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Abstract 
 

Breastkcancer, thekmostkcommonlykdiagnosed cancer in womenkworldwide, is mostly detected 

through a biopsy where tissue is extracted and chemically examined or pathologist assessed under 

a microscope. Biopsy robots have been introduced, aiming towards increased precision. The 

MURAB project aims to revolutionize the waykcancerkscreeningkandkmusclekdiseaseskare 

researchedlandlhaslthelpotentialltolsavellives. Itlintendsltolcreatelalnewlparadigmlinlwhich, lthe 

precisionloflmedicallimaginglmodalitieslsuchlaskMRIkandkUltrasoundkarekcombinedkwith the 

precisionloflroboticslinlorderltoltargetlspecificlareas in the body. 

Medical imaging plays a valuable role in targeting malignant tissue accurately and guiding the 

radiologist during needle insertion in a biopsy. This paper proposes a computer software that can 

process and combine 3D reconstructed surfaces from different imaging modalities, particularly 

MRI and camera, showing a visualization of important features during scanning and biopsy in real-

time and investigates its feasibility. It deals with the reconstruction, segmentation, transformation, 

and registration of MRI scans and camera images of the breast, to assist in the MRI/US image 

fusion part of MURAB. The development of this software promotes exact targeting of (small) 

lesions, which are visible under MRI thus improving the clinical workflow and contributing to the 

achievement of MURAB goals. It also aims to combine the detectability of MRI with the physical 

space of the camera. Thislstudyldemonstrateslthatlthelregistrationlaccuracyloflthelproposed 

systemlislacceptablelandlhaslpotentialloflclinicallapplication in MURAB. 
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1 Introduction 

 

1.1 Context 
 

In 2012, about 1.7 million new cases were diagnosed with breast cancer, the most common cancer 

diagnosed in females around the world. This signifies nearly 25% of all cancers in women and 

12% of all new cancer cases [1]. Being the only procedure that can definitely diagnose cancer, a 

biopsy is a popular imaging-guided, minimally invasive procedure for the examination of 

suspicious areas. 

 

1.2 Overview of the MURAB project 
 

MURAB stands for MRI and Ultrasound Robotic Assisted Biopsy and is a four-year European 

project that is part of the Horizon 2000 Framework for Research and Innovation Program. The 

project includes partners from the University of Verona in Italy, Medical University of Vienna in 

Austria, Radboud Academical Medical Centre in Nijmegen, ZGT hospital Hengelo and Siemens 

in the Netherlands, and KUKA Industrial Robotics in Germany with the University of Twente as 

the leading partner. The aim of the MURAB project is to enhance breast biopsy, specifically 

addressing issues in MRI-guided biopsy.  Instead of multiple MRI imaging repetitions required in 

the conventional procedure, only one MRI image is taken in the MURAB procedure. The latter 

can be summarized into the following phases: 

 PHASE 1: Scanning 

o Autonomous US scanning of the suspicious area by a robot arm 

o Acquisition of elastographic data (US transparent pressure sensor array is used) 

 PHASE 2: Tissue Active SLAM 

o Lesion localization by MRI – US image merging 

o Elastography model construction (For prediction of lesion movement) 

 PHASE 2: Needle Insertion 

o Autonomous US needle tracking 

o Autonomous needle navigation 

o Manual needle insertion by the medical professional (He must only penetrate the 

needle through the skin by applying a constant force in one direction.) 
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o Virtual stop when target has been reached 

 

For the procedure, a KUKA robotic arm is used.  

 

The goals of the MURAB project can be summarized in Figure 1. 

 

Figure 1: MURAB Goals [1] 

1.3 Aim of this Project  
 

The main focus of this final year project is the development of a computer software that can 

reconstruct the surface of breast phantoms imaged with different modalities, particularly MRI and 

stereo camera then process and fuse the multiple surfaces. This fusion should allow the   

visualization and localization of important features, specifically markers. The ultimate goal is to 

combine MRI lesion detectability with stereo vision localization in the physical space in order to 

achieve accurate needle placement and tissue extraction in the future. The software deals with the 

segmentation, registration, and transformation of MRI scans and camera images of the breast, to 

assist in the MRI/Camera/US image fusion part of MURAB. It should promote exact targeting of 

(small) lesions and particular features to improve clinical workflow and contribute to MURAB 

goals. 

 

1.4 Workflow Overview 
 

The implementation of this project comprises four modules: 

1) MRI Surface Reconstruction: The aim of this module is to create a 3D surface from MRI 

acquired images of a breast phantom and localize fiducial points, markers, placed on the 
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phantom to later assist in the registration. The acquired images were enhanced then used in 

reconstruction. The markers were then segmented based on 3D connectivity and area. They 

were located by the computation of their centroids. 

2) Design of the Camera Setup: Since a major part of this project utilizes a camera setup for 

stereo vision, a camera setup had to be designed. This module comprises the optics behind the 

design while taking into consideration the specifications needed for the project. 

3) Camera Surface Reconstruction: The aim of this module is to create a 3D surface from 

camera acquired images of a breast phantom and localize fiducial points, markers, placed on 

the phantom to later assist in the registration. Stereo vision techniques were used in the process. 

The markers were then segmented based on color and area. They were located by the 

computation of their centroids in image space and triangulated to obtain the physical space 3D 

coordinates 

4) MRI-Camera Registration: This final module combines the results of MRI and Camera 

surface reconstruction by aligning the two surfaces. The initial transformation was estimated 

from the phantom marker locations and then optimized using Iterative Closest Point (ICP). 

 

1.5 Report Organization 
 

This report comprises seven chapters. In the next chapter, an overview of breast biopsy, biopsy 

robots, and existing image registration techniques used in surgical navigation is provided. In 

Chapter 3, the theory behind MRI surface reconstruction and marker localization as well as the 

implementation and results are portrayed. Next, the camera setup design and optical mathematics 

behind are detailed. Chapter 5 describes the theory behind stereo vision, camera surface 

reconstruction, and marker localization as well as the implementation and results. The results of 

Chapter 3 and 5 are combined in Chapter 6 where the MRI-Camera registration is performed and 

evaluated. Finally, Chapter 7 discusses the results, and groundwork is set for the future. 
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2 Literature Review 
 

2.1 Breast Cancer 
 

Breast cancer, the disease in which malignant tissue forms in the breast, is the most commonly 

diagnosed cancer in women worldwide and the second major cause of cancer death among women 

[2]. As for diagnosis, mammography, an X-Ray imaging technique, is currently the first step to be 

taken. In case a suspicious lesion is observed on the mammogram, an ultrasound (US) guided 

biopsy is recommended. However, in case the US is not sufficient to accurately localize the lesion, 

MRI breast biopsy is indicated. Improving the mentioned biopsy techniques will probably allow 

early detection and render diagnosis more reliable. Thus, it promises to reduce significantly the 

mortality rate due to breast cancer. 

 

2.2 Breast Biopsy 
 

A biopsy is the only diagnostic procedure that can confirm whether the suspicious area is cancerous 

or not. During this test, tissue or fluid is removed from the suspicious area for morphology and 

histology examination [3]. For the collection of tissue, a needle is inserted, either guided by real-

time ultrasound imaging or guided by MRI. MRI is required whenever lesions are easier to 

visualize in MRI images or whenever patient screening indicates high risk. During MRI breast 

biopsy, the patient is taken out of the MRI machine after imaging and then taken back in after the 

needle has been placed to check for correct placement. Sometimes, multiple repetitions of this 

procedure are needed before the needle has been found to have been inserted correctly. This 

increases patient discomfort, time and cost, and number of false negative diagnoses. 

 

2.3 Biopsy Robots 
 

As expected in the biomedical engineering field, researchers are always looking for improvements 

to already existing systems and solutions. Screening programs and high end professional training 

for radiologists have contributed to fast and accurate biopsies. However, technical solutions such 

as biopsy robots have been also introduced for further improvements. Biopsy robots are well 

known for high accuracy, dexterity, and repeatability, characteristics that are much needed for a 

biopsy [4]. Such robots allow automated needle insertion guided by either remote controlled US 
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scanning and position tracking of the US probe or 3D US volume reconstruction. In such systems, 

interaction dynamics between the needle force and the breast tissue cause tumor displacement 

which results in problems such as patient discomfort, clinician fatigue, and compromising the 

integrity of the tissue specimen. For that, [5] have designed a system for real-time manipulation of 

the tumor where the US is manipulated and the needle is inserted simultaneously. On one hand, 

such systems have reported promising accuracies. On the other hand, they can only focus on one 

part of the biopsy process such as scanning, lesion detection, or needle insertion. They also limit 

their focus on US guided biopsy, leaving behind MRI biopsy, the more complex intervention. The 

MURAB project introduces a solution for the aforementioned issues by developing an 

unconventional biopsy robot that combines both US and MRI. This solution promises to replace 

the cost and time inefficient MRI breast biopsy.  

 

2.4 Multi-modal Image Registration 
 

Nowadays, medical image registration is valued as an assistant for experts in medical 

interventions. The importance of this process arises from its ability to help experts in diagnosis, 

deciding the necessary therapies, localization of the disease, and eventually guiding the 

intervention. The purpose behind using image fusion is to create a more comprehensive and 

detailed output image by aligning a target image to a reference image.   

Magnetic Resonance Imaging [6] 

MRI is a significant invention in the field of medical imaging. It relies on thelorientationloflprotons 

inlalhigh magnetic field and the manipulation of these by resonant radio-frequency waves. Then, 

the return of protons to equilibrium is measured. The output images describe the human body 

thoroughly and contrast soft tissue in a non-invasive, unparalleled manner.  

In medical image registration, there are exhaustive applications such as image regeneration, cancer 

diagnosis, surgical planning, image guided treatment, and others influenced by MRI.  

Current Trends in Medical Image Registration [6] 

Over time, diverse methods of image fusion were presented. These methods are classified 

according to the criteria as illustrated in Figure 2. 
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Figure 2: Classification Criteria of Registration Methods 

 

a) Imageldimensionalitylrefersltolthe number of geometrical dimensions of the image space. 

b) Thelpremiseloflregistrationlislclassifiedlinto.extrinsic.and.intrinsic.llIn.extrinsiclmethods, 

clearly.visible.artificial markers are.attached.to.the.patient.with.the.necessity of being.accurately 

detectable in.all.the.acquired.modalities while intrinsic methods are based on patient provided 

information, such as voxel image intensities.  

c) The nature of the transformation is divided into two categories: rigid and non-rigid 

transformations explained in the next section.  

d) The.images’.coordinateltransformationlcanleitherlbelglobal.or.local. In.jthe.jglobal.jcase, 

mapping parameters should be valid.for.the.whole.image while in the.local.case, a.fraction.of the 

image is transformed, and the mapping.parameters.are solely valid.for.a.small zone.around a 

selected control point.  

e) Three levels of interaction exist based on user-process relation. In interactive algorithms, 

the user accomplishes the registration task by feeding the software with.the.initial.transformation 

parameters. Onlthel otherlhand, .automatic.algorithms work independently of any interaction. 

Finally, in.semi-automatic.algorithms, thekuserkperformskthekalgorithmkinitializationkthrough 

segmenting the data.or.driving the algorithm to the desired.solution.  

f) Four.types of.registration tasks exist based.onlthelmodalities used. In mono-modal tasks, 

the.images.of the same.medical.modality are registered, while.in.multi-modal.tasks, the images 

involved.in.the.registration process belong to different modalities. Therelarelalsolmodality-to-

modellandlmodel-to-modalitylregistrationltaskslwhere only.one.image.is.included while.a.model 



7  

represents.the.other.registration.input.  

g) Registration methods can also be.grouped.into.intra, .inter, .and atlas.subject.registration 

depending on.whether.the.involved.images.belong.to.the.same patient, to different patients, or an 

information database. 

 

Types of Transformations 

1) Rigid 

A rigid transformation is a linear transformation. It is composed of a translation vector and a 

rotation matrix and could be defined by Equation 2.1. 
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In application, a rigid body registration would allow for only 6 degrees of freedom at most. The 6 

degrees of freedom in rigid body registration are translation along the x, .y, .and z dimensions.and 

rotation.around.the.x, .y, .and z axes. These preserve the shape and size of the object, but move it 

around in space. 

 

2) Non rigid 

A non-rigid transformation is nonlinear. It could be described as stretching or shrinking. It also 

allows warping (twisting) of the image. 

In application, it causes a distortion of the image by a vertical or horizontal stretch. For example, 

it allows dilation of the image.  
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3) Affine 

An affine transformation consists of rotation, translation, scaling, and shearing1. 

In application, an affine registration is a linear transformation. It allows for up to 12 degrees of 

freedom so the scale of the object could be altered or shear could be introduced. It allows us to 

change position and the geometry of the object. There is no preservation of lengths and angles, but 

parallel lines are preserved. 

 

2.5 Computer Vision in Surgical Navigation 
 

In MRI and US guided biopsies, the imaging guidancelonlylgivesla rough orientation. 

Consequently,.the radiologistlestimates the.3D.trajectory.of the needle insertion on the 2D slices 

mentally. This is where the importance of surgical navigation is highlighted in order to achieve 

accurate instrument placement, and it has.been.widely.used in orthopedicslandlneurosurgery. 

However, this approach is not yet popular in breast biopsy due to breast movement and 

deformations.  

Physical-to-image.space.registration.is the.key.techniquekinksurgicalknavigation. .Traditionally, 

fiducial points or markers are placed on the skin and extracted manually or automatically with 

detection methods. Nicolau.et.al [7] used.stereo.vision.to calculate coordinates of markers in 

physical space. Maier-Hein.et.al [8] inserted traceable needles with infrared reflective 

sphereslintolthelabdomen and located them by an optical tracking system. Apparently, detection 

of.fiducials.optimizes.the.procedure of the intervention.  

With.the.development.of.imaging, markerlesskregistrationkhas also gradually emerged. For 

example, point.cloud.registration.in.open.liverksurgery has been performed using 3D laser 

scanning [9]. Nevertheless, such scanners.are.expensive.and cannot acquire surface information in 

real time. 

More recently, depth imaging setups, such as CamCube have.become.favored. However, their 

imaging.accuracy.is.lower.than that attained with range scanners. Still, thelupperlhandloflthese 

depthlcameraslisltheirlabilityktokimagekinkrealktimekandkacquirekintensity(grayscale)lorlcolor 

(RGB) images.simultaneously [10].  

 

                                                           
1 Shear: A transformation in which all points along a given line L remain fixed while other points are shifted parallel 

to L by a distance proportional to their perpendicular distance from L. 
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A Kinect™ camera based navigation system for percutaneous abdominal puncture [10] 

A projectkhaskbeenkconductedkwherekthe.utilitykofktheksecondkgenerationkKinectkhaskbeen 

investigated forkguidingkneedlekinsertion in abdominal puncture navigation which is an 

interventional.method.for.the.management.of abdominal tumors. For Kinect™ surfacekextraction, 

thekdepthkimagekwaskmaskedkwithkthekabdominalkregionkof interest, and thenkadjusted and 

transformedkintokthek3Dkworldkcoordinate systemkbasedkuponka pin-hole camera model. 

Using Iterative Closest Point (ICP), the abdominal surface extracted from camera images was 

registered to the surface extracted from CT. ICP based registration would be invalid if the initial 

alignment is distant from itslsolution. Manual matching is a common method for obtaining the 

initial estimate transformation [11]. Another method of feature extraction from multimodality 

surfaces tolestablishlcorrespondencelwaslproposed. It deals with the alignment of a CT surface 

and camera surface with nearlyl1 cmlaccuracy. The registration is thenlrobustlyloptimized with 

ICP [12]. However, in [10], the abdominal surface is too smooth, which eliminates the possibility 

of applyinglalfeature-basedlmatchingltechnique. To estimate a first transformation before ICP, a 

correspondinglpointlsearchinglalgorithmlbasedlonlal2D image was proposed. The validation was 

then based on 48 insertions on a general abdominal phantom and 15 insertions on six beagles, and 

the correspondinglnavigationlerrorslwerelevaluated. The mean target positioning error (TPE) 

obtained with the phantom experiments was 5.23 mm  while the mean TPE obtained with the 

animal experiments was 6.4 mm. The author concluded that there is hope that the Kinect™ V2-

based guidance system be accepted as a clinically approved application since the navigation error 

of the needle tip does not exceed the limit of 5 mm, thus avoiding destroying too much healthy 

tissue during the procedure. 
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3 MRI Reconstruction 
 

Reconstructing the 3D surface of the breast from MRI acquired images is a requisite part of this 

project. It promotes the possibility of accurately localizing malignant tissue in 3D and eventually 

guiding the robot end effector towards the target where the biopsy needle will be inserted by the 

radiologist. The shape of the breast is very close to being symmetrical. Hence, localization and 

eventually registration with other modalities could be misleading in the absence of guiding 

features. For that, MRI visible markers are placed on the breast phantom. 

 

The mainlgoalloflthelfirstlphaseloflthislfinallyear project was to reconstruct a 3D volume from 

acquired MRI DICOM images of a breast phantom and to be able to automatically locate and 

segment the markers placed on that phantom.  

 

Certain requirements are taken into consideration: 

 The accuracy of the surface reconstruction should be at least 1 mm. 

 The surface reconstruction should be obtained in anatomical space. 

 

3.1 Markers 
The implementation was applied to acquisitions obtained from phantoms with two different types 

of markers glued to the breast phantom with blue Silicone:  

a) Red and purple 3D printed cylindrical shaped markers filled with fish oil  

b) Green 3D printed circular shaped markers filled with Vaseline 

     

Figure 3: Marker type a (left) versus marker type b (right)2 

                                                           
2 In the rest of this document, the left markers will be designated as type a and right markers as type b. 
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Figure 4: Breast phantom MRI scanning 

Fish oil and Vaseline were chosen as fillings for the markers due to their visibility in MRI. Fish 

oil filled markers have a higher intensity in the MRI images than Vaseline. However, Vaseline is 

semisolid while fish oil is liquid and leaks out of the markers. 

 

3.2 Flow Chart 
 

In this Chapter, MRI DICOM images will be manipulated in the aim of extracting the 3D MRI 

coordinates of the markers placed on the breast phantom. Flow Chart 1 gives an overview of the 

algorithm involved in the process. 

 

Flow Chart 1: MRI algorithm overview 
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3.3 MRI Reconstruction and Enhancement 
 

3.3.1 Reading DICOM MRI Slices 
 

Since every image is represented by a 2D matrix, the 3D volume could be represented by a 3D 

array formed by stacking the 2D matrices. At first, an empty 3D array whose size is 512x512xN 

(N images, each having the size 512x512) is created. Then, the 3D array is filled with the images. 

 
Figure 5: Original single DICOM Image 

3.3.2 Image Enhancement 
 

First Approach 

A manual approach was considered to remove background noise. The maximum and minimum 

grayscale values in the image were defined. By manual investigation, any grayscale value less than 

500 corresponds to a black pixel. For that, any pixel with a grayscale value less than 500 was 

replaced with a value of 0 to make it as black as possible and facilitate later manipulation. Then, 

image contrast was enhanced. 

Second approach 

In this approach, linear interpolation and bright stretching were used for enhancement of the 

images forming the 3D array, hence enhancement of the 3D volume. 
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 Linear Interpolation 

One of the methods of intensity resolution enhancement is the intensity linear transformation 

which applies Equation 3.1 to all the image pixels. 

 
ρ’ =

𝜌 − 𝜌𝑚𝑖𝑛

𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛
× 𝜔𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜌𝑚𝑖𝑛 

Equation 3.1  

 

𝜌′: Transformed pixel intensity 

𝜌: Original pixel intensity 

𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥: Minimum and maximum gray values in the original image 

𝜔𝑡𝑎𝑟𝑔𝑒𝑡: Range of the target intensity space = 2n-1 where n is the number of bits 

 

 Bright Stretching 

Thislmethodlislusedltolenhancelthelbrighterlpartlof the images and is applied using Equation 3.2 . 

 

𝜌′ = {

𝜌

𝑇𝐻
× 𝑆𝐹𝐵                                                 𝑓𝑜𝑟 𝜌 < 𝑇𝐻

𝜌 − 𝑇𝐻

255 − 𝑇𝐻
× (255 − 𝑆𝐹𝐵) + 𝑆𝐹𝐵     𝑓𝑜𝑟 𝜌 > 𝑇𝐻

 

Equation 3.2  

 

𝑇𝐻: Threshold value (Chosen manually as minimum value in the markers) 

𝑆𝐹𝐵: Bright -stretching factor, shouldlbelsmallerlthanlTH  

 

In the figure below, lwelcanlseelthelstretchinglandlcompressionlmethodslforlthelbright-stretching 

technique. As shown, thelpixellvalues, lwhichlarellesslthanlthelthresholdlvalue, willlbe compressed 

whilelthe pixel values, lwhich are greaterlthan the threshold value, willlbe stretched. 

 

 
Figure 6: Bright stretching method [13] 
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Figure 7: Original DICOM Image 

 
Figure 8: Enhanced Images. First Approach (Left) - Second Approach (Right) 

As observed in Figure 8, the first approach modified the original image, removing and adding 

nonexistent form. For that, the second approach was chosen. 

3.3.3 Image Binarization 
 

Otsu's method, invented by Nobuyuki Otsu, is one of various binarization algorithms used to 

convert a greyscale image to monochrome. This method iterates through alllpossiblelthreshold 

valueslinlthelimagelandkcalculateskakmeasurekofkspreadkforkthekpixelklevelskeachksideloflthe 

threshold (pixels that either belong to the foregroundlorlbackground of the image). In this case, 

the phantom and markers should be in the foreground.  

The aim is tolfindlthelthresholdlvaluelwherelthe sumloflforegroundlandlbackgroundlspreads is at 

itslminimum. Thislmethodlfindsl thelthresholdlthat minimizeslthelweighted within-classlvariance 
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and maximizeslthelbetween-classlvariance  

Otsu's method comprises an exhaustive searchlforlthe thresholdlthatlminimizeslthelintra-class 

variancel (the variancelwithinlthelclass), definedkaskakweightedksumloflvarianceslofktheltwo 

classes (Equation 3.3). 

 𝜎𝑤
2 (𝑡) =  𝑤0(𝑡)𝜎0

2(𝑡) +  𝑤1(𝑡)𝜎1
2(𝑡) Equation 3.3 

Applying Otsu in Matlab using is done. It detects the most adequate threshold value. Then the 

binarization is applied. 

 

 
Figure 9: Image obtained after binarization 

 

3.4 3D Volume Visualization 
 

An isosurface is a level set of a continuous function such that this function’s domain is 3D space. 

For the 3D MRI volume visualization, the isosurface method is used. In this method, an object is 

reconstructed, having its boundaries from points in the 3D array that hold the same value. This is 

achieved by connecting these points. That value is regarded as a threshold and is called the 

isovalue. In our case, the white pixels having a binary value of 1 in the 3D array will be used to 

form the boundaries of the isosurface and visualize the 3D volume. 
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Figure 10: 3D Volume of the breast and markers type a 

 
Figure 11: 3D Volume of the breast and markers type b 
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3.5 Markers Localization 
 

3.5.1 Object Identification 
 

The different objects in the 3D volume were detected based on their connectivity. Connectivity is 

the way in which voxels or pixels relate to their neighbors. In 3D object detection, 26-connectivity 

is mainly used wherek26-connectedlpixelslare neighborsltoleverylpixellthatltoucheslonelof their 

faces, ledges, lor corners.  

3.5.2  Marker Identification and Segmentation 
 

Out of all the blobs identified in our 3D volume, only 12 are markers. To differentiate the markers, 

area criterion is used knowing that the markers’ area is less than that of the phantom but more than 

any residual noise area.  

 

Figure 12: Segmented markers - type a (left) versus type b (right) 

 

3.5.3  Marker Centroid Computation 
 

The markers’ centroid coordinates are extracted in the image pixel coordinate frame. These image 

pixel coordinates must be converted to the MRI coordinate frame. For that, we must first define 

the two coordinate systems. 

 

1) Image coordinate system: It describes the way the image was taken with respect to the 

anatomy. Usually, an array that starts at the upper left corner is obtained. That array is 

characterized by the origin and spacing seen in Figure 13. 
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Figure 13: Image Coordinate System [14] 

2) Anatomical coordinate system: It is the most important coordinate system for medical 

techniques. It consists of the 3 planes: axial, coronal, and sagittal. It has a 3D basis that 

differs among medical applications.  

 

 

Figure 14: Anatomical coordinate system (left) versus Image coordinate system (right) [14] 

RAS Coordinate System 

Since the software 3D Slicer will be used to validate marker coordinates, the RAS system was 

used. 

An affine transformation is used toktransformkthe imagelcoordinatelsystem to the anatomical 

coordinatelsystem: 
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Figure 15: Affine transformation [14] 

𝐴: A matrix that carries all information about space directions and axis scaling. In 3D, A is a 3-

by-3 array. To determine its 9 unknowns, a system of 9 equations is solved.  

𝑡: Geometric position of the first voxel/pixel 

 

a) Definition of some known points 

The geometric position of the first voxel in anatomical space is defined as (R_origin, S_origin, 

A_origin) and the spacing in mm is defined as (R_spacing, S_spacing, A_spacing). 

 

(0,0,0) in image space corresponds to (R_origin, S_origin, A_origin) in mm in anatomical space 

(1,0,0) in image space corresponds to (R_origin - R_spacing, S_origin, A_origin) in mm in 

anatomical space  

(0,1,0) in image space corresponds to (R_origin, S_origin-S_spacing, A_origin) in mm in 

anatomical space  

(0,0,1) in image space corresponds to (R_origin, S_origin, A_origin + A_spacing) in mm in 

anatomical space  

 

b) Definition of system equations 

The system of 9 equations obtained from the points defined in a) is given below. 

R_origin - R_spacing = A11*1 + A12*0 + A13*0 + R_origin 

S_origin = A21*1 +A22*0 + A23*0 + S_origin 

A_origin = A31*1 +A32*0 + A33*0 + A_origin 

 

R_origin = A11*0 + A12*1 + A13*0 + R_origin 

S_origin – S_spacing= A21*0 +A22*1 + A23*0 + S_origin 

A_origin = A31*0 +A32*1 + A33*0 + A_origin 

 

R_origin = A11*0 + A12*0 + A13*1 + R_origin 
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S_origin = A21*0 +A22*0 + A23*1 + S_origin 

A_origin + A_spacing = A31*0 +A32*0 + A33*1 + A_origin 

 

c) Definition of transformation matrix 

 

Solving for the equations in b) yields the desired transformation matrix from the image coordinate 

system (i,j,k) to the anatomical coordinate system (R,A,S). 

 

 
 

(
𝑅
𝑆
𝐴

) = (

−𝑅_𝑠𝑝𝑎𝑐𝑖𝑛𝑔 0 0
0 −𝑆_𝑠𝑝𝑎𝑐𝑖𝑛𝑔 0
0 0 𝐴_𝑠𝑝𝑎𝑐𝑖𝑛𝑔

) + (
𝑅_𝑜𝑟𝑖𝑔𝑖𝑛
𝑆_𝑜𝑟𝑖𝑔𝑖𝑛
𝐴_𝑜𝑟𝑖𝑔𝑖𝑛

) 

Equation 03.4 

 

3.6 Analysis of Results 
 

3.6.1 Performance Evaluation 
 

Tolevaluatelthelperformance of the marker detection algorithm, lthe software 3D Slicer was used. 

However, the only way for detecting the marker centroids in 3D Slicer would be in 2D by selecting 

different image slices and detecting the markers in those slices. The algorithm was applied on 20 

different 2D DICOM slices to validate its performance. Table 1 shows (i,j) and (R,S) coordinates 

of  the markers’ centroids as obtained from the algorithm and (R,S) coordinates as manually 

extracted on Slicer.  

 Slice 
Number 

Slice 
Location 

(mm) 

Number 
of  

Visible 
Markers  

(i,j) (R,S) (R,S) 
Manually 

extracted using 
Slicer 

1 104 7.2 3 [148.09,329.76]  
[266.56,404.48] 
[396.43,317.28] 

  [44.26;-30.53]  
[-4.33;-61.24] 
[-57.6;-25.40] 

[44.8;-30.1] 
[-3.8;-60.4] 

[-57.4;-24.8] 

2 64 -9.18 4 [146.62,167.93] 
[265.31,448.81] 
[270.46,112.21] 
[390.12,172.28] 

[44.86;35.98] 
[-3.82;-79.46] 
[-5.93;58.88] 

[-55.01;34.19] 

[45.1;36.8] 
[-3.5;-78.7] 

[-5.6;59] 
[54.6;34.7] 

3 67 -7.95 3 [147.06,168.6] 
[270.50,112.82] 
[390.48,171.94] 

[44.68;35.71] 
[-5.95;58.63] 

[-55.16;34.33] 

[45.1;36.5] 
[-5.6;59] 

[54.6;35.1] 

4 68 -7.54 3 [147.45,168.79] 
[270.62,112.96] 
[390.33,172.10] 

[44.52;35.63] 
[-5.99;58.58] 
[-55.1;34.26] 

[45.1;36.5] 
[-5.6;59] 

[54.6;35.1] 
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5 150 26.08 3 [185.14,294.87] 
[267.87,349.79] 
[357.01,283.69] 

[29.06;-16.19] 
[-4.87;-38.76] 
[-41.43;-11.6] 

[30;-16] 
[-4.6;-37.8] 

[-41.2;-11.1] 

6 160 30.18 2 [268.76,345.84] 
[352.63,283.18] 

[-5.23;-37.14]  
[-39.63;-11.39] 

[-5.3;-36.4] 
[-39.1;-10.4] 

7 175 36.33 1 [272.16,193.63] [-6.63;25.42] [-6.3;25.9] 

8 180 38.38 1 [271.35,196.6] [-6.3;24.2] [-6;24.9] 

9 190 42.48 2 [231.79,255.97] 
[308.69,249.05] 

[9.93;-0.21] 
[-21.61;2.64] 

[10.2;-0.2] 
[-21.1;3.4] 

10 200 46.58 2 [271.56,283.45] 
[303.85,248.31] 

[-6.38;-11.5] 
[-19.63;2.94] 

[-6;-10.7] 
[-19;3] 

11 49 -15.33 2 [114.62,363.56] 
[431.14,346.42] 

[57.99;-44.42] 
[-71.84;-37.38] 

[58.5;-43.8] 
[-71.5;-36.8] 

12 56 -12.46 2 [265.30,452.55] 
[429.01,345.64] 

[-3.81;-81.00] 
[-70.96;-37.06] 

[-3.5;-80.1] 
[-70.1;-36.5] 

13 70 -6.72 3 [147.93,169.29] 
[270.55,113.53] 
[389.87,172.56] 

[44.33;35.42] 
[-5.97;58.34] 

[-54.91;34.08] 

[44.1;36.1] 
[-5.3;58.7] 

[-54.6;34.7] 

14 130 17.8 1 [271.53,149.90] [-6.37;43.39] [-6;43.5] 

15 155 28.13 3 [184.94,295.59] 
[268.12,348.18] 
[354.73,283.49] 

[29.15;-16.49] 
[-4.97;-38.10] 

[-40.49;-11.52] 

[28.2;-15.3] 
[-4.6;-37.1] 

[-40.1;-11.1] 

16 178 37.56 1 [271.50,195.98] [-6.36;24.45] [-6.3;24.9] 

17 
 

185 40.43 1 [271.19,198.60] [-6.23;23.38] [-6;25.2] 

18 195 44.53 3 [232.84,255.70] 
[271.33,285.31] 
[305.71,248.93] 

[9.51;-0.09] 
[-6.29;-12.26] 
[-20.39;2.69] 

[9.5;-0.6] 
[-6;-11.8] 

[-20.1;3.4] 

19 44 -17.38 2 [113.61,364.21] 
[433.40,347.15] 

[58.40;-44.69] 
[-72.76;-37.68] 

[58.2;-44.2] 
[-72.6;-37.6] 

20 57 -12.05 2 [265.28,452.30] 
[428.90,345.45] 

[-3.81;-80.9] 
[-70.92;-36.98] 

[-3.5;-80.1] 
[-70.4;-36.1] 

Table 1: Centroids Comparison Table 

The MSE of an estimator a with respect to an unknown parameter b is defined in Equation 03.5. 

Using Table 2, Mean Squared Error (MSE) as well as the RMSE were computed. Table 2 shows 

the results. 

 MSE (a) = E [a-b] 2 Equation 03.5 

 RMSE = √MSE Equation 03.6 

 

MSE RMSE 

R S R S 

0.194625 0.500225 0.441163 0.707266 
Table 2: Error Computation 
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3.6.2 Final Markers Localization 
 

The 3D printed circular shaped green markers were used for the remaining part of the project due 

to leakage problems in the first type of markers and shape preference. For that, Table 3 shows the 

extracted coordinates of the markers type b. 

 

i j k R A S 

104.12 255.48 55.99 68.23 -29.26 55.99 

264.25 109.7 61.88 -3.71 -26.62 61.88 

412.81 244.17 61.14 -70.44 -26.95 61.14 

260.58 416.79 62.24 -2.06 -26.46 62.24 

146.65 253.34 107.17 49.12 -6.27 107.17 

260.78 369.15 107.19 -2.15 -6.27 107.19 

374.01 245.97 112.2 -53.01 -4.02 112.2 

262.9 144.2 119.08 -3.1 -0.93 119.08 

259.02 317.08 148.39 -1.35 12.24 148.39 

194.3 251.23 152.86 27.71 14.25 152.86 

326.27 248.62 157.02 -31.57 16.12 157.02 

257.76 180.57 159.68 -0.79 17.31 159.68 
Table 3: Final markers localization results 
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4 Design of the Camera Setup 

In the MURAB project, a camera set-up is envisioned in order to measure the geometry of the 

breasts of patients lying in prone position and localize important features relative to the position 

of the robot arm. There are some requirements concerning the functionality, performance, and 

physical dimensions of this device. First of all, the setup will consist of two cameras that are 

mounted on the end effector of a robot arm. Since the kinematics of the robot arm and the pose of 

the end effector will be well-known, a single camera can also provide 3D information. However, 

a second camera will contribute much to the robustness and accuracy of the measurements. 

Therefore, a dual camera system has been selected. Such a system can reconstruct only parts of 

the geometry. However, by a scanning motion of the camera set-up using the robot’s kinematic 

degrees of freedom, the surface of the breast can fully be reconstructed except for some possible 

folds in which no optic line of sight exists. 

 

The skin of a patient often does not have sufficient texture to reliably perform stereo matching. 

Therefore, a structured light illuminator is needed to provide detailed textures. In the current setup 

this is accomplished by a laser pattern projection on the skin. If this projector would have been 

fully geometrically calibrated, it would provide sufficient information to acquire 3D information. 

Since the calibration of two camera setup is much simpler than the calibration of a camera-

projector setup, a setup with two cameras have been selected.  

 

The choice of the laser projector, i.e. the wavelength, the geometrical pattern, and the power are 

important design considerations. Another possibility for the illumination would be to use a pico-

projector. This aspect of the design is not part of the current chapter. We assume the usage of a 

laser projector with a Diffraction Optical Element (DOE) that can be adjusted later. 

 

The requirements are as follows: 

 The accuracy of the surface reconstruction should be at least 1 mm. 

 The cameras should be able to capture the field of view of interest defined by the size of the 

breast with a margin of error (25 cm). 

 The specifications should be such that they fit the working space of the robot. This implies that 

the surface reconstruction should be possible within a range of 40 to 70 cm from the robot arm. 
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 The physical dimensions should be such that they fit the size of the robot end effector. This 

implies that the baseline between the two cameras is constricted to a maximum of 15 cm. 

 

This chapter focuses on the physical design of the camera set-up. The design will be optimized for 

the case in which we have only one pair of images. That is, the scanning process and its impact on 

the accuracy of the reconstruction will be kept from the discussion.  

 

4.1       Methods 
In this project, the 3D surface reconstruction will be achieved by using a dual camera setup and 

acquiring pairs of images that provide depth information of the object of interest, the breast. The 

components and design of the camera setup are chosen while taking into consideration all 

previously defined requirements. 

 

4.2       Materials 

The camera setup consists of two cameras, a laser grid, and a 3D printed holder to be fixed on the 

KUKA arm end effector. The cameras used in this project are two Matrix Vision BlueFox-IGC 

USB 2.0. The laser grid is a green PICOTRONIC DOE Laser (This grid is out of the scope of this 

project and will not be detailed any further). The specifications of the cameras are found in [15]. 

 

4.3 Choice of Lenses 

To optimize a high performance computer vision camera, it has to be coupled with the appropriate 

lens. In that case, some terms should be defined. 

 

Focal Length: When the lens is focused at infinity, the distance from the optical center of a 

camera’s lens to that camera’s sensor is the focal length. The focal length of a lens is constant and 

is a key specification of that lens. 

Angle of View: The angle.of.view.is.the.angle.of.subject.area.that.is.projected.onto.the.camera's 

sensor.by.the lens. We can say thatlit's the angleloverlwhichlthe sensorlcan see through the lens. 

It depends on the lens focal length and the camera sensor size. 

Field of View: The field of view is a representation of the angle of view.lIt is a measurement of 

the subject area instead of the angle. 
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To selectkaklens, three factors are taken into consideration. These are defined as the design 

constraints and are listed below. 

 

Design Constraints 

Field of view 𝐹𝑂𝑉 =  250 𝑚𝑚 

Working distance 𝐷𝑚𝑖𝑛  =  400 𝑚𝑚 

Camera’s sensor size 𝑠 =  4.8 𝑚𝑚 

 
Figure 16: Top view of camera setup 

From Figure 16, Equation 4.1 can be defined to choose the appropriate lens for our setup. 

 𝑓 =  
𝑠

𝐹𝑂𝑉
× 𝐷𝑚𝑖𝑛 

Equation 4.1 

 

When replacing our parameters, we obtain 𝑓 =
4.8 𝑚𝑚

250 𝑚𝑚
× 400 𝑚𝑚 = 8 mm. 

 

4.4 Distance Range Analysis 

Once the appropriate lenses for the application have been chosen, a study of the depth of field can 

be made. In optics, the depth of field is the effective focus range. In other words, it is the range of 

distance from the camera in which an object can be photographed and still yield a focused image. 

Thus, defining the depth of field is important in order to define a range of our setup in which all 

captured images will be sharp. Even if a lens can only be exactly focused at.one.distance.at.aktime, 

the decline in sharpness is gradual on.either.side.of the.focused.distance, in a way.that.within the 

DOF, the unsharpness.is.imperceptible.under.normal.viewinglconditions. 
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Figure 17: Circle of Confusion 

The diameter of the circle of confusion or blur circle can be calculated based on the following 

equation. 
 

 
𝑐 = 𝐴 ×

|𝐷1 − 𝐷2|

𝐷2

𝑓

𝐷1 − 𝑓
 

Equation 4.2 

A : Aperture3 diameter 

D1: In focus working distance 

D2: Current working distance 

f  : Focal length 

 

A simple MATLAB simulation shows the variation in the blur circle diameter for a distance range 

of [40 60] cm with D1=50 cm at a fixed aperture diameter A=1. The results are shown in Figure 

18 and Figure 19. 

 

                                                           
3 Aperture.refers.to.the.opening.of a.lens's.diaphragm.through.which light passes and is generally written as numbers 

called f numbers. Controlling the aperture means controlling the area over which light can pass through the camera’s 

lens. As the f number decreases, relative light increases since the aperture diameter increases. 
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Figure 18: Diameter of circle of confusion as a function of working distance 

 
Figure 19: Top view of the plot of blur circles as a function of working distance 

The.depth.of.field.can be defined as the.region.where.the circle of confusion is less than the 

resolution of the display. 

4.5 Choice of Camera Setup 

In the case of this project, a choice has to be made between a parallel and convergent camera setup. 

The biggest advantage of a parallel stereo camera setup is the maximization of the overall field of 

view covered by both cameras. However, a parallel stereo camera arrangement has a limited 

overlap between the fields of views of the two cameras as illustrated in Figure 20 left. On the other 

hand, a convergent camera setup would be optimal in an indoor application where utility of the 

camera visual range is maximized and the workspace size is constrained. Such a configuration is 

illustrated in Figure 20 right. In addition, according to [16], as the verging angle between the stereo 
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cameras increases, accuracy is improved, reaching its optimal point at a verging angle of 90°. 

 

 
Figure 20: Parallel camera setup (left) versus convergent camera setup (right) 

For an optimal setup in this project, the cameras must be verging, meaning non parallel.  

4.5.1 Camera Locations 

The two cameras must be placed in a convergent setup that allows the acquisition of the FOV of 

interest at the working distance desired by the application. Hence, the design can be summarized 

by the following: 

Design Parameters 

Baseline 𝑏 

Verging angle 𝜃 

Design Constraints 

Field of view 𝐹𝑂𝑉 =  250 𝑚𝑚 

Minimum working distance 𝐷𝑚𝑖𝑛 = 400 𝑚𝑚 

Size of the end effector 

Design Considerations 

Occlusions 

Accuracy 

 

The locations of the cameras in our convergent camera system can be defined by the baseline and 

verging angle.  
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Figure 21: Camera positions and verging angle 

From Figure 21, the verging angle 𝜃 is function of the baseline 𝑏 and can be calculated by 

Equation 4.3. 

 
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛

𝑏

𝐷𝑚𝑖𝑛
 

Equation 4.3 

 

This reduces our problem to defining 𝑏 which should be limited to minimize possible occlusions 

and maximize accuracy while taking into consideration the size of the end effector to be mounted 

on the KUKA arm. 

 

4.6 Monte Carlo Analysis 

Decision making always involves risk. In that case, it would be a good idea to perform risk 

analysis. A Monte Carlo simulation allows the investigation of all possible outcomes of certain 

decisions and assess their corresponding consequences or risk, allowing for better decision making 

[17]. While deciding on the appropriate baseline for the setup, a Monte.Carlo.simulation has been 

performed to.test.the.reliability of.a camera setup based on its characteristic baseline 𝑏. The steps 

of this analysis, according to [18], could be summarized by the following. 

1. Identify the model of the process or setup to be explored 

2. Define the input parameters of the model 

3. Create random data 

4. Simulate the model for several repetitions and analyze the outputs of the model 

 

Our Monte Carlo analysis is described in this section. 

 

𝜽 
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The model 

The model whose reliability is to be tested is a converging camera setup with a characteristic 

baseline 𝑏 and corresponding verging angle 𝜃. 100 3-dimensional points are considered to be 

imaged by two cameras (left and right). The image coordinates of these 100 points in the two 

camera coordinate systems are known. An algorithm is written in order to estimate the 

corresponding 3D world coordinates of these 100 points based on a homography applied to their 

known 2D image coordinates.  

 

The Simulation 

The 3D coordinates are estimated for a number of algorithm repetitions NMC=200 where for each 

repetition, a random noise is added to both images. Finally, the covariance of the resulting 

estimates obtained over the 200 repetitions is used as a measure of the reliability of the model. The 

simulation is applied on several models with different characteristic baselines, and the results are 

compared in Table 4 and Figure 22. 

 

 

Baseline b (cm) Covariance in z coordinate 

5 11.86 

10 2.84 

15 1.19 

20 0.65 

25 0.38 

Table 4: Covariance in 3D coordinates estimation as a function of baseline 
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Figure 22: 3D estimated coordinates over 200 Monte Carlo repetitions for different baselines 

The results show that a model with a larger baseline is more likely to be more reliable for obtaining 

3D coordinates and thus for 3D reconstruction. 

4.7 End effector constraint 

As previously demonstrated, the larger the baseline, the more accurate the reconstruction results. 

However, the size of the end effector imposes a limitation to how much we can increase the 

baseline since the camera holder will be mounted to the latter. The maximum allowable baseline 

within the size of the end effector is about 15 cm. The corresponding verging angle is calculated 

as 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
150

400
= 20.56 ̊. 
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4.8 Conclusion 

Based on the detailed design calculations performed in this chapter, two Matrix Vision BlueFox-

IGC USB 2.0 cameras were mounted with 8 mm lenses and placed converged to each other. As a 

first design, the camera holder was printed with 5.5 cm baseline and verging angle 𝜃 =

𝑎𝑟𝑐𝑡𝑎𝑛
55

400
= 7.9 ̊. The blur effect analyzed in the MATLAB simulation was considered to be 

acceptable within the working distance of the KUKA arm. 

 

   

Figure 23: Parallel camera setup (left) versus converging camera setup (right) 
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5 Camera Reconstruction 
 

Once the camera setup is ready, the next step would be using the setup to obtain the surface 

reconstruction of the breast. The case involves stereo vision which is nowadays a very popular 

approach in robotics applications where object detection, obstacle detection, or depth estimation 

is needed. In this project, the goal is to obtain the dimensional structure of the breast and eventually 

locate the depth relative to the robot end effector as well as accurately locate the markers needed 

for the registration. 

 

In computer stereo vision, two cameras acquire images of the same scene, but they are separated 

by a distance – exactly like our eyes. An algorithm compares the images while placing them on 

top of each other in the aim of finding.the features that match. .The.shift between the.images.is 

called the disparity.and is used to calculate objects’ distance from the camera setup. 

 

To be able to match the images and eventually calculate the disparity and depth, the position of 

one camera must be accurately defined with respect to the second. For that, camera calibration is 

needed as the first step of the whole process. 

 

5.1 Theory  
 

5.1.1 Single Camera Calibration 
 

Problem Statement 

Camera calibration is very.important.in.3D computer vision because it allows the.extraction of 

metric data from 2D images. It is the estimation.of.the intrinsic.and.extrinsic.camera.parameters 

using images with reference objects. These parameters define the transformation between an.object 

in.3D.space and its.2D image obtained by a camera.  

Two types of parameters should be defined: 

- Extrinsickparameters defining the orientation(rotation) and location(translation) of the 

camera 

- Intrinsic parameters defining the characteristics of the camera  
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Notation 

The pinhole camera model (Figure 24) will be used.  

 

Figure 24: Pinhole camera model 

M =[X, Y, Z]T is a 3D point in world coordinates and m = [u, v]T is its corresponding image 2D 

point, defined as the intersection between the optical ray from M passing through the optical center 

C and the image plane. Consequently, M’ =[X, Y, Z, 1]T and m’ = [u, v, 1]T would be the 

corresponding augmented vectors of M and m respectively. 

The 3DlpointlMlislassociatedltolitslimagelprojectionlm by Equation 5.1. 

 𝑠𝑚’ = 𝐾[𝑅 𝑡]𝑀’ = 𝑃𝑀’ Equation 5.1 

with 𝐾 = [

𝛼 𝛾 𝑢0

0 0 𝑣0

0 0 1
] 

𝑠           : Arbitrary scale factor 

𝐾          : Intrinsic matrix (Camera calibration matrix) 

[𝑅 𝑡]      : Extrinsic parameters (Rotation and translation relating the world coordinate system to 

the camera coordinate system) 

(𝑢0, 𝑣0) : Coordinates of the principal point 

(𝛼, 𝛽)    : Scale factors in the image’s u and v axes 

𝛾           : Parameter describing the skew of the two image axes 

𝑃 = 𝐾[𝑅 𝑡]: Camera projection matrix (Holding both intrinsic and extrinsic parameters) 

 

Finally, there are 6 extrinsic parameters including the rotation matrix 3 degrees of freedom and 

the translation’s 3 parameters while there are 5 intrinsic parameters (𝛼, 𝛽, 𝛾, 𝑢0, 𝑣0). 
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Calculating the Intrinsic and Extrinsic Parameters 

 

Solving for the Camera Projection Matrix 

At first, we recall that sm’=PM’ (Equation 5.1). We assume that we have the knowledge of a number 

𝑛 of reference points M’ in the model and their corresponding image points m’.  This method will 

allow us to find the camera projection matrix P and consequently the intrinsic and extrinsic 

parameters. 

For each pair (M’,m’), we have: 

𝑠𝑚’ = 𝑃𝑀’ 

𝑠 × [
𝑢
𝑣
1

] = [
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

     
𝑃14

𝑃24

𝑃34

] × [

𝑋
𝑌
𝑍
1

] 

For each reference point M’, solving for s using the third equation leaves us with 2 equations. 

Having 12 unknowns, at least 6 reference points are needed to solve for P (At least 6x2 equations). 

Next, our parameters could be estimated. 

 

Solving for the Parameters 

𝑃 = 𝐾[𝑅 𝑡] = [𝐾𝑅 𝐾𝑡] 

Let 𝐴 = 𝐾𝑅 = [
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

]  

Let 𝐵 = 𝐴𝐴𝑇=𝐾𝑅(𝐾𝑅)𝑇 = 𝐾𝑅𝑅𝑇𝐾𝑇 = 𝐾𝐾𝑇 

Knowing P, we can calculate A as well as B and extract the intrinsic matrix K. 

Next, the extrinsic parameters are obtained from 

𝑅 =  𝐾−1𝐴 

𝑡 =  𝐾−1 × [

𝑃14

𝑃24

𝑃34

] 

Checker Board Calibration Technique 

The checker board technique is an example of a 2D plane model calibration technique. It is mostly 

used for its good accuracy and easy implementation. The squares in the checkerboard are detected 

and their corners are used as reference points for the calibration. The number of squares in the X 

direction differs than that in the Y direction so that the axes could be differentiated. In this 
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calibration technique, the checkerboard plane is assumed to have Z=0. Hence, each point is 

represented as M=[X,Y]T and  is related to m, its corresponding image point, by a homography H 

such that: 

𝑠𝑚’ =  𝐻𝑀’  

𝐻 =  𝐾[𝑟1 𝑟2 𝑡] 

 

Considerations 

a) Radial Distortion 

Lens Distortion is a geometrical transform characterized by Equation 5.2 and Equation 5.3. 

 

 𝑢 = 𝑥(1 + 𝑘(𝑥2 + 𝑦2)) 

 

Equation 5.2 

 𝑣 = 𝑦(1 + 𝑘(𝑥2 + 𝑦2)) 

 

Equation 5.3 

 

(𝑥, 𝑦): Coordinates in the source domain (Undistorted image points) 

(𝑢, 𝑣): Coordinates in the destination domain (Distorted image points) 

 

Radial distortion is a simple model of lens distortion, and its distorting terms depend only on a 

radius r =√𝑥2 + 𝑦2 where x and y are the undistorted camera coordinates. It occurs due to lens 

imperfections and could be compensated during camera calibration by estimating distortion 

parameters. Its effect could be then neutralized through further processing. 

 

Figure 25: Test image (left) - Radially distorted image (right) 

b) Reprojection Error 

The reprojection error is a geometric error corresponding to the image distance in pixels between 

a projected point and a measured one.  It could be used in qualifying camera calibration accuracy 
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by quantifying how closely an estimate of a 3D point recreates the point’s true projection. 

Mathematically speaking, if M is the 3D point, m its corresponding true image point, and n its 

corresponding reprojected point, then the reprojection error would be d(m,n), the Euclidean 

distance between m and n.  

 

Figure 26: Calculating reprojection error [19] 

When calibrating using the checkerboard method, the reprojection error is calculated as the 

difference between the actual detected pattern keypoint, and a corresponding world point projected 

into the same image. In single camera calibration, an average reprojection error is acceptable if it 

is less than one pixel. 

5.1.2 Stereo Camera Calibration 
 

In stereo photography, the same 3D object is imaged by two camera systems. Each camera has its 

own coordinate system: CCS1 and CCS2. These two systems are related by a transformation 

composed of a translation and a rotation. The translation is the baseline between the two cameras 

(Figure 27). It is expressed in CCS1 and denoted by 1t2. The orientation of CCS2 relative to CCS1 is 

defined by the rotation matrix 1R2. Hence, points represented in CCS2 are represented in CCS1. 

 

  1𝑀 =  1𝑅2 𝑀 
2 + 𝑡2 

1  

 

Equation 5.4 

In stereo camera calibration, the intrinsic matrices are those of the individual cameras and the 

extrinsic parameters are defined by rotation and translation of one camera with the respect to the 

other. 
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Stereo Rectification 

Stereo rectification allows to create a set-up of two identical cameras that are exactly aligned. This 

set-up allows for easier processing and straightforward epipolar geometry. In practice, the cameras 

are never perfectly aligned. However, stereo rectification allows to virtually rotate the cameras and 

facilitate epipolar geometry.  

Before going into the details of rectification, a fully aligned stereo set-up must be described. The 

camera orientations are equal 2R1=
1R2=I, and the baseline is oriented horizontally 1t2=[tx 0 0]T. The 

horizontal directions of both image planes are parallel to the baseline. The two optical axes (z-

axes) are parallel to each other and orthogonal to the base line. 

 

Figure 27: Stereo aligned camera set-up [20] 

Hence, there are two requirements for rectifying two images: 

1) Make the virtual calibration matrices equal 

2) Rotate the two cameras such that they are oriented in the same direction 

 

The direction of the baseline 1t2 constrains the orientation of the two cameras. The horizontal axes 

(rows of pixels) of the cameras should be aligned with the base line, but the vertical axes (columns 

of pixels), can be chosen freely because the cameras can be rotated along the base line and still 

maintain the requirements for a full alignment. The third direction, the optical axis, is fixed to be 

orthogonal to the new image planes. 

The first image is aligned to the image by applying a rotation matrix 𝑅 
𝑎

1 = [

𝑢𝑥
𝑇

𝑢𝑦
𝑇

𝑢𝑧
𝑇

] to CCS1. 
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Since the x-axis of the new coordinate system should be aligned with the baseline 1t2,  

𝑢𝑥 =
𝑡 

1
2

|| 𝑡2 
1 ||

 

𝑢𝑦
𝑇 𝑡 

1
2 = 0 

𝑢𝑧
𝑇 𝑡 

1
2 = 0 

A reasonable choice of the new y axis would be such that the orthogonal direction of the optical 

axis is preserved as much as possible. This is obtained by: 

𝑢𝑦 = 𝑢𝑥  × [
0
0
1

] 

𝑢𝑧  =  𝑢𝑥  ×  𝑢𝑦  

Finally, the alignment of the first camera is accomplished by the homography: 

𝐻 
𝑎

1  =  𝐾1 𝑅 
𝑎

1𝐾1
−1

 

The second image is rectified by undoing its rotation relative to camera 1, applying the same 

alignment to the baseline as that developed for camera 1, and correcting for the difference in 

calibration matrix. 

Finally, the alignment of the second camera is accomplished by the homography: 

𝐻 
𝑎

2  =  𝐾1 𝑅 
𝑎

1 1𝑅2𝐾2
−1

 

 

Stereo Matching and Disparity Map 

Stereo matching constitutes finding the corresponding points of all of an image’s pixels in another 

image.  It could be defined as: 

Given a pixel 1m=[u v]T in the first image, determine the corresponding pixel 2m=[u’ v’]T in the 

second image. Do this for all pixels in the first image. Keep in mind the constraint that 2m should 

be on the same epipolar line associated with 1m. 

Disparity is the spatial shift of the same point in the two images. Once stereo matching has been 

applied, the disparity for each pixel 1m and its corresponding 2m can be calculated, and the so-

called disparity map is introduced. This map decodes for each pixel the depth. 

When working with two rectified images, all epipolar lines are horizontal so that each 1m and its 

corresponding 2m are on the same row of the image, i.e. v’=v.  

If (u,v) and (u’,v’)=(u’,v) are corresponding points, then the disparity could be calculated as the 

pixel shift: D=u-u'  
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One of the problems encountered during experimentation was that point clouds obtained from the 

first trials were too scarse in data points. Such point clouds were reconstructed from disparity maps 

with too little reliable points. In order to obtain a valid reconstruction, it is important to have a 

reliable disparity map. Otherwise, the 3D data points wouldn’t be sufficient to create a dimensional 

reconstruction. And since the disparity map is obtained from the matched features in the two 

images, an adequate stereo matching method must be chosen. MATLAB uses Semi-Global Block 

Matching algorithms where the sum of absolute differences (SAD) of each block of pixels in the 

image is compared. For this project, a Speeded Up Robust Features (SURF) detector has been used 

in order to boost the stereo matching and define a disparity range from the features detected. One 

of the problems encountered during experimentation was that point clouds obtained from the first 

trials were too scarse in data points. Such point clouds were reconstructed from disparity maps 

with too little reliable points. In order to obtain a valid reconstruction, it is important to have a 

reliable disparity map. Otherwise, the 3D data points wouldn’t be sufficient to create a dimensional 

reconstruction. And since the disparity map is obtained from the matched features in the two 

images, an adequate stereo matching method must be chosen. MATLAB uses Semi-Global Block 

Matching algorithms where the sum of absolute differences (SAD) of each block of pixels in the 

image is compared. For this project, a Speeded Up Robust Features (SURF) detector has been used 

in order to boost the stereo matching and define a disparity range from the features detected. 

In computer vision, SURF isldefined as a locallfeatureldetectorlandldescriptor, partly inspired by 

the scale-invariant feature transform (SIFT) descriptor. SURF consists of detection, descriptor, and 

matching detailed next. 

1) Detection 

SURF first filters each of the pair of images, I, using square shaped filters defined by Equation 5.5. 

 
𝑆(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)

𝑦

𝑗=0

𝑥

𝑖=0

 

Equation 5.5 

 

It then finds points of interest in each image based on the Hessian matrix which is a square matrix 

with.second.order.partial.derivatives.of a.function.or.field.as elements. The points of interest are 

chosen where the determinant of the Hessian matrix is maximal since the determinant measures 

the local change around a certain point. Given a point 𝑝 = (𝑥, 𝑦) in an image I, the Hessian matrix 

𝐻(𝑝, 𝜎) at point 𝑝 and scale 𝜎, is: 
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𝐻(𝑝, 𝜎) = (

𝐿𝑥𝑥(𝑝, 𝜎) 𝐿𝑥𝑦(𝑝, 𝜎)

𝐿𝑦𝑥(𝑝, 𝜎) 𝐿𝑦𝑦(𝑝, 𝜎)
) 

Equation 5.6 

                                                                                                                                                                        

where  𝐿𝑥𝑥(𝑝, 𝜎) ,etc is the convolution of the second order derivative of the filter with the image 

at the point x. 

2) Descriptor 

A descriptor provides.a.unique.and.robust.description.of an.image.feature.by.describing certain 

traits such as shape, texture, the intensity.distribution.of the.pixels.within.the neighborhood.of the 

point.of interest, etc. In SURF, a descriptor is obtained for every point of interest.identified in the 

Detection.step. 

First, a reproducible orientation is selected and fixed based on.information.from.a.circular region 

around the point of interest. Then.a square.region associated to the.previous orientation is 

constructed, and the SURF descriptor is extracted from it. 

3) Matching 

Matching pairs.of features in the two images whose disparity is to be found are deduced by 

comparing their descriptors. 

 

Triangulation for 3D Point Clouds [20] 

Triangulation is the principle of estimating depth from images taken from two different points of 

view. A triangle is formed between the two focal points of the two cameras and the 3D point of 

interest as depicted in Figure 28. 

 

Figure 28: Triangulation (1) [20] 
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Knowledge of the length of the base line (the line between the two focal points), and the two angles 

formed by the base line and the two rays from the 3D point, suffices to calculate the depth of the 

3D point as depicted in Figure 29. 

 

Figure 29: Triangulation (2) [20] 

 

Triangulation helps in obtaining 3D point clouds by encoding the depth. Knowing the disparity 

D at a given pixel position (u,v), the goal is to find the 3D position M=[X Y Z]T of the 3D point. 

This point is to be expressed in CCS1 coordinates. 

 

 

Figure 30: Triangulation(3) 
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Figure 30 allows us to compute the following equations for ray 1 and 2 respectively: 

 𝑍 =
𝑑𝑥

𝑢−𝑝𝑥
 X 

Equation 5.7 

 

 𝑍 =
𝑑𝑥

𝑢′−𝑝𝑥
 (X-T) 

Equation 5.8 

 

Solving for Z yields Equation 5.9. 

 𝑍 =
𝑑𝑥𝑇

𝑢−𝑢′
 = 

𝑑𝑥𝑇

𝐷
 

Equation 5.9 

 

X and Y are obtained by applying perspective projection equations which yield: 

 
𝑋 =

𝑢 − 𝑝𝑥

𝑑𝑥
 Z     

Equation 5.10 

           

 
Y =

𝑣 − 𝑝𝑦

𝑑𝑦
 Z 

Equation 5.11 

 

Eventually, applying equations to the whole disparity map yields a 3D point cloud defined by: 

𝑋𝑐𝑙𝑜𝑢𝑑(𝑢, 𝑣) = [𝑋(𝑢, 𝑣)   𝑌(𝑢, 𝑣)   𝑍(𝑢, 𝑣)]𝑇 

 

5.1.3. Marker Localization 
 

Similarly to the final step in MRI reconstruction, the breast phantom markers must be localized 

for use in registration at the end of the project. What characterizes the markers used is their shape 

and color. However, the shape of the markers as viewed in the images may differ largely between 

two acquisitions depending on the position of the cameras relative to the breast. For that, color 

remains the only trait by which the markers can be identified in the stereo reconstruction process. 

Once the markers are localized in 2D in a pair of corresponding images, they are triangulated to 

obtain their 3D coordinates. 

 

Gaussian Filter 

In Gaussian.smoothing, a 2-D convolution.operator.is.used.to blur images and.remove detail and 

noise. We can say it is similar to the mean filer but it uses a different kernel that represents the 
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shape of a Gaussian hump. Applying a Gaussian blur has the.effect.of reducing.the image's high-

frequency.components. It is thus a low pass filter and is generally used when we want nearest 

neighborhood pixels to have the most influence on the output.  

 

In 2-D, a Gaussian is represented by 

 
𝐺(𝑥, 𝑦) =

1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  
Equation 5.12 

 

(𝑥, 𝑦): Image pixel 

𝜎: Gaussian distribution standard deviation, determines extent of smoothing 

 

 

Figure 31: Gaussian blur [21] 

 

Figure 32: Gaussian kernel for sigma=1 [22] 
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RGB versus HSV 

Red.Green.Blue.(RGB) and Hue.Saturation.Value (HSV) are both color.representations of.an 

image. On one hand, RGB codes each pixel content of red, green, and blue from 0 to 2number of bits 

(black to full intensity of the corresponding color). On the other hand, in HSV, hue defines color, 

saturation defines the intensity of the color, and value defines the brightness of the color. It is 

useful in computer vision because it differentiates in color and intensity, it is close to human 

perception, and it is invariant to illumination transforms. For example, different lighting in a room 

won’t affect results. For a more flexible marker detection technique, a mask can be created based 

on the HSV characteristics of the markers and applied to the image in the aim of isolating and 

segmenting the markers.  

 

 

Figure 33: RGB color space (left) versus HSV color space (right) 
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5.2 Implementation 

 
The implementation of this chapter was done in MATLAB using the MATLAB Computer Vision 

System Toolbox. The algorithm can be summed up by Flow Chart 2, Flow Chart 3, Flow Chart 4, 

Flow Chart 5, and Flow Chart 6. 

 

Flow Chart 2: 3D Reconstruction 

Flow Chart 2 sums up the 3D reconstruction process in computer vision. Once the dual cameras 

are calibrated, the camera calibration parameters can be used to rectify the pair of images acquired. 

The rectified images can be then placed on top of each other and matched for common features. 

The disparity map is then obtained based on these features, and finally, the point cloud or surface 

reconstruction is estimated from the disparity map. 
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Flow Chart 3: Camera Calibration 

Flow Chart 3 sums up the camera calibration steps that were explained in detail in the section 5.1 

of this chapter. The output of the flow chart is the camera calibration parameters which will be 

used as inputs to Flow Chart 2. 
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Flow Chart 4: Disparity Map 

 

Flow Chart 4 depicts how the disparity map is obtained by going through all the pixel 

correspondences in the two images and obtaining the disparity of each matching pair. 
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Flow Chart 5: Markers detection and localization in image  
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Flow Chart 6: Markers 3D localization 

 

Flow Chart 5 sums up how the markers are located in each of the two corresponding image pairs 

and localized in 2D. Each image is first filtered with Gaussian smoothing. A mask is then created 

based on hue, saturation, and value parameters. The hue range is characteristic of the specific green 

color of the markers with a margin of error. It could be detected from any HSV model or from the 

hue layer of the HSV format image. The saturation threshold is detected automatically in 

MATLAB based on the Otsu method defined previously in Chapter 3. The value range is defined 

as [10%; 90%] in order to eliminate the darkest and brightest values. The mask is later multiplied 

to the image. Finally, the markers are segmented based on their area, and their centroids are 

obtained in pixels. 

Flow Chart 6 depicts how the 2D pixel coordinates extracted from the pair of images are used to 

obtain the 3D mm coordinates of markers. 
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5.3 Experimentation and Results 
 

5.3.1 Camera Calibration 
 

The stereo camera was calibrated using the MATLAB Stereo Camera Calibrator App and a 

checkerboard pattern with a square of 10 mm dimension. Every time the focus or aperture in the 

camera was adjusted, a new calibration session had to be done. For each session, more than 20 

pairs of checkerboard images were acquired with the setup for calibration (Figure 34). The stereo 

parameters were then extracted while taking into consideration the correction for distortion. The 

calibration was generally always acceptable, yielding a reprojection error of less than 0.5 pixels. 

The final and best calibration session gave a reprojection error of 0.14 pixels (Figure 36). Knowing 

that the pixel dimension for the specifications of the camera used is 6µm, this implies that the 

reprojection error is about 0.14x6 = 0.84 µm. 

 

Figure 34: Checkboard calibration images 

 
Figure 35: Stereo camera calibration with checkerboard images. (Green circles represent the detected points while red points 

represent the reprojected points) 
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Figure 36: Graph of reprojection errors as a function of image pairs 

 

 
Figure 37: Stereo camera extrinsics- 1: Camera 1, 2:Camera 2 – The colored planes observed in front of the 2 cameras represent 

the checkerboard orientations during calibration 
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5.3.2 Stereo Rectification 
 

Multiple image pairs were acquired by the stereo camera from different angles, and corresponding 

image pairs were rectified using the camera calibration parameters obtained. 

 

Figure 38: Rectified image pairs from side view of breast phantom 

 

 
Figure 39: Rectified image pairs from upper view of breast phantom (1) 
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Figure 40: Rectified image pairs from upper view of breast phantom (2) 

 

5.3.3 Stereo Matching and Disparity Map 
 

Experimentation proves that using SURF features and range definition improves the disparity map 

as observed in Figure 42. 

 

          

Figure 41: SURF features detected in side view rectified images 
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Figure 42: Disparity map before SURF and range definition (left) versus disparity map after (right) 

5.3.4 Surface Reconstruction 
 

Having the disparity map, the breast phantom can now be reconstructed by obtaining the X,Y, and 

Z coordinates of all points in the disparity map. Since our region of interest is the breast phantom 

and not the whole scene, the disparity map can be further improved by cleaning out the parts of 

the disparity map corresponding to the environment. Once the 3D coordinates of the points are 

obtained, the disparity map could be cleaned of all points lying outside the 40-70 cm working 

space of the KUKA arm. All connected pixels forming an area less than that of the breast can also 

be considered as noise and removed by setting their disparity to -1. The surface is then 

reconstructed again.  

 

Figure 43: Disparity map before cleaning (left) versus disparity map after (right) 
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Figure 44: Point cloud before cleaning (left) versus point cloud after (right) 

 

5.3.5 Markers Localization 
 

The markers localization algorithm is implemented in MATLAB. A pair of images is acquired 

using the camera setup, and the markers are detected in both images. Their centroids are localized 

in pixel units then triangulated to find the corresponding 3D coordinates in mm. 

 

 

Figure 45: Left and right original images respectively 
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Figure 46: Left and right undistorted images respectively 

 

 

Figure 47: Left and right gaussian smoothed images respectively 

 

 
Figure 48: Markers localization in left and right camera images respectively 
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2D Centroid Coordinates 

The results of the 2D and markers localization are stored in Table 5 and Table 6 respectively. 

 
Left Image Right Image 

X (px) Y (px) X (px) Y (px) 

Marker 1 389.27 266.35 111.16 247.56 

Marker 2 426.09 268.79 153.33 249.30 

Marker 3 470.25 271.63 201.86 251.19 

Marker 4 529.59 102.52 253.88 81.8 

Marker 5 530.10 150.00 257.81 129.53 

Marker 6 530.6 202.13 262.04 181.84 

Marker 7 540.26 336.12 273.49 314.68 

Marker 8 550.22 377.46 279.38 354.94 

Marker 9 558.18 405.09 284.5 381.75 

Marker 10 604.53 265.83 335.48 243.88 

Marker 11 645.13 262.99 371.04 240.91 

Marker 12 681.32 256.70 401.37 234.17 

Table 5: 2D pixel coordinates of detected markers in left and right camera images 
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 X(mm) Y(mm) Z(mm) 

Marker 1 6.93 -0.22 692.03 

Marker 2 24.03 0.88 665.48 

Marker 3 43.34 2.06 643.01 

Marker 4 72.68 -77.63 665.1 

Marker 5 71.28 -53.9 649.82 

Marker 6 69.8 -29.08 633.94 

Marker 7 74.25 31.12 634.11 

Marker 8 81.77 51.5 658.38 

Marker 9 87.8 66.08 676.09 

Marker 10 101.99 -0.56 627.42 

Marker 11 122.89 -1.82 642.31 

Marker 12 143.53 -4.9 661.52 

Table 6: 3D mm coordinates of detected markers 
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6 Registration 

 
The closure of this project is attained at the point where it all comes together, the registration. 

Image registration algorithms combine different images by aligning target images to a reference 

image. In our application, 3D registration will be applied in the aim of fusing MRI and camera 

reconstructed surfaces. The two sets of surface measurements are transformed into a common 

coordinate system, and the output is a fused model. The goal is to contribute to the SLAM phase 

of MURAB multiple imaging modalities are combined in order to accurately locate the lesion in 

the patient’s breast.  

 

Knowing that the common detectable aspects of the MRI and camera reconstructions include the 

markers and the surface of the breast phantom, it would be intuitive to focus on feature based 

registration. The markers are considered as extrinsic landmarks or features of the volume (fiducial 

points).  The camera reconstructed surface is chosen as the reference volume since it depicts the 

relative position of the breast to the camera, and hence the robot. A geometrical transformation 

should be obtained to map the target surface (MRI surface) to the reference surface. Finally, we 

obtain a point by point correspondence between the reference and target volumes.  

 

During the process, the major requirement kept in mind is to limit the error to less than 1 mm. 

 

6.1 Theory and Implementation 
 

6.1.1 Registration Approach 

 
Since both MRI and camera surface reconstruction are obtained in mm, no scaling is needed. The 

shape of the reconstructions should be preserved as well. For that, rigid transformations will be 

used in the registration. 

A common approach for 3D surface registration is using the iterative closest point (ICP) algorithm 

which aims to find the transformation between a point cloud and another point cloud by 

minimizing the square errors between the corresponding entities. It then assumes closest points 

correspond to each other and computes the best transform. For that, the ICP is only applicable in 

the case where a good first estimate of transformation is available. It could be then used to optimize 
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the process.  

If we know correct correspondences, we can find a good first estimate of translation and rotation. 

As discussed previously, the landmarks or fiducial points that could be used to obtain the first 

transformation are the centroids of the markers placed on the breast phantom. 

 

Procrustes Transformation 

Having localized the centroids of the green markers placed on the phantom in both MRI and 

camera setups, the first transformation between the two surfaces can be estimated by transforming 

the MRI markers to the Camera markers using Procrustes. A.Procrustes.transformation.is a 

geometric transformation that only involvesktranslation, rotation, uniform scaling, or.a 

combination of these transformations. Hence, it may.change.the.size, but.not.the.shape.of a 

geometric object. In our case, scaling is not needed since both surfaces are in mm. Being a rigid 

transformation, the Procrustes equations are defined by Equation 2.1. The rotation and translation 

in Procrustes are defined such that the two objects will be superimposed and their shapes will be 

compared. The objective is to obtain a similar placement and size, by minimizing a measure of 

shape difference called the Procrustes distance between the objects. 

Translation 

The target surface is.transformed.to.the.reference.one so that the mean of all the object's points 

(centroid) lies at the origin.  

(𝑥, 𝑦, 𝑧) → (𝑥 − x, 𝑦 − 𝑌, 𝑧 − 𝑍) 

Rotation 

The optimum rotation is represented by a 3-by-3 rotation matrix R whose optimum value is 

obtained by singular value decomposition. 

Shape Comparison 

The Procrustes distance is used when comparing the shape of the superimposed surfaces. It can be 

defined by 

 𝑑 = √(𝑢1 − 𝑥1)2 + (𝑣1 − 𝑦1)2 + (𝑤1 − 𝑧1)2 

 

Equation 6.1 

(𝑢1, 𝑣1, 𝑤1): Transformed point 

(𝑥1, 𝑦1, 𝑦1): Corresponding point in reference surface 
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Iterative Closest Point 

Iterative Closest Point is a widely used method for aligning three dimensional models given an 

initial guess of the rigid transformation. In the ICP, the reference point cloud is.kept.fixed.while 

the.target.point.cloud is transformed to best match.the.reference with a rotation and translation. 

The algorithm.iteratively.revises.the.transformation.needed to minimize an error metric, usually 

the distance.from the target to the.reference.point cloud.  

 

Flow Chart 7: ICP 
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6.2 Results 

 

6.2.1 Surface Registration 
The previously detailed registration approach was used for camera-camera surface registration and 

applied on multiple camera reconstructed surfaces in the aim of filling holes obtained in single 

point clouds. Figure 49 shows 2 point clouds obtained from 2 different pairs of images while Figure 

50 shows the registration of these point clouds before and after applying ICP. The left image in 

Figure 50 demonstrates the registration based on the first estimate transformation obtained from 

the markers while the right image demonstrates the final ICP optimization. 

 

 

Figure 49: Two point clouds reconstructed from two different pairs of images 

 

Figure 50: Camera-camera surface registration of 2 point clouds before ICP (left) and after ICP (right) 
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The registration was finally applied to seven different camera-camera reconstructed point clouds. 

Outliers were excluded from the registration by setting a threshold to the RMSE. From this 

experimentation, only one outlier out of 7 point clouds was obtained. Figure 51 shows the final 

camera-camera surface registration result. 

 

 

 

The same algorithm was then used for MRI-camera surface registration in order to align the MRI 

surface with the camera surface, the output of camera-camera registration. The results of the final 

registration are illustrated in Figure 52 and Figure 53. 

Figure 51: Camera-camera registration 
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Figure 52: MRI-camera registration before ICP 

 

 
Figure 53:MRI-camera matching after ICP 
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6.2.2 Validation 
Table 7 shows the RMSE obtained from the camera-camera registration, before and after applying 

the ICP as well as before and after excluding the outlier from the registration. Before applying 

ICP, the error is calculated from the transformed markers only since the point correspondences of 

the whole volume are not yet known. After applying ICP, the error is calculated from the 

transformation applied on the whole volume. These errors are not to be compared. 

 

Camera-Camera Surface Registration (Outlier included) 

 RMSE before ICP (mm) RMSE after ICP (mm) 

X direction 0.97 

 Y direction 0.63 

Z direction 4.23 

Mean RMSE 1.94 7.75 

Camera-Camera Surface Registration (Outlier excluded) 

 Mean RMSE before ICP (mm) RMSE after ICP (mm) 

X direction 0.85 

 Y direction 0.53 

Z direction 4.42 

Mean RMSE 1.93 3.39 

Table 7: Registration Validation 

6.2.3 Discussion 
Concerning the camera-camera surface reconstruction, the visual results clearly show that the 

overall registration helps fill the holes in the point clouds due to unreliable points by merging 

several point clouds. It is also observed that the ICP optimizes the registration to a huge extent, 

eliminating the shift seen in the left image in Figure 50. As for the RMSE computation, the error 

computed from the markers does not vary to a large extent before and after eliminating the outliers. 

This is expected because transforming the already detected markers from two point clouds to each 

other is not a complex process. However, when it comes to the error computation of the complete 

volume registration, the error is reduced to half its value when the outliers are rejected from the 

registration. For that, it is important to exclude the outliers. 
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Conclusion and Future Recommendations 

 
This study was conducted in the aim of testing the applicability and accuracy of MRI-Camera 

surface registration in the context of the European MURAB project with the hope of proposing an 

initial camera setup that could be further elaborated and fixed to the KUKA arm end effector.  

 

In the first phase, MRI surface reconstruction was.performed.and the.3D coordinates of breast 

phantom.markers.were.localized in anatomical space using centroid detection of the blobs. An 

average.error.of 0.5 mm in the marker localization was considered as acceptable. 

In the second phase, a converged camera setup was designed, taking into consideration the field 

of view, robot working distance, and acceptable blur circle radius. It was implemented using rapid 

3D printed prototyping. 

In the third phase, camera surface reconstruction was performed, relying on stereo vision concepts 

and point cloud reconstruction. A color-based method was proposed in the aim of localizing the 

3D coordinates of breast phantom markers in real space. 

In the fourth phase, a semi-automatic, marker guided, registration method based on the ICP.was 

proposed. Duektokthekclosekpositionkrequiredkfor.ICPkinitialization, a first estimate rigid 

transformation was computed by marker matching. The algorithm was applied to 6 camera 

reconstructed point clouds in the aim of merging them together and filling any holes resulting from 

unreliable points in individual point clouds. It was also applied in the merging of MRI and camera 

reconstructed surfaces to fulfill the final goal of the project. The experimentation results showed 

that the accuracy of the algorithm (average of 3.39 mm for camera-camera registration) is 

reasonably acceptable for a first prototype and competes with an existing Kinect-based CT-camera 

registration approach with mean target positioning error of 5.23 mm [10]. 

 

The results obtained were reasonable and satisfactory for the number of experiments we were 

capable to conduct during a 3 months period of time. For the future, the camera setup is 

recommended to be mounted on the KUKA arm end effector and further tested. The use of more 

practical markers that could be more accurately localized also promises to improve the error of the 

registration. It is also predicted to elaborate the algorithm for this project in the aim of detecting 

lesions and evaluating the error in that case. 
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The registration of MRI and Camera reconstructed surfaces offers countless promises in what 

concerns combining the accuracy of MRI detectability and camera guidance for precise needle 

steering and a robust breast biopsy. In this context, a novel study was conducted and presented an 

impressive potential for clinical application of MRI-camera registration. Finally, this project lays 

groundwork for the development of a final camera setup design and clinically approved MRI-

camera registration software that could lead towards revolutionizing the integration of medical 

imaging in robotic systems for cancer diagnostic operations. 
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