

ii A general 3D optimization framework for pressure-driven soft robotic actuators

Daniel Wilmes University of Twente

iii

Abstract

The following thesis A general optimization framework for pressure-driven soft robotic actu-
ators with analytical gradients is aimed at developing a system that allows defining an arbit-
rary loss functions in a soft actuators simulation, and optimize towards any parameter in the
simulation using analytical gradients. This is motivated by inherent difficulties in modelling
and development of both soft robots and their controllers due to the non-linear and time vari-
ant properties of the forces acting on them. Furthermore, solutions from comparable literature
tend to lack generality and restrict themselves to certain use-cases or offer methods to work
around the issues but are more time consuming in return.

A literature study is first conducted related to soft body simulation and optimization pro-
cedures to find valid approaches in modelling soft robotic actuators and perform auto-
differentiation. After an approach is chosen and implemented, a verification of the simula-
tion is performed by comparing multiple simulations to an established FEM solver. Afterwards
the issue of exploding gradients for auto-differentiation is adressed by analysing the mathem-
atical background of the problem and proposing a solution. To demonstrate the use of the
developed 3D optimization framework for controller synthesis, a small neural network feed-
forward controller is set-up for a pneumatic endoscope actuator model with three pressure
chambers and trained using the derived gradients from the simulation. Furthermore, a meta-
optimization scheme is presented, where the damping factor of the simulation is split into
50ms time-windows and optimized with the intention of shortening the time until the deform-
ation of the actuator reaches its final state.

The developed system is shown to be able to derive meaningful gradients that can be used to
optimize different components of the simulation. The proposed scaling scheme to avoid ex-
ploding gradients requires the user to fine-tune a few parameters to get optimal results. The
scheme has been shown to produce useful gradients for an exemplary pressure optimization
and controller synthesis. In comparison to reinforcement learning, the controller synthesis re-
quires about 1 order of magnitude less iterations steps to converge in addition to more smooth
and reduced loss fluctuation over the course of training. The meta-optimization managed to
reduce the required number of time-steps by approximately 25% with some caveats. The loss
function showed strong signs of being ill-defined but the optimization still succeeded based
on the gradients and changes in the damping factors, which implies that more complex and
well-behaved formulations have the potential to give better results.

Robotics and Mechatronics Daniel Wilmes

iv A general 3D optimization framework for pressure-driven soft robotic actuators

Daniel Wilmes University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 1

1.3 Review of related works . 3

1.4 Goals and approach . 5

1.5 Report Structure . 6

2 Modelling 8

2.1 Conceptual design . 8

2.2 Integration scheme . 8

2.3 Internal forces . 9

2.4 Pressure forces . 11

2.5 Volume conservation . 12

2.6 Damping force . 12

2.7 Constraints . 12

2.8 Material models . 13

3 Implementation 14

3.1 Development tools . 14

3.2 Meshes . 14

3.3 Features and workflow . 15

4 Verification 20

4.1 Design . 20

4.2 Setup . 20

4.3 Results and Interpretation . 21

5 Exploding gradients 26

5.1 Mathematical background and approach . 26

5.2 Issues and implemented remedies . 27

5.3 Exemplary gradients . 28

6 Endoscope controller synthesis 31

6.1 Controller and training design . 31

6.2 Results . 32

6.3 Comparison to reinforcement learning . 34

7 Meta-Optimization 37

Robotics and Mechatronics Daniel Wilmes

vi A general 3D optimization framework for pressure-driven soft robotic actuators

7.1 Optimization design . 37

7.2 Results . 37

8 Conclusions 40

8.1 Limitations . 41

8.2 Recommendations . 42

A Replicating results 44

A.1 Verification . 44

A.2 Exploding Gradients / Pressure optimization . 44

A.3 Controller synthesis . 44

A.4 Meta-optimization . 44

Bibliography 45

Daniel Wilmes University of Twente

vii

List of Abbreviations

FEM Finite Element Method

SOFA Simulation Open Framework Architecture

GPU Graphics Processing Unit

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CAD Computer Assisted Design

NADAM Nesterov-Accelerated Adaptive Moment Estimation

ID Identifier

RaM Robotics & Mechatronics

Robotics and Mechatronics Daniel Wilmes

viii A general 3D optimization framework for pressure-driven soft robotic actuators

List of Symbols

Parameter Unit Description

m kg Mass

x m Position

v ms−1 Velocity

F N Force

k Nm−1 Spring stiffness

V m3 Volume

E Nm−2 Gradient of stress-strain function (generalized young’s modulus)

l m Edge length between two mesh nodes

λ - Stretch

B - Strain displacement matrix

σ Nm−2 Cauchy stress tensor

D - Matrix describing the shape of a given tetrahedral element

F - Deformation gradient

J - Volume ratio

I - Invariants of deformation gradient

W Jm−3 Strain-energy density

A m2 Area

p Nm−2 Pressure

n - Normal of a given surface

α - Volume force scaling factor

β - Mass damping scaling factor

C - Hyper-elastic material parameter

D - Hyper-elastic material volume parameter

e - Error

d m Displacement

s - Gradient scaling factor

z - Order of magnitude of a given variable

g - Gradient of a given variable for a given function

L - Loss function

Daniel Wilmes University of Twente

1

1 Introduction

1.1 Context

Soft robotic actuators are an emerging technology that are increasingly used in medical [1] [2]
[3] and manufacturing contexts [4] [5]. Advantages of using soft robots are the inherent flexib-
ility and adaptability of soft robotics. Particular applications in medical contexts include min-
imally invasive surgery [2] [3] [6], (semi-) automatic drug delivery [7], diagnosis and biopsy [8]
and assistance, rehabilitation and exoskeletal support of practically any body part [9] [10] [11]
[12] [13]. Furthermore, soft robotics are considered for support or simulation of mechanical
organ parts like the heart [14] or liver [15] because the necessary motion can be replicated by
soft robotic actuators.

In regards to manufacturing soft robotics are interesting due to their adaptability and freedom
of motion. This potentially allows for a high degree of shape invariance for e.g., grippers [16].
This makes these types of actuators desirable for automation and construction [17].

1.2 Problem Statement

Even though soft robotic actuators have a variety of potential areas there are some issues with
their development. In particular, because of the complicated underlying mechanics that de-
scribe the behaviour of pneumatic or hydraulic soft robotic actuators it is often difficult for
humans to intuitively understand the connection between the fluid-cavity shape and mo-
tion. This causes the resulting designs to be sub-optimal both in terms of forces and mo-
tion [18]. Two problems emerge from this. First, the performance of the robot may suffer
because the designer may not know how to optimally shape the robot for the intended mo-
tion, and second, more complicated motions require significant development time and trial-
and-error approaches despite the freedom that soft robotic actuators theoretically offer in this
regard [19]. This issue also extends into the development of controllers because they require
the developer to model the complicated dynamics, especially if interaction with an environ-
ment is considered, or employ time consuming reinforcement learning methods with an exist-
ing robot and simulation. The core issue can therefore be described as the difficulty with the
design of soft robotic actuators and their respective controllers. In fact, the development and
design part of even simpler actuators are often published in addition or independently of use
cases [20] [21] [22] [23]. Furthermore, the designs tend to be arguably simple, partially rigid or
bio-mimetic. Table 1.1 summarizes related papers and their approach to modelling.

In some cases this issue can be alleviated through the use of numerical optimization. Still, in
comparison to the relevancy and size of soft robotics as a current field of research, optimiza-
tion is arguably rarely addressed. This is partially due to the novelty of the field but also be-
cause performing optimization on soft bodies carries additional problems compared to static
structures. Specifically, modelling hyperelastic structures requires more complex material de-
scriptions and large deformations need to be addressed in the discrete model through higher
mesh resolution or non-linear finite elements.

In addition, a major problem in modelling is caused by the change of applied forces for
pressure-driven actuators since the surfaces where the pressure applies changes over the
course of actuation. This makes the common form of linear FEM based on system of equa-
tions not applicable as the right hand side containing the forces is time variant. While many of
these problems are individually theoretically solved or solvable in some contexts like time vari-
ance [32] and hyperelasticity and deformation modelling [33] [34], finding holistic and efficient
solutions to these issues is not trivial and FEM programs employ a variety of different strategies
to address them [35].

Robotics and Mechatronics Daniel Wilmes

2 A general 3D optimization framework for pressure-driven soft robotic actuators

Table 1.1: Different approaches to modelling soft robots from the literature

Author and
year

Technique and Application Limitation Image

Sinatra et al.
2019 [24]

Nano-fiber-reinforced
pressure-driven soft
actuators; Gently grabbing
marine life

Simple shape and
rigid base

Rateni et al.
2015 [25]

pressure-driven soft
actuator; Minimally
invasive surgery; Scalable to
other use cases

Simple, unoptim-
ized shape

Hofer et al.
2018 [26]

Inflatable bladders Simple shape and
mostly rigid

Margheri et
al. 2012 [27]

Pressure-driven soft
actuator; Aimed at
achieving same dexterity as
octopus

Bio-mimetic from
octopus

Zou et al.
2018 [28]

Pressure-driven modular
soft actuators; Exploring
unstructured environments

Bio-mimetic from
caterpillar

Baumgartner
et al.
2020 [29]

Pressure-driven elastomer
exploiting mechanical
instability; safe, high-speed
soft grippers

Bio-mimetic from
Venus flytrap

Culha et al.
2016 [30]

Correct bones, elastic
ligaments and antagonistic
tendons; Large motion
range and strong grippers

Bio-mimetic from
human finger

Plum et al.
2020 [31]

Soft shell to minimize
damage to the robot with
rigid actuation; complex
repair, exploration and
analysis under water

Bio-inspired outer
shell

Daniel Wilmes University of Twente

CHAPTER 1. INTRODUCTION 3

Furthermore, an issue that’s wholly unaddressed as far as the author is aware is the compu-
tational efficiency of these procedures. This is an issue as optimization is inherently a com-
putationally heavy process and the issues that are added when performing it on soft robotic
actuators accentuate this problem many times fold. This is intuitive because if every discrete
element is more complex and the forces are time variant then every iteration of an optimization
requires several times more operations. This is a provably relevant issue since computational
optimization of static structure topology optimizations is still not considered a solved problem
despite decades of research [36] [37].

1.3 Review of related works

Only a minority of soft robotics enjoy some form of mathematical optimization either through a
higher-level model of their behaviour [38] [39] or specifically developed topology optimization
strategies [40] [41] [42].

1.3.1 Approaches to optimizations

The approach of [38] consists of an analytical model describing the developed pneumatic actu-
ator shapes as a cantilever with spring-like properties and two different optimization methods,
namely a swarm intelligence optimization called Firefly-algorithm [43] and a reinforcement
learning agent [44]. These ideas were verified with a FEM simulation applying the same op-
timizations and later validated by 3D printing the actuators and testing them. The results show
that both the analytical model optimization as well as the FEM optimized shape outperform
the empirically designed one. In this case, the measure of performance was the decoupled
motions in the vertical and horizontal directions upon applying pressure. The advantage of the
analytical model was the drastically reduced number of iterations necessary with the Firefly-
algorithm. It required about 10 iterations while the FEM model took about 400 iterations. That
being said, such analytical higher-level models are not generated but designed and require the
researcher to model the system using simpler and understood components like springs and
dampers. This is an issue for development as not every shape can easily be simplified in this
manner.

The strategies employed by [39] and [42] are more generally applicable and intend to automate
the design process of soft robotics by formulating FEM-based topology optimization problems
and solving them. In particular, [39] uses an FEM approach that is solved through the method
of moving asymptotes [45] to solve the issue of ever changing applied forces as pressure causes
deformation and additionally speed up and stabilize convergence due to the computationally
expensive nature of the problem. The authors in [42] develop a general framework for topology
optimization for soft robots and solves the mentioned issue of changing forces by using the
polygonal surfaces to simulate the forces while the deformation occurs. It also addresses the
issue of material hyperelasticity in soft robotics by treating the tetrahedra as nonlinear finite
elements to increase accuracy for larger deformations. The framework restricts itself to the
2D case and thus doesn’t allow the development of more complex shapes but the results show
that this approach may significantly decrease development time and generates previously un-
known and highly efficient shapes. The optimization is based on material density by defining
a finite 2D domain that is split into many small areas with varying density. The program then
changes the density of each region to minimize the error function. A simple bending soft
actuator from [42] is shown in Figure 1.1 and shows how even a 2D optimization can produce
shapes that a human would arguably not be able to think of. Furthermore, it uses a com-
bination of auto-differentiation and an analytical expression to acquire analytical gradients
to improve both performance and quality of convergence. Theoretically this approach could
be extended to allow more arbitrary optimization for e.g. gradient based training of neural

Robotics and Mechatronics Daniel Wilmes

4 A general 3D optimization framework for pressure-driven soft robotic actuators

network controllers. Another point that is explicitly mentioned in these papers is the ability to
define the optimization goal in a somewhat arbitrary manner [39]. The beauty of this is that
the shapes can be optimized for a variety of objectives as long as a loss function can be found.
Figure 1.1 for example maximised the mechanical advantage, meaning the ratio between out-
put and input force. Consequently it is possible to define goals like following a trajectory or
minimizing the directional coupling like in [38].

Figure 1.1: Finite element analysis of the developed soft actuator though the proposed topology op-
timization framework of [42]. Notice the unintuitive teardrop cavities and connections between them
which maximise the mechanical advantage and produce a circle.

1.3.2 Soft actuator simulation

While not intended for optimization there exists a framework for real-time soft robotic simula-
tion for iterative shape and controller development called soft-robotics toolkit for Simulation
Open Framework Architecture (SOFA) [46] [47]. It implements a large variety of approaches
and 30 different forces for simulation at once and is highly optimized. It is based on numerical
integration of nodes or surfaces in a mesh, but the approach to the computation of internal
forces varies depending on the user’s choice. In particular, there are two main ways to compute
the internal forces in the model. The first is based on the node edges as springs where the
mass, spring stiffness, and (optionally) damping need to be defined. The second method [48]
computes the forces from the deformation of tetrahedral finite elements. The forces on each
node of the model can be computed as a fraction of the surface forces of all incident faces sim-
ilar to [49]. Furthermore, SOFA also managed to implement many of its functions partially or
entirely on GPU and achieved 212 frames per second on a mesh with 45k tetrahedral elements
on a Nvidia GeForce GTX 480 and about 12 frames per second on an Intel Core i7 975 3.33GHz
CPU with the same parameters [46].

1.3.3 Gradient based optimization

Regarding general gradient based optimization problems in physical simulations, there have
been ideas and implementations to improve both convergence and computational load by
calculating analytical derivatives of the cost function towards the simulation parameters to
optimize for using differentiable simulations [50] [51] [52]. This is relevant because a numer-
ical physical simulation can be used to alleviate the problem of changing forces at every time
step. Furthermore, assuming a framework for auto-differentiation can be found the process
of implementation is expected to be quite simple. However, an open problem that is expected
to appear in this use case is exploding and vanishing gradients due to large time horizons,

Daniel Wilmes University of Twente

CHAPTER 1. INTRODUCTION 5

especially considering the non-linearities of the simulation.

1.3.4 Controllers

Another issue in soft robot development is in regards to precise controllers. The two main
approaches used to tackle the problem of controlling soft actuators revolve around designing
simplified analytical models based on the specific motions of the use case, model-free using
neural networks or a hybrid of the two [53]. Each of these has quite severe drawbacks either in
terms of quality or development time. In particular, analytical models of soft actuators often
suffer from inherent inaccuracies due to being unable to describe the robot as a continuum
and simplifying the kinematics. This necessitates additional adaptive abilities to counteract
model uncertainties [54]. On the other hand, reinforcement learning approaches can theor-
etically produce controllers with arguably perfect precision [55] [56]. This is especially true
when considering that it is possible to account for any type of non-linearity by including said
non-linearities in the neural network of the agent. The downside of reinforcement learning
is that it is essentially an automated trial-and-error process where the controller attempts all
kinds of inputs and eventually finds out how to achieve the goal. Consequently, the process is
quite slow and requires some form of learning environment, which ideally should be the phys-
ical robot to be controlled. There have been attempts at work-arounds using a neural network
that is supposed to replicate the physical behaviour of a given soft robot by measuring its de-
formation with a camera and training the network on it. Because the network is differentiable,
this effectively gives an approximate differentiable physical simulation of the dynamics. Hence
reinforcement learning can be omitted for gradient-learning, which is faster due to adapting
the weights directly towards the correct direction [57]. Still, learning based approaches remain
time consuming even under with this approach as the robot needs to be build and the model
trained before the controller training can even begin.

1.4 Goals and approach

With the main problems stated in Section 1.2 and relevant literature reviewed in Section 1.3 the
overarching research question can be defined as

"How can a general optimization framework with analytical gradients for pressure-driven
soft robotic actuators be modelled and implemented?"

This main question will be supported by a number of sub-research questions with the purpose
of evaluating the developed framework:

• How accurate is the developed simulation compared to established FEM tools in regards
to the predicted deformation?

• How can the issue of exploding/vanishing gradients from large time horizons for auto-
differentiation be addressed?

• What are the effects of gradient-based training on the speed and reliability of conver-
gence for a soft-robotic controller for an endoscope model?

• What are the effects of performance-targeted meta-optimization of the simulation?
Meaning how can the optimization be applied to the speed of the simulation itself?

The approach to answering these questions can be outlined by the following steps. First, a
solution to solving the modelling difficulties needs to be found. This is done through the previ-
ous literature study to find ways to accurately simulate the dynamics of hyper-elastic materials

Robotics and Mechatronics Daniel Wilmes

6 A general 3D optimization framework for pressure-driven soft robotic actuators

and pressure forces. FEM simulations will be used to verify the chosen approach and answer
the first research question. Once the simulation is confirmed to give accurate results a robust
way to compute analytical gradients through auto-differentiation for optimization needs to be
found. With this done it’s possible to approach the remaining research questions by first ad-
dressing the exploding gradients and later on controller synthesis and meta-optimization.

The second research question about the exploding gradients in non-linear large-time-horizon
numerical integration is answered by dedicating a chapter to explaining the mathematical
background, how the issue can be approached, the proposed solution and an exemplary optim-
ization. The endoscope controller will be neural network based but with only the input and out-
put layer to get a measure for the capabilities of the framework. Lastly, the meta-optimization
will optimize the damping factor for each node for different time-windows to reduce the time
it takes to reach the final deformation state.

Consequently, the main contributions of this work compared to previous studies consist of
extending and generalizing existing methods to 3D and showing its potential in a number of
tests. This is because comparable literature does not utilize auto-differentiation for the entire
simulation and hence does not have the same level of generality. Second, the issue of explod-
ing gradients for auto-differentiation of such a non-linear large-time-horizon simulation is an
open problem and how it is addressed may be considered a novel contribution. Furthermore,
the author is not aware of other works utilizing optimization frameworks for improving the
behaviour of the simulation itself, which is referred to as meta-optimization in this document.

Because the research is based on software development, it is useful to define some require-
ments using the MoSCoW-method. A diagram showing the prioritization is shown in Figure 1.2.
The main priorities revolve around the main purpose of the program so that the optimization
can at the very least be performed. The "Should"-priorities are important for any type of ser-
ious application and freedom for the user but not strictly necessary for the proof of concept
of the underlying methods. The "Could"-priorities are advanced functionalities either for con-
venience or more complex problems that are slightly beyond the scope of this project. Lastly,
"Won’t"-priorities mostly consist of things that take a lot of time to implement while not con-
tributing much to the project goals.

1.5 Report Structure

Lastly, the chapters of this thesis can be summarized as follows. First this introduction chapter
contained the motivation, goals and literature review to find ways to approach the problems.
Chapter 2, modelling, explains in mathematical detail how the simulation was chosen to be
modelled. Chapter 3, implementation, describes which software resources are used for imple-
mentation and the workflow of the implementation. With the theory done, Chapter 4, verific-
ation, describes the exact procedure to performing the verification and its results. Because the
remaining three research questions are quite different in nature each one has its own dedicated
chapter showing and interpreting the obtained results. Consequently, first the issue of explod-
ing gradients for the simulation is addressed in Chapter 5. Afterwards controller synthesis for
the endoscope model is performed and evaluated in Chapter 6 and lastly meta-optimization
in Chapter 7. The final chapter, Chapter 8, presents the conclusions of the work and gives a
number of recommendations for future research.

Daniel Wilmes University of Twente

CHAPTER 1. INTRODUCTION 7

1. Simulation of pressure-driven soft robotic
actuators

2. Ability to get vali gradients of a user
defined loss function towards any
simulation parameters

1. Multi-material support
2. Different approaches to internal forces
3. Simple user interface

1. Mesh visualization
2. At least 2 different optimization schemes
3. Multiple pressure chambers

1. Advanced user interface with intuitive
data input (boundary conditions etc.)

Must Have

Could Have

Should Have

Won't Have

Figure 1.2: Software prioritization diagram outlining the top-level requirements of the program using
the MoSCoW-method

Robotics and Mechatronics Daniel Wilmes

8 A general 3D optimization framework for pressure-driven soft robotic actuators

2 Modelling

This chapter will describe and explain the mathematical theory needed to understand the sim-
ulation and optimization. As such, it will show how certain physical properties relate to the
simulation parameters, how the material is modelled, how the forces are calculated and how
the simulation propagates through time.
Before the details are explained, however, a short paragraph will outline the conceptual design
decisions resulting from the literature review.

2.1 Conceptual design

First an approach to simulating soft actuators needs to be decided on. Numerical integration
will be used to propagate through time, hence the main issues are the calculation of pressure
and internal forces. The internal forces will be modeled in two different ways, which will be
compared.

1. Damped vertex-edge-springs

2. 3D Element deformation and cauchy stresses

Damped-edge-springs are simpler to implement but are expected to be less accurate than cal-
culating the cauchy stress tensor because they are mere 1D elements with no inherent consid-
eration for surface and volume forces. In comparison, the cauchy tensor is a holistic descrip-
tion of the internal forces inside a finite element. The pressure force then needs to be calculated
for each node, which is a solved problem [49] and only requires the pressure, surface areas and
normals. The constraints necessary for the simulation are straightforward to implement by fix-
ing the position of a number of individual nodes. The following sections will go into more detail
for each of these points.

2.2 Integration scheme

The simulation is based on an explicit numerical solver and uses the Forward-Euler-method to
propagate in time [58]. It therefore only requires the calculation of all forces for each time step
and integrates them into velocity and position.

The main reasoning to use this simple scheme is the ease of implementation, low computa-
tional load and the rather high level of non-linearity and time-dependency of forces. These
non-linearities make the usage of implicit solvers much more difficult since they assume the
forces don’t change between the current configuration and the force equilibrium configura-
tion. Furthermore, explicit solvers are capable of simulating the dynamic behaviour of the
object. This may be desirable as quickly inflating and deflating soft robotic actuators will, in
reality, not immediately reach force equilibrium but fluctuate dynamically too. Lastly, despite
requiring a higher number of integration steps, explicit solvers have an advantage in terms of
computation which is the decoupling of all nodes. This has the effect that all velocities and po-
sitions of nodes can be integrated independently, which allows full parallelization on GPU [59].

The used explicit scheme is described by a second order differential equation given by:

mn ẍn +Dn ẋn +Kn xn = Fn , (2.1)

where m is the mass, D the damping matrix, K the stiffness matrix and F the external forces for
vertex n. The vector x contains the position of the vertex and as such its time derivatives are the
velocity and acceleration. This differential equation only needs to be solved for the acceleration
and then be numerically integrated. There is no need to describe the entire system as a matrix
differential equation as the explicit scheme decouples every node. The Forward-Euler-method

Daniel Wilmes University of Twente

CHAPTER 2. MODELLING 9

then collects the forces at each time step and numerically integrates them to find the values for
the next step for each vertex individually:

vn(t) = vn(t −∆t)+ Fn(t −∆t)

mn
·∆t ,

xn(t) = xn(t −∆t)+ vn(t) ·∆t ,
(2.2)

where ∆t is the time step of the simulation and x, v and F are the position, velocity and total
force associated to node n at time t and t −∆t , respectively [58].

The following sections in this chapter will explain how each component of Equation 2.2 is cal-
culated.

2.3 Internal forces

As mentioned in Section 2.1 the first approach to the internal forces calculation is based on
treating the edges of the tetrahedral model as damped springs. This invites the question how
the spring stiffness and damping factors are calculated. This springmesh is simple but arguably
a somewhat naive way to describe the internal forces because it assumes all appearing forces
can be broken down into the behaviour of a 1D spring. This is why the second implemented
approach to the internal forces is based on the deformation of the tetrahedral elements which
allows a more hollistic (and thus accurate) description of the internal stresses. Both of these
methods will be tested later on.

2.3.1 Springmesh

Figure 2.1: A exemplary spring mesh. Each edge is a damped spring applying force to both connected
nodes. Taken from [60]

Springmeshes are commonly used for modelling soft tissues owing to ease of implementation
[61]. Because the spring stiffness will determine the steady state position of the nodes due to
the force balance between pressure and spring forces, it is crucially important to derive the
spring stiffness from the material properties. Furthermore, this is the point where the hyper-
elasticity of the soft materials needs to be addressed. Both of these problems can be solved in
the same breath by using the stress-strain curve of a given material [62]. The strain of each edge
can be calculated through the theoretical area covered. Mathematically, this can be expressed
as

ki (λ, t) = E(λ)
V0

l 2
0

, (2.3)

where ki is the spring stiffness for edge i , E(λ) the gradient of the stress-strain curve (similar
to Young’s modulus but generalized to any curve) at stretch λ, V0 the initial volume of all tetra-
hedra adjacent to the edge and l0 the initial length [63]. This means that the spring stiffness is
not a constant but depends on the gradient of the stress-strain curve and needs to be recalcu-
lated each time step. Note that this effectively puts the Poisson’s ratio ν = 0 but this issue can
be worked around by adding a volume conservation force as explained in Section 2.5 and from
certain assumptions of the material model as explained in the next paragraph.

Robotics and Mechatronics Daniel Wilmes

10 A general 3D optimization framework for pressure-driven soft robotic actuators

The internal forces for each node can then be calculated by iterating through all edges and
adding the reaction forces towards both nodes with equal magnitude and opposing signs.

finternal,i =∆l ·ki (2.4)

For the two nodes 1 and 2 of edge i with

∆l = ∥∥xi ,1 −xi ,2
∥∥−∥∥xi ,1,0 −xi ,2,0

∥∥ , (2.5)

which is the difference in length between the current position and the non-deformed position.
The total internal force can then be summed up over all edges that contain the node. Because
of this it makes more sense to iterate over all edges and add the same force with opposing signs
to both nodes for the implementation.

The only remaining question is how exactly the strain-energy-derivative E(ε) is calculated as all
forms of hyper-elastic strain energy functions require the stretch in all three dimensions, while
these spring stiffnesses merely represent 1D truss-elements. The simplest solution is to assume
incompressible uniaxial tension which reduces the number of independent stretch-variables
to one [64]. Since there are a number of different hyper-elastic strain-energy formulations the
most general way to describe this is to say that under uniaxial strain the stretches λk with k =
1,2,3 succumb to the condition

λ1λ2λ3 = 1 (2.6)

for incompressibility which leads to

λ=λ1, λ2 =λ3 = 1p
λ

(2.7)

This in turn can be used to derive the strain-energy and its derivative from any hyper-elastic
model with just a single known stretch [64]. The problem is that this assumes incompressibility
which is expected to cause errors because not all materials relevant for soft robotics fall into
this category. In the above paragraph it was mentioned how the Poisson’s ratio is effectively
ν= 0 because of the lack of volume forces but with this material assumption it becomes ν≈ 0.5
and can be influenced using the mentioned volume forces in Section 2.5.

2.3.2 Element deformation

A much less assumption-struck but more complicated formulation of the internal forces is
based on the deformation of the tetrahedral elements by calculating all internal stresses. Now
instead of 1D-elements it’s possible to consider 3 dimensions, which opens some options re-
garding compressibility and direction of strain. The base equation describing the forces on all
4 nodes of a tetrahedron can be described by the matrix equation:

f = B TσvoigtV , (2.8)

where B T is the transpose of the strain-displacement matrix, σvoigt the Cauchy stress in Voigt-
notation and V the volume of the element in question [65]. The force vector f has 12
entries describing the x−,y− and z−force-components of the 4 nodes. Calculating the strain-
displacement matrix [66] and the volume [67] is trivial and only requires the positions of the 4
nodes. Naturally, the forces on each node need to be summed over all elements containing that
node.

Cauchy stress calculation from hyperelastic models

Calculating the stress in an element from a given hyperelastic material model requires the in-
variants of the deformation gradient matrix and applying these to the derivative of the chosen

Daniel Wilmes University of Twente

CHAPTER 2. MODELLING 11

stress-strain function [68]. The deformation gradient is defined by the transformation of the
tetrahedral shape between the initial and current configuration [69]

Fdef = D t D−1
0

D0 = [x1,0 −x4,0, x2,0 −x4,0, x3,0 −x4,0]

D t = [x1,t −x4,t , x2,t −x4,t , x3,t −x4,t]

(2.9)

The first index of x refers to the 4 nodes associated to the given element and the second index
the time, meaning D0 is a constant matrix that can be reused at every time-step. From this a
number of values need to be derived. The formulation of the stress will allow slight compress-
ibility as defined in [68] since most hyperelastic materials, which are most often used for soft
robots [70], fall into this category. The first value is

J = ‖Fdef‖ (2.10)

which is the volume ratio of the element, defined by the current volume over the initial volume
[68]. Now because near incompressibility / slight compressibility is assumed, the deformation
matrix and consequently the invariants need to be scaled using J to comply with the compress-
ible formulation of the material models, because it decomposes the isochoric and volumetric
part of the deformation [71]. This does not enforce volume conservation but is a method to
ease computation due to the internal stresses growing extremely quickly when an incompress-
ible material is put under pressure. This will cause problems during numerical integration
because the motions per step become excessively large.

Using this method, it is possible to simulate nearly incompressible and compressible materials
under the condition that volume forces are described by a decoupled volume energy term due
to the decomposition of the forces.

F̄def = J−1/3Fdef (2.11)

From here on, variables denoted with a bar refer to the adapted ones for slight compressibility.

B̄def = F̄defF̄
T
def (2.12)

B̄def is the left Cauchy deformation tensor which can conveniently be used to calculate the
needed invariants.

Ī1 = Tr(B)

Ī2 = 1

2
((Tr(B))2 −Tr(B 2))

(2.13)

Now these invariants and the volume J can be used to find the Cauchy stress given a material
model W (Ī1, Ī2, J), which will be detailed in Section 2.8.

σ= 2

J

∂W

∂Ī1
(B̄def −

1

3
I11)+ 2

J

∂W

∂Ī2
(Ī1B̄def − B̄ 2

def +
2

3
Ī2)+ ∂W

∂J
1 (2.14)

Equation 2.14 is intentionally split by the variables of W (Ī1, Ī2, J) such that it becomes obvious
which components drop out depending on the limitations of the material model. The straight 1
refers to the identity matrix of the surrounding dimension. Now the resulting stress tensor only
needs to be written in Voigt notation and can be used to calculate the forces using Equation 2.8.

2.4 Pressure forces

Calculating the pressure force is more straightforward than the internal force. In this case, only
the surface normals and areas need to be calculated. Because the nodes that make up the

Robotics and Mechatronics Daniel Wilmes

12 A general 3D optimization framework for pressure-driven soft robotic actuators

corners of each triangle attain the force and not the surface itself, the force on each surface is
divided by 3 for each node, effectively distributing the total force of each surface to each of its
vertices.

~Fp,i = 1

3
·p

∑
A · ~nA , (2.15)

where ~Fp,i is the pressure force at node i , p the pressure, A the area of a triangle the node is part
of and ~nA the outward normal of the triangle so that the force pushes outside. The summation
is performed over all pressure surface triangles the node is part of.

2.5 Volume conservation

In literature it appears to be uncommon to use a more complex expression than Equation 2.3
that involves the Poisson’s ratio. This is because the authors in [63] showed that the result-
ing edge stiffness may be negative if the shape is too obtuse, thus making its usage somewhat
unsafe because it’s not clear if such a negative spring stiffness is physically plausible. Further-
more, guaranteeing triangles and tetrahedra of sufficient quality has other negative side effects
like enforcing unnecessarily small shapes, causing higher computational load.

A workaround can be implemented through the use of a volume conservation force [72]. The
idea is to calculate the initial volume of each tetrahedra and add a force towards its barycenter
to each node depending on its current volume. Mathematically speaking this can be expressed
as

~FV,n =α · (Vcurrent −V0) · ~xBC − ~xn

‖ ~xBC − ~xn‖
, (2.16)

where ~FV,n is the volume conservation force for node n, α a scaling factor, Vcurrent the current
volume, V0 the initial volume, ~xBC the barycenter of the associated tetrahedra and ~xn the cur-
rent position of node n [72]. Hence the loop needs to iterate over all tetrahedra and add an
accumulating force to each of the four nodes. The downside of this method is that it may not
exactly represent the compressibility of a certain material by relating α to its volume energy
coefficients.

Note that this volume conservation force has a neat side effect where it acts as a damping force
since it makes the nodes push towards their centers at identical volume while the pressure and
internal forces cause deformation in the opposing directions. This makes the addition of a
separate damping force potentially unnecessary.

2.6 Damping force

It is necessary to use some form of damping to reduce the dynamic fluctuations and simulate
some form of internal friction. The used damping formulation is mass-based-damping be-
cause it gives a direct relation between the damping factor and the de-acceleration of a given
node due to cancelling out the mass during integration [73]. This means the damping force for
a node is given by

~Fd, i =−~vi ·mi ·β (2.17)

for node i with velocity ~v , mass m and the damping factor β.

2.7 Constraints

For the explicit integration to function correctly, some boundary conditions in the form of posi-
tional constraints are necessary. This is easily realized during integration by setting the velocity
of the boundary nodes to zero before integrating. The boundary nodes are defined through an
axis-aligned bounding box (AABB) [74]. The AABB is user defined and all nodes inside of it are
considered fixed.

Daniel Wilmes University of Twente

CHAPTER 2. MODELLING 13

2.8 Material models

The implemented hyper-elastic material models are Yeoh and Mooney-Rivlin. Both are quickly
described by their general compressible strain-energy function [75]

WYeoh(Ī1, J) =
n∑

i=1
Ci 0(Ī1 −3)i +

n∑
k=1

1

Dk1
(J −1)2k (2.18)

and

WMooney−Rivlin(Ī1, Ī2, J) =
N∑

p,q=0
Cpq (Ī1 −3)p (Ī2 −3)q +

n∑
k=1

1

Dk1
(J −1)2k (2.19)

where the C ’s and D’s are material parameters that are experimentally derived through curve
fitting [75].

Robotics and Mechatronics Daniel Wilmes

14 A general 3D optimization framework for pressure-driven soft robotic actuators

3 Implementation

This chapter is dedicated to describe and justify the choice of tools and resources necessary
for development. The development necessitates a choice in programming language, libraries
and external programs. Furthermore, both the experiments as well as the verification require
meshes that can be used. Lastly, it describes how the implementation works step-by-step and
in relation to the MoSCoW-diagram of Section 1.4.

3.1 Development tools

Because the developed code should be as accessible as possible to possible users the choice
of programming language is Python. Due to being an interpreted scripting language Python
alone does not deliver the desired performance for a computationally heavy problem like FEM
[76]. A remedy for this is the usage of Taichi [77], which is a compiled programming language
that works alongside Python and has almost identical syntax. In addition, the compilation can
automatically generate CUDA [78] kernels to utilize the GPU. Furthermore, assuming certain
paradigms are followed, Taichi includes an auto-differentiation system that can be used instead
of implementing it manually. Hence the combination of Python and Taichi gives the ease of
implementation and modifiability of Python and the performance of compiled GPU programs
in addition to fully solving the question of how to implement auto-differentiation.

The Python libraries used for development are Numpy, Numpy-stl, pathlib, vedo, scipy, Taichi
and Taichi-glsl. While Taichi is technically it’s own language it is embedded in Python like a
library. Numpy and Numpy-stl is for general array calculations and extensively used in the pre-
processing steps of the meshes [79] [80]. Pathlib gives access to the execution path of the files
and this allows for path invariance when importing functions from self-made modules [81].
Vedo is used as a visualization tools for the meshes and allows loading of multiple meshes and
control through interface objects, such that the motion of the meshes during the simulation
can be shown, as well as multiple meshes at the same time [82]. Scipy contains algorithms for
scientific computation like n-dimensional interpolation functions useful for verification [83].
Lastly, Taichi-glsl is an extension library with some quality-of-life functions like cross-products,
dot-products and smoothing functions.

The program tetgen [84] will be used to tetrahedralize the input meshes. This allows the user
to use stl-files as input, which is one of the most common and simple mesh file extensions and
virtually every CAD program can export them [85].

Lastly, the author uses a computer with an Intel i7-6700HQ CPU and a Nvidia GTX 965m GPU.
This information may be relevant to extrapolate certain performance measures mentioned in
the thesis to other systems.

3.2 Meshes

For both the verification and in relation to the research questions, meshes are necessary for
simulation and optimization. One of these is an endoscope model that was used in previous
research. It’s intended to exemplify a somewhat realistic and more complex use case of the pro-
gram. It contains three pressure chambers with rotational symmetry of 120° to allow a bending
motion in the plane defined by it’s main axis. An isometric and front view of the mesh can be
seen in Figure 3.1. The second mesh is a simple cuboid test mesh modelled by the author with
a smaller cuboid as a cavity. The cavity is slightly displaced from the center along the z−axis to
cause a bending motion instead of simple inflation. The isometric and front view is shown in
Figure 3.2.

Daniel Wilmes University of Twente

CHAPTER 3. IMPLEMENTATION 15

Figure 3.1: Isometric and front view of the endoscope mesh. It contains three pressure cavities (green)
that allows the end-effector to bend around the x− and z−axis

Figure 3.2: Isometric and front view of the test cuboid mesh. It contains one pressure cavity (green) just
above its center to bend around the x−axis.

3.3 Features and workflow

This section will roughly explain how the implementation works and how it is used. In reference
to the MoSCoW-diagram Figure 1.2 the implemented features are the following.

• Soft actuator simulation and gradients of any parameter from any loss function

• Mesh visualization

• 2 Optimization schemes (Gradient descent and NADAM)

• Support for an arbitrary number of pressure chambers

• 2 approaches to internal forces (Spring-mesh and cauchy stress)

The workflow of the program can been shown in a number of block-flow-diagrams and are
explained in the following subsections.

3.3.1 Top-level

The top-level diagram is depicted in Figure 3.3. At the highest level the code starts with the
definition of the constants that define the simulation. These are put at the beginning of the
diagram as they’re always necessary and are fittingly defined in the beginning of the Python
file. These consist of mesh parameters for the geometry and the material. For the simulation a
number of constants for Equation 2.2 - Equation 2.17 are set.

The next step is the mesh pre-processing where the stl-files are tetrahedralized and all neces-
sary mesh data like the pressure chamber surfaces and mesh elements returned to the program.
With the pre-processing done the main process fo the code can begin. Because it may be useful
for the end-user to just simulate, for instance when testing damping factors, a bool was defined
that allows choosing between performing optimization and only simulating. If optimization is
chosen more parameters need to be defined for the conditions of the optimization. Afterwards

Robotics and Mechatronics Daniel Wilmes

16 A general 3D optimization framework for pressure-driven soft robotic actuators

the optimization loop runs where the simulation including gradient calculation is perfomed
and afterwards the parameters to optimize updated. The user has the choice to save the vertex
data, face data, optimized parameters and losses of the optimization or simulation. The last
step is visualization where all time steps of the final simulation are shown.

3.3.2 Pre-processing

The pre-processing is shown in Figure 3.4. It consists of two broad steps. The first is the com-
bination of the given stl-files and the tetrahedralization. The second is the processing of the
resulting tetrahedra-mesh to obtain a number of necessary arrays for the simulation.

The first step is defining two constraint constants for tetgen. Their purpose is controlling the
quality and resolution of the resulting tetrahedra mesh. The first processing step is loading the
stl-files using numpy-stl. The outer mesh and cavity stl’s can be concatenated and saved in a
poly-file which is a general polygonal mesh file format that can be used as input to tetgen. It
also supports the definition of holes for cavities and different ID’s for nodes and faces. These
functions can be used to later identify the different faces and ID’s for the cavities. This file can
then be fed into tetgen with the previously defined constraints to produce the tetrahedralized
mesh.

The second part starts with loading the tetgen output which consists of nodes, faces, edges
and elements. Afterwards three important data arrays are created by processing the tetrahedra
data. Note that this processing does not produce new data but rather reorganizes the available
ones into new arrays for performance reasons. The first one is an array containing all adjacent
elements for each node for fast calculation of the mass and volume of a given node. The second
is a dictionary containing the ID’s of the cavity surface faces for each pressure chamber. The
key is the chamber ID and the content a list with the ID’s. Lastly all data is returned to the main
program.

3.3.3 Simulation procedure

The main steps of the simulation procedure consists of the initialization and the simulation
loop itself. The first step is determining if the initialization is even necessary because during
optimization there is no reason to waste time with initialization.

Because Taichi utilizes the GPU to speed up it’s computation it’s necessary to explicitly define
the variables in taichi-format to use them on the GPU similar to buffers in compute shaders
[86]. Furthermore, memory needs to be allocated manually by defining the sizes and data-
types of the arrays. After the variables are defined and allocated correctly they can be initialized
using the numpy arrays and dictionaries from the pre-processing and the previously defined
constants for the simulation. As a final preparation step the taichi functions need to compiled
by running them once.

The simulation loop then consists of checking whether the loop is finished and if not sum up
the forces for the current time step. The first one is the pressure on the cavity surfaces from
Equation 2.15. Afterwards a constant expression is used to determine at compile-time which
internal forces model is used and the appropriate equations applied. Lastly the damping forces
are added and the forces and velocities integrated. After the pre-defined number of steps is
reached the program may calculate the desired gradients assuming optimization is performed.

Daniel Wilmes University of Twente

CHAPTER 3. IMPLEMENTATION 17

Figure 3.3: Top-level diagram of the developed program. The steps "Mesh pre-processing" and "Simu-
late" are shown in more detail in Figure 3.4 and Figure 3.5, respectively.

Robotics and Mechatronics Daniel Wilmes

18 A general 3D optimization framework for pressure-driven soft robotic actuators

Figure 3.4: Pre-processing steps to obtain all necessary data for the program from stl-files.

Daniel Wilmes University of Twente

CHAPTER 3. IMPLEMENTATION 19

Figure 3.5: Flow diagram showing the steps of the simulation. The initialization is optional to avoid
unnecessary steps when repeatedly simulating during optimization.

Robotics and Mechatronics Daniel Wilmes

20 A general 3D optimization framework for pressure-driven soft robotic actuators

4 Verification

This chapter is dedicated to explaining and performing the verification for the underlying sim-
ulation. It is split into the design of the verification process, the software setup and lastly the
results and their interpretation.

4.1 Design

To verify the simulation, Abaqus [87] is used. Abaqus has both implicit and explicit FEM tools
for a variety of hyper-elastic materials models, and gives control over meshing behaviour and
rank of interpolation inside elements. Furthermore, it allows exporting the stress tensor, strains
and displacements on a per-element and per-node basis. This enables a quantitative compar-
ison between the developed simulation and a high-quality solution from Abaqus as an estab-
lished FEM solver.

The compared data will be the per-node displacement in the bending direction. This is be-
cause in an isotropic material checking for one direction should suffice as the other directions
don’t differ calculation wise. Also, the volume forces influence the bending as well. Because
the input meshes for both Abaqus and the simulation are stl-files have different tetrahedral-
ization algorithms, it is necessary to generate an interpolation field from the data to quant-
itatively compare them. This interpolation is performed using scipy’s LinearNDInterpolation
function to generate a field from the exported Abaqus data. The field will be evaluated at the
node positions of the simulation, which is expected to give sufficiently accurate information
for verification.

To verify that the implementation of the pressure and internal forces are correct, a total of 4 sets
of data will be compared. This includes the two presented meshes at two different pressures.
The displacement error can then be visualized by showing the deformed mesh with a color-
map that shows the displacement error for every position on the mesh. This gives an intuitive
idea of how accurate the simulation is, what are the minimum and maximum error, and which
positions are worst.

Furthermore, a graph showing the error in dependence of the tetrahedralization resolution of
the simulation. This gives both an idea of how important the tetrahedralization is as well as
strong evidence for or against the implementation. This is because, ideally, the simulation
should get closer to Abaqus as the resolution gets closer to its regular tetrahedra.

To be clear about the calculation of the error the following equations sums it up.

en = |dz (n)−dz,ABAQUS(xn , yn , zn)| (4.1)

with en being the error of node n, dz (n) the z−displacement of node n in the simulation and
dz,ABAQUS(xn , yn , zn) the z−displacement in the interpolation field at the coordinates of node
n.

4.2 Setup

Because the goal of the verification is to ensure that the underlying calculations of the simula-
tion are correct, it is required to model the system in Abaqus as close as possible to the methods
used in the simulation. Because of this, the elements will be linear and maintain the standard
settings for everything else. The exact model parameters used are the following.

• Yeoh material parameters for silicone rubber from [88]

– C1 = 0.24162

– C2 = 0.19977

Daniel Wilmes University of Twente

CHAPTER 4. VERIFICATION 21

– C3 =−0.00541

– D1 = 1.0

– α= 0.05 (Section 2.5) by trial and error for the spring-mesh

• Meshes

– Endoscope at pressures p1 = 1kPa and p2 = 2kPa

– Cuboid at pressures p1 = 2kPa and p2 = 3kPa

Nodes on one side of the mesh are fixed, as boundary conditions. These fixed planes can be
seen in Figure 4.1a - Figure 4.4b.

For the simulation, the number of steps varies depending on the pressure because higher pres-
sure need more time to reach steady state. However, since only the final deformation is inter-
esting, this is not crucially important for the verification. The step size is 0.0005 seconds.

4.3 Results and Interpretation

As mentioned in Section 4.1 the results will be presented in a number of 3D plots showing
the results of the 4 datasets for both Abaqus and the simulation. The Abaqus results use a
colormap for the displacement in z−direction while the simulation uses the magnitude error
of the z−displacement from Equation 4.1 as a colormap for the vertices. The following plots
show each case with the Abaqus solution and the error in the developed simulation.

(a) Abaqus, Test Cuboid, 2kPa. Color indicates displace-
ment along z−axis.

(b) Simulation, Test Cuboid, 2kPa, Cauchy stress forces.
Color indicates absolute error to the Abaqus solution.

(c) Simulation, Test Cuboid, 3kPa, Spring-mesh. Color
indicates absolute error to the Abaqus solution.

Figure 4.1: Abaqus and Simulation results in comparison. Using cauchy stress the vertices at the right
end have a error of about 0.04mm, which amounts to < 1% deviation from Abaqus. As a spring-mesh
the end-surface has an error of about 0.135mm, amounting to about 2.9%.

There are a few interesting observations to make here. First of all, when ignoring the quantit-
ative error indicated by the color-maps the solutions all have a similar shape compared to the
ground truth of Abaqus. This indicates that the overall behaviour is correctly simulated and
there are no major breaking issues in regard to any forces. The graphs of Figure 4.5 strongly

Robotics and Mechatronics Daniel Wilmes

22 A general 3D optimization framework for pressure-driven soft robotic actuators

(a) Abaqus, Test Cuboid, 3kPa. Color indicates displace-
ment along z−axis.

(b) Simulation, Test Cuboid, 3kPa, Cauchy stress forces.
Color indicates absolute error to the Abaqus solution.

(c) Simulation, Test Cuboid, 3kPa, Spring-mesh. Color
indicates absolute error to the Abaqus solution.

Figure 4.2: Abaqus and Simulation results in comparison. Using cauchy stress the vertices at the right
end have an error of about 0.63mm, which amounts to about 6% deviation. As a spring-mesh the end-
surface has an error of about 1.47mm, amounting to about 15.5%.

support this claim as the error decreases and seemingly approaches zero with increasing resol-
ution.

Second, looking at the absolute error, it can be seen that the points of maximum difference are,
interestingly, not at the very end of the model where the maximum displacement occurs when
using cauchy stress, but rather appear on the bulge of the pressure chambers. It is possible that
the bulge has not fully relaxed or reached steady state yet because the author focused on the
end-effector standing still at the final time step and ignored the other parts of the mesh. Altern-
atively it could be caused by higher errors at large strains due to tetrahedralization differences.

Third, it’s noteworthy how different the tetrahedralizations are and how similar the solutions
are despite it. Especially for such non-linear problems, FEM is infamously dependent on the
quality of tetrahedralization and one may argue that the larger tetrahedra are expected to neg-
atively affect the solutions even stronger than the measured errors indicate [89]. Abaqus’ tet-
rahedralization is very regular while tetgen’s depends on the constraint factors and mesh geo-
metry. Figure 4.5 shows that these differences become negligible for sufficiently high resolu-
tions.

Lastly, the error at the ends of the meshes are all within a few percent deviation under cauchy
stress forces. This is evidence that there are no issues with the implementation because mis-
takes in the underlying calculations are expected to cause more significant issues that cannot
be explained through e.g. different tetrahedralizations, lower resolutions or not having reached
perfect force equilibrium within the time horizon. Because the spring-mesh is a less physically
motivated approach there are more issues. In particular, the volume conservation force has no
obvious relation to material parameters, meaning the author had to approximate a value based

Daniel Wilmes University of Twente

CHAPTER 4. VERIFICATION 23

(a) Abaqus, Endoscope model, 1kPa. Color indicates dis-
placement along z−axis.

(b) Simulation, Endoscope model, 1kPa, Cauchy stress
forces. Color indicates absolute error to the Abaqus solu-
tion.

(c) Simulation, Endoscope model, 1kPa, Spring-mesh.
Color indicates absolute error to the Abaqus solution.

Figure 4.3: Abaqus and Simulation results in comparison. Using cauchy stress the vertices at the right
end in cyan have an error of about 0.27mm, which amounts to about 7% deviation. As a spring-mesh
the end-surface has an error of about 0.6mm, amounting to about 15.7%.

on trial and error to get as close to the reference solution as possible and yet the accuracy is
lower than cauchy stress forces.

Another noteworthy point is the performance of the simulation compared to Abaqus. As it
turns out, the simulation appears to be faster than Abaqus and the speed difference between
the two internal forces models is negligible. The forward simulation runs above real-time
without explicitly focusing on maximizing the performance during development. With a simu-
lated time of about 2−3 seconds until steady state for the larger deformation of the endoscope,
the final state is reached quicker than Abaqus. Even when counting all the preprocessing of the
stl-meshes, tetrahedralization and compiling of the GPU functions the simulation is faster than
Abaqus when counting from submitting the job to its finish. The time step is 0.0005 seconds
with 6000 steps and the total duration of the entire simulation program is about 10 seconds.
The pure simulation, however, runs faster than real-time as the average frames per second are
between 2500 and 6000, depending on the mesh. Interestingly, the main time consumer of the
simulation is the compilation of the taichi functions, which takes about 5 seconds. In compar-
ison, when everything is already set up in Abaqus, submitting the job until it is finished with
the results available takes 48 seconds. This is a speedup of about 80%. Obviously, Abaqus uses
much more sophisticated preprocessing to check the input file, is much more robust, and saves
all results in a large file. Still, when comparing the whole workflow, meaning the entire setup
of the simulation including meshing, the developed simulation is several orders of magnitude
faster because Abaqus requires minutes of preparation.

Robotics and Mechatronics Daniel Wilmes

24 A general 3D optimization framework for pressure-driven soft robotic actuators

(a) Abaqus, Endoscope model, 2kPa. Color indicates dis-
placement along z−axis.

(b) Simulation, Endoscope model, 2kPa. Color indicates
absolute error to the Abaqus solution.

Figure 4.4: Abaqus and Simulation results in comparison. The vertices at the right end in green-blue
have an error of about 1mm, which amounts to about 7.2% deviation. The spring-mesh simulation
converged but struggled with element inversion and resulting inaccuracies despite varying the damping
factor and pressure ramp.

Lastly, the spring-mesh did not manage to produce meaningful results for the 2kPa endoscope
run because several elements near the pressure chambers inverted. The author attempted to
fix this issue by changing the damping factor and pressure ramp but the issue remained. This
implies some stability issues and arguably makes the approach much less useful.

From this comparison, the author interprets these results as sufficient proof that the underlying
implementation is correct and the remaining steps of the project can be carried out based on it.
Also, because the spring-meshes consistently produced worse results and even struggled with
stability the author is going to use cauchy stress forces exclusively for the rest of the thesis.

Daniel Wilmes University of Twente

CHAPTER 4. VERIFICATION 25

(a) Error graph for cauchy stress. The graph seems to
move towards zero with higher resolution

(b) Error graph for spring mesh and cauchy stress. The
spring mesh forces become unstable at a constraint > 8
because the low resolution causes element inversions.

Figure 4.5: Error over tetrahedralization resolution for both internal forces approaches. The volume
constraint is an absolute limit for the volume of each tetrahedron and thus directly affects the resolution.
Both graphs seem to approach nearly zero error as the resolution increases but the cauchy stress is
consistently better and also maintains stability.

Robotics and Mechatronics Daniel Wilmes

26 A general 3D optimization framework for pressure-driven soft robotic actuators

5 Exploding gradients

This chapter is dedicated to explaining and showing how the issue of exploding gradients is
addressed in the implementation of the framework. This is done by first explaining the math-
ematical background and context of the problem and how it leads to finding the solution. Af-
terwards, some limitations that result from this solution are addressed to make it more robust.
Lastly, a few exemplary plots of a simple optimization and their learning curves are shown.

5.1 Mathematical background and approach

Exploding gradients in automatic differentiation is a problem that arises due to using the chain
rule of differentiation [90]. To concisely explain how this leads to the gradients exploding the
following equation shows the general expression of the gradients for the addition and multi-
plication operator [91].

c = a +b =⇒ ∂c = ∂a +∂b

c = a ·b =⇒ ∂c = b ·∂a +a ·∂b
(5.1)

Now considering the forward euler integration of Equation 2.2 it becomes clear that integrat-
ing over several thousand time-steps results in a chain of multiplication with roughly the same
number of links as there are time-steps. Consequently, if many individual links of that chain
contain values > 2 then the variable containing the total gradient will grow larger and eventu-
ally overflow. As an example, if only the first 100 links in the chain are exactly 2 then the value
will be 2100 ≈ 1.26·1030 which is beyond the capability of a 32-bit floating point number. Even a
64-bit double will fail at 2200 ≈ 1.6 ·1060. Hence it is necessary to scale the links to reliably avoid
this.

Looking at the literature the issue of exploding or vanishing gradients certainly is not novel.
This is because it is not unique to differentiable numerical simulations but rather a con-
sequence of auto-differentiation of large chains of computations and recursions [92] [93] due
to using the chain-rule of differentiation. Consequently, the issue also appears in neural net-
works once they reach a certain size or simply because of recursive layers. Due to the wave
of research in this area in the recent years, the issue has been discussed and addressed many
times [94] [95] [96]. The problem here is that the gradients of the simulation exist under differ-
ent conditions compared to neural networks. In particular, neural networks have less recursion
compared to the thousands of time steps, different non-linearities and helpful pre-processing
like input and weight normalization to put limits on the gradients. Hence the methods used in
the literature are not necessarily directly applicable.

Instead it makes more sense to look into what auto-differentiation does to the Euler integra-
tion term. If a connection between the values at integration and the gradients at a given time-
step can be found, the solution is to scale those accordingly because all simulation parameters
depend on this integration, meaning scaling it will affect all parameters. Also note that the
used auto-differentation framework of Taichi does not give access to the numerical values of
the gradients of each time step. However, it does allow using custom functions and different
function arguments during differentiation, meaning the original integration expression can be
scaled and then differentiated. The expressions of gradients for different numerical integra-
tion forms have been studied before [97]. An interesting observation to make is that the total
gradient can be formulated in a numerical integration form in a similar way to the original dif-
ferential equation. Mathematically speaking this means that the gradient of the velocity term
in the integration of the position

xn(t) = xn(t −∆t)+ vn(t) ·∆t (5.2)

Daniel Wilmes University of Twente

CHAPTER 5. EXPLODING GRADIENTS 27

Figure 5.1: Exemplary quadratic loss function to demonstrate importance of gradient magnitude in-
formation

can be written as
∂vn(t)

∂p
= ∂

dt

(
∂x

d p

)
(5.3)

as shown in [97] and then integrated through time in parallel to the original integration to ob-
tain the gradient. The variable p is any parameter of the simulation for which gradients are
desired. While this is not how backwards auto-differentiation is performed algorithmically it
implies that this velocity term can be scaled during differentiation to scale the gradients ac-
cordingly. This means that the solution to the question is adding a scaling factor s as an argu-
ment to the function and using 1.0 during forward simulation and some smaller factor when
differentiating.

vn(t) = (vn(t −∆t)+Fn(t) ·∆t) · s (5.4)

This solution seems simplistic at first but has useful mathematical properties. First, it main-
tains gradient direction, meaning the resulting gradients point in the same direction and can
therefore be used, just scaled down. Second, because it is a single linear operation on the gradi-
ents of each time step meaning it also maintains magnitude information. To understand what
this means consider a quadratic loss function like shown in Figure 5.1. The gradient of the loss
function is stronger the further away the value is from the optimum. Because of this, the op-
timization will naturally converge to the optimum if the size of the value change per iteration
is directly proportional to the gradient like in gradient descent. Scaling down the gradient per
time step may change the exact magnitude and even the order of magnitude between consec-
utive gradients but keeps this property overall.

5.2 Issues and implemented remedies

While it is quite easy to avoid exploding gradients with this method, some new problems arise.
The first one is that the relation between the total scale and the per time step scaling is not
obvious, meaning it is hard to intuitively get a good value. Consequently the total gradient may
be useless for the variable to optimize if it is scale is vastly different compared to the variable.
For instance, a variable that has its optimum between 1.0 and 2.0 may get gradients somewhere
around 10−10 with a too small factor s. The solution to this is to first normalize the order of
magnitude of the total gradient. Then the order of magnitude of the variable in question and
the learning rate can be used to scale it to sensible ranges. To be more clear the following

Robotics and Mechatronics Daniel Wilmes

28 A general 3D optimization framework for pressure-driven soft robotic actuators

equation shows the calculation:

zg,initial =
{

10(blog10|g initial|c), if
∣∣ginitial

∣∣> 0.0

1.0, otherwise

zweight, current =
{

10(blog10|wcurrent|c−1), if |wcurrent| > m

0.1 ·m, otherwise

gscaled = g
zweight, current

zg,initial
,

(5.5)

where z are the orders of magnitude of the first gradient g and current variable w in question
and gscaled the gradient after the normalization and scaling operation. The constant m determ-
ines the minimum rate of change per iteration for a given variable. This scales the gradient to
one order of magnitude lower as the variable to be adjusted. Practically, this means that the
gradient will be limited by |gscaled| ∈ [0,m). The learning rate is not included in Equation 5.5
because it would assume the usage of a specific optimization scheme.

Still, assuming gradient descent, this has the neat side effect of giving the learning rate an intu-
itive interpretation as the maximum percentage of change per iteration. For instance, a learn-
ing rate = 0.1 would imply the value changes by a maximum of 10% per iteration. Depending
on the use case this may or may not be a useful quality because different variables may need
vastly different learning rates with this approach. Hence, the user is encouraged to adapt this
calculation in accordance to their needs. It is also possible to scale them by finding the largest
gradient of all variables in question so that relative magnitude information between multiple
variables is not lost. The author believes this scaling ability to be a useful property because it
gives tighter control over the learning behaviour.

A potential problem of this approach is related to the scaling and the magnitude information
of the gradients. Because the gradients at the optimum are 0 regardless of the scaling factor s
the differences between subsequent gradients of the simulation are stronger the further away
the initial gradients are from 0. Consequently, too small scaling factors s make the usage of
Equation 5.5 less applicable as the initial order of magnitude that is used may make the scale
of later gradients unusable or even unstable. Hence care must be taken when choosing a factor
and ideally the order of magnitude of the unscaled gradients g should be between 1 and 103 if
possible.

In general, future researchers dealing with this are encouraged to exploit the availability of this
gradient information to dynamically scale them to their needs. Considering that there is no
information about the ideal scale of the gradients this approach seems to be a solution that
is, at least conditionally, able to produce useful gradients. The next section will show how this
approach can work with a simple example. The following chapters can be interpreted as further
and more complex evidence.

5.3 Exemplary gradients

The example is an optimization of the maximum pressure applied to the cuboid test mesh.
The loss function wants the end effector to move 10mm downwards the z−axis from the initial
position. This is formulated as follows:

L =
n∑

k=1
(xk,tmax,z −xk,0,z +10)2, (5.6)

where L is the total loss, n the number of nodes at the end surface, x the position of the k−th of
these nodes at the final time-step tmax and t = 0 and only its z−component. The initial pressure
is 1.0kPa (deka-kilo-Pascal due to the units of the model) because from the verification runs it is

Daniel Wilmes University of Twente

CHAPTER 5. EXPLODING GRADIENTS 29

clear that this is far from the optimal value. The threshold m is set to 0.1 because this is the order
of magnitude of reasonable pressures for this robot from experience with the verification. The
gradients are scaled in the exact way it was explained above and a learning rate of 1.0 is used
because the optimum is expected to be several times higher than the initial value. The scaling
factor s from Equation 5.4 is chosen to be 10−3. The plots will show the deformed optimized
mesh, loss function, pressure and the scaled and unscaled gradients.

0 2 4 6 8
Iteration

0

500

1000

1500

2000

2500

3000

Loss

0 2 4 6 8
Iteration

0.10

0.15

0.20

0.25

0.30

0.35

[p
]=

da
kP

a

Pressure

Figure 5.2: Loss function and pressure during optimization. Notice the ideal shape of the loss and pres-
sure. The final loss is 0.88 and the final pressure 36.1kPa

0 2 4 6 8
Iteration

−400

−350

−300

−250

−200

−150

−100

−50

0
Unscaled Gradients

0 2 4 6 8
Iteration

−0.040

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000
Scaled Gradients

Figure 5.3: Unscaled and scaled gradients for the pressure optimization.

Looking at Figure 5.2 the first observation is the seemingly ideal shape of the learning curve and
the low number of iterations needed to reach the global optimum. The loss function converges
to nearly zero because the goal is simple and reachable by increasing the pressure. Figure 5.3
shows the gradients both scaled and unscaled. These two figures together give an idea about
how well the scaling works. The order of magnitude of the unscaled gradients is far too large to
be useful. In the first 3 steps of the optimization the pressure is below m = 0.1, the gradients are
scaled to 10−2. Afterwards the value is above m but still scaled to 10−2 because of Equation 5.5.
One may wonder why the gradient becomes stronger during the first few iterations. This is the-
orized to be caused by the non-linearities of the simulation. In particular, the material model
is a third order equation, meaning there is a valley during which an increase in pressure has a
stronger effect on the deformation before it gets diminishing returns. Lastly, the effect of the
maintained gradient magnitude information is very visible here as the weaker gradients cause
convergence without fluctuations towards the end. Figure 5.3 shows how the gradient is pos-
itive in the final step, implying that the breaking condition was reached just as the pressure
became slightly too large for the exact optimum.

Robotics and Mechatronics Daniel Wilmes

30 A general 3D optimization framework for pressure-driven soft robotic actuators

Figure 5.4: Final deformation of the optimized mesh. As can be seen from the axis, the end effector is
nearly exactly 10mm lower than the initial position as expected from the loss function.

Figure 5.4 shows the deformed mesh with optimized pressure. It can be seen how the end ef-
fector surface seems to be almost exactly 10mm lower than the initial position. This is expected
considering the loss of nearly 0.

Despite the seemingly perfect behaviour in this example there are some things to take into ac-
count when judging the scheme. First, some prior information about the mesh and reasonable
pressures was used to improve the speed of convergence. A lower threshold m or learning rate
could have slowed down the process considerably. That being said, finding good values is ar-
guably easy because they are directly related to the change in the loss function, meaning even
if nothing is initially known about the optimal values a few test runs over few iterations will
quickly give some intuition to what are good values. Lastly, while not implemented in this case,
it is theoretically possible to tune m adaptively similar to how certain optimization schemes
tune the learning rate [98]. This could be done, for instance, by checking if the minimal rate of
change is too large or small by measuring the change in the loss function per iteration.

Daniel Wilmes University of Twente

31

6 Endoscope controller synthesis

This chapter is dedicated to the third research question regarding controller synthesis. The idea
is to use the analytical gradients from the simulation to train a small neural network controller
for the endoscope model. Section 6.1 will explain in detail how the controller is trained. Sec-
tion 6.2 shows the results of the optimization and interpret them. Lastly, Section 6.3 compares
the results to competing solutions from the literature and judges the training.

6.1 Controller and training design

The input to the controller is the desired target position in the x − z−plane. There are a total of
four inputs where each component of the target vector is split at zero, i.e. into its positive and
negative components. To avoid confusion, the inputs are calculated as follows:

i1 = max(0, tx), i2 = min(0, tx), i3 = max(0, tz), i4 = min(0, tz) (6.1)

tx is the x−component of the target vector and tz the z−component accordingly. Each of these
inputs is then multiplied with a weight and summed. Afterwards, to avoid instability and van-
ishing gradients from clamping, a standard logistic function scaled between 0 and 2.0kPa is
used to scale the pressure.

p(x) = 0.2

1+e−x (6.2)

Equation 6.1 is necessary because the chambers are aligned in an asymmetrical way meaning
the weights for positive and negative values in the target vector need to be different. To be clear
about the computation, this means there will be a total of 12 weights from 4 inputs times 3
chambers and Equation 6.2 acts as the activation and output function for the pressure. The
architecture can be seen as a graph in Figure 6.1.

Figure 6.1: Architecture of the controller. The activation function for each chamber C is the sigmoid of
Equation 6.2

The network is used to transform the target position into a pressure for the three chambers,
meaning it is an open loop controller. The loss function is the squared error between the end
effector position, which is the top right surface in Figure 3.1, and the target position at the end
of the simulation. The formulation is the same as Equation 5.6 but with x− and z−components
and a varying distance for each direction. The training will use mini-batches of 4 points each
with target points randomly sampled in a circle of 5mm around the initial position in the x −
z−plane while making sure each batch contains one point from each quadrant in the plane.

Robotics and Mechatronics Daniel Wilmes

32 A general 3D optimization framework for pressure-driven soft robotic actuators

0 5 10 15 20 25 30
Iteration

50

100

150

200

250

300

350

400

Lo
ss

Loss function over training iterations
Average per batch
First quadrant
Second quadrant
Third quadrant
Fourth quadrant

Figure 6.2: Loss for each quadrant in the x − z−plane and the average in comparison

The optimization scheme will be stochastic gradient descent because it has been shown to
generalize more reliably for certain use cases [99] even if this is not a deep learning scenario.

Because the purpose of this study is to act as a proof of concept for training controllers, the
performance of the controller (e.g. its error to the target position) is not the main priority, hence
why it only has one simple layer. Instead, the main points of interest are the training speed
and convergence behaviour as competing solutions in literature have to rely on reinforcement
learning or work-arounds to get gradients for training.

In particular, it is expected that the training will only take a few iterations when using such a
simple network and appropriate mini-batches. The time-step is 0.0005 seconds with a total
of 3000 steps per iteration which means 1.5 seconds. The learning rate for gradient descent
was chosen to be 1.0 with the scaling scheme presented in Chapter 5. The threshold m from
Equation 5.5 is 0.1 again. The scale s from Equation 5.4 is set to 10−2.

6.2 Results

Because the training used mini-batches consisting of the 4 quadrants in the x − z−plane, the
loss function can be shown as an average and for the individual quadrants. This gives insight
into the overall training as well as possible issues related to how the optimization was formu-
lated.

Figure 6.2 shows the loss for each quadrant individually and the average. With a few individual
steps of exception, the controller improves steadily. As expected the minimum does not appear
to be near 0 because the architecture of the controller is as simple as it gets. It can be seen that
the controller generalizes well to all 4 quadrants of the target plane because the loss for each
quadrant is nearly the same over the course of training. The convergence behaviour seems
ideal and the minimal bumps, for instance around iteration 23, are arguably negligible.

The speed of convergence seems nearly ideal. The weights are initialized at 0 which is theorized
to be the reason for the very first step being slow. Afterwards, however, the training rapidly con-
verges towards the optimum and slows down towards the end due to the gradients becoming
weaker. Even though this case is a lot more complex the loss curve is very similar to the simple
example from Chapter 5.

For completion, Figure 6.3 shows the weights of the controller over the training. The following
numbering of the chambers presented in Figure 3.1 is used: chamber 1 is the top right, chamber
2 top left and chamber 3 the bottom one.

Daniel Wilmes University of Twente

CHAPTER 6. ENDOSCOPE CONTROLLER SYNTHESIS 33

0 5 10 15 20 25 30
Iteration

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Chamber 1 weights

x+
x-
z+
z-

0 5 10 15 20 25 30
Iteration

−0.2

0.0

0.2

0.4

0.6

Chamber 2 weights
x+
x-
z+
z-

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

Chamber 3 weights
x+
x-
z+
z-

Figure 6.3: Controller weights for the pressure chambers. Chambers 1 and 2 are symmetrical about the
y −z−plane and it shows in the weights. Only inflating chamber 3 bends in the positive z−direction like
in the verification case, hence why the weights are easier to interpret. The legend refers to the weights
associated to the 4 inputs of Equation 6.1 where z+ is the positive z−direction etc.

Robotics and Mechatronics Daniel Wilmes

34 A general 3D optimization framework for pressure-driven soft robotic actuators

In regards to the training duration, a total of 30 ·4 = 120 runs of the simulation with gradient
calculations were performed in a total of 403 seconds, or about 6 minutes and 43 seconds. This
puts the raw average frames per second to about 893 without accounting for any preventable
overhead, data saving etc. The reason the performance appears so much worse than during the
verification is the gradient calculation and some additional saving and processing procedures.

In particular, the auto-differentiation causes the gradient calculation to be of roughly the same
order of computational complexity as the forward simulation, effectively halving the frames per
second. Furthermore, there is a little more overhead for saving data each iteration, performing
the training etc.

The advantage of using this framework compared to competing approaches in literature is the
significantly reduced development time, especially considering

1. a more straightforward development workflow compared to

• developing an analytical model for analytical controllers

• Setting up an environment for reinforcement learning and training it using trial-
and-error based reward functions

2. with the presented gradient scaling scheme, obtaining functioning gradients does not
take much trial-and-error and tuning effort

6.3 Comparison to reinforcement learning

To add weight to these claims 2 comparisons of robots and controllers with similarly complex
behaviour and controller structure will be presented here. These are based on reinforcement
learning agents and the point is to compare the overall properties of both training schemes
qualitatively.

The first benchmark is [100]. The authors developed a reinforcement learning agent with only
one hidden layer, which is comparable to the zero-hidden-layer model in this chapter in terms
of complexity. The robot is a 3-section honeycomb pneumatic network and has arguably sim-
pler dynamics than the endoscope model due to the honeycomb chambers being a form of
inflatable bladder. Because training speed was of concern for the authors the agent was ini-
tially trained in a simulation and then deployed to a real robot to continue training. Because of
this it’s possible to compare only the simulator training session.

Figure 6.4 shows the reward function for said training session. It took over 500 training episodes
versus the 30 iterations in the developed framework. The reward function can be interpreted
as the inverse of a loss function with some ideal maximum that’s approached. Compared to
the loss function of the presented controller there are three noticeable differences. First, the
large number of steps until some form of convergence is reached. Second, the high frequency
fluctuations. And third, the unsteady nature of the improvement with several smaller maxima
where the performance seems to decrease over the following episodes, including at the very
end.

The high number of episodes necessary is possibly a consequence of the other two points. The
high frequency fluctuations is the exploratory nature of reinforcement learning. Because the
model is formulated as a sequence of actions taken at every time step the model learns by
choosing random ones if it’s uncertain and ends up performing worse if bad choices are made.
This gives rise to the small fluctuations between episodes. The unsteady improvement is also
a consequence of it because not all weight changes of the controller are necessarily correct at
every episode.

The second benchmark [101] is a similar reinforcement learning agent but with a Deep Q Net-
work, meaning it’s more complex with seven hidden layers in this case. The robot is a cable-

Daniel Wilmes University of Twente

CHAPTER 6. ENDOSCOPE CONTROLLER SYNTHESIS 35

Figure 6.4: Q learning reward function over the course of training in the simulator from [100]. With a
comparable controller complexity it takes vastly more steps to reach optimum and the trial-and-error
natures introduces high frequency fluctuations which only on average over several iterations improve
the performance.

driven tentacle capable of bending in 2D. It is trained in a neural-network-based simulation
that learned the dynamics of the robot before training. The reward over the training as well
as the robot is visible in Figure 6.5. Even though the structure of the robot is different and the
controller more complex the issues mentioned before are virtually identical with fluctuations
during training and slow and arguably somewhat unreliable convergence.

(a) Tentacle robot of
[101]

(b) Reward function over training from [101]. Similar to the previous
learning agent there is strong fluctuations and slow convergence

Figure 6.5: The robot and reward function of the reinforcement learning agent.

Based on these graphs some arguments for and against both training approaches can be made.
Training with analytical gradients seems to require about an order of magnitude fewer itera-
tions and the training convergence is much smoother. This comes at the disadvantage of not
being able to explore the environment. The slower and less steady training of the reinforcement
learning agent is caused by exploration and thus is likely to find a better optimum. Gradient
descent is, at least with this formulation, only able to find the closest local optimum, which may
not be sufficient for more complex training setups. Hence one may argue that the pure gradient
training may not converge to a sufficient optimum. There are some potential solutions to this
problem. By exploiting the fast convergence and simulation speed it should be possible to use

Robotics and Mechatronics Daniel Wilmes

36 A general 3D optimization framework for pressure-driven soft robotic actuators

particle swarm optimization [102]. This means initializing the weights in a variety of ways and
letting several starting points converge to their local optima and then moving all particles to-
wards this point in hopes of finding a sufficient solution. The problem here is that the number
of initial solutions grows exponentially with the number of weights in the network, meaning it
is not applicable to very complex controllers.

A much better remedy is not viewing pure gradient learning and reinforcement learning as
opposites because reinforcement learning also involves finding correct gradients to adjust the
weights of the network. While this method has not been used here it should be possible to
exploit the availability of analytical gradients and apply them to a reinforcement learning agent
to reduce the number of iterations required. This is because the trial-and-error attempts of the
agent can be interpreted as a form of calculating numerical gradients by adjusting the weights
randomly. Hence the analytical gradients can give insight into the direction of the closest local
optimum while still allowing the agent to explore without having to try various random micro-
steps. Future researchers are encouraged to explore this option.

As a last point, there does not seem to be much quantitative data on total controller develop-
ment time with competing methods. Judging from the fact that entire papers are dedicated to
developing a single controller for specific robots the author claims that this framework could
potentially reduce the total development time of soft robotic controllers by several orders of
magnitude due to the setup and convergence speed in the simulation when pure gradient des-
cent training is used.

Daniel Wilmes University of Twente

37

7 Meta-Optimization

This chapter is dedicated to performing speed-targeted meta-optimization and its results. Sec-
tion 7.1 will explain how the problem is formulated and implemented. Section 7.2 shows the
results in a number of plots and interprets them.

7.1 Optimization design

The problem will be approached by using multiple damping factors β from Equation 2.17,
each responsible for a 50ms time-window of the simulation. The simulation conditions will
be identical to the example of Section 5.3. Except this time it will start with the final optimized
pressure of 3.61kPa and 25% fewer maximum steps, meaning the total duration is 25% shorter.
This means the total simulation duration went from 4000 steps = 2 seconds to 3000 steps = 1.5
seconds. Now at the end of the simulation the optimization goal of Equation 5.6 is not reached
yet. The goal is to optimize the damping factors for each time-window to make the model
reach the target despite the shorter duration. To ensure that the damping is not reduced to hit
the target at the final step by fluctuating heavily the loss function is slightly adapted.

L =
tmax∑

t=0.99·tmax

n∑
k=1

(xk,t ,z −xk,0,z +10)2 + (
∥∥vk,t

∥∥ ·0.1)2 (7.1)

It now sums the values up over the last percent of time of the simulation and adds the squared
magnitude of the velocity to the loss. The scaling of 0.1 makes the weight of both terms roughly
the same for the loss. This means the simulation is incentivised to stand still at the target posi-
tion at the end of the simulation.

7.2 Results

Similar to Section 5.3 the presented plots are the loss function, a few exemplary β’s from differ-
ent time-windows and the scaled gradients.

Figure 7.1a shows the loss function and a moving average of it. As can be seen the loss sinks in
a much less steady way compared to the previous optimizations. This is theorized to be caused
by the fact that changing the damping will slightly change the dynamics. This potentially ends
the simulation in a higher loss state (further away from target from a wobbling motion for in-
stance) even though the analytical gradient suggests a lower loss. This is substantiated by the
fact that on average the loss consistently sinks at a rate similarly fast to the previous chapters
as visible in the moving average. This problem could potentially be solved by a more robust
formulation of the problem / loss function, as this is arguably the simplest approach possible.
To substantiate this point Figure 7.1b shows the loss of several consecutive simulations runs
without adjusting the damping. There is significant variance even though all parameters are
identical for all runs, meaning the loss function is not well-behaved for this use case.

That the training worked similarly well as in previous chapters despite the rough loss function
can be seen from Figure 7.2a. The damping factors all converge to different target values and
shoot right towards them. The shape is very similar to the pressure in Figure 5.2 and the weights
in Figure 6.3. The scaled gradients indicate the same as the magnitude of the gradients drops
close to zero towards the end.

The final loss is 215, which may give the impression that the goal was not nearly reached. This
is a misconception caused by the loss function compared to before. This function loops over
30 time steps and adds the velocity term of the 22 nodes of the end surface, which causes it to
be significantly higher despite being quite close to the optimum. Still, it may be argued that the

Robotics and Mechatronics Daniel Wilmes

38 A general 3D optimization framework for pressure-driven soft robotic actuators

(a) Loss function and moving average for the meta-
optimization. The function is significantly less smooth
compared to the optimizations in the previous chapters.

(b) Loss of several consecutive runs without optimiza-
tion with identical parameters. There are significant dif-
ferences caused by the ill-behaved loss function.

Figure 7.1: Loss over optimization and for several runs with identical parameters.

simplicity of the problem formulation caused the optimum to be this high and a different form
of meta-optimization could give better results.

The loss function and damping factors can be interpreted using information from Chapter 5
and some knowledge regarding the dynamics of the model. The initially high loss function is a
combination of the velocity and position error at the end. The given pressure caused the model
to reach the target position about half a second later than in this 25% shorter run, meaning at
the final time-step it has not quite reached the goal and moves towards it. The damping factors
Figure 7.2a are harder to interpret because different time-windows adjust towards seemingly
arbitrary factors without any obvious order. This is theorized to be caused by the model trying
to affect the settling motion / dynamics such that it moves quicker to reach the target but in-
crease the damping at other points to decrease the final velocity, meaning the individual factors
are not ordered intuitively.

Overall, these results imply that the generality of the framework can be exploited to perform
meta-optimization. The formulation of the loss function was arguably sub-optimal and it is
expected that a more robust approach to either the loss function or meta-optimization as a
whole could both improve the convergence and minimum of the loss.

Daniel Wilmes University of Twente

CHAPTER 7. META-OPTIMIZATION 39

(a) Exemplary β’s for certain time-windows over the
course of optimization. Notice how their magnitude is
not sorted by their time because different points in time
require different damping for reaching the target

(b) scaled gradients for all β’s. The high number makes
individual identification impossible but the weakening
magnitude due to reaching the optimum is still visible.

Figure 7.2: A few β’s over the course of optimization and the scaled gradients for all

Robotics and Mechatronics Daniel Wilmes

40 A general 3D optimization framework for pressure-driven soft robotic actuators

8 Conclusions

Soft robotic actuators are a rapidly growing area of research for medical and manufacturing
purposes due to their natural shape adaptation and wide range of possible motions. These
properties, however, introduce difficulties in the development of optimal shapes and control-
lers because their physical behaviour is hard for humans to intuitively predict. This research
focused on the development of a general optimization framework with analytical gradients to
find a generally working approach to optimal actuator and controller development. The main
research question of the thesis was

"How can a general optimization framework with analytical gradients for pressure-driven
soft robotic actuators be modelled and implemented?"

This overarching question was split into multiple sub-questions. The first was in regard to mod-
elling the soft robot simulation:

"How accurate is the developed simulation compared to established FEM tools in regards to
the predicted deformation?"
Solutions to modelling the forces applied to pressure-driven soft actuators were initially found
in a literature review. Two different approaches to modelling the internal forces of hyperelastic
bodies have been implemented and verified using Abaqus. The first method is by viewing the
edges of the tetrahedral mesh as damped springs. The second one involves calculating the
Cauchy stress of each element and applying the resulting forces to each node. The verifica-
tion shows that both approaches produce deformed shapes roughly similar to Abaqus but the
cauchy-stress formulation deviates by only up to 7.2% even for larger deformation while the
displacement error of the spring-mesh is up to 15.7% and did not successfully converge at all
for one verification case. Additionally, the dependency of the tetrahedralization resolution on
one test case was graphed and showed a steady decrease in accuracy with lower resolution but
very good results for higher resolutions. The verification also showed that the simulation is
faster than Abaqus. Running the entire developed program was about 80% faster than only
submitting and running the FEM job in Abaqus, meaning the model- and simulation-setup
process in Abaqus is excluded in the comparison.

The second sub-question intended to find a solution to the problem of exploding gradients in
large-time-horizon auto-differentiation:

"How can the issue of exploding/vanishing gradients from large time horizons for auto-
differentiation be addressed?"
This question has been addressed by analysing the mathematical background of auto-
differentiation regarding numerical integration. By finding the general expression of the
differentiated Euler-integration, it was discovered that scaling down the velocity term dur-
ing differentiation the entire gradient of that time step should be scaled down accordingly,
regardless of the loss function and variable to differentiate (Equation 5.4). Consequently the
exploding gradients should disappear because the link in the chain of the derivatives are scaled
down to avoid explosion. Because this produces gradients of arbitrary order of magnitude, an
additional normalization scheme has been proposed (Equation 5.5), which semi-automatically
scales the resulting gradients to appropriates sizes with a single user defined variable. The ap-
proach has been shown to produce meaningful gradients in a test case for optimization the
pressure input to a cuboid mesh with the intention of bending it downwards by 10mm.

The third sub-question applied the framework to controller development as a proof of concept
and compared the results with methods from the literature:

Daniel Wilmes University of Twente

CHAPTER 8. CONCLUSIONS 41

"What are the effects of gradient-based training on the speed and reliability of convergence
for a soft-robotic controller for an endoscope model?"
To answer this question, a simple feed-forward neural network controller for an exemplary
endoscope model with 3 pressure chambers has been trained. The network consisted of only
the input and output layer and used the target position in the 2D-plane of the main axis of the
endoscope as inputs. The results show a steady and smooth learning behaviour until the closest
optimum is reached. The weights of the network are shown to directly move towards their
ideal values without fluctuations or bumps. Two cases of reinforcement learning for similarly
complex models are used as a comparison.

The most important observations are the much higher number of training iterations it takes for
them to converge. The developed framework took 30 iterations to fully converge while the most
similar comparison took 500. Additionally, the convergence behaviour is much less steady. This
causes the reward function to constantly fluctuate slightly and even lets it fall into local minima
several times over the course of training. These results indicate that the developed approach to
optimization frameworks with analytical gradients could significantly improve both develop-
ment and training time for controllers.

The final sub-question analysed the effects of optimizing the performance of the underlying
simulation rather than the robot or controllers:

"What are the effects of performance-targeted meta-optimization of the simulation? Mean-
ing how can the optimization be applied to the speed of the simulation itself?"
The approach consisted of assigning different damping factors to each 50ms time-window of
the simulation and optimizing them to reach the same target position as in the example used
for optimizing the input pressure in the second question. The target was a speed increase of
25% percent by reducing the number of max steps by 25%. For this purpose the loss function
has been adjusted to incorporate the velocity of the end nodes to ensure the target position
is steady. The results show that the damping factors converged into a variety of different val-
ues and the goal was reached approximately. While the convergence of the damping factors
imply a nearly optimal optimization behaviour the loss function turned out to be ill-behaved.
The sub-optimal formulation caused significant variance in the calculated loss from numerical
inaccuracy. This resulted in a very jittery loss function over the course of optimization and is
expected to negatively affect the optimum and convergence. It is theorized that a more robust
approach to meta-optimization could allow larger speed ups and more reliable convergence.
While the results are arguably sub-optimal in terms of convergence this at least confirms the
ability to perform meta-optimization by exploiting the generality of the framework.

In conclusion, the developed framework has been shown to be able to produce meaningful
gradients for different use cases. The issue of exploding gradients is solved conditionally such
that a user can easily tune the gradient-scale to usable sizes. The framework appears capable
of optimizing both individual parameters of the simulation as well as neural network based
controllers with comparatively few iterations and smooth learning behaviour. Furthermore, it
was shown that the generality of the framework can be used to improve itself through a meta-
optimization of the damping intended to reach the final deformation state quicker.

8.1 Limitations

The main limitations of the developed framework are related to the underlying simulation, in
particular:

• Element inversion: The simulation is not robust against element inversion. This is a quite
severe limitations in terms of robustness because very fast inflation and movements can
quickly cause this. The author theorizes that adding this could improve not only the con-
vergence but even potentially allow for larger time steps and easier damping tuning, be-

Robotics and Mechatronics Daniel Wilmes

42 A general 3D optimization framework for pressure-driven soft robotic actuators

cause the velocity of the vertices is less likely to e.g. invert elements or become unstable
otherwise.

• Memory allocation: Taichi requires at least all positions and velocities to be saved in a
large array covering all nodes and time-steps for auto-differentiation. Because the author
did not particularly focus on optimizing memory usage, there are more variables saved
in memory than necessary for easier access during development. This memory limits the
resolution and size of the used meshes.

• Performance: While the GPU kernels of Taichi in conjunction with the explicit integration
scheme are fast compared to established FEM tools, the author did not focus on speed
during development. It is very likely that the performance could be improved signific-
antly when fully analyzing the implementation.

• Collision: The simulation does not support any form of collision. This is a rather strong
limitation as many forms of pressure-driven soft actuators are based on self-collision.
Furthermore, it is necessary to implement continues collision detection with time-of-
impact calculations to get functioning gradients because otherwise the discontinues
nature of collisions does not work with auto-differentiation.

• Multi-material: Using multiple materials for soft robots could massively increase the pos-
sible range of motion as different stiffnesses for different parts of a given robot severely
impact its dynamics. This feature was not implemented in this study but is expected to
be trivial to implement, as the ability to define a different material for each finite element
could be included quickly.

• Interaction with other frameworks: The developed neural network controller was imple-
mented manually by the author rather than through an established library. While it is
theorized that it is possible to combine them, this has not been shown.

• Anisotropy: The current implementation only supports isotropic materials. This may
not be a problem for soft robots made using casting method, but once other materials
are introduced to change the dynamics or the robot is 3D printed, with anisotropy from
fused deposition modelling for instance, this becomes a major limitation.

• Real-world effects: Real soft robots succumb to a number of additional non-linearities
that are non-trivial to implement in a simulation. Some examples include internal fric-
tion and hysteresis. These effects are expected to prevent a direct transition from any
simulation result to the real world.

8.2 Recommendations

Based on the findings in this thesis several recommendations for future research can be made.

• Validation: Currently the simulation is verified through Abaqus but an experimental val-
idation is still necessary to confirm the usability of the framework.

• Other domains: This framework was intended for soft robotic actuators, but the gradient
scaling scheme is expected to generalize to other explicit integration simulations. This
means that, for instance, simulations for electromagnetics, rigid bodies, fluids, or any
other domain could utilize this scheme and implement similar optimization frameworks.
Naturally, multi-physics implementations are possible as well.

• Practical controllers: Future researchers are encouraged to train a more complex control-
ler with realistic use cases using the methods explored here and report both the training
behaviour as well as total development time.

Daniel Wilmes University of Twente

CHAPTER 8. CONCLUSIONS 43

• Topology optimization: A big use-case of this framework could be topology optimization.
Unfortunately, the author did not have the time to implement a sophisticated topology
optimization scheme within the framework. One way could be mesh generation using
voxel-algorithm through a density function defined by the input mesh and optimizing
the density for each cell to perform a certain motion or produce certain forces.

• Better Meta-optimization: While the meta-optimization in the thesis arguably worked
the formulation of the problem was sub-optimal and succumbed to numerical inac-
curacies. It is theorized that a different approach could improve both the maximum pos-
sible speed up as well as the convergence behaviour.

• Automatic gradient scaling: The proposed scheme seems to work quite reliably but still
requires the user to do some trial-and-error tuning of parameters to find good values. It
may be possible to adaptively tune these parameters without user input by making the
program run a few test iterations and tune itself.

• Model predictive control: Because the simulation turned out to be able to run faster than
real-time it may be possible to use the heavily parallelized modelling approach through
CUDA kernels for predictive controllers.

• Better tetrahedralization: While it has been shown that tetgen can produce sufficient
meshes it may be argued that there are better alternatives. Specifically, being able to ob-
tain very regular tetrahedral meshes like in Abaqus could improve the accuracy without
sacrificing too much simulation speed.

Robotics and Mechatronics Daniel Wilmes

44 A general 3D optimization framework for pressure-driven soft robotic actuators

A Replicating results

This appendix outlines the process to replicate the results shown in the thesis. The necessary
source code is available to RaM members at https://git.ram.eemcs.utwente.nl/
impact/pneumatic_endoscope/topology_optimization. In addition to the fol-
lowing explanation the reader is encouraged to read the short documentation here to better
understand the underlying code. The main file "Simulation.py" in the root of the repo also
contains elaborate comments to explain the purpose of most variables and functions.

A.1 Verification

The repo contains a folder called "verification" which contains a copy of the main simulation
file called "Verification_Simulation.py". It can be used to generate all files that produce the
verification results. The file requires the user to set the mesh, pressures and volume constraint
as in Chapter 4 and saves the data used for the graphs in the folder. The file needs to be run
several times with all the different conditions used in the chapter.

A.1.1 3D plots

The file "Verification.py" computes the interpolation values used as the colormap in the 3D
plots. It requires the files from the simulation runs to exist. The 3D views are generated using
"verification_plots.py" and the user needs to set which mesh to view below line 77.

A.1.2 Graph

The graphs of Figure 4.5 stem from "Verification_graph.py" and it requires the results from the
simulation to exist in the folder as before. Because the graph was only made for a single veri-
fication case no changes to the file are necessary.

A.2 Exploding Gradients / Pressure optimization

The repo contains a folder "pressure_opt" containing a copy of the main simulation file and a
plotting file. First run the simulation and then the plotting file.

A.3 Controller synthesis

Similar to the pressure optimization there is a folder "controller" with a pre-configured simu-
lation file and plotting file. The simulation file produces all the files necessary for the plotting
file.

A.4 Meta-optimization

The folder "meta_opt" contains a pre-configured simulation file and plotting files. As before,
the simulation file needs to be run first.

Daniel Wilmes University of Twente

https://git.ram.eemcs.utwente.nl/impact/pneumatic_endoscope/topology_optimization
https://git.ram.eemcs.utwente.nl/impact/pneumatic_endoscope/topology_optimization
https://git.ram.eemcs.utwente.nl/impact/pneumatic_endoscope/topology_optimization

45

Bibliography

[1] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, “Biomedical applications of soft ro-
botics,” Nature Reviews Materials, vol. 3, 05 2018.

[2] M. Runciman, A. Darzi, and G. P. Mylonas, “Soft robotics in minimally invasive surgery,”
Soft robotics, vol. 6, no. 4, pp. 423–443, 2019.

[3] M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and
A. Menciassi, “Soft robotics technologies to address shortcomings in today’s minimally
invasive surgery: the stiff-flop approach,” Soft robotics, vol. 1, no. 2, pp. 122–131, 2014.

[4] A. Kumar, “Methods and materials for smart manufacturing: Additive manufacturing,
internet of things, flexible sensors and soft robotics,” Manufacturing Letters, vol. 15,
pp. 122–125, 2018. Industry 4.0 and Smart Manufacturing.

[5] P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti,
M. T. Tolley, and R. F. Shepherd, “Soft robotics: Review of fluid-driven intrinsically soft
devices; manufacturing, sensing, control, and applications in human-robot interaction,”
Advanced Engineering Materials, vol. 19, no. 12, p. 1700016, 2017.

[6] A. Diodato, M. Brancadoro, G. De Rossi, H. Abidi, D. Dall’Alba, R. Muradore, G. Ciuti,
P. Fiorini, A. Menciassi, and M. Cianchetti, “Soft robotic manipulator for improving dex-
terity in minimally invasive surgery,” Surgical innovation, vol. 25, no. 1, pp. 69–76, 2018.

[7] S. Yim and M. Sitti, “Shape-programmable soft capsule robots for semi-implantable drug
delivery,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1198–1202, 2012.

[8] D. Son, H. Gilbert, and M. Sitti, “Magnetically actuated soft capsule endoscope for fine-
needle biopsy,” Soft robotics, vol. 7, no. 1, pp. 10–21, 2020.

[9] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove
for combined assistance and at-home rehabilitation,” Robotics and Autonomous Systems,
vol. 73, pp. 135–143, 2015.

[10] H. K. Yap, J. H. Lim, F. Nasrallah, and C.-H. Yeow, “Design and preliminary feasibility
study of a soft robotic glove for hand function assistance in stroke survivors,” Frontiers in
neuroscience, vol. 11, p. 547, 2017.

[11] C.-Y. Chu and R. M. Patterson, “Soft robotic devices for hand rehabilitation and assist-
ance: a narrative review,” Journal of neuroengineering and rehabilitation, vol. 15, no. 1,
pp. 1–14, 2018.

[12] P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O’Donnell, and C. J. Walsh, “Soft
robotic glove for hand rehabilitation and task specific training,” in 2015 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 2913–2919, IEEE, 2015.

[13] T. Bützer, O. Lambercy, J. Arata, and R. Gassert, “Fully wearable actuated soft exoskeleton
for grasping assistance in everyday activities,” Soft Robotics, vol. 8, no. 2, pp. 128–143,
2021.

[14] E. T. Roche, M. A. Horvath, I. Wamala, A. Alazmani, S.-E. Song, W. Whyte, Z. Machaidze,
C. J. Payne, J. C. Weaver, G. Fishbein, et al., “Soft robotic sleeve supports heart function,”
Science translational medicine, vol. 9, no. 373, 2017.

Robotics and Mechatronics Daniel Wilmes

46 A general 3D optimization framework for pressure-driven soft robotic actuators

[15] H. Naghibi, P. A. Costa, and M. Abayazid, “A soft robotic phantom to simulate the dy-
namic respiratory motion of human liver,” in 2018 7th IEEE international conference on
biomedical robotics and biomechatronics (Biorob), pp. 577–582, IEEE, 2018.

[16] M. Manti, T. Hassan, G. Passetti, N. D’Elia, C. Laschi, and M. Cianchetti, “A bioinspired
soft robotic gripper for adaptable and effective grasping,” Soft Robotics, vol. 2, no. 3,
pp. 107–116, 2015.

[17] C. Balaguer, “Nowadays trends in robotics and automation in construction industry:
Transition from hard to soft robotics,” in Proceedings of International Symposium on
Automation and Robotics in Construction, Citeseer, 2004.

[18] C. Laschi, J. Rossiter, F. Iida, M. Cianchetti, and L. Margheri, Soft Robotics: Trends, Applic-
ations and Challenges. Springer, 2017.

[19] B. Mazzolai and M. Cianchetti, “Soft robotics: Technologies and systems pushing the
boundaries of robot abilities,” Science Robotics, vol. 1, 2016.

[20] J. Guo, Y. Sun, X. Liang, J.-H. Low, Y.-R. Wong, V. S.-C. Tay, and C.-H. Yeow, “Design and
fabrication of a pneumatic soft robotic gripper for delicate surgical manipulation,” in
2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1069–
1074, IEEE, 2017.

[21] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic fish capable of escape
maneuvers using fluidic elastomer actuators,” Soft robotics, vol. 1, no. 1, pp. 75–87, 2014.

[22] M. Xiloyannis, L. Cappello, D. B. Khanh, S.-C. Yen, and L. Masia, “Modelling and design
of a synergy-based actuator for a tendon-driven soft robotic glove,” in 2016 6th IEEE In-
ternational Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1213–
1219, IEEE, 2016.

[23] M. Cianchetti, M. Follador, B. Mazzolai, P. Dario, and C. Laschi, “Design and develop-
ment of a soft robotic octopus arm exploiting embodied intelligence,” in 2012 IEEE In-
ternational Conference on Robotics and Automation, pp. 5271–5276, IEEE, 2012.

[24] N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber, and R. J. Wood, “Ultra-
gentle manipulation of delicate structures using a soft robotic gripper,” Science Robotics,
vol. 4, no. 33, 2019.

[25] G. Rateni, M. Cianchetti, G. Ciuti, A. Menciassi, and C. Laschi, “Design and develop-
ment of a soft robotic gripper for manipulation in minimally invasive surgery: a proof
of concept,” Meccanica, vol. 50, no. 11, pp. 2855–2863, 2015.

[26] M. Hofer and R. D’Andrea, “Design, modeling and control of a soft robotic arm,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1456–
1463, IEEE, 2018.

[27] L. Margheri, C. Laschi, and B. Mazzolai, “Soft robotic arm inspired by the octopus: I.
from biological functions to artificial requirements,” Bioinspiration & biomimetics, vol. 7,
no. 2, p. 025004, 2012.

[28] J. Zou, Y. Lin, C. Ji, and H. Yang, “A reconfigurable omnidirectional soft robot based on
caterpillar locomotion,” Soft robotics, vol. 5, no. 2, pp. 164–174, 2018.

[29] R. Baumgartner, A. Kogler, J. M. Stadlbauer, C. C. Foo, R. Kaltseis, M. Baumgartner,
G. Mao, C. Keplinger, S. J. A. Koh, N. Arnold, et al., “A lesson from plants: High-speed
soft robotic actuators,” Advanced Science, vol. 7, no. 5, p. 1903391, 2020.

Daniel Wilmes University of Twente

Bibliography 47

[30] U. Culha and F. Iida, “Enhancement of finger motion range with compliant anthropo-
morphic joint design.,” Bioinspiration & biomimetics, vol. 11 2, p. 026001, 2016.

[31] F. Plum, S. Labisch, and J.-H. Dirks, “Sauv—a bio-inspired soft-robotic autonomous un-
derwater vehicle,” Frontiers in neurorobotics, vol. 14, p. 8, 2020.

[32] X.-Y. Zhang, Z.-H. Lu, S.-Y. Wu, and Y.-G. Zhao, “An Efficient Method for Time-Variant
Reliability including Finite Element Analysis,” Reliability Engineering and System Safety,
vol. 210, no. C, 2021.

[33] R. J. Lapeer, P. D. Gasson, and V. Karri, “A hyperelastic finite-element model of human
skin for interactive real-time surgical simulation,” IEEE Transactions on Biomedical En-
gineering, vol. 58, no. 4, pp. 1013–1022, 2010.

[34] G. Kluth and B. Després, “Discretization of hyperelasticity on unstructured mesh with
a cell-centered lagrangian scheme,” Journal of Computational Physics, vol. 229, no. 24,
pp. 9092–9118, 2010.

[35] M. Mansouri, H. Darijani, and M. Baghani, “On the correlation of fem and experiments
for hyperelastic elastomers,” Experimental mechanics, vol. 57, no. 2, pp. 195–206, 2017.

[36] O. Amir and O. Sigmund, “On reducing computational effort in topology optimization:
how far can we go?,” Structural and Multidisciplinary Optimization, vol. 44, no. 1, pp. 25–
29, 2011.

[37] O. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Mul-
tidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, 2013.

[38] M. Raeisinezhad, N. G. Pagliocca, B. Koohbor, and M. Trkov, “Design optimization of a
pneumatic soft robotic actuator using model-based optimization and deep reinforce-
ment learning,” Frontiers in Robotics and AI, vol. 8, p. 107, 2021.

[39] S. Nalbach, R. M. Banda, S. Croce, G. Rizzello, D. Naso, and S. Seelecke, “Modeling and
design optimization of a rotational soft robotic system driven by double cone dielectric
elastomer actuators,” Frontiers in Robotics and AI, vol. 6, p. 150, 2020.

[40] C.-H. Liu and C.-H. Chiu, “Optimal design of a soft robotic gripper with high mechan-
ical advantage for grasping irregular objects,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2846–2851, IEEE, 2017.

[41] H. Zhang, M. Y. Wang, F. Chen, Y. Wang, A. S. Kumar, and J. Y. H. Fuh, “Design and de-
velopment of a soft gripper with topology optimization,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6239–6244, 2017.

[42] B. Caasenbrood, A. Pogromsky, and H. Nijmeijer, “A computational design framework for
pressure-driven soft robots through nonlinear topology optimization,” in 2020 3rd IEEE
International Conference on Soft Robotics (RoboSoft), pp. 633–638, 2020.

[43] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in International symposium
on stochastic algorithms, pp. 169–178, Springer, 2009.

[44] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[45] K. Svanberg, “The method of moving asymptotes—a new method for structural optimiz-
ation,” International journal for numerical methods in engineering, vol. 24, no. 2, pp. 359–
373, 1987.

Robotics and Mechatronics Daniel Wilmes

48 A general 3D optimization framework for pressure-driven soft robotic actuators

[46] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H. Talbot, H. Cour-
tecuisse, G. Bousquet, I. Peterlik, and S. Cotin, SOFA: A Multi-Model Framework for Inter-
active Physical Simulation, vol. 11. 06 2012.

[47] F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt, and C. Duriez, “Real-time
control of soft-robots using asynchronous finite element modeling,” in 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2550–2555, 2015.

[48] M. Nesme, Y. Payan, and F. Faure, “Efficient, physically plausible finite elements,” 08
2005.

[49] M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross,
“Designing inflatable structures,” ACM Transactions on Graphics, vol. 33, pp. 1–10, 07
2014.

[50] J. Degrave, M. Hermans, J. Dambre, et al., “A differentiable physics engine for deep learn-
ing in robotics,” Frontiers in neurorobotics, vol. 13, p. 6, 2019.

[51] X. Lin, H. Zhang, and A. M. Rappe, “Optimization of quantum monte carlo wave func-
tions using analytical energy derivatives,” The Journal of Chemical Physics, vol. 112, no. 6,
pp. 2650–2654, 2000.

[52] A. Treuille, A. McNamara, Z. Popović, and J. Stam, “Keyframe control of smoke simula-
tions,” in ACM SIGGRAPH 2003 Papers, pp. 716–723, 2003.

[53] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strategies for soft ro-
botic manipulators: A survey,” Soft Robotics, vol. 5, 01 2018.

[54] E. Franco, A. G. Casanovas, F. Rodriguez y Baena, and A. Astolfi, “Model based adaptive
control for a soft robotic manipulator,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), pp. 1019–1024, 2019.

[55] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based reinforcement learn-
ing for closed-loop dynamic control of soft robotic manipulators,” IEEE Transactions on
Robotics, vol. 35, no. 1, pp. 124–134, 2018.

[56] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexterous manipulation for a soft
robotic hand from human demonstrations,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3786–3793, IEEE, 2016.

[57] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros, “Soft robot control with a
learned differentiable model,” in 2020 3rd IEEE International Conference on Soft Robotics
(RoboSoft), pp. 417–423, 2020.

[58] I. Newton and G. Leibniz, “Euler method,”

[59] F. Harewood and P. McHugh, “Comparison of the implicit and explicit finite element
methods using crystal plasticity,” Computational Materials Science, vol. 39, no. 2,
pp. 481–494, 2007.

[60] P. Hammer, N. Vasilyev, D. Perrin, P. del Nido, and R. Howe, “Fast image-based model of
mitral valve closure for surgical planning,” 11 2021.

[61] Y. Duan, W. Huang, H. Chang, W. Chen, J. Zhou, S. K. Teo, Y. Su, C. K. Chui, and S. K. Y.
Chang, “Volume preserved mass–spring model with novel constraints for soft tissue de-
formation,” IEEE Journal of Biomedical and Health Informatics, vol. 20, pp. 268–280,
2016.

Daniel Wilmes University of Twente

Bibliography 49

[62] M. M. Attard and G. W. Hunt, “Hyperelastic constitutive modeling under finite strain,”
International Journal of Solids and Structures, vol. 41, no. 18-19, pp. 5327–5350, 2004.

[63] A. V. Gelder, “Approximate simulation of elastic membranes by triangulated spring
meshes,” Journal of Graphics Tools, vol. 3, no. 2, pp. 21–41, 1998.

[64] M. Sasso, G. Palmieri, G. Chiappini, and D. Amodio, “Characterization of hyperelastic
rubber-like materials by biaxial and uniaxial stretching tests based on optical methods,”
Polymer Testing, vol. 27, no. 8, pp. 995–1004, 2008.

[65] M. Nesme, Y. Payan, and F. Faure, “Efficient, physically plausible finite elements,” 08
2005.

[66] “Section 12 volume elements.” https://academic.csuohio.edu/duffy_s/
CVE_512_12.pdf. Accessed: 2021-11-15.

[67] K. Huebner, D. Dewhirst, D. Smith, and T. Byrom, The Finite Element Method for Engin-
eers. A Wiley-Interscience publication, Wiley, 2001.

[68] A. Franus, S. Jemioło, and A. Marek, “A slightly compressible hyperelastic material model
implementation in abaqus,” Engineering Solid Mechanics, 03 2020.

[69] G. Irving, J. Teran, and R. Fedkiw, “Tetrahedral and hexahedral invertible finite elements,”
Graphical Models, vol. 68, no. 2, pp. 66–89, 2006.

[70] N. Elango and A. Faudzi, “A review article: investigations on soft materials for soft ro-
bot manipulations,” The International Journal of Advanced Manufacturing Technology,
vol. 80, no. 5, pp. 1027–1037, 2015.

[71] C. Horgan and G. Saccomandi, “Constitutive models for compressible nonlinearly elastic
materials with limiting chain extensibility,” Journal of Elasticity, vol. 77, pp. 123–138, 11
2004.

[72] W. Mollemans, F. Schutyser, J. Van Cleynenbreugel, and P. Suetens, “Tetrahedral mass
spring model for fast soft tissue deformation,” in International Symposium on Surgery
Simulation and Soft Tissue Modeling, pp. 145–154, Springer, 2003.

[73] K. Ding and L. Ye, “3 - simulation methodology,” in Laser Shock Peening (K. Ding and
L. Ye, eds.), Woodhead Publishing Series in Metals and Surface Engineering, pp. 47–72,
Woodhead Publishing, 2006.

[74] P. J. Schneider and D. Eberly, Geometric Tools for Computer Graphics. USA: Elsevier Sci-
ence Inc., 2002.

[75] P. Martins, R. Natal Jorge, and A. Ferreira, “A comparative study of several material models
for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues,”
Strain, vol. 42, no. 3, pp. 135–147, 2006.

[76] G. Van Rossum et al., “Python programming language.,” in USENIX annual technical con-
ference, vol. 41, p. 36, 2007.

[77] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand, “Difftaichi:
Differentiable programming for physical simulation,” 2020.

[78] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.

Robotics and Mechatronics Daniel Wilmes

https://academic.csuohio.edu/duffy_s/CVE_512_12.pdf
https://academic.csuohio.edu/duffy_s/CVE_512_12.pdf

50 A general 3D optimization framework for pressure-driven soft robotic actuators

[79] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.

[80] “numpy-stl.” https://github.com/WoLpH/numpy-stl. Accessed: 2021-11-16.

[81] “Pathlib - object-oriented filesystem paths.” https://docs.python.org/3/
library/pathlib.html. Accessed: 2021-11-15.

[82] M. Musy, G. Jacquenot, G. Dalmasso, neoglez, R. de Bruin, A. Pollack, F. Claudi, C. Badger,
icemtel, B. Sullivan, D. Hrisca, D. Volpatto, N. Schlömer, Z.-Q. Zhou, and ilorevilo, “mar-
comusy/vedo: 2020.4.2,” Nov. 2020.

[83] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Bur-
ovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Mill-
man, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Py-
thon,” Nature Methods, vol. 17, pp. 261–272, 2020.

[84] H. Si, “Tetgen, a delaunay-based quality tetrahedral mesh generator,” ACM Trans. Math.
Softw., vol. 41, feb 2015.

[85] M. Szilvśi-Nagy and G. Matyasi, “Analysis of stl files,” Mathematical and computer mod-
elling, vol. 38, no. 7-9, pp. 945–960, 2003.

[86] R. J. Rost, OpenGL(R) Shading Language (2nd Edition). Addison-Wesley Professional,
2005.

[87] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9. United States: Dassault Sys-
tèmes Simulia Corp, 2009.

[88] P. Martins, R. Natal Jorge, and A. Ferreira, “A comparative study of several material models
for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues,”
Strain, vol. 42, pp. 135–147, 08 2006.

[89] Z. Zhao, S. Kuchnicki, R. Radovitzky, and A. Cuitino, “Influence of in-grain mesh resol-
ution on the prediction of deformation textures in fcc polycrystals by crystal plasticity
fem,” Acta materialia, vol. 55, no. 7, pp. 2361–2373, 2007.

[90] L. B. Rall and G. F. Corliss, “An introduction to automatic differentiation,” Computational
Differentiation: Techniques, Applications, and Tools, vol. 89, 1996.

[91] C. C. Margossian, “A review of automatic differentiation and its efficient implementa-
tion,” Wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 9, no. 4,
p. e1305, 2019.

[92] B. Hanin, “Which neural net architectures give rise to exploding and vanishing gradi-
ents?,” arXiv preprint arXiv:1801.03744, 2018.

[93] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural net-
works,” in International conference on machine learning, pp. 1310–1318, PMLR, 2013.

Daniel Wilmes University of Twente

https://github.com/WoLpH/numpy-stl
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html

Bibliography 51

[94] G. Philipp, D. Song, and J. G. Carbonell, “The exploding gradient problem demystified-
definition, prevalence, impact, origin, tradeoffs, and solutions,” arXiv preprint
arXiv:1712.05577, 2017.

[95] A. Kag, Z. Zhang, and V. Saligrama, “Rnns evolving on an equilibrium manifold: A pan-
acea for vanishing and exploding gradients?,” arXiv preprint arXiv:1908.08574, 2019.

[96] J. Zhang, Q. Lei, and I. Dhillon, “Stabilizing gradients for deep neural networks via effi-
cient svd parameterization,” in International Conference on Machine Learning, pp. 5806–
5814, PMLR, 2018.

[97] P. Eberhard and C. Bischof, “Automatic differentiation of numerical integration al-
gorithms,” Mathematics of Computation, vol. 68, 11 1997.

[98] A. Lydia and S. Francis, “Adagrad—an optimizer for stochastic gradient descent,” Int. J.
Inf. Comput. Sci, vol. 6, no. 5, 2019.

[99] P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, et al., “Towards theoretically understanding
why sgd generalizes better than adam in deep learning,” arXiv preprint arXiv:2010.05627,
2020.

[100] H. Zhang, R. Cao, S. Zilberstein, F. Wu, and X. Chen, “Toward effective soft robot con-
trol via reinforcement learning,” in International Conference on Intelligent Robotics and
Applications, pp. 173–184, Springer, 2017.

[101] Q. Wu, Y. Gu, Y. Li, B. Zhang, S. A. Chepinskiy, J. Wang, A. A. Zhilenkov, A. Y. Krasnov, and
S. Chernyi, “Position control of cable-driven robotic soft arm based on deep reinforce-
ment learning,” Information, vol. 11, no. 6, p. 310, 2020.

[102] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-
international conference on neural networks, vol. 4, pp. 1942–1948, IEEE, 1995.

Robotics and Mechatronics Daniel Wilmes

	Abstract
	Contents
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Review of related works
	1.4 Goals and approach
	1.5 Report Structure

	2 Modelling
	2.1 Conceptual design
	2.2 Integration scheme
	2.3 Internal forces
	2.4 Pressure forces
	2.5 Volume conservation
	2.6 Damping force
	2.7 Constraints
	2.8 Material models

	3 Implementation
	3.1 Development tools
	3.2 Meshes
	3.3 Features and workflow

	4 Verification
	4.1 Design
	4.2 Setup
	4.3 Results and Interpretation

	5 Exploding gradients
	5.1 Mathematical background and approach
	5.2 Issues and implemented remedies
	5.3 Exemplary gradients

	6 Endoscope controller synthesis
	6.1 Controller and training design
	6.2 Results
	6.3 Comparison to reinforcement learning

	7 Meta-Optimization
	7.1 Optimization design
	7.2 Results

	8 Conclusions
	8.1 Limitations
	8.2 Recommendations

	A Replicating results
	A.1 Verification
	A.2 Exploding Gradients / Pressure optimization
	A.3 Controller synthesis
	A.4 Meta-optimization

	Bibliography

