 1.3.1, this study is performed in the context of a horticultural supply
chain. In Section 1.3.2, the parties in the operator and user domain are briefly introduced. In
this section, we further elaborate on their supply chain organization.
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2.2.1 Used RTI

Let us first elaborate on the types of RTI used in the COMPANY C’s RTI pool. Two RTI
types are introduced: Auction Trolleys (AT) and CC-Containers (CC). Auction Trolleys and
CC-Containers are specialized RTIs used exclusively in the horticultural industry. Auction
Trolleys are typically used in auction halls, such as Royal FloraHolland, due to their convenient
transport on-site. For remaining transport, CCs are used. They are the preferred RTI as they
are very modular, can transport plants of almost any shape and size and are practical to handle
during transport and distribution. Both AT and CC are practical due to their modularity. In
the appendices, Figure A.1 shows both RTI types, filled and empty and Table A.1 names the
modular components.

Both RTI types are often transported together. Their modular nature and standardized sizes
ensure that transporting a mix of RTIs is straightforward. In Figure A.2, three trucks load are
shown. Although RTIs occupy a two-dimensional surface in a truck, the load can conveniently
be approximated in a one-dimensional measure: RTI meters. The amount of RTI meters an
RTI requires depends on the type and the load: CCs are smaller than ATs and, since both are
modular, they can be deconstructed to occupy less volume when empty. A generic truck has a
capacity of 13.2 RTI meters. The RTI-meter requirements for RTIs are summarized in Table 2.1.
Since empty RTIs can be stacked, they occupy space in batches. As such, a single empty CC
requires the same amount of RTI-meters as 10, hence the maximum of 280 empty CC.

CC filled empty AT filled empty

RTI-meters 0.306 0.0459 0.586 0.293
Batch size 1 10 1 2

Maximum load 13.158 12.852 12.892 12.892
Maximum units 43 280 22 44

TABLE 2.1: AT & CC RTI meter requirements

2.2.2 RTI visibility

Although RTIs are used by various parties in the supply chain, COMPANY C remains the
owner. As introduced, the loss of RTI results in large costs, and as such COMPANY C requests
proper management of RTIs from other parties in the operator domain and user domain. When
RTI visibility is coupled with proper managerial actions, RTI investment costs could be reduced
by 52% (Johansson and Hellström, 2007).

RTI visibility has improved a lot over the years thanks to new technologies. The first
solution consisted of bar-coding every single RTI. More recently, RFID tracking has taken
over the industry. RFID tracking consists in equipping every RTI with a Radio-Frequency
Identification (RFID) tag, which identifies them upon scanning. Both active and passive RFID
tags can be implemented. Active RFID tag signals can autonomously be picked up by readers
without much manual activity, but are expensive and require an energy source. Passive RFID
tags require manual scanning with electro-magnetic readers but are far less expensive. Passive
RFID tracking is widely applied in the horticultural industry. They ensure the authenticity of
RTIs, which not only confirms the quality but also ensures the RTI has the correct format to
ensure its practical benefits (Section 2.2.1).

Even with these tags, a lot of RTIs are still lost. An unknowing nursery might load their
produce in COMPANY C’s RTIs when the order will be carried out within another RTI Pool.
Alternatively, RTIs might accidentally get swapped for unauthentic RTIs which might only
get noticed further down the streams. In their 2020 report, COMPANY C hints towards the
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necessity of active RTI tracking in their industry to minimize loss (C, 2020). The PRODUCT X
system, proposed by COMPANY A, is such a system. RTIs are autonomously tracked within
users’ storage locations and upon loading and unloading of RTIs. This project builds on the
presence of such a tracking system.

2.2.3 User domain

Multiple types of users are involved within the user domain, located throughout the Nether-
lands, Germany and Belgium. Generally, a horticultural user domain consists of seed breeders,
plant nurseries, auction halls and retailers. Seed breeders are specialized in the ennoblement
of plant seeds. They form the start of the forward flow: seeds are sold to plant nurseries that
cultivate them for the specific ennobled characteristics of the plant. Nurseries consist of all
users that grow plants. A nursery often specializes in a specific type of plant in a specific growth
stage. Especially for larger plants, such as trees, multiple nurseries with different growth-stage
specializations are necessary. When plants are ready for sale, they are sold to retailers in large
quantities in auction halls, or sold to said retailers directly. In Figure 2.1, users present in
COMPANY B’s user domain are plotted. In the long run, we are not specifically interested
in the activities of a location (nursery, seed breeder, etc...). Their RTI flow characteristics, on
the other hand, show how a location interacts with RTIs. As such, locations are classified by
whether they are origin locations, destination locations or both. As their name suggests, origin
locations are most commonly the origin of a forward transport flow, such as seed breeders and
specific nurseries. Destination locations mostly include retailer stores. As explained, locations
can also serve both purposes when they are in the middle of the forward logistics flow. The
flow characteristics of a location play a role, as it determines how the reverse logistics should
be organised. Reverse logistics are not as black-and-white as one might think: locations might
dynamically change from requiring RTIs and providing RTIs.

2.2.4 COMPANY B

To organize their transport, COMPANY B uses three central depots, respectively located in
Venlo (NL), Herongen (DE) and Lüllingen (DE). The depot in Venlo generally serves as a
storage location for empty RTIs, whereas the German two depots also serve as a distribution
centre where cross-docking occurs, with the Lüllingen depot being the largest. Transport is
handled by a total of 32 trucks, located at one of the three depots.

2.2.5 Forward logistics

Each day, users have until midnight to pass their orders for the next day. Although orders
consist of products with specific destinations, a transport order will consist of a number of
RTIs the products are loaded on. In the industry, full RTIs are generally ordered, which may
consist of a variety of plants as long as these originate from the same nursery. Transport orders,
consisting of an RTI quantity, are generally sent out by the origin locations, as they are responsi-
ble for loading the RTIs. During the night, a team of planners organize the morning’s transport
activities mostly based on expert judgement: using an interactive map, orders are grouped
by origin proximity. While forming groups, orders are removed if the total ordering quantity
exceeds the vehicle’s capacity, or added if there is still room left. In practice, COMPANY B
observes that grouped origins often have close-by destinations. The routing process heavily
relies on the expert judgement of drivers: integrated routing solutions are not available in their
software. Generally, RTIs are delivered in the reverse order they were picked as. Orders are
transported in two shifts during the day: a morning shift and an afternoon shift.
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Origin only

Destination only

Origin & Destination

FIGURE 2.1: Plot of all User locations

2.2.6 Reverse logistics

Within the user domain, the origin locations of forward logistics transport orders require a
stock of empty RTIs to load them. At the end of the forward logistics, filled RTIs are delivered
at receiving locations that often have no use for them themselves. The reverse logistics aim at
ensuring this asymmetry is corrected. COMPANY B organizes its reverse logistics through the
use of an RTI balance. This balance tracks the amount of RTIs a user has at its name. A user
can let COMPANY B know what their preferred balance is. To ensure user have their desired
amount of RTIs, the concept of RTI trading is generally applied.

RTI trading consists of trading empty and full RTIs upon pickup or delivery. When a vehicle
departs for their first forward order pickups, they leave the depot with an identical number
of empty RTIs. Upon pickup of filled RTI, empty RTIs are directly unloaded. As such, the
user’s RTI balance is kept stable and his empty RTI inventory is replenished. Upon delivery of
forward order, filled RTIs aer unloaded and an equal number of empty RTIs are picked. These
empty RTIs are then brought back to the depot. During this process, the authenticity of RTIs is
checked by scanning the RFID tags.

This trading process is not only meant to ensure users have a desired quantity of empty
RTIs. More importantly, this trading procedure ensures that COMPANY B knows where their
RTIs are. The reverse logistics process is not coordinated. There are no information streams that
track where RTIs are located, except for the RTI balance. By keeping the balance at a constant
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level, COMPANY B reduces the chance of (manual) synchronisation mistakes and thus the
loss of RTIs, both physically and administratively. Naturally, the dynamics and seasonality of
the industry might result in origin locations requiring more (or less) empty RTIs in stock. On
their initiative, they can inform COMPANY B of this, after which an empty RTI delivery is
scheduled and the user’s RTI balance is updated. Similarly, destination locations can request
the recollection of empty RTIs.

2.2.7 Open-loop and closed-loop

As a point of discussion, we need to indicate the structure of COMPANY C’s RTI pool. An
RTI pool can be implemented in a closed loop supply chain or an open loop supply chain. In
the context of RTI management, a closed-loop supply chain consists of a pool in which RTIs
flow only between the users in this pool. An open-loop supply chain, on the other hand, is
also subject to outgoing and incoming flows from external parties. COMPANY C’s RTI pool is
closed-loop when considering their entire network, spanning all over Western Europe through
collaborations with various LSPs. Within this network, COMPANY B only manages a (local)
fraction of all users, which we refer to as COMPANY B’s local user domain. The horticultural
market spans further than a local user domain. Nurseries can produce plants for retailers
outside of a local user domain as well. As such, LSPs have overlapping user domains. From
COMPANY B’s point of view, the RTI pool is therefore considered open-loop. This concept is
represented in Figure 2.2a. To remain within the scope of the study, we assume COMPANY B’s
user domain is closed, as represented in Figure 2.2b. Conceptually, the findings in this study
can be extrapolated to COMPANY C’s entire RTI pool, as the study regards an operational
improvement that can be generally applied throughout their network.

Pool
Owner

LSP A

LSP B

LSP C

User

User

User

User

User

User

User

User

User(A) Transport between all LSP user domains, forming an
open loop supply chain
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User

User

User

User

User

User

User
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User(B) Transport of a single LSP’s user domain, forming an
closed loop supply chain

FIGURE 2.2: From an open loop (A) to a closed loop (B) supply chain: all external
in- and outbound transport are replaced with empty RTI pickups and deliveries.
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2.3 Numerical example

Having further introduced the RTI pool, we close the review of the current RTI management
by providing a numerical example of its execution, as well as the theorized improvements that
follow from RTI repositioning. To this end, considered a small RTI pool with a central depot D,
two nurseries A & B and a single retailer R. In this example, we analyse how the inventory of
locations is managed, and how the transport flows are executed.

As a short reminder, the supply chain addressed consists of both forward and reverse
logistics, with the flow of RTI summarized in Figure 1.4. The forward RTI flows consists of
all RTI movement that ensures products loaded on RTI are transported between an origin and
a destination. Depot delivery flows ensure that RTI are delivered from the RTI depot to a user,
such that the latter can fill the RTI and prepare them for forward transport. Depot return flows
consists of the recollection of empty RTI at the end of their forward flows. Finally, repositioning
flows consist of the reallocation of RTI between two users. As such, the RTI can be reused
directly, omitting a return to the RTI depot and a delivery to a user.

To prepare their orders, the two nurseries fill up empty RTIs they have in storage to prepare
them for pickup when an order comes up. This process is assumed to take a single day,
regardless of the number of RTIs to prepare. Empty RTIs must be in inventory at the end
of the previous day in order for them to be filled. When empty RTIs are filled during a day,
they can be picked up the next morning. Filled RTIs are collected and then delivered at the
retailer. The retailer slowly unloads the filled RTIs at the rate of one RTI per day. When a filled
RTI is unloaded, it is stored as empty and available for reverse logistics flows.

We assume that all locations are equally distant from each other. Each location is charac-
terized by two inventory levels: an inventory of filled RTIs, and an inventory of empty RTIs.
The inventory levels fluctuate with each transport order of filled or empty RTIs. The nurseries
start with an inventory of 2 and 3 empty RTIs respectively. The RTI are loaded when necessary
according to the rate discussed above. The retailer starts with 2 filled RTIs in inventory. These
RTI are slowly unloaded at the rates discussed above. The depot inventory (not shown in the
figures) is assumed to always be sufficient. Finally, we also keep track of the total number
of RTIs in use by the three users (nurseries A & B and the retailer). The total number of RTI
represents the absolute minimum number of RTI that the logistical service provider must rent
from the pool owner. We considered a planning horizon of 10 days. During the planning
horizon, we assume four transport orders are planned between the nurseries and the retailer:

• t = 2 2 RTIs from A→ R
• t = 4 3 RTIs from B→ R
• t = 6 2 RTIs from A→ R
• t = 8 3 RTIs from B→ R

In Figure 2.3a, we indicate how transport is operated under the current RTI management.
In this scenario, RTI repositioning is not applied. On days t = 2, t = 4, t = 6 and t = 8, a
forward transport order is planned. With every order, the concept of RTI trading is applied: if
a filled RTI is picked, it is traded for an empty RTI, provided via a depot delivery. Similarly, if
a filled RTI is delivered it is traded for an empty RTI, which is returned to the depot. As depot
deliveries occur before depot returns, the total RTIs in use see a peak. We can also observe
that nurseries almost always have empty RTIs in storage. Figure 2.4a, transport is shown. The
transport vehicle departs with a few empty RTIs from the depot, as part of the depot deliveries.
It first visits a nursery, delivers the empty RTIs, picks the filled RTIs and continues towards the
retailer. Here, filled RTIs are delivered and empty RTI are picked, which are then returned
to the depot. Along with the vehicle routes, the flows of RTI according to Figure 1.2 are also
indicated.
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FIGURE 2.3: Inventory patterns of the nurseries and the retailer. With each
pickup or delivery of empty RTI, the accolade indicates according to which flow

it is transported (see Figure 1.2)
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In Figure 2.3b and Figure 2.4b, the same forward flows are shown. In this scenario, however,
RTIs are repositioned. In this case, Nursery A does not receive a new supply of empty RTIs after
its filled RTIs order is picked. Once the order is delivered, the vehicle picks the available empty
RTIs and returns them to the depot. In t = 4, the order from nursery B is picked. Once again,
no empty RTIs are delivered from the depot. Upon delivering the order, the available empty
RTIs at the retailer are picked. These RTIs, however, are not brought back to the depot but
repositioned: they are delivered at nursery A. With one day to spare, nursery A fills the RTIs
for the next order. Before picking the order and delivering it, the depot notices that there are
only two empty RTIs available for repositioning at the retailer. However, nursery B will (most
likely) require three empty RTIs to fulfil their next order. To this end, the vehicle departs from
the depot with one empty RTI. Upon picking the order at nursery A and delivering it to the
retailer, the vehicle collects the two empty RTIs and repositions them at nursery B along with
the additional empty RTIs from the depot. Upon completion of the final order, two RTIs are
once again repositioned.

Theoretically, RTI repositioning could reduce the number of RTIs required quite drastically.
Without RTI repositioning, a total of 11 RTI would be necessary to execute the planned trans-
port orders, considering also all RTI still in inventory. This can be reduced to 7 by introducing
RTI repositioning. The inventory levels at the nurseries are also lowered. As a consequence,
however, some additional visits are required at nurseries to deliver repositioned RTI. Without
repositioning, the routes have a total length of 12. With repositioning, the total route length is
increase to 15.

2.3.1 Discussion

As can be observed in this example, a reduction in the number of RTIs can be observed. By
reducing the total amount of RTIs necessary, costs can be reduced and the utilization of RTIs
increased. RTI repositioning does, however, come at the cost of additional. The example also
assumes all future orders are known ahead of time. In practice, orders are known the day
before they have to be carried out. As such, RTI repositioning should follow from forecasted
information on future orders, which can introduce deviations from reality and could result in
additional costs. In the upcoming chapters, we will further research how to design an RTI
repositioning method that considers these various aspects.

2.4 Conclusion

In this chapter, we further investigate the RTI supply chain. Two types of RTIs are generally
used ATs and CCs. These RTIs have a practical nature, especially when it comes to transport:
they can efficiently be loaded and unloaded. Additionally, capacity requirements for RTIs can
be translated to a one-dimensional measure, RTI-meters, which allows for simple capacity
computations. We also present the user and operator domain in further detail. Specifically,
we address how COMPANY B manages its forward and reverse logistics. At the end of each
day, the forward logistics transport orders are known. Their execution relies on the expertise
of both planners and drivers: all routing activities are planned manually. The reverse logistics
are largely uncoordinated. An RTI trading system is in place where, upon pickup or delivery
of filled RTIs, an equal number of empty RTIs are traded. That is, nurseries receive a new
batch of empty RTIs each time filled RTIs are picked, and retailers provide empty RTIs each
time an order is delivered. The picked empty RTIs are always returned to the depot. Finally,
we indicate the current RTI management’s effect on the supply chain through a numerical
example. We also extend this example by theorizing how RTI repositioning could result in
improved RTI logistics, and which trade-offs to consider.
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Chapter 3

Literature Review

In this research, we address the efficient usage of RTIs within a supply chain. The management
of RTIs should ensure that all users in the supply chain have enough RTIs to organize their
activities. At the same time, we must ensure an efficient usage of this resource to minimize
costs associated with the management of RTI, such as renting and transportation costs. In this
chapter, we investigate how literature addresses operational RTI management problems. In
Section 3.1, we introduce pickup and delivery problems along with inventory routing prob-
lems, and we explain how this literature relates to RTI management. We also review various
studies related to these topics, based on which a parametric solution design is proposed. In Sec-
tion 3.2, we investigate how to optimize parametric models, and indicate how similar routing
problems have addressed this topic.

3.1 Pickup & Delivery Inventory Routing Problem

In this section, research relating to the routing characteristics of this study are presented. To
provide a clear picture of the problem classification, we first introduce the concepts that have
led to the definition of the Pick-up & Delivery Inventory Routing Problem (PDIRP). Next, we
analyse specific sub-domains within this classification. Subsequently, we provide a review of
existing research related to RTI logistics.

3.1.1 Origins

When inventory is managed by the supplier of goods, as is the case in this research, we speak of
Vendor Managed Inventory (VMI). In a VMI partnership, the supplier (e.g., the Pool Operator)
makes the main inventory replenishment decisions for the consuming organization (Waller et
al., 1999). By taking a holistic view of inventory levels throughout the supply chain, delegating
the control of all inventory including shipments between echelons to a single point, transport
and inventory holding can be more efficiently managed throughout the supply chain (Disney et
al., 2003). The objective of VMI is to ensure receiving parties have enough products to perform
their activities, whilst considering limited resource availability and storage costs.

A Vehicle Routing Problem (VRP), on the other hand, is a broad term referencing all combi-
natorial optimization problems seeking how to most efficiently route a vehicle fleet to deliver
to a set of customers. Since its first appearance in 1959, VRP studies have been growing at an
exponential rate of 6.09% (Eksioglu et al., 2009). Numerous variations of the VRP have been
designed over the years, all applicable to a specific situation. Common VRP variations are the
VRP with Time-Windows, the Capacitated VRP and the Multi-depot VRP; referring to VRPs
requiring deliveries within a time-window, capacitated delivery vehicles or multiple origin
depots respectively.

When a decision-maker is tasked with both the management of inventories (e.g., VMI) and
routing decisions of said inventory (e.g., VRP), the problem is referred to as an Inventory
Routing Problem (IRP). In an IRP, a commodity often limited in supply must be efficiently
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distributed amongst customers to ensure both a high enough service level and an efficient
enough transport of commodities. Alternatively, the problem can also address situations in
which inventories must be relieved. IRP often deal with inventories reducing over time as well
as stochastic demand. As such, the problem is complicated by the considerations to be made
between efficient routing and efficient inventory allocation.

Another variation of the VRP is the Pickup and Delivery Problem (PDP), also referred to
as the Vehicle Routing Problem with Deliveries and Pickups (VRPDP). The PDP is in itself a
broad generalization of various more specific PDPs. Battarra et al. (2014) present an important
characteristic, which related to the type of routing structure being considered: One-to-one (1-
1), One-to-many-to-one (1-M-1) and many-to-many (M-M). In a 1-1 PDP, each commodity has
a single pickup location and a single delivery location. The 1-M-1 considers a problem where
commodities are picked at the depot, to be delivered at customer locations or, alternatively,
the customers might have commodities that must be picked and delivered at the depot. This
problem category can also be limited to a 1-M or M-1 problem. Finally, the M-M PDP considers
a problem where each commodity can have multiple origin and destination locations and any
location may be the origin or destination of multiple commodities. Van Anholt et al. (2016)
even propose a fourth type, the 1-M-M-1, which combines depot-customer, customer-depot
and customer-customer streams. This fourth category is essentially a combination of the 1-M-1
and M-M routing structures.

The aforementioned concepts all build-up to the general concept of Pickup and Delivery
Inventory Routing Problems (PDIRP). As the name suggests, this describes an IRP where in-
ventory flows must be picked and delivered (Iassinovskaia et al., 2017). Just as in the PDP, the
routing structure further specifies the problem type.

Relation to RTIs

To frame the analysed supply chain in terms of the PDIRP, consider first the forward logistics.
Unique supplying locations (e.g., nurseries) require filled RTIs to be transported to unique
destination locations, a 1-1 PDP. To prepare the filled RTIs, the supplying locations must have
enough empty RTIs in inventory. As such, the inventories of locations must be managed as
well. Through reverse logistics, empty RTIs have to be delivered as supplying locations and
picked at receiving locations. Based on the applied reverse RTI strategy, the reverse logistics can
be classified as a 1-M-1 PDP, an M-M PDP or both. Consider the current practice of trading RTIs:
empty RTIs are delivered to the receiving locations from the depot or picked at the receiving
locations to be returned to the depot; a 1-M-1 PDIRP. Next, consider RTI repositioning within
the supply chain: Any location can hold an inventory from which empty RTIs can be picked,
and any location can require an empty RTI delivery (or both); an M-M PDIRP. Just as in the
generic IRP, this PDIRP is also subject to stochasticity in that the reverse RTI flows are planned
to enable future, unknown, forward orders to be fulfilled.

3.1.2 PDIRP in literature

In their review, Coelho et al. (2014) present broad recollection of IRP research, classified amongst
others on their routing structure. Most studies address a 1-M-1 structure, the most common
type of structure for basic IRP (i.e., without pickup and deliveries). Considering Pickups and
deliveries, most IRP studies arise in maritime logistics (e.g., Christiansen (1999) and Ronen
(2002)), where a M-M structure is more common. As maritime IRP are, however, structurally
different from road-based IRP, they are excluded in the upcoming reviews (Archetti et al.,
2018; Archetti et al., 2020). In the following sections, we present a review of IRP, PDP and
PDIRP with a road-based structure. First, we address the 1-M-1 structure. Next, the 1-1
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structure is addressed and afterwards the M-M structure. Finally, we present how repositioning
requirements are addressed in PDIRP.

one-to-many-to-one

Martinovic et al. (2008) address a deterministic, single period, single-vehicle PDP using a
Greedy Random Sequence constructive heuristic and a Simulated Annealing improvement
meta-heuristic. The constructive heuristic relies on a cheapest insertion heuristic, with 20%
probability of selecting the second cheapest insertion. Huang and Lin (2010) developed a mod-
ified Ant Colony meta-heuristic for the 1-M IRP, in which the restocking of vending machines is
addressed. These machines have a stochastic demand and as such the multi-vehicle IRP aims to
minimize stockout and transportation costs under limited transport capacity. Mes et al. (2014)
address a waste collection IRP, where stochastic demand is represented as the picking quantity
expected to be available at the various bins. Locations are classified in must-, may- or no-pick
locations, after which a routing heuristic computes an efficient route given capacity and route
length limitations. The classification heuristic classifies all locations based on their expected
number of days until overflow, in which the classification parameters are sought via the HKG
Optimal Learning procedure (Mes et al., 2011).

one-to-one

The 1-1 routing structure is more specific to the PDIRP. Cordeau et al. (2008) review a series
of exact and heuristic methods, addressing both the single-vehicle and multi-vehicle vari-
ants. Heuristic methods are based on (possibly infeasible) starting solutions improved through
common meta-heuristics with swap and move operators. In all cases, a deterministic single-
period setting is assumed. Renaud et al. (2002) propose an improvement heuristic based on a
deterministic, single period 1-1 PDIRP. First, an initial solution is constructed using a cheap-
est insertion heuristic, which iteratively inserts an origin-destination pair into the route. An
insertion does not require an origin and destination to be visited directly after one another,
but it does require the origin to be visited before the destination. Next, a perturbation scheme
improves the solution through various (segment) swaps and moves. Şahin et al. (2013) initialize
their deterministic problem by constructing a Clarke & Wright solution, which results in a
series of successive origin-destination pairs. The solution is then improved in a series of moves
and splits. The latter method splits an origin-destination pair into two separate routes and
splits the required load. A second phase further optimizes the visitation segments. Soysal et al.
(2018) considers a stochastic 1-1 PDIRP with two suppliers, in which an ILP is solved to ensure
a 95% service level at all customers.

Besides the routing of products, the structure can also be found in the Dial A Ride Problem
(DARP). In car-pooling systems, drivers can provide empty seats in their car to provide a ride
to requesting users, called riders. Naturally, both the driver and riders have their unique
origins and destination. As such, the DARP assigns riders to drivers while minimizing the
additional route length, ideally allowing all users to arrive at their destination at their preferred
time. Tafreshian and Masoud (2020) address such a problem as a cluster-first, route-second
method. To solve a realistically sized problem in a live setting, the authors propose a ε-uniform
partitioning algorithm that minimizes the dissimilarity between two trips, reducing the total
problem size to multiple smaller problems. Algorithmically, cluster-representative trips are
selected. All available trips are clustered by minimizing the dissimilarity to the representatives
whilst taking care to ensure both drivers and riders are uniformly distributed over the clusters,
with an allowed deviation of ε.
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many-to-many

Benoist et al. (2011) consider a large scale single commodity M-M IRP in a 15 day planning
horizon with accurate forecasts. In a first urgency-based construction step, orders are created
for all delivery customers, ordered by an increasing expected stock out moment. At each
iteration, a customer is added at the end of a shift, possibly including an additional visit to
a picking location and allowing for split deliveries. As this solution can result in an infeasible
solution (not all stockouts are prevented), a first optimization step is the Stockout Optimization
phase. Next, a Logistics Ratio Optimization phase further improves the solution as long as
possible. The optimization phases consist of a series of swaps, moves and deletions of picking
and/or delivery locations. The logistics ratio is computed as the ratio between a shift’s costs
and the delivered quantity, altered to include long-term benefits. Van Anholt et al. (2016)
study a real-life scenario of an ATM PDIRP, in which all locations, including multiple central
depots, can serve as a picking or delivery location based on their inventory. They not only
resupply locations but also distribute their inventories more evenly over the network. After
geographically clustering all locations around one of multiple depots, a variable fixing pro-
cedure classifies all locations into a must-pick, may-pick, must-deliver, may-deliver and not-
visit set based on their expected inventory. This fixes the ILP variables determining whether a
location should serve as a picking location, delivery location or nothing at all, thus reducing the
problem’s computational complexity. Next, the routing problem is solved through branch-and-
cut. In Archetti et al. (2018) and Archetti et al. (2020), the authors address an M-M PDIRP by
extending a branch & cut formulation with valid inequalities, amongst others through a strong
formulation of lower and upper inventory levels for locations. Ting et al. (2017) address an M-
M multi-vehicle single commodity PDIRP. They propose a constructive sweep heuristic, which
is then improved by one of three meta-heuristics: TABU, Genetic Algorithms and a Scatter
Search. Casazza et al. (2021) propose an elaborate method in which an explicit distinction
between a route and a loading plan is made, combined to define a routing plan. A route consists
of multiple segments, consisting of one or several picking locations followed by one or several
delivery locations. Through column generation and an extensive set of valid inequalities, the
route is iteratively created. To ensure picking and delivery requirements are met, a quick
algorithm solves the loading plan for each route, providing a routing plan.

PDIRP & RTI

Research on RTI logistics specifically is mostly focused on the strategic pooling policies a pool
owner can implement. These studies generally address a closed-loop supply chain where a
single supplier requires RTIs for delivery at multiple retailers. Hellström and Johansson (2010)
analyses the impact of RTI control strategies on operational costs in a single-supplier multiple-
retailer closed-loop supply chain. They simulate a supply chain and find that a switch pool
system would save costs by preventing the loss of RTIs. A switch pool system consists of every
user in the RTI pool being allocated a fraction of the total RTIs available. Upon delivery of filled
RTIs, they would be traded for an equal amount of empty RTIs. They find the installation of
such a system is most efficient in this pool: it reduces the loss of RTIs thanks to a better RTI
visibility and prevents the installation of RFID tracking, necessary in the scenario the supply
chain sticks with their current RTI management. Glock and Kim (2014) study an IRP where a
single vendor transport products in RTIs to multiple retailers. They propose two strategies: an
early shipment strategy, in which deliveries are made whilst supply orders are still (partially)
in production, and a late shipment strategy in which a delivery can be done only once the order
is finished. They analyse how the RTI return lead times have a critical impact on the efficiency
of a strategy. In case of long RTI return lead times (in case RTI are used for product storage as
well, for instance), an early-shipment strategy is beneficial if the demand rates are low. Tornese
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et al. (2018) investigate the environmental impact of two reverse RTI strategies in an M-1 IRP.
In a “cross-docking” scenario, RTIs are inspected upon reaching the end of the forward supply
chain: if they are in good condition, they are brought back to the Pool Owner’s depot, else they
are returned to a repair and cleaning facility. In an alternative “take-back” scenario, all RTIs
are returned to a cleaning facility. They found a take-back scenario is more environmentally
efficient, whereas a cross-docking scenario would require less RTIs in total given the better
utilization rates.

Hardly any research addressed the combination of multiple routing structures, where for-
ward and reverse logistics are addressed simultaneously. Iassinovskaia et al. (2017) analysed
a 1-M-1 RTI repositioning model with a single supplier, multiple retailers and an external
RTI depot. In their repositioning approach, RTIs are first transported from a central supplier
to various customers, after which all emptied RTIs are recollected to be brought back to the
supplier. This repositioning would prevent the return of RTIs to the RTI depot. They propose
a branch & cut method for smaller instances but also reflect on a cluster-first route-second
method for larger, more realistic, situations. SteadieSeifi et al. (2021) address a 1-M-1 PDIRP,
with two suppliers instead of one. They propose a formulation in which both forward and
reverse logistics are optimized in a 12-hours rolling horizon with dynamic route updating.
Their method consists of a comparable repositioning strategy, where empty RTIs are picked
at customer locations and brought back to any of the two suppliers, provided that they are
required. Although both research topics address repositioning as directly reintroducing the
RTIs in the supply chain (and omitting a visit via the pool owner depot), both reverse logistics
methods rely on a fixed and restricted set of empty RTI picking and delivery locations.

3.1.3 Insights

This section serves two purposes. First, we gained insight on which methods are used to
address PDIRP on literature, and we gained insights on the role repositioning plays in these
types of problems. We introduced how the forward logistics in the problem at hand are con-
sidered a 1-1 PDP, whereas the reverse logistics can be executed as a 1-M-1 PDP or an M-M
PDP, depending on the implemented strategy. A single, overarching solution approach for all
routing structures was not found. The study of Van Anholt et al. (2016) is closest in this aspect,
as it introduces an M-M routing structure in a 1-M-1 PDP. There remains a strong division
between 1-1 PDP studies and the other two routing structures. As such, we opt for a sequential
solution approach that first addresses the forward logistics as a 1-1 PDP and extends on the
solution to include the 1-M-1 or M-M reverse routing heuristics.

The 1-1 PDP is tackled through a basic implementation of Renaud et al. (2002), where
orders, consisting of an origin-destination pair, are iteratively inserted into routes through a
cheapest insertion heuristic. To extend these routes to include reverse logistics, we derive a
concept from the studies of Mes et al. (2014) and Van Anholt et al. (2016). By computing the
expected inventories of locations over time, an estimate can be made on whether a location
requires empty RTIs, or can provide them. This process (henceforth referred to as variable
fixing) reduces the complexity of the subsequent routing process. The reverse routing process
is defined by the implemented reverse RTI strategy: RTIs are repositioned (M-M), RTIs are
delivered from the depot (1-M-1 PDP) or a combination of both. Given a reverse RTI strategy,
locations are classified into a repositioning set, a depot-delivery set or a picking set. If empty
RTI deliveries are required for locations in the repositioning set, empty RTI pickup locations are
retrieved from the picking set. If empty RTI deliveries are required for locations in the depot
delivery set, the empty RTIs are picked at the depot. Finally, all locations that remain in the
picking set are included in the routes to have their RTIs picked. All insertion must be done in
consideration of the routing constraints.
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The proposed method is subject to hyperparameters. One such parameter defines the length
of the forecasting horizon: how far in time should the expected inventory be computed to
efficiently weigh out supply and demand? Another parameter determines which reverse RTI
strategies should be implemented, i.e. RTI repositioning or deliveries from the depot. To find
the parameters that adequately address the dynamic PDIRP analysed, further insights must be
gained on how to find the most efficient set of parameter values, which is reviewed in the next
section.

3.2 Parameter tuning

In various analytical models, the chosen value for input parameters determines the outcome
efficiency. In the context of Simulation Optimization, this consists in applying an optimization
strategy to find the most efficient set of input values that govern a simulation model. As
represented by Figure 3.1, such a model enables a feedback loop between the simulation model
the learning algorithm. A variety of methods address this topic. In this section, we review
relevant parameter tuning literature.

FIGURE 3.1: A Simulation Optimization Model (Carson and Maria, 1997)

3.2.1 Heuristic Methods

Common methods to address stochasticity in IRP literature are heuristic methods. This term
is broadly used for any algorithmic process optimizing a problem. Here, we specifically re-
late to the usage of heuristics in the tuning of parameters. These methods include genetic
algorithms, simulated annealing and TABU search. Based on the “Survival of the fittest”
principle, genetic algorithms encode a set of input values as a genetic code. These genetic
codes undergo mutations, resulting in a child node that, when decoded, present a new set of
input values. The fitness (i.e., objective value) of a child determines its aptitude for generating
new children, whereas unfit solutions are more likely to be discarded. Simulated Annealing,
based on the physical annealing process, balances exploration and exploitation throughout
iterations by tracking the model temperature: high temperatures allow more solutions to be
considered, even without improvements in an iteration, whereas lower temperatures increase
the restrictions on accepting only improving solutions. Finally, the TABU search heuristic
explores the neighbourhood of a solution, selecting the most efficient neighbour each time,
albeit possibly less efficient than the current solution. By forbidding the same neighbour from
being selected for a predefined time length (neighbour becomes TABU), the search method
avoids getting stuck in local optima. The methods above introduce a form of randomness to
accelerate the improvement process. They generally dictate the parameters according to which
an analytical model’s heuristics are executed. They are therefore often referred to as meta-
heuristics.
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3.2.2 Stochastic Optimization

Stochastic optimization methods address the problem of finding an optimum in a problem
subject to stochasticity. Classical stochastic optimization algorithms are iterative schemes based
on gradient descent (Carson and Maria, 1997). A simple example consists in defining a set of
weights w, where one aims to optimize some objective function Q(w). Iteratively, the gradient
of Q under w is used to update the updated values for w given a learning rate η.

w← w− η∇Q(w)

In their review of Stochastic Optimization methods, Powell (2019) addresses the various frag-
mented communities that have each addressed stochastic optimization in their fashion. They
distinguish between state-independent problems and state-dependent problems. State-independent
problems consist of optimization methods where dynamic state-dependent information do not
influence the to-be optimized goal function. Examples include the above gradient descent
method. State-dependant problems consist of problems where the dynamic state information
influences the value functions. With each iteration, a decision is executed which returns a
direct reward, depending on the current observed state. The execution of a decision also influ-
ences the transition into the next state and thus the values of future decisions. This transition,
however, requires the observation of unknown stochastic information. As such, the value of a
decision on future states can only be estimated. A state-dependent stochastic optimization
method is the Value Function Approximation (VFA). VFA has been applied in IRP where
the inventory routing decisions must balance the dynamic demand of users in the system
(Kleywegt et al., 2002; Kleywegt et al., 2004). Their approximation consisted in simulating
the costs associated with supplying a large number of overlapping customer subsets, where
each subset could be delivered a varying quantity of products. The approximation function
then estimated the value of a decision by solving a set covering problem which minimizes the
expected value whilst representing the full set of customers.

3.2.3 Optimal Learning

Another type of simulation optimization method is optimal learning. As opposed to Stochastic
Optimization methods where the goal is to find the best decision in a stochastic environment
by performing various measurements over the simulation model, Optimal Learning techniques
aims at optimizing how these measurements are made (Powell and Frazier, 2008). In an optimal
learning setting, each new measurement provides new knowledge on the expected value of
decisions. Central to this concept is the choice of measurement policy. Sequential measurement
policies make a decision on what to measure next based on past measurements.

Pure exploratory policies choose random measurements, with each measurement having an
equal probability of being selected, eventually resulting in a uniform allocation of experimenta-
tion resources over all alternatives. A pure exploitation policy, on the other hand, chooses that
measurement that maximizes the expected reward. An Epsilon-Greedy measurement policy
provides a better balance of both aforementioned policies, where exploration is encouraged
in the early measurements. Focus shifts towards exploitation of the most promising measure-
ments as more observations are made. More elaborate methods exist. Before presenting them,
let us specify the concept of the Frequentist view and the Bayesian view.

In Optimal Learning, each new measurement increases the knowledge we have on a model.
Under the Frequentist View, we assume we have no prior knowledge of the addressed model.
All knowledge must be retrieved through measurements. As such, the value of a decision
and its stochastic characteristics can only be approximated through measurements. Under
the Bayesian view, we assume we have prior knowledge on (for instance) the distribution of
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measurement observations, as well as their mean and/or their variance. Within Ranking and
Selection Problems, the Knowledge Gradient is such a method assuming a Bayesian view.

Ranking and Selection Problems address an offline learning problem in which a decision
between a series of alternatives must be made where limited experimentation resources are
available and measurements are subject to (random) noise. The Knowledge Gradient (KG)
policy assumes a prior knowledge on the distribution of measurement decisions, as well as
their variance (Frazier et al., 2008). Under the KG, one seeks to measure the decision that
maximizes the expected increase in value:

max
x∈X

E[Vn+1(Sn+1(x))−Vn(Sn) | Sn]

In this representation, Sn represents our knowledge after having made n− 1 prior obser-
vations. After implementing measurement x ∈ X , our knowledge state transitions to state
Sn+1(x). Function V(S) returns the value under a state S. From this function, one can see that
we seek to maximize the gradient with respect to the knowledge gained from the measurement
(Powell and Frazier, 2008). This expected increase in value is subject to the belief Sn we cur-
rently have on the various measurements, as well as the expected knowledge in the upcoming
state Sn+1, which requires the observation of stochastic information after measurement n.

In Section 3.1.2, an extension of the Knowledge Gradient is abstractly introduced: the Hier-
archical Knowledge Gradient (HKG). The HKG extends on the KG by including an aggregation
function that groups measurements under aggregated alternatives. As such, a measurement in-
creases not only the knowledge one has on individual measurements but also on the aggregated
alternatives they are part of Mes et al. (2011). The application of the HKG in Mes et al. (2014)
focuses on determining the optimal parameters according to which locations are classified into
must-, may- or no-pick locations. Parameters consist in defining the maximum time until a
stockout may occur for a location to be classified in a respective picking set.

3.2.4 Insights

This section served the final purpose of our literature review. It provides insights on how to
adequately tune parameters under dynamic circumstances. From the above information, we
consider an Optimal Learning approach most suited for the model proposed in Section 3.1.3.
The proposed hyperparameters selection is not necessarily state-dependent, although it could
be extended to accommodate it. As such, the described stochastic optimization techniques
seem less relevant. Meta-heuristic methods, on the other hand, seem to inefficiently make use
of the available knowledge when compared to the Optimal Learning techniques described.
Moreover, the issue of finding the most efficient set of hyperparameters can be described as
a ranking and selection problem in which a set of hyper-parameter settings is considered a
measurement/decision. The past application of the HKG in a comparable setting has led to the
choice of implementing the HKG for the problem at hand.

3.3 Conclusion

In this chapter, we conducted a literature search on the Pickup & Delivery Inventory Routing
Problem (PDIRP). This problem type addresses both the routing decisions in a pickup and
delivery problem (PDP), as well problem of allocating limited resources over locations and
managing their inventories. The addressed RTI supply chain can be described as a broad
PDIRP: forward and reverse logistics are all consist of pickups and deliveries whilst at the
same time the RTI inventory at users must be managed to ensure the forward logistics can be
performed.
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PDP, as well as the PDIRP, are characterized by their routing structure. The routing structure
defines the number of origins and destinations a single commodity flow may have. In a one-to-
one (1-1) PDP, every transported commodity has a unique origin and a unique destination. In a
one-to-many-to-one (1-M-1), commodities can either flow between a single origin and multiple
destinations, flow between multiple origins and a single destination. In a many-to-many (M-
M) PDP, commodities can have multiple origins and multiple destinations, in which case each
location can be an origin or a destination. The forward logistics in the addressed supply chain
can be seen as a 1-1 PDP, whereas the reverse logistics are classified as a 1-M-1 PDP or an M-M
PDP based on the reverse logistics strategy implemented.

In Section 3.1.2, we reviewed literature in all three types of routing structures. Additionally,
we reflected on the available RTI PDIRP literature available. Our findings have led to the
conceptual description of a solution method. First, the forward logistics are addressed through
a cheapest insertion heuristic. Forward logistics are the key activities in this supply chain and
are prioritized. Then, a variable fixing procedure can be applied to estimate empty RTI demand
and supply. By including the variable fixing procedure, we reduce the complexity of the reverse
routing heuristic. Next, various reverse RTI strategies can be implemented: RTI repositioning
as an M-M PDP, RTI pickup’s and deliveries through the depot as a 1-M-1 PDP or a combination
of both. In each case, supply and demand of empty RTIs are matched by finding the cheapest
insertion of an origin-destination pair in the existing forward logistics routes, extending the
latter. This process requires an accurate setting for forecasting horizons and types of reverse
RTI strategies to implement. To this end, we propose the use of hyper-heuristics to be optimized
in a parameter tuning procedure.

In Section 3.2, we analyse various methods that allow for the optimization of model param-
eters in an analytical environment. Meta-heuristics explore a search space by managing both
exploration and exploitation techniques. Stochastic Optimization techniques learn to estimate
the stochastic future value of state-dependent decisions in a dynamic setting. Optimal Learning
strategies aim to optimize the increase in knowledge with each measurement, thus reducing
the total number of measurements necessary. We have opted for the Hierarchical Knowledge
Gradient for the tuning of our routing model parameters. It has shown to be efficient in
a comparable setting, and the parameter set can be represented as a Ranking and Selection
Problem in which the most efficient set of parameters is sought.
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Chapter 4

Solution Method

In this chapter, we introduce the solution design we have implemented. In Section 4.1, we
describe the addressed problem and summarize the underlying assumptions we have consid-
ered while implementing this model. In Section 4.2, the heuristics used to evaluate the routing
model are elaborated upon. Their performance depends on the chosen input parameters, which
are optimized through the simulation optimization model introduced in Section 4.2.4.

4.1 Problem description

In this section, we describe the Pickup and Delivery Inventory Routing Problem in further
detail. First, we provide a general introduction to the problem. Next, we summarize the
necessary assumptions. Afterwards, a mathematical notation is given and finally the solution
approach is presented.

4.1.1 Introduction

Let us start by generally describing the problem we are addressing. In Chapter 2, we introduced
the various users in the network. We also introduce the three depot in which COMPANY B
stores their idle RTI. Throughout the year, COMPANY B must address both the forward and
reverse logistics activities. They also manage the inventories of the users. In our problem, trans-
port orders determine how RTIs flow. A transport order consists of an origin and a destination,
as well as a to-be transported RTI quantity. Each day, we differentiate between forward logistics
transport orders (forward orders) and reverse logistics transport orders (reverse orders).

The forward orders consist of all transport orders aimed at the transport of filled RTI be-
tween their origin and their destination. At the end of each day, the forward orders for the
next day are known. A forward order has a unique origin and destination, as is the case in a
1-1 PDP. At any point in time, a user in the supply chain might be the origin or the destination
for one or multiple transport orders. They might also be the origin for some transport, and
the destination for others. Forward orders are considered the value adding activities of the
supply chain. The reverse orders consist of all transport orders for the transport of empty RTI.
A reverse order is also characterized by an origin, destination and transport quantity but the
origin, destination and quantity are not given. Rather, all locations have a supply or a demand
of empty RTI. By matching supply and demand pairs, reverse transport orders are created.
Under the current RTI management, all reverse logistics are performed via depot deliveries
or depot returns. For depot deliveries, a depot is always the origin, and the destination is a
location with an empty RTI demand. For depot returns, a location that has empty RTI supply
is the origin and a depot is always the destination. Both these RTI flows are considered a 1-M-1
PDP, where the depots are the central location in the routing problem to which and from which
RTI are transported. In this study, we also consider the RTI repositioning flow. Any user can be
the origin or the destination of a repositioning flow. By introducing repositioning, the pickup
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and delivery routing structures extends to a M-M PDP. Both forward and reverse flows are also
shown in Figure 1.4.

Each day, the forward orders and the reverse orders must be processed simultaneously. In
the problem, the decision-maker must decide how to route the transport vehicles, and they
must also decide how to match supply and demand of empty RTI. The routing problem and
the RTI inventory management are interwoven: optimizing routes requires knowing which
reverse orders to process, whereas the reverse orders can most efficiently be defined when one
knows how the routes are driven. Additionally, the supply and demand of empty RTI depend
on uncertain forecasts of future forward orders.

4.1.2 Assumptions

We make some assumptions to simplify the problem at hand and to close the gap between real-
world characteristics presented in Chapter 2 and the characteristics available in data. First, we
assume that only a single depot is used in the supply chain. The three supply chains used
by COMPANY B are located close-by one another. Additionally, one of the depots performs
most RTI operations. Considering a single depot simplifies the problem at hand without in-
so-much obstructing the objectives of the study (Assumption 1). We also simplify the problem
by considering only a single RTI type, namely CCs (Assumption 2). Next, we also assume
filling and emptying activities are performed during the night. As such, forward orders are
prepared the evening before they must be sent out, and all RTI are emptied during the evening
after being delivered (Assumption 3). Given all RTI are filled and emptied within a day, we
define that empty RTI are filled only during the evening before a forward order occurs and
delivered filled RTI are emptied the same day they are delivered. Doing so, we can assume
that only the inventory of empty RTI must be tracked, simplifying the inventory management
problem (Assumption 4). Due to data limitations, we can not distinguish between transport
orders driven in the morning and transport orders driven in the afternoon. As such, we assume
that all orders are driven during a single shift (Assumption 5). In line with this assumption,
we also assume we always have enough trucks to transport all forward orders: since all for-
ward transport orders are fulfilled during a single shift instead of two, 32 trucks might not be
enough. As such, we assume we always have enough trucks to fulfill forward transport orders
(Assumption 6). During days when a trucks is not required for forward transport orders, we
also assume idle trucks are not used for reverse transport orders, as COMPANY B generally
prevent using trucks for transport of empty RTI only as they do not contribute (as much) to the
value adding activities (Assumption 7). The assumptions are shortly described below:

• Assumption 1: A single depot is used
• Assumption 2: We consider only CCs.
• Assumption 3: All RTI are filled and emptied within a day.
• Assumption 4: Inventory is built up from empty RTI only.
• Assumption 5: Days consist of a single driving shift
• Assumption 6: Enough trucks to fulfill forward transport orders
• Assumption 7: Idle trucks are not used for reverse transport orders

4.1.3 Mathematical formulation

Let us now define this problem as a mathematical model. Consider a graph G = (V, E), where
the vector-set V represents all locations v ∈ V = {0, 1, ..., |V|} and v = 0 is the depot and
the edge-set E represents the symmetric travel distances between all locations {ei,j | i, j ∈
V}. We define Iv as the empty RTI inventory of location v. At each new day, we observe the
forward order set O. The forward orders o ∈ O have to be planned during this day. They are
characterized by an origin and a destination location part of the vector set, indicated by oi, oj =
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v ∈ V, and a transport quantity denoted by oq. In order to fulfill forward orders, locations
must have enough empty RTI in inventory. To fulfill unknown future orders, a location has
an empty RTI demand dv. Locations that have excess empty RTI in inventory are said to have
an RTI supply pv. When filled or empty RTI are transported during a day, they can be used
to fulfill forward orders starting from the next day. We assume that all forward orders must
be satisfied during a day. In case a lack of RTI inventory is observed, resulting in an empty
RTI stockout, an emergency delivery of empty RTI is assumed to be scheduled. The emergency
deliveries add transportation costs, but they are executed separately from the forward and
reverse logistics routing. On each day, a total of M vehicles are available. All vehicles are
constrained by a truck holding capacity h and maximum driving distance g. The amount of
capacity used by an RTI depends on whether it is filled or empty (see Table 2.1). A filled RTI,
transported in forward logistics, occupies a volume of γ f whereas an empty RTI, transported
in reverse logistics, occupies a volume of γe. A vehicle m’s route Xr

m consists of an ordered set
of visited locations. Paired to each route is a set Xh

m and Xg
m tracking the capacity used upon

leaving a location and the driving distance up until the next location in Xr
m. We also define

functions X̄r
m(k, l) : Xr

m → {k, . . . , l}, which returns the sub-route between k and l. Similarly,
X̄h

m(k, l) : and X̄g
m(k, l) return the sub-route’s used capacity and driving distances. We define

functions for the sub-routes due to the nature of 1-1 PDPs: for an order o, the origin oi and
destination oj are known. The route’s used capacity is only increase by oq for the sub-route
between oi and oj. Below is an example of a small route visiting 3 locations and the depot,
along with the result from the sub-route functions:

Route ={0→k→i→j→0} Sub-route = {k→ i→ j}
Xr

m ={0, k, i, j, 0} X̄r
m(k, j) ={k, i, j}

Xh
m ={0, 2, 5, 3, 0} X̄h

m(k, j) ={2, 5, 3}
Xg

m ={4, 3, 5, 10, 0} X̄g
m(k, j) ={3, 5, 10}

A general requirement is that all current and future forward orders must be satisfied. To
ensure each location is provided with enough empty RTI, the empty RTI supply and demand
of locations is necessary. Empty RTI supply and demand can, however, only be estimated
according to forecasts. On a given day, forecasts f t

v indicate the expected inflow of outflow of
empty RTIs for a location for each day in a forecasting horizon t ∈ T = {0, ..., Tmax}. We assume
these forecasts are given but subject to uncertainty. Based on these forecasts, an expected future
inventory level Ît

v can be computed, according to which empty RTI supply and demand can be
determined.

The goal is to ensure this with minimal costs. Costs are built up from three components,
as shown in Section 2.3. First, RTI renting costs follow from the total number of RTI required
in the system. Considering RTIs must be rented for a full year, the total renting costs follow
from the maximum number of RTI required in the system on a given day. Next, transportation
costs includes all driven distances: the forward and reverse logistics transportation costs can
be minimized through efficient routing and emergency delivery costs can be minimized by
preventing stockouts. Finally, the depot activity costs of RTI at the depot is also considered as
the total number of RTI that enter and exit the depot.

At the core of this study, we seek to identify how and to what extend repositioning might
improve the efficiency of RTI logistics. Theoretically, RTI repositioning introduces additional
transportation costs. However, it might improve the utilization of RTI by directly reintroducing
RTI in the supply chain without visitation to the depot, reducing the total number of RTI
required and prevent depot activity costs.
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4.1.4 Solution approach

In this section, we elaborate on the heuristic method employed. In Chapter 3, we concluded
our literature review with the observation that the solution to our inventory routing prob-
lem should be heuristic-based. In this section, we present our solution approach in more
detail. First, we introduce the hyper-parameters that determine how our routing procedure
is executed. Next, we explain how the routing procedures works. Finally, we explain how
the most efficient hyper-parameter values are sought. The proposed routing model is used
for the operational planning of day-to-day routes. Through the incorporation of adjustable
parameters, the operational planning also has a direct impact on the long-term cost function.
The global framework of our solution approach is shown in Figure 4.1 and the notation used
for parameters and variables are summarized in Table 4.1.

The hyper-parameters determine how reverse logistics are organized. Specifically, they
determine how empty RTI supply and demand is estimated, and how reverse RTI flows are
applied to satisfy empty RTI demand. First, we distinguish between empty RTI demand ur-
gency: short-term, long-term and none. Short-term demand is considered more urgent and is
prioritized. Long-term demand is less urgent and is satisfied if possible given routing capacity
constraints. Given the urgency, the empty RTI demand dv is split in two: a short-term empty
RTI demand dm

v and a long-term empty RTI demand dn
v . The values assigned to of these vari-

ables depend on the length of the forecasting horizon, determined through parameters Tm and
Tn. The short-term forecasting horizon is of length Tm, and the long-term forecasting horizon
is of length Tm + Tn: the hyper-parameter Tn extends the short-term forecasting horizon to
create the long-term forecasting horizon. The empty RTI demand quantities dm

v and dn
v are

then determined by calculating a location’s expected empty RTI requirements according to
their current empty RTI inventory and forecasted future orders. Similarly, the empty RTI
supply pv is determined with a picking forecasting horizon Tp. Urgency is not considered
for pickup of RTI. Based on a location’s inventory level and their forecasted future orders,
we can determine the total number of excess RTI that can be picked. Hyper-parameters Tm,
Tn and Tp are referred to as the forecasting horizon parameters. Next, we also have a group
of reverse flow hyper-parameters: Fm

r , Fm
d , Fn

r and Fn
d . The hyper-parameters take a Boolean

value and indicate which type of reverse logistic flows may be employed (see Figure 1.4). Fm
r

determines whether RTI repositioning may be used to satisfy short-term empty RTI demand.
Fm

d determines whether depot delivery flows may be used to satisfy short-term empty RTI
demand. Fn

r determines whether RTI repositioning may be used to satisfy long-term empty RTI
demand. Fn

d determines whether depot delivery flows may be used to satisfy long-term empty
RTI demand. Reverse logistics flows are prioritized: first, short-term RTI repositioning flows
are planned, then short-term depot-deliveries, then long-term RTI repositioning and finally
long-term depot deliveries. Together, the reverse flow hyper-parameters are able to form a
specific type of RTI management. Given we have four Boolean hyper-parameters, a total of
16 unique reverse flow hyper-parameters combinations can be created. To simplify notation,
we summarize the four Boolean hyper-parameters under a single categorical hyper-parameter
F = {Fm

r , Fm
d , Fn

r , Fn
d }. The set F is referred to as a reverse RTI strategy.

Given a value for these parameters, transport orders can be executed. Each day, a sequential
routing procedures computes supply and demand of empty RTI, plans forward and reverse
transport orders and computes the effect on the supply chain. At the start of each day, stockouts
and emergency deliveries are computed. Next, all forward logistics are planned according to
the forward routing heuristic. Next, a variable fixing procedure determines the empty RTI
demand and supply values according to the hyper-parameter values. Finally, the reverse rout-
ing heuristic extends the routes from the forward routing heuristic to include reverse logistics.
The forward routing heuristic schedules all forward orders. Each order is characterized by
a unique origin and destination. Routes are created through an unpaired insertion heuristic.
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FIGURE 4.1: Solution method framework

First, all orders are sorted based on a prioritization key: large order quantities and long origin-
destination distances are prioritized. Next, order are inserted iteratively through a cheapest
unpaired insertion. The variable fixing heuristic ensures empty RTI demand and supply is
computed according to current inventory and forecasted future orders. It classifies all locations
either one of the empty RTI delivery sets, a empty RTI pickup set or a do-nothing set. Empty
RTI delivery sets consists of the short-term repositioning set Dm

r , the short-term depot delivery set
Dm

d , the long-term repositioning set Dn
r and the long-term depot delivery set Dn

d . The picking set
P , consisting of locations from whom empty RTIs may be picked. Locations in P serve as
the supplying location for repositioning flows, but any unused RTI are also picked for depot
returns flows if capacity allows it. Finally, the do-nothing set Z consists of all locations that are
neither chosen as pick nor delivery locations. The reverse routing heuristic extends the routes
created in the forward routing heuristics by inserting cheapest origin-destination pair in the
routes. Origins can be locations in the pickup set or the depot, and destinations are locations
in one of the four delivery sets. First, delivery locations in the short-term repositioning set Dm

r
are matched with pickup locations in the pickup set P . Next, delivery locations in the depot
delivery set Dm

d are matched with the depot as pickup location. Next, delivery locations in the
long-term sets are planned in a similar order.

The values for the hyperparameters determine how the simulation is executed. In order to
find fitting values for these hyperparameters, we apply the Hierarchical Knowledge Gradient
(HKG) algorithm. Each hyper-parameter can take a predefined set of values. From this, all
possible decisions can be considered, where each decision represents a unique combination of
hyper-parameter values. Each decision is paired with an expected value, which is unknown.
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The HKG addresses the Ranking and Selection Problem, in which the goal is to efficiently find
which decision is best. Through an aggregation scheme, the HKG estimates the value of both a
single decision and the aggregated decisions they are part of. During a predefined number of
observations, the HKG decides which decision to simulate by maximizing both the estimated
decision value and estimate precision through added knowledge.

Notation Description

Tm defines the short-term forecasting horizon
Tn defines the long-term forecasting horizon
Tp defines the picking forecasting horizon
Fm

r defines whether short-term RTI repositioning is allowed
Fm

d defines whether short-term depot deliveries are allowed
Fn

r defines whether long-term RTI repositioning is allowed
Fn

d defines whether long-term depot deliveries are enabled
F A reverse RTI strategy, F = {Fm

r , Fm
d , Fn

r , Fn
d }

V Set of all locations v, where v = 0 is the depot
E Set of all edges ei,j for i, j ∈ V
T Forecasting horizon {0, 1, ..., Tmax}
Tmax The maximum size of the forecasting horizon given, Tmax = max{Tm + Tn, Tp}
M Number of vehicles
h Holding capacity of a vehicle
g Maximum travelling distance of a vehicle
γ f , γe Used capacity by filled and empty RTIs respectively
O Set of all forward orders o occurring at t = 0
oi,oj,oq Origin, destination and quantity of a forward order o
so Prioritization key for order o
α Order prioritization threshold, expressed as a fraction of h
Iv Inventory of location v
Ît
v Expected inventory of location v during t ∈ T
f t
v RTI flow forecast for location v during t ∈ T

dm
v Desired short-term delivery quantity for location v

dn
v Desired long-term delivery quantity for location v

pv Available picking quantity for location v
Dm

r Set of all locations v that require short-term RTI repositioning
Dm

d Set of all locations v that require short-term depot deliveries
Dn

r Set of all locations v that require long-term RTI repositioning
Dn

d Set of all locations v that require long-term depot deliveries
P Set of all locations v that have RTIs available for pickup
Z Set of all unclassified locations
Xr

m An ordered set representing a route
Xh

m An ordered set representing the load carried in the route
Xg

m An ordered set representing the driving distance to the next location in the route
X̄r

m(i, j) Function which returns the sub-route of Xr
m between locations i and j

X̄h
m(i, j) Function which returns the sub-route’s load

X̄g
m(i, j) Function which returns the sub-route’s driving distance

TABLE 4.1: Summary of used notation for parameters and variables
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4.2 Procedures

In this section, we give a detailed description of the used processes. In Section 4.2.1, the
forward routing heuristic is described. The forward routes created form the basis for the
reverse logistics. In Section 4.2.2, the variable fixing procedure is described. The variable fixing
procedure determines, according to hyper-parameter values, which locations have an empty
RTI supply or demand and how empty RTI should flow. In Section 4.2.3, the reverse routing
heuristic is described. Given the routes from the forward routing heuristic and empty RTI
supply and demand from the variable fixing heuristic, the reverse routing heuristic extends the
routes by including origin-destination pair. As such, reverse RTI flows are introduced. This
whole process depends on the chosen hyper-parameter values. The most efficient decision is
found through the Hierarchical Knowledge Gradient algorithm, presented in Section 4.2.4.

4.2.1 Forward routing

The forward routing heuristic is based on the heuristic introduced in Renaud et al. (2002).
The routing heuristic aims to iteratively insert the origin and destination of all orders into an
existing route. At each iteration, the most cost-effective insertion is found and performed. The
heuristic starts by initializing the number of routes M.

To initialize the M routes, we first define an auxiliary prioritization key so (Equation 4.2).
This key so is used to prioritize orders based on two criteria: order quantity and order distance.
The largest values for so will be for orders for which the order quantity is larger than a fraction
of the capacity (γ f · oq ≥ α · h, where α is user-defined). As these orders have an order quantity
larger than some threshold, they are more difficult to insert in routes later on due to their
capacity requirements. They are therefore prioritized. Afterwards, the orders are prioritized
based on the distance of their origin-destination pair ei,j where i = oi and j = oj. They are
also less easily inserted in routes later on. The M routes are then initialized by selecting the
M origin-destination pairs (i, j) of orders o with highest values of so and inserting them into a
route, where each route starts and ends with the depot: Xr

m = {0, i, j, 0}.

so =

{
max{e ∈ E} + oq if γ f · oq ≥ α · h
ei,j else

(4.2)

Next, all remaining orders are inserted into the routes. Renaud et al. (2002)’s heuristic
is based on a cheapest insertion technique. For each origin-destination pair (i, j), two types
of insertion are possible: a paired insertion and an unpaired insertion. The paired insertion
consists of inserting the successive pair (i, j) into an existing pair (k, l) in any route m. The
unpaired insertion consists of insertion (i) into an existing pair (k, l) and (j) into an existing
pair (r, s) where (r, s) can only be visited further in the route, after (k, l). Upon insertion of an
origin-destination pair, the route segments in which they are inserted observe an increase in
carried load and driving distance. Assume we wish to make a paired insertion of (i, j) between
(k, l) in route Xr

m, where a quantity q must be transported between (i) and (j): the increased
capacity of this route segment is given by Equation 4.3a and increased total driving distance
by Equation 4.4a. Similar functions are defined for the unpaired insertion (Equation 4.3b and
Equation 4.4b). Note that the input delivery quantity γ f · q can also be replaced with γe · q for
empty RTI transport.

hp
m((i, j), (k, l), γ f · q) = ∑

{
X̄h

m(k, l
}

+ γ f · q (4.3a)

hu
m((i, j), (k, l), (r, s), γ f · q) = ∑

{
Xh

m(k, s)
}

+ γ f · q (4.3b)
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gp
m((i, j), (k, l)) = ∑

{
Xh

m

}
+ ek,i + ei,j + ej,l − ek,l (4.4a)

gu
m((i, j), (k, l), (r, s)) = ∑

{
Xh

m

}
+ ek,i + ei,l − ek,l

+ er,j + ej,s − er,s
(4.4b)

To evaluate an insertion, costs are determined according to the increased route distance
and whether or not the capacity and driving constraints are breached. The insertion costs for
the paired and unpaired insertion are defined by the cost functions C p

m and Cu
m (Equation 4.5).

If, after insertion, a capacity or driving distance constraint is breached, the insertion costs are
infinite, making the insertion infeasible. Else, the insertion costs are equal to the increase in
driving distance.

C p
m((i, j), (k, l), q) =

∞
if hp

m((i, j), (k, l), γ f · q) > h or

if gp
m((i, j), (k, l)) > g

ek,i + ei,j + ej,l − ek,l else

(4.5a)

Cu
m((i, j), (k, l), (r, s), q) =


∞

if hu
m((i, j), (k, l), (r, s), γ f · q) > h or

if gu
m((i, j), (k, l), (r, s)) > g

ek,i + ei,l − ek,l
+ er,j + ej,s − er,s

else

(4.5b)

For orders o ∈ O, the order o∗ resulting in the cheapest insertion of (o∗i , o∗j ) (paired or
unpaired) in any route Xr

m is selected and its origin and destination locations are inserted in
the appropriate sections of the route. The route’s loads Xd

m and driving distances Xd
m are also

updated. Once planned, the order o∗ is removed from O. This process is repeated until all
orders are planned, i.e. O = ∅. The pseudo-code for this heuristic can be found in Algorithm 1.

This process assumes an input value for the number of routes M. Forward routing orders
are not subject to randomness. As such, each new execution results in the exact same forward
routes. M is therefor fixed at the minimum quantity of trucks required for each day, which
can be determined by iteratively increasing M from 0 onward until a feasible route is returned.
Thanks to the sorting key so, routes are also initialized more efficiently: about 10% less trucks
are required when compared to an initialization without the sorting key.

4.2.2 Variable fixing

After the forward routing heuristic is finished, the variable fixing heuristic is called. This
heuristic’s execution depends on the values for the reverse flow hyper-parameters and the
forecasting horizon hyper-parameters. Based on the hyper-parameter values, locations are
classified in one of the four delivery sets or the picking set. Each location is also assigned a
short-term and/or long-term empty RTI demand or empty RTI supply. In Algorithm 3, the
heuristic steps are shown.

The calculation of empty RTI demand and supply is based on the expected future inventory
level Ît

v. In a first step, we compute the expected inventory for all locations during the forecast-
ing horizon T . The expected inventory Ît

v for t = 0 refers to the expected empty RTI inventory
available during the day. This quantity is equal to the starting inventory of the day minus all
outbound RTI from forward order origins. The RTI transported during t = 0 may be used again
for the forward orders in t = 1. As such, the expected inventory Ît

v for t = 1 includes all filled
RTI transported to their destinations and emptied by them. From t = 1 on, we also include the
forecasted RTI flows for a location.
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Algorithm 1 Forward Routing Heuristic

1: Compute so ∀o ∈ O ▷ Equation 4.2
2: for all m ∈ M do
3: o∗ ← argmaxo∈O{so}
4: Xr

m ← {0, o∗i , o∗j , 0}
5: Remove o∗ from O
6: end for
7: while O ̸= ∅ do
8: for all o ∈ O do
9: Cost∗, Insertion∗ ← CHEAPEST INSERTION(oi, oj, γ f · oq) ▷ Algorithm 2

10: Cost(o)← Cost∗

11: Insertion(o)← Insertion∗

12: if Cost(o) < Cost(o∗) then
13: o∗ ← o
14: end if
15: end for
16: if Cost(o∗) < ∞ then
17: Perform insertion Insertion(o∗), update Xh

m and Xg
m

18: Remove o∗ from O
19: end if
20: end while

We initialize this procedure by assigning all locations to the set of unclassified locations
Z . Based on hyper-parameter values, we classify locations in either delivery sets or pickup,
or leave them in the set Z . First, we classify locations in the short-term repositioning set
Dm

r : if short-term repositioning is allowed (Fm
r = 1), any location with an negative minimum

expected inventory level within the short-term forecasting horizon Tm is included in the set. We
consider minimum expected inventory level during t ≤ Tm as opposed simply the expected
inventory level at t = Tm because we are interested in all expected stockout occurrences.
The short-term delivery quantity dm

v is defined as this minimum expected inventory level
during t ≤ Tm, as this value indicates the most extreme stockout occurrence we wish to
prevent. If short-term repositioning is not allowed (Fm

r = 0), we check if these locations can
be included in the short-term depot delivery set instead, provided it is allowed (Fm

d = 1). A
location can be planned in only a single short-term delivery set. However, the routing process
introduced in the next section is defined such that all unplanned short-term repositioning
locations v ∈ Dm

r are transferred to the depot delivery set Dm
d if short-term depot deliveries

are allowed. This may occur if, for instance, all picking locations P are depleted and thus
no more repositioning can take place. This process is repeated similarly for the long-term
repositioning and long-term depot delivery sets(Dn

r , Dn
d ), considering the adequate long-term

hyper-parameters: the long-term repositioning parameter Fn
r , the long-term depot delivery

parameter Fn
d and the long-term forecasting horizon parameter Tn. We bring attention to

two dissimilarities. The long-term forecasting horizon is built by extending the short-term
forecasting horizon with the long-term forecasting horizon parameter, e.g. Tm + Tn. Also, when
considering whether long-term minimum expected inventories are below zero (suggesting a
desired long-term delivery quantity) we must take can to exclude any RTI we already plan on
delivering through a short-term delivery. Finally, if a location is planned in a delivery set, the
location can not be considered for pickup. As such, we remove these location v from the set Z .
The remaining locations are checked to see if they can serve as pickup locations. The pickup
forecasting horizon parameter Tp essentially tells us that any inventory expected to be unused
after Tp might as well be used elsewhere. As such, any location with a positive minimum
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Algorithm 2 Cheapest Insertion

1: procedure CHEAPEST INSERTION(i, j, q) ▷ q in used volume, as opposed to RTI quantities
2: for all m ∈ M do
3: for all (k, l) ∈ Xr

m do
4: Cost← C p

m((i, j), (k, l), q) ▷ Equation 4.5a
5: if Cost < Cost∗ then
6: Cost∗ ← Cost
7: Insertion∗ ← (m, (i, j), (k, l))
8: end if
9: for all (r, s) ∈ Xm | (r, s) after (k, l) do

10: Cost← Cu
m((i, j), (k, l), (r, s), q) ▷ Equation 4.5b

11: if Cost < C(o then
12: Cost∗ ← C
13: Insertion∗ ← (m, (i, j), (k, l), (r, s))
14: end if
15: end for
16: end for
17: end for
18: return Cost∗, Insertion∗

19: end procedure

expected inventory during the pickup forecasting horizon is considered a pickup location and
included in P . The minimum expected inventory observed is considered available for pickup
and added to the locations empty RTI supply pv
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Algorithm 3 Variable fixing algorithm

Require: Fm
r , Fm

d , Fn
r , Fn

d , Tm,Tn,Tp

1: Tmax = max{Tm + Tn, Tp}
2: T = {0, 1, ..., Tmax}
3: Z ← V
4: for all v ∈ Z do
5: for all t ∈ T do
6: if t = 0 then
7: Ît

v ← Iv −∑o∈O:oi=v{oq}
8: else if t = 1 then
9: Ît

v ← Ît−1
v + ∑o∈O:oi=v{oq} + f t

v
10: else
11: Ît

v ← Ît−1
v + f t

v
12: end if
13: end for
14: end for
15: for all v ∈ Z do
16: if mint≤Tm{ Ît

v} < 0 then
17: if Fm

r then ▷ Short-term repositioning
18: Add v to Dm

r
19: dm

v ← |mint≤Tm{ Ît
v}|

20: else if Fm
d then ▷ Short-term depot deliveries

21: Add v to Dm
d

22: dm
v ← |mint≤Tm{ Ît

v}|
23: end if
24: end if
25: if mint≤Tm+Tn{ Ît

v} − dm
v < 0 then

26: if Fn
r then ▷ Long-term repositioning

27: Add v to Dn
r

28: dn
v ← |mint≤Tm+Tn{ Ît

v}|−dm
v

29: else if Fn
d then ▷ Long-term depot deliveries

30: Add v to Dn
d

31: dn
v ← |mint≤Tm+Tn{ Ît

v}|−dm
v

32: end if
33: end if
34: if v ∈ Dm

r
⋃Dm

d
⋃Dn

r
⋃Dn

d then
35: Remove v from Z ▷ If v is part of any delivery set
36: end if
37: end for
38: for all v ∈ Z do
39: if mint≤Tp{ Ît

v} > 0 then
40: Add v to P and remove v from Z
41: pv ← mint≤Tp{ Ît

v}
42: end if
43: end for

4.2.3 Reverse routing

With empty RTI delivery and pickup sets defined, reverse routing is performed. The reverse
heuristic consists of three stages. First, the short-term delivery locations are planned. Next,
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long-term delivery locations are planned. If any remain at the end, the RTI left at pickup loca-
tions are collected if feasible. The routes created in the forward routing heuristic (Section 4.2.1)
are extended by performing unpaired insertions of origin-destination pairs (Algorithm 2).

By performing an origin-destination insertion, we create a reverse transport order. The
pickup location (say i) and the delivery location (say j) make the reverse order’s origin and
destination respectively. However, it has no predetermined ordering quantity. Rather, the
ordering quantity is determined as what can at most be transported. Naturally, the ordering
quantity can not exceed the delivery location’s empty RTI demand (dm

j or dn
j ) or the pickup

location’s empty RTI supply (pi). The ordering quantity is also constrained by the maximum
remaining transport capacity on the segment between a pickup location and a delivery loca-
tions. As such, the maximum reverse order quantity, referred to as q∗, can be found using the
following equation in which pi represents the pickup quantity and dj the delivery quantity:

q∗ = max
{

pi, dj,
⌊

max{X̄h
m(i, j)} − h
γe

⌋}
(4.6)

Creating reverse transport order and inserting them in the routes if done through a recur-
ring procedure, in which a set of delivery locations and pickup locations are given as input.
First, we choose a random delivery locations. Next, we seek the pickup location which is
closest to the delivery location. If an insertion is feasible, it is performed with reverse order
quantity q∗. After updating the locations’ supply and demand, we check whether the empty
RTI demand of the delivery location is satisfied: if not, we search a new pickup location for
the same delivery location, else the location is removed from the delivery set. Similarly, we
also check if the pickup location can still supply RTI, else the location is removed from the
pickup set. Whenever the cheapest insertion between a pickup location and a delivery location
is infeasible, we assume that no other pickup location might result in a better (feasible) reverse
transport order. The location is transferred to a set of remaining delivery locations. Similarly,
if the set of pickup locations is empty, the left-over delivery locations are also transferred to
the set of remaining delivery locations. The remaining delivery locations are output by the
procedure, and can be considered in other executions of the reverse routing procedure.

In a first stage, the reverse routing procedure is executed for the short-term repositioning
delivery locations Dm

r . The required input sets for delivery and pickup locations are thus
Dm

r and P . Upon completion, we might be returned a set of remaining locations. For these
locations, a reverse transport order through RTI repositioning could not be scheduled with our
procedure. These remaining locations are added to the set of location that require short-term
depot deliveriesDm

d . As such, the remaining location that could not obtain their short-term RTI
demand through repositioning might obtain them through a depot delivery. In the next stage,
we schedule reverse transport orders to the set of short-term depot delivery locations Dm

d . In
this stage, the set of pickup locations only consists of the depot, i.e. {0}. The depot always has
enough RTI (pi = ∞ with i = 0). As such, all short-term depot delivery locations can receive RTI
as long as the routing capacity allows it. Any remaining locations are discarded. Next, the first
two stages are repeated for the long-term delivery sets Dn

r and Dn
r . During this whole process,

we also consider which types of reverse flows are allowed according to the hyper-parameters
Fm

r , Fm
d , Fn

r and Fn
d . The last execution stage consists of picking all remaining RTI supply and

returning it to the depot. This step is also based on cheapest unpaired insertions where the
delivery location is the depot with an unlimited demand (dj = ∞ with j = 0). The complete
procedure is represented in Algorithm 4, Algorithm 5 and Algorithm 6.
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Algorithm 4 Reverse Routing Heuristic (Part 1)

Require: Fm
r , Fm

d , Fn
r , Fn

d
1: if Fm

r then REVERSE ROUTING(Dm
r ,P)→ Dm

d ▷ Short-term RTI repositioning
2: if Fm

d then REVERSE ROUTING(Dm
d , {0}) ▷ Short-term depot delivery

3: if Fn
r then REVERSE ROUTING(Dn

r ,P)→ Dn
d ▷ Long-term RTI repositioning

4: if Fn
d then REVERSE ROUTING(Dn

d , {0}) ▷ Long-term depot delivery
5: DEPOT RETURNS(P)

Algorithm 5 Reverse Routing Heuristic (Part 2)

1: procedure REVERSE ROUTING(Delivery,P ickup) ▷ Delivery set and pickup set
2: Remaining = ∅ ▷ Set of remaining delivery locations
3: while Delivery ̸= ∅ do
4: j← RANDOM(Delivery)
5: while j ∈ Delivery and P ickup ̸= ∅ do
6: i← argmini∈P ickup{ei,j}
7: Cost∗, Insertion∗ ← CHEAPEST INSERTION(i, j, γe) ▷ Algorithm 2
8: if Cost∗ < ∞ then
9: Perform insertion Insertion∗ with q∗ ▷ Equation 4.6

10: Update Xh
m, Xg

m, qi and qj
11: if qi = 0 then
12: Remove i from P ickup
13: end if
14: if qj = 0 then
15: Remove j from Delivery
16: end if
17: else
18: Add j toRemaining
19: Remove j from Delivery
20: end if
21: end while
22: if P ickup = ∅ then
23: for all j ∈ Delivery do
24: Add j toRemaining
25: Remove j from Delivery
26: end for
27: end if
28: end while
29: returnRemaining
30: end procedure
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Algorithm 6 Reverse Routing Heuristic (Part 3)

1: procedure DEPOT RETURNS(P ickup)
2: while P ickup ̸= ∅ do
3: i← RANDOM(P ickup)
4: j← 0 ▷ The depot
5: Cost∗, Insertion∗ ← CHEAPEST INSERTION(i, j, γe) ▷ Algorithm 2
6: if Cost∗ < ∞ then
7: Perform insertion Insertion∗ with q∗ ▷ Equation 4.6
8: Update Xh

m, Xg
m and qi

9: if qi = 0 then
10: Remove i from P ickup
11: end if
12: else
13: Remove i from P ickup
14: end if
15: end while
16: end procedure

4.2.4 Hierarchical Knowledge Gradient

Let us now introduce the Hierarchical Knowledge Gradient (HKG). As described in Section 4.1.4,
the HKG addresses the Ranking and Selection Problem in which we seek the best decision
in an efficient way. A decision essentially represents a unique selection of values for the
hyper-parameters. The value of a decision is stochastic and unknown. It can, however, be
estimated by simulating the decision a number of times. Through an aggregation structure,
the HKG estimates values of all decisions by performing only a single measurements thanks to
aggregated alternatives. In this section, we summarize the steps involved in the HKG as per
Mes et al. (2011).

Consider a set of all decisions x ∈ X . The decision x represent a unique set of values for
the hyper parameters, i.e. x = (Fm

r , Fm
d , Fn

r , Fn
d , Tm, Tn, Tp). Assigned to each alternative is a true

mean θx which is unknown, and a variance λx which is known. Through a series of sampling
decisions n ∈ {1, 2, . . . , N}, we seek to estimate all θx. With each sampling decision, we choose
an decision xn to simulate in our routing model. Doing so returns a sample observation yn+1

x .
The sample observation increases the knowledge we have over decision xn, allowing us to
make better estimated for θx.

Say, we have performed n − 1 samples so far and have to decide which decision xn ∈ X
to sample next. By µn

x , we indicate the estimated value of decision x so far. The estimate µn
x is

subject to an estimated deviation σn
x . More so, this deviation is better represented as a precision

βn
x = 1/(σn

x )2, which indicates how exact the current estimate of decision x is.
All decisions x ∈ X are also part of an aggregation scheme. Consider a number of aggre-

gation levels G and a set of these aggregation levels g ∈ G = {0, 1, . . . , G}. On each level, a
decision x is part of a so-called aggregated alternative. Just as the individual decisions, each
aggregated alternative has an estimated (aggregated) value µ

g,n
x and precision β

g,n
x . The lowest

aggregation level g = 0 consists of aggregated alternatives of which only a single decision
is part. On the highest aggregation level g = G, all decisions are part of the aggregated
alternative. When a decision xn is sampled, the sample observation yn+1

x provides information
regarding the individual decision estimates as well as the aggregated estimates. Consider the
example in Figure 4.2. We have decisions x ∈ X = {1, 2, . . . , 9} and three aggregation levels
G = {0, 1, 2}. In this example, decisions x = 1, 2, 3 are part of the same aggregated alternative
on level g = 1 (indicated by 10). In this case, the estimated value for the aggregated alternative
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is equal for all of them: µ1,n
1 = µ1,n

2 = µ1,n
3 . The same goes for the aggregated precision for this

aggregated alternative and all others. If, for instance, we choose to sample xn = 2 then the
sample observation yn+1

x can be used to update the decision’s estimates as well as the estimates
of all aggregated alternatives they are part of.

g = 2

g = 1

g = 0

13

10 11 12

1 2 3 4 5 6 7 8 9

FIGURE 4.2: Example aggregation structure

The HKG is built from two central procedures: the updating procedure and the sampling
procedure. The updating procedure ensures that, with each new sampling decision, all (ag-
gregated) decision estimates are correctly updated. Based on the known estimates at sampling
moment n, the sampling procedure decides which decision x ∈ X to sample next. Broadly
speaking, for each decision the knowledge gradient, υKG

x (Sn), is computed according to:

υKG
x (Sn) = E

[
max
x′∈X

µn+1
x′ | Sn, xn = x

]
−max

x′∈X
E
[
µn+1

x′ | Sn, xn = x
]

(4.7)

where Sn represents the knowledge obtained through the first n sampling decision, i.e. Sn =
{µg,n

x , β
g,n
x ∀x ∈ X , g ∈ G}. Essentially, the knowledge gradient of each decision is computed

as the expected increase in valuable knowledge. By sampling decision xn, the estimated mean
and precision of decision xn and the aggregated decisions he is part of are updated according
to the sampling observation yn+1

x . Although we do not know the value of yn+1
x before sampling

xn, we can estimate it’s distribution according to µn
x and βn

x. As such, given the probability of
a specific value for yn+1

x occurring, we can anticipate on the updating procedure. As such, the
left-hand term of Equation 4.7 represents the average value of the largest decision estimates
after sampling decision xn and observing yn+1

x . The right-hand side represents the value of
the decision x′ with the highest expected updated estimate µn+1

x′ after sampling decision xn

and observing yn+1
x . By subtracting the right-hand side from the left-hand side, the outcome

represents the expected increase in valuable knowledge of the model. For every possible
decision x ∈ X , a knowledge gradient is computed and the decision with the highest υKG

x (Sn)
is sampled next.

In order to estimate the values in Equation 4.7, one requires an estimate on the mean and
precision of a decision. Through the aggregation scheme, the HKG can quickly approximate
a mean and precision of a decision without measuring it. As such, a good estimate for all
decisions in X can found in minimal measurements. In the computation of the knowledge
gradient, a trade-off is made between often sampled decision x1 with good mean estimates
and less sampled decision x2 with a lower estimate. As the latter is sampled less often, the
decision’s precision is low. As such, the range of values yn+1

x2
might take is broader, thus

resulting in potentially valuable observations. This trade-off is considered in Equation 4.7 in
the maximization of expected updated estimates µn+1

x′ .
So far, we broadly described how the HKG works. For a more detailed description of the

sampling and updating procedures, we refer to Mes et al. (2011). We use the HKG to quickly
estimate the value of a decision x, which consists of a value for each for the hyper-parameters
x = (Fm

r , Fm
d , Fn

r , Fn
d , Tm, Tn, Tp). The HKG requires a prior knowledge on the aggregation

structure of decisions as well as knowledge on the variance of the decisions’ value λx. In order
to define the aggregation structure, the structure of decisions must be well known. Given our
decision structure, an aggregation structure can be defined in which each new aggregation
level incorporate an additional hyper-parameter. Finding an exact value for λx also requires
extensive knowledge on the decision, which we currently do not have. Mes et al. (2011)
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note that an estimate for λx also works in the HKG. In our model, we adopt a generalized
variance λ for all decisions (λx = λ∀x ∈ X ). The variance λ can then be estimated through
experimentation.

4.3 Conclusions

In this chapter, we introduced the method through which the potential of RTI repositioning
will be analysed. In Section 4.1, the Pickup and Delivery Inventory Routing Problem is further
described along with assumptions and a mathematical notation. Based on this formulation, a
solution approach is provided.

The solution approach consists of a parametric and sequential routing procedure which
create a planning for daily routing activities. In order to incorporate benefits on a long-term
cost-functions, adjustable parameters determine how the reverse logistics are executed. In the
reverse logistics, we distinguish between short-term and long-term empty RTI demand. Two
forecasting horizon hyper-parameters influence the value for each of these. A third forecasting
horizon hyper-parameter influences the available empty RTI supply available at users. Given
a demand and supply for users, empty RTI demand can be satisfied via depot delivery flows
or RTI repositioning flows. Four Boolean reverse flow hyper-parameters determine whether
short-term and long-term demand may be satisfied via any of these flows. Together, reverse
flow hyper-parameters represent a reverse RTI strategy.

Given a set of hyper-parameter values, the forward routing heuristic first initializes forward
routes in a cheapest insertion heuristic. The routes created serve as the basis for reverse logistics
to be planned on. Next, A variable fixing heuristic determine short-term and long-term empty
RTI demand as well as empty RTI supply and classifies delivery locations in delivery sets.
Based on demand, supply and the delivery set classification, the reverse routing procedure
matches supply and demand pair and inserts them through a cheapest insertion heuristic.

Efficient execution of the routing heuristics on an instance relies on the efficient selection of
reverse flow and forecasting horizon parameters. To find the set of values that best solve the
simulation, we make use of the Hierarchical Knowledge Gradient (HKG) algorithm is applied.
The HKG algorithm is a learning strategy that utilizes an aggregation structure to efficiently
accumulate information on hyperparameters decisions with limited observations.
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Chapter 5

Experimentation & Results

In this chapter, we introduce the experiments performed and discuss their results. During
the experimentation phase, we seek insights into the efficiency of RTI repositioning when
compared to the situation without RTI repositioning. We also analyze the sensitivity of our
results. In Section 5.1, we provide a description of the used instances and the relevant key
performance indicators. In Section 5.2, we perform our experiments. In Section 5.3, we provide
a recommendation with managerial insights. In Section 5.4, we elaborate on some points of
discussion.

5.1 Experimental Setting

In this setting, we describe the setting in which the experiments are performed. First, we
introduce three instances in Section 5.1.1. These instances consist of representative fractions
of the available data set. Next, we repeat the simulation hyper-parameters that govern the
model in Section 5.1.2. For the latter, an aggregation structure for the HGK is also defined.
Finally, we introduce key performance indicators (KPI) in Section 5.1.3. These KPIs summarize
an experiment’s logistic efficiency in various aspects. We also introduce an objective function
based on the weighted sum of these KPIs.

5.1.1 Instance description

The data used in this research has been provided by COMPANY B. The full set consists of
1657 locations and 45155 forward orders between 01/01/2020 and 31/12/2020. Each forward
order consists of an origin ID, a destination ID, a transported RTI type, and a transport quantity
(which never exceeds 43 RTI). In their daily businesses, COMPANY B uses three depots, one of
which is most common. For our experiments, we assume only one depot, the largest, is used for
empty RTI storage in line with Assumption 1. We reduced this data-set to three smaller instance
sizes, including location 0 to serve as the depot. As can be seen in Table 5.1, this drastically
reduces the number of unique locations in the set whilst still containing a large fraction of the
supply chain’s demand. This reduction was also necessary due to computational limitations.
Given the set of locations V = {0, 1, . . . } where v = 0 is the depot, an edge set E is generated
according to the straight-line distance between all coordinate points in V. For each of these
instances, a full year of transport orders is simulated.
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Instance Size Forward orders Forward RTIs Starting inventory

Original set 1657 45155 234572

I128 128 30022 (66%) 180776 (77%) 10000
I78 78 23399 (52%) 152753 (65%) 8000
I40 40 16094 (36%) 105289 (45%) 6000

TABLE 5.1: Instances

In Section 4.1.3, we introduced the mathematical notation used in this problem. The values
for some of the variables are fixed through the experimentation phase. The vehicle capacity is
set at h = 13.2 meters (Section 2.2.1) and the maximum driving distance at g = 700 kilometres.
In line with Assumption 2, we have chosen the CC RTI-type as the leading RTI type in the
model. As such, filled RTIs occupy a volume of γ f = 0.306 and empty RTIs occupy a volume
of γe = 0.00459. Prior experiments provided quick feasible forward routing solutions with
α = 0.9. The depot’s inventory is initialized at 10000, 8000 and 6000 for the instances I128, I78
and I40 respectively. All remaining locations have a starting inventory of 0.

5.1.2 Hyper-parameters

In Section 4.1.4, we introduce the reverse flow hyper-parameters and the forecasting horizon
hyper-parameters. The reverse flow hyper-parameters consist of four Boolean values indicat-
ing which types of short-term and long-term reverse RTI flows are allowed. The forecasting
horizon hyper-parameters define the lengths of the short-term and long-term forecasting hori-
zon as well as the picking forecasting horizon.

Together, the reverse flow hyper-parameters form a reverse RTI strategy. They define how
RTI may flow in the network. Fm

r determines whether RTI repositioning may be used to satisfy
short-term empty RTI demand. Fm

d determines whether depot delivery flows may be used to
satisfy short-term empty RTI demand. Fn

r determines whether RTI repositioning may be used
to satisfy long-term empty RTI demand. Fn

d determines whether depot delivery flows may
be used to satisfy long-term empty RTI demand. A total of 16 unique reverse RTI strategies
F = {Fm

r , Fm
d , Fn

r , Fn
d } can be derived for the Boolean hyper-parameters. Each unique strategy

can be represented as Fn for n = {1, ..., 16}. However, we argue that some of these strategies
are unrealistic. Consider, for instance, a strategy where no reverse RTI method is implemented,
i.e. F = {0, 0, 0, 0}. This strategy will result in only emergency deliveries and is therefore
unrealistic. We also define that a long-term reverse RTI method is only possible if its short-
term counterpart is also enabled. As such, a strategy F = {0, 0, 1, 1} would also be prevented.
As such, we limit our study to four reverse RTI strategies, defined in Table 5.2. F1 consists
of a strategy where reverse logistics is exclusively performed through RTI repositioning, both
short- and long-term. It is referred to as the pure RTI repositioning strategy. F2, referred to
as a semi-hybrid strategy, implements short-term and long-term RTI repositioning, as well as
short-term depot deliveries. F3 is considered fully hybrid as both RTI repositioning and depot
deliveries are implemented for both short-term and long-term deliveries. Finally, F4 relies on
depot deliveries only and is therefore referred to as the pure depot delivery strategy. During
the experimentation phase, we no longer refer to individual reverse flow hyper-parameters.
Instead, we will refer to the reverse RTI strategies Fn.

The forecasting horizon hyperparameters Tm, Tn, and Tp are bound in a discrete domain.
The short-term and long-term forecasting horizon are chosen in a range of 5 days, i.e. Tm ∈
{0, 5} and Tn ∈ {0, 5}. Keep in mind that the long-term forecasting horizon is determined by
Tm + Tn. The picking forecasting horizon is chosen as Tp ∈ {0, 10}. As such, both the empty RTI
demand forecasting horizon (Tm + Tn) and the empty RTI supply forecasting horizon (Tp) have
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Option Description Fm
r Fm

d Fn
r Fn

d

F1 Pure RTI repositioning 1 0 1 0
F2 Semi-hybrid 1 1 1 0
F3 Fully-hybrid 1 1 0 1
F4 Pure depot delivery 0 1 0 1

TABLE 5.2: Four considered options for the hyperparameters values of F

the same upper bound of 10. This upper bound is in line with the fast-moving horticultural
industry. Note that if a forecasting horizon equals 0, no forecasting is done for this specific
delivery or picking set. As such, this process is disabled. This aspect has also led to a point of
discussion, presented in Section 5.4.4

Having further specified the four types of reverse RTI strategies and the bounds of the
forecasting horizon hyper-parameters, we now present the aggregation structure. The top-most
level of the aggregation structure is the overarching aggregation consisting of all decisions.
Next, the decision space is aggregate on the F provided in Table 5.2. Next, the forecasting
horizon parameters are sequentially added. The resulting aggregation structure is defined in
Table 5.3

Level Fn Tm Tn Tp Aggregation space

0 * * * * 4× 6× 6× 11 = 1584
1 * * * - 4× 6× 6× 1 = 144
2 * * - - 4× 6× 1× 1 = 24
3 * - - - 4× 1× 1× 1 = 4
4 - - - - 1× 1× 1× 1 = 1

TABLE 5.3: Aggregation structure

5.1.3 Key Performance Indicators & objective

During the experimentation phase, we make use of various KPIs that summarize the results of
a full simulation. In this section, we introduce the following key performance indicators (KPI)
as well as a cost function. These KPIs and cost function are presented as absolute values. Due
to the difference in instance sizes, they are interchangeably presented relative to the instance’s
total order count (e.g., KPI per order).

By tracking inventory levels of locations and especially the depot, the minimum amount of
RTI required to keep the system running can also be obtained. This indicates how many RTI
could have been used as opposed to the predefined inventory levels per instance.

• KPI 1 (Required RTIs): Tracks the minimum amount of RTIs required over the year.

Next, our routing model keeps track of the distances driven in the forward and reverse
logistics. First, the amount of kilometers required for the completion of forward logistics is
tracked. This value is constant over the various simulations, based on the addressed instance.
The reverse logistics kilometers are also tracked. This consists of the required distance for depot
deliveries, depot returns, and repositioning. This results in the following KPI tracking the total
amount of kilometers.

• KPI 2 (Kilometres): Tracks the total amount of distance travelled for forward and reverse
logistics.
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Finally, we also keep track of the total activity within the depot, consisting of the number of
RTI loaded and unloaded. By loading and unloading RTI at the depot, no contribution to the
value-adding forward logistics is made.

• KPI 3 (Depot activity): Tracks the amount of loading and unloading activities at the
depot.

Finally, each time a stockout occurs an emergency delivery is scheduled. The emergency
delivery consists of a direct return trip to a user delivering exactly the number of missing RTIs.
Emergency deliveries should always be prevented. The following KPI tracks the total distance
driven for emergency deliveries.

• KPI 4 (Emergency deliveries): Tracks the distance driven for emergency deliveries

Using these KPIs, we can present two objective functions. A first objective function consists
of the total costs of a simulation. The required RTIs must be rented for a full year which induces
costs. Stockouts lead to emergency deliveries which, along with the forward and reverse logis-
tics distances, induce transportation costs. The act of handling RTI in the depot also induces
costs for each RTI handled, be it loading or unloading. In discussion with COMPANY B, costs
for transport kilometers and depot activity are approximated as fractions or multiplication of
the daily RTI renting costs. A similar calculation is done for emergency deliveries. These so-
called cost factors, referred to as ω1, ω2 and ω3, allow for the definition of the cost-function
shown in Equation 5.1.

costs = 365 · Req. RTIs + ω1 ·Kilometers + ω2 ·Depot Act. + ω3 · Emergency deliveries (5.1)

The cost-factors ω1, ω2 and ω3 depend a lot based on the circumstances. The kilometer cost-
factor ω1 depends on the region one drives in. In the Netherlands, shorter driving distances
and higher fuel costs result in kilometers costing twice as much as daily RTI renting costs.
In Germany, driving distances are longer and fuel less expensive resulting in each driven
kilometer being equally expensive as renting a single RTI for a day. The kilometer cost-factor
thus varies between 1 and 2 (ω1 ∈ [1, 2]). The cost of depot activities (ω2) depends largely on
the batch size: larger batch sizes result in more efficient work and thus fewer costs. The depot
activity cost-factor also varies between 1 and 2 based on an approximation by COMPANY B
(ω2 ∈ [1, 2]). Finally, the emergency delivery cost-factor is chosen experimentally. Emergency
deliveries are uncommon in the current supply chain due to the manual planning activities. To
prevent emergency deliveries as much as possible, we fix a high value for ω3. In Section 2.3,
the numerical example indicates RTI will increase distances driven but reduce both RTIs and
activity at the depot. For the experimentation phase, we consider a ’worst-case’ scenario where
the cost-factors are set to the least-favorable setting. As such, the kilometer cost-factor is set at
ω1 = 2 and the depot activity cost-factor is set at ω2 = 1. The emergency delivery cost factor is
fixed at ω3 = 10, chosen through prior experimentation in agreement with stakeholders. Both
the yearly RTI renting costs and the fact that cost-factors are fixed are discussed in Section 5.4.3
and Section 5.4.2.

5.2 Experiments & Results

In this section, the various experiments and their results are presented. In Section 5.2.1, values
for the decision variance required for the HKG are experimented with. In Section 5.2.2, we
experiment with fixed values for the various hyper-parameters to analyze their sensitivity. In
Section 5.2.3, we extensively study the efficiency of the different reverse RTI strategies.
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5.2.1 Tuning of λ

The chosen value for the observation variance λ influences the convergence of the HKG al-
gorithm towards the optimal strategy. As denoted in Section 4.2.4, the HKG algorithm aims
to maximize the expected increase in information with each new iteration, as well as to find
the highest expected reward. The variance of a decision (e.g., set of hyper-parameter values)
does not need to be exact. Considering this, we choose to consider a common variance for
all decisions in an instance. Some prior experimentation shows that a rough approximation√

λ = 5 · 104 can be taken for all instances. In this subsection, we experiment with different
magnitudes for

√
λ

In Figure 5.1, the convergence results are plotted. For all three instances, convergence is
slow when

√
λ. On the other hand, the HKG is less likely to consider new decisions when

√
λ

is too low. For instance I40, a slow convergence and high costs are observed when
√

λ = 5 · 105

or
√

λ = 5 · 106. The remaining values for
√

λ seem to provide similar convergence speeds as
well as low costs. For instance I78,

√
λ = 5 · 105 and

√
λ = 5 · 106 result in a slow convergence

as well.
√

λ = 5 · 104 also shows signs of slow convergence.
√

λ = 5 · 102 provides good initial
results but does not progress towards better decisions.

√
λ = 5 · 103 seems to provide both low

costs and good convergence. For instance I128, convergence is best for
√

λ = 5 · 105. Lower
values for

√
λ do not converge as much, and

√
λ = 5 · 106 results in such high costs and slow

convergence it is only barely visible on the chart. Based on these observations, instance I40
is assigned

√
(λ) = 5 · 102, instance I40 is assigned

√
(λ) = 5 · 103 and instance I40 is assigned√

(λ) = 5 · 105.
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5.2.2 Hyper-parameter sensitivity

To understand the impact of hyper-parameter settings setting on the model, we experiment
with fixed values for each of the four hyper-parameter types. For each of the values a hyper-
parameter is set to take, 50 measurements were simulated for each network instance. In Fig-
ure 5.2a, the four reverse RTI strategies are fixed. Results are slightly consistent over the
instances. The hybrid strategies (F2 and F3) seem to result in lower costs, whereas the pure
depot delivery strategy results in higher costs in all instances. In Figure 5.2b, the short-term
forecasting horizon length (Tm) is fixed. Generally, lower values around 1 of 2 days seem to be
preferred. In Figure 5.2c, the long-term forecasting horizon length (Tn) is fixed. In this figure,
we observe that a wider range between 1 and 4 days is preferred. Results vary over the various
instances, however. In Figure 5.2d, the picking forecasting horizon length (Tp) is fixed. Results
seem consistent over the instance. Oddly enough, the forecasting horizon gives the best results
when it is either low or high, whereas an intermediate forecasting horizon leads to additional
costs in all instances. For all three forecasting horizon hyper-parameters, we also find that a
value of 0, which disables forecasting, generally results in higher costs. We can also deduce
that both the forecasting horizon and the reverse RTI strategy have an observable impact on
the model’s efficiency, indicating there is a significant trade-off to be made between the renting
costs, driving costs, and depot activity.
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5.2.3 Reverse RTI strategies

In this study, we seek to identify the potential of RTI repositioning. As mentioned in Sec-
tion 5.1.2, the reverse RTI strategies are structured such that they can represent specific types of
reverse RTI management. The pure depot delivery strategy (F4) most resembles the current RTI
management: although the concept of “RTI trading” (see Section 2.2.6) is not actively carried
out, all RTIs must flow through the depot (Discussed in Section 5.4.1). In this experiment, we
propose a more thorough analysis of the operational differences between this method and the
proposed strategies with some form of RTI repositioning. In this experiment, we fix each of
the reverse RTI method hyperparameters according to the various reverse RTI strategies (see
Table 5.2) while keeping the forecasting horizon hyperparameters variable. Each setting is
trained in 5 runs with 200 HKG measurements. Finally, the resulting hyper-parameter settings
were each simulated another 10 times to obtain additional insights into the stochastic influences
in the solution. The absolute average KPI scores of this experiment can be found in Table 5.4.
To analyze these KPIs on a comparable scale, each KPI value is divided by the instance’s total
number of forward orders.

Required RTIs

In Figure 5.3, the number of used RTI per order are depicted. Results show small but noticeable
differences per reverse RTI strategy. For this KPI, we observe that the pure RTI repositioning
strategy (F1) requires the amount of RTI and the pure depot delivery strategy requires (F4)
most. The hybrid strategy (F2 and F3) score comparably well and can be considered average.
There is some variance involved in this measure. However, we can safely state that a strategy
with RTI repositioning (F1, F2 or F3) generally scores better than the strategy without RTI
repositioning (F4).

I40 I78 I128

0.1
0.2
0.3
0.4 F1 F2 F3 F4

FIGURE 5.3: Average required RTIs (KPI 1) per order, with a 95% confidence
interval.

Kilometers

In Figure 5.4, the kilometres per order are depicted. Over the instances, the differences in
kilometers driven for forward and reverse logistics are relatively comparable. The pure RTI
repositioning strategy (F1) results in a few more kilometers, and the other strategies each have
comparable results. This indicates that the distance driven does not seem to correlate with the
employed reverse RTI strategy.
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FIGURE 5.4: Average kilometers driven per order (KPI 2), with a 95% confidence
interval.

Depot activity

In Figure 5.5, the depot activity per order is depicted. This figure represents the observed
amount of additional RTI handling within the depot. We see a large reduction of depot activity
for all strategies using RTI repositioning (F1, F2 and F3). This indicates a clear trend in which
RTI repositioning reduces total depot activity. This is a logical consequence of the fact that RTIs
do not need to be processed in the depot with RTI repositioning.
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FIGURE 5.5: Average depot activity per order (KPI 3), with a 95% confidence
interval.

Emergency deliveries

In Figure 5.6, the depot activity per order is depicted. The pure RTI repositioning strategy
(F1) stands out: it generally results in the highest required emergency delivery distance. The
pure depot delivery strategy (F4) is slightly better, but still quite high relative to the hybrid
strategies (F2 or F3). This measure seems quite high in general, but especially in instance I128.
In Figure 5.4, the average forward and reverse kilometer driven per order is 20 kilometers for
instance I128, with an average of 2.5 kilometers for emergency deliveries. This can be explained
by the fact that a minimal number of trucks is initialized in the forward routing heuristic
(Section 4.2.1). As such, a lack of capacity for reverse activities increases emergency deliveries.
This can explain why the pure strategies (F1 and F4) have higher emergency deliveries: the
pure RTI repositioning strategy is limited by the additional distance required. The pure depot
delivery strategy, on the other hand, requires less distance but all empty RTI have to be loaded
at the start of the day and is thus limited by the capacity available in vehicles.
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FIGURE 5.6: Average depot activity per order (KPI 3), with a 95% confidence
interval.

Costs

In Figure 5.7, the costs per order are plotted. The costs are calculated as the weighted sum of
all prior KPIs, as per Equation 5.1. The individual contribution of each KPI to the total costs
is also shown. First and foremost, we observe that the pure depot delivery strategy (F4) leads
to the most costs in all three instances. On average, the three strategies with some form of RTI
repositioning (F1, F2 and F3) result in a significant cost reduction. Based on the applied strat-
egy, there are some deviations involved, however, they do not result in significantly different
conclusions. We also observe that the rent of RTIs and the distances driven for forward and
reverse logistics make up the largest cost components. Depot activity costs are relatively small
but are far higher for the pure depot delivery strategy (F4). The costs of emergency deliveries
have a moderate impact on the total costs, mainly due to the high value for the cost-factor.
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FIGURE 5.7: Cost buildup for each instance and reverse RTI strategy with ω1 = 2,
ω2 = 1 and ω3 = 10
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Required RTIs Kilometers Depot activity Emergency km. Cost

I40

F1 2358 553448 12794 21778 2198065
F2 2674 567642 20462 6539 2196996
F3 2364 545285 74274 8626 2113855
F4 2874 551863 195197 14017 2487916

I78

F1 4406 898149 26654 43700 3867958
F2 4648 899707 73504 25357 3822861
F3 4308 901706 114328 34734 3837392
F4 5503 908335 295402 56748 4688039

I128

F1 5736 1213486 32600 67704 5230110
F2 6463 1200825 59040 24157 5061255
F3 6348 1179489 163328 32244 5161878
F4 7868 1189066 368796 45997 6078831

TABLE 5.4: Absolute average KPI and objective values.

Forecasting horizon settings

Finally, let us discuss the forecasting horizon settings for each of the reverse RTI strategies,
shown in Table 5.5. The large variety in forecasting horizon settings amongst instances suggests
a high dependency on the instance dynamics as well as the reverse RTI strategy. Generally
speaking, when a forecasting horizon is low, its associated demand or supply is also lower.

Instance F Tm Tn Tp

I40 F1 2 4 3
I78 F1 2 5 4
I128 F1 5 5 2

I40 F2 2 5 2
I78 F2 2 1 6
I128 F2 2 5 3

I40 F3 0 2 8
I78 F3 0 2 6
I128 F3 2 0 8

I40 F4 0 2 7
I78 F4 0 2 10
I128 F4 1 2 10

TABLE 5.5: Forecasting horizon settings for fixed reverse RTI strategies.

The pure RTI repositioning strategy (F1) generally has a smaller short-term and larger long-
term forecasting horizon and lower picking forecasting horizon. This suggests a distinction
between short-term and long-term demand is important when all empty RTI deliveries are
performed via RTI repositioning. A smaller picking forecasting horizon suggests empty RTI
inventories are quickly considered for repositioning. In two instances (I40, I128), the semi-
hybrid strategy (F2) implements a small short-term forecasting horizon and a large long-term
forecasting horizon. combined with a small picking forecasting horizon. This strategy suggests
a higher urgency demand should be delivered via RTI repositioning or depot deliveries in
case there is no empty RTI supply at users. Once high urgency short-term deliveries have



5.3. Managerial Implications 55

Forecasting horizon Short-term Long-term Picking

Instance users 0.46 -0.05 0.09
Instance forward orders 0.43 -0.06 0.11
Instance forward RTI 0.40 -0.08 0.14

Relative RTI repositioning 0.75 0.68 -0.86

TABLE 5.6: Correlation between instance characteristics and forecasting horizon
lengths, and correlation between relative RTI repositioning and forecasting

horizon lengths.

been planned, the less urgent long-term demand can be planned in via repositioning as long
as logistic capacity and empty RTI supply are sufficient. In instance I78, the small long-term
forecasting horizon and large picking forecasting horizon suggest that most empty RTI demand
should be handled via short-term RTI repositioning: a longer picking forecasting horizon re-
sults in a higher empty RTI supply, but since the long-term forecasting horizon is small, most
repositioned RTI will be picked for short-term demand. The fully hybrid strategy (F3) has set
either the short-term forecasting horizon or the long-term forecasting horizon at 0. By doing
so, the short-term or long-term demand is disabled. For the first two instances, the short-term
forecasting horizon is set to 0. Under this setting, empty RTI demand is provided by long-
term repositioning flows first, with remaining RTI demand being delivered via long-term depot
deliveries. In the third instance, the long-term forecasting horizon is set at zero, but the result
is identical. For the pure depot delivery strategy (F4), a similar effect is observed. By setting
either the short-term or the long-term forecasting horizon at zero, no prioritization is made for
the delivery of RTI: as long as vehicle capacity permits, RTIs are delivered with equal priority.
The exception is instance I128, where a small short-term forecasting horizon is prioritized.

In Table 5.6, we show how the instance characteristics (Table 5.1) correlate with the fore-
casting horizon lengths. At a glance, we find that only the short-term forecasting horizon
correlates with the instance characteristics. Large instances generally lead to higher short-term
forecasting horizons. The long-term forecasting horizon and the picking forecasting horizon,
however, have little to no correlation with the instance characteristics. All forecasting horizons
have a significant correlation with the amount of RTI repositioning. Say, we consider the
relative fraction of RTI repositioning for each reverse RTI strategy as:

• 100% RTI repositioning: pure RTI repositioning.
• 66% RTI repositioning: Semi-hybrid
• 33% RTI repositioning: Fully hybrid
• 0% RTI repositioning: pure depot delivery

Than the correlations are computed as shown in Table 5.6. The short-term and long-term
forecasting horizon tends to decrease as we progress from the pure RTI repositioning strategy
(F1) to the pure depot delivery strategy (F4), whereas the picking forecasting horizon increase.
All in all, this suggests the forecasting horizon settings are correlated with the chosen strategy,
more so than the addressed instance. Alternatively, this indicates that each reverse RTI strategy
has a generally preferred forecasting horizon setting, regardless of the instance address.

5.3 Managerial Implications

In the previous section, we reviewed the results of the experiments. In this section, we reflect
on the implications for a managerial decision-maker. To analyze an experiment, we designed
four key performance indicators and a single cost objective function. The KPIs summarize the
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cost components of the supply chain. They consist of the total number of RTIs required in the
supply chain, the total distance driven in forward and reverse logistics, the total amount of RTI
handling in the depot, and the total amount of emergency deliveries. The cost function is a
weighted summation of these four KPIs. The cost-factors (e.g., weights) of each component are
situational. Based on input from COMPANY B, they were set on the least-favorable setting to
reduce any bias the cost-factors might introduce.

The simulation model designed in Chapter 4 was tested on three instances. Each instance
represents a portion of the historical transport orders provided by COMPANY B. During the
experimentation phase, an initial focus was put on the comparison between the reverse RTI
strategies proposed in Section 5.1.2. A first strategy, the pure RTI repositioning strategy, con-
sisted in performing all reverse logistics through RTI repositioning. As such, both short-term
and long-term RTI requests are delivered by repositioning the RTIs available at supplying
users. A second strategy, referred to as semi-hybrid, performs short-term and long-term RTI
repositioning as well as short-term depot deliveries. The third strategy, a fully hybrid strategy,
applies short-term and long-term RTI repositioning as well as short-term and long-term depot
deliveries. Finally, the pure depot delivery strategy only applies short-term and long-term
depot deliveries.

In Section 5.2.3, we analyzed the performance of each reverse RTI strategy on three in-
stances. We observe that each strategy returns consistent KPI results over the experiments.
Strategies that incorporate some form of RTI repositioning (pure or hybrid) considerably re-
duce the total number of RTI required, as well as the total activity in the depot. The total
distance driven for forward and reverse logistics is similar for all strategies. Although initial
theories suggested an increase in distance driven for RTI repositioning, this turned out not to be
the case. In regards to stockouts, we observe that the pure strategies result in large emergency
deliveries being driven. These strategies are limited by loading capacity and driving limits.
The hybrid strategies incorporate more flexibility and are more prone to dynamically managing
user inventories.

Regarding total costs, we find that a strategy focused purely on depot deliveries always
results in higher costs. These costs mainly follow from an increased total number of RTIs
required and are augmented by the high depot activity costs. Since all strategies with some
form of RTI repositioning lead to fewer costs, we can already conclude that RTI repositioning
does improve RTI logistics efficiency. Quantifying this statement, we propose Figure 5.8, in
which the relative reduction in costs compared to the pure depot delivery strategy is shown (in
other words: the relative increase in efficiency). From a general point of view, RTI repositioning
can increase efficiency between 3.20% and 21.62%. The average scores per instance and reverse
RTI strategy are shown in Table 5.7
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FIGURE 5.8: Increase in efficiency of the pure RTI repositioning strategy (F1),
the semi-hybrid strategy (F2) and the fully hybrid strategy (F3) compared to the

depot only strategy (F4).
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However, not every such strategy should blindly be adopted. We find that the pure RTI
repositioning results in a relatively high number of emergency deliveries. Reverse logistics
under this strategy are relatively quickly obstructed due to logistical limitations. As such, the
pure strategy is not recommended. We also observe a high variance in the efficiency of the
fully hybrid strategy. Although the average performance of the fully hybrid strategy is still
respectable, we recommend adopting a semi-hybrid strategy as it is more consistent. Under a
semi-hybrid strategy, the model is most flexible in the trade-off between RTI repositioning and
depot deliveries. Under the semi-hybrid strategy, the emergency deliveries are minimized and
the total increase in efficiency is highest on average. With this strategy, an increase in efficiency
between 10.04% and 20.78% is observed with a 95% confidence interval. For each instance, the
average increase in efficiency is 11.69%, 18.46% and 16.74% respectively.

Average increase
in efficiency

I40

F1 11.65%
F2 11.69%
F3 15.04%

I78

F1 17.49%
F2 18.46%
F3 18.15%

I128

F1 13.96%
F2 16.74%
F3 15.08%

TABLE 5.7: Average increase in efficiency of the strategy with RTI repositioning
(F1, F2, F3) compared to the pure depot delivery strategy.

5.4 Discussion

On a final note, we address some points of discussion. First, we address some distinctions
between COMPANY B’s supply chain and the simulated supply chain. Next, we address
some sensitivity discussion in regards to the cost factors. Next, we discuss the effect if RTI
were rented for a shorter period. Finally, we discuss an inefficiency of our HKG aggregation
structure.

5.4.1 Current supply chain

One of the goals of this study was to identify if RTI repositioning would improve the current
supply chain. This task proved difficult because the current supply chain is difficult to replicate.
The current supply chain largely depends on the expert intuition of planners. The forward
logistics routing method consists of grouping close-by origin locations that, at the same time,
have close-by destination locations. During the modeling phase, this process resulted in largely
inefficient routes. By implementing the currently used forward routing heuristic whilst consid-
ering some assumptions, route efficiencies were more realistic. The next challenging aspect
is the process of RTI trading: planners decide when nurseries might require new RTIs. Their
decisions are based on expert intuition and are difficult to replicate. To do so, we observed two
major inefficiencies: very high inventories and very high stockouts. The high inventories were
due to the strict implementation of the trading principle: each time an order was sent out, the
exact amount of empty RTIs was traded back, and vice-versa for retailers. As a consequence, a
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nursery that would only sporadically send out RTIs was left with a high inventory for most of
the year, and retailers that would only be visited sporadically would have to store empty RTIs
between the (long) inter-visit periods. Similarly, when trading RTIs, only an amount of empty
RTIs equal to the transported order quantity was delivered. As a consequence, an emergency
delivery was necessary every time an order was increased by a single RTI. The replication
of the trading procedure thus resulted in high inefficiencies that are not observed in the actual
supply chain thanks to the expert judgment of planners as well as the fact that any locations can
update COMPANY B in case they require delivery or pickup of empty RTIs. The inefficiencies
due to RTI trading are especially high when reverse logistics are only performed via depot
deliveries. As such, a simulation model based on this process would wrongfully conclude RTI
repositioning leads to large savings.

5.4.2 Cost factors

In Section 5.1.3, the cost function is introduced as the weighted sum of all KPIs. These weights
are introduced as being situational: the kilometer cost factor varies based on the region one
drives in, the depot activity cost-factor depends on the total number of RTIs to unload and
the emergency delivery cost factor is set to a high value to minimize emergency deliveries in
general. Two points are worth discussing regarding this topic: the effect of cost-factors on the
current conclusion and the effect of cost-factors on model training.

The effect of cost-factors refers to how sensitive the current objective values are with chang-
ing cost factors. One might ask: given the same KPI results, could a different set of cost-factor
values result in a different conclusion? Consider two arguments. First, we note that the semi-
hybrid strategy (F2) results in the least emergency deliveries in each instance (Figure 5.6), re-
gardless of the assigned cost-factor (ω3). The fully hybrid strategy (F3) also is a close second on
all instances, whilst the pure RTI repositioning consistently results in high emergency deliveries
(F1). Second, we consider the possible changes in the cost function. Since the costs associated
with emergency deliveries will always support our current conclusion, let us set the emergency
delivery cost-factor at zero (ω3 = 0). The kilometer cost-factor (ω1) and the depot activity
cost-factor (ω2) are varied within the range given estimated by COMPANY B: ω1, ω2 ∈ [1, 2].
As the cost function is linear, the highest and lowest efficiency increases are observed at the
extremities of each cost-factor. In Table 5.8, the increase in efficiency of each strategy with RTI
repositioning compared to the pure depot delivery strategy is shown. In all cases, a positive
increase in efficiency is observed, indicating all strategies are more efficient than the pure depot
delivery strategy. Summarizing, we state that, given the current simulation results, the semi-
hybrid strategy objectively scores best regarding emergency deliveries. Even when emergency
deliveries are left out of consideration, the semi-hybrid strategy still consistently results in an
increase in efficiency for any kilometer and depot activity cost-factor.
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ω1 = 1 ω1 = 1 ω1 = 2 ω1 = 2
ω2 = 1 ω2 = 2 ω2 = 1 ω2 = 2

I40

F1 20.54% 27.69% 15.65% 21.62%
F2 12.91% 20.42% 09.20% 15.37%
F3 17.46% 21.82% 13.63% 17.34%

I78

F1 21.15% 27.03% 16.73% 21.70%
F2 16.89% 21.79% 13.37% 17.50%
F3 19.42% 22.94% 15.30% 18.37%

I128

F1 24.61% 29.72% 18.96% 23.41%
F2 18.30% 23.35% 14.22% 18.52%
F3 17.37% 20.32% 13.87% 16.44%

TABLE 5.8: Average increase in efficiency of the strategy with RTI repositioning
(F1, F2, F3) with variable kilometer cost factors ω1 and variable depot activity

cost-factor ω2, and emergency deliveries costs omitted (i.e., ω3 = 0)

One might also wonder how the simulation will turn out if different cost-factors are consid-
ered. This has not been studied and might be interesting to look into. We have opted to base
our simulation on the least-favorable cost functions: we speculated RTI repositioning would
increase the number of kilometers driven and decrease the total depot activity. As such, the
kilometer cost-factor was set at its highest value (ω1 = 2) and the depot activity cost-factor was
set at its lowest value (ω2 = 1) to consider a worst-case scenario. Some small prior experiments
have been done to fix the emergency delivery cost factor (ω3 = 10) although this cost-factor
mainly serves to minimize emergency deliveries by introducing a significant impact on costs.

5.4.3 Minimum RTI required

In our analysis, the minimum number of RTIs required has a large impact on the costs of a
reverse RTI strategy. For the computation of the related costs, we assume that the minimum
number of RTI required is fixed for a whole year. However, the seasonality of the supply chain
results in a distinction between the minimum number of RTI required during high season and
low season. Realistically, COMPANY B will dynamically adapt the number of RTI required
throughout the year to fit the demand of that period.

Consider the graph in Figure 5.9, where the daily minimum RTI requirements are plotted.
This daily minimum RTI requirement includes all RTIs in inventory as well as those needed
for emergency deliveries for instance I40 under the semi-hybrid strategy and the pure depot
delivery strategy (similar patterns are found for the other strategies and instances). In the
second half of the year, merely 66% and 70% of the RTI used in the first half are required. As
fewer RTIs are rented in the second half of the year, the amplitude of the increased efficiency
of the reverse RTI strategies with RTI repositioning might be less. As such, let us consider a
reduction of 75% of the observed minimum RTIs required: 100% in the first half of the year
and 50% in the second half of the year. The effect on the efficiency of the various reverse RTI
strategies and instances are shown in Table 5.9. With less RTI rented, a positive increase in
efficiency is still observed for all instances and reverse RTI strategies, with minimal differences
when compared to the initial average improvements.
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FIGURE 5.9: Daily number of required RTIs for two examples in instance I40

100% RTI 75% RTI Difference

I40

F1 11.65 % 10.90% -0.74%
F2 11.69 % 12.25% 0.55%
F3 15.03 % 14.71% -0.31%

I78

F1 17.49 % 17.19% -0.29%
F2 18.45 % 18.80% 0.34%
F3 18.14 % 17.71% -0.42%

I128

F1 13.96 % 12.20% -1.76%
F2 16.73 % 16.58% -0.15%
F3 15.08 % 14.51% -0.56%

TABLE 5.9: Average increase in efficiency of the strategy with RTI repositioning
(F1, F2, F3) with either 100% required RTI or 75% required RTI

5.4.4 HKG aggregation

The HKG algorithm is based on the structure defined in Section 5.1.2. As a point of discus-
sion, we note that there some strategies give similar model executions under different hyper-
parameter settings. Consider all decisions where the reverse RTI strategy is some strategy f ,
short-term forecasting horizon is 0, the long-term forecasting horizon some value x, and the
picking forecasting horizon some value y. These decisions are identical to all decisions where
the reverse RTI strategy is set as the same strategy f , short-term forecasting horizon is x, the
long-term forecasting horizon 0, and the picking forecasting horizon the value y.


Fn = f
Tm = 0
Tn = x
Tp = y

 =


Fn = f
Tm = x
Tn = 0
Tp = y
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As the range of values for both the short-term and long-term forecasting horizon is between
0 and 5 (Tm, Tn ∈ [0, 5]), this could have been prevented by setting the minimum value of one
of the ranges to 1 (Tm ∈ [1, 5] or Tn ∈ [1, 5]). By doing so, the total number of decisions is
decreased from 1584 to 1320.

5.5 Conclusion

In this chapter, we performed experiments to address the research question: “To what extend
does an autonomous dynamic RTI repositioning system improve the analyzed horticultural
supply chain?”.

In Section 5.1, we summarized the experimental settings we have defined. Stakeholder
COMPANY B has provided a large set of data, from which we derived three representative
instances of different sizes. We also introduce the aggregation structure we used for the hi-
erarchical knowledge gradient and explain how specific combinations of the reverse flow pa-
rameters represent specific reverse RTI strategies. From this, we derived four strategies that
we extensively study: a pure RTI repositioning strategy, a semi-hybrid strategy, a fully hybrid
strategy, and a pure depot delivery strategy. These strategies are evaluated based on a set
of KPIs representing a simulation’s efficiency and an objective: a cost function based on the
weighted sum of these KPIs

In Section 5.2, we performed our experiments. As the simulation study is based around
the hierarchical knowledge gradient, we first address how different values for the general-
ized variances affect the convergence speed. Next, we evaluate how each hyper-parameter
affects the simulation objective. We find that the effects of each hyper-parameter are consistent
throughout the instances. Next, we extensively investigate the efficiencies of the different
reverse RTI strategies. In line with expectations, we find that strategies that involve some form
of RTI repositioning tend to require fewer RTIs when compared to the pure depot delivery
strategy. Against expectations, the additional distance required to satisfy reverse logistics is
only marginally higher when RTI repositioning is included. These strategies also result in a
considerable reduction in depot activity, which is a direct result of repositioned RTI not being
handled at the depot. Another observation is that the pure RTI repositioning strategy and the
pure depot delivery strategy both result in high emergency deliveries, as vehicle capacities are
not fully utilized. Cost-wise, we find that strategies with RTI repositioning always result in the
least costs.

We also analyse the relation between the forecasting horizon length’s against the instance
characteristics. We find that the short-term forecasting horizon length has a moderate negative
correlation with the size of the instances, suggesting larger instances require smaller short-
term forecasting horizons. The the long-term forecasting horizon and the picking forecasting
horizon do no have a significant correlation with the instances. All forecasting horizon’s do
have a large correlation with the chosen reverse RTI strategy. Generally, we find that the more
RTI are repositioned, the longer the short-term and long-term forecasting horizon should be,
whereas the picking forecasting horizon should be lower as more RTIs are repositioned.

On a concluding note, we provide a managerial insight on the results in Section 5.3. We
address the main research question by reviewing the increase of efficiency resulting from the
effective incorporation of RTI repositioning. We find that all reverse RTI strategies increase
RTI logistics efficiency. The semi-hybrid strategy is considered most efficient thanks to its low
emergency deliveries and high increase in efficiency between 10.04% and 20.78%, generalized
over all instances. For each instance, the average increase in efficiency is 11.69%, 18.46% and
16.74% respectively.
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Chapter 6

Conclusions, Recommendations &
Implementation

6.1 Conclusions

In this study, we address the supply chain around returnable transport items (RTIs) in the
horticultural industry. RTIs play a central role in both forward and reverse logistics. As forward
logistics embody the value-adding activities, reverse logistics are less prioritized. This results
in a potential efficiency increase. In this study, we focus on the potential of RTI repositioning.
Currently, RTIs arriving at the end of the forward logistics flow are collected and returned to
the depot. Next, they can be reintroduced in the supply chain. By making use of accurate RTI
visibility and empty RTI supply and demand forecasts, RTIs can dynamically be repositioned
between users in the supply chain, omitting a visit to the depot and allowing for a more
dynamic inventory allocation. As such, the research topic addressed in this study is:

In what way and to what extent can dynamic RTI repositioning
improve the efficiency of RTI logistics?

To answer this research question, we first obtain a better understanding of the organization
of the current supply chain. This analysis, performed in Chapter 1 and Chapter 2, provides
insights into the particulars of the supply chain. The planning of forward logistics and reverse
logistics fully relies on the expert opinion of COMPANY B’s planners. Thanks to their under-
standing of the users in the RTI pool, they intuitively combine forward transport orders and
roughly estimate empty RTI needs. We also introduce a numerical example that generalizes
COMPANY B’s current RTI management and theorizes the potential costs and benefits of RTI
repositioning.

In Chapter 3, we review literature to further understand the intricacies of the routing prob-
lem at hand. RTI management in the horticultural industry is considered a Pickup and Delivery
Inventory Routing Problem (PDIRP). The PDIRP is characterized by its routing structure. Based
on the type of RTI management used, RTI management can consist of all three types of routing
structures, but studies concerned with multiple coinciding routing structures are rare.

From our findings, we define a sequential heuristic in Chapter 4. The heuristic addresses
the forward logistics first and extends these routes to introduce reverse logistics. As reverse
logistics is charged with both matching supply and demand of empty RTI as well as routing
the matched pickup and delivery pairs, we also introduce a variable fixing procedure. Based
on uncertain forecasted demand, the procedure finds for each location a short-term and long-
term demand. Additionally, each type of demand can be assigned to be delivered via RTI
repositioning or depot deliveries. Another forecast determines the available empty RTI supply
for all locations. When all locations are classified as either demand or supply locations (or
none) the reverse routing heuristic matches pickup and delivery pairs accordingly, realizing
the reverse logistics. The sequential heuristic is based on a set of hyper-parameters that define
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which types of reverse RTI flows are allowed as well as the length of the short-term, long-term,
and picking forecasting horizon. The Hierarchical Knowledge Gradient is applied to optimize
the selection of hyper-parameter values.

In Chapter 5, a extensive experimentation phase is performed. The experiments were
performed for three instances of different sizes. The HKG algorithm optimizes the hyper-
parameter settings according to the total logistics costs, consisting of the number of required
RTI, the total forward and reverse logistics distance, the total activity at the depot, and the
distance of emergency deliveries. Also, we define four reverse RTI strategies representing a
unique type of RTI management: a pure RTI repositioning strategy, a pure depot delivery strat-
egy, a semi-hybrid strategy including short-term depot deliveries, and a fully hybrid strategy.
During the experimentation phase, we consider the pure depot delivery strategy as the current
supply chain and use for to determine if and by how much RTI repositioning improves the
supply chain.

• Strategies with RTI repositioning result in a reduction in the total RTI required in the sup-
ply chain. By directly repositioning RTIs in the supply chain, depot visits are prevented.
This ensures RTI can directly be reintroduced in the supply chain.

• Strategies with RTI repositioning do not result in a significant increase in kilometers
driven for the execution of reverse logistics.

• Strategies with RTI repositioning result in a decrease of depot activity. Once again, by
skipping a trip to the depot, operational activities are not required at the depot.

• The pure RTI repositioning and pure depot delivery strategies result in high emergency
deliveries. These strategies are limited by the amount of empty RTI they can supply
as all empty RTI demand has to flow via a single reverse RTI flow. The semi-hybrid
strategy results in a large improvement in emergency deliveries, with a similar but less
considerable improvement for the fully-hybrid strategy.

• Strategies with RTI repositioning always result in fewer costs than the pure depot deliv-
ery strategy. Cost savings mainly follow from the reduced number of rented RTI and the
prevention of emergency deliveries (for the hybrid strategies).

• There is little correlation between forecasting horizon settings and instance characteris-
tics.

• There is a high correlation between forecasting horizon settings and employed reverse
RTI strategy. The more RTI repositioning is prevalent in a strategy, the longer the short-
term and long-term forecasting horizons are and the shorter the picking forecasting hori-
zon.

Based on this analysis, a final comparison between reverse RTI strategies indicates that the
semi-hybrid strategy is most efficient. This strategy results in the least emergency deliveries
and has relatively consistent results over the instances. It also shows low costs. With a 95%
confidence, we observe an increase between 10.04% and 20.78% when compared to the pure
depot delivery strategy, with an average of 11.69%, 18.46% and 16.74% for each of the three
instances respectively. We conclude this study by stating that RTI repositioning does increase
the efficiency of the RTI supply chain. Through better utilization of RTIs and transport, costs
can be reduced.
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6.2 Recommendations & Implementation advice

We recommend COMPANY A and COMPANY B to further analyze how RTI repositioning can
be implemented in a hybrid fashion: both depot delivery flows and RTI repositioning flows
contribute to efficient RTI management. This recommendation strongly relies on the presence
of good RTI visibility as well as some form empty RTI supply and demand forecast.

To implement RTI repositioning, careful steps must be undertaken: there is not a single best
RTI repositioning method. Naturally, evidence for the right type of RTI repositioning must be
found in practice. Considering the final objective of a fully autonomous transport system, we
present a few steps that can lead to eventual implementation. On this basis, an increased RTI
visibility is necessary.

6.2.1 Interactive RTI management system

First and foremost, the current RTI management system must be updated. In combination with
COMPANY A’ SMA.RTI system, RTI visibility is automatically ensured: all RTI locations are
known. As tracking information is automatically updated with the loading and unloading of
RTIs, no trading practices are necessary anymore.

To ensure each user still receives their RTIs, they can indicate so through this interactive
system. They can indicate when they require RTIs and how much. Alternatively, they can
indicate how many RTIs they have available for picking. Additionally, to prevent these users
from being burdened with too much additional labor, they can engage forms of collaboration
with COMPANY B to ensure they have their required RTIs. For instance, a nursery can indicate
they expect to send out 15 RTIs every week, and to do so, they require these 15 RTIs at the latest
on Friday. COMPANY B can then ensure that they have their required RTIs delivered.

The goal of this system is to create a user/specific forecast of both supply and demand.
With this information, the system can make reverse RTI management proposals to the planning
team: based on the current forward orders (which the planners receive every night), empty RTI
origin and demand pairs can be proposed. The supply and demand pairs should extend on
the forward routes created by the planners. As such, this system can be implemented as an
extension of the current transport management system.

6.2.2 Forecasting system

The next step is to further research autonomous forecasting techniques that can estimate the RTI
necessities based on various external factors. Several insightful features are readily available:
weather forecasts and market trends. Additionally, one can go further in detail by develop-
ing user-specific forecasts. If information is obtained on the type of plants cultivated, better
estimates can be made. At this point, reverse RTI strategies are still provided as advice to the
planner. As such, the planner remains in control and can anticipate unexpected changes.

6.2.3 Autonomous routing

Finally, during the two prior phases, COMPANY B can get an understanding of the effects
of RTI repositioning on their supply chain. Based on the observed effects, an autonomous
system can be designed to manage both routing activities and empty RTI inventory allocation.
This system automatically plans the forward logistics and correctly interprets reverse logistics
needs.
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6.2.4 Further improvements

Finally, such an autonomous system can continuously be improved and extended. A desire
within COMPANY B is to have routing software that can react to disruptions during rout-
ing. Disruptions can consist of a forward logistic transport order that turns out to consist of
additional RTIs, of missing empty RTIs that are to be repositioned. Through a live disruption
manager, ongoing routes of all (or some) vehicles can be updated to minimize the consequences
as much as possible.

6.3 Further research

Further research can provide additional insights into the concept of RTI trading, but also in the
routing challenges for Pickup and Delivery Problems (PDP) with multiple structures. As such,
we propose a few topics that have a theoretical or a practical value.

• PDPs are characterized by their routing structures: 1-1, 1-M-1, M-M. The routing struc-
tures have individually been addressed in linear forms and solved to optimality for (very)
small instances. A large distinction between routing structures are their linear formula-
tion (see Cordeau et al. (2008) for a 1-1 PDP and Dongyang et al. (2020) for an M-M PDP
formulation). Further research can be done on exact approaches for PDPs that combine
multiple routing structures. This, in turn, can lead to the development of new methods
that address both types of routing structures through nested methods. One particularly
interesting algorithm is the decomposition approach by Casazza et al. (2021).

• Extending on the previous proposal, further research can also consider the consideration
for time windows. Our current research was limited by the available data, but time
windows play a role in the horticultural supply chain as well as in other applications.

• Within this study, an assumption of present forecasts was made. A study on forecasting
methods within the horticultural industry is necessary. Forecasting can be done on a
product-specific or RTI level. Within the industry, the weather has a large influence on
the growth speed as well as the consumer plant desire.

• An final topic worth investigating is disruption routing: how can ongoing routes be
improved to minimize the impact of disruptions in the supply chain?
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Appendix A

Auction Trolleys & CC-containers

(A) Decomposed AT (B) Filled AT

(C) Decomposed CC (D) Filled CC

FIGURE A.1: Auction Trolleys and CC-Containers (FloraHolland, 2018)

AT (A.1a) Description CC (A.1c) Description

1 Four wheels 1 Four wheels
2 Three fixed trays 2 CC tag
3 A straight tow pin 3 Full-size shelves
4 A plastic tube on the tow pin 4 A base
5 Coupling hook 5 Four posts
6 Form clamp
7 Pulling handle

TABLE A.1: AT & CC Components (FloraHolland, 2018)
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FIGURE A.2: Truck layout when loaded with both CCs & ATs (“STW”)
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