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Abstract— Real-world images captured using an imaging
device suffers from distortion while capturing, processing, or
storage. These distortions in images affect their visual quality,
rendering them unusable for further processing. This thesis
concentrates on images captured by a smartphone from behind
a car’s windshield. The objective is to classify these images into
good quality and bad quality employing deep learning models
focusing on Image Quality Assessment. This paper provides
an overview of recent developments in Blind Image Quality
Assessment (BIQA) using deep learning and the available
standard datasets.

Specifically, three recent BIQA models are selected to eval-
uate these images and quantify them as good and bad based
on their image quality. Further research is conducted on an
ensemble of these BIQA models for the same task.

Later, a classification approach is explored consisting of three
transfer learning models to classify the images as good quality
and bad quality. An ensemble comprising of these models is
built. The test results show that the ensemble combination
comprising of two BIQA models delivers the highest accuracy
towards rightly classifying images as good quality and bad
quality.

Index Terms— Blind image quality assessment, smartphone
images, convolutional neural networks, deep learning, multi-
model techniques, ensemble, transfer learning, multi-class
classification, binary classification, good image quality, bad
image quality
Blind image quality assessment, smartphone images,
convolutional neural networks, deep learning, multi-
model techniques, ensemble, transfer learning, multi-class
classification, binary classification, good image quality, bad
image quality

I. INTRODUCTION

This thesis work is in collaboration with ’CamenAI’ [1],
a start-up in Utrecht, The Netherlands. CamenAI is a young
start-up focusing on computer vision techniques to make
the environment a cleaner, better place. They gather images
utilizing a camera attached to the car’s windshield. Once the
images are gathered, they are manually inspected for image
quality. The images that are considered good quality are
retained. The retained images are subjected to anonymization
where sensitive information contained in the images, such
as the human face(s) or license plates of vehicles, are
blurred. The set of anonymized images is inspected to form
the dataset for algorithms such as garbage detection, crack
detection in asphalts, over-grown plant maintenance, and
damaged traffic signs. The results from these algorithms are

(a) Synthetic distortion in images

(b) Authentic distortion in images

Fig. 1: Examples of Synthetic and Authentic Distorted
Images [2]

sent to the concerned party who monitors the environment.
During image acquisition, a vehicle drives through a given
city on a given day and captures images of the environment.
The images are gathered in hundreds when a vehicle drives
through inspection areas. The quality of gathered images
depends on several factors such as time of the day (day or
night), weather (sunny or cloudy), reflections on the car’s
dashboard, etc. These affect an image’s visual quality.

The task of image quality assessment becomes vital for
two main reasons (a) Since there are many images of the
same inspection area, it is essential to filter them into good
quality and bad quality. Manual inspection proves cumber-
some in this real-time setup. Thus, an automation approach
is preferred (b) The set of images having good quality can be
retained and be subjected to anonymization. The anonymized
images can be used to form the dataset to the algorithms
highlighted above. Thus, image quality assessment becomes
a necessary precursor.

The quality of an image is highly determined by the



distortions it contains. Typically, these distortions [2] can
be categorized as (a) Synthetic Distortions and (b) Authen-
tic Distortions. Synthetic distortions are laboratory-induced
distortions using a clean reference image to study the image
quality with respect to the clean reference image. Images
are synthetically distorted by adding one type of distortion
such as White Noise, Gaussian Blur, etc. On the other hand,
authentic distortions are more realistic in real-world captured
images due to overexposure, underexposure, motion blurring,
framing, etc. Thus, authentic distortions form the main
element that affects image quality in real-world captured
images. An example is illustrated in figure1.

The process of Image quality assessment [19] branches
into two categories (a) Subjective image quality assess-
ment and (b) Objective image quality assessment. Subjective
image quality assessment involves large viewers to gather
human opinion scores for the images. This large group of
viewers provide each image with a rating. The mean of
ratings provided forms the basis of a score that corresponds
to the quality of that image. Employing this approach to rate
images frequently in a real-time setup is time-consuming and
deemed expensive.

Objective image quality assessment [19] is the process
of extracting features in an image, analyzing them and
measuring the degree of distortion. It is an algorithm-
driven approach. Such algorithms typically result in an
image quality score as its output. Objective image quality
assessment is further categorized into three types, depending
on the availability of a reference image [19]. They are (a)
Full-Reference Image Quality Assessment (FR-IQA), (b)
Reduced-Reference Image Quality Assessment (RR-IQA)
and (c) No-Reference or Blind Image Quality Assessment
(NR-IQA or BIQA). As the name suggests, in FR-IQA, the
algorithm considers the ’full’ information available of both
the reference image and distorted image to predict the quality
of an image based on the differences between them. On the
contrary, due to the unavailability of a clean reference image,
BIQA employs algorithms to predict the quality of an image
based on the available information of the distorted image
only. RR-IQA is an intermediate where algorithms operate
based on the ’partial’ information of the reference image and
’full’ information of the distorted image.

This thesis concentrates on Blind Image Quality Assess-
ment (BIQA) due to the non-availability of reference images.
A smartphone shoots the images at different locations in the
Netherlands at different times of the day. Hence, fixing a
reference image is not feasible. The objective is to perform
Blind Image Quality Assessment (BIQA) on the CamenAI
[1] dataset to classify images into good and bad based on
their image quality. The idea being the set of bad quality
images will be deleted, and the set of good quality images
will be retained. A detailed overview that determines whether
an image is a good quality or bad quality is highlighted
in subsection IV-B. Typically, an image is considered good
quality if its quality score lies on the higher end of the
annotation scale. Three recent BIQA models - NIMA [3],
DBCNN [5], UNIQUE [4]- were selected for evaluation

on the CamenAI dataset. An ensemble employing different
combinations of the three BIQA models is proposed and
evaluated on the CamenAI dataset. The BIQA models are
regression-based deep learning models, pre-trained on exist-
ing standard BIQA datasets. Later, a classification approach
is explored towards classifying CamenAI dataset images into
good and bad quality. To this end, three transfer learning
models bearing the same backbone as NIMA, DBCNN and
UNIQUE has been selected, respectively. These models are
fine-tuned on the CamenAI dataset to perform classification.
An ensemble of these models is built to study its effect on
classifying images into good and bad quality. A multi-class
classification, as well as binary classification, is explored.
Multi-class classification is employed because images may
lie on the borderline of good quality and bad quality. It is
unknown whether such images are classified as good quality
or bad quality in such a case.

A. Research Questions

This thesis will address five research questions as follows:
1) What are the available BIQA models and training

datasets used to benchmark the performance of BIQA
models?

2) How does the CamenAI [1] dataset compare to the
standard datasets in terms of annotations, resolutions,
and score distribution?

a) In what manner can the CamenAI dataset be
annotated for the task of BIQA?

3) To what extent does cropping the images for dash-
board interference affect the score predicted by BIQA
regression models such as NIMA [3], UNIQUE [4]and
DBCNN [5]?

4) What effect does different ensembling combinations
of NIMA [3], DBCNN [5] and UNIQUE [4] have on
the accuracy of their performances on the CamenAI
dataset?

a) How does NIMA, DBCNN and UNIQUE per-
form individually on the CamenAI dataset con-
cerning accuracy?

b) How do we normalize NIMA, DBCNN and
UNIQUE results to ensure the same output score
range across these models?

c) What is the trade-off between the number of
models combined in the ensemble concerning
accuracy and processing time on the CamenAI
dataset?

d) What is the best and worst combination of the
ensemble surrounding accuracy on the CamenAI
dataset?

5) What effect does different ensembling combinations of
transfer learning models have on the accuracy of their
performances on the CamenAI dataset?

a) What are the selected transfer learning models?
b) How do these models perform for multi-class

classification and binary classification on the Ca-
menAI dataset concerning accuracy?



c) What is the trade-off between the number of
models combined in the ensemble concerning
accuracy and processing time on the CamenAI
dataset for a multi-class classification?

d) What is the trade-off between the number of
models combined in the ensemble concerning
accuracy and processing time on the CamenAI
dataset for a binary classification?

B. Scientific and Technical Contributions

The CamenAI [1] dataset comprising of 4,780 images have
been annotated independently by the author. An ensemble
approach comprising of different combinations of the three
BIQA models is proposed. Results show that the ensemble
combination of NIMA [3] and UNIQUE [4] deliver the
highest accuracy towards classifying the images into good
and bad quality.

II. BACKGROUND

This section provides an overview of the existing BIQA
models and the datasets available for the task of BIQA. When
we consider the standard datasets available for the task of
image quality assessment, they fall under two categories [2]:

• Synthetic distortion dataset
• Authentic distortion dataset
Images in the synthetic distortion datasets are built by

introducing one type of noise to an available high-quality im-
age in a controlled laboratory setup. For instance, considering
a high-quality image ’A’, we can make three copies of this
image by adding one type of distortion such as White Noise,
Gaussian Blur, and Fading. However, these images do not
correctly model authentic distortions since real-world images
captured by a smartphone contain a combination of multiple
synthetic distortions. Hence, this section first describes the
available, standard datasets that significantly concentrate on
authentic distortions. Following this will be a comparison of
different BIQA models, focusing on performance, evaluation
metrics, and datasets used by these respective models to
benchmark their performances.

A. Authentic Distortion datasets

The datasets available for authentically distorted images
are as follows:

1) LIVE Challenge[6]: This dataset comprises 1,162
authentically distorted images taken by various smart-
phones. These images do not contain any reference
images. This dataset covers a wide range of distortions
images undergo such as motion blurring, overexposure,
underexposure, noise, and JPEG compression. The
images are rated in the range [0,100] employing crowd-
sourcing of 8100 humans. The types of images in this
dataset include human faces, animals, natural scenes,
man-made objects, close-up shots, wide-angle shots,
and shots without the object of interest.

2) KONIQ-10K [7]: It is the largest dataset for image
quality assessment, comprising 10,073 images. The im-
ages are captured using imaging devices such as DSLR

and smartphones. A total of 1,459 crowd workers
were responsible for providing image quality ratings or
annotations to this dataset. The images are annotated
with human Mean Opinion Score (MOS) in the range
[1,5]. The images found in this dataset are similar to
the LIVE WILD dataset, as discussed above.

3) BID [8] - A relatively more minor dataset that con-
tains 586 realistic blurred images of varying resolution
ranges: 1280×960 to 2272×1704, acquired using a sin-
gle DSLR. The images are rated in a laboratory setup,
and the scores range between [0,5]. These images
highlight realistic scenarios.

4) CID2013 [9] - This dataset consists of 480 authenti-
cally distorted images, captured by 79 different imag-
ing devices such as smartphones, DSC, and DSLR.
Crowd-sourcing is employed to evaluate these images,
ranging between [0,100].

5) SPAQ [10] - This dataset is introduced by Fang,
Yuming, et al [20]. It consists of 11,125 smartphone
captured images by different smartphones. In addition,
each image is accompanied by an EXIF tag that
contains details about the captured scene.

The summary of the compared datasets for authentic
distortions is found in table I.

B. Existing BIQA models

Here, we present different BIQA models and highlight
their novel features with respect to image quality assessment.

NIMA [3]: A novel approach of IQA, introduced by
Google. Here, a CNN is used to predict the distribution of
human-opinion scores. Earth mover’s distance is used as a
loss function to operate on the distribution of the ground-
truth scores and the distribution of the predicted image
quality scores.

Meta-IQA[11]: This approach employs the concept of
’deep-meta learning’ for IQA. Here, a model is pre-trained
to operate on known distortions, and meta-learning is used
to gain knowledge about these distortions. The resulting
model is refined to operate on images containing unknown
distortions.

DB-CNN[5]: It utilizes two CNNs that handle synthetic
and authentic distortions. The features resulting from these
neural networks are pooled in a bi-linear fashion to represent
the final image quality score.

BIQA: Self-adaptive hyper network[12]: A BIQA
model is proposed aimed at authentic distorted image dataset.
The architecture follows a ’self-adaptive hyper network’ for
quality prediction parameters. In addition, it uses a ’local
distortion module’ to capture distortions.

NRIQA using Contrast Enhancement[13]: It employs
a BIQA model that is tested on two contrast-distortion dataset
i.e., CID2013 and CCID2014. The approach generates an
enhanced image (from the original image) that acts as a
reference. Based on this, SSIM, Histogram based entropy,
and cross-entropy is obtained. The resulting features are used
by a regression module to predict the final score.



TABLE I: Available Authentic Distortion datasets

Database #images #cameras Type of cameras Subjective environment Annotation Range
LIVE Challenge [6] 1,162 15 DSLR/DSC/Smartphones Crowd-sourcing MOS, SD [0,100]

KONIQ-10K [7] 10,073 N/A DSLR/DSC/Smartphones Crowd-sourcing MOS, SD [1,5]
BID [8] 585 1 DSLR Laboratory MOS, SD [0,5]

CID2013 [9] 480 79 DSLR/DSC/Smartphones Laboratory MOS, SD [0,100]
SPAQ [10] 11,125 66 Smartphones Laboratory MOS, SD [0,100]

TABLE II: Recent BIQA models and their performances on the standard datasets

Study Core Features datasets used Performance Results
Synthetic Authentic SRCC PLCC

NIMA [3]
Talebi et al Distribution of human opinion scores AVA

TID2013
LIVE-C 0.637 0.698

Meta-IQA [11]
Zhu et al Deep Meta-learning TID2013

KADID-10K

CID-2013
LIVE-C

KONIQ-10K

0.766
0.802
0.850

0.784
0.835
0.887

DB-CNN [5]
Zhang et al Deep bi-linear network

LIVE
CSIQ

TID2013
LIVE-MD

LIVE-C 0.851 0.869

BIQA: Self-adaptive hyper network [12]
Shaolin et al Self-adaptive hyper network LIVE

CSIQ

LIVE-C
KONIQ-10K

BID

0.859
0.906
0.869

0.882
0.917
0.878

NRIQA using Contrast enhancement [13]
Yan et al Contrast Enhancement CSIQ

TID2013
CID2013

CCID2014
0.8934
0.8363

0.8960
0.8675

NRIQA using multi-pooled inception features [14]
Varga et al Extract visual features by multi-pooling N/A KONIQ-10K

LIVE-C
0.925
0.826

0.928
0.857

Perceptual NRIQA [20]
Fang et al SPAQ dataset + EXIF data for all images CID2013

BID
LIVE-C

KONIQ-10K
SPAQ

0.926 0.932

NRIQA using global statistical features [15]
Varge et al Global statistical features in images

CSIQ
MDID

KADID-10K

LIVE-C
KONIQ-10K

0.595
0.752

0.618
0.784

Uncertainity-Aware BIQA [4]
Zhang et al

IQA dataset combination + Cross-distortion
dataset tackling

CSIQ
LIVE

KADID-10K

LIVE-C
KONIQ-10K

BID

0.854
0.896
0.858

0.890
0.901
0.873

BIQA using high-level semantics [16]
Li et al

Exploits high-level semantics during
feature extraction

LIVE
TID2008

LIVE-C
BID

0.8130
0.8269

0.8313
0.8401

BIQA using controllable list-wise ranking [17]
Zhao et al

Extending Live-C dataset + Controllable
list-wise ranking

LIVE
CSIQ

TID2013
LIVE-C 0.779 0.828

DeepRN [21]
Varga et al

Content preserving architecture +
Pyramid pooling

(Images can be fed directly without resizing)
LIVE LIVE-C

KONIQ-10K
0.91
0.92

0.93
0.95

Learning for BIQA [18]
Zhang et al

BIQA model for cross-distortion scenario +
Continuous quality annotation

LIVE
CSIQ

TID2013

LIVE-C
KONIQ-10K

BID

0.851
0.894
0.863

NRIQA using Multi-Pooled Inception Features[14]:
Another approach aimed at authentic distorted image dataset
that utilizes ’Global Average Pooling (GAP)’ to extract
image features. The whole image is directly fed into the
CNN (and not patches of images).

Perceptual NRIQA[10]: It proposes the ’SPAQ’ image
dataset, uses EXIF data of images to build a BIQA model
for better prediction of image quality. Again, this approach is
significantly aimed towards authentic distorted image dataset.

NRIQA using Global Statistical Features[15]: In this
approach, the focus is given towards extracting features from
the images globally. It employs a 132-Dimensional feature
vector to extract information from images, which in turn is
used to train a BIQA model.

Uncertainty-aware BIQA[4]: Here, images from mul-
tiple datasets are sampled into image pairs to drive the BIQA

model. The BIQA model is optimized for its performance by
enforcing fidelity loss over the sampled pairs of images.

BIQA using high-level semantics[16]: In this ap-
proach, the input image is decomposed into multiple over-
lapping patches and high-level features of each patch are
extracted. The features extracted from various image patches
are pooled. A linear regression model is used to predict the
image quality score.

BIQA using Controllable list-wise ranking[17]: This
approach simulates the images in LIVE-Challenge dataset. A
controllable list-wise ranking function is proposed to achieve
consistency between predicted scores and the ground truth.

DeepRN[21]: It uses a fine-tuned residual deep learning
network, along with Pyramid pooling. Attention is given to
predict output quality as a distribution of scores (and not just
MOS). This approach handles input images of any given size.



Learning for BIQA[18]: This approach tackles the
cross-distortion scenario faced while testing the BIQA
model over synthetic and authentic distortions. Image pairs
are created from individual databases. It uses continuous
quality annotation, where Mean Opinion Score (MOS) and
the standard deviation are used to give the probability score.

Existing BIQA models are evaluated on Spearman’s
Rank Order Correlation Coefficient (SROCC) and Pearson’s
Linear Correlation Coefficient (PLCC). This metric was
considered to shortlist the BIQA models. However, in the
evaluation of experiments, this metric will not be used.

SROCC [22] measures prediction monotonicity and PLCC
[23] measures prediction accuracy. These values typically
lie between [-1,1]. Closer the value to 1, the better is the
correlation between the two variables. SROCC tells us how
good the relationship between the two sets of data is, while
PLCC tells us the linear correlation between the two sets of
data (prediction ground-truth).

III. DESIGN CHOICES

This thesis takes into consideration certain design choices
highlighted in this section.

A. Shortlisted BIQA Models

Among the different BIQA models discussed in subsection
II-B, NIMA [3], DBCNN [5] and UNIQUE [4] have been
shortlisted to be tested on the CamenAI [1] dataset. These
models are regression-based models. They output either a
score or a score with its standard deviation. The motivation
behind shortlisting is explained below.

NIMA is the state-of-the-art BIQA model by Google. This
approach is the first to predict image quality score as a
distribution of image ratings since it outputs an image quality
score and a standard deviation from this score. The output
score range of NIMA lies in the range [1,10]. An image with
a score 10 indicates the image with the highest image quality.

DBCNN stands out in architecture than the other discussed
BIQA models. It comprises two CNNs to handle synthetic
distortion and authentic distortion, respectively. The final
image quality score results from bi-linear pooling from these
two CNNs. The output score range for DBCNN is [0,10],
where an image with a score of 10 indicates the image with
the highest image quality. DBCNN results in only an image
quality score as its output.

On the other hand, UNIQUE employs a training strategy
unique to other BIQA models. UNIQUE is pre-trained on six
image quality assessment datasets with an equal distribution
of 3 synthetic and authentic datasets. The output score range
for UNIQUE is [-3,3], where an image with a score of 3
indicates the image with the highest image quality. UNIQUE
results in an image quality score and standard deviation as
its output.

A summary that highlights the novel features of the
considered BIQA models is shown in table III. In addition,
code accessibility and python implementation were also con-
sidered while shortlisting these 3 BIQA models. This ensures

TABLE III: Shortlisted BIQA models and their salient
features

BIQA Model Salient Features

NIMA [3]

Employs 3 baseline architectures
(MobileNet, VGG16, InceptionNet-v2)

Predicts distribution of ratings of an image
State-of-the-art by Google

UNIQUE [4]
Trained equally on 6 IQA datasets

(3 synthetic and 3 authentic datasets)
Employs pairwise ranking in training

DBCNN [5]

Deep bilinear architecture using 2 CNNs
1 CNN for synthetic distortion
1 CNN for authentic distortion

Bilinear pooling from 2 CNNs to predict image quality

TABLE IV: Round-off from Mean Opinion Scores to
Opinion Scores

Mean Opinion Scores (MOS) Range Opinion Scores
[0.5x - 1.4x] 1
[1.5x - 2.4x] 2
[2.5x - 3.4x] 3
[3.5x - 4.4x] 4
[4.5x - 5.4x] 5

feasibility to integrate them into the corporate pipeline if
needed.

B. Annotation Technique for CamenAI dataset

The different authentic datasets presented in table I follow
an annotation technique where a large group of people
provide image quality ratings for each image. This, in turn,
forms the basis of ’Mean Opinion Scores (MOS)’ and
Standard deviation (SD) for each image. MOS can take
different ranges and is a free choice to select the range as
[1,5] or [1,10] etc.

The annotation MOS range selected for the CamenAI [1]
dataset is [1,5]. Due to the absence of a large group to
annotate the CamenAI dataset, the author has annotated the
images independently. Since it is one person annotating the
images, it is impossible to represent the ratings in MOS
and SD. Thus, the images have been annotated as ’Opinion
Scores’ only. This means the MOS range [1,5] has been
rounded-off to [1,2,3,4,5], representing the opinion scores.

For example, in the MOS range [1,5], the range [1,2)
indicates all images with ratings of 1.0x until 1.9x that are
considered to be poor quality. In the CamenAI dataset, poor
quality images take the opinion score as ’1’. The round-
off from the MOS range [1,5] to opinion scores [1,2,3,4,5]
to annotate the CamenAI dataset is shown in table IV. For
the opinion scores [1,2,3,4,5], images with scores 1 and 2
are considered poor image quality that should be discarded.
Images with scores 3 or 4 or 5 are considered good image
quality that should be retained for further processing.

The shortlisted BIQA regression models have different
output ranges. When inference of a BIQA pre-trained re-
gression model on the CamenAI dataset, the predicted score
is first scaled to [1,5] and then rounded to [1,2,3,4,5] to
compare the score predicted with the annotation for that
image. By doing so, we go from regression to classification.



C. Transfer Learning Classification Models

The CamenAI [1] dataset follows the annotation as opinion
scores [1,2,3,4,5] to compensate for the absence of a large
group to annotate the images as MOS. The purpose behind
selecting three transfer learning models is to evaluate this
dataset from a classification point of view rather than an im-
age quality assessment point of view. To this end, the opinion
scores [1,2,3,4,5] is now interpreted as five classes—the end
goal being classifying the images as good image quality and
poor image quality. Images belonging to class 1,2 represent
poor image quality that should be discarded, and images
belonging to class 3,4,5 represent good image quality that
should be retained.

To this end, three transfer learning models bearing the
same backbone as the shortlisted BIQA regression models
are selected. The selected models are pre-trained on the Im-
ageNet dataset. These models are fine-tuned on the CamenAI
dataset for (a) Multi-class classification among five classes
and (b) Binary classification among two classes. The dataset
for binary classification is modified where images belonging
to classes 1 and 2 are now grouped in a single class that
represent images of bad quality. The images belonging to
class 3,4,5 belong to a single class representing images with
good image quality. The backbone architecture of the BIQA
regression models discussed are as follows:

• NIMA [3]: MobileNet, VGG16, InceptionNet-v2
• UNIQUE [4]: ResNet-34
• DBCNN [5]: VGG16

The selected transfer learning models are MobileNet [24],
VGG16 [25] , and ResNet-50 [26]. Since these models follow
a TensorFlow implementation, it was impossible to import
ResNet-34 from Keras applications. Thus, ResNet-50 is used
rather than ResNet-34. Furthermore, four additional layers
are added to each transfer learning model for the task for
multi-class classification and binary classification. This is
summarized in table V.

D. Performance Evaluation Criteria

The F1-scores metric [27] is used to evaluate the accuracy
of experiments carried out. F1-scores is defined as the
harmonic mean of precision and recall.

F1 = 2 ∗ (Recall ∗ Precision)

(Recall + Precision)

Precision =
(TruePositives)

(TruePositives+ FalsePositives)

Recall =
(TruePositives)

(TruePositives+ FalseNegatives)

A high precision value indicates a small number of false
positives are found. A high recall value indicates a small
number of false negatives. A high f1 score indicates a small
number of false positives and false negatives.

IV. METHODOLOGY

A. Proposed Method
The proposed method is composed of several stages of

evaluation as highlighted below.
• Inference:

– The shortlisted BIQA models are first evaluated
on the CamenAI dataset. These BIQA models are
not fine-tuned for the CamenAI dataset. Instead,
they are pre-trained on existing standard BIQA
datasets. As a result, the image quality score range
observed is different for the three BIQA models.
Thus, a normalization process in the form of scaling
and rounding-off is performed to yield the same
output score range across the three BIQA models to
compare them individually concerning the ground
truth.

– The three transfer learning models considered are
independently fine tuned on the CamenAI dataset
for (a) Multi-class classification and (b) Binary
classification. This results in three classification
models that perform multi-class classification and
three classification models that perform binary clas-
sification. Post fine tuning, each model is inde-
pendently evaluated on the CamenAI dataset to
compare the predicted class with the ground truth.

• Majority Voting and Aggregation:
– As means of determining ways to improve the im-

age quality score accuracy concerning the ground
truth, the normalized scores across the three BIQA
models is subjected to two tests. These two tests
are termed majority voting and aggregation. In the
case of majority voting, if 2 out of 3 BIQA models
predict the same score, we consider this to be the
final prediction. However, majority voting will fail
if the predictions of the 3 BIQA models are differ-
ent. In order to tackle this, we perform aggregation
on the predictions of the 3 BIQA models. This
final score is compared with the ground truth. For
other cases where the aggregation result yields a
regression score, they are rounded to their nearest
integer.

– Majority voting is also applied to the predicted
class across the three classification models
that perform multi-class classification and the
ones performing binary classification. The final
predicted class resulting from majority voting is
compared with the ground truth.

• Neural Network Ensemble:
– In this approach, the output image quality score

obtained across the three BIQA models are fed to
a Multilayer Perceptron (MLP) [28] neural network
that results in a final score. This score is compared
with the ground truth. The motivation behind this
approach is to study the effect of different ensem-
bling combinations of the three BIQA models on



Fig. 2: Example of Images from the CamenAI dataset [1]

TABLE V: Additional layers added for transfer learning classification models

Transfer Learning Model Multi-class Classification Binary Classification

MobileNet [24]
VGG16 [25]

ResNet-50 [26]

GlobalAveragePooling2D
Dense layer with Relu activation

Dropout Layer
Dense layer with Softmax activation

GlobalAveragePooling2D
Dense layer with Relu activation

Dropout Layer
Dense layer with Sigmoid activation

the final predicted image quality score concerning
the ground truth.

– Similarly, the predicted class across the three multi-
class classification models is fed to an MLP neural
network for different ensemble combinations of
the multi-class classification models. The same is
repeated for the three binary classification models.

B. CamenAI dataset

The dataset [1] considered comprises smartphone-captured
images of roads and the natural environment from the car’s
windshield. These images are collected across different times
of day where daylight plays a vital role because images cap-
tured during the night have poor visibility of the road and are
prone to reflections by street lights. CamenAI dataset is an

unbalanced real-time dataset (subjected to new, unstructured
data every day) that contains images with varying image
quality. An example of our dataset is illustrated in figure 2.
All images contained in the CamenAI dataset are in ’jpeg’
format, unlike other standard datasets that possess images in
’jpeg’ or ’png’ or ’bmp’.

In addition, this dataset is governed by several factors that
affect the visibility of the image, as described below:

1) Rain droplets - Images contain rain droplets present on
the windshield that affect the road’s visibility.

2) Dust on the windshield - Images contain windshield
dust in addition to rain droplets that affect the visibility
of the image.

3) Motion blurring - Since the images collected involve
roads; there are different vehicles that pass on the



road. This motion by a vehicle causes some part of
the image to appear blurred (Stationary camera v/s
moving object).

4) Reflections - It is observed that images are prone to
reflections of the car’s dashboard onto the car’s wind-
shield due to direct sunlight on the car’s windshield.

CamenAI dataset is unlabelled and contains varying res-
olutions of images. The smallest resolution observed is
2560x1440, and the highest resolution is 4000x3000. The
resolution of an image significantly depends on how the
user captures an image. This dataset is gathered using two
smartphones: Android and iPhone. Unlike other standard
datasets as discussed, this dataset is significantly about roads
and the natural environment.

For the task of classifying images as good or bad quality,
a total of 4,780 images are selected and annotated. After
annotation, these images are divided randomly into two sets
representing the training and testing sets.

• Training Set: 2,790 images
• Testing Set: 1990 images

Fig. 3: Distribution of scores in training set
(histogram created online [29])

A histogram highlighting the images in the training set
and testing set is shown in figure 3 and figure 4.

As seen in the standard datasets in table I, they are
annotated by a large group of people who provide ratings
for these images, also called scores. The score is a floating-
point value since it is the mean of the opinions provided
by the group. The images in the standard datasets primarily
have two parameters in their annotations: Mean Opinion
Score and Standard Deviation of Mean Opinion Score. With
the CamenAI dataset, the images are annotated by a single
user (the author), thus making it difficult to produce a mean
opinion score and a standard deviation from this mean score.
In a crowd-sourcing experiment, [20], humans were asked to
rate the quality of smartphone images based on the following
parameters. These parameters are considered to annotate the
CamenAI dataset into image quality ratings or opinion scores

Fig. 4: Distribution of scores in testing set
(histogram created online [29])

as [’1’,’2’,’3’,’4’,’5’].

1) Brightness - This parameter is used to evaluate the
entire image to check how light or bright the image
appears to be.

2) Sharpness - This parameter evaluates the entire image
and highlights how clean and focused the image or
objects in the image turn out.

3) Colorfulness - This parameter is used to evaluate a part
of an image to see if the perceived region of interest
appears bright or dull.

4) Contrast - This parameter is used to evaluate objects
found in the image to check whether they are distin-
guishable to the human eye or not.

5) Noise - It is challenging to estimate the type of noise
and the magnitude by visual inspection only, especially
for a single annotator. Hence this parameter is not
considered.

For annotating the images, five quality levels are employed
[20], i.e., Bad, Poor, Fair, Good, Excellent. The image is
evaluated on the parameters highlighted above and given a
suitable quality level by means of manual inspection.

The images are given the scores [1,2,3,4,5] based on the
quality level assigned. A summary of this annotation style is
shown in table VI. For images having an outlier concerning
the assigned quality level, manual inspection is done to re-
assess the image. An example set of images post annotation
is shown in figure 5.

Images having the score of ’1’ or ’2’ are images with bad
quality and should be discarded. Images with scores ’3’, ’4’,
’5’ are images with good quality and should be retained.
While annotating the CamenAI dataset, it was observed that
for a single user, it is easy to annotate an image that is of bad
quality as [’1’,’2’] and an image with good quality as [’4’,
’5’]. However, it becomes slightly tricky to annotate while
dealing with images between good and bad quality. Thus,
crowd-sourcing annotation plays a crucial role to ensure the
stability of the image quality ratings. .



Fig. 5: Example of images in the CamenAI dataset annotated as opinion scores [1]

TABLE VI: Annotation technique employed for the
CamenAI dataset based on five quality levels

Annotation Quality Level

1 Brightness and Sharpness = Bad
Contrast and Colorfulness = Poor or Bad

2 Brightness and Sharpness = Poor
Contrast and Colorfulness = Poor or Bad

3 Brightness and Sharpness = Fair
Contrast and Colorfulness = Fair or Poor

4 Brightness and Sharpness = Good
Contrast and Colorfulness = Good or Fair

5 Brightness and Sharpness = Excellent
Contrast and Colorfulness = Excellent or Good

C. Cropping for Dashboard Interference on the CamenAI
dataset

This subsection presents case study results that are disjoint
from the proposed methodology’s evaluation. A majority
of the images in the CamenAI [1] dataset is prone to
dashboard interference that obstructs the natural scene. This
dashboard interference is not the region of interest. This
section highlights a case study to infer if cropping the
dashboard interference in the images of the CamenAI dataset
play a role in the score predicted by the BIQA regression
model.

To this end, 200 original images and their cropped version
is used to study the score predicted by the BIQA model. An
example of an image containing dashboard interference and
its cropped version are shown in figures 6a and 6 respectively.

The set of original images is independently evaluated by
three BIQA models - NIMA [3], DBCNN [5] and UNIQUE
[4] . The score predicted by each of these three models is
noted. Following this, the set of 200 cropped versions of
the original images is again independently evaluated by the
three models to observe the score for the cropped images.
Since the score obtained across the three BIQA models for

(a) Example of an image from the CamenAI dataset
containing dashboard interference

(b) Example of CamenAI dataset image cropped for
dashboard interference

Fig. 6: Example Image in CamenAI dataset - Original image
& its Cropped version [1]



original images and cropped images lie in a different range,
the scores for the three BIQA model is scaled to [1,5].

The absolute difference [30] is calculated for the scaled
score obtained for each original image and the scaled score
obtained for its cropped version. Later, the mean of the abso-
lute difference across all images is noted to conclude whether
dashboard interference indeed affects the score predicted by
the BIQA model. The absolute difference does not provide
a clear conclusion whether cropping images for dashboard
interference increases or decreases the score predicted by the
BIQA model. It provides the degree of score change observed
across the set of original images and cropped images.

• NIMA [3] - The histogram showing the overlap of
scores across original images and cropped images eval-
uated by NIMA is shown in figure 7. The calculated
absolute difference is 0.0314

Fig. 7: Histogram of NIMA for scores across original and
cropped images (histogram created using matplotlib [31])

• DBCNN [5] - The histogram showing the overlap of
scores across original images and cropped images eval-
uated by DBCNN is shown in figure 8. The calculated
absolute difference is 0.5541

Fig. 8: Histogram of DBCNN for scores across original and
cropped images (histogram created using matplotlib [31])

TABLE VII: Summary of absolute difference between scores
of original images to that of cropped images for dashboard
interference

Evaluation Mean Absolute
Difference

NIMA [3] 0.0314
DBCNN [5] 0.5541
UNIQUE [4] 0.0566

• UNIQUE [4]- The histogram showing the overlap of
scores across original images and cropped images eval-
uated by DBCNN is shown in figure 9. The calculated
absolute difference is 0.0566

Fig. 9: Histogram of UNIQUE for scores across original and
cropped images (histogram created using matplotlib [31])

The summary of the calculated absolute difference by the
three BIQA models is shown in table VII. From this table,
it is clear that cropping images for dashboard interference
does not significantly affect the scores predicted by NIMA
[3] and UNIQUE [4]. In the case of DBCNN [5], a large
absolute difference is observed, indicating cropping images
for dashboard interference does affect the score predicted by
DBCNN.

V. EXPERIMENTATION SETUP

This section highlights the experiment set-up for research
questions 4 and 5.

A. Experimentation set-up 1

The experiment set-up 1 is illustrated in figure 10. The
distribution of the dataset comprising of 1894 images is
highlighted in figure 11. Initially, this dataset is used to per-
form inference on the pre-trained BIQA models to generate
predictions. The generated predictions are subjected to an
80%-20% split. Since the BIQA models are pre-trained on
existing respective datasets, the output score range of these
BIQA models is different.

The score of the BIQA models lie in the range:
• NIMA [3] = [1,10]

Minima Score = 1; Maxima Score = 10



Fig. 10: Experimentation set-up for BIQA regression models,
Majority Voting, Aggregation, Ensemble of BIQA Models
(Diagram created using draw.io [32])

Fig. 11: Distribution of scores for images considered in
experiment set-up 1 (Histogram created online [29])

• DBCNN [5] = [0,10]
Minima Score = 0; Maxima Score = 10

• UNIQUE [4]= [-3,3]
Minima Score = -3; Maxima Score = 3

The 80% split of NIMA, DBCNN and UNIQUE pre-
dictions is used to train the MLP classifier [28] neural
network for different combinations of the ensemble. This
MLP classifier is trained with respect to the ground truth
that contains the annotations of the images in the score range
[1,2,3,4,5].

The 20% split of the generated raw predictions from
NIMA, DBCNN and UNIQUE is subjected to scaling and
rounding-off. Scaling is performed to bring the different
score ranges of the BIQA models to a common score range
of [1,5] using the formula,

1 +
(

ScorePredicted
MaximaScore−MinimaScore

)
∗ 4

Next, the scaled scores are rounded-off to their nearest
integer values to yield the score range [1,2,3,4,5]. This nor-
malized data is used to evaluate the performance of NIMA,
DBCNN, UNIQUE, majority voting and aggregation tests.
Furthermore, the 20% split of the generated raw predictions
is used to evaluate the MLP classifier. The output of the MLP
classifier represents the final image quality score that lies in
the range [1,2,3,4,5].

As already stated, images with scores 3,4,5 represent
good quality images, and images with scores 1,2 represent
bad quality images. Thus, a post-processing technique is
introduced to encode the final image quality score. Scores
1,2 are encoded as score 1, and scores 3,4,5 are encoded as
score 2. Similarly, the annotations are also encoded. The F1-
score classification report is generated for the encoded score
and the encoded annotations across the three BIQA models,
majority voting, aggregation and MLP classifier. This results
in two classes - 1 (bad quality) and 2 (good quality). The F1-
score [27] of these two classes is inspected, and the approach
that results in the maximum F1-score is concluded as the
best approach to retain a maximum number of images in the
usable category.

B. Experiment set-up 2

Fig. 12: Experimentation set-up for classification models,
Majority Voting, Ensemble of Classification Models
(Diagram created using draw.io [32])

The experiment set-up is illustrated in figure 12. The
dataset is now treated as five classes - 1,2,3,4,5. This
experiment is carried out to determine if images in the
CamenAI [1] dataset can be treated as classes or not. This
experiment investigates a classification-based approach to
retaining good quality in the CamenAI dataset. Here, a
multi-class classification approach is employed. Classes 3,4,5
represent images of good quality. Classes 1 and 2 represent
images of bad quality.

Figures 13a and 13b represent the distribution of classes
in train data and test data, respectively, for this experiment.
The train data is used to train the classification models



(a) Distribution of classes for training data

(b) Distribution of classes for testing data

Fig. 13: Distribution of classes for train and test data in
experiment set-up 2 (Histogram created online [29])

(MobileNet [24], VGG16 [25], ResNet-50 [26]). The test
data is subjected to an 80%-20% split. The 80% split of
the test data is used to perform inference on the trained
classification models to generate predictions (class the image
belongs to). The predictions serve as train data for the MLP
classifier [28]. The 20% split of test data is used as a common
test set to evaluate the performance of the classification
models individually, evaluate the performance of majority
voting and lastly to evaluate the MLP classifier.

A post-processing technique is introduced where classes
1,2 are encoded as class 1 and 3,4,5 are encoded as class
2. Similarly, the annotations are also encoded. The F1-score
[27] classification report is generated for the encoded score
and the encoded annotations across the three classification
models, majority voting and MLP classifier. This results in
two classes - 1 (bad quality) and 2 (good quality). The F1-
score of these two classes is inspected, and the approach
that results in the maximum F1-score is concluded as the
best approach to retain a maximum number of images in the
usable category.

C. Experiment set-up 3

The experiment set-up 3 is similar to experiment set-up
2 highlighted in figure 12. As seen in experiment set-up 2,
a multi-class classification approach is employed over the

(a) Distribution of classes for training data

(b) Distribution of classes for testing data

Fig. 14: Distribution of classes for train and test data in
experiment set-up 3 (Histogram created online [29])

fives classes. Experiment set-up 3 performs the same task as
experiment set-up 2, but for a binary classification approach.
Thus, post-processing is not necessary. Since the final goal is
to inspect whether the images are classified as good quality
or bad quality, a binary classification approach is employed
upfront.

Figure 14 represents the distribution of classes in train
data for the individual classification models. The train data
in figure 13a is modified such that images of classes 1 and
2 are now grouped as one class and images of classes 3,4,5
grouped as another class. A balance is maintained across the
two classes for the train data. The test data in figure 13b is
also modified. The distribution of train data and test data for
experiment set-up 3 is illustrated in figures 14a and 14b.

VI. EVALUATION

Across the three experiment set-ups, there exist two classes
- Class 1 and Class 2 (or Score 1 and Score 2 in case of
experiment set-up 1). The chosen performance evaluation
metrics - Precision, Recall and F1-score- evaluates perfor-
mance of each experiment set-ups towards rightly classifying
the images to their respective classes.

The F1-score [27] of a class is the harmonic mean of
precision and recall of that class. The precision of a class
highlights the ratio of correctly predicted positive observa-
tions to the total predicted positive observations. The recall



TABLE VIII: Summary of Evaluation of BIQA models,
Majority Voting and Aggregation tests

Class-1 Class-2
Evaluation Precision Recall F1 Precision Recall F1
NIMA [3] 1.00 0.04 0.08 0.56 1.00 0.72

DBCNN [5] 0.49 0.48 0.49 0.58 0.59 0.59
UNIQUE [4] 0.45 1.00 0.62 0.00 0.00 0.00

Majority Voting 0.50 0.49 0.50 0.59 0.59 0.59
Aggregation 0.50 0.49 0.50 0.59 0.59 0.59

TABLE IX: Summary of evaluation for different combination of the ensemble NIMA, DBCNN and UNIQUE

Class-1 Class-2
Ensemble using MLP Classifier #Hidden Layers #Neurons per Hidden Layer Precision Recall F1 Precision Recall F1
NIMA[3]-DBCNN[5]-UNIQUE[4] 4 3000,2000,1000,500 0.67 0.76 0.71 0.78 0.69 0.73

3 3000,2000,1000 0.51 0.88 0.65 0.75 0.30 0.43
2 2000,1000 0.57 0.84 0.68 0.78 0.47 0.59
1 2000 0.66 0.79 0.72 0.79 0.66 0.72

NIMA[3]-DBCNN[5] 4 3000,2000,1000,500 0.67 0.77 0.71 0.78 0.68 0.73
3 3000,2000,1000 0.68 0.75 0.71 0.77 0.70 0.73
2 2000,1000 0.61 0.87 0.72 0.83 0.54 0.65
1 2000 0.62 0.88 0.73 0.84 0.55 0.67

NIMA[3]-UNIQUE[4] 4 3000,2000,1000,500 0.54 0.95 0.69 0.89 0.33 0.48
3 3000,2000,1000 0.56 0.91 0.69 0.84 0.42 0.56
2 2000,1000 0.73 0.67 0.70 0.74 0.79 0.77
1 2000 0.60 0.84 0.70 0.80 0.54 0.64

DBCNN[5]-UNIQUE[4] 4 3000,2000,1000,500 0.49 0.80 0.60 0.64 0.30 0.41
3 3000,2000,1000 0.47 0.85 0.60 0.60 0.18 0.28
2 2000,1000 0.47 0.81 0.60 0.61 0.25 0.36
1 2000 0.47 0.86 0.60 0.61 0.18 0.28

TABLE X: Average Processing time for different combination of NIMA, DBCNN and UNIQUE models combined in the
ensemble

Evaluation Average Processing Time
(in seconds)

NIMA [3] 27 (A)
DBCNN [5] 45 (B)
UNIQUE [4] 5 (C)

NIMA[3]-DBCNN[5]-UNIQUE[4]-MLP Classifier[28] A + B + C + 0.2748
NIMA[3]-DBCNN[5]-MLP Classifier[28] A + B + 0.0133
NIMA[3]-UNIQUE[4]-MLP Classifier[28] A + C + 0.0790

DBCNN[5]-UNIQUE[4]-MLP Classifier[28] B + C + 0.0224

is the ability of the model to find all relevant classes within
a dataset.

Images belonging to Class 1 indicates images with bad
image quality that should be discarded, whereas images
belonging to Class 2 indicate images with good image quality
that should be retained. Thus, the focus of interest is the F1-
score parameter for both the classes. A similar and large
F1-score value is desired for the two classes (at least 0.6).
It is also desired to have a similar and large recall value
for both the classes (at least 0.6). A low recall value for a
class indicates misclassifications of that class. The values of
precision, recall and F1-score range from [0,1].

A. Evaluation for experiment set-up 1

The evaluation summary of the individually tested BIQA
models, majority voting and aggregation results are summa-
rized in table VIII. Across the three BIQA models - NIMA
[3], DBCNN [5] and UNIQUE [4], it is observed that there
exists a large quantity of misclassification of class-1 images
as class-2 and vice-versa.

NIMA exhibits a low F1-score and a low recall value for
class 1. This means most bad quality images are predicted
as good quality images. The F1-score and recall value for
DBCNN is centred at 0.5, indicating a misclassification of
both classes. For UNIQUE, the F1-score and recall value
for class-2 is 0, indicating all good image quality images
are predicted as bad image quality images. The three BIQA
models render a poor performance since they are not fine-
tuned on the CamenAI dataset. Applying the principle of
majority voting and aggregation on the output score yielded
by the BIQA models results in similar behaviour to that of
DBCNN.

The evaluation summary of the MLP classifier [28] to-
wards ensembling different combinations of NIMA [3],
DBCNN [5] and UNIQUE [4] is shown in table IX. It
is observed that the ensemble comprising of DBCNN and
UNIQUE performed poorly in comparison to other ensemble
combinations. This ensemble delivers a low F1-score and
a low recall value for class-2, indicating that good image
quality images are majorly misclassified into class-1. The



TABLE XI: Best validation loss obtained across training MobileNet, VGG16 and ResNet-50 for multi-class classification

Model Final validation loss obtained during training
(multi-class classification)

MobileNet [24] 0.88225
VGG16 [25] 0.90468

ResNet-50 [26] 0.94138

TABLE XII: Summary of results for Multi-class classification encoded to binary classification for MobileNet, VGG16
ResNet-50 and majority voting

Class-1 Class-2
Evaluation Precision Recall F1 Precision Recall F1

MobileNet [24] 0.34 0.60 0.43 0.64 0.37 0.47
VGG16 [25] 0.55 0.03 0.06 0.66 0.99 0.79

ResNet-50 [26] 0.34 0.98 0.50 0.00 0.00 0.00
Majority Voting 0.33 0.60 0.43 0.64 0.37 0.47

TABLE XIII: Summary of evaluation for different combination of the ensemble MobileNet, VGG16 and ResNet-50 for
multi-class classification encoded as binary classification

Class-1 Class-2
Ensemble using MLP Classifier #Hidden Layers #Neurons per Hidden Layer Precision Recall F1 Precision Recall F1

MobileNet[24]-VGG16[25]-ResNet-50[26] 4 3000,2000,1000,500 0.65 0.12 0.20 0.68 0.97 0.80
3 3000,2000,1000 0.72 0.09 0.16 0.67 0.98 0.80
2 2000,1000 0.78 0.09 0.16 0.67 0.99 0.80
1 2000 0.72 0.09 0.16 0.67 0.98 0.80

MobileNet[24]-VGG16[25] 4 3000,2000,1000,500 0.64 0.04 0.08 0.66 0.99 0.79
3 3000,2000,1000 0.57 0.08 0.14 0.67 0.97 0.79
2 2000,1000 0.55 0.08 0.14 0.67 0.97 0.79
1 2000 0.55 0.08 0.14 0.67 0.97 0.79

MobileNet[24]-ResNet-50[26] 4 3000,2000,1000,500 0.93 0.06 0.12 0.67 1.00 0.80
3 3000,2000,1000 0.93 0.06 0.12 0.67 1.00 0.80
2 2000,1000 0.93 0.06 0.12 0.67 1.00 0.80
1 2000 0.93 0.06 0.12 0.67 1.00 0.80

VGG16[25]-ResNet-50[26] 4 3000,2000,1000,500 0.63 0.09 0.16 0.67 0.97 0.79
3 3000,2000,1000 0.63 0.09 0.16 0.67 0.97 0.79
2 2000,1000 0.63 0.09 0.16 0.67 0.97 0.79
1 2000 0.59 0.09 0.16 0.67 0.97 0.79

TABLE XIV: Average Processing time for different combination of MobileNet, VGG16 and ResNet-50 combined in the
ensemble for multi-class classification

Evaluation (multiclass) Average Processing Time
(in seconds)

MobileNet [24] 0.3302 (A)
VGG16 [25] 0.8149 (B)

ResNet-50 [26] 0.4786(C)
MobileNet[24]-VGG16[25]-ResNet-50[26]-MLP Classifier[28] A + B + C + 0.3619

MobileNet[24]-VGG16[25]-MLP Classifier[28] A + B + 0.0291
MobileNet[24]-ResNet-50[26]-MLP Classifier[28] A + C + 0.0417

VGG16[25]-ResNet-50[26]-MLP Classifier[28] B + C + 0.0235

ensemble of NIMA and DBCNN exhibits stability in F1-
score and recall value across different hidden layers and
neurons per hidden layer. This indicates a majority of the
images are rightly classified into correct classes. This en-
semble delivers an F1-score of 0.71 and recall of 0.75 for
class-1 and an F1-score of 0.71, and a recall of 0.73 for class-
2. The ensemble comprising of NIMA, DBCNN, UNIQUE
achieves the same F1-score and recall value of the ensemble
NIMA and DBCNN. The ensemble of NIMA and UNIQUE
delivers the highest F1-score and recall value for the MLP
classifier comprising of two hidden layers. This indicates
a majority of the images are rightly classified into correct
classes. It is interesting to note the effect the number of
hidden layers in the MLP classifier has on delivering a large

F1-score and a large recall value. This is viewed as a future
work where hyper-parameter tuning can be employed on the
number of hidden layers and number of neurons per layer to
determine the right combination that delivers a large F1-score
and recall value. The processing time for each combination
of the ensemble is shown in table X.

B. Evaluation for experiment set-up 2

The final validation loss obtained while training Mo-
bileNet [24], VGG16 [25] and ResNet-50 [] on the CamenAI
dataset [1] is shown in table XI. The evaluation summary
of MobileNet, VGG16, ResNet-50 trained and evaluated
towards a multiclass classification approach is shown in table
XII.



TABLE XV: Best validation loss obtained across training MobileNet, VGG16 and ResNet-50 for binary classification

Model Final validation loss obtained during training
(binary classification)

MobileNet [24] 0.38975
VGG16 [25] 0.40308

ResNet-50 [26] 0.41971

TABLE XVI: Summary of results for binary classification for MobileNet, VGG16 ResNet-50 and majority voting

Class-1 Class-2
Evaluation Precision Recall F1 Precision Recall F1

MobileNet[24] 0.38 0.31 0.34 0.71 0.77 0.74
VGG16 [25] 0.30 0.08 0.12 0.69 0.92 0.79

ResNet-50 [26] 0.31 0.98 0.47 0.00 0.00 0.00
Majority Voting 0.31 1.00 0.47 0.00 0.00 0.00

TABLE XVII: Summary of evaluation for different combination of the ensemble MobileNet, VGG16 and ResNet-50 for
binary classification

Class-1 Class-2
Ensemble using MLP Classifier #Hidden Layers #Neurons per Hidden Layer Precision Recall F1 Precision Recall F1

MobileNet[24]-VGG16[25]-ResNet-50[26] 4 3000,2000,1000,500 1.00 0.02 0.03 0.69 1.00 0.82
3 3000,2000,1000 1.00 0.02 0.03 0.69 1.00 0.82
2 2000,1000 1.00 0.02 0.03 0.69 1.00 0.82
1 2000 1.00 0.02 0.03 0.69 1.00 0.82

MobileNet[24]-VGG16[25] 4 3000,2000,1000,500 0.00 0.00 0.00 0.69 1.00 0.82
3 3000,2000,1000 0.00 0.00 0.00 0.69 1.00 0.82
2 2000,1000 0.00 0.00 0.00 0.69 1.00 0.82
1 2000 0.00 0.00 0.00 0.69 1.00 0.82

MobileNet[24]-ResNet-50[26] 4 3000,2000,1000,500 1.00 0.02 0.03 0.69 1.00 0.82
3 3000,2000,1000 1.00 0.02 0.03 0.69 1.00 0.82
2 2000,1000 1.00 0.02 0.03 0.69 1.00 0.82
1 2000 1.00 0.02 0.03 0.69 1.00 0.82

VGG16[25]-ResNet-50[26] 4 3000,2000,1000,500 1.00 0.02 0.03 0.69 1.00 0.82
3 3000,2000,1000 1.00 0.02 0.03 0.69 1.00 0.82
2 2000,1000 1.00 0.02 0.03 0.69 1.00 0.82
1 2000 1.00 0.02 0.03 0.69 1.00 0.82

TABLE XVIII: Average Processing time for different combination of MobileNet, VGG16 and ResNet-50 combined in the
ensemble

Evaluation (binary) Average Processing Time
(in seconds)

MobileNet [24] 0.2942(A)
VGG16 [25] 0.7525 (B)

ResNet-50 [26] 0.3239(C)
MobileNet[24]-VGG16[25]-ResNet-50[26]-MLP Classifier [28] A + B + C + 0.0151

MobileNet[24]-VGG16[25]-MLP Classifier[28] A + B + 0.0145
MobileNet[?]-ResNet-50[26]-MLP Classifier[28] A + C + 0.1995
VGG16[25]-ResNet-50[26]-MLP Classifier[28] B + C + 0.0131

MobileNet exhibits a low F1-score and low recall value
for Class-2. This indicates a large quantity of good image
quality images is misclassified as poor image quality images.
VGG16 exhibits an opposite behaviour to MobileNet, where
class-1 images are misclassified as class-2. In the case of
ResNet-50, all images are classified into class-1, thereby
an F1-score and recall value of 0 for class-2. Applying
the principle of majority voting, it is observed the results
obtained is the same as results for MobileNet.

These individual models, although fine-tuned on the Ca-
menAI dataset, perform poorly while classifying images
into respective classes. This can be an indication that the
CamenAI dataset should not be interpreted as classes since
there exist no distinguishable features across the five classes
for the model to learn and detect.

The evaluation summary of the MLP classifier towards
ensembling different combinations of MobileNet, VGG16
and ResNet-50 is shown in table XIII. It is observed that
across all ensemble combination there exists a large misclas-
sification of Class-1 images as Class-2 for different hidden
layers incorporated in the MLP classifier.

The processing time for each combination of the ensemble
is shown in table XIV.

C. Evaluation for experiment set-up 3

The evaluation summary of MobileNet [24], VGG16 [25],
ResNet-50 [26] trained and evaluated towards a binary clas-
sification approach on the CamenAI dataset [1] is shown in
table XVI. The final validation loss obtained while training
these models on the CamenAI dataset is shown in table XV.



It is observed that MobileNet and VGG16 produce a large
F1-score and recall value for class-2 but a significantly low
F1-score and recall value for Class-1. This indicates there
exist many misclassifications of class-1 images. ResNet-50
and majority voting produce the same F1-score and recall
value where all images of Class-2 are misclassified as Class-
1.

The evaluation summary of the MLP classifier [28]
towards ensembling different combinations of MobileNet,
VGG16 and ResNet-50 is shown in table XVII. It is observed
that all combination of the ensemble deliver a high F1-score
and recall value for Class-2 images and perform significantly
poorly for images of Class-1. There exists a large quantity
of misclassification of Class-1 images into Class-2.

This further proves that the CamenAI dataset should not be
interpreted as classes towards retaining good quality images
because the model cannot detect the features required to
classify the images into their respective classes.

The processing time for each combination of the ensemble
is shown in table XVIII.

VII. RESULTS AND DISCUSSION

This section discusses the results obtained across the three
experiment setups.

In experiment setup 1, three BIQA regression models
(NIMA [3], DBCNN [5], UNIQUE[4]) are considered to
perform inference on the CamenAI dataset [1] that follows
the annotation [1,2,3,4,5]. The annotations are interpreted as
scores. The predicted image quality scores of these BIQA
models on the CamenAI dataset lie in different ranges. This
is because the BIQA models are pre-trained on different
standard BIQA datasets that take different ranges for Mean
Opinion Scores. The scores predicted by these models are
first scaled to the range [1,5] and rounded to align with the
CamenAI dataset annotations. Post-processing in the form
of encoding is employed where the scores 3,4,5 are encoded
as score 2 and scores 1,2 are encoded as score 1. This is
done since images with scores 3,4,5 are considered good
image quality images that should be retained whereas images
with scores 1,2 are considered poor image quality images
that should be discarded. To facilitate better visualization
and analysis of results, encoding is employed. It is observed
that the BIQA models performed poorly. NIMA exhibits a
considerable misclassification of images with scores 1 as
score 2 and vice versa in the case of UNIQUE. DBCNN,
majority voting and aggregation tests lead to a similar result
where a misclassification occurs for images with score 1 and
score 2. This is because these BIQA models are not fine-
tuned on the CamenAI dataset due to the lack of annotators
to represent the annotation in the form of Mean Opinion
Scores. It is interesting to note the performance of these
BIQA models once fine-tuned on the CamenAI dataset.

Later, an evaluation of the MLP classifier [28] for different
ensemble combinations of the BIQA models is explored for
different hidden layer sizes and neurons per layer in the
MLP classifier. It is observed that the ensemble of NIMA
and DBCNN rendered a stabilized performance in F1-score

and recall value across different combinations of hidden layer
size and neurons per layer. The ensemble of DBCNN and
UNIQUE exhibits a low F1-score and recall value for score
2, indicating a large misclassification of images with scores
2 as score 1. Thus a major chunk of good image quality
images are lost. However, the highest F1-score and recall
value was achieved for the ensemble of NIMA and UNIQUE
for a hidden layer size of 2. The ensemble comprising of
three BIQA models eventually achieved the same F1-score
and recall value as the ensemble of NIMA and DBCNN. The
number of BIQA models combined in the ensemble and their
respective processing time is calculated.

Due to the lack of annotators, the CamenAI dataset is
annotated as opinion scores rather than mean opinion scores.
The annotated opinion scores follow the range [1,2,3,4,5].
In experiment setup 2, the CamenAI dataset is interpreted
as five classes. The classes 1,2 represent images of bad
quality that should be discarded and classes 3,4,5 represent
good quality images. This experiment follows a classification
approach towards rightly classifying images as good quality
and bad image quality. To this end, transfer learning models
bearing the backbone as MobileNet [24], VGG16 [25] and
ResNet-50 [26] is trained on the CamenAI dataset for a
multiclass classification task. This experiment employs a
post-processing where classes 1,2 are encoded as class 1 and
classes 3,4,5 are encoded as class 2. Class 1 now represents
all images exhibiting bad quality, and class 2 represents all
images with good quality. Later an MLP classifier neural
network comprising of different ensemble combinations of
MobileNet, VGG16 and ResNet-50 is explored to determine
the precision, recall and F1-score towards classifying images
as good quality and bad quality. The results show that the
performance of these individual models is poor. MobileNet
results in a significant misclassification of class 2 images as
class 1. VGG16 results in a significant misclassification of
class 1 images as class 2. In the case of ResNet-50, all images
of class 2 are incorrectly classified as class 1. The results
of majority voting are similar to the results of MobileNet.
This shows that these models are incapable of learning and
detecting the features to classify them as good quality and
bad quality rightly. The evaluation of the MLP classifier for
different ensemble combinations explored shows a significant
misclassification of class 1 images as class 2.

In order to better conclude to discard the idea of em-
ploying a classification approach on the CamenAI dataset,
experiment setup 3 follows a binary classification approach.
The individual models - MobileNet, VGG16 and ResNet-
50 are now trained for a binary classification of two classes
1 2, where class 1 represents images of bad quality and
class 2 represents images of good quality. The performance
of these models are individually evaluated, followed by
an evaluation of the MLP classifier for different ensemble
combination of these models. Results show that these models
perform poorly. MobileNet and VGG16 exhibits a large
misclassification of class 1 images as class 2. In the case
of ResNet-50 and majority voting, all images of class 2 are
misclassified as class 1. The results of the MLP classifier



follows a similar trend where almost all images belonging
to class 1 are misclassified as class 2 across different
combinations of the ensemble. This shows that the images
of the CamenAI dataset annotated as [1,2,3,4,5] may tend to
have inconsistency across the images since a single person
annotated them. In addition, images in the CamenAI dataset
contain finer features to interpret them as classes. As a
result, the model (or the ensemble) is incapable of learning
and detecting the classes’ features to classify them rightly.
Thus, a classification approach should not be employed
towards classifying images as good quality and bad quality.
Rather, a BIQA approach is desired which results in better
classification of images.

VIII. CONCLUSION

This thesis evaluates existing deep learning regression
models for BIQA on the CamenAI dataset. Due to the
non-availability of a large group, the CamenAI dataset was
annotated by a single person. The research proposes an
ensemble NIMA-UNIQUE [3], [4] for a hidden layer size
of 2 in the MLP classifier [28] as the best method towards
rightly classifying images as good and bad quality. Although
other BIQA ensemble combinations yield an F1-score and
recall value of greater than 0.5, the ensemble of NIMA-
UNIQUE achieves the highest F1-score and recall value of
0.77 and 0.79 class-2 & 0.70 and 0.67 for class-1.

In the later part, classification models do not perform well
on this dataset because the five classes are challenging to
represent the behaviour of the images while annotating. In
addition, this dataset has finer features to be represented as
classes that may prove the model is incapable of learning
and detecting features across the classes—also, owing to the
fact that this dataset is unbalanced since data is gathered in
real-time. Hence annotating them into classes should not be
done; rather crowdsourcing annotations must be employed
to represent the image annotation as mean opinion score and
standard deviation. This is one of the outcomes of this study.

All the different ensemble combinations across the clas-
sification models did not perform poorly on the CamenAI
dataset exhibiting a significant misclassification of class-1
images as class-2.

This section provides answers to the research questions
proposed.

1) What are the available BIQA models and training
datasets used to benchmark the performance of BIQA
models?
- The recently available BIQA models include NIMA
[3], MetaIQA [11], DBCNN [5], UNIQUE [4], BIQA
using self-adaptive hyper network [12], NRIQA using
contrast enhancement [13], NRIQA using multi-pooled
inception features [14], Perceptual NRIQA, NRIQA
using global statistical features [20], BIQA using high-
level semantics [16], BIQA using controllable list-wise
ranking [17], BIQA using DeepRN [21], Learning for
BIQA.
- The standard authentic datasets used to benchmark

the performance of BIQA models include: Live Chal-
lenge [6], CID2013 [9], Koniq-10k [7], BID [8]

2) How does the CamenAI dataset compare to the
standard datasets in terms of annotations, resolutions,
and score distribution?
- Existing standard datasets are annotated as mean
opinion scores and standard deviation. The mean opin-
ion score for the standard datasets range from [0,100],
[1,5],[0,5]. The range of opinion scores for the Came-
nAI dataset is [1,2,3,4,5]. The image resolution across
the standard dataset is 500x500 pixels in the Live
Challenge dataset, 512x384 pixels in the case of the
Koniq-10k dataset. In the case of the BID dataset, the
resolutions range from 1280x960 pixels to 2272x1704
pixels. The lowest and largest image resolution in the
CamenAI dataset is 2560x1440 pixels and 4000x3000
pixels, respectively.

a) In what manner can the CamenAI dataset be
annotated for the task of BIQA? - Due to the
absence of a large group of annotators to annotate
images in the CamenAI dataset, it is impossible
to annotate as mean opinion scores and standard
deviation. The author annotates the CamenAI
dataset as opinion scores that take the form
[1,2,3,4,5], where a score 1 indicates the poorest
image quality and a score 5 indicates the highest
image quality.

3) To what extent does cropping the images for dash-
board interference affect the score predicted by BIQA
regression models such as NIMA [3], UNIQUE [4] and
DBCNN [5]?
- Absolute difference between the scores obtained for
the set of original images and their cropped version
is calculated across the three BIQA models. Cropping
the images for dashboard interference does affect the
score predicted by the BIQA model. In the case of
NIMA and UNIQUE, the degree of score change
observed are 0.0314 and 0.0566, respectively. The
absolute difference for DBCNN is 0.5541 indicating
a larger degree of score change

4) What effect does different ensembling combinations
of NIMA [3], DBCNN [5] and UNIQUE [4] have on
the accuracy of their performances on the CamenAI
dataset?

a) How does NIMA, DBCNN and UNIQUE per-
form individually on the CamenAI dataset con-
cerning accuracy?
NIMA delivers a low F1-score and a low recall
value for Score-1, indicating that most images
considered bad quality are misclassified as good
quality. In the case of UNIQUE, the F1-score
and recall value for Score-2 is 0, indicating all
images considered good quality are misclassified
as bad quality. DBCNN exhibits an F1-score and
recall value centred at 0.5 for Score-1 and Score-
2, indicating an equal amount of misclassification



of good quality images as bad quality and vice-
versa.

b) How do we normalize NIMA, DBCNN and
UNIQUE results to ensure the same output score
range across these models?
- The output scores from NIMA, DBCNN and
UNIQUE are normalized by performing scaling
and round-off. The formula to scale the output
scores across NIMA, DBCNN and UNIQUE is:
1 +

(
ScorePredicted

MaximaScore−MinimaScore

)
∗ 4

c) What is the trade-off between the number of
models combined in the ensemble concerning
accuracy and processing time on the CamenAI
dataset?
-The ensemble combination of DBCNN and
UNIQUE performs poorly than other ensemble
combinations. This combination exhibits an F1-
score and recall value of 0.41 and 0.30 for Score-
2 images, indicating a large misclassification as
score-1. The ensemble of NIMA and DBCNN
delivers a stabilized performance with F1-score
and recall values of 0.73 and 0.70, respectively,
for Score-2. The ensemble comprising NIMA,
DBCNN and UNIQUE achieves the same F1-
score and recall value as the ensemble combi-
nation NIMA and DBCNN. The ensemble of
NIMA and UNIQUE delivers the highest F1-
score and recall value of 0.77 and 0.79 for score-
2 respectively and 0.70 and 0.67 for score-1
respectively. The processing time (in seconds) for
NIMA, DBCNN and UNIQUE are 27,45 and 5,
respectively. In addition to their processing time,
the processing time for the MLP classifier for dif-
ferent ensemble combinations, NIMA-DBCNN-
UNIQUE, NIMA-DBCNN, NIMA-UNIQUE and
DBCNN-UNIQUE, are 0.2748s,0.0133s,0.0790s
and 0.0224s, respectively.

d) What is the best and worst combination of the
ensemble surrounding accuracy on the CamenAI
dataset?
-The best ensemble combination is NIMA-
UNIQUE that delivers an F1-score and recall
value of 0.77 and 0.79 for score-2 & F1-score
and recall value of 0.70 and 0.67 for score-1,
respectively. The worst ensemble combination is
DBCNN-UNIQUE, which delivers an F1-score
and recall value of 0.41 and 0.30 for score-2 &
0.60 and 0.80 for score-1, respectively.

5) What effect does different ensembling combinations of
transfer learning models have on the accuracy of their
performances on the CamenAI dataset?

a) What are the selected transfer learning models?
-The selected transfer learning models are Mo-
bileNet [24], VGG16 [25] and ResNet-50 [26]

b) How do these models perform for multiclass
classification and binary classification on the Ca-
menAI dataset concerning accuracy?
-In the case of multiclass classification encoded
as binary classification, MobileNet exhibits a
large misclassification of class-2 images as class-
1. It delivers a low F1-score and recall value of
0.47 and 0.37 for class-2 & 0.43 and 0.60 for
class-1. In the case of VGG16, nearly all images
of class-1 are misclassified as class-2. It exhibits
an F1-score and recall value of 0.06 and 0.03 for
class-1, respectively. ResNet-50 misclassifies all
class-2 images as class-1, thereby delivering an
F1-score and recall value of 0.00 for class-2.
-In the case of binary classification, MobileNet
delivers a low F1-score and recall value of 0.34
and 0.31 for class-1. This indicates a large mis-
classification of class-1 images as class-2. On the
other hand, VGG16 delivers even a larger mis-
classification than MobileNet. Here, the F1-score
and recall value for class-1 are 0.12 and 0.08,
respectively. ResNet-50 misclassifies all class-2
images as class-1. It delivers an F1-score and
recall value of 0.00 for class-2

c) What is the trade-off between the number of
models combined in the ensemble concerning
accuracy and processing time on the CamenAI
dataset for a multiclass classification?

-The F1-score and recall value across differ-
ent combinations of MobileNet, VGG16 and
ResNet-50 exhibit a similar and lower value
for class-1 (less than 0.2) indicating a signifi-
cant misclassification of class-1 images as class-
2. The processing time (in seconds) for Mo-
bileNet, VGG16 and ResNet-50 are 0.3302s,
0.8149s and 0.4786s respectively. In addition to
their individual processing time, the processing
time for the MLP classifier for different ensem-
ble combinations, MobileNet-VGG16-ResNet-
50, MobileNet-VGG16, MobileNet-ResNet-50
and VGG16-ResNet-50 are 0.3619s, 0.029s,
0.041s and 0.023s respectively.

d) What is the trade-off between the number of
models combined in the ensemble concerning
accuracy and processing time on the CamenAI
dataset for a binary classification?

-The F1-score and recall value across differ-
ent combinations of MobileNet, VGG16 and
ResNet-50 for different hidden layer sizes
in the MLP classifier delivered a signifi-
cantly low F1-score and recall value of less
than 0.05 for class-1. This indicates a sig-
nificant misclassification of class-1 images as
class-2. The processing time for MobileNet,
VGG16 and ResNet-50 are 0.0294s, 0.7525s



and 0.3239s respectively. In addition to their
individual processing time, the processing time
for the MLP classifier across different ensem-
ble combinations, MobileNet-VGG16-ResNet-
50, MobileNet-VGG16, MobileNet-ResNet-50
and VGG16-ResNet-50 are 0.3619s, 0.029s,
0.0.041s and 0.0.023s respectively.

IX. FUTURE WORK

The images of the CamenAI [1] dataset must be subjected
to crowdsourcing annotations. This opens the door to fine-
tune the BIQA regression models on the CamenAI dataset.
It becomes interesting to study the effect of the ensemble
containing the fine tuned BIQA models. This scenario may
deliver even better results on the CamenAI dataset. Explo-
ration towards other BIQA regression models should be made
that behaves better with the CamenAI dataset. In this way,
more classifiers can be used in the ensemble to produce
higher accuracy. Since one of the models in the ensemble
is affected by dashboard interference, a study must be made
to crop this interference across all images and then evaluated
by the BIQA model.

The results of the MLP classifier [28] for different en-
semble combinations of the BIQA models tend to deliver a
higher accuracy with respect to the number of hidden layers
and neurons per layer used in the MLP classifier. Thus, a
hyperparameter tuning approach should be used to determine
the right number of hidden layers, and neurons per layer
desired that offers the highest accuracy for the ensemble
combination.
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