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Abstract 

Laparoscopic cholecystectomy (LC) is the standard procedure to remove the gallbladder. Although 

this procedure has evolved to a relatively safe and tolerable daycare procedure, it can be difficult 

at times and complications can arise. Complicated gallstone disease, such as cholecystitis or 

gallstone pancreatitis, are risk factors for increased technical difficulty of a LC. Although it is 

possible to make a preoperative prediction of the surgical difficulty, perioperative findings can be 

surprising. Understanding the difficulty of the surgical scenario with AI-based models is important 

to allow benchmarking in surgical performance and improve planning on the OR. This study aimed 

to develop a Deep Learning (DL) to predict the difficulty of laparoscopic cholecystectomy on 

specific operative findings. A difficulty grading scale was used, based on the Nassar score. To 

train the DL network, frames were extracted from the recorded videos. All frames were labeled 

for ‘gallbladder’ difficulty grade 1-3 and ‘adhesions’ difficulty grade 1-3. Frames consisting of out-

of-body images or in which the gallbladder was not visible were excluded. This resulted in a total 

of 26.483 frames. A ResNet was used as a backbone for the model. Hyperparameters were tuned 

to improve model results. Both multiclass and binary classification networks were trained. The 

network that was trained to classify gallbladder difficulty (3-grades) performed better (accuracy 

74%) than the network trained to classify adhesions difficulty. It is possible to classify cholecystitis 

with an accuracy of 91% and classify easy cases with an accuracy of 87%. The results of this 

study could be used as a starting point for further research in classifying difficulty in LC. This is 

a first step to improve understanding of surgical scenery and allow benchmarking for surgeons in 

LC. 
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1. Introduction 

Laparoscopic cholecystectomy (LC) is widely accepted as the standard procedure for the surgical 

removal of the gallbladder. It is one of the most commonly performed operations in elective and 

emergency settings.1 This procedure is indicated for the treatment of symptomatic cholelithiasis, 

cholecystitis, pancreatitis, or gallbladder polyps.2 The minimally invasive approach has rapidly 

become the gold standard for routine gallbladder removal and has essentially replaced the open 

technique since the early 1990s.2 The major benefits of laparoscopic versus open surgery include 

decreased morbidity, faster recovery, and shorter hospital stay.3 Although this procedure has 

evolved into a relatively safe and tolerable daycare procedure, it can still be difficult at times. 

Serious operative complications can occur, such as bile duct injury, bile leaks, bleeding, and bowel 

injury.4 

Laparoscopic surgery has challenges compared to open surgery because of the loss of a three-

dimensional perception, indirect contact with tissue, and limited tactile feedback. This makes the 

operation difficult sometimes. A difficult procedure can make a conversion to open 

cholecystectomy necessary. The definition of a “difficult LC” is inconsistent, but in general, the 

term refers to multiple technical intraoperative difficulties that increase the risk of complications 

and significantly prolong operating time.5 Numerous factors are important in the correct 

management of LC, because of the large heterogeneity in clinical manifestations.1  Several factors 

are known to increase technical difficulties, such as the presence of inflammation and adhesions.6 

In addition, surgical difficulties not only depend on patient factors but also on the surgeon’s 

experience and skills. 

Prediction of surgical difficulty is required to identify high-risk patients to minimize the risk of 

complications and delays.7 A difficult procedure requires an experienced surgical team, experienced 

at both laparoscopic and open cholecystectomy. Furthermore, estimating the level of complexity 

beforehand may improve the flexibility and accuracy of preoperative planning. Multiple LC grading 

scales of surgical difficulty have been developed based on several predictive preoperative factors. 

However, the discriminative value of these preoperative risk factors is low, and therefore surgical 

findings can still be surprising.8,9 Therefore, it would be of additional value to incorporate the 

actual surgical findings in the first few minutes of surgery to adjust the prediction of surgical 

difficulty. There is a consensus on the fact that operative findings and difficulty hold the key to 

outcome.1 LC has surprisingly variable approaches, findings, outcomes, and conversion rates. 

Standardizing the way surgical events are reported is important to allow qualitative studies and 

outcome comparisons. This is also important to gain more insight into the learning curve of 

surgeons in training. If it is clear which procedure was easy and which was difficult, it will enable 

more objective comparisons between surgeons in performance, procedure time, and/or 

complications. This is currently not documented regularly after surgery. Automatic, objective 

classification of surgical difficulty can improve outcome predictions, risk stratification, and surgical 

planning.  

The laparoscopic video recordings show essential information regarding anatomy and lend 

themselves for analysis. Deep Learning (DL) is a subset of Artificial Intelligence (AI) that imitates 

the way humans learn. DL-based predictive models have already shown to be of great benefit in 
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improving healthcare quality and safety. For example by supporting healthcare personnel in clinical 

documentation and decision making.10 This study aims to predict intraoperative difficulty by 

classifying and evaluating intraoperative images in the first phase of a LC. The concepts of DL 

and previous research on this topic will be further elaborated in the next chapter. The aim and 

research questions will be discussed at the end of the next chapter.  
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2. Clinical Background 

This chapter discusses the clinical background of the LC procedure and the risk factors for a 

difficult LC. The definition of a difficult LC is elaborated, and different scoring systems are 

discussed. This is followed by an overview of previous research on DL in surgery, followed by the 

aim and research questions for this study.  

2.1 Laparoscopic Cholecystectomy 

LC is the standard procedure for the removal of the gallbladder. The indications for LC are 

cholelithiasis, pancreatitis, cholecystitis, gallbladder polyps, and choledocholithiasis.11 The 

anatomical structure of the gallbladder is typically divided into three parts: the fundus, the body, 

and the neck (Figure 1 and 2). The neck contains a mucosal fold, known as Hartmann’s pouch. 

The LC procedure consists of the following steps: division of adhesions involving the gallbladder 

(gallbladder dissection), dissection of the hepatocystic triangle, clipping and transection of the 

cystic artery and duct, and the dissection and removal of the gallbladder from the liver bed.   

 

 

Figure 1 Overview of the anatomy    Figure 2 Anatomy of Gallbladder 

 

In more detail, the procedure starts by establishing access to the abdomen and the creation of 

the pneumoperitoneum. When access has been established, the trocars and instruments are 

inserted. The gallbladder is elevated with an instrument by traction of the fundus (Figure 3). If 

adhesions are present, they are taken down first. When a percutaneous cholecystectomy drain is 

in situ, it must be pulled out before the gallbladder can be removed. After percutaneous drain 

placement, several adhesions may be encountered, which should be separated first. (Figure 5) 

The infundibulum is subsequently retracted caudolaterally to straighten the cystic duct, 

maximizing visibility and elevating the gallbladder from the common bile duct. The next step is 

the dissection of the hepatocystic triangle. The dissection begins by incising the peritoneum along 

the edge of the gallbladder on both sides to open the hepatocystic triangle. This is performed 

mostly with blunt dissection.4 Subsequently, the critical view of safety (CVS) is established. By 

achieving the CVS the cystic artery and duct are localized. Only when the lower part of the 
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gallbladder is separated from the cystic plate, the hepatocystic triangle is cleared of fat and fibrous 

tissue and there are only two structures attached to the gallbladder, the cystic artery and duct 

can be clipped and divided.12 This is needed to prevent misidentification of the cystic artery and 

duct that could lead to biliary injury. Then the gallbladder is separated from the liver bed and 

removed from the abdominal cavity with a sterile retrieval bag.  

 

 

Figure 3 Start procedure: Evelation of the gallbladder            Figure 4 Hartmann’s pouch 

 

 

 

Figure 5 Laparoscopic images showing a percutaneous drain in situ 

 

The average operating time for LC differs significantly among hospitals.13 Here we define the 

operating time as the duration from the first skin incision to skin closure. In Meander MC the 

average time that is reserved for a LC is 45 minutes, although the actual time needed may vary 

depending on surgical difficulty. Thiels et al.14 report a mean operating time of 89 ± 32 minutes. 

Sutcliffe et al.15 report a median operating time of 60 minutes (45-88). In a study by Atta et al.16 

they found that the operating time of LCs performed by trained surgeons was significantly shorter 
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(median, 45 min; 30-70) compared with the operating time of surgeons still in training (60 min, 

50-90).  

Although LC is considered a safe procedure, morbidity can occur in approximately 6-8% of the 

patients. Complications include bleeding, abscess, wound complication, and bile duct injury.4 

Among postoperative complications, the most common ones are bleeding from the abdominal 

cavity and infection of the surgical wound. Biliary and vascular complications can be life-

threatening, while minor complications cause patient discomfort and longer hospital stay.17 The 

conversion rate has decreased over the last few years.18 Mortality after LC is low. Sandblom et al 

report a 30-day overall mortality rate of 0.15%. The median hospital stay is 1 day.15 

2.2 Risk factors for a difficult surgery 

Surgical difficulty should also be estimated preoperatively. There are variations in studies when 

looking at predictive factors because they vary in research outcomes. Studies that focus on 

surgical difficulty either focus on the duration of the operation, complications during or after 

surgery, or conversion rate.19 During surgery, most difficulties are experienced during the 

separation of all adhesions and ligation and division of the cystic artery and duct. Sahu et al.5 

state that 75% of all difficult surgeries (defined as procedures >90 min) are due to the separation 

of adhesions. Atta et al.3 describe that patients with an impacted stone in the neck of the 

gallbladder, adhesions in Calot’s triangle, and gallbladder rupture were more likely to result in a 

difficult LC. Inflammation can cause local changes in the tissue within and around the gallbladder. 

Scarring in the hepatocystic triangle can make it hard to identify the cystic artery and cystic duct. 

Predictive surgical findings for conversion are a completely obscured gallbladder, impacted stone, 

bile, or pus outside gallbladder and fistula.20 Other factors that make the surgery difficult are 

dense adhesions, diffuse fibrosis, bleeding and necrotic tissue.21 Difficulty can also be caused by 

the creation of the pneumoperitoneum, excision of the gallbladder from the bed, or extraction of 

the gallbladder.5 

Many studies have reported different preoperative risk factors associated with difficult LC and 

conversion to open cholecystectomy.222324 Male gender, high age, obesity, previous upper 

abdominal surgery, acute cholecystitis, and little surgical experience are predictors for a difficult 

LC in both acute and elective cases.2526271820 Patients with a gallbladder wall thicker than 0.5 cm, 

a contracted gallbladder, high age, male gender, and acute cholecystitis have a higher risk for 

conversion.8 The gallbladder wall will become thicker because of the inflammation and fibrosis 

caused by acute cholecystitis. In the first few days of acute cholecystitis, there is edema, 

hypervascularity and gallbladder distension. After a few days there will be adhesions and it becomes 

more difficult to dissect.17 

Sutcliffe et al. proposed a preoperative scoring system to predict the need for conversion from 

laparoscopic to open surgery. This system gives a score to age, gender, indication, ASA score, 

gallbladder wall and common bile duct diameter. They correlated this score with intraoperative 

difficulty. Their scoring system could be used for preoperative prediction of surgical difficulty.15  
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2.3 Scoring systems of intraoperative difficulty 

Because of the variability in operative findings, LC is a very unpredictable surgery. Mainly because 

of the effect of cholecystitis and fibrosis surrounding the hepatocystic triangle. There are many 

preoperative grading scales that are used to predict a difficult surgery based on different 

anatomical and laboratory findings. It depends on how ‘difficulty’ is defined which parameters are 

of high importance for prediction. The definition is not clearly defined, because it also depends 

on the surgeon’s experience and skills.28 Lal et al 9 and colleagues suggest that the surgery is 

‘difficult’ when operating time is more than 90 minutes or either taking down the adhesions 

surrounding the gallbladder or dissecting the hepatocystic triangle takes more than 20 minutes.20 

In the study of Kumar Sahu, difficult LC was defined in those procedures which exceeded 90 

minutes in duration and/or converted to open procedure.5. In Atta et al 3 it is defined as the 

operative time of more than 60 min and/or cystic artery injury. Given the fact that LC is a 

common surgery that varies in operative difficulty, it is surprising that not many intra-operative 

difficulty grading systems have been published and none are widely used in clinical practice. With 

a simple scale to arrange intra-operative difficulty, it would be easier to improve intra-operative 

strategy and planning, to compare between studies, allow risk assessment for patient outcomes 

and provide insight into training progression for surgical trainees. It would also standardize the 

description of findings and reporting of outcomes. 29 

Numerous scoring systems have been developed in the past that aim to predict the level of 

difficulty for LC. The majority of these systems are based on preoperative clinical findings and do 

not incorporate intraoperative findings. It is clear that preoperative parameters have some 

predictive value, but it still lacks accuracy until the gallbladder is visualized, after which a true 

determination can be made of surgical difficulty. Not many intraoperative grading systems have 

been developed. Sugrue et al investigated if the proposed operative scoring system is useful to 

predict if conversion from laparoscopic to open surgery is necessary. This publication did not 

report clinical outcome data and has yet to be validated.1 Their grading system is based on the 

severity of cholecystitis and difficulty grade with a score from 1 to 10. Cuschieri 23 published a 

‘scale of difficulty’ for LC, but is probably outdated because skills have significantly improved over 

the last 20 years. The Tokyo guidelines to determine the severity of cholecystitis use three grades, 

but do not incorporate intraoperative findings.30 The ‘Parkland’ scale though, published in Madni 

et al 31 is based on intraoperative images but they described outcome data for only 50 patients. 

The Nassar scale is a simple, clinically relevant, operative difficulty scale that could be used as a 

tool. Griffiths et al 29 proved the utilization of this grading system and clinical applicability in 

association with outcome data. In our opinion, the Nassar score is the most accurate grading 

scale to classify surgical difficulty within the first few minutes of the operation. (Figure 6) The 

scale is presented below. Automatically defining the status of the gallbladder intraoperatively will 

enable more standardized reporting and improve comparisons of outcomes.  
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2.4 The Nassar scale 

This is a simple 4-grade LC difficulty scale that was published in 1995.32 (Table 1) It provides a 

tool for reporting operative findings, disease severity, and technical difficulty.29 Griffiths et al 

found that an increasing Nassar operative difficulty grade was consistently associated with 

significantly worse outcomes. Other publications used the scale to improve the management of 

complicated gallstone disease3334 or investigate the suitability of patients for single-port LC35. 

 

Figure 6 Laparoscopic images of each Nassar operative difficulty grade29 

Table 1 Nassar scale definitions 

Grade 1. 

 

Gallbladder floppy, non-adherent 

Cystic pedicle thin and clear 

Adhesions simple up to the 

neck/Hartmann 

Grade 2. 

 

Gallbladder mucocele, packed with stones 

Cystic pedicle fat-laden 

Adhesions simple up to the body 

Grade 3. 

 

Gallbladder deep fossa, cholecystitis, 

contracted, fibrosis, hartmans 

adherent to CBD, impaction 

Cystic pedicle abnormal anatomy or 

cystic duct, short, dilated, or obscured 

Adhesions dense up to fundus, 

involving hepatic flexure or duodenum 

Grade 4 

 

Gallbladder completely obscured, 

empyema, gangrene, mass 

Cystic pedicle impossible to clarify 

Adhesions dense, fibrosis, wrapping the 

gallbladder, duodenum, or hepatic flexure 

difficult to separate. 

The worst factor found should be used to define the fine overall grade. 
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2.5 Artificial Intelligence in surgery  

The huge amount of laparoscopic video data holds a lot of information that could be used to 

learn from and make valuable predictions. Analyzing these videos can assist surgeons during 

surgery and postoperatively improve the evaluation of the procedure and the performance of the 

surgeon. AI techniques have gained significant popularity as a tool to analyze surgical videos. AI 

methods use algorithms to give computers the ability to perform tasks that usually require human 

intelligence. Algorithms such as deep neural networks can be trained without explicit 

programming, using large quantities of data to learn to predict an outcome on new data. AI 

techniques are not new as they have existed for decades, but due to developments in computing 

power and the increase of information, it has gained possibilities and popularity. In short, it 

describes a scientific field that develops algorithms to train computers at performing a specific 

task.  It has already proven to be beneficial to healthcare quality and safety.10 While interest and 

research on AI applications on surgery are increasing, much of the focus has been on other 

specialties such as radiology, pathology, or dermatology.  

An overview of current DL applications in surgery is given in Figure 7. Different techniques include 

anatomy detection, instrument detection, action recognition, phase recognition, and remaining 

surgery time prediction.36 Twinanda et al. developed a prediction model for the estimation of 

remaining surgery time. The average error in the estimation was 15.6 min.37 Models that can 

detect tools are already showing good results.38 AI algorithms are studied to enhance the safety 

of LC, enable benchmarking, and improve surgical training programs. It could be used for decision 

support and digital documentation of operative findings.39 Madani et al.40 suggest that DL can 

be used to identify safe and dangerous zones of dissection and other anatomical structures in the 

surgical field during LC with high accuracy. Mascagni et al 41 formalized a reproducible method 

for objective video reporting of CVS in LC. Tokuyase et al 42 developed a system that outlines 

landmarks in endoscopic images in real-time to prevent intraoperative bile duct injury. In addition 

to laparoscopic videos that are used for action recognition, the use of external cameras in the 

operating room (OR) is also being studied. These cameras capture more general activities in the 

OR process rather than anatomical structures.43  All these developments mainly go towards 

context-aware systems that can give automated assistance and intelligent surgical training 

systems.38  

 

Figure 7 Main DL applications in minimally invasive surgery38 

Because LC is a basic laparoscopic surgery that is widely used in many different hospitals, this 

procedure is often chosen to explore the possibilities of AI and evaluate the feasibility of the 

techniques.444546 Nevertheless, LC is not fully standard because of the variance in difficulty and 
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experience of the surgeon.44 We did not find other studies on difficulty prediction using 

laparoscopic video data.  

Challenges in DL for medical purposes 

Although the results of the abovementioned studies are promising, the application and value for 

real-time surgical guidance and decision support are complex and have yet to be demonstrated. 

Laparoscopic video data gives an extra challenge to image analysis. These videos have huge 

variability in terms of background noise, image quality, and camera angles, and blood and smoke 

in the images. If a model is trained on data from a certain institution, it is hard to use it for the 

same task in another institution, due to other camera settings or labeling protocols. Hashimoto 

et al.47 suggest the creation of publicly available surgical datasets, allowing standardized protocols. 

Anteby et al.36 state in their review that it is of great importance to give an accurate description 

of how the data is labeled and assess inter-annotator reliability. Another obstacle is the 

recruitment of experts (surgeons) to annotate data to provide clinically meaningful data.  It would 

be beneficial if more surgeons are engaged in this type of research. Because of the poor quality 

of datasets, the implementation in the OR is still a challenge.  

2.6 AI-lab in Meander Medical Center 

Recently the ‘Artificial Intelligence Lab’ has been established in the Meander MC. The goal is to 

explore the possibilities and create a platform for AI projects within Meander and support these 

projects. Allowing surgeons to be at their best by giving insight into their performance is one of 

the main goals. In addition, AI-based models can be used to assess intraoperative decision-making 

and give real-time feedback during surgery. Previous work includes the identification of anatomical 

structures, surgical phase recognition, and detection of bile leakage. The focus is also on the use 

of external cameras in the operating room to recognize actions and improve planning. Patient 

history data from Meander will be used to create a preoperative prediction model for surgical 

difficulty in LC. Johnson & Johnson also has an interest in these projects and is available for 

technical support. The goal is to eventually combine the results of these projects using surgical 

phase recognition, preoperative and intraoperative prediction of surgical difficulty.  

2.7 Aim and research questions 

Below the long-term objectives of this study are presented: benchmarking and improving planning 

Benchmarking  

To improve surgical performance, it would be beneficial to set a benchmark for surgeons. When 

surgeons gain more insight into their performance and can compare it to the benchmark, they 

can apply a more targeted approach to improve their skills. If it is registered which actions are 

performed in a certain phase, the focus can be shifted in the learning process. Therefore, 

applications such as surgical phase recognition, instrument tracking, and action recognition are 

required. In addition, recognition of surgical events such as bile leakage or bleeding and the 

automatic assessment of the critical view of safety is needed. To allow benchmarking for surgeons 
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in LC it is also important to objectively classify surgical difficulty. The automatic reporting of 

surgical difficulty makes it possible to compare surgical outcomes.  

Improve planning 

The OR is a scarce and expensive environment and efficient planning is of great importance. 

Because of the variability in complexity, the operating time varies. Predicting remaining surgery 

duration is needed for optimal OR planning. Classifying surgical difficulty at the start of surgery 

could be used to predict the remaining surgery time more accurately. When this is done 

automatically, the next patient could also be called in automatically and therefore save time. The 

ultimate goal is to make a preoperative prediction of required surgery time that is automatically 

adjusted accurately during surgery.  

Aim of this study 

To contribute to this objective to realize benchmarking in LC and improve surgical planning, this 

study aims to objectively classify surgical difficulty. It would be clinically most relevant to do this 

at the start of surgery. Classifying surgical difficulty is a small step in improving patient care by 

giving surgeons more insight into their performance and improving planning. 

Research question 

- To what extent is it possible to predict surgical difficulty in the first phase of the operation 

with a Deep Learning model using intraoperative video data? 

Subquestions  

- Which aspect of the Nassar scale can be accurately classified using single frames? 

- To what extent is the Nassar scale clinically relevant to solve this problem? 

- To what extent can surgical planning be improved by predicting surgical difficulty in the 

first phase of the operation? 

To answer these questions, the Nassar scale was used as a scoring system for surgical difficulty. 

A dataset was created using LC videos and these were labeled with the Nassar score as a starting 

point. A DL algorithm was developed to train the networks. Several experiments were executed 

to improve the results.  
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3. Technical Background 

This chapter serves as support to provide the fundamental knowledge regarding the method used 

in this thesis: deep neural networks. First, an introduction to AI is given. Then, Artificial Neural 

Networks (ANNs) are described. Convolutional Neural Networks (CNNs), which can be viewed as 

a special type of ANNs, are later described in 3.2. In the next section, optimization techniques 

are presented to successfully train the network models. Ultimately, the neural network architecture 

is presented that will be used in this research.  

3.1 Artificial Intelligence 

It is hard to explain the overarching term ‘AI’ in one definition, but it can be described as the use 

of computers to simulate human intelligence. Such algorithms try to mimic human cognitive 

functions such as learning, decision-making, and problem-solving. They are applied and proven 

useful in a wide variety of fields, including medicine.48 Machine learning is a subfield of AI which 

enables algorithms to learn patterns in large quantities of data without being explicitly 

programmed and to generate useful predictive outputs on new data.49 

 

Figure 8 Overview Artificial Intelligence 

In supervised learning, datasets that contain pre-labeled outcomes are used to train a model in 

such a way that it can make predictions on new, unseen data. The data is used to learn features 

that have a predictive value. Supervised learning can solve either a classification or a regression 

problem. Examples of classification techniques include support vector machines, neural networks, 

deep neural networks, decision trees, random forests, and naïve Bayesian classifiers approaches. 

Unsupervised learning uses an unlabeled dataset to train a model. The goal is to interpret and 

derive structure from data by extracting features and patterns in the data.50 Unlike supervised 

and unsupervised learning, where a fixed dataset is used, reinforcement learning systems use a 

feedback loop between the system and its experiences. This type of learning uses the principles 

of behaviorism (reward and punishment) to train the algorithm.51 It has been applied relatively 

little for medical purposes. Because fully labeled datasets are very hard to acquire, often semi-

supervised learning methods are used.52 In the present work, supervised learning is used.  
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Figure 9 Neuron 

ANNs are computational analytical tools inspired by the biological brain. They are made up of 

multiple neurons that are densely connected. These artificial neurons perform a computation on 

the input by multiplying it with a learnable weight and by adding a bias and applying a non-linear 

activation function to pass the output to the next neuron in the system (Figure 9).43 

An ANN consists of input neurons, several internal (hidden) layers, and output neurons. Each 

neuron in a layer is fully connected to all neurons in the previous and next layers. Figure 10 shows 

a network architecture with two hidden layers. The way all sequential layers are organized defines 

the architecture of the network. Increasing the number of layers increases the depth of the 

network. Expanded versions of ANNs containing more hidden layers are called Deep Neural 

Networks (DNN).43  

During learning, the input passes through the network, 

and the network’s predicted outcome label is compared 

with the annotated reference label using a pre-defined 

loss function. This is called the forward pass. The 

computed error is then backpropagated through the 

network to adjust all the weights and biases. Repeated 

iterations of this forward and backpropagation to 

optimize these parameters produce a network that can 

hopefully accurately make predictions. The network is a 

predictive function that is comprised of many non-linear 

neurons with learnable weights and biases.53   

The main benefit of DNNs is that they do not need manually defined features. They can learn 

features from large quantities of data with a high level of abstractness. They have proven the 

ability to solve numerous complex problems, including for example speech recognition.54 Although 

DNNs can be very effective, they are not sufficient for input data containing spatial information, 

because the network takes the vectorized version of the input. That is why for image processing, 

convolutional neural networks (CNNs) are the solution because of the use of convolutional filters. 

It may sound counterintuitive, but the hardest problems for AI to solve are often the easiest for 

humans. Humans can easily solve these problems by intuition but can hardly describe how they 

      Figure 10 A 4-layered ANN architecture 43 
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know what they see. CNN’s are inspired by the structure of the visual cortex in the brain.55 They 

make it possible to extract abstract features from images and make it possible to solve image 

classification problems. Image classification forms the basis for many other computer vision tasks, 

such as localization, detection, and segmentation.55 The hierarchy of all these techniques is 

visualized in Figure 8.  

3.2 Convolutional Neural Networks 

CNN’s have dramatically improved the results of image recognition tasks. Pixel values in medical 

images contain spatial information. A CNN aims to reduce the image into a simpler form without 

losing features because features are essential to achieve an accurate prediction. A CNN consists 

of three main layer types: convolutional layers, pooling layers, and fully connected layers. 43 

Convolutional layer 

A CNN can learn the spatial dependencies in an image through the use of convolutional filters. 

These filters work as operators and extract features of the input images. In this context, these 

filters are usually called kernels. A kernel is a 2D convolution matrix which, depending on the 

parameter values, filters the input image in different ways. During the forward pass, many different 

filters convolve through the entire image by shifting with a certain stride. The result is a feature 

map that gives the responses of that filter at every position of the image. These filters have the 

same depth as the input image dimension. In color images, this means the network has to learn 

multi-channel filters.56 

Activation layer 

All learnable convolution layers are often followed by an activation function that is usually a ReLu 

function. This is a nonlinear function that outputs the input only if it’s positive.57 These nonlinear 

elements in the network are needed because class information is usually hidden in entangled 

distributions of the image data. The nonlinearity of the mapping of the network is needed to allow 

disentangling these distributions.  

When the desired output is a probability, the sigmoid function is the right choice. The function 

exists between 0 and 1. For a binary classification problem, the output layer consists of one neuron 

with a sigmoid activation function. The threshold is set at 0.5. For multiclass classification, the 

softmax function is preferable. This function outputs the relative probabilities of each class, which 

all sum up to 1 (Figure 11).57 
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Figure 11 Illustration of non-linear activation functions43 

Pooling layer 

The function of the pooling layer is to reduce 

the spatial size of the input features to 

represent the information in the input data in 

a more compact way. It extracts the dominant 

features from the image by simplifying the 

output. Two common types are max pooling 

and average pooling. In Figure 12, max 

pooling is visualized. It uses the maximum 

value in the feature map.58 Therefore, it 

lowers the resolution and reduces overfitting 

to the specific input image. Adding more convolutional and pooling layers may improve capturing 

low-level features but require more computational power.56  

Fully connected layer 

The fully connected layer combines the outputs of the previous layers to estimate the class 

probability scores. If multidimensional data is used, as with color images, a flatten layer is used. 

The flatten layer transforms the three-dimensional image to the fully connected layer. An overview 

of all described layers is given in the figure below.  

 

Figure 13 Overview CNN architecture 59 

                             Figure 12 Max pooling 56 
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3.3 Hyperparameters: Optimization  

An overview of a training process is given in Figure 14. The weights and biases of a network are 

trainable parameters which means that they can be optimized using the training set. Apart from 

these, there are also so-called hyperparameters that cannot be optimized in such an optimization 

session. There are different categories of hyperparameters:  

• The parameters of the optimization process. For instance, in a gradient descent approach 

for optimization, there is a parameter called 'learning rate'.  

• The parameters determining the network configuration. Examples are the number of filters 

per layer, the filter sizes, the number of hidden layers, etc. 

• Additional parameters for tweaking the training set and the network. For instance, 

parameters for data augmentation. 

For the selection of these hyperparameters, a second dataset is needed, called the validation set.  

 

 

Figure 14 Training process in DL algorithms38 

Loss function 

The learning step is performed by minimizing a certain loss function. When input data passes 

through the network and the network’s outcome is compared to the ground truth label, the error 

is quantified using a loss function that is computed over the full dataset or a subset of the dataset. 

As such, this loss function defines an error surface in a multi-dimensional landscape that is formed 

by the weights and biases. These weights and biases are adjusted in the opposite direction to the 

gradient of the loss function. This is the gradient descent approach. To optimize performance, 

the lowest point in the error surface has to be found.  

Several loss functions can be used, but cross-entropy loss has shown to converge faster and better 

than others.45 With this function, the difference between two probability distributions is measured. 

It tries to maximize the log-likelihood for both classes. If there are more than two classes, the 

loss is calculated separately for each class label and the results are summed.60 When a class 

imbalance exists, extra weight must be given to the class that is less represented in the dataset. 

The last layer of a network consists of a softmax layer which holds as many neurons as that there 

are classes. Each class is associated with one of these neurons, and for each class, the associated 

neuron calculates a "probability" value between 0 and 1. In the ideally performing network, all 
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neurons would give an output of 0 except the one associated with the ground truth class. This 

one would give 1. In that case, the contribution of this data item to the loss function would be 

zero. A network, which is completely indecisive, that is, all neuron outputs are equal, would have 

a cross-entropy loss of log2(N), where N is the number of classes. For instance, in an 8-class 

problem, an indecisive network would have a loss of 3 as 23=8.   

Optimization algorithm 

To learn the weights and biases during training, an optimization algorithm must be chosen. In the 

gradient descent method, already mentioned above, the weights and biases are updated by 

computing the gradient vector of the loss function. Gradient descent is the most common method 

to optimize the network. Three variants are batch gradient descent, stochastic gradient descent 

(SGD), and mini-batch gradient descent.61 SGD performs the computations on a small subset of 

the data instead of the whole dataset. This reduces the computational power required. Another 

popular algorithm that was proposed in 2015 is the Adaptive Moment Estimation (Adam). This 

algorithm is also based on gradient descent, but it computes individual adaptive learning rates for 

different parameters. It is supposed to be faster and more reliable reaching a global minimum.62 

Although Adam is now often the default optimization algorithm, an argument is that SGD 

generalizes better and results in better performance.6364 

Learning rate and batch size  

The magnitude of the adjustments in the parameters in each iteration is determined by the 

learning rate. Setting a small learning rate implies that minimizing the loss function takes a long 

time. Setting a learning rate that is too large results in too much change in response to the loss 

function. Therefore, it results in an unstable training process. To pass the entire dataset through 

the network once is called an epoch. The number of training samples that are run through the 

network for one training step is called the batch size. Setting a higher batch size means processing 

more training instances in each iteration, resulting in a faster training process. The batch size 

influences the stability of training and the generalization performance of the model. The learning 

rate, number of epochs, and batch size are hyperparameters that have to be optimized by trial 

and error, by testing the performance during the training process.43  

3.4 Network optimization 

The aim is to train a network that generalizes well from the training data to new, unseen examples. 

The dataset has to be split into a training set, a validation set, and a test set. During the training 

process, the validation set is used to give an independent estimate of the model's performance. 

By using a validation set during training, overfitting of the models can be detected. This makes 

it possible to tune the hyperparameters. The test set is another independent dataset, that is used 

to evaluate the model's performance after the training process. A commonly used split ratio is 

70% for training, 10% for validation during training, and 20% for testing. To train a good model, 

a large dataset is needed that contains many examples of each class. It is also important to ensure 

the same class distribution in the training, validation, and test set, to correctly interpret the 

model's performance. When a model is trained too long on the training data, it learns the details 

and noise of this training data and can therefore not make accurate predictions on new data. 
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Overfitting means the network fits too well on the training data.65 Overfitting on the training set 

is a common problem in DL. Several methods to reduce overfitting are elaborated below.   

 

Figure 15 Visualization over- and underfitting of a model65 

Train your model on more data 

In medical imaging, the development of DL networks is often a challenge because highly complex 

features must be recognized in data with few variations. Variations are needed to ensure 

generalization. The most straightforward way to reduce overfitting is to add more data with more 

variability. Because the creation of correctly labeled, large medical datasets often require much 

time, work, and money, this is a big limitation. To address this issue, data augmentation can be 

used to artificially enlarge the dataset. Examples of augmentation strategies are horizontal flips, 

random crops, principal component analysis, the addition of Gaussian noise, scaling, random 

rotation, and shears. With these strategies, the variability is increased by looking at the same 

data but from different perspectives. Another rather simple way to improve the training process 

is to shuffle the training samples, ensuring the successive batches contain different classes. This 

improves the variation in each batch, making it less sensitive to overfitting. Another method to 

reduce overfitting is to repeat the whole training process multiple times, each time letting other 

parts of the dataset be the test set. This is computationally more expensive but ensures that all 

data is eventually used for training. This is called cross-validation.66  

Change the complexity of the model: Make your model simpler 

Adding more layers to a deep neural network can make the model too complex and more prone 

to overfit. A way to reduce overfitting is to remove hidden layers and neurons in the fully 

connected layer.66  

Stop the learning process 

After a certain number of epochs, the validation loss stops decreasing and reaches a plateau. It 

can be beneficial to reduce the learning rate with a certain factor after the learning reaches this 

plateau. Reducing the learning rate and stopping the learning process when the validation loss 

stops decreasing helps to improve the model's performance.66  

Regularization 

Regularization is a technique that prevents a model to become too complex. In other words, it 

forces the model to become simpler. Examples are L1 and L2 regularization and using dropouts. 

In regularization, we simply add a term to the loss function that penalizes for large weights. The 

most common one is ‘L2 regularization. In L2 regularization the complexity of the model is 
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minimized by summing the squares of all weights. Small weights will therefore have little impact 

and large weights will be more important. Some weights will be close to zero and therefore reduce 

the impact of some layers. This makes the network less complex and reduces overfitting.67  

In a publication of Hinton and Srivastava in 201468 a method called ‘dropout’ was proposed to 

address the problem of overfitting. The idea is to randomly select hidden neurons in each iteration 

and deactivate them. By deactivating them they do not contribute to the learning step. It slows 

down the converge of the learning process, but reduces overfitting, and ensures a more robust 

approach.   

3.5 Performance evaluation 

To be able to improve the performance of the network and determine the feasibility of the model 

in clinical practice, appropriate metrics have to be chosen. These are often statistical outputs. 

During training, it is useful to plot the training and validation loss as well as the accuracy. In DL, 

commonly used metrics are accuracy, precision, and recall.43 The accuracy is the percentage of 

frames that are correctly recognized by the network and is the most obvious metric. This metric 

works well for a balanced dataset. For an unbalanced dataset, as is in many real-life problems, 

the precision or recall per class is a better metric. When the most important goal is to minimize 

the false negatives, the F1-score is a good metric because it gives a better measure of the 

incorrectly classified samples than accuracy does. To get a good view of the model's performance 

and what kind of errors it gives, a confusion matrix is created. A confusion matrix is a table that 

contains the counts of correct assignments per class, and the counts of incorrect assignments per 

class. The columns correspond to predicted classes. The rows correspond to true classes. A cell 

in the table at position (r,c) holds the count that class c was assigned whereas the true class was 

r. For a binary classification problem, the receiver operating characteristic curve (ROC curve) 

visualizes the performance at a certain trade-off between sensitivity and 1-specificity.69 The Area 

Under the ROC curve (AUC) gives a good summary of the performance of the test. An AUC of 

0 is the result of a complete inaccurate test and an AUC of 1 indicates a perfectly accurate test. 

A value of 0.5 means the network cannot discriminate between classes. A higher AUC value means 

better clinical applicability of the network.69 All metrics are elaborated below.70  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 = 

The percentage of correctly assigned cases with relation to the set of all cases. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 =  

 The percentage of real positive assigned cases with relation to the set of all positive assigned 

cases. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 = 

The percentage of real positive assigned cases with relation to the set of all positive cases. This 

is also called the sensitivity 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙∗2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
=  

𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

 = 

The harmonic mean of precision and recall 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 = 

The percentage of real negative assigned cases with relation to the set of all negative cases 

Transfer Learning 

Training a DNN from scratch is very hard because the model contains many unknowns. Much 

labeled data and high computational power is needed to optimize such models. Transfer learning 

approaches give the possibility to get around this problem and have gained huge popularity in 

medical imaging.56 A CNN architecture that was trained on a large natural image dataset such as 

ImageNet is reused, together with corresponding pre-trained weights.71 ImageNet is an image 

database containing millions of annotated images and is widely used as a benchmark in image 

classification and object detection. It would be ideal to have a dataset of such magnitude for each 

domain, but that is difficult considering the time, effort, and availability of specific data. In transfer 

learning, we use the same model architecture that was used to train on a large dataset without 

the last layer. The pretrained weights of this model are transferred and used to extract features 

of the data for the particular task.(Figure 16) It is also an option to retrain some of the layers 

and freeze (fixate) the rest of the layers. Transfer learning speeds up the process of training. 

Some popular available models include VGG-16, Inception V3 and ResNet-50.71 

 

 

Figure 16 Transfer learning with pre-trained DL models as feature extractors 56 

 

One of the most groundbreaking developments in DL is the Residual Network (ResNet), proposed 

by Kaiming He et al in 2015.72 It is by far the state-of-the-art image classification neural network. 

To avoid overfitting, it has become common practice to go deeper and deeper in CNN 

architecture. To update the weights, we need backpropagation. When the network is deeper, this 

makes it harder to train because of the vanishing gradient problem. While reaching the earlier 

layers in backpropagation this will result in extremely small values. A way to solve this problem is 

the residual learning framework. This framework makes it easier to optimize. It uses shortcut 

connections (Figure 17). Instead of using only stacked convolutional layers, the original input is 

also added to the output of a convolutional block. Because some layers are skipped, the value will 

not be so small when reaching the earlier layers. This way these convolutional blocks can improve 
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the output of the previous block, instead of directly having to fit a desired mapping.72 The ResNet 

comes in a different number of layers, for example, Resnet18 and Resnet50. Resnet18 is a version 

that uses 18 neural network layers.  

 

Figure 17 Residual learning: a building block72 
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4. Methods 

This study aims to predict intraoperative difficulty by classifying and evaluating intraoperative 

images in the first phase of the surgery. In this section the methods are discussed. First, the 

selection of data is presented. Following, an explanation of the start of the surgery is provided. 

Thirdly, the label definitions based on the Nassar scale are explained and, lastly, an explanation 

about the experimental design and training is described. 

4.1 Data selection 

A total of 93 LC’s recorded in the MMC in Amersfoort between 01-01-2018 to 10-10-2021 were 

selected to create the dataset. The patients underwent a classical LC, whose videos were recorded. 

The videos were already collected in a study protocol for previous research carried out by Maartje 

Gerkema73, which was approved by the research committee in 2020. A signed consent form was 

not needed. This protocol permits the use of videos in an anonymous way for similar studies in 

the same center. All videos are strictly anonymous. The videos were already downloaded from the 

Electronic Health Record. A total of 257 videos was available at the start of this research. The 

first step was to exclude the videos that did not contain the first phase of the surgery. Some 

videos had to be excluded because of bad quality. Due to lack of time, not all suitable videos were 

used. The next step was to cut the videos into sub videos containing only the first phase of the 

surgery because the aim is to classify difficulty at this moment. An explanation of how this was 

done is elaborated below. The sub videos were converted to frames at one frame per second using 

a python script. This resulted in 93 folders, one for each video, containing the frames. This 

resulted in a total of 28.753 frames (Figure 24). The frames were labeled and checked manually. 

The labels were provided by the researcher, supervised by a junior surgeon and an expert surgeon. 

4.2 Start of the surgery 

To predict surgical difficulty at the beginning of the surgery, only this part should be used to train 

the network. The prediction should be made when the condition of the gallbladder can be 

examined. This is the moment when the gallbladder is retracted. Before this moment, abdominal 

access has to be established by inserting the trocars and tools. Afterwards, the abdomen is first 

inspected and sometimes some abdominal adhesions have to be removed to clear the way for the 

tools to reach the gallbladder. Here we define the start of the surgery as the moment when the 

fundus of the gallbladder is grasped. Therefore, this part of the video was used to train the 

classification model. Timestamps were noted for each video to cut the videos into sub videos. 

(Table 2)The Nassar scale scores on the presentation of the Gallbladder, Adhesions, and Cystic 

Pedicle. In easy cases, the gallbladder is visible from the start, there are little to no adhesions and 

the surgeon can immediately proceed to the next phase: dissection of the hepatocystic triangle. 

For dissection, the surgeon zooms in on the cystic pedicle, where the ductus and artery are 

present. Because from this point the dissection starts, the second timestamp should be noted 

here. In many cases, adhesions first have to be removed to clear the way and visualize the cystic 

pedicle. In some cases, the gallbladder is partly or completely obscured and can therefore be 

scored at the first ‘sight’ on the gallbladder. This is also true for the cystic pedicle when there 

are many adhesions present.  
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Table 2 Timestamps definitions 

Timestamp Moment (description) 

T1 Fundus of the gallbladder is 

grasped/Start removing 

adhesions 

T2 All adhesions are removed/Start 

of dissection (often with a 

hook) 

 

For easy cases, the timestamps are easily set because there is a clear transition from the first 

phase to the next phase. In difficult cases, for example with severe cholecystitis or dense adhesions, 

the transition is more gradual, and therefore it is more difficult to determine the exact moment. 

In severe cholecystitis cases, it is sometimes hard to see when the opening of the peritoneum 

starts when the gallbladder is completely obscured. This starting phase of the surgery in which 

preparations are made to be able to start dissection of the hepatocystic triangle, from now forth 

will be called ‘phase 1’. Examples of the start and end of phase 1 are given in the figures below. 

(Figure 18-21) 

 

Figure 18, T1: Clear view on gallbladder             Figure 19, T1: Gallbladder obscured by adhesions 

 

 

Figure 20, T2: Transition easy recognizable         Figure 21, T2: Transition is unclear 
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All 93 were cut into sub videos using a python script. The duration of the sub videos varied from 

24 seconds to 26 minutes and 40 seconds. To determine how the difficulty score classified in 

phase 1 correlates with the total surgery time, the total duration of each video was also noted. A 

part of the 93 videos included in the dataset was incomplete because the beginning was missing. 

On average, establishing access takes 141s (231s). This was calculated by taking the mean of all 

videos that do contain this part. The average time for establishing access was added to the total 

duration for the videos in which this part was missing. The mean and median of the durations are 

given in Table 3. The distribution is given in Figures 22 and 23. The time reserved for a LC is 

estimated at 45 minutes in Meander Medical Center.  

 

 

Table 3 Duration of the videos 

Phase Duration (s) median 

Adhesions 

lysis 

309 (401) 181 

Total surgery 2328 (1205) 2214 

 

 

 

 

Figure 22 Distribution of duration of phase 1                 Figure 23 Distribution of duration of total surgery 
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Figure 24 Dataset creation 

4.3 From Nassar to label definitions 

The goal is to not only predict the overall grade for difficulty but also give the reason why it is 

difficult. The Nassar scale was used as a starting point to define the labels. This scale grades 

operative findings of the gallbladder, cystic pedicle, and associated adhesions from grades 1 to 4. 

Therefore, at the start of the labeling process, each laparoscopic image was given three separate 

labels for gallbladder, adhesions, and cystic Pedicle, ranging from grade 1 to 4. During the labeling 

process, some adjustments were made to the original definitions of the grades. This was done to 

make the results more clinically relevant.     

From 4 to 3 grades 

To make the learning task a little less complicated, it was decided to decrease the Nassar scale 

to three grades instead of four. After examing a random set of videos, it was noticed that grades 

three and four as described in the Nassar scale, often resemble each other. When the gallbladder 

is completely obscured, it takes little time to visualize some part of the gallbladder, therefore 

falling into grade three already. For this reason, grades 3 and 4 are taken together as grade 3. 

 

Adjustments to Adhesions grade definitions 

According to the Nassar scale, adhesions are described as ‘simple up to the neck’ (grade 1), 

‘simple up to the body’ (grade 2), ‘dense up to the fundus’ (grade 3), and ‘dense, wrapping the 
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gallbladder’ (grade 4). They are divided based on the severity and location. During the labeling 

process, it was noted that some adhesions were simple but up to the fundus, or really dense but 

only up to the body. In consultation with an experienced surgeon, it was decided to describe the 

grade definitions according to the difficulty to remove them. The location of the adhesions is less 

relevant when looking at difficulty. Therefore, a distinction is made between ‘anatomical’ (simple) 

adhesions and ‘pathological’ (dense) adhesions. In a few videos in the dataset, this resulted in a 

different grade, because there were pathological adhesions up to the body, or simple adhesions 

up to the fundus of the gallbladder.  

Cystic Pedicle 

To be able to determine the grade for ‘cystic pedicle’, the adhesions should be removed, and the 

camera should be zoomed in for a proper view. Because the endpoint of phase 1 is at the start 

of the dissection, in most sub videos this results in only seeing the cystic pedicle for a few seconds. 

The presentation of the cystic pedicle is more important in the next phase. This resulted in very 

few frames labeled for the cystic pedicle.  

Furthermore, after labeling the first 40 videos, it was noted that almost all videos in which 

‘gallbladder’ and ‘adhesions’ were labeled with grade 1, the ‘cystic pedicle’ had to be labeled with 

grade 2. Grade 2 is defined as ‘fat laden’, according to the Nassar scale. After 40 videos, it was 

noted that in almost all cases the cystic pedicle is mildly fat-laden. This would result in all these 

videos getting an overall difficulty grade of 2. When ‘gallbladder’ and/or ‘adhesions’ were labeled 

with grade 3, the label for ‘cystic pedicle’ was always also grade 3 or could not yet be determined 

because it was not visible. Therefore, the label for Cystic Pedicle does not add any information in 

these cases.  

Mainly because the presentation of the cystic pedicle is more important in phase 2 and these 

images are not included in the dataset, it was decided to leave out this label in this dataset.   

Grade definitions 

Taking all the above-mentioned into account, each laparoscopic image was labeled for 

‘gallbladder’, and ‘adhesions’, grade 1-3. In the sub videos, there were also moments when neither 

the gallbladder nor adhesions were clearly visible and could therefore not be given a label. In these 

frames, the gallbladder and/or adhesions were given the label ‘0’. Only images from within the 

body were given a label 0-4. All images from outside the body are not included in the dataset and 

were given the label ‘excl’, to be removed later on. When the gallbladder is completely obscured 

with adhesions, ‘gallbladder’ is labeled with ‘0’. If the gallbladder was disguised by tools, smoke, 

or other anatomical tissue, the frame was also labeled with ‘0’. Only when the gallbladder is 

visible, it is given a label (1-3). On average 91,57% of all frames contained a good view of the 

gallbladder and/or adhesions. The grade definitions are given in Table 4. Figure 25 shows an 

example of the proposed dataset with the assigned labels.  
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Table 4 Label definitions 

Label Gallbladder Adhesions 

1 Floppy, thin, gray/pink, fat-

laden 

No adhesions or simple up to 

the neck/Hartmanns pouch 

2 Mucocele, hydropic or packed 

with big stones 

 

Simple/anatomical adhesions 

3 Cholecystitis, gangrene, 

empyema, mass 

Pathological/dense 

adhesions/completely 

obscured 

 

 

Gallbladder 

 

Gallbladder: Grade 1                            Gallbladder: Grade 2                     Gallbladder: Grade 3 

Adhesions 

 

Adhesions: Grade 1                         Adhesions: Grade 2                      Adhesions: Grade 3 

Figure 25 Examples of the dataset 
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4.4 Dataset 

For the label ‘gallbladder’, each video only contained one grade (1, 2, or 3). For ‘adhesions’, some 

videos contained two different labels, because for example after the removal of some adhesions, 

the grade went from 2 to 1. The highest grade for either gallbladder or adhesions defines the 

overall grade for difficulty. Table 5 shows an overview of the number of videos that contain grade 

1, 2, and 3.  

Table 5 Number of videos for each grade 

 Grade 1 Grade 2 Grade 3 Total 

Gallbladder 58 15 20 93 

Adhesions 56 22 15 93 

Overall Grade 44 23 26 93 

 

Looking at the distribution of videos and the grades, it would seem like there is more data available 

for grade 1 than grade 3. There are indeed more easy than difficult LC’s in the dataset, and 

therefore there is more variability in the data in grade 1 than in grade 3. But videos labeled with 

Grade 3 are longer in duration (Table 6), therefore resulting in more frames (Table 7). The total 

number of frames is not the same for gallbladder and adhesions because in some frames either 

the gallbladder or adhesions label was ‘0’. It has to be mentioned that this dataset is not 

necessarily an accurate representation of the real-life distribution in easy or difficult surgeries. 

During the labeling process, more cholecystitis cases were added to the dataset on purpose. 

 

Table 6 Average duration (s) per grade 

 Grade 1 Grade 2 Grade 3 

Adhesions lysis 113 (72) 332 (199) 622 (615) 

Gallbladder 150 (108) 473 (331) 648 (666) 

Adhesions 164 (171) 368 (248) 764 (734) 

Total surgery 1857 (934) 2317 (1052) 3123 (1352) 

Gallbladder 1864 (896) 2831 (961) 3300 (1431) 

Adhesions 2092 (984) 2302 (1056) 3295 (1745) 

 

 

Table 7 Number of frames in dataset per Grade 

 Grade 1 Grade 2 Grade 3 Total 

Gallbladder 7841 

(32,56%) 

6256 

(25,98%) 

9986 

(41,46%) 

24.083 

(100%) 

Adhesions 6583 

(28,15%) 

6652 

(28,45%) 

10.149 

(43,40%) 

23.384 

(100%) 

Overall Grade 4434 

(16,74%) 

7076 

(26,72%) 

14973 

(56,54%) 

26.483 

(100%) 
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To train the network, the dataset was divided into a train, validation, and test set. Because of 

the way the data was structured, it was not possible to use a ‘random split’ in the dataset. The 

dataset consisted of 93 folders containing frames, one for each video. Frames from one video 

should only be used in either the train, validation, or test set. A random split would result in 

unequal distributions in the different sets. Therefore, the data was split manually to make sets 

with the same distributions. The goal was to split the data in such a way that the train set 

contained 70%, the validation set 10% and the test set 20%. The results of the manual splits are 

given in Figure 26. 

 

 

Figure 26 Distribution of grades in the train, validation, and test sets 

4.5 Experimental setup 

Several open-source frameworks and libraries are available that contain the complex mathematical 

functions and training algorithms required for developing DL models. For this research, the python 

library ‘Pytorch’ was used in Python 3.8 to train, test, and evaluate the networks.  

The ResNet architecture was used as a backbone for the model. Both ResNet50 and ResNet18 

were used for training. The network and the pre-trained weights are publicly available. The labeled 

frames serve as the input to the network. All frames were stored in PNG format in 93 separate 

folders. The images with the label ‘excl’ were excluded because these were out of body images. 

Also, all images with the label ‘0’ were removed because the gallbladder or adhesions were not 

visible in these images. First, all images were resized to 256x256 and then center cropped to 

224x224. This is the default input size that a ResNet takes. Then all images were normalized. 

Therefore, the mean and standard deviation was calculated for each color channel in the images 

in the dataset.  
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Depending on the type of classification task, the output layer of the model was adjusted. For 

binary classification, the output layer was set to 1, followed by a sigmoid activation function. The 

loss function that was used was the binary cross-entropy loss function. The sigmoid activation 

function squashes the output in the range (0,1). For multiclass classification, the output layer 

was set to 3, followed by a softmax activation function. Here, the cross-entropy loss was used. 

The softmax activation function squashes the output in the range (0,1) and all the resulting 

elements add up to 1. Figure 27 gives an overview of the networks.  

 

Figure 27 Network structure 

Because the classes are not equally distributed, the network may tend to get biased towards the 

majority class. With class weighting, we can consider this uneven distribution of the classes. 

During training, we prioritize the minority class by giving a higher-class weight. The penalty will 

be higher if the minority class is misclassified.  Using the class frequencies, a weight was given to 

each class in the calculation of the loss function. The calculation of the class weight is as follows: 

𝑐𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 = 1 −
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

4.6 Training 

Separate 3-class (or 3-grade) networks were trained for the classification of the gallbladder and 

the adhesions. In addition, to investigate if it is possible to recognize the easy LC’s or for example 

cholecystitis cases, binary classification networks were trained. For these experiments, at first, 

the labels 2 and 3 were taken together and classified against label 1. In other words, ‘easy’ versus 

‘not-easy’ cases. Three separate networks were trained. One with the ‘Gallbladder’ labels, one 

with the ‘Adhesions’ labels, and one with the ‘Overall Grade’ labels. The ‘Overall Grade’ labels 
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contain the maximum value of Gallbladder and Adhesions. For the next experiments, the labels 1 

and 2 were taken together and classified against label 3. In other words, ‘difficult’ versus ‘not-

difficult’ cases. Three separate networks were trained. One with the ‘Gallbladder’ labels, one with 

the ‘Adhesions’ labels, and one with the ‘Overall Grade’ labels. The ‘Overall Grade’ labels contain 

the maximum value of Gallbladder and Adhesions. Table 8 provides an overview of all classification 

tasks.  

Table 8 Overview different classification tasks 

Classification 

task 

Gallbladder Adhesions Overall grade 

labels 

3-grades 1-2-3 1-2-3  

2-grades 1 – 2&3 1 – 2&3 1 – 2&3 

2-grades 1&2 – 3 1&2 - 3 1&2 - 3 

 

An Ubuntu PC with a GPU (NVidea) was used for training. The Docker platform was used to 

create a Docker image, providing a Python 3 environment and the selected packages. To train 

the network for 30 epochs with the entire train set took approximately 2.5 hours on the GPU.  

During training, the loss and accuracy of both the training and validation set are monitored. The 

version of the model with the highest validation accuracy is saved during training. The proposed 

classification task is assessed by measuring the accuracy, precision, recall, and the F1-score. In 

addition, the confusion matrix and the ROC curve are calculated.  

For the results to be clinically applicable, difficulty prediction has to be done after phase 1 of the 

surgery. Therefore, the percentage of correctly identified frames per test video was calculated for 

the best performing networks. If the majority of the frames were correctly identified, the video 

can be classified correctly. 

Hyperparameter optimization 

To be able to track the training process, evaluate the performance of the network, and visualize 

the results, the machine learning platform ‘Weights & Biases’ was used.74 In the first experiments, 

the Adam optimizer was compared with the SGD optimizer. SGD showed evident better results, 

so we continued using SGD. ‘Weights and Biases’ allows for so-called ‘sweeps’, to optimize the 

hyperparameters. A sweep is a combination of a strategy for trying out hyperparameter values 

and code that evaluates them. That strategy could be as simple as trying every option or could 

be something complicated and optimal like combining bayesian and early stopping. Trying every 

single option can be computationally very costly. An easy but surprisingly effective method is 

‘random search’. In every sweep, a random value in a certain distribution is picked for each 

hyperparameter. The sweep that was configured for all experiments is shown in Table 9. The 

defined method was ‘random search’, meaning that every new combination is set at random 

according to the provided distribution.  
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Table 9 Sweep configuration 

Method Random 

Metric Goal: minimize loss 

Parameters: Value(s): 

Architecture Resnet18 

 Resnet50 

Batch size 16, 32 

Classes 3 

Dropout 0, 0.2, 0.4 

Epochs 50 

Learning rate Distribution:uniform 

Max: 0.0001 

Min: 1e-06 

Loss function BCEWithLogitsLoss 

Optimizer SGD 

Weight decay 0, 0.0001 

 

Prevent overfitting 

After training all networks described in Table 9, we continued with the best performing network 

to improve the result. A big issue during training is overfitting on the train set. To reduce 

overfitting, different experiments were conducted. The network was trained again with 

adjustments such as data augmentation, early stopping, using dropouts, L2 regularization, and 

reducing the learning rate when it reaches a plateau.  
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5. Results 

This chapter shows the results of the conducted experiments. First, the results for the multiclass 

classification networks are presented, followed by the results of the binary classification networks. 

In part 5.3 the number of frames that are correctly classified per video is visualized for the best 

performing networks. After these experiments, we proceeded with the best results from the binary 

gallbladder classification network.  

5.1 Multiclass classification 

Two separate networks were trained. One with the ‘gallbladder’ labels one with the ‘adhesions’ 

labels. The sweep configuration can be found in Table 9 in chapter 3. Figure 28 gives an example 

of how all hyperparameters configurations result in a certain validation accuracy. In this particular 

sweep, in which the network was trained for the gallbladder grade classification, the highest 

validation accuracy was reached by using a Resnet18 as a backbone network, with a batch size 

of 32, a learning rate of 0.00003346, a dropout of 0.4, and weight decay set at 0.0001. From all 

training sessions in the sweeps, the ones that resulted in the highest test accuracy are presented 

in the next sections. The networks that were trained with a batch size of 32 needed half the 

number of training steps than those with a batch size of 16. In the section below, the gallbladder 

3- class classification and adhesions 3-class classification results are presented. 

 

 

Figure 28 Hyperparameter sweep 
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Gallbladder 3-class classification 

Figure 29 shows the accuracy and loss during training of the gallbladder 3-grade network. It is 

seen that the network overfits on the train set after a few epochs. The hyperparameter 

configuration used in this training session is given in Table 11. The confusion matrix of the test 

set is given in Figure 30. Table 10 shows the test results of the trained network. 

 

Figure 29 Gallbladder 3-grade, best result from sweep: accuracy and loss during training 

 

 

Figure 30 Confusion matrix 
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Adhesions 3-class classification 

Figure 31 shows the accuracy and loss during training of the adhesions 3-grade network. It is seen 

that the network overfits on the train set after a few epochs. The validation accuracy does not 

increase effectively. The hyperparameter configuration used in this training session is given in 

Table 11. The confusion matrix of the test set is given in Figure 32. It can be seen that many 

test frames have predicted label 1 where it should be 2 or 3. Table 10 shows the test results of 

the trained network.  

 

Figure 31 Adhesions 3-grade, best result from sweep: accuracy and loss during training 

 

 

Figure 32 Confusion matrix 
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Table 10 Evaluation Multiclass Networks 

 Grade Accuracy Precision Recall F1 

 

Gallbladder 

1  

0.74 

0.62 0.9  

0.68 2 0.59 0.33 

3 0.93 0.84 

 

Adhesions 

1  

0.5 

0.38 0.77  

0.42 2 0.26 0.04 

3 0.81 0.58 

 Unweighted average   

 Gallbladder 0.71 0.69 

 Adhesions 0.50 0.56 

 

The test results are presented in Table 10. The network that was trained to classify gallbladder 

performs better (accuracy 74%) than the network trained to classify adhesions (50%). The 

gallbladder classification network has a high sensitivity (or recall) for grade 1 and grade 3, but 

not for grade 2 (33%).  

Table 11 Hyperparameter configuration of the best performing networks 

 Gallbladder Adhesions 

Architecture Resnet18 Resnet50 

Classes 3 3 

Epochs 30 30 

Batch size 32 16 

Learning rate 0.00003346 0.00009184 

Dropout 0.4 0.2 

Weight decay 0.0001 0.0001 

 

 

5.2 Binary classification 

In this section the training results of six binary networks are presented. At first, the frames with 

labels 2 and 3 were taken together and distinguished from the frames with label 1 (‘easy’ versus 

‘not-easy). This was done for gallbladder, adhesions, and overall grade. For the last three 

networks, the frames with labels 1 and 2 were taken together and distinguished from the frames 

with label 3 (‘difficult’ versus ‘not-difficult’). The best training results of the hyperparameter 

sweeps are visualized in accuracy and loss plots and are presented below. First, gallbladder 2-

grade classification, followed by adhesions 2- grade classification and last overall 2-grade 

classification. The sweep configuration can be found in Table 9 in chapter 3. The networks that 

were trained with a batch size of 32 needed half the number of training steps as those with a 

batch size of 16.  
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Gallbladder 2-class classification ‘easy’ versus ‘not-easy’  

The training results of the binary gallbladder classification network are shown in Figure 34. The 

labels 1 and 2-3 were used to train the network to recognize gallbladder grade 1, or in other 

words, to recognize a normal gallbladder. As can be seen in Figure 33, the network overfits on 

the train set after a few epochs. The test results are shown in the confusion matrix and ROC 

curve in Figure 34 and 35. Table 12 shows the test results of the trained network. The 

combination of hyperparameters that was used for this training is given in table 13.  

 

Figure 33 Gallbladder 2-grade (1 versus not-1), best result from sweep: accuracy and loss during training 

 

 

Figure 34 Confusion matrix    Figure 35 ROC curve 
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Adhesions 2-class classification ‘easy’ versus ‘not-easy’ 

The training results of the binary gallbladder classification network are shown in Figure 36. The 

labels 1 and 2-3 were used to train the network to recognize gallbladder grade 1, or in other 

words, to recognize a normal gallbladder. As can be seen the network overfits on the train set 

after a few epochs. The test results are shown in the confusion matrix and ROC curve in Figure 

37 and 38. Table 12 shows the test results of the trained network. The combination of 

hyperparameters that was used for this training is given in table 13.  

 

 

Figure 36 Adhesions 2-grade (1 versus not-1), best result from sweep: accuracy and loss during training 

 

 

Figure 37 Confusion matrix    Figure 38 ROC curve 
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Overall Grade 2-class classification ‘easy’ versus ‘not-easy’ 

The training results of the binary gallbladder classification network are shown in Figure 39. The 

labels 1 and 2-3 were used to train the network to recognize gallbladder grade 1, or in other 

words, to recognize a normal gallbladder. As can be seen the network overfits on the train set 

after a few epochs. The test results are shown in the confusion matrix and ROC curve in Figure 

40 and 41. Table 12 shows the test results of the trained network. The combination of 

hyperparameters that was used for this training is given in table 13.  

 

Figure 39 Overall Grade 2-grade (1 versus not-1), best result from sweep: accuracy and loss during training 

 

 

Figure 40 Confusion matrix    Figure 41 ROC curve 
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Table 12 Evaluation Binary classification Networks 1 vs 2&3 

 Accuracy Precision Recall F1 

G-binary 0.83 0.96 0.78 0.86 

A-binary 0.49 0.71 0.43 0.53 

GA-binary 0.87 0.92 0.93 0.93 

 

As can be seen, the network that was trained on the overall grade gives the highest accuracy on 

the test set. This means that the network is capable of recognizing the easy cases (gallbladder 

label 1 and adhesions label 1) with an accuracy of 87%. The test results of the network trained 

for the classification of the adhesions show a low accuracy and recall.  

 

Table 13 Hyperparameter configuration of the best performing networks 

 Gallbladder Adhesions Overall 

Grade 

Architecture Resnet50 Resnet50 Resnet18 

Classes 2 2 2 

Epochs 50 50 50 

Batch size 16 16 32 

Learning rate 0.0000492 0.00007911 0.00003635 

Dropout 0.4 0 0.2 

Weight decay 0.0001 0.0001 0 
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Gallbladder 2-class classification ‘difficult’ versus ‘not-difficult’ 

In the figure below, the accuracy and loss plots of the trained network with the highest test 

accuracy are shown (Figure 42). This network was trained to recognize gallbladder grade 3, or in 

other words, to recognize cholecystitis. As can be seen the network overfits on the train set after 

a few epochs. The test results are shown in the confusion matrix and ROC curve in Figure 43 

and 44. Table 14 shows the test results of the trained network. The combination of 

hyperparameters that was used for this training is given in table 15.  

 

Figure 42 Gallbladder 2-grade (3 versus not-3), best result from sweep: accuracy and loss during training 

 

Figure 43 Confusion matrix                      Figure 44 ROC curve 
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Adhesions 2-class classification ‘difficult’ versus ‘not-difficult’ 

In the figure below, the accuracy and loss plots of the trained network with the highest test 

accuracy are shown (Figure 45). This network was trained to recognize adhesions grade 3, or in 

other words, pathological adhesions. As can be seen the network overfits on the train set after a 

few epochs. The test results are shown in the confusion matrix and ROC curve Figure 46 and 47. 

Table 14 shows the test results of the trained network. The combination of hyperparameters that 

was used for this training is given in table 15. 

 

Figure 45 Adhesions 2-grade (3 versus not-3), best result from sweep: accuracy and loss during training 

 

 

Figure 46 Confusion matrix                Figure 47 ROC curve 
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Overall Grade 2-class classification ‘difficult’ versus ‘not-difficult’ 

In the figure below, the accuracy and loss plots of the trained network with the highest test 

accuracy are shown (Figure 48). This network was trained to recognize overall grade 3, or in 

other words, to recognize cholecystitis with pathological adhesions. As can be seen the network 

overfits on the train set after a few epochs. The test results are shown in the confusion matrix 

and ROC curve in Figure 49 and 50. Table 14 shows the test results of the trained network. The 

combination of hyperparameters that was used for this training is given in table 15. 

 

Figure 48 Overall Grade 2-grade (3 versus not-3), best result from sweep: accuracy and loss during training 

 

Figure 49 Confusion matrix    Figure 50 ROC curve 
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Table 14 Evaluation Binary classification Networks 1&2 - 3 

 Accuracy Precision Recall F1 

G-binary 0.90 0.97 0.80 0.88 

A-binary 0.72 0.94 0.34 0.50 

GA-binary 0.71 0.67 0.88 0.76 

 

As can be seen, the network that was trained to recognize gallbladder grade 3 gives the highest 

accuracy on the test set. This means that the network is capable of recognizing cholecystitis with 

an accuracy of 90%. 

Table 15 Hyperparameter configuration of the best performing networks 

 Gallbladder Adhesions Overall 

Grade 

Architecture Resnet18 Resnet18 Resnet50 

Classes 2 16 2 

Epochs 30 30 30 

Batch size 16 16 16 

Learning rate 0.00009142 0.00007376 0.00008534 

Dropout 0.6 0.2 0 

Weight decay 0 0.0001 0.0001 

 

The best performing network of the previous section is the binary gallbladder classification network 

that is trained to recognize gallbladder grade 3. The evaluation of the training experiments with 

adjustments to the hyperparameters to reduce overfitting is presented in Table 16. Reducing the 

learning rate when the accuracy reaches a plateau, in combination with training for 40 epochs 

and setting dropout to 0.2 resulted in a test accuracy increase by 1%.  

Table 16 Evaluation binary gallbladder classification networks (grade 1&2 – 3) of experiments to improve 

performance 

 Accuracy Precision Recall 

Reduce 

learning rate 

on plateau, 

40 epochs, 

dropout 0.2 

0.91 0.98 0.81 

70 epochs, 

early stopping 

0.87 0.99 0.71 

Dropout 0.6 0.87 0.99 0.71 

Dropout 0.8 0.87 0.99 0.71 

Wd 0.01 

Dropout 0.2 

0.87 0.99 0.71 

Data 

augmentation 

0.89 0.99 0.75 
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5.3 Correctly identified frames per video 

In this section we will further elaborate on the best performing networks, which are: 

• Gallbladder 3 Grades: The multiclass network trained to classify the gallbladder in either 

grade 1, 2 or 3  

• Gallbladder 2 Grades: The binary network trained to recognize gallbladder grade 3 

(cholecystitis) 

• Overall grade 2 Grades: The binary network trained to recognize overall grade 1 (normal 

gallbladder without adhesions) 

Gallbladder 3 Grades 

The percentage of correctly classified frames per video in the test set is presented in Figure 51. 

When more than 50% of the frames are correctly classified the video is considered correctly 

classified. The dotted yellow line marks this threshold. This figure shows that videos with 

gallbladder grade 1 or 3 can be correctly classified. The videos with gallbladder grade 2 do not 

beat the threshold of 50%. These videos are therefore not classified correctly.  

 

Figure 51 Gallbladder 3 grades classification rate for all test videos 
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Identifying cholecystitis 

The results for this network on the test videos are given in Figure 52. In all videos, more than 

50% of the frames are correctly classified and therefore all test videos are correctly classified as 

either ‘cholecystitis’ or ‘no cholecystitis’.  

 

Figure 52 Gallbladder binary classification rate for all test videos 

Identifying easy cases 

The results for this network on the test videos are given in Figure 53. In all the videos with an 

overall grade of 2 or 3 (blue), more than 50% of the frames are correctly classified. In the videos 

with an overall grade of 1 (yellow), 4 out of 6 are correctly classified.  

 

 

Figure 53 Overall grade binary classification rate for all test video 
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6. Discussion 

This chapter discusses the outcomes of the result section. The summary of the results of the 

trained networks is given in 6.1. Hereafter, these results will be explained. Limitations of this study 

are given in 5.3 and this chapter ends with the recommendations for future research and the 

clinical applicability of the results.  

6.1 Summary of results 

This study aimed to develop a DL network that can predict the difficulty of a LC. The research 

question was to what extent this is possible in the first phase of surgery using laparoscopic videos. 

Therefore, a model is needed that recognizes the 3 defined difficulty grades based on the Nassar 

scale that describe the presentation of the gallbladder and the adhesions. The results are further 

interpreted below, but the short answer to this question is that it not possible to accurately predict 

difficulty in 3 grades based on both gallbladder and adhesions. When considering only 2 difficulty 

grades and therefore making it a binary classification problem, the results are better. It is possible 

to accurately recognize gallbladder grade 3. It is also possible to accurately recognize overall grade 

1, or in other words, easy cases with a normal gallbladder without adhesions. The gallbladder 

difficulty is better recognizable than the adhesions difficulty using single frames. At this moment, 

the surgical planning cannot yet be improved accurately.   

To achieve these results, frames were extracted from LC videos to use for training. The Nassar 

scale for difficulty was used as a scoring system. The Nassar scale scores on the appearance of 

the gallbladder, the adhesions, and the cystic pedicle.  All frames were labeled for ‘gallbladder’ 

and ‘adhesions’ with grade 1, 2, or 3. The cystic pedicle was left out for the scope of this research. 

This was done for the frames of 93 LC videos. After excluding the ‘out-of-body’ frames and 

frames in which the gallbladder was not visible, this resulted in a total of 26.483 labeled frames.  

Multiclass CNNs were trained to classify gallbladder and adhesions. Hyperparameter sweeps were 

used to find the most optimal hyperparameter configuration. The best results for the multiclass 

CNNs were obtained with the gallbladder classification network with an accuracy on the test set 

of 74%. The Adhesions classification network reached an accuracy of 50%. Out of 14 videos in 

the test set, 11 were classified correctly. Videos with grade 1 and grade 3 were all correctly 

classified, and videos with grade 2 were not.  

To see if it was possible to recognize the easy cases or the difficult cases, also binary CNNs were 

trained for gallbladder, adhesions, and the overall grade. First, binary CNNs were trained to classify 

‘easy’ (label: 1) versus ‘not-easy’ (label: 2&3). The best result was obtained with the network 

trained for the classification of the overall grade, with an accuracy of 87%. All 14 videos in the 

test set were correctly classified. In addition, CNN’s were trained to classify ‘difficult’ (label: 3) 

versus ‘not-difficult’ (label: 1&2). The best result was obtained with the network trained for the 

classification of the gallbladder with an accuracy of 90%. A total of 11 out of 13 test videos were 

correctly classified. To improve the performance of the last-mentioned network we tried to find 

ways to prevent overfitting. Setting the dropout to 0.2 in combination with reducing the learning 

rate on plateau and training for 40 epochs increased the test accuracy to 91%.   
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6.2 Explanation of results 

The most eminent lesson learned during the labeling process was the importance of assigning 

clear definitions to difficulty grades. These definitions must contain clinically valuable information, 

but they must also be visible in the image. The classification is only clinically applicable if the 

grades describe a scale of difficulty. We concluded that the composition of adhesions is more 

important when looking at difficulty than the location of the adhesions. For example, dense 

adhesions at the fundus of the gallbladder should result in assigning grade 3 as a label for 

adhesions. This may make the classification task even more difficult for a network to learn. Only 

when the adhesions are retracted with surgical instruments, the density or nature of the adhesions 

can be determined. This makes it very hard to determine the grade of the adhesions in only one 

frame.  

With the way the dataset was labeled, using the Nassar scale as a starting point, it seems that 

the difficulty grades hold predictive value when looking at total surgery duration. Videos that were 

labeled with an overall grade of 3 result in a longer operating time (21 minutes and 5 seconds on 

average) than videos with grade 1. Unfortunately, this does not yet give an accurate estimation 

of total surgery time because of the high standard deviation. Furthermore, this dataset does not 

necessarily give an accurate representation of the actual distribution in easy or difficult LCs. To 

give an accurate estimation of total surgery time and the actual prediction error after classifying 

difficulty, the dataset should be expanded with many more patients.  

The intention was to use K-fold cross-validation, making it possible to perform multiple training 

and testing sessions with different train, validation and test split. Because the frames of one 

patient should only be used in either the train, validation, or test set, splitting the data should be 

done per video. If this is done randomly this would not result in an equal distribution of the classes 

in all sets. Because one video often contains only one label, this could even result in sets where a 

class is completely absent. No method was found to split the data in a statistical, random, or 

automatic way because of the way the data was structured. Therefore, cross-validation was not 

possible. Unfortunately, this means that not all data was used for training. Because there is little 

variation in the frames in one patient, valuable information to improve the network is not used 

with the current method. The videos were manually split into train, validation, and test sets to 

achieve an equal distribution of the classes in all sets. This resulted in a different distribution of 

the videos in all sets when training for gallbladder, adhesions, or overall grade. To combine and 

use all trained networks, an additional test set is necessary, that consists of unseen data for all 

the trained networks.  

Training 

After the first test sweeps it was already noted that SGD optimizer performed better than Adam 

optimizer and therefore it was decided to continue using only SGD. SGD seemed better in 

generalization than Adam. Using hyperparameter sweeps was a good way to search for an 

optimized configuration of hyperparameters. When starting with the training sessions, it was 

quickly noted that starting with a small learning rate in an order of magnitude 0.00001 or lower 

gave better results. Also letting the learning rate decay when a plateau was reached was beneficial, 
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and adding early stopping as well. It varied per trained network which combination of the batch 

size and learning rate resulted in the best result. All networks were able to overfit on the training 

data after a few epochs. It should be noted that it matters which videos are present in the test 

set. Because there is not a lot of variability in the test data in only 14 videos. That is why 

sometimes there was a significant difference in the validation accuracy and the test accuracy.  

Multiclass classification 

Of the 3-class classification networks, the gallbladder classification gives the best results. 

Intuitively, this is not very surprising. Cholecystitis has many visible aspects, such as bloodiness, 

redness, gangrene, and pus. The sensitivity of grade 1 and 3 is high (90% and 84%), whereas the 

sensitivity of grade 2 is very low (33%). Grade 2 is very hard to recognize. During the labeling 

process, the biggest challenges were to set clear boundaries between the grades. It seems that 

the hydropic, swollen gallbladder is not recognizable in one frame. Most of the frames with grade 

2 were classified as grade 1. After puncturing the swollen gallbladder, it looks like gallbladder 

grade 1 again. More videos with gallbladder grade 2 should be added to the dataset to improve 

the results and make it possible to recognize grade 2. During the labeling process, it was decided 

that one video could only have one label for gallbladder. For the adhesions, it could be the case 

that the video starts with label 2 and gradually goes to grade 1 when the adhesions are taken 

down.  

For the classification of the adhesions, it can be concluded that this was not yet successful. The 

explanation for this is probably that action is needed to see whether it is adhesions grade 2 or 

grade 3. When the adhesion is retracted, it is visible if it is an anatomical or easy adhesion, or it 

is a pathological or difficult adhesion. The frame-wise classification does therefore not suffice, 

because the context of other frames is needed. In a single frame, the composition of the adhesion 

and its relation to the surrounding tissue is not visible. This makes it unsuitable for a CNN to 

learn features from. Because it was decided that the density of the adhesion was more important 

than its location in order of difficulty, the task may be even harder. A single dense adhesion makes 

it grade 3, but it may resemble grade 1 or 2 too much to be accurately distinguished. Much time 

was spent on deciding how to label the data for adhesions, and different ways were tried, but it 

remains hard to decide which adhesions are grade 2 or grade 3. Because it is already difficult for 

a human to distinguish the grades, it is even more difficult for a network to learn this task. It may 

be better to train a network that is able to recognize the action ‘dissecting adhesions’, although 

then there would still be little difference in grade 2 and grade 3.   

Binary classification  

It was expected that the binary classification would result in a higher accuracy because this is 

simply an easier task. With an accuracy of 84% on the test set, the binary classification network 

trained to recognize a gallbladder grade 1 already shows a promising result. The network trained 

to recognize overall grade 1 performed even better (87%). In these cases, the whole shape of the 

gallbladder is often completely visible and there are little to no adhesions present. This network 

has a sensitivity of 93%, which is an important measure for suitability to detect easy cases. This 

is probably because there is a lot of variability in the data with grade 1. Though, when classifying 
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whole videos, only 4 out of 6 were identified correctly as easy. The frames of one of these videos 

were almost completely classified as grade 2. A total of 13 test videos is still a very low amount. 

More videos should be added to the test set to conclude if this could be clinically applicable. When 

looking at the sensitivity, this network could be useful to quickly identify the easy cases.  

From the binary classification networks that were trained with labels 1 and 2 taken together and 

labels 3, the gallbladder network showed the best results. With an accuracy of 90% on the test 

set, the network can recognize difficult cases. In other words, it can recognize cholecystitis. All 

three test videos with gallbladder grade 3 were correctly classified. This could be clinically useful 

to automatically recognize difficult gallbladder cases. The binary adhesions grade 3 classification 

reached an accuracy of 76%, but with a sensitivity of 47%. This unfortunately means that it is 

not yet useful for clinical practice.  

Reduce overfitting 

To increase the clinical applicability of the binary gallbladder classification network (recognizing 

cholecystitis), several experiments were conducted to improve the performance of the network. 

The only adjustments that increased the accuracy on the test set to 91% were the combination 

of setting dropout to 0.2, reducing the learning rate on plateau, and training for 40 epochs. It 

was expected that the other attempts would also improve the result, but these were ineffective. 

It is possible that the specific data augmentation techniques that were chosen (random rotation 

and random perspective) are not suitable for this particular task. Many other data augmentation 

techniques exist and have yet to be tested. It has to be mentioned, that the little variability in the 

test set may have a significant influence on the evaluation of all networks. In some evaluation 

results, the validation accuracy was even 5% lower than the test accuracy.  

6.3 Limitations 

During the labeling process, there was the possibility to discuss the choices that had to be made 

with an expert surgeon and a junior surgeon. Because eventually the frame-by-frame labeling was 

done by me, no inter observer variability test could be performed. It is possible that there are 

some inconsistencies in the labels of the frames and that another expert surgeon would label some 

of the adhesions grade 3 frames as grade 3 but as grade 2, for example. When there are 

inconsistencies in the labels, it causes problems for the network to learn the right features from 

the data for a specific class. It would be better if two expert surgeons would both label the data, 

and the variability could be studied.  

The size of the dataset is also a limiting factor. The most time-consuming process of this study 

was to decide the label definitions and to create the dataset. Frame-by-frame labeling is a time-

consuming process, but when the method is decided and one has spent hours and hours watching 

LC videos, it becomes easier to label the data even for a non-expert human. The expectation is 

that the results would improve when more variability is added to the dataset. Especially for the 

gallbladder 3-class classification task, it would be better if more data was available. In this study, 

one frame per second was used to create the dataset. Using only one frame per second, resulted 

in the possibility that two consecutive frames are significantly different. Valuable information may 

be lost. Using a higher frame rate, for example, 5 frames per second, could improve the 
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performance of the network in a relatively simple way. Although this would be a simple way to 

increase the size of the dataset, it may be better to use an equal number of frames per patient. 

This would result in a more equal distribution of the classes in the dataset. 

When we started with the creation of the dataset, we only checked if the first phase of the surgery 

was fully recorded and cut this part into sub videos to use for training. Some of the videos did 

not contain the whole surgery and were either missing the beginning or the end. When calculating 

the average total operating time for each grade, we corrected for the parts that were missing as 

correctly as possible. Nevertheless, there exists an inaccuracy in the total surgery time. Adding 

the fact that there are only 93 patients included in this study, improving surgical planning by 

estimating total surgery time is not yet achievable using this data.  

6.4 Recommendations for future research 

To increase the variability in the training data, the dataset should be expanded. In Meander MC 

there are now hundreds of LC videos available for research. The labeling should be done by at 

least two surgeons, minimizing the possibility of label inconsistencies. For the adhesion’s 

recognition task, possibilities for surgical action recognition should be explored. It is expected, 

that even with a larger dataset, recognizing adhesions would still give poor results using only single 

frames. Because the instrument-tissue interaction is important to grade adhesions, temporal 

networks should be considered. A Long Short-Term Memory (LSTM) network is a special type 

of Recurrent Neural Network that can learn long-term dependencies. It uses ‘memory cells’ that 

can choose whether the information coming in is to be remembered or is irrelevant and can be 

forgotten. If the consecutive frames are used, the contextual information can be incorporated. In 

addition, it is recommended to improve the results by using a multitask network to learn to 

recognize the gallbladder grade and adhesions grade simultaneously.   

Another method that should be further explored is multitask learning. During this research, we 

already worked on the creation of a multitask network, but unfortunately due to lack of time 

these results are not included in the scope of this study. In a multitask learning network, the goal 

is to learn multiple tasks at the same time from the same input data. The network would have 

to learn the gallbladder grade and the adhesions grade simultaneously. In multitask learning, a 

loss function should be defined for each task and the total loss would be the sum of those loss 

functions. The back-propagation step during training is executed similarly to single-task learning. 

Because the two tasks are correlated to each other it could result in improved parameters in the 

learned layers.43 By using the similarities between two related tasks, we allow the model to 

generalize better on the original task. When a specific task is related to the other, a multitask 

model can improve data efficiency, reduce overfitting through shared representations and decrease 

training time.75  

6.5 Clinical applicability and future perspective 

The goal is to predict surgical difficulty at the start of surgery. This must be done automatically 

at the right moment and the surgeon should not have to perform an extra action. To implement 

the results of this study in clinical practice, it is important to classify difficulty at the right moment. 

It is therefore necessary to incorporate phase recognition for this task. The difficulty prediction 
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should be made right after the first phase is over. If this phase is accurately recognized, using the 

results of this study it is possible to classify cholecystitis with an accuracy of 91% or classify easy 

cases with an accuracy of 87%. This makes it possible to automatically report cholecystitis cases 

or easy cases with reasonable certainty. The results of this study show that it is still not possible 

to accurately recognize the adhesions grade in LC. To accurately predict surgical difficulty in 3 

grades, further research is necessary to improve the results. To improve surgical planning, it is 

also important to combine the difficulty prediction with a preoperative prediction of surgical 

difficulty. Combining preoperative prediction of surgical difficulty, phase recognition, and 

intraoperative difficulty prediction will improve surgical planning and benchmarking for surgeons. 

Developments in AI techniques will enable context-aware assistance during surgery in the future. 

This will make it possible to improve surgical planning and give surgeons more insight into their 

performance. The future of healthcare will increasingly be influenced by these developments 

through risk prediction and help in decision making.  
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7. Conclusion 

This is the first step in predicting surgical difficulty at the start of a LC. This study aimed to 

develop a DL algorithm that can predict surgical difficulty using laparoscopic videos. It is not yet 

possible to classify the overall difficulty grade based on the Nassar scale by classifying both 

‘gallbladder’ and ‘adhesions’ with reasonable accuracy. It is possible to recognize easy cases and 

cholecystitis cases with the binary classification networks with a high accuracy. The gallbladder 

grade is better recognizable using single frames than the adhesions grade. It is recommended to 

explore the use of temporal networks to recognize the density of adhesions. To make the results 

clinically applicable, it is recommended to use a surgical phase recognition model. The results of 

this study could be used as a starting point for further research in classifying difficulty in LC. This 

would be the first step to improve understanding of surgical scenery and allow benchmarking for 

surgeons in LC.  
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Appendix 

Overall Grade 3-class classification 

Figure 55 shows the accuracy and loss during training. It is seen that the network overfits on 

the train set after a few epochs. The validation accuracy does not increase effectively. The 

hyperparameter configuration used in this training session is given in table 15. The confusion 

matrix of the test set is given in igure 56. Table 14 shows the test results of the trained 

network.  

 

Figure 55 Accuracy and loss during training 

 

Figure 56 Confusion matrix 
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Gallbladder 3-class classification 

Tabel 14 Evaluation 3 grade classification network (overall grade) 

 Grade Accuracy  Precision  Recall F1 

 

Overall Grade 

1  

0.58 

0.39 0.64  

0.49 2 0.47 0.16 

3 0.64 0.89 

 

Tabel 15 Hyperparameter configuration of the best performing network 

 Overall Grade 

Architecture  Resnet18 

Classes 3 

Epochs 30 

Batch size 32 

Learning rate 0.00008133 

Dropout  0.4 

Weight decay 0 

 


