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Management Summary 
Railway incidents occur randomly and can have a significant impact on train operations. ProRail,  owner 

of the Dutch railway tracks, has a special department that solves incidents on railway tracks. This 

department is called the incident handling department (ICB). The ICB department defines incidents as 

undesirable events involving a train with disruptive effects on the rail traffic system or on services of 

participants in the rail traffic system, such that continuation is endangered or already hindered. These 

events immediately result in imminent or already occurred injury/damage to people, animals, goods 

or the environment. Contractors, in general, solve all other incidents not involving trains. Different 

incidents require different specialised incident handlers. Currently, the planning is not based on 

computational intelligence and is not specialism-specific, meaning ProRail currently plans a general 

incident handler. However, ProRail wants to move to specialisms rather than general incident handlers. 

Besides, ProRail is looking to improve its planning and scheduling by considering information on the 

allocation of specialism-specific incident handlers to cover incidents at a threshold coverage level.  

Therefore, we define the goal of this project as: 

Create an optimization model that guarantees a threshold coverage by allocating specialization-

specific incident handlers based on historical data to support scheduling. 

Context 

The specialisms we consider in this research are the general leader (AL) and the ICB team (ICB). The AL 

is responsible for the operational management and coordination of incident handling. The ICB team is 

responsible for actually solving incidents. Incident handling takes on average 10 to 20 % of the working 

time of an incident handler. Therefore, incident handlers (AL and ICB) perform preventive and 

secondary tasks for the remainder of the working time. As soon as an incident occurs and an incident 

handler gets called in, the incident handler stops with his current preventive or secondary task and 

hurries to an incident. Currently, ProRail works with two shifts on weekdays and one during a weekend 

day. Almost all shifts include on-standby time where an incident handler is at home but can get called 

in for incident handling. The Port of Rotterdam, Kijfhoek (freight shunting yard near Rotterdam) and 

Schiphol airport are specific ProRail locations that do not have standby shifts because of the 

importance of these locations. 

Incidents occur at random (unpredictable) moments, and one incident is often completely different 

from another. To adequately respond to an incident with the correct specialisms and equipment, 

ProRail uses an incident classification system. As soon as an incident is called in, an incident is given a 

classification, and the appropriate incident handlers respond to the call. There are two incident 

classification systems. The first is the Train Incident Scenario (TIS), and the second is the incident 

labelling. The latter gives a more detailed description of the incident. The datasets available for this 

research, all limited to the period between the 24th of June 2017 and the 26th of March 2021, include 

the TIS and incident labels. Based on discussions with experts of ProRail, we exclude (filter) several TIS 

scenarios and incident labels that do not require the deployment of incident handlers from the data. 

Besides, we only look at 2018, 2019 and 2020 because 2017 and 2021 are incomplete. Also, one of the 

datasets represents the deployment of incident handlers. Unfortunately, the deployment dataset does 

not cover the same time period, because ProRail started registering deployment from 2020 onwards. 

Therefore, we extrapolated the deployment data per incident label to the incident dataset. 

  



iii 

Method 

In the past few decades, a great deal of research has been done on positioning emergency services, 

predominantly focussed on and referred to efficient positioning of emergency medical services. 

Therefore, it is not unexpected that we find many optimization models proposed for solving the 

capacity allocation problem to guarantee coverage in the literature. For our problem, the Location Set 

Covering Problem (LSCP) by Toregas, Swain, ReVelle, and Bergman (1971) and the TIMEXCLP model of 

Repede and Bernardo (1994) are two very relevant models. We combine the LSCP and TIMEXCLP model 

to create a model that minimizes the number of incident handlers over different time instances by 

allocating them such that we achieve the constraint of a threshold coverage. In this way, the number 

of incident handlers is unrestricted and optimized by the model. Covering models typically use a binary 

coverage view, meaning a node is either covered or not. There exist functions that change this binary 

view to a gradual coverage view. We extend the developed model with a gradual coverage function 

where coverage decreases when distance increases away from an incident handler using a step-wise 

coverage function. 

Location covering problems are typically optimization problems that belong to a complex class of 

combinatorial optimization problems (Rajagopalan, Saydam, & Xiao, 2008). Because of the complexity 

of such problems, various metaheuristic search methods have been developed to find near-optimal 

solutions in reasonable computational time. Of these metaheuristic search methods, simulated 

annealing is an appropriate method. Simulated annealing is a method that has been successfully 

implemented to solve covering models.  It is a method that is usually easily implemented. Also, it 

generally requires less computational effort than more sophisticated procedures such as tabu search 

and genetic algorithms (Galvão, Chiyoshi, & Morabito, 2005). 

The simulated annealing algorithm obtains solutions based on a deterministic input. However, 

incidents do not occur on a deterministic basis. Instead, they occur randomly. Due to this stochastic 

element, a good solution obtained with the SA algorithm using deterministic input might not be that 

good when considering stochasticity. Therefore, it is vital to analyse the performance of a solution in 

a stochastic environment. With a stochastic analysis, we can determine the robustness of a solution. 

Therefore, to analyse this stochastic performance, we use a simheuristic. Simheuristic algorithms are 

often used to simulate real-world problems under uncertain conditions (Chica & Juan 2017). The 

simheuristic algorithm uses simulation to allow stochastic scenarios to be evaluated for a fixed 

solution. In this way, we can analyse the feasibility of a solution under uncertain conditions. We can 

select the most robust solution of our solutions when doing so for various solutions. To do so, we fix 

the allocated employees in the solutions and simulated different incident environments where 

incidents occur more often or less often. In each simulation run, we calculate the coverage and after 

all simulation runs of one solution, we analyse the coverages. The simheuristic algorithm we are using 

to analyse the stochasticity is Monte-Carlo simulation. This technique allows to simulate many 

different instances, every time slightly adjusted. We want to evaluate the performance of different 

solutions by simulating stochasticity in the incident scenarios, and with this technique, we can. The 

simheuristic with Monte-Carlo simulation is proven to be efficient and reliable (Lalla-Ruiz, Heilig, & 

Voß, 2020). 

Results 

We analyse in total 40 different scenarios. We consider two specialisms, ten different time periods as 

input data and a weekday or weekend day. The final results, which are the most robust solutions to 

every scenario obtained with the simheuristic, let us see that the main areas of focus during the week 

are Rotterdam, Amsterdam and the theoretical triangle Zwolle – Enschede – Arnhem, followed by the 
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South (Limburg) and the North of the country. Also, the required number of employees on a weekend 

day decreases by around 19% compared to the number of employees required during a weekday. This 

decrease in the number of employees mainly occurs in the North of the Netherlands, as we also show 

in Figure 1, where we see the allocation of employees during a weekday and weekend day based on 

incident data of the years 2018 and 2019. The graphs in this figure represent the cumulative allocation 

of employees of all hours on the day. 

  
Figure 1: Allocation of employees during a weekday (left) and weekend day (right) based on incident data of 2018 and 2019 

For all results, we considered a threshold coverage of 80%. We determined this value in consultation 

with ProRail. However, ProRail is also interested in what happens if we increase this threshold coverage 

level. Figure 2 shows the effect when increasing the threshold coverage level. The figure plots the 

increase in the required number of employees compared to the situation where the threshold 

coverage level is 80%. We see that the number of employees needed grows when increasing the 

threshold coverage value. In this way, reaching a 95% coverage level is unrealistic as this requires 64% 

more employees, which is, in reality, a significant number of extra employees and not possible for 

ProRail. However, we assume that these percentages are reliable when requiring a higher coverage 

level for a small specific region. In that case, increasing the number of employees in that region only is 

possible. 

 

Figure 2: Effect on number of employees when increasing the threshold coverage level 

Recommendations 

This research provides insight into the number of employees required per hour of the day and the 

location of those employees. However, this is influenced by several assumptions. First, we 

extrapolated deployment data per incident label. We recommend analysing the deployment per 

incident label in more detail. Besides, we do not consider travelling times and only look at the starting 

moment of incidents. We recommend doing further research to develop a model that considers both 
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travelling times and incident duration. This will create a more detailed model that can be used at a 

lower planning level. 

If we look at the final results on the distribution of incident handlers across the day and compare this 

with the current working shifts ProRail uses for its incident handlers, we see possible improvements. 

We recommend considering the shift-change from morning shift to afternoon shift of the ICB team to 

be 1 hour earlier, from 13.00 to 14.00. Besides, we recommend looking at variable shift hours, where 

employees do not start and end their shifts simultaneously. This would improve coverage, as 

employees are more spread out during the day. Lastly, we recommend considering if the employees 

in the afternoon shift should all go on standby during the night. With only half of the employees on 

standby during the night, enough employees remain to cover demand.  
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1. Introduction 
This report describes the graduation assignment conducted at ProRail for the master Industrial 

Engineering and Management at the University of Twente. The research focuses on capacity allocation 

optimization of incident handlers at the department of incident handling (ICB). This chapter introduces 

the research conducted at ProRail. First, we provide a company description and describe the ICB 

department in Section 1.1. Next, we define and motivate the problem in Section 1.2. Section 1.3 covers 

the research objective, including the research goal, scope and limitations. Section 1.4 states the 

research questions, and Section 1.5 finalises the chapter by describing the research design. 

1.1. Company description 
The Netherlands has one of the best railway networks in the world (Economy, 2019). Every day more 

than 1.2 million people travel by train, and 100,000 tons of goods are transported using a network of 

more than 7,000 kilometres of railway tracks (CBS, 2009). Transporting these numbers of people and 

goods requires a solid infrastructure. ProRail is the company responsible for this infrastructure. They 

renew stations to state-of-the-art stations, arrange safe journeys of passenger and freight trains and 

take care that all trains arrive on time, a challenging job on one of the busiest railways in the world 

(RailTech, 2019). In Figure 3, we see the complete infrastructure ProRail is responsible for. 

One of the departments of ProRail is ICB. The ICB department acts when incidents occur on the railway 

network. They send employees, called incident handlers, to the location of the incident. The incident 

handlers ensure that the railway track is cleared as soon as possible after an incident. They are 

equipped with specialized vehicles that allow them to access every location, whether easy or hard to 

reach. The incident handlers work together with other parties in the handling of incidents. These 

parties could vary from public transport parties, which receive passengers from stranded trains, to the 

fire brigade when a fire has broken out. Contractors generally solve incidents that do not influence 

passengers. Contractors repair or renew parts of tracks when necessary. In addition, ICB takes 

measures to guarantee the safety of passengers, train personnel, residents and emergency services. 

Many incident handlers are also community service officers. They are authorized to take active action 

against vandals, copper thieves or track runners. 

 

Figure 3: Overview railway network The Netherlands 



2 

1.2. Problem description 
This project is conducted at the ICB department and focuses on allocating incident handlers across the 

country. Incident handlers are employees of ProRail who are responsible for solving incidents. Here, 

we define an incident as an undesirable event involving a train with disruptive effects on the rail traffic 

system or on services of participants in the rail traffic system, such that continuation is endangered or 

already hindered. These events immediately result in imminent or already occurred injury/damage to 

people, animals, goods or the environment. Contractors, in general, solve incidents not involving 

trains. 

Besides solving incidents, incidents handlers also perform preventive and secondary tasks. Preventive 

tasks can vary from checking railway crossings to surveillance and active action against vandals, copper 

thieves or track runners on railway tracks and stations. Secondary tasks are, for example, doing 

maintenance on their vehicles or managing the materials. 

Incident handlers are scheduled 24 hours a day divided over a couple of regions, overlapping with the 

Dutch provinces, to cover all tasks and solve incidents. This schedule includes different shifts for the 

week and weekend days. The number of incident handlers scheduled is based on common sense and 

does not include any computational intelligence (e.g., looking in historical data where incidents 

frequently occur or where surveillance is most effective). 

Currently, every incident handler can solve every type of incident and every task coherent with that 

type of incident. That means that an incident handler can, for example, solve an incident in a technical 

manner but can also be responsible for a safe workplace during the solving of an incident or the 

handling of passengers. ProRail is currently reorganising this into specialisms such that incident 

handlers are better capable of performing their specific tasks. 

For the project, ProRail is looking for nationwide capacity advice based on computational intelligence 

and specialism. To clarify, nationwide means not looking into regions anymore, but covering the whole 

country. Computational intelligence represents the use of historical incident data. Moreover, 

specialism means advising to allocate X technical handlers and Y community service officers to a 

location instead of Z incident handlers (without specialism-specific information). In this way, ProRail 

expects to create a more advanced and efficient schedule of incident handlers. 

From this, we define the problem of this project as: 

 

  

The allocation of incident handlers during a day is not specialization and location-specific 

and not based on a historical (incident) data to support accurate and precise scheduling of 

incident handlers. 
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1.3. Objective of research 
In this section, we discuss the research goal. Besides that, we describe the scope and limitations of the 

research. 

1.3.1. Research goal 
This research aims to use an optimization model to allocate incident handlers across the country to 

optimize coverage to a threshold. The coverage optimisation coheres with the expected incidents in a 

region for an upcoming period. Therefore, the research goal is defined as follows: 

 

1.3.2. Research scope and limitations 
The allocation problem can be very extensive and complex when including many aspects. As the time 

of a master thesis project is limited, the scope of the research is narrowed and limited. The scope and 

limitations are defined as follows: 

Scope 

• The optimization model includes allocating ICB personnel nationwide. 

• A historical incident data analysis is part of the research. With the help of this data analysis, 

we create incident heatmaps and frequency tables. The data analysis focuses on the types of 

incidents, duration, frequency and location. 

• The research includes looking at the influences of seasons, day of the week and day hours 

regarding incidents. 

Limitations 

• This research does not consider the operational scheduling of incident handlers; the outcome 

is only advice of the capacity required at locations at different timestamps on a day. 

• The available data is limited to July 2017 till March 2021. 

• It is not part of the research to deliver a tool, only the approach to obtain the results and 

capacity and allocation advice based on the results. 

• We do not consider the costs of allocating personnel. 

• We consider Euclidean travel distance from location 𝑋 to location 𝑌, thus without considering 

actual travel distances following roads. 

• We do not consider incident duration in the model 

1.4. Research questions 
The project’s research goal is defined, and we reach this goal by systematically answering the sub 

research questions and finally answering the main research question. First, the main research question 

is defined, followed by the sub research questions. The main research question is as follows: 

 

Create an optimization model that guarantees a threshold coverage by allocating 

specialization-specific incident handlers based on historical data to support scheduling. 

How can optimization techniques be used to guarantee coverage by allocating 

specialization-specific incident handlers based on data? 
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Using an optimization model, we can obtain a suitable capacity allocation of specialization-specific 

incident handlers. We look if we should use an algorithm that identifies appropriate solutions in 

reasonable time as part of the solution approach. Four research sub research questions are defined to 

answer the main research question systematically. These questions will vary from understanding the 

current process and proposed methods in literature to solve capacity allocation problems to solution 

implementation, experimentation and evaluation. Lastly, we define questions for the conclusions and 

recommendations to maintain the same guideline throughout the report. The research sub-questions 

are explained below. 

Analysing the current situation of the problem context 

The first question focuses on the current allocation and scheduling process of incident handlers and 

the incidents themselves and helps understand the problem context. We identify the process's KPIs, 

constraints, and requirements and acquire and analyse available data. In Chapter 2, we cover the 

answer to this question. 

How is the allocation and scheduling of incident handlers currently working? 

• What are the characteristics of an incident, and how is an incident handled? 

• How is the current capacity determined? 

• What are the capacity allocation problem's KPIs, constraints, and requirements? 

• What method is used at ProRail with regards to scheduling incident handlers? 

• What data is available at ProRail concerning incidents? 

Literature review and analysis 

The second question focuses on identifying and understanding different optimization techniques 

proposed in the literature for similar capacity allocation problems. Various techniques are identified, 

explained and analysed on suitability for solving the capacity allocation problem in an incident-driven 

environment. By doing so, we create a strong foundation for the solution approach. We describe the 

literature review and analysis in Chapter 3. 

What has been proposed in the literature for solving the specialism-specific capacity allocation problem 

to guarantee coverage? 

• Which optimization models have been proposed in the literature for solving the capacity 

allocation problem to guarantee coverage? 

• Which optimization techniques are proposed in the literature to solve allocation problems? 

• What are the advantages and disadvantages of the optimization models and techniques 

proposed in the literature?  

Design of solution approach 

Following the first two questions, the third question relates to designing the solution approach and is 

covered in Chapter 4. We design a model and select optimization techniques to solve the model in a 

reasonable time to reasonable solutions. Besides, we identify metrics to analyse the solutions' 

performances and allocation strategies. 

How should the solution approach be designed for the capacity allocation problem? 

• What are the KPI metrics that can be used to analyse the performances for the capacity 

allocation solution? 

• Which solution approaches are suitable for solving the capacity allocation problem in an 

incident-driven environment? 

• Which allocation strategies should be considered in the solution approach? 
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Experimentation and evaluation 

Once we finish the solution approach and design the model, we evaluate the model's performance. In 

this phase, the coherent research question focuses on the model's performance for different incident 

scenarios. Chapter 5 covers the experiments, results, and evaluation of the model. 

How does the model perform for different scenarios of historical incidents? 

• How do we validate the capacity allocation solution obtained from the model? 

• What are the different scenarios and experimental setups that need to be considered to 

analyse the model? 

• How does the model perform for the scenarios and experimental setup considered? 

Recommendations and conclusions 

To maintain a guideline throughout the report, we define questions that we answer in the 

recommendations and conclusions in Chapter 6. We define these questions as follows:  

What can be concluded and recommended from the results of the experiments? 

• What are the advantages and disadvantages of the model? 

• What can be recommended to ProRail based on the results of the experiments? 

• Which further research can be done following the results of this research? 

1.5. Research design 
We divide the research into four different phases, which all together form the research design. The 

research design systematically answers the main research question by sequentially solving sub 

research questions in each phase. The first two sub research questions correspond to the first phase, 

followed by one question per phase for the remaining three phases. This systematic approach is a 

proven method used to solve business problems (Heerkens, 2015). 

The phases are as follows: 

• Problem identification & analysis 

• Solution generation & choice 

• Solution experimentation 

• Evaluation & implementation 

Figure 4 schematically displays the phases, corresponding sub research questions and input required 

to answer the main research question. 
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Figure 4: Graphical representation of the research design 
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2. Problem context 
In this chapter, we provide a detailed description of the problem. First, we explain the incident handling 

department Section 2.1. Next, in Section 2.2, we describe the railway sections, followed by the incident 

classification in Section 2.3. Section 2.4 discusses the data regarding incidents and deployment 

available at ProRail. Finally, Section 2.5 concludes this chapter. 

2.1. Incident handling department 
The ICB departments main task is solving incidents. Incidents refer to disruptive effects on the railway 

network. We can visualise the effect of incidents on the train schedule by a bathtub model (Ghaemi, 

Cats, & Goverde, 2017), see Figure 5. The model includes three phases, where phase 2 represent the 

incident handling itself. However, it is important to note that ProRail describes the duration of an 

incident from the moment an incident is known at ProRail until the end of the incident handling and 

thus restarting the train schedule. The time between intake and the start of phase 2 represents travel 

time to the incident location and waiting time. Here, waiting time could vary from, for example, 

clearance after police investigations when a train has hit a person or clearance from the railway 

operator who reroutes all scheduled trains such that the track is clear. For the project, it is interesting 

to look at the time of intake because allocating incident handlers to highly demanded areas mainly 

reduces travel time as the incident handlers are assumed to be close to the incident location. Different 

types of incidents also require different types of incident handlers, from here on called specialisms. 

We explain these specialisms in Section 2.1.1. In general, incidents require a team of 4 incident 

handlers. 

 

Figure 5: Bathtub model indicating the effect of incidents on traffic over time 

To solve incidents quickly, ProRail works with a smart alarming system. That means that the location 

of incident handlers is always known. The system notifies the nearest incident handlers as soon as an 

incident occurs. However, this system does not advise the capacity needed on a day or hour. It only 

calls the nearest incident handler to an incident. Therefore, we are interested in the number of incident 

handlers required on a specific hour. 

2.1.1. Specialisms 
An incident handler is a general term. In fact, the ICB department works with specialisms to increase 

the specialised knowledge in specific themes. ICB is divided into five themes in which several 

specialisms exist. Figure 6 shows the themes and underlying specialisms (Dutch abbreviations used in 

figure). Each theme can be seen as a sub-department with its own manager. To have a complete 

overview, the safety, technical and cargo themes are added to the figure, but these themes are less 

important for the project, as these are fixed to certain locations or very specific. For example, the 

equipment of the technical department is located in Utrecht and is only used when needed. The 

abbreviations of those specialisms are not further explained here but are described in the List of 

Abbreviations. 
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Figure 6: Schematic overview of ICB themes and specialisms 

The themes Prevention and Incident Management are of great importance. The incident handlers of 

these themes are constantly preventively outside (e.g. checking railway sections and crossings) and 

thus can be allocated to specific areas. Next to the themes, all incident handlers are general ICB 

members. Therefore, in the figure, a General table can be seen. This, because there exist incidents that 

do not require any expertise but only an ICB member to handle an incident.  

Below, first, the role of general ICB members is explained, followed by the underlying specialisms of 

the two themes. 

General 

Incident handlers are the operational members who respond to incidents with priority vehicles. They 

are responsible for: 

- Recovering of derailed trains and assistance with incident handling (clearing the railway 

track) 

- Assisting with emergency services 

- Assisting in the evacuation of travellers from stranded trains 

From the role of supervision and enforcement, they also have a preventive role (identifying and 

reducing copper theft, unauthorized rail trespassers, awareness sessions at schools, actions at railway 

crossings). The incident handlers (TM) are divided into groups led by a team leader (TL). A team 

typically has four members for regular incidents and six members for incidents with hazardous 

substances. 

Incident management 

Incident management is the theme that covers the general leader (AL) specialism. The AL is responsible 

for: 

- Operational management and coordination of incident handling 

- Coordination with emergency services 

- Ensuring a safe workplace (railway clearance) 

- Issuing expected incident handling duration and managing the handling within the forecasted 

duration 

- Coordination with neighbouring infrastructure managers about incidents on border track 

sections 

Important to note that there are some incidents the AL can handle from off-site, and those incidents 

do not require any ICB member on site. In those cases, the AL is in direct contact with contractors and 

manages and coordinates the process off-site. 
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2.1.2. Optimal deployment of ICB 
Incident handling takes on average 10 to 20% of the working time of an incident handler. The rest of 

the time, incident handlers perform preventive and secondary tasks. Preventive tasks are already 

mentioned, for example checking railway crossings. Besides the preventive tasks, there are also legal 

requirements. The ICB department has to inspect cargo units to see if the mentioned material is 

actually in the unit, called a WLIS (Wagon Load Information System) task, and check if a contractor did 

the correct work, called a WIBON (abbreviation of a Dutch law) task. 

At ProRail, the scheduling of tasks is performed such that a working day of an incident handler is filled 

with tasks as good as possible. To do this, they use a system called Optimal Deployment ICB. However, 

as soon as an incident occurs and an incident handler gets called in, the incident handler stops with his 

current preventive or secondary task and hurries to an incident. The scheduling of tasks is based on 

the area in which the incident handler works. The model developed in this research allocates incident 

handlers to an area at different hours of the day. Based on the results of this project, ProRail schedules 

preventive tasks for incident handlers. 

2.1.3. Planning process 
Currently, the ICB department works with several shifts. In these shifts, incident handlers can either 

be actively working or be on standby from home. Shifts that include standby time are overnight shifts 

or weekend shifts. During the morning shift handover to the afternoon shift, there is an overlap of 1 

hour to hand over the work and highlight important notes of that day. The Port of Rotterdam, Kijfhoek 

(freight shunting yard near Rotterdam) and Schiphol airport are specific ProRail locations that do not 

have standby shifts because of the importance of these locations. Also, the shifts at those locations do 

not vary between week and weekend. There is also a different shift for the ALs compared to the general 

ICB members. In Table 1, we see an overview of the shifts. On the weekend, employees need to work 

5.5 hours, but these hours are not fixed. For the remainder of the day, employees scheduled for a 

weekend shift will be on standby. 

Table 1: Overview of the possible shifts at the ICB department in general and for specific locations 

Netherlands 

 Weekday Weekend day 

ICB 
06.00 – 15.00 5.5 hrs working, rest standby 

14.00 – 19.30, standby till 06.00  

AL 
07.00 – 15.00, standby 03.00 – 07.00   

14.00 – 22.00, standby 22.00 – 03.00  

   

Port of Rotterdam, Kijfhoek, Schiphol airport 

 Weekday Weekend day 

ICB 
& 
AL 

07.00 – 15.00 
15.00 – 23.00 
23.00 – 07.00 

07.00 – 15.00 
15.00 – 23.00 
23.00 – 07.00 
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If we look at the number of employees scheduled in the shifts, we are only interested in the specialism 

we consider. On a weekday, every shift contains a minimum of 20 ICB members. During the weekend, 

this minimum is 17 ICB members per shift. By discussing the scheduled number of employees with 

ProRail, we found that this minimum number never occurs. In fact, always more employees are 

scheduled. That is because, by contract, every member needs to work a certain number of hours and 

needs to have enough resting hours. For the ALs, the minimum number is 6 and holds for both the 

week and the weekend. Also, again, often more ALs are working than this minimum number. 

2.2. Railway sections 
The Dutch railway network is similar to a road network. Both networks do have sections, junctions and 

vehicle-specific sections. At ProRail, sections on the railway network are denoted by geocodes and 

location markers. In this way, a location can be described precisely. The geocode specifies an area, and 

the location markers specify per hundred meters the location within an area. Figure 7 displays geocode 

areas in pink and names them with bold numbers. The non-bold numbers in the figure represent the 

hectometre markers. The ICB department uses this locating system to address locations to incidents. 

 

Figure 7: Railway location marking system by ProRail 

2.2.1. Schiphol 
In Figure 8, we see the railway section at Schiphol, the main Dutch airport. This section is almost 

entirely underground in a tunnel. Being in a tunnel makes incident handling very different and specific 

compared to regular railway sections. Besides being in a tunnel, this section also has a high intensity 

of trains passing by and is an essential link in the Dutch railway network caused by many routes passing 

this section. Due to this section's specific incident handling and importance, many incidents are called 

in at this location. A minor delay or smoke alarm immediately gets called in. Therefore, ProRail has an 

ICB office at Schiphol to adequately respond to incidents in the tunnel of Schiphol. Incident handlers 

located at this office are allowed to leave this office and go to incidents outside the Schiphol area. 

However, in reality, they often stay seated and allow other incident handlers in the surroundings to go 

to incidents that are not near the Schiphol railway section. For this research, this will not add 

constraints to the model, but we expect to have many employees allocated to Schiphol/Amsterdam. 
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Figure 8: Schiphol railway section 

2.2.2. Port of Rotterdam 
The port of Rotterdam is the biggest in Europe (Sinha, 2021). One of the ways to transport the freight 

to the inland is by train. Many container terminals are linked to a railway to do this as efficiently as 

possible. In Figure 9, we see that the complete port is covered by railways. Contrary to the regular 

public transport railway network, the network in the Port of Rotterdam is only used to transport 

freight. Freight brings different kinds of incidents. Especially liquids or gasses require precise incident 

handling. Besides, incidents with any form of freight can have a significant impact on the environment 

and the operation of the Port of Rotterdam. Therefore, it requires a specific team of incident handlers, 

and similar to the Schiphol area, the Port of Rotterdam has its own office and is always manned. 

Incidents with freight mainly occur at the Port of Rotterdam and rarely on the mainland. For this 

project, we expect incidents with hazardous substances at the Port of Rotterdam to require an ICB 

team of 6 employees instead of 4 for regular incidents based on discussions with experts of ProRail. 

 

Figure 9: Port of Rotterdam railway section 

2.3. Incident classification 
Incidents occur at random (unpredictable) moments, and one incident is often completely different 

from another. To adequately respond to an incident with the correct specialisms and equipment, 

ProRail uses an incident classification system. As soon as an incident is called in, an incident is given a 

classification, and the appropriate incident handlers respond to the call. 
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There are two incident classification systems. The first is the Train Incident Scenario (TIS), and the 

second is the incident labelling. The latter gives a more detailed description of the incident. We first 

discuss the TIS classification. In general, there are five main scenarios, each with several sub-scenarios. 

The main scenarios describe the type of incident, and the sub-scenario describes the complexity of the 

incident. In Table 2, we see the main scenarios and the frequency of occurrence over the past four 

years (July 2017 –  March 2021). In Appendix A, we describe the main TIS scenarios with all sub-

scenarios. 

Table 2: Train incident scenarios (TIS) with description and frequency 

TIS Description Freq 

TIS 1 Disruption train operations 64272 

TIS 2 Fire 376 

TIS 3 Collision or derailment 1842 

TIS 4 Hazardous substances 200 

TIS 5 Bomb threat 107 

 

The TIS scenarios already give an idea of the type of incident but still provide minimal information. 

Therefore, ProRail also classifies incidents using incident labels. Table 3 provides an overview of the 

top 10 incident labels based on the frequency of occurrence over the past four years (July 2017 –  

March 2021). In fact, there exist more than 80 incident labels, all of which can be found in Appendix A 

(including frequencies). 

Table 3: Top 10 of incident labels based on the frequency 

# Incident Label Freq 

1 Defective material 18163 

2 Disturbance due to persons on or near the track 11747 

3 Section failure 5348 

4 Switch failure / defect 4818 

5 Crossing failure / defect 4233 

6 Disturbance due to order / assistance of emergency services 2486 

7 Disturbance due to object / vehicle / animal(s) on or near the track 2267 

8 Track condition 1980 

9 Other 1974 

10 Slippery tracks 1668 

 

The frequencies in Table 2 and Table 3 give an idea of the types of incidents and how often incidents 

occur in a timeframe. However, for the project, not all data is used. The TIS scenarios all have four sub-

scenarios (e.g., TIS 2.1 till TIS 2.4) except the TIS 1, which also has TIS 1.0. Incidents that are handled 

by contractors, thus not by the ICB department, use this scenario. Therefore, for the project, TIS 1.0 is 

excluded from the data. TIS 1.1 is also excluded from the data as ProRail aims to solve TIS 1.1 incidents 

from the back office and thus does not send any incident handler.  

Based on discussions with experts at ProRail, we also exclude some labels. Either the frequency is too 

low, the incident label does not require the deployment of any incident handler (although the sub-TIS 

scenarios of those incident labels indicate more complex incidents than TIS 1.0 and 1.1), or the incident 

is too specific for this project. We highlighted the deleted incident labels in grey in Appendix A. 
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2.4. Data 
We use multiple datasets for the project, all limited to the period between the 24th of June 2017 and 

the 26th of March 2021. The datasets are linked to each other by the incident ID. The datasets include, 

amongst others, incident start and end time in date format, TIS scenario, incident label and location 

information. Figure 10 displays the datasets, including their attributes. Unfortunately, the deployment 

dataset does not cover the same time period because ProRail started registering deployment as of 

2020. Therefore, we extrapolated the deployment data per incident label to the incident dataset.  

 

Figure 10: Graphical representation of the datasets 

With this data, we can obtain interesting insights. We will analyse the frequency of incidents over the 

years, seasons, months, days and hours. All data used is filtered based on the criteria mentioned above. 

Figure 11 shows the frequency of incidents of all years in the dataset. As the data of 2017 and 2021 

are not complete, those years are less interesting. Besides, 2020 was the year COVID-19 influenced the 

Dutch public transport significantly. We also see this influence in the frequency of incidents in that 

year. 

 

Figure 11: Frequency of incidents over the years 

From here on, we only focus on whole years, thus excluding 2017 and 2021. Going from yearly view to 

seasonal view, in Figure 12, we see that most incidents happen during the summer and less in spring. 

Autumn and winter are similar to each other. That means that the capacity can be equal during autumn 

and winter, less during spring and more during summer. Again, in the year 2020, COVID happened. It 

is interesting to see that the lockdown in the Netherlands during spring resulted in fewer incidents. 

However, for the remainder of the year, the frequency of incidents is similar to other years. 
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Figure 12: Frequency of incidents over the seasons 

Another interesting and helpful insight is the frequency of incidents across the different days of the 

week. ProRail currently works with different shifts for the weekend. According to Figure 13, this is 

appropriate as fewer incidents occur during the weekend. When looking at the different working days, 

we do not see many fluctuations during the week. Incidents frequency on Saturday and Sunday is also 

similar to each other. 

 

Figure 13: Frequency of incidents over the days 

Lastly, we look at the different hours of the day. Figure 14 shows the frequency of incidents during a 

working day as well as a weekend day. From this data, we can conclude that most incidents occur 

during the afternoon rush hour. The pattern between a working and weekend day is similar, except for 

the difference in the morning. During the week, incidents occur earlier on the day compared to the 

weekend. Also, during the evening and night, the frequency of incidents is equal or higher compared 

to a working day. 
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Figure 14: Frequency of incidents over the hours 

Besides the distribution of incidents, we can also make density plots of the incident locations. These 

density plots help to understand the outcome of this research. Figure 15 displays two density plots, 

the first includes all data (except TIS 1.0 and 1.1 because out of scope), and the second includes only 

TIS 3.1 (collision with a person, bicycle or other small objects). The left plot shows that the most 

incident-dense area is in the Randstad. Outside the Randstad, incidents mainly occur in big cities. When 

looking at TIS 3.1 only, this type of incident occurs almost everywhere and is spread more evenly across 

the country. The location density plots and the frequency tables provide us insight and an idea of the 

outcome of this research. The density plots suggest that the area of the Randstad requires more 

incident handlers. 

TIS 1.0 & TIS 1.1 filter  TIS 3.1 

  
Density: 0.0  1.0 

Figure 15: Incident location density plots 

Considering the density plots in Figure 15 and incidents in general, we only know areas where incidents 

occur more frequently. However, this does not mean that incidents do not occur in other areas. As 

incidents themselves are unpredictable, also the locations and impact are unpredictable. Therefore, it 

is important to have a robust schedule of incident handlers. That means that the scheduled incident 

handlers can cover many scenarios of incidents. The data only shows historical incidents and locations. 
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It is important to evaluate not only the data but also a stochastic environment where incidents can 

occur more or less frequently. 

2.5. Conclusion 
We analyse the current situation of the ICB department. For this research, we are primarily interested 

in the starting moment of incidents. Also, incident handlers are primarily busy with preventive and 

secondary tasks, and as soon as an incident happens, they drop that task and hurry to that incident. 

ProRail already uses a system that assigns preventive and secondary tasks to incident handlers (this 

system is called Optimal Deployment ICB). ProRail labels the incident handlers across five different 

themes and underlying specialisms. The shifts are the same for the whole country, except for the Port 

of Rotterdam, Kijfhoek and Schiphol. The current capacity is indicated by a minimum number. In reality, 

capacity on a day is more than this minimum number. 

The data available for the project is limited to the period between the 24th of June 2017 and the 26th 

of March 2021. We can quickly analyse the peak moments and areas from this data, giving us an idea 

of the outcome. As input to the final model, we filter the data to incidents requiring incident handlers' 

deployment. 
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3. Literature review 
In this chapter, we perform a literature review on incident handling and disturbance management. 

First, in Section 3.1, we discuss different planning levels. In Section 3.2, we analyse different covering 

models and discuss the pros and cons of the models. In Section 3.3, we analyse algorithms proposed 

in the literature to solve covering models. Finally, we conclude the literature review in Section 3.5. 

3.1. Planning levels 
Planning decisions can be classified at three levels: operational, tactical, and strategical (Swamidass, 

2000). The operational level considers online and offline planning. Online planning occurs during the 

day (adapting to changes throughout the day), and offline planning is the planning for the next day or 

week. Tactical planning is the planning for the next month(s), and strategical planning is the long term 

planning, ranging from multiple months to multiple years. 

Currently, ProRail already works with an optimal deployment field service system. This system 

optimally divides non-emergency tasks over a set of incident handlers available at a time moment. The 

system is based on the median routing problem adapted to railway incident operations by Huizing, 

Schäfer, van der Mei, and Bhulai (2020). With this system, incident handlers perform non-emergency 

jobs in a specific area such that they always remain close to incident hotspots. The system works with 

a given number of incident handlers in an area. In contrary to that system, this research focuses on the 

latter. It aims to determine an optimal number of incident handlers and, therefore, plans at another 

planning level. The optimal deployment field service system can be classified at the operational level; 

this research can be classified at the strategic level as this is general advice on the planning of incident 

handlers on a general day to use for multiple years. 

3.2. Emergency service 
Incidents come in various ways and have various causes. Therefore, a well-organized and well-

coordinated emergency response is required to cope with incidents. From a public point of view, this 

means adequate and quick response at all times. However, this is hard to realize as resources are costly 

and limited to cover only a certain number of incidents adequately and quickly. 

This research focuses on reaching a certain coverage ratio by efficiently positioning incident handlers 

based on historical incident data. In the past few decades, a great deal of research has been done on 

positioning emergency services, predominantly focussed on, and referred to, efficient positioning of 

emergency medical services (EMS) (Li, Zhao, Zhu, & Wyatt, 2011). The problem of positioning 

emergency services to cover incidents is in its simplest form related to the Facility Location Problem 

(FLP). In the FLP, the aim is to minimize the sum of distances from each demand point to the nearest 

facility. Our problem is related to the FLP, but with some modifications. Instead of facilities, we 

determine the number of incident handlers required and position them efficiently to reach a threshold 

coverage. Contrary to the FLP, not all demand points need to be covered in our case because incidents 

with less impact are allowed to have a longer solving time. Furthermore, incident handlers each have 

their specialism and thus cannot cover all incident types. 

3.2.1. Covering models 
Looking at models which consider maximizing demand covered and minimizing the number of required 

resources, among others, one of the first models proposed are the Location Set Covering Problem 

(LSCP) by Toregas et al. (1971) and the Maximum Coverage Location Problem (MCLP) by Church and 

ReVelle (1974). The LSCP considers a set of locations where facilities might be opened and a set of 

demand nodes. A matrix is created that includes the distance for each possible facility location to a 

demand node based on these two sets. If a facility is opened and the distance to a demand node is less 
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or equal to a threshold distance, that demand node is covered. In the LSCP, the objective is to minimize 

the facilities used to cover all demand nodes. Similar to the LSCP, the MCLP also has a set of locations 

where facilities might be located, a set of demand nodes and a distance matrix. However, in the MCLP, 

the objective is to maximize coverage given a fixed number of facilities. 

Both the LSCP and the MCLP model are already fifty years old and have been applied in many planning 

problems, for example, the positioning of fire stations, ambulances and hospitals (Bianchi & Church, 

1988). Nowadays, these models act as the foundation of many variants. The MCLP is still one of the 

well-known location problems (Bansal & Kianfar, 2017).  

The LSCP simplifies reality by assuming the system to be static and deterministic. As the objective is to 

minimize the number of resources used, considering the constraint that all demand nodes have to be 

covered, the resources are considered infinite. Besides, it assumes that a resource can serve all 

demand nodes within its reach (it could not be that the resource is busy). Despite these rough 

assumptions, it is still a useful model on a strategic level to determine the minimum resources required 

to provide complete coverage (Li et al., 2011). An interesting derivative of the LSCP is the Probabilistic 

Location Set Covering Model (PLSCM), especially the 𝑎-reliable 𝑝-center problem. The 𝑎-reliable 𝑝-

center problem can be stated as follows: find the position of 𝑝 facilities that minimize the maximum 

time (or distance) within which service is available with 𝑎 reliability (Revelle & Hogan, 1989). This 

problem determines the minimum number of facilities under the constraint that it needs to be more 

or equally reliable than 𝑎, which is already close to our problem. 

The MCLP efficiently positions facilities to maximize coverage but does not consider the capacity of 

each facility. Schilling, Elzinga, Cohon, Church, and ReVelle (1979) developed the Tandem Equipment 

Allocation Model (TEAM) and the Facility Location and Equipment Emplacement Technique (FLEET) 

model to position facilities and allocate equipment simultaneously. With this, it is possible to locate 

more emergency handlers at one facility to cover areas with many incidents. Also, the MCLP assumes 

that the equipment is always available. Especially in EMS, it is possible that an emergency responder 

located within the service distance already serves another demand, and additional responders are 

needed to guarantee coverage (Tavakoli & Lightner, 2004).  

Bianchi and Church (1988) developed the Multiple Cover, One-unit FLEET (MOFLEET) model, which 

maximizes the expected coverage by simultaneously locating and allocating a fixed number of facilities 

and emergency responders, respectively. The MOFLEET model considers every emergency responder 

to be of the same type. However, there exist situations where each emergency requires different types 

of responders (e.g., in a medical emergency, either send an ambulance or a helicopter or both). 

Therefore, Jayaraman and Srivastava (1995) introduced the Multiple Equipment Multiple Cover Facility 

Location-Allocation (MEMCOLA) model. The MEMCOLA model maximizes the expected coverage 

within the service distance by efficiently locating a fixed number of facilities and different types of 

equipment. By considering multiple types of equipment, the MEMCOLA can also define the service 

distance and busy fraction for each type independently. Busy fraction meaning the probability an 

emergency handler being busy at the moment a new incident occurs. 

The Maximal Expected Coverage Location Problem (MEXCLP) developed by Daskin (1983) extends the 

MCLP by considering that when demand arrives as the system, it cannot directly be served as facilities 

are already engaged serving other demand. An emergency responder 𝑘 is busy with a fraction 𝑞. The 

expected coverage of a demand node by an emergency responder is then 𝐸𝑘 = 1 − 𝑞𝑘. It is assumed 

that this probability of a random emergency responder being busy is independent of any other 

emergency responder being busy and can be seen as the probability of at least one success in 𝑘 
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independent Bernoulli experiments. The increase in expected coverage at a node is then given by 𝐸𝑘 −

𝐸𝑘−1 = (1 − 𝑞𝑘) − (1 − 𝑞𝑘−1) = (1 − 𝑞)𝑞𝑘−1. 

Many other probabilistic model variations have been developed (Li et al., 2011). Those models focus 

on the calculation of an emergency handler being busy. Revelle and Hogan (1989) developed two 

attractive versions of the Maximal Availability Location Problem (MALP I and MALP II), formulated as 

a constrained stochastic program (Charnes & Cooper, 1959). In both models, the objective is to 

maximize demand covered with a given probability 𝑎. The number of emergency responders to locate 

is given. The difference between MALP I and MALP II relies upon the busy fraction calculation. MALP I 

assumes all emergency responders are equally busy, and MALP II associates the busy fraction with a 

demand node and the availability of emergency handlers in its service area.  

Besides the MALP models, Batta, Dolan, and Krishnamurthy (1989) proposed an adjusted version of 

the MEXCLP model (AMEXCLP) in which the objective is multiplied by a correction factor. In this way, 

emergency responders can be viewed as dependent servers in a queuing system. In the AMEXCLP 

model, the busy fraction is the same for the entire system. Marianov and Revelle (1994) extended this 

view and proposed a model in which the busy fractions are location specific, called the Queuing 

Probabilistic Location Set Covering Model (QPLSCP). 

Repede and Bernardo (1994) stated that the assumption of independence of a random emergency 

responder being busy together with the fact that demand is assumed to be constant over time results 

in an overestimation of coverage. They developed the Time-dependent Maximum Expected Coverage 

Location Problem (TIMEXCLP). The TIMEXCLP model includes time periods and maximizes the expected 

coverage over the time horizon (e.g., time periods of an hour and time horizon of a day). By adding 

time periods to the model, the busy fraction and the demand can vary over time. In the model, there 

is no relationship between different time periods. Therefore, each time period can be seen as 

independently. This idea has the drawback that there can be significant differences in the positioning 

of emergency responders between time periods, potentially resulting in high costs for the emergency 

service provider (van den Berg & Aardal, 2015).  

Another model that considers the possibility of an emergency responder being busy is the Double 

Standard Model (DSM) by Gendreau, Laporte, and Semet (1997). A demand node is considered 

covered in this model if at least two emergency responders can reach it. However, contrary to the 

MEXCLP, the possibility of both responders being busy is not considered. 

An overview of all discussed models, including their objective and constraints on coverage, locations 

sites and types and number of emergency responders, as well as the formulation of the busy fraction, 

can be seen in Table 4. 

3.2.2. Coverage functions 
Until now, all the discussed models consider a demand node fully covered if that node is within service 

distance of a positioned emergency responder; everything outside the service distance is not covered 

at all. However, in our case, the further away an incident occurs from an incident handler, the lower 

the possibility that that incident handler covers the incident. Therefore, coverage decreases over 

distance. Several researchers suggested gradual coverage functions to replace the binary view of 

coverage (see Figure 16). Figure 16a displays the binary view of coverage; if within service distance, 

then a demand node is fully covered. Figure 16b shows a stepwise coverage function (Berman & Krass, 

2002; Church & Roberts, 1983). When outside the 100%-coverage service distance, a demand node 

can still be covered, only at a lower percentage (e.g. longer travel time, so not within the desired 

duration at a location, but still covering at a secondary desired duration). The coverage function in 
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Figure 16c is a graphical representation of the “quality of service”-function (Araz, Selim, & Ozkarahan, 

2007; Pirkul & Schilling, 1991) and Figure 16d similar to the function proposed by Berman, Krass, and 

Drezner (2003). These gradual coverage functions can be added to the model either in the objective, 

as constraints or as (pre-processed) parameters. 

 

Figure 16: Gradual coverage functions (Eiselt & Marianov, 2009) 

3.3. Optimization techniques 
Location covering problems are combinatorial optimization problems that belong to a complex class 

of optimization problems. They are typically classified as NP-hard problems requiring exponential time 

to be solved optimally (Rajagopalan et al., 2008). Because of the complexity of such problems, various 

metaheuristic search methods have been developed to find near-optimal solutions in reasonable 

computational time (Osman & Laporte, 1996) such as; Tabu Search (Adenso-Díaz & Rodríguez, 1997; 

Doerner, Gutjahr, Hartl, Karall, & Reimann, 2005; Gendreau et al., 1997; Rajagopalan et al., 2008; 

Rajagopalan, Vergara, Saydam, & Xiao, 2007), Simulated Annealing (Chiyoshi & Galvão, 2000; Galvão 

et al., 2005; Rajagopalan et al., 2007), Genetic Algorithm (Aickelin, 2002; Aytug & Saydam, 2002; 

Beasley & Chu, 1996; Jaramillo, Bhadury, & Batta, 2002; Jia, Ordóñez, & Dessouky, 2007), Lagrangian 

Relaxation (Galvão & ReVelle, 1997; Jia et al., 2007; Karasakal & Karasakal, 2004), Ant Colony 

Optimization (Doerner et al., 2005) and Local Search (Aytug & Saydam, 2002; Iannoni, Morabito, & 

Saydam, 2007). More recently, researchers gained interest in integrating machine learning techniques 

into metaheuristics for solving combinatorial optimization problems, such as covering problems with 

the aim to improve their performance in terms of solution quality, convergence rate and robustness 

(Karimi-Mamaghan, Mohammadi, Meyer, Karimi-Mamaghan, & Talbi, 2021). 

Of all mentioned metaheuristic search methods, simulated annealing (SA) is a method that is usually 

easily implemented. Also, it generally requires less computational effort than more sophisticated 

procedures such as tabu search and genetic algorithms (Galvão et al., 2005). Moreover, SA has been 

successfully used for covering models (Brotcorne, Laporte, & Semet, 2003; Chiyoshi & Galvão, 2000; 

Galvão et al., 2005; Rajagopalan et al., 2007). SA is a probabilistic search method that approximates 

the global optimum in a large solution space for an optimization model. SA can escape from local 

optima by accepting worse solutions with some probability. The general SA method requires an initial 

solution, which can be generated entirely at random. Besides the initial solution, SA also needs a 

starting temperature, cooling factor and Markov chain length. In the SA algorithm, neighbour solutions 

are generated by slightly adjusting the current solution. The neighbour solution is accepted if better 

than the current solution. If not better, it can still be accepted against a probability. By accepting worse 

solutions, neighbour regions in the solution space are explored, and the algorithm can escape from 

local optima. The probability of accepting worse solutions is based on the Boltzmann distribution. The 

probability of acceptance follows a cooling scheme and decreases iteratively. When the temperature 

is high, the probability of accepting worse solutions is also high. When the temperature gradually 
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decreases with the cooling factor, the probability of accepting worse solutions also decreases. 

Accepting many worse solutions is called diversification, and gradually lowering the probability of 

accepting worse solutions is called intensification. 

3.4. Robustness 
Traditionally formulated, optimization problems are static and deterministic. However, the reality is 

dynamic and uncertain meaning that input parameters fluctuate due to environmental changes, 

human behaviour, material wear, etc. (Chica & Juan 2017). Excluding uncertainty from optimization 

problems leads to potentially unstable solutions sensitive to small changes in the input parameters. 

Simheuristics (Juan, Faulin, Grasman, Rabe, & Figueira, 2015) provide a framework that allows us to 

address real-world problems with uncertain parameters by using both metaheuristics and simulation. 

This allows obtaining computationally efficient solutions while considering their impact on dynamic 

and uncertain (stochastic) scenarios. The simulation process considered in the framework allows to 

model and reproduce complex stochastic problems. By analysing the information provided by the 

simulation, it is possible to estimate the feasibility of the best solutions in stochastic scenarios. Based 

on that, we can select those solutions that maximize robustness. That is, the selected solutions are not 

minimizing the objective function of the deterministic problem, but the one that also meets certain 

criteria considering the uncertainty, e.g., maximizes the robustness of the coverage of allocated 

incident handlers (de León, Lalla-Ruiz, Melián-Batista, & Moreno-Vega, 2021). The work of De Armas, 

Juan, Marquès, and Pedroso (2017) shows that simheurstics can easily be used to provide robust 

solutions for the FLP problem. 

3.5. Conclusion 
In the past few decades, a great deal of research has been done on positioning emergency services, 

predominantly focussed on and referred to efficient positioning of emergency medical services. 

Therefore, it is not unexpected that we find many optimization models proposed for solving the 

capacity allocation problem to guarantee coverage in the literature. These models vary from 

theoretical and simplistic models, such as the facility location problem, to sophisticated models where 

emergency handling can be seen as queuing systems. From all reviewed models, we are primarily 

interested in the TIMEXCLP model because of the possibility of solving multiple time instances within 

the same model and obtaining an overall coverage level. 

Covering models typically use a binary coverage view, meaning a node is either covered or not. There 

exist functions that change this binary view to a gradual coverage view. In these functions, coverage 

of an allocated incident handler gradually decreases when increasing the distance from that incident 

handler. This creates a more realistic view of coverage. 

Location covering problems are typically optimization problems that belong to a complex class of 

combinatorial optimization problems. Because of the complexity of such problems, various 

metaheuristic search methods have been developed to find near-optimal solutions in reasonable 

computational time. Of these metaheuristic search methods, simulated annealing is an appropriate 

method. Simulated annealing is a method that has been successfully implemented to solve covering 

models.  It is a method that is usually easily implemented. Also, it generally requires less computational 

effort than more sophisticated procedures such as tabu searches and genetic algorithms. By combining 

SA with simulation, we create a simheuristic that allows us to evaluate solutions in stochastic scenarios 

Chapter 4 discusses the model and the simulated annealing algorithm in detail, theoretically and 

mathematically. This includes discussing the operators and parameters of the metaheuristic. 



 

Table 4: Summary of models obtained from literature 

Reference Model Objective Coverage Location sites Types and amount Busy fraction 

Toregas et al. (1971) LSCP Minimize number of units 
located 

Cover each demand node At most one unit per site One type, unlimited 
amount 

N/A 

Church and ReVelle 
(1974) 

MCLP Maximize demand 
covered 

N/A At most one unit per site One type, amount given N/A 

Schilling et al. (1979) TEAM Maximize demand 
covered 

N/A At most one unit of each 
type per site, only type A 
if also type B at site. 

Two types, amount given N/A 

Schilling et al. (1979) FLEET Maximize demand 
covered 

N/A At most one unit per site. 
number of sites given 

Two types, amount given N/A 

Bianchi and Church 
(1988) 

MOFLEET Maximize expected 
demand covered 

N/A Multiple units per site, 
number of sites given 

One type, amount given Given fraction, identical 
for each unit 

Jayaraman and 
Srivastava (1995) 

MEMCOLA Maximize expected 
demand covered 

N/A Multiple units, multiple 
types per site, number of 
sites given 

Two types, amount given Given fraction, identical 
for each unit, different 
per type 

Gendreau et al. 
(1997) 

DSM Maximize demand 
covered at least twice 

Proportion 𝑎 of demand  
node covered within 𝑟1, 
all demand nodes 
covered within 𝑟2 

Maximum number of 
units per site fixed 

One type, amount given N/A 

Daskin (1983) MEXCLP Maximize expected 
demand covered 

N/A N/A One type, maximum 
amount given 

Given fraction, identical 
for each unit 

ReVelle (1989) MALP I Maximize total demand 
covered with reliability 𝑎 

N/A N/A One type, amount given Given fraction, same for 
all sites 

ReVelle (1989) MALP II Maximize total demand 
covered with reliability at 
least 𝑎 

N/A N/A One type, amount given Different according to 
demand node 

Batta et al. (1989) AMEXCLP Maximize expected 
demand covered 

N/A N/A One type, amount given Different according to 
demand node, units not 
independent 

Repede and 
Bernardo (1994) 

TIMEXCLP Maximize expected 
demand covered 

N/A N/A One type, amount given 
for time period 

Given fraction, identical 
for each unit, can vary of 
time 

Revelle and Hogan 
(1989) 

𝑎-reliable, 𝑝-
center problem 

Minimize maximum 
service time with 𝑎 
reliability 

At least proportion 𝑎 of 
demand covered 

N/A One type, amount 
unlimited, minimum 
given 

N/A 

Marianov and 
Revelle (1994) 

QPLSCP Maximize total demand 
covered with reliability at 
least 𝑎 

N/A N/A One type, minimum 
amount given 

Different according to 
demand nodes 



 

4. Solution design 
In Section 4.1 of this chapter, we provide both a theoretical and mathematical model description. The 

theoretical description includes the model assumptions, a description of the specialisms and the 

objective function. We follow the theoretical model description by the mathematical model 

formulation with a detailed explanation of the constraints in Section 4.2. Lastly, Section 4.3 describes 

the initialisation, neighbourhood operators, and stopping criterium of the metaheuristic solution 

approach.   

4.1. Model description 
This research aims to allocate a minimum number of incident handlers across the country and across 

every hour of the day such that a threshold coverage is reached. As a result of the literature review, 

covering models are the appropriate models to solve this covering problem. There exist many 

variations, all with their specific advantages and disadvantages. For our problem, there are two models 

which are very relevant.  

First of all, the LSCP model by Toregas et al. (1971). We recall that in the LSCP, the objective is to 

minimize facilities used to cover all demand nodes. In general, this is very similar to our objective. 

However, we are interested in a threshold level of demand nodes covered. Considering multiple 

variations of the Maximum Covering Location Problem, the second model, the TIMEXCLP of Repede 

and Bernardo (1994), is the most relevant. The TIMEXCLP has the advantage to solve the allocation 

problem to a threshold coverage and also to do this for multiple time instances at once. The drawback 

of the TIMEXCLP is that the objective is to maximize the expected demand covered for a given number 

of facilities to be located. We combine the LSCP and TIMEXCLP model to create a model that minimizes 

the number of incident handlers over different time instances by allocating them such that the 

constraint of a threshold coverage is achieved. In this way, the number of incident handlers is 

unrestricted and optimized by the model. In reality, the coverage decreases with the distance away 

from an incident handler increasing, and we incorporate this in our model with a gradual coverage 

function. We found multiple gradual coverage functions in the literature, as described in Section 3.2.2. 

As our model is on strategic level, we are not looking for any advanced gradual coverage function. 

Based on discussions with ProRail about different coverage functions, we found the stepwise gradual 

coverage function most appropriate because, with this function, we can easily describe coverage 

boundaries and levels. Therefore, we implement the stepwise gradual coverage function to our 

problem. 

4.1.1. Assumptions 
After reviewing the literature and discussions with experts of ProRail, we made several assumptions 

to simplify the modelling and reduce the complexity. These assumptions are: 

• We do not take into account the incident duration; we only consider the starting moment of 

incidents; 

• We do not take into account the possibility of incident handlers being busy; 

• The reach of incident handlers to cover incidents is equal across the country, thus does not 

depend on the actual road infrastructure; 

• Travelling of incident handlers is not relevant, meaning at one hour they could be at one side 

of the country and another hour on the other side; 

• The stepwise coverage function is 100% within 30km radius, 50% within 30-45km radius and 

25% within 45-60km radius and  
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4.1.2. Grid design 
Besides these assumptions, we use a grid design. Incidents can happen anywhere across the railway 

network. This means that incidents can happen on every coordinate (as long as it represents a railway 

track). If we use the same structure in the model and allocate an incident handler to any coordinate 

on the map, the problem becomes gigantic and requires unrealistic computational time. Therefore, we 

transform the coordinate map to a grid design, as schematically shown in Figure 17. In this figure, we 

see the Dutch rail network and, in the left map in the figure, we indicate random incidents with red 

dots. All incidents that occur within the boundaries of a grid cell count as incidents on that grid cell, 

transforming the coordinate map into a grid design map on the right side. The darker the cell, the more 

incidents are counted in that cell. Subsequently, we can allocate incident handlers to a grid cell instead 

of a specific coordinate. Based on discussion with experts of ProRail, we choose to have a cell size of 

10 by 10 kilometres and a total of 990 cells (30 by 33). 

 

Figure 17: Grid design used in the model 

As shown in Figure 17, the North Sea and parts of Germany and Belgium are also covered by grid cells. 

However, those cells do not have any demand, and it also makes no sense to allocate employees to 

those cells. Therefore, we exclude those cells from the model. By doing so, we significantly reduce the 

number of cells from 990 to around 400 and thus improve computational effort even more. 

4.1.3. Scenarios 
Looking at the research question regarding experimentation, we are interested in different scenarios 

representing different time frames (years, seasons) and different specialisms of incident handlers. In 

consultation with ProRail, we created a total of 40 scenarios, as can be seen in Table 5. We look at the 

years 2018 and 2019 combined, 2020 separately (to see COVID lockdown effects) and all seasons 

within those two options. As the incidents are significantly different and less during the weekend than 

the week, we separate the week and weekend. Lastly, we look at two different types of incident 

handlers, namely the AL and ICB team. 
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Table 5: Overview of experimental scenarios covering different time frames 

  AL ICB 

  Week Weekend Week Weekend 

2018, 2019 1 2 3 4 

Winter ‘18, ‘19 5 6 7 8 

Spring ‘18, ‘19 9 10 11 12 

Summer ‘18, ‘19 13 14 15 16 

Autumn ‘18, ‘19 17 18 19 20 

2020 21 22 23 24 

Winter ‘20 25 26 27 28 

Spring ‘20 29 30 31 32 

Summer ‘20 33 34 35 36 

Autumn ‘20 37 38 39 40 

 

4.1.4. Pre-processing 
As mentioned in the model description in Section 4.1, we use the stepwise coverage function to 

incorporate the fact that the further away from an allocated incident handler, the less the coverage 

will become. The decrease in coverage is stepwise; the first 30 kilometres away from the incident 

handler are fully covered (100%). From 30 to 45 kilometres, this coverage lowers to 50%, and from 45 

to 60 kilometres, only 25% is covered. Outside this area, an incident is not covered. Using this function, 

the model aims to cover the areas with high incident density the most, thus allocating incident handlers 

to high incident density areas. 

To incorporate this in the model, we look at two options. The first option is to calculate the reach 

whenever an incident handler is allocated by adding constraints to the model. However, this requires 

a computational effort that can be avoided. In this second option, we determine the reach to any other 

cell in advance for every cell on the grid and implement this to the covering model as a reach 

parameter. This reach array represents the reach from node 𝑖 to node 𝑗 based on the stepwise function. 

The benefit of pre-processing this array is that it only needs to be calculated once and can then be 

used as a parameter in the model. Therefore, we use the second option in our model to reduce 

computational effort. In Figure 18, we see the pseudocode to create this reach parameter. 

Pre-process reach procedure 

1 𝒇𝒐𝒓 (𝑖 ∈ 𝑔𝑟𝑖𝑑) 𝒅𝒐 
2  𝒇𝒐𝒓 (𝑗 ∈ 𝑔𝑟𝑖𝑑) 𝒅𝒐 
3 

  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑖, 𝑗] = √(𝑖𝑥 − 𝑗𝑥)2 + (𝑖𝑦 − 𝑗𝑦)
2

∗ 𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒 

4   𝒊𝒇 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑖, 𝑗] ≤ 30 𝒕𝒉𝒆𝒏 
5    𝑟𝑒𝑎𝑐ℎ[𝑖, 𝑗] = 1.0 
6   𝒆𝒍𝒊𝒇 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑖, 𝑗] ≤ 45 𝒕𝒉𝒆𝒏 
7    𝑟𝑒𝑎𝑐ℎ[𝑖, 𝑗] = 0.5 
8   𝒆𝒍𝒊𝒇 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑖, 𝑗] ≤ 60 𝒕𝒉𝒆𝒏 
9    𝑟𝑒𝑎𝑐ℎ[𝑖, 𝑗] = 0.25 
10   𝒆𝒏𝒅 𝒊𝒇 
11  𝒆𝒏𝒅 𝒇𝒐𝒓 
12 𝒆𝒏𝒅 𝒇𝒐𝒓 

Figure 18: Pre-process procedure to obtain reach parameter 
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We calculate the distance using the row and column index of the grid cells and multiple that by the cell 

size to obtain the actual distance. Figure 19 shows the distance calculation for a small example 

instance. This distance is the Euclidean distance from one cell to another. 

1,1 2,1 3,1 4,1 

1,2 2,2 3,2 4,2 

1,3 2,3 3,3 4,3 

1,4 2,4 3,4 4,4 
 

Grid distance from (2,2) to (3,4):  

√(2 − 4)2 + (2 − 3)2 = √5 
Actual distance from (2,2) to (3,4):  

√5 ∗ 10 ≈ 22.4 𝑘𝑚 

Figure 19: Example calculation of grid cell distance 

4.2. Mathematical model 
For the model, we want to allocate a, to be determined, number of employees to ensure a coverage 

level. Incident handlers can be allocated to any cell on the grid and have a certain coverage reach from 

their position. First, we introduce and describe the indices and their sets, followed by the parameters 

and decision variables. Next, we formulate the objective function as well as the constraints, and finally, 

we formulate the variable restrictions. Afterwards, we explain the objective function, constraint and 

variables restrictions in detail and provide a graphical explanation. 

Indices  

𝑖 node (𝑖 = 1, … , 𝑁) 

𝑗 node (𝑗 = 1, … , 𝑀) 

𝑡 time (𝑡 = 1, … , 24) 

  

Parameters  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 coverage threshold parameter (80%) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑡 demand of number of incident handlers at node 𝑖 at hour 𝑡 

𝑟𝑒𝑎𝑐ℎ𝑖𝑗 reach from node 𝑖 to node 𝑗 (100%, 50%, 25%) 

𝐷𝑒𝑚𝑎𝑛𝑑𝑇𝑜𝑡𝑎𝑙 total deployment of incident handlers at all hours and all nodes 

  

Variables  

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 coverage at node 𝑖 at hour 𝑡 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑖𝑡  number of emergency responders located at node 𝑖 at hour 𝑡 

 

Objective function   

min ∑ ∑ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑖𝑡

𝑡𝑖

  (1) 
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Threshold coverage constrains   

∑ ∑ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡

𝑡𝑖

≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝐷𝑒𝑚𝑎𝑛𝑑𝑇𝑜𝑡𝑎𝑙  (2) 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 ≤ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑡 ∀𝑖, 𝑡 (3) 

   

Workforce required for threshold coverage constraint   

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 ≤ ∑ 𝑟𝑒𝑎𝑐ℎ𝑖𝑗𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑗𝑡

𝑗

 ∀𝑖, 𝑡 (4) 

   

Variable restrictions   

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑡 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  ∀𝑖, 𝑡 (5) 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑖𝑡 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀𝑖, 𝑡 (6) 

 

In this model, we write the objective function (1) to minimize the number of employees used on every 

node on the grid over every hour of the day. Looking at every hour, the hours with less demand will 

use fewer employees and vice versa. As a result, we can easily see when we require the most 

employees on a day. 

Constraint (2) ensures that we reach the threshold coverage (80%) of the total demand. Here, total 

demand represents the total deployment of all incidents on one day. To reach the threshold coverage 

level, the total coverage obtained by allocating employees to any node at any hour needs to be equal 

to or higher than the threshold coverage level. 

Without the use of constraint (3), allocating employees at night, when demand is low, would have the 

same impact as when allocating employees in rush hour. Therefore, constraint (3) limits the coverage 

the be less than or equal to the demand in a grid cell at a specific hour. 

Constraint (4) links the required coverage to required employees. Due to the stepwise coverage 

function (implemented in the model as the reach parameter), coverage can be a decimal number. 

However, an employee can only be allocated yes or no. Therefore, this constraint ensures that the 

required employees to at least obtain the coverage are located within reach. If a node is covered 

multiple times, the coverage can be higher than the employees allocated at one node. 

Finally, constraint (5) and constraint (6) are the variables restrictions. As already mentioned, the 

coverage variable can be a decimal number, more specific a nonnegative decimal number. The 

employee variable can only be a nonnegative integer number. 

We show the model's working with a graphical example in Figure 20. In this example, the position and 

number of employees is random and not optimized. We show two locations where we allocate 

employees (Employees Loc 1 & Employees Loc 2). At both locations, we allocate 5 employees, indicated 

with bold white font. Next, in the Reach grid, show the coverage obtained by the allocated employees. 

We see that the reach decreases when distance away from the allocated employees increases. Besides, 

between the two locations, the reach is higher than the number of employees allocated to one location 

as these nodes can be reached from both employee locations. Thus, the coverage of nodes covered 
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twice is higher. Next, we see the grid nodes with actual demand in the Demand grid and the actual 

coverage in the Coverage grid. Every node in the Coverage grid is the minimum of the Reach and 

Demand grid. 

Employees Loc 1  Employees Loc 2  Reach all employees 

1 1 3 1 1 0 0 0  0 0 0 0 1 0 0 0  1 1 3 1 2 0 0 0 

1 3 3 3 1 1 0 0  0 0 0 1 1 1 0 0  1 3 3 4 2 2 0 0 

3 3 5 3 3 1 1 0  0 0 1 1 3 1 1 0  3 3 6 4 6 2 2 0 

1 3 3 3 1 1 0 0  0 1 1 3 3 3 1 1  1 4 4 6 4 4 1 1 

1 1 3 1 1 0 0 0  1 1 3 3 5 3 3 1  2 2 6 4 6 3 3 1 

0 1 1 1 0 0 0 0  0 1 1 3 3 3 1 1  0 2 2 4 3 3 1 1 

0 0 1 0 0 0 0 0  0 0 1 1 3 1 1 0  0 0 2 1 3 1 1 0 

0 0 0 0 0 0 0 0  0 0 0 1 1 1 0 0  0 0 0 1 1 1 0 0 

                          

Demand  Coverage           

0 0 0 0 4 0 0 0  0 0 0 0 2 0 0 0  Sum demand grid:  

48 

Sum coverage grid:  

25 

Coverage: 
25

48
≈  52 % 

0 0 0 0 3 0 3 0  0 0 0 0 2 0 0 0  

0 0 5 0 2 0 3 0  0 0 5 0 2 0 2 0  

0 0 0 0 1 0 0 0  0 0 0 0 1 0 0 0  

0 0 4 0 0 4 0 0  0 0 4 0 0 3 0 0  

7 0 0 2 0 0 0 0  0 0 0 2 0 0 0 0  

0 0 5 0 0 0 0 0  0 0 2 0 0 0 0 0  

0 5 0 0 0 0 0 0  0 0 0 0 0 0 0 0  

Figure 20: Example of working of ILP model 

In the example of Figure 20, we allocate 10 employees, meaning that the objective value is 10 

employees (sum of allocated employees). The total demand in the Demand grid is 48 (sum of all nodes), 

and the total coverage in the Coverage grid is 25 (sum of all nodes). That means that 52% of the total 

demand is covered. As we want to obtain a threshold coverage level of 80%, this solution would be 

infeasible. 

4.3. Metaheuristic solution approach 
Covering models are typically classified as NP-hard, meaning they are hard to solve and require 

exponential time to be solved to optimality (Rajagopalan et al., 2008). Various methods have been 

developed to find good solutions in a reasonable time, of which one of them is called Simulated 

Annealing (SA). Simulated annealing is based on random local search. It starts with diversification and 

iteratively moves towards intensification. In this way, the SA algorithm, a metaheuristic, is able to 

approximate a global optimum in a large solution space (Kirkpatrick, Gelatt, & Vecchi, 1983). Besides 

the ability to approximate a global optimum, SA can quickly find a good solution. Therefore, we choose 

to use the SA algorithm to solve our model. 

The SA algorithm starts with initializing its parameters. SA requires a cooling scheme, which includes a 

starting temperature (𝑇𝑠𝑡𝑎𝑟𝑡), stopping temperature (𝑇𝑠𝑡𝑜𝑝) and a decrease factor (𝛼), which iteratively 

decreases the temperature (𝑇) until it reaches the stopping temperature, also known as the stopping 

criterium. Besides, it requires a Markov chain length and initial solution. This initial solution can be 

generated entirely at random and initialises the current and best solutions. 
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We adjust the general SA algorithm, described in Section 3.3, to comply with our problem. We see the 

pseudocode of the SA algorithm adapted to our problem in Figure 21. Here, we generated a neighbour 

solution by changing the number of employees or the location of employees in the current solution. 

We can accept the neighbour solution as current solution or as best solution. We accept the neighbour 

solution if it is better than the current solution. In two cases, the neighbour solution is better than the 

current solution: 

1. The number of employees used in the neighbour solution (𝐸′) is less (better) than the 

employees used in the current solution (𝐸) and coverage (𝐶′) is equal to or more than the 

threshold coverage (𝐶𝑇); 

2. The number of employees used in the neighbour solution (𝐸′) is equal to the employees used 

in the current solution (𝐸), but the coverage of the neighbour solution (𝐶′) is better than the 

coverage of the current solution (𝐶). 

If the neighbour solution is not better than the current solution, we still accept the neighbour solution 

against a probability. This probability is based on the Boltzmann probability distribution and only 

considers the objective value of the number of employees used (𝑒−
|𝐸−𝐸′|

𝑇 ). A worse solution can be 

more employees and higher coverage (unnecessary deployment of employees) or coverage below the 

threshold level (independently of the number of employees). If the coverage is below the threshold 

coverage, the solution is infeasible. However, it could be that when swapping the employees to 

different locations, the coverage will be above the threshold coverage level. Due to the second case of 

accepting a neighbour solution described above, this process of optimizing positions in (at first) 

infeasible solutions is allowed and could lead to fewer employees, but in better positions. 

By applying this Boltzmann probability, SA starts with accepting many (worse) solutions to explore the 

solution space (diversification). As the temperature iteratively decreases, the probability of random 

acceptance also decrease, and in the end, SA intensifies on improving the current solution only 

(intensification). Due to this process, the objective and coverage of the current solution (𝐸, 𝐶) can also 

get worse. Therefore, the SA algorithm also stores the overall best solution so far (𝐸∗, 𝐶∗). We update 

the best solution based on the same improvement conditions as when updating the current solution 

but now look at the number of employees used in the best solution (𝐸∗) and the coverage of the best 

solution (𝐶∗). Besides storing the objective and coverage of a solution, also the solution itself is stored. 

The solution represents the allocated employees and is described with 𝐸𝑙𝑜𝑐  for the current solution, 

𝐸𝑙𝑜𝑐
∗  for the best solution and 𝐸𝑙𝑜𝑐

′  for the neighbour solution. 

The SA algorithm explores the solution space by creating neighbour solutions, also known as neighbour 

solutions. The neighbour solution is created by the use of operators. In our case, an adjustment to the 

current solution is changing the number of employees or changing the position of employees. Changing 

the number of employees depends on the coverage of the current solution. As we allow worse 

solutions to be accepted based on the Boltzmann probability, the coverage of the current solution can 

be lower than the threshold coverage. If that is the case, we add an employee to the current solution 

at a random node at a random hour. On the other hand, if the coverage of the current solution is above 

the threshold coverage, we delete an employee from the current solution. However, in the case of 

coverage below the threshold coverage, moving employees to other nodes could also result in a 

solution with enough coverage. Therefore, we propose a 2-opt neighbourhood swap within the same 

hour, meaning we swap the employees on two random nodes, of which one need to have at least one 

employee. In Figure 22, we see the pseudocode of the procedure that creates the neighbour solution. 

We use a 50% probability to swap or add/delete an employee.  
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Simulated annealing 

1 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑇 = 𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑠𝑡𝑜𝑝, 𝑀𝑎𝑟𝑘𝑜𝑣𝐿𝑒𝑛, 𝛼, 𝐶𝑇 

2 𝐸∗, 𝐶∗, 𝐸𝑙𝑜𝑐
∗ = 𝐸, 𝐶, 𝐸𝑙𝑜𝑐 = 𝑖𝑛𝑖𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

3 𝒘𝒉𝒊𝒍𝒆 𝑇 > 𝑇𝑠𝑡𝑜𝑝 𝒅𝒐 

4  𝒇𝒐𝒓 (𝑚 = 1;  𝑚 < 𝑀𝑎𝑟𝑘𝑜𝑣𝐿𝑒𝑛;  𝑚 + +) 𝒅𝒐 
5   𝐸′, 𝐶′, 𝐸𝑙𝑜𝑐

′ = 𝑓𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐸𝑙𝑜𝑐 , 𝐶) 
6   𝒊𝒇 ((𝐸′ < 𝐸) 𝒂𝒏𝒅 (𝐶′ ≥ 𝐶𝑇)) 𝒐𝒓 ((𝐸′ = 𝐸) 𝒂𝒏𝒅 (𝐶′ > 𝐶)) 𝒕𝒉𝒆𝒏 

7    𝒊𝒇 ((𝐸′ < 𝐸∗) 𝒂𝒏𝒅 (𝐶′ ≥ 𝐶𝑇)) 𝒐𝒓 ((𝐸′ = 𝐸∗) 𝒂𝒏𝒅 (𝐶′ > 𝐶∗)) 𝒕𝒉𝒆𝒏 

8     𝐸∗, 𝐶∗, 𝐸𝑙𝑜𝑐
∗ = 𝐸′, 𝐶′, 𝐸𝑙𝑜𝑐

′  

9    𝒆𝒏𝒅 𝒊𝒇 
10    𝐸, 𝐶, 𝐸𝑙𝑜𝑐 = 𝐸′, 𝐶′, 𝐸𝑙𝑜𝑐

′  

11   𝒆𝒍𝒔𝒆 
12 

   𝒊𝒇 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ≤ exp (−
|𝐸−𝐸′|

𝑇
)  𝒕𝒉𝒆𝒏 

13     𝐸, 𝐶, 𝐸𝑙𝑜𝑐 = 𝐸′, 𝐶′, 𝐸𝑙𝑜𝑐
′  

14    𝒆𝒏𝒅 𝒊𝒇 
15   𝒆𝒏𝒅 𝒊𝒇 
16  𝒆𝒏𝒅 𝒇𝒐𝒓 
17  𝑇 = 𝛼𝑇 
18 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 
19 𝒓𝒆𝒕𝒖𝒓𝒏 𝐸∗, 𝐶∗ 

Figure 21: Pseudocode of simulated annealing algorithm 

To evaluate the performance of the procedure, we analyse the outcome of using only the add/delete 

structure (from now on called SA-1) versus the add/delete and swap structure (from now on called SA-

2). The decision to swap or add/delete employees occurs with a probability. Lalla-Ruiz et al. (2020) 

proposed simulated annealing with variable neighbourhoods (SA-VNS). This eliminates the idea that 

the decision to swap or add/delete depends on a probability by introducing parameter 𝑘 to the 

algorithm. Parameter 𝑘 decides to swap (𝑘 = 1) or add/delete (𝑘 = 2). Initially, 𝑘 is set to 1 and 

remains 1 as long as the current solution keeps improving. As soon as a worse solution is accepted, 𝑘 

is set to 2 and remains 2 until the current solution improves again. 

As mentioned, whether or not a neighbour solution is better than the current (best) solution depends 

not only on the number of employees but also on the coverage of that neighbour solution. The easiest 

way to calculate the coverage of the neighbour solution is to re-evaluate every node on the grid. To do 

this, for every node on the grid, we need to know if a node is reached by employees allocated on any 

other node on the grid. This requires two nested for-loops checking every node on the grid against 

𝑓𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 procedure 

1 𝒊𝒇 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ≤ 0.5 𝒕𝒉𝒆𝒏 
2  𝑡𝑚𝑝 = 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠[ℎ𝑜𝑢𝑟, 𝑙𝑜𝑐1] 
3  𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠[ℎ𝑜𝑢𝑟, 𝑙𝑜𝑐1] = 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠[ℎ𝑜𝑢𝑟, 𝑙𝑜𝑐2] 
4  𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠[ℎ𝑜𝑢𝑟, 𝑙𝑜𝑐2] = 𝑡𝑚𝑝 
5 𝒆𝒍𝒊𝒇 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝒕𝒉𝒆𝒏 
6  𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠[𝑙𝑜𝑐, ℎ𝑜𝑢𝑟] += 1 
7 𝒆𝒍𝒔𝒆 
8  𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠[𝑙𝑜𝑐, ℎ𝑜𝑢𝑟] −= 1  

9 𝒆𝒏𝒅 𝒊𝒇   

10 𝒓𝒆𝒕𝒖𝒓𝒏 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠) 

Figure 22: Pseudocode of the neighbour solution procedure 
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every other node on the grid, which, in terms of computational effort, results in poor running times. 

To overcome this problem, we make use of delta computations. Instead of updating every node on the 

grid, we only update the nodes close to the ones we change in the neighbour solution. In this manner, 

we define close as all nodes within reach of the node(s) where the solution is changed. This significantly 

reduces running times. 

4.4. Conclusion 
For our problem, the Location Set Covering Problem (LSCP) by Toregas et al. (1971) and the TIMEXCLP 

model of Repede and Bernardo (1994) are two models which are very relevant. In Section 4.1, we 

describe that we combine the LSCP and TIMEXCLP model to create a model that minimizes the number 

of incident handlers over different time instances by allocating them to achieve the constraint of a 

threshold coverage. In this way, the number of incident handlers is unrestricted and optimized by the 

model. Covering models typically use a binary coverage view, meaning a node is either covered or not. 

There exist functions that change this binary view to a gradual coverage view. We extend the model 

with a gradual coverage function where coverage decreases when distance increases away from an 

incident handler using a step-wise coverage function. We describe the mathematical model in Section 

4.2. 

We adapt the SA algorithm to suit our problem in Section 4.3. To keep computational effort to a 

minimum, we use a grid map instead of a map based on coordinates and use delta computations in 

the SA algorithm to calculate coverage. Besides, we define different versions of the SA algorithm 

regarding the neighbourhood structure. We evaluate the performance of the different versions in the 

next chapter, Chapter 5, more specifically in Section 5.1.2. We compare SA-1, SA-2 and SA-VNS, all 

using delta computations and for all scenarios. 
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5. Solution results 
This chapter starts with analysing the performance of the solution design in Section 5.1. First, in 

Subsection 5.1.1, we evaluate the parameters of the SA algorithm. Next, in Subsection 5.1.2, we 

analyse the performance of the different neighbourhood structures. Finally, in Subsection 5.1.3, we 

compare the performance of the SA algorithm with the ILP model. After analysing the performance of 

the solution design, we analyse the results in a stochastic environment in Section 5.2. In Section 5.3, 

we provide insight based on all results and in Section 5.4, we analyse the influence of the threshold 

coverage level using a sensitivity analysis. 

5.1. Simulated annealing performance 
This section considers the performance of the SA algorithm. We discuss several experiments. We code 

all experiments in Python 3.8.8 in the Spyder software on a computer with an Intel Core i7-8750H 

processor. 

5.1.1. Parameter tuning 
Simulated annealing requires an initial solution and parameters. The initial solution can be entirely at 

random. There is an option to start with an empty solution for the initial solution, meaning no 

employees are allocated. In that case, the SA algorithm starts as a constructive heuristic until it reaches 

a feasible initial solution. The SA operators will keep adding employees until it reaches the threshold 

coverage. However, even though we use delta computations, we found that calculating the coverage 

repeatedly for every new employee randomly allocated requires unnecessary computational effort, as 

also discussed in Section 4.3. Therefore, we create an initial solution by randomly assigning a fixed 

number of employees to any hour and cell on the grid. After finishing the allocation, the coverage of 

the complete solution is calculated once without using delta computations for the complete solution. 

We found that the SA algorithm works best if the coverage is already close or above the threshold 

coverage level. Far below the threshold coverage results in the SA algorithm requiring significant 

computational effort to at least obtain a feasible solution. We found that by randomly assigning 400 

AL employees, or in the case of the ICB specialism 800 ICB employees, the coverage level is around the 

threshold coverage of 80% or above. 

The parameters of the SA algorithm determine the performance of the SA algorithm. We need to tune 

the parameters in a way that the SA algorithm, at first, accepts many worse solutions (this mainly 

depends on 𝑇𝑠𝑡𝑎𝑟𝑡), and in the end, only accepts better solutions (𝑇𝑠𝑡𝑜𝑝). The time it takes to go from 

𝑇𝑠𝑡𝑎𝑟𝑡 to 𝑇𝑠𝑡𝑜𝑝 depends on the decrease factor 𝛼 and the number of solutions evaluated at a certain 

temperature 𝑇 depends on the length of the Markov chain. 

For the SA algorithm to accept many worse solutions at the start of the algorithm, the acceptance ratio 

at 𝑇𝑠𝑡𝑎𝑟𝑡 needs to be close to one. In this context, we define the acceptance ratio as the number of 

worse solutions accepted divided by the number of worse solutions proposed. Figure 23 shows the 

acceptance ratio of the SA algorithm using a starting temperature of 50. Based on this figure, we fix 

𝑇𝑠𝑡𝑎𝑟𝑡 to 30, as the ratio is close to 1 at this temperature. Using a higher temperature does not 

influence the final solution much but requires more computational effort. Similarly, we also determine 

the value of 𝑇𝑠𝑡𝑜𝑝. However, now we want the acceptance ratio to be zero to intensify on the best 

solution. Figure 23 shows the acceptance ratio per temperature. We see that around 0.2 degrees, the 

acceptance ratio becomes zero. From there on, we do not accept worse solutions anymore. However, 

we cannot fix 𝑇𝑠𝑡𝑜𝑝 based on Figure 23 only, because we observed that the solution still improves when 

the acceptance ratio is zero. Based on the figure, we only know that 𝑇𝑠𝑡𝑜𝑝 ≤ 0.2 to have an acceptance 

ratio of zero in the final parts of the SA algorithm. 
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Figure 23: Acceptance ratio of the SA algorithm to determine 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑠𝑡𝑜𝑝 

We analyse the value of 𝑇𝑠𝑡𝑜𝑝, as well as the values of the other parameters (𝛼 and 

𝑀𝑎𝑟𝑘𝑜𝑣𝐶ℎ𝑎𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ), by performing several experiments. We analyse all other parameters using 

experiments where we change the values of these parameters. Therefore, we perform 30 experiments 

to evaluate the performance using different settings of these parameters. We divide the experiments 

into groups of five. In almost all groups, we change the value of one parameter and fix the others per 

experiment within that group. For one group, we change 𝛼 and 𝑀𝑎𝑟𝑘𝑜𝑣 chain length simultaneously 

to evaluate the influence they have on each other. Table 6 shows the groups and goals of these groups.  

Table 6: Goal of a group of experiments to tune SA algorithm parameters 

Group Experiments Goal 

𝑇𝑠𝑡𝑜𝑝 1-5 Determine value of 𝑇𝑠𝑡𝑜𝑝 

𝑀𝑎𝑟𝑘𝑜𝑣 6-10 Determine value of 𝑀𝑎𝑟𝑘𝑜𝑣 

𝛼 11-15 Determine value of 𝛼 

𝛼 & 𝑀𝑎𝑟𝑘𝑜𝑣 16-20 Evaluate effect of increasing 𝑀𝑎𝑟𝑘𝑜𝑣 and decreasing 𝛼 

𝑀𝑎𝑟𝑘𝑜𝑣 21-25 Evaluate effect of low 𝑀𝑎𝑟𝑘𝑜𝑣 values with lower 𝑇𝑠𝑡𝑜𝑝 

𝑀𝑎𝑟𝑘𝑜𝑣 25-30 Evaluate effect of 𝑀𝑎𝑟𝑘𝑜𝑣 with a slightly higher value of 𝛼 

 

We run the SA algorithm three times in each experiment and store the overall best solution objective, 

average solution objective, and average time. In Table 7, we see the settings of the 30 experiments 

and the results of every experiment. Considering experiments 1-5, we see the best results with 𝑇𝑠𝑡𝑜𝑝 =

0.01. Next, in experiments 6-10 we look at the effect of the 𝑀𝑎𝑟𝑘𝑜𝑣 chain length. We see that we 

obtain the best results with 𝑀𝑎𝑟𝑘𝑜𝑣 = 1,000. We also observe that running times significantly 

increase when increasing 𝑀𝑎𝑟𝑘𝑜𝑣. In experiments 11-15 we consider different values of 𝛼 with 𝑇𝑠𝑡𝑜𝑝 

and 𝑀𝑎𝑟𝑘𝑜𝑣 fixed. Here, we select 𝛼 = 0.97, because this provides good results and with allowable 

running time. Increasing 𝛼 does slightly improve the solution, but against the cost of high running 

times. Therefore, in experiments 16-20 we evaluate different values of 𝛼 and 𝑀𝑎𝑟𝑘𝑜𝑣 simulatenously 

to see if we can obtain good solutions with less running time. From these experiments, we see that we 

obtain the best solutions with 𝛼 = 0.93 and 𝑀𝑎𝑟𝑘𝑜𝑣 = 1,250. However, by doing these experiments, 

we also observe that the solution improves significantly at the final stages of the SA algorithm. 

Therefore, we want to extend this period and do not choose 𝛼 = 0.93, but keep 𝛼 = 0.97. Moreover, 

we look at the effect of a shorter 𝑀𝑎𝑟𝑘𝑜𝑣 chain length with a lower 𝑇𝑠𝑡𝑜𝑝 to really focus on the final 

stages of the SA algorithm in experiments 21-25 with 𝛼 = 0.97. We see that 𝑇𝑠𝑡𝑜𝑝 = 0.001, 𝛼 = 0.97,

𝑀𝑎𝑟𝑘𝑜𝑣 = 500 performs the best with allowable running times of around 3 minutes. Finally, in 

experiments 26-30, we want to see if increasing 𝛼 (and also increasing 𝑇𝑠𝑡𝑜𝑝 to keep allowable running 
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times) has a significant impact. However, this is not the case and thus we select 𝑇𝑠𝑡𝑜𝑝 = 0.001, 𝛼 =

0.97, 𝑀𝑎𝑟𝑘𝑜𝑣 = 500 as the final parameter values of the SA algorithm. This gives us good solutions 

within 3 minutes. Longer running times do not significantly improve the objective anymore. 

Table 7: Experiments to tune SA parameters 

Grp. Exp. 𝑻𝒔𝒕𝒂𝒓𝒕 𝑻𝒔𝒕𝒐𝒑 𝜶 𝑴𝒂𝒓𝒌𝒐𝒗 Best Average Time [s] 

𝑇 𝑠
𝑡𝑜

𝑝
 

1 30 1 0.95 200 251 257 11.52 

2 30 0.5 0.95 200 221 230 13.38 

3 30 0.1 0.95 200 188 195 18.50 

4 30 0.05 0.95 200 183 190 20.91 

5 30 0.01 0.95 200 179 183 24.93 

𝑀
𝑎

𝑟𝑘
𝑜

𝑣
 

6 30 0.01 0.95 100 176 178 25.73 

7 30 0.01 0.95 200 172 174 42.58 

8 30 0.01 0.95 500 171 178 85.91 

9 30 0.01 0.95 1000 162 164 168.81 

10 30 0.01 0.95 2000 164 168 311.67 

𝛼
 

11 30 0.01 0.90 1000 165 166 73.87 

12 30 0.01 0.95 1000 163 165 145.81 

13 30 0.01 0.97 1000 162 163 238.64 

14 30 0.01 0.98 1000 160 161 356.24 

15 30 0.01 0.99 1000 158 159 713.22 

𝛼
 &

 𝑀
𝑎

𝑟𝑘
𝑜

𝑣
 16 30 0.01 0.94 1000 165 176 130.59 

17 30 0.01 0.93 1250 164 165 155.00 

18 30 0.01 0.92 1500 165 175 146.33 

19 30 0.01 0.91 2000 166 169 174.44 

20 30 0.01 0.90 5000 164 171 364.03 

𝑀
𝑎

𝑟𝑘
𝑜

𝑣
 

21 30 0.001 0.97 500 163 164 188.68 

22 30 0.001 0.97 400 165 169 147.68 

23 30 0.001 0.97 300 164 169 114.83 

24 30 0.001 0.97 200 167 168 84.47 

25 30 0.001 0.97 100 175 179 66.05 

𝑀
𝑎

𝑟𝑘
𝑜

𝑣
 

26 30 0.01 0.98 700 162 164 284.38 

27 30 0.01 0.98 600 163 170 237.11 

28 30 0.01 0.98 500 162 166 208.94 

29 30 0.01 0.98 400 182 184 152.81 

30 30 0.01 0.98 300 185 187 118.50 

 FINAL 30 0.001 0.97 500 163 172 171.51 

 

The final settings perform well for the AL specialism. We reduce the employees allocated in the final 

solution compared to the initial solution by a factor of two. When looking at the ICB specialism, we see 

the same reduction factor. However, the ICB specialism also requires two times more employees in 

the initial solution than the AL specialism initial solution. That means that the possible improvements 

also increase with a factor of two. For the ICB specialism, the general settings perform well. However, 

after analysing the performance of the SA algorithm for this specialism, we see that a Markov chain 

length of 1,000 performs significantly better but still obtains solutions in reasonable time. 
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5.1.2. Simulated annealing variants 
For the neighbourhood structure, we evaluate three options. We first evaluate SA-1, which only adds 

or deletes employees based on the coverage of the current solution. Next, we evaluate SA-2, which 

besides adding or deleting employees based on the coverage, also swaps employees randomly. The 

decision to swap or add/delete occurs randomly with a probability of 50%. This percentage is evaluated 

with experiments and performs well. Lastly, we evaluate the SA-VNS algorithm. In the SA-VNS 

algorithm, the decision to swap or add/delete is not random anymore and now depends on a value 𝑘. 

The value 𝑘 changes from 1 to 2 if the current solution is updated with a worse solution and resets to 

1 if the current solution improves (𝑘 = 1 for swap, 𝑘 = 2 for add/delete) following the SA-VNS idea of 

Lalla-Ruiz et al. (2020). We evaluate the three SA algorithms by running all scenarios once for each 

algorithm and store the objective and average running time. In Table 8, we see the performance of the 

three algorithms as well as the average duration using a specific algorithm. For the test, we run SA-1, 

SA-2 and SA-VNS simultaneously to obtain results quicker. All settings regarding software and 

processor are equal. 

Table 8: Objective values and average durations of SA algorithm with different neighbourhood structures 

  AL 

  Week Weekend 

Scenarios SA-1 SA-2 SA-VNS SA-1 SA-2 SA-VNS 

2018, 2019 237 144 208 184 114 185 

Winter ‘18, ‘19 199 104 167 144 76 124 

Spring ‘18, ‘19 182 110 180 144 83 138 

Summer ‘18, ‘19 194 113 172 141 82 128 

Autumn ‘18, ‘19 193 117 182 135 75 114 

2020 204 123 181 162 94 156 

Winter ‘20 180 96 155 113 62 101 

Spring ‘20 160 93 139 81 48 76 

Summer ‘20 175 97 157 111 64 99 

Autumn ‘20 177 97 154 102 62 95 

Average duration [sec] 135.95 186.68 124.36 121.18 172.62 124.93        

 
ICB 

2018, 2019 610 423 564 516 344 482 

Winter ‘18, ‘19 527 316 463 400 242 345 

Spring ‘18, ‘19 548 332 458 419 254 379 

Summer ‘18, ‘19 511 342 485 425 246 367 

Autumn ‘18, ‘19 528 344 478 389 232 333 

2020 558 375 485 451 279 401 

Winter ‘20 467 280 401 329 195 283 

Spring ‘20 461 271 378 239 154 209 

Summer ‘20 467 292 415 317 197 276 

Autumn ‘20 456 298 423 300 186 268 

Average duration [sec] 264.34 352.23 242.48 241.55 315.40 238.82 
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Based on these results, we conclude that the SA-2 structure performs the best in terms of the objective 

function (number of employees). For every scenario, the objective of SA-2 is the lowest. On average, 

the SA-2 algorithm performs 42% better than the SA-1 algorithm and 36% better than the SA-VNS 

algorithm in terms of objective. However, when looking at the average duration, we see that the SA-2 

algorithm requires the longest running time. The main reason is that the swap operator needs to find 

a grid cell with at least one employee allocated to that cell. To swap, we randomly select a grid cell and 

continue to do so until we find a cell with at least one employee. Then we randomly select another cell 

and perform the swap. This process takes up significant time but also result in better solutions. 

Therefore, we select the neighbourhood structure used in the SA-2 algorithm. From here on, all results 

use this structure of randomly deciding to swap or add/delete employees from the solution. 

5.1.3. ILP model vs SA 
We also program the covering model as in ILP model. For this, we use the Python extension module 

Gurobi. This module allows us to program the model in Python easily. With the ILP model, we can check 

to performance, in terms of objective and duration, of the SA algorithm against the ILP model. Similar 

to the performance analysis on the neighbourhood structure in Section 5.1.2, we analyse the 

performance of the ILP model versus the SA algorithm. We again do this for every scenario and both 

specialism. All settings regarding software and processor remain the same. To run both the ILP model 

and SA algorithm for every scenario, we require 80 runs (two times all scenarios), which requires 

significant total running time. To obtain results in less total running time, we set a time limit for the ILP 

model. The SA algorithm obtains results in less than five minutes for the AL specialism, and to have 

similar running times, we select a time limit of five minutes for the ILP model. As soon as we reach the 

time limit, the ILP model will cut off and provide the best solution obtained within the time limit. We 

run every scenario one time only. 

Table 9: Objective values of the ILP model and the SA algorithm and optimality gap of ILP model 

  AL 

  Week Weekend 

Scenarios ILP ILP Gap SA ILP ILP Gap SA 

2018, 2019 135 2.22% 142 108 0.93% 115 

Winter ‘18, ‘19 97 0.00% 102 73 0.00% 79 

Spring ‘18, ‘19 103 0.00% 113 78 0.00% 82 

Summer ‘18, ‘19 105 0.00% 112 75 0.00% 79 

Autumn ‘18, ‘19 108 0.93% 115 71 0.00% 74 

2020 116 0.00% 124 85 0.00% 90 

Winter ‘20 85 0.00% 90 57 0.00% 65 

Spring ‘20 81 0.00% 87 45 0.00% 48 

Summer ‘20 89 0.00% 96 58 0.00% 63 

Autumn ‘20 91 0.00% 99 56 0.00% 66 

Average duration [s] 124.10  200.87 34.47  198.37 
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ICB 

2018, 2019 405 0.99% 424 326 0.92% 346 

Winter ‘18, ‘19 297 1.01% 313 220 0.00% 238 

Spring ‘18, ‘19 312 0.64% 331 233 0.00% 256 

Summer ‘18, ‘19 316 0.63% 336 224 0.00% 243 

Autumn ‘18, ‘19 319 0.31% 344 215 0.00% 235 

2020 355 1.13% 377 260 0.00% 282 

Winter ‘20 260 0.00% 278 173 0.00% 191 

Spring ‘20 244 0.00% 263 137 0.00% 152 

Summer ‘20 270 0.37% 291 175 0.00% 190 

Autumn ‘20 278 0.00% 300 168 0.00% 188 

Average duration [s] 235.39  371.08 36.02  368.01 

 

Table 10: Gap between the objective function of ILP model and SA algorithm 

 
AL ICB 

Scenarios Wk Wknd Wk Wknd 

2018, 2019 5.19% 6.48% 4.69% 6.13% 

Winter ‘18, ‘19 5.15% 8.22% 5.39% 8.18% 

Spring ‘18, ‘19 9.71% 5.13% 6.09% 9.87% 

Summer ‘18, ‘19 6.67% 5.33% 6.33% 8.48% 

Autumn ‘18, ‘19 6.48% 4.23% 7.84% 9.30% 

2020 6.90% 5.88% 6.20% 8.46% 

Winter ‘20 5.88% 14.04% 6.92% 10.40% 

Spring ‘20 7.41% 6.67% 7.79% 10.95% 

Summer ‘20 7.87% 8.62% 7.78% 8.57% 

Autumn ‘20 8.79% 17.86% 7.91% 11.90% 

Average 7.00% 8.24% 6.69% 9.23% 

 

In Table 9, we see the solution objectives of every scenario and the optimality gap of the ILP model. 

Besides, in Table 10, we see the gap between the objective function of the ILP model and the SA 

algorithm. Based on these results, we conclude that the ILP model always outperforms the SA 

algorithm. Optimality gaps between both specialisms are similar but lower during the week scenarios 

compared to the weekend scenarios. During the weekend, the demand is lower and therefore the 

position where to allocate employees needs to be more precise. The SA algorithm is less able to do so. 

However, we run the scenarios one time only. Running the SA algorithm multiple times results in 

different solutions because of the random initial solution and possibly not optimal final solution 

(randomly found a good solution, but not proven to be the optimal solution). 

  



38 

5.1.4. Long run comparison 
The ILP model finds optimal, or very good, solutions within the time limit of five minutes. However, we 

are also interested in what happens with long runs of the ILP model, especially in the case the ILP does 

not find optimal solutions within the five-minute time limit. In Table 11, we show the results of the 

long runs per scenario. The time limit is increased and set to 30 minutes. We see that the objectives 

and coherently ILP gaps reduce and more solutions are optimal. However, it requires significantly more 

running time without much improvement. Next, we show the gap to the SA objectives found in Table 

9. The gap to the SA algorithm slightly increases. 

Table 11: Objective values of the ILP model with optimality gaps and gap to SA algorithm 

  AL 

  Week Weekend 

Scenarios ILP ILP Gap SA Gap ILP ILP Gap SA Gap 

2018, 2019 134 1.49% 5.97% 107 0.00% 7.48% 

Winter ‘18, ‘19 97 0.00% 5.15% 73 0.00% 8.22% 

Spring ‘18, ‘19 103 0.00% 9.71% 78 0.00% 5.13% 

Summer ‘18, ‘19 105 0.00% 6.67% 75 0.00% 5.33% 

Autumn ‘18, ‘19 108 0.93% 6.48% 71 0.00% 4.23% 

2020 116 0.00% 6.90% 85 0.00% 5.88% 

Winter ‘20 85 0.00% 5.88% 57 0.00% 14.04% 

Spring ‘20 81 0.00% 7.41% 45 0.00% 6.67% 

Summer ‘20 89 0.00% 7.87% 58 0.00% 8.62% 

Autumn ‘20 91 0.00% 8.79% 56 0.00% 17.86% 

Average 397.8 s 0.24% 7.08% 43.8 s 0.00% 8.34% 

  
 

ICB 

2018, 2019 405 0.99% 4.69% 325 0.62% 6.46% 

Winter ‘18, ‘19 297 0.67% 5.39% 220 0.00% 8.18% 

Spring ‘18, ‘19 311 0.00% 6.43% 233 0.00% 9.87% 

Summer ‘18, ‘19 316 0.63% 6.33% 224 0.00% 8.48% 

Autumn ‘18, ‘19 319 0.31% 7.84% 215 0.00% 9.30% 

2020 354 0.85% 6.50% 260 0.00% 8.46% 

Winter ‘20 260 0.00% 6.92% 173 0.00% 10.40% 

Spring ‘20 244 0.00% 7.79% 137 0.00% 10.95% 

Summer ‘20 270 0.37% 7.78% 175 0.00% 8.57% 

Autumn ‘20 278 0.00% 7.91% 168 0.00% 11.90% 

Average 1100.7 s 0.38% 6.76% 186.0 s 0.06% 9.26% 

 

5.2. Stochastic analysis 
The SA algorithm gives promising results. We see that during the busiest hours, the most employees 

are allocated, and during the more idle hours (night), we see fewer to no employees. We obtain 

solutions by solving the SA algorithm with deterministic input. However, incidents do not occur on a 

deterministic basis. Instead, they occur partly random. Partly because generally, incidents tend to 

occur more often when it is busier, either because of the hour of the day or the location. Due to this 

stochastic element, a good solution obtained with the SA algorithm using deterministic input might 
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not be that good when considering stochasticity. Therefore, it is vital to analyse the performance of a 

solution in a stochastic environment. With a stochastic analysis, we can determine the robustness of a 

solution. 

To analyse this stochastic performance, we use a simheuristic because we want to analyse multiple 

solutions and select the most robust solution for a given scenario. Simheuristic algorithms are often 

used to simulate real-world problems under uncertain conditions (Chica & Juan 2017). The simheuristic 

algorithm uses simulation to allow stochastic scenarios to be evaluated for a fixed solution. In this way, 

we can analyse the feasibility of a solution under uncertain conditions. We can select the most robust 

solution when doing so for various solutions. That is, instead of selecting the solution with the least 

employees, select the most stable solution regarding coverage, even though one solution requires 

more employees than another. The simheuristic algorithm we use to analyse the stochasticity is 

Monte-Carlo simulation. This technique allows us to simulate many different instances, every time 

slightly adjusted. We want to evaluate the performance of different solutions by simulating 

stochasticity in the incident scenarios, and with this technique, we can. The simheuristic with Monte-

Carlo simulation is proven to be efficient and reliable (Lalla-Ruiz et al., 2020). 

The simheuristic algorithm starts with initializing a deterministic scenario. Then, we obtain a solution 

using the SA algorithm with that deterministic scenario. The solution is saved and undergoes a short 

Monte-Carlo simulation. In every iteration of the Monte-Carlo simulation, the deterministic scenario 

is adjusted to simulate stochasticity. For every iteration, we store the coverage of the solution using 

the adjusted scenario. After the short Monte-Carlo simulation, we calculate and save the interquartile 

range (IQR) of the coverage. We repeat this process for every solution we want to evaluate. Next, we 

select the best solutions based on the IQR. We select solutions based on the IQR because we have 

already obtained good solutions in terms of the number of employees, and we now want to select the 

most robust solution of these solutions in terms of coverage. We re-evaluate these so-called elite 

solutions with a long Monte-Carlo simulation where we again store the coverage of every iteration of 

the simulation. After the long Monte-Carlo simulation, we generate box plots of the coverage of the 

solutions and calculate the final IQR to evaluate the robustness of the solutions. We select the overall 

best solution based on the IQR. In Figure 24, we see the pseudocode of the simheuristic. All steps 

explained here can be seen in this pseudocode. 

Sim heuristic 

1 𝐷𝑒𝑡𝑝𝑟𝑜𝑏𝑙𝑒𝑚 = deterministic problem 

2 𝒇𝒐𝒓 (𝑖 ∈ 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 𝒅𝒐 
3  𝑠[𝑖] = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔(𝐷𝑒𝑡𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 

4  𝒇𝒐𝒓 (𝑗 = 1; 𝑗 < 𝑀𝐶𝑠ℎ𝑜𝑟𝑡; 𝑗 + +) 𝒅𝒐 
5   𝑣𝑎𝑙𝑢𝑒𝑠[𝑗] = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠[𝑖], 𝑆𝑡𝑜𝑐ℎ𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 

6  𝒆𝒏𝒅 𝒇𝒐𝒓 
7  𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑀𝑒𝑎𝑠𝑢𝑟𝑒[𝑖] = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐(𝑣𝑎𝑙𝑢𝑒𝑠) 
8 𝒆𝒏𝒅 𝒇𝒐𝒓 
9 𝑒𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑀𝑒𝑎𝑠𝑢𝑟𝑒[𝑡𝑜𝑝 5] 
10 𝒇𝒐𝒓 (𝑖 ∈ 𝑒𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 𝒅𝒐 
11  𝒇𝒐𝒓 (𝑗 = 1; 𝑗 < 𝑀𝐶𝑙𝑜𝑛𝑔; 𝑗 + +) 𝒅𝒐 

12   𝑓𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠[𝑖][𝑗] = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠[𝑖], 𝑆𝑡𝑜𝑐ℎ𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 

13  𝒆𝒏𝒅 𝒇𝒐𝒓 
14 𝒆𝒏𝒅 𝒇𝒐𝒓 
15 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑓𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠) 

Figure 24: Pseudocode of the sim heuristic 
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Looking at the Monte-Carlo simulation process more specific, we illustrate the process in Figure 25. 

The process starts by obtaining a solution with deterministic demand, the input for the simulation. 

Next, we fix the solution but adjust the demand. In our case, we adjust the current demand values of 

every demand node randomly +/- 10% of the current demand following a uniform distribution. Then 

we calculate the coverage of the fixed solution, but with the new (adjusted) demand, and store the 

coverage. The demand resets to the deterministic demand the process repeats. When the stopping 

criterium is reached, the simulation process stops. 

 

Figure 25: Monte-Carlo simulation process 

As described, the simheuristic requires several parameters. It first requires the number of solutions to 

be evaluated. In our case, we first run the SA algorithm 25 times, meaning we create 25 deterministic 

solutions to be evaluated by the simheuristic. For each solution, we run a short Monte-Carlo simulation 

of 50 runs per solution in which we recalculate the coverage of the solution based on a stochastic 

scenario. After applying a short Monte-Carlo simulation on all 25 solutions, we select the five solutions 

with the lowest IQR, called the elite solutions. We apply a long Monte-Carlo simulation of 250 runs per 

solution for all five elite solutions and again recalculate the coverage of the solution based on the 

stochastic scenarios. With the coverage of different simulated scenarios stored per solution, we create 

box plots of these coverages. In Figure 26 we see the results of one scenario. We see the coverage 

(displayed on the y-axis) of five different elite solutions (displayed on the x-axis). The overall best 

solution is selected based on the box plot and the IQR. 

 

Figure 26: Boxplot results simheuristic scenario AL 2018-2019 week 

5.3. Solution evaluation and comparison 
As we tuned the parameters of the SA algorithm, selected the best-performing neighbourhood 

structure, evaluated the workings of the SA algorithm in comparison with the ILP model and 

implemented all this in a sim heuristic to be able to select a final solution this is good in terms of the 

number of employees as well as in terms of robustness; we can evaluate the solutions. We discuss the 

results of the simheuristic and a graphical representation of the solution for both specialisms. As we 

have 40 scenarios, we also have the results of all these scenarios. Here, we only provide insights based 

on the results. Specific results of the simheuristic to every scenario can be found in Appendix B. We 

choose the final solutions based on the IQR of the coverage because the lowest IQR means the most 
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robust solution. Besides, we see that the number of employees required per solution does not change 

much, thus for the final, most robust solution, we do not select based on the number of employees. 

We display the insights in two infographics. Figure 30 shows the first infographic and focuses on the 

AL specialism.  Figure 31 shows the second infographic and focuses on the ICB specialism. In both 

infographics, first, we see the objective value (sum of all employees at all hours) for a weekday and 

weekend day for both 2020 and 2018 & 2019 as input. Next, we see the allocation of the solutions for 

2018 and 2019. We do not provide insights in 2020 because these results are similar. Only fewer 

employees are allocated due to fewer incidents in the COVID year. Lastly, we provide the number of 

employees required per hour of the day in the infographics. We show the distribution of employees 

on weekdays and weekend days. As the solution obtained from the model includes the allocation for 

every hour of the day, we can make 24 allocation graphs, which is not very practical for the report. 

Therefore, we show the allocation results in one graph only. This graph is a cumulative representation 

of the allocation. That is, summing up all hours and plotting them in one map. We graphically explain 

this method in Figure 27, but for a case with only three hours. 

Hour 1  Hour 2  Hour 3  Sum 

1 0 0  3 0 0  5 0 0  9 0 0 

0 0 3 + 3 0 0 + 3 0 0 = 6 0 3 

0 0 0  0 0 0  0 1 0  0 1 0 

Figure 27: Graphical explanation of allocation graph 

The final results, which are the most robust solutions to every scenario obtained with the simheuristic, 

let us see that the required number of employees decreases by around 19% during a weekend day 

compared to a weekday. The COVID year 2020, in general, requires 11% fewer employees during the 

week and 18% fewer employees during the weekend compared to the non-COVID years (2018, 2019). 

Considering the allocation, we see that the main focus areas during the week are Rotterdam, 

Amsterdam and the theoretical triangle Zwolle – Enschede – Arnhem, followed by the South (Limburg) 

and the North of the country. During the weekend, the North of the Netherlands disappears as a focus 

area. 

The distribution of incident handlers across the hours of the day shows that, especially for the ICB 

specialism, there is less demand from 13.00 to 14.00. This suggests that the shift-change should be 1 

hour earlier than the current shift change. 

During the discussion of the data insights, which we provide in Section 2.4, we saw a peak in frequency 

during summer. This peak is also visible in the final results. However, this peak mainly occurs during 

the afternoon rush hour, as shown in Figure 28 and Figure 29. When discussing this with ProRail and 

looking at the input data, we see that hot weather conditions play an important role in causing a peak 

in incidents. During summer, many people use the train during afternoon rush hour; either to commute 

or for leisure. 
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Figure 28: Distribution of ALs during a weekday in summer 

 

Figure 29: Distribution of ICB members during a weekday in summer 

Based on all results, we recommend scheduling 7 AL employees in both shifts, one AL more than 

currently. The current number of minimal 20 ICB members is valid for the ICB team. On average, the 

number of ICB members is slightly higher, but as ProRail always schedules more than the minimum 

number, this minimum of 20 can remain the same. For the standby period during the evening, we can 

argue if the employees in the afternoon shift should all go on standby during the night. With only half 

of the employees on standby during the night, enough employees remain to cover demand. 
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AL ALLOCATION WEEK ’18, ‘19 AL ALLOCATION WEEKEND ’18, ‘19 

  

 

 
 

Figure 30: Infographic results AL specialism 
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ICB ALLOCATION WEEK ’18, ‘19 ICB ALLOCATION WEEKEND ’18, ‘19 

  

 

 
 

Figure 31: Infographic results ICB specialism (ICB members) 
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5.4. Sensitivity analysis threshold coverage 
Until now, we considered a threshold coverage of 80%. We determined this value in consultation with 

ProRail. However, ProRail is also interested in what happens if we increase this threshold coverage 

level. This sensitivity analysis on the threshold coverage level is just theoretical to provide more insight 

into the influence of the threshold coverage value. However, it also has a practical benefit for ProRail, 

as, on holidays, generally many people use public transport, especially on, for example, Kingsday. 

When the required increase in employees is known to reach a higher coverage, they can use this on 

special occasions such as holidays. Therefore, we performed a sensitivity analysis on the threshold 

coverage. We increased the threshold coverage from 80% to 85%, 90% and 95% for both the AL 

specialism and ICB team. In Table 12, we see the results of this analysis. Here, we see the threshold 

coverage level in the most left column, and in the rightest column the average percentage change in 

the number of employees required compared to a threshold level of 80%. We also see, for every 

scenario, the number of employees and percentage change for that scenario. We run all scenarios once 

using the SA algorithm.  

Table 12: Sensitivity analysis on threshold coverage 

  AL ICB   

  Week Weekend Week Weekend   

Cov '18,'19 '20 '18,'19 '20 '18,'19 '20 '18,'19 '20 Avg 

80% 142 123 114 91 425 375 344 279   

  0% 0% 0% 0% 0% 0% 0% 0% 0% 

85% 165 144 136 104 488 434 401 326   

  16% 17% 19% 14% 15% 16% 17% 17% 16% 

90% 195 168 156 125 567 500 465 374   

  37% 37% 37% 37% 33% 33% 35% 34% 36% 

95% 238 204 192 151 684 602 562 447   

  68% 66% 68% 66% 61% 61% 63% 60% 64% 

 

Based on the results, we see that the number of employees needed exponentially grows when 

increasing the threshold coverage value. In this way, reaching a 95% coverage level is unrealistic as this 

requires 64% more employees, which is a significant number of employees. However, this sensitivity 

analysis implies a national coverage level. Our current model cannot provide results when only 

increasing coverage for a specific region. However, we assume these percentages to be reliable when 

requiring a higher coverage level for a specific region. This, because we still want to cover the same 

incidents but at a higher threshold coverage level. 

5.5. Conclusion 
The main goal of this chapter is to answer the fourth and last research question: “How does the model 

perform for different scenarios of historical incidents?”. To answer this model, we first analysed the 

performance of the SA algorithm in section 5.1. We tuned the different parameters used in SA such 

that the algorithm suits our problem and performs well. Besides, we analysed different neighbourhood 

structures and selected the neighbourhood structure where we included randomness in the decision 

between operators. 

Section 5.2 describes the stochastic analysis. The SA algorithm obtains a solution based on 

deterministic input. In reality, incidents do not occur on a deterministic basis but randomly on a 

stochastic basis. Therefore, we used a simheuristic and analysed the results of the SA algorithm with 
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this simheuristic. We performed a short Monte-Carlo simulation of 50 runs on 25 different solutions 

obtained with the SA algorithm and stored the IQR of the coverage of these solutions. We selected the 

top 5, the elite solutions, and performed a long Monte-Carlo simulation of 250 runs to select the most 

robust solution. 

In Section 5.3, we analyse the final solutions. The main focus areas during the week are Rotterdam, 

Amsterdam and the theoretical triangle Zwolle – Enschede – Arnhem, followed by the South (Limburg) 

and the North of the country. During the weekend, the North of the Netherlands disappears as a focus 

area. Based on all results, we recommend scheduling 7 AL employees in both shifts, one AL more than 

currently. The current number of minimal 20 ICB members is valid for the ICB team. 

Finally, Section 5.4 evaluates the influence of the threshold coverage level using a sensitivity analysis. 

We increased the threshold coverage from 80% to 85%, 90% and 95% for both the AL specialism and 

ICB team. We see that when increasing the threshold coverage level, the required number of 

employees exponentially grows. Nationwide it is not realistic to increase the number of employees 

exponentially to reach a higher coverage level. However, this is realistic in local areas. ProRail can 

decide to increase the local coverage during, for example, local events. 
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6. Conclusions and recommendations 
In Section 6.1 of this chapter, we conclude the research carried out. We provide an answer to the main 

research question with the help of the sub-research questions answered in the previous chapters. 

Next, in Section 6.2, we provide recommendations based on the results of both the research and the 

literature review. These recommendations mainly address the implementation of results. Lastly, in 

Section 6.3, we discuss the limitations of this research and possible further research topics. 

6.1. Conclusions 
This section concludes the research carried out. The research starts with describing the problem. From 

this problem description, we found the main problem goal. That is, the development of an optimization 

model that guarantees a threshold coverage by allocating specialization-specific incident handlers 

based on historical data. As ProRail transfers from a regional scheduling approach to a nationwide 

scheduling approach, such a model would help create a more advanced and efficient schedule of 

incident handlers. Therefore, with this research, we focus on how to do this. We describe this with the 

following research question: 

How can optimization techniques be used to guarantee coverage by allocating specialization-specific 

incident handlers based on data? 

There is no straightforward answer to this question. Therefore, we use sub-research questions. All 

chapters contribute to answering the sub-research questions. With the answers to the sub-research 

questions, we answer the main research question. The sub-research questions are as follows: 

• How is the allocation and scheduling of incident handlers currently working? 

• What has been proposed in the literature for solving the specialism-specific capacity allocation 

problem to guarantee coverage? 

• How should the solution approach be designed for the capacity allocation problem? 

• How does the model perform for different scenarios of historical incidents? 

The first sub-research question addresses the current process at ProRail. In Chapter 2, we discuss the 

current process in the problem context. Currently, the capacity is based on trial-and-error and adjusted 

accordingly. Besides, ProRail schedules incident handlers without considering their specialism as this 

was not used before and is a new idea at ProRail. Looking at the operational planning, ProRail has 

already optimized this with the Optimal Deployment system, creating a to-do list for incident handlers 

to perform the secondary tasks in the desired area. We obtain insight into the incident frequencies 

and incident density across the country from historical incident data. For example, the most incident-

dense area is The Randstad and the busiest moment of the day is the afternoon rush hour. 

The second sub-research question focuses on literature. Chapter 3 discusses the literature review, 

looking at what has been proposed for solving specialism-specific allocation problems to guarantee a 

coverage level. As there exist many variations, it is important to note that we classify our problem as 

a strategic problem. Classifying as a strategic problem significantly affects the models to be considered 

from the literature as we exclude operational and tactical aspects such as travelling speed, start 

location of shifts and shifts in general. Allocation problems with a guaranteed coverage level quickly 

converge to coverage models. There are many coverage models, but the TIMEXCLP model of Repede 

and Bernardo (1994) is most appropriate due to the possibility of solving the model for different time 

instances and reaching an overall coverage level. The TIMEXCLP model considers a node fully covered 

or not. There exist functions that change this binary view to a gradual coverage view. In these 

functions, coverage of an allocated incident handler gradually decreases when increasing the distance 

from that incident handler. This creates a more realistic view of coverage. Of these functions, the step-
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wise coverage function is most appropriate for our problem as this is a simple but, on a strategic level, 

realistic view of the coverage. 

In general, covering problems are hard to solve to optimality. Therefore, we use a metaheuristic to 

solve our problem. Out of various metaheuristic search methods, simulated annealing is an 

appropriate metaheuristic. Simulated annealing is a metaheuristic that has been successfully 

implemented to solve covering models.  It is a method that is usually easily implemented. Also, it 

generally requires less computational effort than more sophisticated procedures such as tabu searches 

and genetic algorithms. Simulated annealing can escape from a local optimum by allowing hill-

climbing. Simulated annealing starts with accepting almost all solutions, but it step-by-step starts 

accepting only improvements (Kirkpatrick et al., 1983). In general, the heuristic finds reasonable good 

solutions in acceptable computational time. However, simulated annealing obtains a solution based 

on a deterministic input. Incidents do not occur on a deterministic base but a stochastic base. With a 

simheuristic, we can analyse the robustness of a solution by changing the deterministic using Monte-

Carlo simulation. 

Next, in Chapter 4, we design the solution approach to our problem, the third sub-research question. 

We consider several assumptions in our model, such as only considering starting moments of incidents 

and equally distributed service distances across the country. Using a coordinate-oriented map requires 

significant computational effort. Therefore, we transform a coordinate-oriented map into a grid map. 

Together with ProRail, we define scenarios we want to test. The final covering model we use to solve 

our problem is relatively simple but corresponds with a strategic planning level. Together with ProRail, 

we defined several scenarios. We look at all seasons as well as complete years. However, we split the 

data of 2020 from the dataset as 2020 is significantly influenced by COVID lockdowns. We obtained 

solutions for all scenarios and also considered the robustness performance with stochastic analysis. 

Looking at the results of all experiments, we optimized the parameters of the simulated annealing 

algorithm to suit our model. Moreover, we checked the performance of the SA algorithm with different 

neighbourhood structures as well as versus a programmed ILP model. The final results, which are the 

most robust solutions to every scenario obtained with the simheuristic, let us see that the main areas 

of focus during the week are Rotterdam, Amsterdam and the theoretical triangle Zwolle – Enschede – 

Arnhem, followed by the South (Limburg) and the North of the country. The required number of 

employees decreases by around 19% during a weekend day compared to a weekday. The COVID year 

2020, in general, requires 11% fewer employees during the week and 18% fewer employees during the 

weekend and holds for both the AL and ICB specialism. 

Many different variations of the facility location and allocation problem exist for a long period already 

as described in the literature review in Chapter 3.  With this research, we create a new application of 

such problems. We show the working and possibilities of applying simulated annealing to obtain good 

results quickly. Moreover, we provide robust solutions with the use of a simheuristic. Practically, we 

provide the number of employees, location and time of day to ProRail. This provides them insights 

usable for their planning systems. 

6.2. Recommendations 
We can make several recommendations based on the research; some regarding the results, others 

regarding the general working at ProRail. We start with the general recommendations. As mentioned 

in the problem context in Chapter 2, the deployment data is limited from 2020 onwards. This 

deployment data includes the deployment of ALs and ICB members in general. We cannot recommend 

obtaining the deployment data before 2020 as this is not registered. However, we can make 

recommendations on the way of registering deployment. ProRail aims to transfer from a general ICB 
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member view to a specialism-specific view. To be able to make predictions on the number of 

specialism-specific employees required for every incident, we recommend registering specialism-

specific deployment from now onwards. We assume that this requires a slight change in the current 

system, but it will significantly help the transfer to a specialism-specific ICB department. By doing so, 

more in-depth analyses about the deployment per incident label and precise estimations about the 

required employees of a specific specialism can be made. 

Next to the general recommendations, we can also make recommendations based on the results. 

Currently, the morning shift starts at 06.00 and ends at 15.00. The afternoon/evening shift starts at 

14.00 (meaning 1-hour overlap between shifts to handover work) and officially ends at 19.30. 

However, afternoon-shift employees remain on standby all night till the morning shift starts. Based on 

the results, we see a significant increase in demand from 06.00 in the morning onwards and, for the 

ICB team, see a decrease in demand during lunch hours, at around 13.00 to 14.00. Therefore, the 

starting moment of the shifts seems to be in line with the results, but the shift change could be 1 hour 

earlier. The transfer from working to on-standby at 19.30 in the evening is valid and does not require 

any change. If ProRail decides to reconsider shifts completely, it might be beneficial to have different 

variable shifts on a day. For example, the morning and afternoon shifts change from 1 starting moment 

to multiple starting moments. We graphically show this idea in Figure 32. 

 

Figure 32: Variable shift hours 

We recommend scheduling 7 AL employees in both shifts, one AL more than currently. The current 

number of minimal 20 ICB members is valid for the ICB team. On average, the number of ICB members 

is slightly higher, but as ProRail always schedules more than the minimum number, this minimum of 

20 can remain the same. For the standby period during the evening, we recommend considering if the 

employees in the afternoon shift should all go on standby during the night. With only half of the 

employees on standby during the night, enough employees remain to cover demand. 

6.3. Limitations and further research 
This research aims to allocate incident handlers so that a service level is guaranteed. We do this with 

a mathematical model. However, this model has some limitations. As mentioned in Section 4.1.1, we 

assume no travelling times in the model. That means that the model can allocate employees at one 

hour to the North of The Netherlands and the other hour to the South of The Netherlands. This 

assumption is infeasible in reality as it is not possible to cross the country in one hour. We allow this 

limitation as we only look at strategic advice without any tactical or operational component. 

Besides no travelling times, we also consider only starting moments of incidents and solve the model 

for every hour of a day. The incident handlers of ProRail solve most incidents within one hour. 

Therefore, we made this assumption not to consider the incident duration. However, a significant 

number of incidents still require more than one hour to be solved. That means that there is a possibility 

that an incident handler is busy for more than one hour. Therefore, the decision only to consider 

starting moments is a limitation on the model to not being able to consider the incident duration.  

Further research of this research can be in the direction of developing a model which considers both 

travelling times and incident duration. This will create a more realistic model. For now, we choose not 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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to consider this as ProRail is undergoing a transition to planning based on data and the current model 

already gives more than enough insights on a strategic level. 
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Appendices 

Appendix A – Frequency of TIS and Incident Labels 
TIS Description Freq 

TIS 1 Disruption train operations 16461* 

 1.0 Various situations, handled by contractors (not used in project) 47811 

1.1 A failure causing delays of between 5 and 30 minutes 4995 

1.2 A failure causing delays of more than 30 minutes 8103 

1.3 Total blockade 3313 

1.4 Total blockade with effect on a large part of the country 50 

TIS 2 Fire 376 

2.1 Bush fire 254 

2.2 Small fire in a train or station 103 

2.3 Major fire in a train 3 

2.4 Major fire in a station or tunnel 16 

TIS 3 Collision or derailment 1842 

3.1 Collision with a person, bicycle or other small object 1748 

3.2 Collision with shunting unit or small road vehicle 76 

3.3 Derailment with casualties or collision between train or large road 
vehicle where carriages are not deformed, tilted or stacked 

11 

3.4 Derailment with casualties or collision between train or large road 
vehicle where carriages are deformed, tilted or stacked 

7 

TIS 4 Hazardous substances 200 

4.1 Minor incident involving hazardous substances 195 

4.2 Fire involving hazardous substances 3 

4.3 Leakage of a hazardous substance where the effects are limited to 
the source area 

2 

4.4 Incident involving hazardous substances in which there is clearly 
an effect area 

0 

TIS 5 Bomb threat 107 

5.1 Anonymous bomb threat or suspicious behaviour 39 

5.2 Suspicious object or bomb discovery on the open track 2 

5.3 Suspicious object or bomb discovery in a train at a station, at a 
station or in a tunnel 

65 

5.4 Bomb explosion in a train, at a station or in a tunnel 1 
*) without TIS 1.0 

  



II 

Incident Label Freq  

(Bomb)explosion 2 

(Imminent) failure of IT systems 172 

Automatic failure detection 52 

Bomb discovery NGCE 17 

Bomb discovery or suspicious object 79 

Bomb threat or suspicious behaviour 23 

Bridge failure or defect 531 

Collision (motor or moped) cyclist 19 

Collision between trains 4 

Collision buffer stop 33 

Collision by train of traffic with bridge or viaduct 208 

Collision large animal 68 

Collision large road vehicle 22 

Collision of shunting parts with each other 22 

Collision person 888 

Collision small road vehicle 98 

Collision with (infra)object(s) 885 

Crossing failure / defect 4201 

Defective  infrastructure 235 

Defective material 17781 

Defective overhead line or voltage-free 660 

Derailment (casualties unknown) 1 

Derailment (without casualties) 98 

Disturbance due to calamity abroad 364 

Disturbance due to health condition of traveller(s) or staff 916 

Disturbance due to logistics problem/error 919 

Disturbance due to object / vehicle / animal(s) on or near the track 2253 

Disturbance due to order / assistance of emergency services 2444 

Disturbance due to persons on or near the track 11667 

Disturbance due to traveller(s) or staff by behaviour 1505 

Disturbance due to vandalism or theft 303 

Driving direction failure 211 

Environmental damage on railway site 22 

Failure control or communication systems 137 

Failure control equipment GSM-Rail 21 

Failure GSM-R / Intel system 41 

Failure hill system 31 

Failure security systems 144 

Fire or smoke (notification) infra 37 

Fire or smoke (notification) material 81 

Fire or smoke (notification) post-T 2 

Fire or smoke (notification) ProRail buildings 12 

Fire or smoke (notification) roadside 211 

Fire or smoke (notification) station 47 



III 

Fire or smoke (notification) tunnel 54 

Fire or smoke (notification) under material 27 

Gas leakage on railway site 8 

Gas leakage outside railway site 17 

High water 12 

Infra ATB 382 

Infra other 1371 

Infra surroundings 961 

Leaking or stinking carriage 192 

Lightning strike 8 

Low temperatures 11 

Near collision 887 

Other 315 

Other security incidents 139 

Overtime rail maintenance 334 

Post failure 6 

Power failure 360 

Section failure 5276 

Signal failure 928 

Signalling failure 27 

Slippery tracks 34 

Smouldering railway sleeper/ switch fire 184 

Snow conditions 6 

Stop signal passage - no endangerment - train runs without permission 623 

Stop signal passage - train runs without permission 124 

Stop signal passage - train runs without permission with danger 3 

Stop signal passage - train runs without permission without danger 50 

Stop signal passage - with endangerment - train runs without permission 21 

Strong wind 98 

Suspicious behaviour or bomb threat 9 

Suspicious object or bomb discovery 7 

Switch failure / defect 4757 

Track condition 1965 

Train stoppage without contact in tunnel 1 

Tunnel alarm due to gas detection (LEL) 1 

Tunnel alarm due to high liquid level notification 1 

Tunnel alarm due to train stoppage or (automatic) fire alarm 10 

Tunnel failure 82 

Urgent repairs 39 

  



IV 

Appendix B – All results 

AL 2018-2019 WEEK 

  
 

1 2 3 4 5 

Objective 141 141 141 143 144 

Median 0.79907 0.80050 0.79932 0.80083 0.80010 

Q1 0.79859 0.79999 0.79880 0.80038 0.79967 

Q3 0.79952 0.80086 0.79974 0.80130 0.80057 

IQR 0.00092 0.00087 0.00094 0.00092 0.00090 

 

AL 2018-2019 WINTER WEEK 

  
 

1 2 3 4 5 

Objective 104 103 103 103 103 

Median 0.80095 0.80008 0.79984 0.79964 0.80153 

Q1 0.80024 0.79952 0.79905 0.79898 0.80081 

Q3 0.80166 0.80070 0.80060 0.80034 0.80224 

IQR 0.00142 0.00118 0.00155 0.00136 0.00144 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 5 1 0

0 0 0 0 0 1 0 4 0 0

0 0 0 1 1 0 1 0 0 0

0 0 0 8 9 3 5 12 1 0

0 0 1 5 3 0 6 7 0 0

0 0 4 11 10 2 4 0 0 0

0 1 4 5 2 6 5 0 0 0

0 0 0 0 0 1 8 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 13 0 4 5 6 0 0

0 0 1 6 4 4 4 3 0 0

0 0 3 11 5 4 1 0 0 0

0 0 3 6 2 3 4 0 0 0

0 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0



V 

AL 2018-2019 SPRING WEEK 

  
 

1 2 3 4 5 

Objective 110 116 113 109 113 

Median 0.79912 0.80041 0.80141 0.79947 0.80142 

Q1 0.79826 0.79971 0.80067 0.79873 0.80063 

Q3 0.79989 0.80091 0.80221 0.80014 0.80222 

IQR 0.00163 0.00120 0.00155 0.00141 0.00158 

 

AL 2018-2019 SUMMER WEEK 

  
 

1 2 3 4 5 

Objective 114 114 111 111 115 

Median 0.80114 0.79902 0.80036 0.79958 0.80112 

Q1 0.80035 0.79832 0.79980 0.79886 0.80055 

Q3 0.80181 0.79970 0.80100 0.80030 0.80176 

IQR 0.00147 0.00138 0.00119 0.00144 0.00120 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 5 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 6 6 2 3 7 0 0

0 0 0 8 2 2 6 6 0 0

0 0 3 16 7 2 0 0 0 0

0 0 3 2 1 9 3 0 0 0

0 0 0 0 0 2 2 0 0 0

0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 3 1 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 3 0 0

0 0 0 7 7 1 4 7 0 0

0 0 0 10 2 0 7 3 0 0

0 0 3 18 1 4 4 0 0 0

0 0 5 1 3 4 2 0 0 0

0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0



VI 

AL 2018-2019 AUTUMN WEEK 

  
 

1 2 3 4 5 

Objective 115 115 114 116 114 

Median 0.80001 0.80095 0.79983 0.80144 0.80191 

Q1 0.79938 0.80015 0.79908 0.80078 0.80125 

Q3 0.80077 0.80176 0.80052 0.80218 0.80268 

IQR 0.00139 0.00161 0.00144 0.00141 0.00144 

 

AL 2020 WEEK 

  
 

1 2 3 4 5 

Objective 125 123 124 124 124 

Median 0.80079 0.79931 0.79931 0.79890 0.79867 

Q1 0.80027 0.79872 0.79864 0.79837 0.79809 

Q3 0.80135 0.79990 0.79990 0.79955 0.79936 

IQR 0.00108 0.00118 0.00126 0.00118 0.00127 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 3 2 0

0 0 0 0 0 0 1 0 0 0

0 0 0 4 5 0 1 1 0 0

0 0 0 3 4 1 2 7 0 0

0 0 0 7 4 4 6 3 0 0

0 0 3 15 6 6 3 0 0 0

0 0 3 1 2 3 3 0 0 0

0 1 0 0 0 0 7 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 8 9 2 6 10 1 0

0 0 0 4 2 5 6 4 0 0

0 0 4 16 6 4 3 0 0 0

0 0 2 5 0 7 1 0 0 0

0 0 0 0 0 2 4 0 0 0

0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 0 0



VII 

AL 2020 WINTER WEEK 

  
 

1 2 3 4 5 

Objective 92 93 91 89 93 

Median 0.79937 0.80016 0.80180 0.80045 0.80153 

Q1 0.79841 0.79922 0.80084 0.79935 0.80046 

Q3 0.80042 0.80099 0.80279 0.80141 0.80245 

IQR 0.00201 0.00178 0.00195 0.00206 0.00199 

 

AL 2020 SPRING WEEK 

  
 

1 2 3 4 5 

Objective 89 86 89 98 89 

Median 0.80187 0.80227 0.80048 0.79883 0.80236 

Q1 0.80068 0.80098 0.79905 0.79742 0.80095 

Q3 0.80299 0.80333 0.80184 0.80007 0.80377 

IQR 0.00232 0.00235 0.00279 0.00265 0.00281 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 3 0 0

0 0 0 1 1 0 0 2 0 0

0 0 0 3 3 2 2 2 0 0

0 0 1 10 4 5 5 3 0 0

0 0 1 10 6 1 2 0 0 0

0 0 3 2 3 5 3 0 0 0

0 0 0 0 0 1 5 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 2 0 0 1 1 0 0

0 0 0 3 3 3 2 5 3 0

0 0 0 9 6 2 3 2 0 0

0 0 5 10 7 3 0 0 0 0

0 0 1 2 1 1 2 0 0 0

0 0 0 0 0 1 4 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0



VIII 

AL 2020 SUMMER WEEK 

  
 

1 2 3 4 5 

Objective 98 96 94 96 94 

Median 0.80187 0.80109 0.80069 0.80201 0.80272 

Q1 0.80100 0.80009 0.79971 0.80104 0.80191 

Q3 0.80283 0.80209 0.80182 0.80290 0.80349 

IQR 0.00183 0.00200 0.00211 0.00186 0.00159 

 

AL 2020 AUTUMN WEEK 

  
 

1 2 3 4 5 

Objective 96 99 102 96 100 

Median 0.79963 0.80213 0.80184 0.79996 0.80085 

Q1 0.79865 0.80111 0.80096 0.79900 0.80006 

Q3 0.80041 0.80319 0.80266 0.80086 0.80198 

IQR 0.00176 0.00208 0.00170 0.00186 0.00192 

 

  

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 1 0 0

0 0 0 0 0 1 2 0 1 0

0 0 0 1 0 1 0 1 0 0

0 0 0 5 8 1 2 6 0 0

0 0 2 6 3 1 6 5 0 0

0 0 2 15 7 1 2 0 0 0

0 0 0 3 3 4 4 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 3 0 1 0 0 0

0 0 0 1 7 0 8 3 0 0

0 0 0 10 5 3 5 3 0 0

0 0 1 15 5 2 3 0 0 0

0 1 0 2 2 4 4 0 0 0

0 0 0 0 0 2 4 0 0 0

0 0 0 0 0 0 7 0 0 0

0 0 0 0 0 0 0 0 0 0



IX 

AL 2018- 2019 WEEKEND 

  
 

1 2 3 4 5 

Objective 112 114 115 115 119 

Median 0.79905 0.79892 0.80052 0.80095 0.80162 

Q1 0.79825 0.79820 0.79981 0.80034 0.80080 

Q3 0.79971 0.79953 0.80140 0.80176 0.80240 

IQR 0.00147 0.00133 0.00159 0.00142 0.00160 

 

AL 2018-2019 WINTER WEEKEND 

  
 

1 2 3 4 5 

Objective 78 78 81 78 80 

Median 0.79921 0.80202 0.79995 0.79976 0.80035 

Q1 0.79804 0.80077 0.79856 0.79839 0.79891 

Q3 0.80053 0.80313 0.80123 0.80100 0.80181 

IQR 0.00250 0.00236 0.00267 0.00260 0.00290 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 1 0 0

0 0 0 9 8 2 4 6 0 0

0 0 0 9 3 1 9 5 0 0

0 0 0 15 5 1 4 0 0 0

0 0 1 4 5 3 3 0 0 0

0 0 0 0 0 1 6 0 0 0

0 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 2 4 3 5 1 0

0 0 0 10 2 5 3 2 0 0

0 0 1 9 9 0 1 1 0 0

0 1 0 4 0 3 5 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0



X 

AL 2018-2019 SPRING WEEKEND 

  
 

1 2 3 4 5 

Objective 88 85 88 83 84 

Median 0.79883 0.80032 0.79924 0.79952 0.80074 

Q1 0.79763 0.79870 0.79813 0.79791 0.79943 

Q3 0.79997 0.80172 0.80062 0.80076 0.80206 

IQR 0.00235 0.00302 0.00250 0.00285 0.00263 

 

AL 2018-2019 SUMMER WEEKEND 

  
 

1 2 3 4 5 

Objective 81 80 81 78 81 

Median 0.80170 0.79926 0.80117 0.79952 0.80014 

Q1 0.80048 0.79817 0.79993 0.79829 0.79900 

Q3 0.80323 0.80052 0.80218 0.80079 0.80131 

IQR 0.00275 0.00235 0.00225 0.00249 0.00231 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 4 5 0 2 7 0 0

0 0 0 12 3 1 6 1 0 0

0 0 1 9 6 5 1 1 0 0

0 0 4 1 2 3 2 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 2 1 0

0 0 0 0 2 0 0 1 0 0

0 0 0 6 6 2 1 1 0 0

0 0 0 5 5 2 6 2 0 0

0 0 1 11 5 2 2 0 0 0

0 0 1 3 0 3 0 0 0 0

0 0 0 0 0 1 4 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0



XI 

AL 2018-2019 AUTUMN WEEKEND 

  
 

1 2 3 4 5 

Objective 74 76 75 74 76 

Median 0.80153 0.80188 0.79942 0.80292 0.80002 

Q1 0.80021 0.80052 0.79802 0.80157 0.79894 

Q3 0.80298 0.80326 0.80083 0.80433 0.80166 

IQR 0.00277 0.00274 0.00281 0.00277 0.00272 

 

AL 2020 WEEKEND 

  
 

1 2 3 4 5 

Objective 92 92 92 89 93 

Median 0.79959 0.80178 0.80166 0.80169 0.79962 

Q1 0.79859 0.80071 0.80063 0.80055 0.79859 

Q3 0.80068 0.80293 0.80262 0.80282 0.80045 

IQR 0.00210 0.00222 0.00199 0.00227 0.00186 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 4 7 1 0 0 0 0

0 0 0 9 4 1 5 4 0 0

0 0 3 8 5 1 3 0 0 0

0 0 2 3 1 2 0 0 0 0

0 0 0 0 0 2 2 0 0 0

0 0 0 0 0 2 4 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 1 0 0

0 0 0 8 4 1 4 3 0 0

0 0 0 10 4 3 6 2 0 0

0 0 4 8 8 1 4 0 0 0

0 0 1 2 2 3 3 0 0 0

0 0 0 0 0 1 3 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0



XII 

AL 2020 WINTER WEEKEND 

  
 

1 2 3 4 5 

Objective 63 60 63 63 63 

Median 0.80020 0.80017 0.79889 0.80284 0.80036 

Q1 0.79835 0.79847 0.79714 0.80120 0.79911 

Q3 0.80157 0.80199 0.80045 0.80486 0.80219 

IQR 0.00322 0.00353 0.00331 0.00366 0.00307 

 

AL 2020 SPRING WEEKEND 

  
 

1 2 3 4 5 

Objective 48 49 50 48 50 

Median 0.79859 0.80144 0.80506 0.80400 0.80141 

Q1 0.79597 0.79910 0.80247 0.80125 0.79807 

Q3 0.80068 0.80379 0.80756 0.80668 0.80368 

IQR 0.00471 0.00469 0.00509 0.00543 0.00561 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 4 3 1 1 0 0 0

0 0 0 9 4 5 0 3 0 0

0 0 0 5 7 2 1 0 0 0

0 0 1 4 0 0 4 0 0 0

0 0 0 0 0 1 2 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 2 2 1 2 2 0 0

0 0 1 6 2 1 5 0 0 0

0 0 4 4 1 2 1 1 0 0

0 0 0 1 0 1 2 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0



XIII 

AL 2020 SUMMER WEEKEND 

  
 

1 2 3 4 5 

Objective 62 64 64 60 63 

Median 0.80072 0.80221 0.79968 0.80085 0.79947 

Q1 0.79886 0.80042 0.79786 0.79922 0.79759 

Q3 0.80256 0.80426 0.80153 0.80294 0.80156 

IQR 0.00370 0.00384 0.00367 0.00373 0.00397 

 

AL 2020 AUTUMN WEEKEND 

  
 

1 2 3 4 5 

Objective 60 64 65 60 61 

Median 0.79924 0.79931 0.80352 0.80346 0.79890 

Q1 0.79733 0.79729 0.80127 0.80121 0.79686 

Q3 0.80126 0.80120 0.80554 0.80536 0.80077 

IQR 0.00394 0.00391 0.00427 0.00415 0.00391 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 2 7 0 1 2 1 0

0 0 0 10 4 4 0 2 0 0

0 0 1 6 5 3 0 0 0 0

0 0 1 3 1 4 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 2 1 1 2 0 0

0 0 0 3 2 1 0 2 0 0

0 0 1 3 5 2 1 0 0 0

0 0 3 7 7 3 0 0 0 0

0 0 0 3 2 2 4 0 0 0

0 0 0 0 0 1 3 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0



XIV 

ICB 2018-2019 WEEK 

  
 

1 2 3 4 5 

Objective 425 424 426 425 425 

Median 0.79501 0.79502 0.79529 0.79486 0.79492 

Q1 0.79461 0.79464 0.79493 0.79444 0.79457 

Q3 0.79538 0.79545 0.79575 0.79526 0.79536 

IQR 0.00077 0.00081 0.00081 0.00082 0.00079 

 

ICB 2018-2019 WINTER WEEK 

  
 

1 2 3 4 5 

Objective 314 313 315 313 318 

Median 0.79455 0.79405 0.79492 0.79457 0.79431 

Q1 0.79386 0.79332 0.79421 0.79396 0.79362 

Q3 0.79527 0.79468 0.79562 0.79511 0.79503 

IQR 0.00141 0.00135 0.00141 0.00115 0.00140 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 15 1 0

0 0 0 0 0 0 4 13 0 0

0 0 0 3 4 0 0 4 0 0

0 0 0 30 29 4 11 39 3 0

0 0 1 19 3 13 21 11 1 0

0 0 14 36 11 9 6 0 0 0

0 0 11 23 5 24 20 0 0 0

0 0 0 0 0 2 29 0 0 0

0 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 2 0

0 0 0 0 0 0 0 1 0 0

0 0 0 2 3 0 0 0 0 0

0 0 0 25 22 5 14 16 0 0

0 0 3 21 7 4 26 9 0 0

0 0 7 36 11 6 10 0 0 0

0 0 5 16 13 10 16 0 0 0

0 0 0 0 0 2 12 0 0 0

0 0 0 0 0 1 6 0 0 0

0 0 0 0 0 0 0 0 0 0



XV 

ICB 2018-2019 SPRING WEEK 

  
 

1 2 3 4 5 

Objective 330 329 332 334 330 

Median 0.79464 0.79425 0.79368 0.79411 0.79466 

Q1 0.79381 0.79350 0.79286 0.79335 0.79389 

Q3 0.79523 0.79489 0.79443 0.79475 0.79541 

IQR 0.00142 0.00139 0.00158 0.00140 0.00152 

 

ICB 2018-2019 SUMMER WEEK 

  
 

1 2 3 4 5 

Objective 335 335 336 340 336 

Median 0.79470 0.79390 0.79422 0.79490 0.79447 

Q1 0.79399 0.79327 0.79352 0.79402 0.79369 

Q3 0.79544 0.79466 0.79482 0.79547 0.79518 

IQR 0.00145 0.00139 0.00130 0.00145 0.00149 

 

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 5 10 3 0

0 0 0 0 0 0 2 3 0 0

0 0 0 2 5 1 2 0 0 0

0 0 0 20 20 5 14 14 0 0

0 0 1 24 7 0 25 9 0 0

0 0 7 36 12 9 7 0 0 0

0 0 4 18 9 15 18 0 0 0

0 0 0 0 0 0 14 0 0 0

0 0 0 0 0 1 6 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 2 0 0

0 0 0 0 0 0 2 1 0 0

0 0 0 1 2 0 0 2 0 0

0 0 0 28 25 2 13 26 2 0

0 0 4 19 8 3 26 15 0 0

0 0 5 29 11 10 8 0 0 0

0 1 10 21 9 16 12 0 0 0

0 0 1 0 0 2 15 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0



XVI 

ICB 2018-2019 AUTUMN WEEK 

  
 

1 2 3 4 5 

Objective 344 339 341 339 341 

Median 0.79444 0.79444 0.79437 0.79441 0.79398 

Q1 0.79391 0.79386 0.79371 0.79368 0.79328 

Q3 0.79518 0.79513 0.79499 0.79503 0.79477 

IQR 0.00127 0.00127 0.00128 0.00136 0.00149 

 

ICB 2020 WEEK 

  
 

1 2 3 4 5 

Objective 378 379 373 377 374 

Median 0.79535 0.79471 0.79482 0.79528 0.79478 

Q1 0.79466 0.79420 0.79419 0.79461 0.79417 

Q3 0.79594 0.79529 0.79539 0.79596 0.79536 

IQR 0.00128 0.00110 0.00120 0.00135 0.00120 

 

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 5 1 0

0 0 0 0 0 1 0 2 0 0

0 0 0 9 8 0 3 5 0 0

0 0 0 21 14 6 10 18 0 0

0 0 2 21 13 5 21 12 0 0

0 0 5 36 12 13 7 0 0 0

0 0 7 18 6 15 11 0 0 0

0 0 0 0 0 5 17 0 0 0

0 0 0 0 0 0 9 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 1 0 0

0 0 0 0 2 2 1 1 0 0

0 0 0 3 5 0 0 6 2 0

0 0 0 22 20 4 11 31 3 0

0 0 1 23 10 9 25 10 1 0

0 0 6 43 6 11 8 0 0 0

0 0 10 18 4 28 7 0 0 0

0 0 0 0 0 4 24 0 0 0

0 0 0 0 0 0 14 0 0 0

0 0 0 0 0 0 0 0 0 0



XVII 

ICB 2020 WINTER WEEK 

  
 

1 2 3 4 5 

Objective 283 284 280 280 279 

Median 0.79425 0.79300 0.79221 0.79422 0.79406 

Q1 0.79329 0.79215 0.79123 0.79342 0.79308 

Q3 0.79520 0.79405 0.79325 0.79507 0.79494 

IQR 0.00191 0.00190 0.00202 0.00166 0.00186 

 

ICB 2020 SPRING WEEK 

  
 

1 2 3 4 5 

Objective 266 267 266 265 266 

Median 0.79237 0.79394 0.79195 0.79187 0.79251 

Q1 0.79102 0.79273 0.79082 0.79047 0.79147 

Q3 0.79360 0.79512 0.79318 0.79324 0.79397 

IQR 0.00258 0.00239 0.00236 0.00276 0.00250 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 2 0 0

0 0 0 4 1 0 4 0 0 0

0 0 0 20 20 6 8 10 0 0

0 0 2 21 8 5 13 12 2 0

0 0 12 23 13 9 7 0 0 0

0 0 6 14 9 15 5 0 0 0

0 0 0 0 0 3 16 0 0 0

0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 3 0 0

0 0 0 6 3 0 0 2 0 0

0 0 0 14 18 4 4 19 7 0

0 0 0 25 15 11 12 6 2 0

0 0 4 31 12 8 2 0 0 0

0 0 4 3 7 11 8 0 0 0

0 0 0 0 1 2 7 0 0 0

0 0 0 0 0 1 7 0 0 0

0 0 0 0 0 0 3 0 0 0



XVIII 

ICB 2020 SUMMER WEEK 

  
 

1 2 3 4 5 

Objective 294 289 289 292 288 

Median 0.79419 0.79478 0.79536 0.79458 0.79519 

Q1 0.79332 0.79395 0.79457 0.79372 0.79425 

Q3 0.79522 0.79582 0.79621 0.79566 0.79623 

IQR 0.00190 0.00187 0.00164 0.00194 0.00198 

 

ICB 2020 AUTUMN WEEK 

  
 

1 2 3 4 5 

Objective 296 299 297 299 303 

Median 0.79378 0.79358 0.79390 0.79339 0.79428 

Q1 0.79277 0.79253 0.79309 0.79259 0.79340 

Q3 0.79472 0.79432 0.79481 0.79447 0.79508 

IQR 0.00194 0.00179 0.00173 0.00188 0.00168 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 2 1 0 0 0

0 0 0 2 7 1 1 3 0 0

0 0 0 19 21 2 9 14 0 0

0 0 4 20 13 7 12 15 0 0

0 0 11 36 16 3 12 1 0 0

0 0 2 6 17 11 10 0 0 0

0 0 0 0 0 6 2 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 3 3 0 2 0 0 0

0 0 0 16 19 4 14 12 0 0

0 0 0 22 13 5 34 6 0 0

0 0 2 36 14 2 10 0 0 0

0 0 3 11 12 11 7 0 0 0

0 0 0 0 0 11 11 0 0 0

0 0 0 0 0 1 18 0 0 0

0 0 0 0 0 0 1 0 0 0



XIX 

ICB 2018-2019 WEEKEND 

  
 

1 2 3 4 5 

Objective 342 343 345 344 345 

Median 0.79437 0.79450 0.79427 0.79439 0.79457 

Q1 0.79368 0.79383 0.79353 0.79380 0.79398 

Q3 0.79505 0.79523 0.79508 0.79505 0.79538 

IQR 0.00137 0.00141 0.00155 0.00126 0.00139 

 

ICB 2018-2019 WINTER WEEKEND 

  
 

1 2 3 4 5 

Objective 241 243 239 240 240 

Median 0.79281 0.79375 0.79239 0.79232 0.79261 

Q1 0.79165 0.79233 0.79112 0.79114 0.79142 

Q3 0.79411 0.79506 0.79360 0.79362 0.79390 

IQR 0.00247 0.00273 0.00249 0.00248 0.00248 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 5 0 0

0 0 0 0 4 0 5 0 0 0

0 0 0 31 22 5 11 14 2 0

0 0 3 17 11 5 34 11 0 0

0 0 5 38 15 11 7 0 0 0

0 0 7 15 11 14 9 0 0 0

0 0 0 0 0 4 17 0 0 0

0 0 0 0 0 0 10 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 3 0 0

0 0 0 9 8 6 8 13 1 0

0 0 0 21 19 6 16 11 0 0

0 0 2 27 26 3 2 1 0 0

0 2 3 11 9 7 12 0 0 0

0 0 0 0 0 2 6 0 0 0

0 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 0 0 0 0



XX 

ICB 2018-2019 SPRING WEEKEND 

  
 

1 2 3 4 5 

Objective 255 254 254 254 256 

Median 0.79230 0.79304 0.79226 0.79197 0.79278 

Q1 0.79097 0.79160 0.79100 0.79071 0.79139 

Q3 0.79395 0.79437 0.79348 0.79319 0.79385 

IQR 0.00298 0.00277 0.00248 0.00249 0.00246 

 

ICB 2018-2019 SUMMER WEEKEND 

  
 

1 2 3 4 5 

Objective 245 242 245 244 246 

Median 0.79253 0.79280 0.79221 0.79309 0.79309 

Q1 0.79133 0.79152 0.79106 0.79181 0.79186 

Q3 0.79368 0.79413 0.79366 0.79416 0.79425 

IQR 0.00235 0.00262 0.00260 0.00235 0.00239 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 0

0 0 0 0 1 0 1 0 0 0

0 0 0 1 5 0 3 2 0 0

0 0 0 18 5 4 12 10 0 0

0 0 1 33 4 3 16 6 0 0

0 0 7 24 14 2 14 0 0 0

0 0 4 8 13 11 10 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 9 0 0 0

0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 3 3 4 0

0 0 0 4 5 0 0 6 0 0

0 0 0 18 20 6 3 7 0 0

0 0 1 18 10 4 13 5 0 0

0 0 5 33 12 7 9 1 0 0

0 0 2 5 11 5 6 0 0 0

0 0 0 0 0 3 4 0 0 0

0 0 0 0 0 2 5 0 0 0

0 0 0 0 0 0 1 0 0 0



XXI 

ICB 2018-2019 AUTUMN WEEKEND 

  
 

1 2 3 4 5 

Objective 238 235 233 234 234 

Median 0.79186 0.79203 0.79186 0.79285 0.79279 

Q1 0.79051 0.79066 0.79049 0.79160 0.79144 

Q3 0.79329 0.79316 0.79347 0.79432 0.79394 

IQR 0.00278 0.00250 0.00297 0.00272 0.00250 

 

ICB 2020 WEEKEND 

  
 

1 2 3 4 5 

Objective 279 281 281 282 279 

Median 0.79378 0.79355 0.79423 0.79349 0.79402 

Q1 0.79285 0.79264 0.79315 0.79268 0.79316 

Q3 0.79489 0.79470 0.79503 0.79441 0.79498 

IQR 0.00204 0.00206 0.00188 0.00174 0.00182 

 

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 17 16 2 0 6 0 0

0 0 3 24 17 5 13 6 0 0

0 0 4 29 12 8 10 0 0 0

0 1 7 7 4 2 3 0 0 0

0 0 0 0 0 2 8 0 0 0

0 0 0 0 0 2 20 0 0 0

0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 0

0 0 0 0 0 0 0 0 1 0

0 0 0 1 1 0 0 1 1 0

0 0 0 17 20 4 12 13 0 0

0 0 1 25 14 8 16 8 0 0

0 0 10 33 14 8 6 0 0 0

0 0 6 12 6 12 11 0 0 0

0 0 0 0 0 4 7 0 0 0

0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 2 0 0 0



XXII 

ICB 2020 WINTER WEEKEND 

  
 

1 2 3 4 5 

Objective 194 197 192 196 194 

Median 0.79070 0.79329 0.79197 0.79125 0.79056 

Q1 0.78885 0.79149 0.79039 0.78947 0.78889 

Q3 0.79241 0.79498 0.79335 0.79263 0.79232 

IQR 0.00356 0.00349 0.00295 0.00316 0.00344 

 

ICB 2020 SPRING WEEKEND 

  
 

1 2 3 4 5 

Objective 153 153 155 155 151 

Median 0.79041 0.79051 0.79101 0.79209 0.79111 

Q1 0.78807 0.78811 0.78834 0.78981 0.78897 

Q3 0.79282 0.79255 0.79335 0.79425 0.79350 

IQR 0.00475 0.00444 0.00502 0.00444 0.00454 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 1 0 0

0 0 0 0 0 1 0 1 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 9 18 1 5 2 0 0

0 0 1 18 17 8 5 1 0 0

0 0 4 20 16 5 5 0 0 0

0 2 7 4 4 6 8 0 0 0

0 0 0 0 0 7 3 0 0 0

0 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 3 1 0 0

0 0 0 2 0 0 1 1 0 0

0 0 0 2 5 1 0 1 0 0

0 0 0 10 7 6 5 7 0 0

0 0 5 14 5 7 13 4 0 0

0 0 4 15 3 3 9 0 0 0

0 0 1 3 1 6 2 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 3 0 0 0



XXIII 

ICB 2020 SUMMER WEEKEND 

  
 

1 2 3 4 5 

Objective 195 189 192 190 190 

Median 0.79147 0.79181 0.79367 0.79200 0.79324 

Q1 0.79013 0.79037 0.79178 0.79036 0.79146 

Q3 0.79279 0.79362 0.79523 0.79352 0.79466 

IQR 0.00266 0.00326 0.00345 0.00315 0.00320 

 

ICB 2020 AUTUMN WEEKEND 

  
 

1 2 3 4 5 

Objective 189 188 192 190 190 

Median 0.79175 0.78973 0.79184 0.79066 0.79113 

Q1 0.78994 0.78769 0.79024 0.78845 0.78904 

Q3 0.79383 0.79169 0.79337 0.79215 0.79275 

IQR 0.00389 0.00400 0.00312 0.00370 0.00371 

 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 0

0 0 0 0 0 2 2 0 4 0

0 0 0 1 5 0 0 0 0 0

0 0 0 11 12 3 6 8 1 0

0 0 1 22 21 7 10 2 0 0

0 0 3 17 10 5 5 0 0 0

0 0 3 8 9 7 4 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 2 0 1 1 1 0

0 0 0 8 8 2 4 7 0 0

0 0 1 15 11 6 11 2 0 0

0 0 6 22 15 8 9 0 0 0

0 0 4 8 9 5 8 0 0 0

0 0 0 0 0 2 9 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 2 0 0 0


