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Abstract

Mutation testing is a powerful testing technique that injects syntactical faults, called mutants,
into a program. This is used to measure the effectiveness of the test suite: the more mutants are
detected by it, the better the test suite. However, each mutant must be tested by the test suite and
there are many mutants possible. Mutation testing is therefore very costly and has not seen wide
use in the software industry. This project tries to lower the performance cost of mutation testing by
reducing the number of used mutation operators, which govern what types of mutants are generated.
The challenge is to select subsets of mutation operators, called mutation levels, such that mutation
testing is still effective. For this purpose the tool Callisto is implemented, which analyses mutation
operators by determining their performance impact and calculating their quality using a pre-existing
quality metric. The focus lies on operators that can generate hard-to-detect mutants, such that the
creation of high-quality test cases is encouraged. Mutation levels can then be designed using the
produced analysis. To evaluate this strategy it is applied on the mutation operators of the mutation
testing framework Stryker Mutator. Nine example programs are mutated, and Callisto is used to
analyse the mutation operators involved. The resulting mutation levels show potential for their use
as a means to speed up mutation testing, with one mutation level decreasing the performance cost
by 49% while retaining 69% effectiveness.
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Glossary

Adequate Test Suite A test suite that achieves a mutation score of 1 (100%).

CI/CD Pipeline A series of steps to automatically build, test and deploy an applica-
tion.

Coverage Matrix A 2-dimensional binary matrix that shows which mutant was cov-
ered by which test case during a mutation testing session. Can be
paired with a kill matrix.

Equivalent Mutant A mutant that is semantically equivalent to the original program,
and therefore cannot be killed.

Example Program A program that is mutated and used in an experiment to deter-
mine the resolution and performance impact of involved mutation
operators. Mutants are killed by an accompanying test suite.

Killed Mutant A mutant that was killed, i.e. the test suite failed for the mutant.
Also called a dead mutant.

Kill Matrix A 2-dimensional binary matrix that shows which mutant was killed
by which test case during a mutation testing session. Can be paired
with a coverage matrix.

Minimal Test Suite The smallest possible non-redundant test suite.
Mutant A program that contains one mutation.
Mutant Schemata A technique for improving mutation testing performance where all

mutants are compiled in the code at once and activated one by one.
Used by Stryker under the alias ‘mutation switching’.

Mutation A syntax token that has been mutated in a significant way by a
mutation operator.

Mutation Level A subset of mutation operators whose use will speed up mutation
testing, without losing too much resolution.

Mutation Operator Used during mutation testing to mutate a single type of syntax
token to one or more mutations.

Mutation Report A report generated after a mutation testing session with the results,
such as which mutants were generated, killed, and what mutation
score is achieved.
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Mutation Score The percentage of mutants that is killed out of all generated mutants
when mutation testing. Formally equivalent mutants are excluded
from this, though in practice this is not always done.

Mutation Testing A software testing technique where faults are injected into source
code (mutations) to test the bug-finding capability of the test suite.

Mutation Testing Framework Software that performs the necessary steps of mutation testing for
one or more programming languages.

Mutator Group of mutation operators which fits a common category.

Non-redundant Test Suite Test suite where all tests are non-redundant, i.e. all tests uniquely
contribute to the mutation score.

Quality Metric A metric that tries to determine the suitability of a mutation opera-
tor for the purpose of mutation testing. This project uses a quality
metric to quantify the resolution of mutation operators.

Resolution A property of mutation operators that indicates its ability to gen-
erate subtle, hard-to-kill mutants that encourage the creation of a
high-quality test suite.

ROR Mutation Operator Relational Operator Replacement mutation operator that inter-
changes <, >, <=, >=, ==, != with each other, or mutates
them and their operands to true or false.

Selective Mutation A technique to speed up mutation testing by excluding mutation
operators to generate fewer mutants. The goal is to find a represen-
tative subset of mutation operators.

Static Mutant Static mutants are a type of mutants that Stryker recognises, which
are executed during the loading of a file, instead of during a test
case. Therefore Stryker cannot collect coverage information for
static mutants. This is a separate property of mutants.

Stryker An open-source mutation testing framework with three flavours
that support C#, Scala and JavaScript.

StrykerJS The JavaScript flavour of Stryker.
Stryker4s The Scala flavour of Stryker.
Stryker.NET The .NET flavour of Stryker.
Survived Mutant A mutant that has survived, i.e. the test suite passed for the mutant.

Also called a live mutant.

Test Case A singular test that is used to test the functionality of (a piece of)
the concerned program. These are used during mutation testing to
try and kill mutants. Usually these are unit tests, but integration
tests are also usable.

Test Suite A set of test cases used to test the concerned program.
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1. Introduction

1.1 Mutation Testing

Mutation testing is a software testing strategy that works by artificially introducing bugs, or faults,
to the source code, creating mutant programs. Mutants are created by mutation operators, that
work on a specific syntax token in the code and alter it to introduce the fault. A mutant program is
then tested using the existing test suite. Should the test suite fail, then the mutant was detected, and
is now deemed killed. If the test suite passes for the mutant program, the mutant has survived. A
killed mutant indicates that the test suite is adequate enough to detect faults in the source code, such
as the mutant. A survived mutant may indicate that the test suite was not adequate enough, and a
test case may be missing. The percentage of killed mutants out of all generated mutants is a metric
called the mutation score. This metric gives an indication of the effectiveness of the test suite used.

Mutation testing therefore does not test the software directly, but rather the tests. By using
mutation testing a software developer can gain more confidence in the test suite they have, or
expand it with additional test cases to kill more mutants. Mutation testing also serves as a substitute
for code coverage, as any untested code will be exposed by the survived mutants in it. Furthermore,
investigating a survived mutant may lead to the direct discovery of a bug in the program.

The primary reason why mutation testing is not widely applied in industry is because of its
high performance cost [37]. Every mutant requires up to a full run of the test suite, and there
are hundreds to thousands of mutants possible, depending on the program size. In the early days
of mutation testing this meant that a full run was done overnight. Nowadays there exist several
mutation testing frameworks that allow automated mutation testing through use of a CI/CD pipeline,
although the process will still take several minutes at least. Therefore a large part of research in
mutation testing focusses on speeding it up [37]. One approach, called selective mutation reasons
that more mutants are generated than needed, and therefore using only a subset of the mutation
operators is sufficient [26] [35] [27]. This saves time because by excluding mutation operators
fewer mutants are generated and thus fewer executions of the test suite are required. The challenge
is then to select a subset of mutation operators representative of all mutation operators, such that
mutation testing is still effective, i.e. it can still adequately assess the effectiveness of the test suite.

This project tries to lower the performance cost of mutation testing using a technique very
similar to selective mutation. Instead of finding a representative set of mutation operators, mutation
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operators are selected based on their resolution and performance impact. Resolution is a novel
concept introduced in this project that describes the ability of mutation operators to generate hard to
kill mutants, that subsequently require more specific test cases to kill. In other words, the generated
mutants represent a broader range of more subtle bugs that are harder to detect. Thus using mutation
operators with a high resolution and killing all their mutants incentivises the user to create a test
suite that tests the program most thoroughly and can catch the most bugs. Resolution is explained in
more detail in Section 3.1. Performance impact describes how much a mutation operator contributes
to the overall performance cost of mutation testing, relative to other mutation operators.

Resolution is highest when all mutation operators are used: the more mutants are generated,
the more incentive for users to create test cases to kill those mutants. Conversely, mutation testing
is slowest when all mutation operators are used, due to the large amount of mutants. Thus, when
selecting a subset of mutation operators it must balance resolution with performance such that
performance heavy mutation operators are excluded without losing too much resolution. Such a
subset is named a mutation level, and designing them is the primary goal of this research. This is
named from the perspective of the user of a mutation testing framework, as choosing to only use
the mutation operators in a mutation level effectively allows them to choose the level of resolution
and performance that they want to use when mutation testing.

The difficulty of designing the mutation levels lies in choosing which mutation operators
are worth keeping and which can be excluded, based on their resolution and performance impact.
To help with this a mutation operator quality metric from existing literature [6], which is an
improvement upon an older quality metric [12], is used to quantify the resolution of mutation
operators. This quality metric is calculated empirically. Several example programs are mutated
and their mutants are killed by their accompanying test suites. The quality is then determined for
each killed mutant, based on the number of test cases that kill it. The fewer test cases kill a mutant,
the higher its quality will be. The idea behind this is that a mutant that is killed by only a few test
cases is deemed hard to kill, and therefore requires more specific test cases to kill it. Thus those
kind of mutants will enforce the creation of a higher quality test suite. The quality metric therefore
measures the ability of mutants to incentivise the creation of a high-quality test suite. This matches
the definition of resolution given above. The quality of a mutation operator is then simply the
average quality of the mutants generated by it. The used quality metric is described in more detail
in Chapter 3. Based on the quality of the mutation operators a mutation level can be created by
establishing a threshold: only mutation operators above the quality threshold are included in the
level.

Next to resolution the performance impact of a mutation operator is determined by counting
the number of performed test case executions during a mutation testing run for all mutants generated
by a mutation operator. As mentioned above, executing the test suite for each mutant takes up
the majority of time when mutation testing, so this accurately represents how a mutation operator
contributes to the time needed. This value can be used to justify choices regarding the inclusion
of mutation operators in a mutation level, besides their resolution. Determining the performance
impact of mutation operators is further explained in Section 4.1.

To assess the feasibility and validity of designing and using mutation levels as a technique to
speed up mutation testing, it is applied to an existing mutation testing framework: Stryker Mutator
[18]. Stryker provides mutation testing for JavaScript, Scala and C#. It takes care of all steps in
mutation testing; mutant generation, execution of the test suite on mutants and a report of the results,
including the calculation of the mutation score. Stryker is a suitable mutation testing framework, as
it provides detailed information in its reports regarding a mutation testing session: this information
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is needed to quantify the resolution and performance impact as described above for each mutation
operator. Furthermore, Stryker is a prominent and active mutation testing framework focussing
on practical software development that has seen constant improvements since its inception and
features a large set of mutation operators to create mutation levels from. Finally, the developers of
Stryker have expressed that they would like to introduce mutation levels to their framework.

In order to design mutation levels for Stryker the resolution and performance impact of its
mutation operators must be determined first, by using the chosen quality metric and counting the
test case executions as described above. For this purpose a tool is designed and implemented named
Callisto. First a suitable set of example programs is collected and mutated using Stryker. Then
Callisto takes the mutation reports generated by Stryker after a mutation testing run and calculates
the quality and performance impact of all mutation operators involved. The results for each program
are then averaged to obtain the final results. Using multiple programs in the calculation of quality
and performance impact limits any bias that a single program can have on the outcome.

With the resolution and performance impact of mutation operators known, several candidate
mutation levels can be designed. This can be done using several techniques, including establishing
thresholds on resolution and performance, so that only mutation operators above those thresholds are
selected [12]. Then the effectiveness and performance of these mutation levels can be determined
using an existing technique in an empirical setting [6]. Effectiveness is measured by comparing
the size of the minimal test suite needed to kill the mutants generated by the mutation level to
that of the test suite needed for all mutation operators. If the sizes are equal1, then the mutation
level incentivises the creation of a test suite with equal testing capabilities as when using mutation
testing with all mutation operators. Since the mutation level will generate fewer mutants, some
performance is saved without losing any resolution. Similarly, the performance of a mutation level
is measured by comparing the number of test case executions needed for the mutation level to using
all mutation operators. A mutation level that saves a large percentage of test case executions has a
high performance.

Finally, based on these metrics, suitable mutation levels can be identified. Just as with resolu-
tion and performance impact, a balance must be found between the effectiveness and performance
of a mutation level. Remember that the goal of using mutation levels is to save performance by
using fewer mutation operators, while still inciting the creation of a high-quality test suite, i.e. the
remaining mutation operators have a high resolution.

1.2 Research Questions

Based on the project description above, the main research question is formulated as follows:
How to partition a set of mutation operators into mutation levels such that these levels balance
performance with resolution?
To help answer this, several research sub-questions are defined:

1. How can the resolution of mutation operators be determined?
2. How can the performance impact of mutation operators be determined?
3. How consistent is the resolution of mutation operators over multiple programs?
4. What techniques can be used for partitioning mutation operators into mutation levels?
5. How can the effectiveness and performance of mutation levels be determined?

1This is an ideal case, and will generally not occur in reality.
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The answers to sub-questions 1 and 2 go deeper into the definition of resolution and performance
impact of mutation operators, such that these can be quantified. This is the basis on which the
mutation levels are defined. Answering sub-question 3 then builds on this by statistically analysing
whether the resolution of mutation operators is consistent when using different example programs.
Consistency is preferred for defining the mutation levels. If a mutation operator consistently
achieves a high resolution, then it can be confidently included in a mutation level. Conversely,
if it consistently scores low then it can be excluded from a mutation level to save performance
without losing too much resolution. Without the consistency these choices are harder to make.
Next sub-question 4 tries to find techniques that can be directly used for partitioning the mutation
operators into mutation levels, using the found resolution and performance impact of mutation
operators. An example of this can be setting thresholds on the values of resolution and performance
impact. Once an initial design for mutation levels is made, its effectiveness and performance can be
determined using the answer to sub-question 5. Following the five sub-questions thus provides an
answer to the main research question.

1.3 Contributions

The first contribution of this project is Callisto: the first2 tool of its kind that automates the analysis
of mutation operators using a quality metric. Besides calculating the quality of mutation operators
it can also determine their performance impact by either counting the number of mutants generated,
or the number of performed test case executions per mutation operator3. Finally it can determine
the effectiveness and performance of a designed mutation level, or any type of subset of mutation
operators, given an example program and its test suite.

The second contribution is the use of mutation levels as a technique to speed up mutation
testing. It is evaluated by applying it to the mutation testing framework Stryker Mutator, specifically
the JavaScript flavour of Stryker called StrykerJS. Nine example codebases are mutated and the
results are used with Callisto to calculate the resolution and performance impact of all the mutation
operators of StrykerJS. This is subsequently used as input for the design of several mutation levels
for StrykerJS. Finally the effectiveness and performance of these levels is determined with Callisto.
The evaluation shows that there is potential to use mutation levels as a means to increase the
performance of mutation testing, without losing too much resolution.

Besides these general contributions, this project has also helped Stryker in several aspects.
First of all, the performed evaluation resulted in two suitable mutation levels for StrykerJS that can
be implemented and made available to its users. They allow for a decrease of the performance cost
of 49%, while retaining 69% effectiveness, or a decrease of the performance cost of 71% while
retaining 48% effectiveness. These values were experimentally determined using Callisto and the
nine example codebases, see Chapter 6.

Second of all, the performed evaluation provides additional insight in the mutation operators
of StrykerJS. Callisto counts the number of mutants generated per mutation operator, so that an
overview is given of how often an operator is applied. Such an analysis had never been done before
for Stryker. Moreover Callisto also counts the occurrence of static mutants (see Section 2.2), such
that their relative performance impact can be gauged. This shows the performance that can be
gained, should Stryker decide to exclude static mutants in the future.

2To the authors knowledge
3Depending on what information is available to Callisto.
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Third of all, Callisto can be used to design mutation levels for Stryker in the future as well.
The experiments performed with Callisto in this project serve as an initial example of its usage. The
set of mutation operators that Stryker uses evolves over time as their users request new operators
be implemented. Callisto can then serve as an automated tool to evaluate the usefulness of new
operators to see if their addition is worthwhile.

Last of all, for the evaluation of Callisto, several example programs were configured for
mutation testing with StrykerJS. These adaptations themselves are useful for Stryker, as they allow
using these programs to design mutation levels in the future, or for testing StrykerJS in general. In
truth, creating these adaptations, and using Callisto, has brought to light several issues present in
StrykerJS, which could subsequently be solved [40] [41] [42] [43]. This project was therefore also
able to help improve Stryker besides the introduction of mutation levels.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 formally explains mutation testing,
describes Stryker in more detail and shows related work. In Chapter 3 the used quality metric is
introduced and its workings are explained. Chapter 4 describes the design of Callisto and discusses
several implementation details. Chapter 5 starts the evaluation by describing the example programs
used, the experiments done with Callisto and their results. Chapter 6 continues by using the results
of Callisto to design and evaluate several mutation levels. Finally Chapter 7 discusses and concludes
the project and describes several options for future work.
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2. Background

This chapter explains mutation testing in detail and formalises the concepts described in the
introduction. Additionally the mutation testing framework Stryker, which is used to evaluate the
use of mutation levels, is described in more detail. Finally related work is discussed.

2.1 Mutation Testing

Mutation testing is a white-box software testing strategy to discover new test cases and measure the
effectiveness of the existing test suite of a given program. The concept of mutation analysis was
originally published by DeMillo, Lipton, and Sayward in 1978 [8]. Their paper defined the coupling
effect hypothesis, stating that simple faults and complex faults are coupled such that should a test
detect the simple fault, the complex fault is often detected as well. In other words, complex faults
are often caused by simple faults. In addition the competent programmer hypothesis was introduced,
stating that experienced programmers created most bugs by way of small syntactical mistakes.
Mutation testing, mutation analysis applied to software testing, is based on these assumptions.

During mutation testing, a mutation testing framework first injects minor defective changes,
or bugs, into the source code, called mutations. Each change of the source code results in a new
program, which is called a mutant. Therefore every mutant contains only one mutation. Formally,
let M be the set of valid1 mutants generated from program p, and T the set of unit tests forming the
test suite for p.

Listing 2.1 shows an example program getMax in JavaScript that returns the largest item in
a given array. A possible mutation for this program is changing the relational operator in line 4
from > to <. This mutant program would then always return Number.MIN_SAFE_INTEGER, which
is incorrect.

Next, every produced mutant is run against the existing test suite T of program p. If the
outcome of a test case for a mutant differs from the original program2, the change in the source
code was detected and the mutant is marked killed. For the example mutant described above, if a
test case checks that the max value of [1, 2, 3] is 3, this test case will fail, as the mutant always

1Mutants can be invalid when they introduce syntax errors.
2This means the test case failed, provided the test suite passed for the original program.
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1 function getMax(arr) {

2 let max = Number.MIN_SAFE_INTEGER

3 for (const item of arr) {

4 if (item > max){

5 max = item;

6 }

7 }

8 return max;

9 }

Listing 2.1: Example JavaScript program for finding the maximum value in an array.

returns Number.MIN_SAFE_INTEGER. Thus this mutant is killed by this test case. If no test case
kills the mutant then the change has gone undetected and the mutant has survived, also called a
live mutant. Survived mutants can then be killed by adding new test cases, often resulting in an
improved test suite.

Several formalisations for mutation testing from Estero-Botaro et al. [12] are repeated here.
This allows for more precise reasoning about these concepts, and will lay the foundations for
explaining the quality metrics in Chapter 3. When a test case t kills a mutant m during mutation
testing, this is written as the binary relation ‘t kills m’. Then the set of mutants from M killed by
test cases in T , denoted D for dead, is defined as:

D = {m ∈ M | ∃t ∈ T t kills m} (2.1)

Similarly, let P be the set of live mutants from M.

P = {m ∈ M | ¬∃t ∈ T t kills m} (2.2)

Thus P = M−D and similarly D = M−P. It then follows that M = D∪P and D∩P =∅.

There can exist live mutants that are semantically equivalent to the original program. These
are called equivalent mutants and are impossible to kill. For example, if in line 4 of getMax, > is
mutated to >=, then this mutant program functions exactly the same as the original. Therefore no
test case that succeeds for the original program will fail for this mutant, and the mutant is thus
equivalent to the original program and unkillable.
Let E be the set of equivalent mutants in M:

E = {m ∈ M | ¬∃t ∈ I t kills m} (2.3)

Here I is the input space of p, which represents the set of all possible test cases. A test case is then
defined as a particular input. I is used instead of T , as a mutant is only equivalent when there exists
no possible test case, whether in T or not, that can kill mutant m. It follows that E ⊆ P ⊆ M. P can
therefore also be seen as the set of potentially equivalent mutants, as they have not been killed yet,
but also not proven equivalent. Detecting equivalent mutants is difficult, as determining a semantic
equivalence between two programs is undecidable, going back to the halting problem [32]. Because
equivalent mutants cannot be killed, they cannot help in assessing the effectiveness of a test suite.
This makes them undesirable in mutation testing, as they still impact performance.
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Based on the above definitions, the mutation score metric S can now be defined. The mutation
score is the fraction of killed mutants out of all mutants, excluding equivalent mutants. Formally:

S =
|D|

|M|− |E|
(2.4)

Since equivalent mutants are impossible to kill, they do not count towards the mutation score.
Moreover, when undetected, equivalent mutants will unjustly lower the mutation score, because
they will appear as (non-equivalent) survived mutants.

The mutation score gives an indication of the quality of the test suite. If many mutants were
killed, it means the test suite is well-equipped to detect alterations of the source code. Mutation
testing measures the quality of the test suite and thus tests a program indirectly. In addition
investigating a survived mutant can lead to the discovery of previously undiscovered bugs in the
program.

Conventionally, code coverage is used as a metric to determine test suite quality. However,
achieving 100% code coverage can still lead to only partially tested code. In the extreme case,
unit tests can be written that do not contain any assertions. These increase the code coverage, but
provide no real testing value, as these tests will not fail in the presence of a bug3. On the contrary,
mutation testing requires tests to contain assertions, or all mutants will survive. Furthermore, it has
been proven that mutation testing subsumes condition coverage techniques such as statement- and
decision coverage, in the sense that if the requirements of mutation testing are satisfied, then the
requirements of condition coverage are also satisfied [34].

Mutants are generated using mutation operators. These focus on a particular syntax token and
mutate it to one or several predetermined mutations. For example, an often-used mutation operator
is the Relational Operator Replacement (ROR) mutation operator [27] [7] [21] [22]. It interchanges
relational operators with one another, or mutates them to boolean literals True and False. For
instance, it can mutate A < B to A <= B, A >= B, A > B, A == B, A != B, True, False. Two
such mutants were shown above with the example program getMax. The ROR mutation operator
will create seven separate mutants per relational operator it finds in the source code. Most mutation
operators only produce one mutant per token, for example mutating A + B to A - B and vice versa.
These kind of mutation operators are rather generic and will work for most programming languages.
Mutation operators can also be defined for a syntax token only present in a specific language. Often,
such as in the example of getMax, mutation operators mutate a token in such a way that it mimics a
realistic (accidental) modification that a programmer could make, as is assumed by the competent
programmer hypothesis. This way the mutation operator creates realistic bugs in the code, and tests
whether the test suite is capable to find such bugs.

The major reason why mutation testing is not widely adopted in the software industry is its
relatively high performance cost [37]. This has been a problem since the inception of mutation
testing. To determine whether the generated mutants are killed or not requires up to a full run
of the test suite per mutant. Depending on the size of the program under test, mutation testing
can take minutes to several hours. For example, if 6,000 mutants are generated for a program,
and the test suite takes 2 seconds to execute, then mutation testing could take up to 6,000 · 2 =
12,000 seconds ≈ 3.3 hours. Therefore a good portion of research is focussed on speeding up
mutation testing. This research has been categorised in three areas [33]: (1) Do fewer (that is, fewer
mutants), (2) Do smarter, and (3) Do faster. Do fewer consists of bringing down the number of
mutants generated, using a variety of techniques, such as selective mutation [26] [35] [27]. Do

3Unless the bug causes a crash.
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smarter is a broader category that tries to avoid executing parts of a mutation testing session, for
example by using incremental mutation, where only newly added code is mutated and the mutation
score is calculated based on previous sessions as well [3]. Do faster tries to more efficiently perform
mutation testing by speeding up the processing of individual mutants. Examples of this are compiler
integration for mutant generation [9], and mutant schemata, where multiple mutants are compiled
into one program at once and individually activated one by one using code flags [48]. This ensures
the code only needs to be compiled once.

2.2 Stryker Mutator

Stryker Mutator is an open-source mutation testing framework with three prominent variants,
called flavours, which each provide mutation testing for a particular programming language. They
are: StrykerJS for JavaScript and TypeScript, Stryker.NET for C#, and Stryker4s for Scala [18].
Originally Stryker started out as a graduation project at Info Support B.V. [17] for JavaScript only,
implemented in TypeScript. Since then Info Support has sponsored Stryker and it has grown into
one of the most well-known and used mutation testing frameworks among software practitioners,
with around 40,000 weekly downloads for StrykerJS alone on npm [30]. As opposed to many other
frameworks, Stryker was made for practical use in the software industry and not for the purpose of
research. This has allowed Stryker to garner a steady user group of software developers providing
constant feedback and cooperation on GitHub [19].

Stryker has a centralised system of mutators, which are categories of multiple similar mutation
operators. For example, the arithmetic mutator can mutate a + b to a - b and vice versa, a * b

to a / b and vice versa, and a % b to a * b. Not all mutators are supported by all three flavours,
due to language differences. For example the update mutator (a++ to a-- and vice versa) is not
available in Stryker4s, as Scala does not support that operator. A complete overview of mutators
and flavour support is available on the Stryker website [20], and also in Section 4.2. Stryker’s
mutators are mostly inspired by other prominent mutation testing frameworks, such as PIT for Java
[4], and based on developer intuition to create mutants that mimic realistic faults a programmer can
make.

Stryker employs several techniques to speed up mutation testing. It uses mutation switching,
an alias of mutant schemata [48], where all generated mutants are encoded in one program and
‘turned on and off’ using conditional statements in the code, as was mentioned in Section 2.1.
Furthermore StrykerJS stops the execution of a mutant by default as soon as one test case has
failed: a feature called bail. The idea is that it takes only one failing test case to kill a mutant,
therefore there is no point in executing any more tests once this has happened. This saves significant
performance, as fewer test cases need to be run. In addition Stryker supports concurrency of test
runners. Stryker by default also analyses coverage data from the test runner to optimise the mutant
testing phase. Mutants that have no coverage by any test cases are marked as NoCoverage and are
not tested. When the coverage of each test case is determined, Stryker can use this to only run test
cases that have coverage for the mutant under test. A test case that does not cover the mutant under
test has no chance of detecting the mutant, and is therefore not executed to save performance.

After Stryker has completed mutation testing a mutation report will be generated, based on
which reporters the user has configured to use. The report can show each generated mutant in the
code, and whether it was killed or not, per file. The mutation score is calculated over the whole
program and also for individual files, making it easier to see where code is poorly tested. Most
often this report comes in the form of an interactive HTML file, which can also be uploaded to the
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Stryker Dashboard4, for online access. Stryker can also create a JSON file containing the same
information, such that this can be further used or analysed by a subsequent program.

Besides the number of killed and survived mutants Stryker also handles several other types
of mutants: timeout, no coverage, ignored, runtime error and compile error mutants. Mutants are
classified as timeout mutants when during execution of the test suite the timeout is reached. This can
for example occur when the mutant causes an infinite loop. Such mutants are marked as detected.
Mutants with no coverage cannot be killed, as there are no test cases that cover them. Ignored
mutants are marked by the user, for example when a mutant is wrongly generated, equivalent, or
causes other problems. Runtime and compile error mutants cause the error they are named after,
and are not taken into account when calculating the mutation score by Stryker. Stryker then has
two intermediate metrics, the number of detected and undetected mutants.

# detected mutants = # killed mutants + # timeout mutants (2.5)

# undetected mutants = # survived mutants + # no coverage mutants (2.6)

The mutation score is then calculated by Stryker as:

mutation score =
# detected mutants

# detected mutants + # undetected mutants
·100%

Which can be rewritten using the definitions of Section 2.1 to:

mutation score =
|D|+# timeout mutants

|M|
(2.7)

Of note is that Stryker does not include equivalent mutants in the calculation of the mutation score.
Stryker does not employ any techniques for automatically detecting equivalent mutants and leaves
that task for the user. In addition timeout mutants also count towards the mutation score, since
a test that times out for a mutant is deemed to have detected it, and therefore the mutant can be
seen as killed. Thus Stryker’s mutation score differs from the one defined in Formula 2.4, in that
equivalent mutants will bring down the score and timeout mutants will raise the score, compared to
Formula 2.4.

Besides the abovementioned types, Stryker also identifies whether mutants are static. This is a
separate property of mutants5. A mutant is static when it is executed during the loading of a file
instead of during a test case. A good example of this is the constructor of a singleton class. Any
mutant generated there is only executed once to create the singleton object during startup. Because
of this, Stryker cannot collect coverage information for that mutant. As Stryker does not know
which test cases cover a static mutant, it resorts to executing the whole test suite. Therefore, static
mutants have a large performance impact.

Stryker is used in this project to evaluate the technique of applying mutation levels to speed
up mutation testing. Stryker is suitable for this purpose for several reasons. First of all, it produces
a detailed mutation report describing exactly which mutants were killed by which test cases. This
information is needed to quantify the resolution of mutation operators, as will be explained in
Chapter 3. The report also counts the number of performed test case executions per mutant, which is

4See https://dashboard.stryker-mutator.io/
5I.e., there can be killed static mutants, survived static mutants, etc.
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used to determine the performance impact of mutation operators, as will be explained in Section 4.1.
Moreover, Stryker has published the metadata and source code for their mutation report separately
from the flavours, under the name ‘mutation testing elements’6. This has established it as an open
source standard for mutation reports, which allows other mutation testing frameworks to use it as
well. As of writing, PIT supports generating Stryker mutation reports. Infection PHP, a prominent
mutation testing framework for PHP [38], is in the process of supporting it.

Second of all, Stryker is a prominent and well-maintained mutation testing framework aimed
at practical software development, as was mentioned above. This makes it easier to use in practice
with a wider range of possible programs, and allows for more precise configuration of mutation
testing sessions, such that the required results are guaranteed. Additionally it allows use of the
performance optimisations described above.

Third and last of all, Stryker features a large collection of mutation operators across its three
flavours. This provides a better opportunity to evaluate the technique proposed in this thesis, as
there is a broader range of mutation operators to analyse. Subsequently it also allows for more
possibilities to design mutation levels, as this consists of selecting a subset of mutation operators.

2.3 Related Work

This section describes related work that tries to speed up mutation testing by generating fewer
mutants using similar techniques as in this project. First fault hierarchies are described as a means
of improving the ROR mutation operator. Next five existing mutation operator quality metrics are
described and their intentions and applications are discussed. These are score [27], utility [39],
strength [16], effectiveness [10] [11], and quality [12].

Fault Hierarchies

Kaminski et al. [22] have provided several improvements to logic-based testing. Among them is
a proposal to improve the ROR mutation operator using mutant subsumption. In short, mutant
A subsumes mutant B when every test case that kills A, also kills B. This relationship allows for
a shortcut during mutation testing, as subsumed mutants do not need to be executed when their
subsuming mutant is already killed. The authors have identified such relations by looking at the
detection condition of each mutant generated from the ROR operator. The detection condition is the
condition that must be true while executing a test case to detect the ROR mutant and subsequently
kill it. For example, when a statement a < b is mutated to False, then its detection condition is
a < b. This means that when a is less than b in a test case, the mutated statement will resolve
different than the original, and thus the mutant will be killed. Similarly, a mutant where a < b is
mutated to a >= b will always be detected, as all input to the mutated statement will result in a
different outcome than the original. Its detection condition is thus the literal True

Now mutant subsumption relations can be found by comparing the detection conditions of the
mutants. For example, comparing the two detection conditions above, a < b and True, it becomes
clear that whenever a test case satisfies the first, it will also satisfy the second. Therefore if such a
test case kills the mutant corresponding to the first detection condition, it is guaranteed to also kill
the mutant corresponding to the second detection condition. Thus the first mutant (a < b replaced

6See https://github.com/stryker-mutator/mutation-testing-elements
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by False) subsumes the second mutant (a < b replaced by a >= b).

This way Kaminski et al. have identified all the subsumption relations between the types
of mutants that the ROR mutation operator can generate. They present these in fault hierarchies,
which are subsumption graphs as defined by Kurtz et al. [23]. A fault hierarchy contains seven
nodes corresponding to the seven possible mutations for one syntax token that the ROR operator
mutates. For example, for < these are >=, >, <=, ==, !=, True, False. Then one-directional edges
between the nodes indicate subsumption relations.

Thus seven fault hierarchies are created for each of the relational operator tokens that can be
mutated. They each have the same structure, due to the symmetrical nature of these mutations.
Three nodes always form the root of a fault hierarchy, which implies that if test cases kill the
mutants corresponding to these three nodes, all other mutants in the fault hierarchy will be killed as
well, due to the subsumption relations. Therefore the improvement to the ROR mutation operator
that Kaminski et al. propose is to only generate the mutants from the three root nodes in the fault
hierarchy corresponding to the logical operator being mutated, as killing these mutants is sufficient.
This would prevent the generation of four mutants and thus reduce the performance cost of the
ROR operator by more than half. This is especially appealing since the ROR mutation operator
can be responsible for a large portion of generated mutants, up to 45% [21]. Furthermore the fault
hierarchies are constructed based purely on logic, and hold for any programming language using
such relational operators.

Lindström and Márki [24] have done further research into the fault hierarchies of the ROR
mutation operator. They conclude that the subsumption relations in the fault hierarchies only hold
when using weak mutation testing. In weak mutation testing mutants are detected immediately after
the execution of the mutated statement. Thus the behavioural difference that a mutant in the fault
hierarchy causes is immediately detected and the mutant is marked killed. However, by default
strong mutation is used, where mutants are killed at the end of the execution of the program using
test cases. In that case the fault caused by the behavioural difference must propagate to the end of
the test case where an assertion can detect it. If the propagation stops before then, the mutant is not
killed. The authors have found examples where the subsumption relations in the fault hierarchies
by Kaminski et al. are broken this way when using strong mutation.

Lindström and Márki have investigated why the subsumption relations in the fault hierarchies
were broken and concluded that it is caused by the fact that mutated statements are executed
multiple times. If a mutated statement is executed only once by a test case, the fault hierarchies will
hold, but if the mutated statement is executed multiple times, the subsumption relations in the fault
hierarchies cannot be reliably used any more. In their study done on Java, Lindström and Márki
have found that over 50% of mutants are re-executed and therefore cannot be analysed using the
fault hierarchies.

In conclusion, the fault hierarchies found by Kaminski et al. show promise for how subsump-
tion relations between mutation operators can be determined using detection conditions and logic.
This way mutation operators can be improved to generate fewer mutants and save performance
during mutation testing. Using this method on other operators may prove to be difficult however,
as not all types of mutants have well-defined detection conditions. Furthermore, Lindström and
Márki have shown that such subsumption relations based on detection conditions often do not
hold when using strong mutation. Fortunately the cause has been found, and lies in the repeated
execution of mutated statements. If a mutation testing framework can monitor the number of times
a mutated statement is executed, then fault hierarchies can still be used to generate fewer mutants,
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and subsequently lower the cost of mutation testing.

Score

Mresa and Bottaci [27] have defined the mutation operator score, a metric for mutation operators.
They state that an efficient operator should force the user to write tests that not only kill its own
mutants, but those of other operators as well. The mutation operator score measures this effect. It
is calculated by determining an adequate test suite exclusively for the mutants of the concerned
mutation operator. An adequate test suite achieves a mutation score of 1, or 100%, as is explained
in more detail in Section 3.3. Then this operator-specific test suite is used to kill mutants using all
mutation operators, and the mutation score achieved by it, as calculated using Formula 2.4, forms
the mutation operator score metric.

Mresa and Bottaci calculated the mutation operator score for 21 of the mutation operators of
Mothra, an old mutation testing framework for Fortran [7]. They used 11 programs performing
various functions, chosen such that no bias exists for a certain operator. On average 3211 mutants
were generated per program. Then for each program, operator adequate test suites were constructed.
The authors approached this by first using an automatic test data generator tool to generate a set of
test cases. If this set was not yet adequate, test cases were added manually. Equivalent mutants were
also detected manually. Using the mutation operator score, they were able to select five operators
that were the most efficient. All these operators had a score of 85% or higher, and using them a
mutation score of just under 99% was achieved on average over all 11 programs.

Utility

Smith et al. [39] have conducted an empirical study to determine how mutation testing contributes
to the writing of additional test cases for a test suite. While doing so they define the utility of a
mutation operator. They assume that when a tester uses mutation testing on their program, they
start out with an initial test suite and use this to kill generated mutants. Any mutants killed by this
initial test suite are labelled “Dead On Arrival” or DOA. Such mutants give an indication that the
initial test suite was well-formed, and no new test cases are discovered. Alternatively it may mean
that the mutation operator generates easy to kill mutants.

Next the tester selects a live mutant as a target to kill and adds a new test case to the suite. This
test case should only kill the targeted mutant. If the augmented test suite kills the targeted mutant,
it is marked killed. If any other mutants were also killed by the new test case, they are marked
crossfire. Crossfire mutants are not targeted for killing once marked. This process of targeting a
live mutant and adding a test case can repeat until only stubborn mutants are left. These mutants
are equivalent in some way7 to the original program, and cannot be killed by adding test cases.

When this process is applied only to the mutants of a mutation operator and all mutants are
classified according to the above four types, the utility of that operator can be calculated. This
is done using a linear combination of the ratios of mutants in each class, where DOA, killed and
crossfire mutants positively affect utility, while stubborn mutants negatively affect the utility as
they cannot be killed and have a high detection cost. Two coefficients allow tuning the impact of
stubborn and killed mutants compared to DOA and crossfire mutants for calculating utility.

7The term stubborn deviates from standard terminology. Smith et al. mutate Java source code in their study and
stubborn also relates to mutant programs that compile to the same bytecode as the original.
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A low utility indicates that the operator under test produced few useful mutants for the purpose
of adding test cases. A high value means the operator produced many ‘killed’ mutants that each
needed an additional test case, thus enhancing the test suite.

There are however several drawbacks to using utility as a metric. First of all the calculation of
the metric depends strongly on the choice of initial test suite, as that determines the percentage of
DOA mutants. Second of all, the order in which live mutants are targeted determines the number of
killed and crossfire mutants. This also depends on the specific test that is added to kill the targeted
mutant. Multiple distinct tests can kill the targeted mutant, but might cause variable amounts
of crossfire mutants. Finally the presence of the two coefficients in the calculation adds another
complication, as it is not easy to justify what values should be given to them.

Strength

Hu et al. [16] performed an empirical study on killing class-level mutants in Java using the MuJava
tool. In their study they define the Mutation Operator Strength (MOS). An operator is deemed
strong when many test cases are needed to kill the mutants generated by that operator. MOS is
therefore the ratio of the minimal number of test cases needed to kill a set of mutants, to the size of
that set of mutants. If all mutants of an operator require a separate test case to kill them, the ratio
becomes 1 and the operator is strong. If individual test cases kill many mutants, the ratio becomes
small, with a minimum at 1/|M|, where one test kills all mutants, and no equivalent mutants were
generated.

Hu et al. used mutation operator strength to evaluate 28 class-level mutation operators for
Java, using 38 classes in the study. This allowed them to identify several operators with a low MOS,
whose removal would reduce the number of generated mutants by 82.8%. The few operators with a
low MOS generated a majority of all the mutants. This could indicate there is a possible relation
between the MOS and the number of generated mutants for an operator, where a large number of
generated mutants leads to a low MOS. However, the authors were not convinced of this relation.
They state that “it is possible that operators that produce more mutants create more overlap among
the mutants.” This overlap could lead to test cases killing multiple mutants at once, resulting in a
lower MOS.

Effectiveness

Derezińska [10] has assessed the quality of mutation operators for C#. In her work she defines
the effectiveness of mutation operators as “a ratio of the number of test runs which killed mutants
generated by this operator over all test runs performed on these mutants. Only nonequivalent
mutants are taken into account.”8 Note that the word effectiveness relates to the test cases killing
the mutants, not the mutants themselves. Estero-Botaro et al. [11] have taken this definition and
formalised it by dividing the number of test case executions that resulted in a killed mutant, by the
total number of test case executions that could have killed a mutant (i.e., not considering equivalent
mutants). Therefore the effectiveness is equal to the ratio of test runs killing mutants to all test
runs, just as Derezińska described. Thus it always falls between 0 and 1, where a high effectiveness
indicates that many mutants were killed by many test cases, whereas a low effectiveness means that
few mutants were killed by few test cases. When an adequate test suite is used a low effectiveness
signifies that the mutants are hard to kill. Effectiveness can be calculated using any set of mutants.

8‘Test runs’ refers to runs of individual test cases, not the whole test suite.
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Therefore, when using only the mutants of one specific mutation operator, it can be used to gauge if
the operator typically generates hard-to-kill mutants.

Quality

Estero-Botaro et al. have defined their own quality metric for evaluating the effectiveness of
mutation operators, called the quality of mutation operators [12]. The purpose of this metric is
to determine which mutation operators are worth keeping, and which can be discarded on the
basis that they are ineffective. The end goal is to improve the performance of mutation testing
by removing mutation operators, without losing effectiveness. Furthermore the metric penalises
mutation operators for generating equivalent mutants.

The authors reason that mutants are of higher quality when they are killed by fewer test cases.
They therefore classify mutants further after they have been killed. A mutant is weak when it is
killed by every test case in the test suite. Mutants are resistant when they are killed by only one
test case. Hard-to-kill mutants are a special type of resistant mutant, where the one test case that
kills them only kills the hard-to-kill mutant. In other words hard-to-kill mutants require their own
test case that does not kill any other mutants. The authors therefore deem these mutants the most
interesting of all, as they force the creation of their own test cases, adding to the testing value of the
test suite. Note that hard-to-kill mutants as defined here should not be confused with the the term
hard-to-kill mutants as is used outside this section, such as in Section 3.1 to explain the concept of
resolution.

A large part of killed mutants does not fall into one of the above classifications, as there is a
whole spectrum between being killed by all test cases (weak) and only one (resistant). Estero-Botaro
et al. therefore define mutant quality as a finer metric, depending on the number of test cases killing
a mutant, and how many other mutants are killed by those test cases. Quality is calculated per
generated mutant in a mutation testing setting. The quality of a mutation operator is determined by
averaging the qualities of the mutants generated by that operator.

Since the information needed for calculating this metric, such as which test case kills which
mutant, is only available during a mutation testing run, this metric must be determined empirically.
A program and its corresponding test suite must be used to perform mutation testing, and only
afterwards can the quality of the involved mutation operators be calculated.

Estero-Botaro et al. have applied their quality metric on the WS-BPEL 2.0 language, an
XML-based language used to specify the behaviour of a business process based on its interactions
with other web services [31]. For this purpose they developed a mutation testing tool for WS-
BPEL, called MuBPEL, which includes 26 mutation operators. They mutated four WS-BPEL
2.0 compositions and calculated the quality of each mutation operator for each composition, such
that high-scoring ones can be retained and those that generate many invalid or equivalent mutants
can be improved or removed. As a result the authors were able to discard six mutation operators.
Simultaneously they also calculate Derezińska’s effectiveness [10], and the mutation operator
strength of Hu et al. [16], as described above. This was done so these two metrics can be compared
with mutation operator quality in their ability to identify effective mutation operators. This showed
that quality was the only metric of the three that penalises mutation operators for generating
equivalent mutants. In the words of Estero-Botaro et al., quality was also deemed “a finer metric
than effectiveness and mutation strength in the sense that it can distinguish operators that, from the
viewpoint of the other metrics, are similar in goodness.”
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3. Quality Metric

This chapter provides further background to this project and concerns the mutation operator quality
metric that is used to quantify resolution and provides an answer to research sub-question 1. First
the concept of resolution is introduced and explained further. Then a quality metric suitable to
quantify resolution is selected from the existing five metrics described in the related work, Section
2.3. This is the quality of mutation operators of Estero-Botaro et al. [12]. Next this quality metric is
further explained, and its characteristics and calculation are described in detail. This forms the basis
for another metric, the coverage quality of Delgado-Pérez et al., which is a direct improvement
to the quality of Estero-Botaro et al. by including coverage information [6]. The improvements
and adjustments are discussed in detail. This second quality metric is used in the remainder of the
thesis.

3.1 Resolution

The resolution of mutation operators is a new concept introduced in this project. It describes the
degree to which mutation operators generate subtle, hard-to-kill mutants, such that the creation of
high-quality test suites is encouraged. This concept reasons from the perspective of the software
tester: they want to create a high-quality test suite for their program. For this they can use mutation
testing, which will gauge the effectiveness of their test suite via the achieved mutation score. In
addition, they can investigate any survived mutant. If it is not equivalent, they can design a test
case to kill the survived mutant, thus expanding the test suite. This can be repeated until no
non-equivalent, survived mutants are left, and thus the mutation score is 1, or 100%, according
to Formula 2.4. The resulting test suite was therefore (partly1) inspired by the generated mutants.
Following this process, the generated mutants thus determine what test cases are added to the test
suite to kill them. If a mutant represents a bug that is easily found by a test case, then the mutant is
easily killed. As a consequence the test case designed to kill such a mutant will not test the program
thoroughly, and thus the mutant has a low resolution. Conversely, if a mutant represents a subtle
bug that is harder to find, then it will be harder to kill and thus require a more specific test case that
tests the program more thoroughly. Such mutants have a high resolution. As an example of this two
possible mutants of the function in Listing 3.1 are discussed.

1Of course the test suite can contain test cases from before mutation testing was done.
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1 function isAllowedToBuyAlcohol(customer) {

2 return customer.age >= 18;

3 }

Listing 3.1: Example JavaScript program that checks the legal drinking age of a person, to illustrate
the difference in resolution of mutants.

The function is given a customer, and checks if they have the legal age to buy alcohol2. Both
mutants change the relational operator in line 2. The first mutant changes line 2 to return true;,
such that all customers are allowed to buy alcohol. This mutant is easily killed, as any test case
where the age of the customer falls under 18 and it is asserted that the function returns false,
will kill it. Therefore this mutant has a low resolution. The second mutant changes the relational
operator to return customer.age > 18;, such that a customer of age 18 is no longer allowed
to buy alcohol. To kill this mutant, a test case must specifically assert that when the age of the
customer is 18, the function should return true. This is a more specific test case than was needed
for the first mutant, and therefore the second mutant has a higher resolution.

So far the resolution of individual mutants has been discussed. The resolution of a mutation
operator is simply the average resolution of the mutants generated by it. A mutation operator
with a high resolution will therefore have a tendency to generate mutants with a high resolution,
i.e. mutants that represent more subtle bugs and thus require more specific test cases to kill.
Subsequently, when mutation testing is performed using mutation operators with a high resolution,
the tester is incentivised to create more specific test cases to kill the generated mutants. These
test cases are therefore capable of finding a broader range of more subtle bugs, and thus form a
higher-quality test suite.

In the example above it is quite clear which mutant has the higher resolution of the two.
However, when comparing more mutants originating from different mutation operators it becomes
unclear how the resolution of each mutant compares. Therefore the first research sub-question tries
to solve this problem by finding a method to quantify the resolution of mutants, and subsequently
mutation operators. For this purpose a mutation operator quality metric is chosen in the next section.

3.2 Choice of Quality Metric

In Section 2.3 related work was described, which included five mutation operator quality metrics:
score, utility, strength, effectiveness and quality. Each of these metrics are closely related to the
concept of resolution of a mutation operator, and could therefore be used to quantify it, to provide
an answer to research sub-question 1. Out of the five metrics discussed, the mutation operator
quality of Estero-Botaro et al. is deemed the best metric for this purpose.

Score does not compete with quality as it deviates in its measured property. Score rewards
operators that produce mutants that require test cases that kill many mutants from other operators.
This is useful from a performance view, as then the operators with the highest score can be selected,
reducing the number of generated mutants while retaining testing value. However this does not

2In this case the age of 18.
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match the definition of resolution, where mutation operators are valued for their ability to enhance
the test suite with new test cases. Therefore score is not considered a suitable metric for quantifying
resolution.

As was stated in Section 2.3, using utility has several disadvantages. Its method of determina-
tion is flawed, as utility is greatly influenced by the initial test suite, the order of targeting mutants
and how new test cases are designed. Furthermore, a choice for the two involved coefficients must
also be justified. Therefore utility is also not chosen.

The other three metrics, effectiveness, strength and quality are all related. Estero-Botaro et
al. have in fact shown that quality can be calculated from both effectiveness and strength using a
common factor [12]. This factor “modulates the value of effectiveness and mutation strength when
computing quality from them.” All three metrics measure the difficulty to kill the mutants of an
operator. The more difficult to kill a mutant, the more specific the test case needs to be to kill it, and
therefore the better the resulting test suite will be. This concept matches the definition of resolution.

Compared to effectiveness and strength, quality is the better metric. Quality is the only metric
out of the three that penalises mutation operators for generating equivalent mutants. It does this by
giving the mutants a quality value of 0, thus bringing down the average quality of the operator. This
is seen as an advantage, as equivalent mutants are undesirable in mutation testing, as was explained
in Section 2.1. Besides this, quality also provides a more detailed analysis of mutation operators
than the other two metrics, as was stated in Section 2.3 using the comparisons Estero-Botaro et al.
made. It is therefore recommended by them over effectiveness and strength for these very reasons.

Thus going forward the metric of quality of mutation operators is used. In short, it provides
a finer-grained analysis of operators than its two competitors effectiveness and strength, takes
equivalent mutants into account and matches the concept of resolution best. In Section 3.4
the coverage-based quality metric of Delgado-Pérez et al. [6] is described, which is a direct
improvement to the quality metric discussed here by also taking the coverage of mutants by test
cases into account. The ‘normal’ quality metric of Estero-Botaro et al. is still explained in detail in
the next section, as it forms the basis for the calculation of coverage-based quality. In subsequent
chapters only the coverage-based quality will be used.

3.3 Calculation

This section describes in detail how the quality of Estero-Botaro et al. is calculated. Before the
formula for quality can be explained, several formal concepts are defined first.

Tests and Mutants

In mutation testing, let Km be the set of test cases killing a mutant m:

Km = { t ∈ T | t kills m} (3.1)

Similarly, Ct is the set of mutants killed by test case t.

Ct = {m ∈ M | t kills m} (3.2)
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Adequacy of Test Suites

A test suite is adequate when it achieves a mutation score of 1, according to Formula 2.4. Simply
said it kills all non-equivalent mutants. Formally:

T is adequate ⇐⇒ ∀m ∈ (M−E) ∃t ∈ T t kills m (3.3)

When T is adequate, P = E, and M = D∪E.
D∩E =∅, therefore
D = M−E and
|D|= |M|− |E|.
Using this in Formula 2.4 shows the mutation score S is indeed 1.

Redundancy of Test Suites and Minimal Test Suites

The definition of Ct can be extended to test suites:

CT =
⋃︂
t∈T

Ct (3.4)

CT is therefore the set of mutants killed by T . Thus CT = D 3.

A test suite is non-redundant when removing any test case from the set would cause a decrease
in mutation score, i.e. some mutants are no longer killed. In other words all tests in a non-redundant
test suite contribute to the mutation score. Test cases are redundant when their removal does not
lower the achieved mutation score. Formally:

t ∈ T is redundant ⇐⇒ CT =CT−{t} (3.5)

A test suite is then non-redundant if all its test cases are non-redundant. Formally:

T is non-redundant ⇐⇒ ∀t ∈ T |CT |> |CT−{t}| (3.6)

Usually non-redundant test suites are obtained from an initial redundant test suite by removing
redundant test cases. Note that the order of removal determines the resulting test suite. Often
multiple test cases are redundant at a point in the removal process and the choice of removal
determines the next choice. Therefore multiple distinct non-redundant test suites which can vary in
size are possible when starting out with an initial redundant test suite. The size of the non-redundant
test suite can create a bias when used in experiments. Therefore the use of a minimal test suite is
recommended. This is the smallest non-redundant test suite possible with respect to a program and
set of mutants when derived from an initial redundant test suite. It is possible that multiple minimal
test suites of equal size can be derived. Choosing one minimal test suite out of multiple may create
another bias, but this bias is much less significant compared to choosing between non-redundant
test suites of different sizes.

3When D is determined using T .
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Quality

Now the calculation of the quality metric can be explained.
Qm, the quality of mutant m, is defined as [12]:

Qm =

⎧⎪⎨⎪⎩
0, m ∈ E

1− 1
(|M|− |E|) · |T | ∑

t∈Km

|Ct |, m ∈ D (3.7)

Again, here Km is the set of test cases that kill mutant m, and Ct the set of mutants killed by test case
t. The sum ∑t∈Km |Ct | is thus equal to the sum of the number of mutants killed by each test case that
kills mutant m. The denominator of (|M|− |E|) · |T | is a constant value, equal to the total number
of possible combinations of test cases killing mutants. Equivalent mutants are removed from this
total, as they cannot be killed. The sum is therefore always smaller or equal to the denominator, and
subsequently, Qm will always have a value between 0 and 1, or equal to 0. Intuitively, quality is thus
determined by comparing the number of test cases that kill mutant m, and the other mutants those
test cases kill (the sum), to all possible test cases that could have killed m, and all other mutants
that could have been killed by all test cases (the constant denominator). The smaller the sum, the
higher the quality will be.

This metric is greatly dependent on the test suite, so the authors assume that the used test suite
is adequate. Any mutant that survives is therefore an equivalent mutant, and D encompasses all
non-equivalent mutants, such that M = D∪E and |M|= |D|+ |E|. In addition test suites are also
assumed to be non-redundant when determining mutant quality. As was stated above, ideally a
minimal test suite is used, so that the size of the test suite does not create a bias when calculating
the quality of mutants.

Some examples of mutant quality are given here to illustrate how the metric functions. First of
all, equivalent mutants have a quality of 0, as they do not force the creation of any tests and cannot
be killed. Second of all, weak mutants have the next lowest quality, as then Km = T , causing the
sum in Formula 3.7 to reach a higher value. In the extreme case that all mutants in M are weak, their
quality will be 0, since ∑t∈Km |Ct |= (|M|− |E|) · |T |, which leads to Qm = 1− 1

1 = 0. This example
again shows that the quality of a mutant always falls between 0 and 1, as this is the worst-case
scenario for the quality of a mutant. Next resistant mutants are killed by a single test case (|Km|= 1),
so their quality depends on the number of other mutants that test case kills. The lowest quality
resistant mutant is killed by a test case that kills all other mutants, so ∑t∈Km |Ct |= |D|= |M|− |E|,
and thus its quality is simplified to 1− (|M|− |E|)/((|M|− |E|) · |T |) = 1−1/|T |. Similarly the
quality of a resistant mutant goes up the fewer other mutants its test case kills, until it only kills
the resistant mutant, making it a hard-to-kill mutant. Such mutants have the maximum attainable
quality, where the sum ∑t∈Km |Ct |= 1, and thus falls away in formula 3.7.

Note that the number of generated mutants and test suite size also influence the quality of
mutants. In the extreme case that there is only one non-equivalent mutant and one test case that
kills it, its quality will be 0, even though it is technically hard to kill. This also illustrates why it is
important to have a minimal test suite, as otherwise useless test cases could be added to increase
mutant quality.

To calculate the quality of a mutation operator the average is taken of the qualities of the
mutants generated by that operator.

QO =
1

|MO| ∑
m∈MO

Qm (3.8)
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Here QO is the quality of mutation operator O and MO the set of mutants generated by the operator.
In addition the test suite used to kill mutants of operator O should be adequate and minimal with
respect to the set of generated mutants MO.

Kill Matrix

The information needed to calculate the quality of mutants can almost entirely be retrieved from a
data structure called the kill matrix. This is an |T | by |M| binary matrix which shows exactly which
test case killed which mutant during a mutation testing run. If there is a value true in the matrix,
then the test case corresponding to that row killed the mutant corresponding to that column. An
example (small) kill matrix is given in Table 3.1, where a cross (×) indicates a value true and an
empty cell false.

m1 m2 m3 m4

t1 × × ×

t2 × × ×

t3 ×

t4 × ×

Table 3.1: Example kill matrix. Instead of true and false (or 0’s and 1’s) crosses and empty
spaces are used.

Then the values for Km and Ct can be easily read from the matrix. Km1 is equal to all the
test cases that have a cross in the column of m1, so Km1 = {t1, t2}. Similarly, Ct1 is equal to all
the mutants that have a cross in the row of t1, so Ct1 = {m1,m2,m4}. Assuming the test suite is
adequate, any surviving mutants in the matrix4 are automatically equivalent, so the set E can be
determined. The number of generated mutants and the size of the test suite can be derived from the
number of columns and rows respectively. With that, all information is present to calculate Formula
3.7 for each mutant. From the perspective of the kill matrix this is done by counting crosses and
dividing that by the size of the kill matrix minus equivalent mutants: (|M|− |E|) · |T |. For a mutant
m, the crosses are counted by looking at all test cases that have a cross in the column of m (Km),
and summing the number of crosses in the rows of those test cases (Ct). Subsequently, when using
Formula 3.8 to calculate the quality of a mutation operator one must also know which mutants in
the kill matrix were generated by which mutation operator.

The concept for this kind of data structure is not new, as two other authors have defined it
before. Estero-Botaro et al. have defined such a matrix, which they call the execution matrix [12].
The only difference is that it is the transpose of the kill matrix defined above. Thus, mutants are
labelled per row, and test cases per column. Ammann et al. independently define the same structure
and call it a score function [1]. They label the test cases per row and mutants per column as the kill
matrix above. The labelling of Ammann et al. is deemed more intuitive than that of Estero-Botaro
et al.: the matrix can also be interpreted as a table, and in a table conventionally rows are added and
removed, whilst the number of columns remains constant. The number of mutants generated for

4These can be recognised by a column of empty cells.
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a program is constant, but the number of involved test cases can change by creating adequate or
minimal test suites. Thus the labelling of Ammann et al. is used for the kill matrices in this project.

Method

With the formal definition of the quality of mutation operators given, a workflow is defined by
Estero-Botaro et al. to calculate it. Given are a program and its test suite.

1. Perform an initial run of mutation testing on the program using the existing test suite.
2. If necessary, expand the test suite until it is adequate. This will require analysing the results

of the initial mutation testing run and may require multiple additional runs. Additionally all
equivalent mutants will have to be identified.

3. Extract the kill matrix from the final mutation testing run performed with the adequate test
suite.

4. Reduce the test suite to a minimal size, i.e. the minimal non-redundant test suite.
5. Per mutation operator: select only the mutants originating from that operator and reduce the

test suite again for these mutants only. This is the mutation operator specific minimal test
suite.

6. Calculate the quality of the mutants of the mutation operator isolated from any other mutants
and average them to obtain the quality of the mutation operator itself.

7. Repeat step 5 and 6 for all desired mutation operators.

Step 2 is the most time-consuming, as expanding a test suite requires insight in the workings of
the program and its underlying programming language and testing framework. Furthermore while
trying to kill any surviving mutants one must also be watchful for any equivalent mutants, as these
are usually detected by hand and cannot be killed.

Step 3 requires the used mutation testing framework to support providing the information
contained in the kill matrix to the user, in addition to linking any mutant to its parent mutation
operator.

Step 4 tries to derive a minimal test suite from the initial test suite by removing as many test
cases without causing any mutant to go from status killed to survived. The procedure for this is
explained in Section 4.1.

Step 5 focuses on one mutation operator and isolates its mutants from any others. This
ensures that the resulting quality of that mutation operator is calculated independently from any
other operators, so that the choice of which mutation operators are used in steps 1 and 2 does not
influence it. The test suite needs to be reduced again, as many test cases which were designed to
kill mutants that are now not considered can be removed.

Step 6 rounds off the process by calculating the quality of the chosen mutation operator. Note
that |T |, |E| and |M| in Formula 3.7 are now determined in context of the chosen mutation operator.
Thus |T | is equal to the size of the mutation operator specific minimal test suite, |M| only accounts
for mutants generated by the operator, and |E| is determined from M only.

In the end a significant amount of experimental setup is needed to calculate the quality metric.
This cannot be avoided however, since the metric needs to be calculated in a empirical setting.
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3.4 Coverage-based Quality Metric

Delgado-Pérez et al. have proposed an improvement to the quality metric described above [6].
They argue that the metric in its current state overlooks the fact that not all mutants are covered
by all test cases. As an example, mutant m is killed by only one test case out of a total of 100,
where 10 cover mutant m. Quality as defined by Estero-Botaro et al. would take into account all
100 test cases for calculating the quality of m, and give it a high quality according to Formula 3.7.
Delgado-Pérez et al. reason that only the 10 test cases that cover the mutant can detect the defect
caused by it, and thus only those test cases should be used in calculating the quality of mutant m.
They therefore introduce an improved quality metric called the coverage-based quality of a mutant
or mutation operator, based on the original quality metric defined above. Note that to calculate this
metric, the coverage information of each used test case in the test suite for the generated mutants
is needed, in addition to the previously required information for the quality of Estero-Botaro et
al. Also of note is that the use of this coverage-based metric does not interfere with any other
coverage-based techniques a mutation testing framework may use, such as executing only the test
cases that can reach a mutant when mutation testing5. Before presenting the improved metric,
several new definitions are given first.

Coverage of Mutants

First, several concepts connecting mutants and coverage are defined.
Much like ‘t kills m’, let ‘t reaches m’ be the binary relationship that indicates if a test case t
reaches (covers) a mutant m. Note that a test case can only kill a mutant when that test case reaches
the mutant. Therefore, t kills m =⇒ t reaches m.
Let Mt be the set of mutants reached by test case t:

Mt = {m ∈ M | t reaches m} (3.9)

Therefore Mt ⊆ M.
Let Et be the set of equivalent mutants reached by test case t:

Et = {m ∈ E | t reaches m} (3.10)

Therefore Et ⊆ E.
Let Nt be the set of non-equivalent mutants reached by test case t:

Nt = Mt \Et (3.11)

Thus Nt ⊆ M \E.
Let Tm be the set of test cases that reach mutant m:

Tm = { t ∈ T | t reaches m} (3.12)

Thus Tm ⊆ T .

Coverage-based Mutant Categorisation

Delgado-Pérez et al. redefine the categories of mutants introduced by Estero-Botaro et al. taking
coverage information into account.

5A feature present in Stryker.
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A resistant mutant was killed by only one test case. A coverage-based resistant mutant is reached
by all test cases, but killed by only one.
Hard-to-kill mutants were a subset of resistant mutants, where the one test case that kills the mutant
only kills that mutant. A coverage-based hard-to-kill mutant is reached by all test cases and killed
by only one test case that reaches all other mutants but kills none of them.
The concept of weak mutants, mutants that are killed by all test cases as defined by Estero-Botaro
et al., do not have to be redefined, since a killed mutant implies that the mutant is covered by the
killing test case. Once again these type of mutants rarely occur and only serve as reference points.
The coverage-based quality metric will calculate a value for every mutant based on their kill and
coverage information.

An important new type of mutant is the difficult to reach mutant. These mutants occur in parts
of code that are hard to cover or are barely used. The authors state: “while coverage-based resistant
mutants are easy to reach but difficult to kill, we do not know whether difficult to reach mutants
are easy or difficult to kill. In other words, we have no certainty about whether or not new test
cases reaching a difficult to reach mutant would be able to kill it. Because of the lack of coverage
information, we should not use the coverage of these mutants to value their quality.” Therefore the
authors give a formal definition for difficult to reach mutants, so they can be handled separately
when calculating their coverage-based quality. Let DR be the set of difficult to reach mutants:

DR = {m ∈ D | ∑
t∈Tm

|Nt | ≤ MCOV } (3.13)

Here MCOV is a constant representing the minimum amount of coverage information needed for
the coverage to be deemed significant. As an example, the authors gave MCOV the value of 4 in
their experiments. Note that only dead mutants are considered, since equivalent mutants are given a
quality of 0 either way.

Calculation

With the above definitions, the coverage-based quality metric can now be defined. Let QCm, the
coverage-based quality of mutant m, be calculated as [6]:

QCm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, m ∈ E

1− 1

∑
t∈Tm

|Nt |
∑

t∈Km

|Ct |, m ∈ D\DR

1− 1

∑
t∈T

|Nt |
∑

t∈Km

|Ct |, m ∈ DR

(3.14)

An extra case is added for mutants that are difficult to reach. Note that the only difference between
this case and when mutants are not difficult to reach is that the former uses T and the latter Tm.
Difficult to reach mutants are therefore considered as if the whole test suite covers them, because of
the nature of such mutants, as explained above.

This formula is very similar to Formula 3.7. The difference lies in the denominator of the
fraction. Formula 3.7 multiplied the size of the test suite with the number of non-equivalent mutants.
This can be interpreted as the assumption that all test cases have coverage of all dead mutants.
Formula 3.14 uses a different denominator equal to the sum of the number of mutants reached by
each test case that reaches mutant m6. This shows how the coverage-based quality metric differs

6For the case where mutants are not difficult to reach.
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from the quality metric of Estero-Botaro et al. by including coverage information. Because the
denominator in coverage-based quality is smaller or equal to the denominator of ‘normal’ quality,
the former will always have a lower or equal value to the latter. One could therefore say that
‘normal’ quality overestimated the quality of mutants by not using coverage information.

A more detailed description for the three cases of calculating coverage-based quality are given
below.
Just like the ‘normal’ quality metric, equivalent mutants are given a quality of 0. This works as a
penalty for the quality of the mutation operator that generated them.

The vast majority of mutants fall under the second case, which are killed mutants not classified
difficult to reach. First of all, when a test case kills a mutant it implies that this test case also covers
that mutant. Therefore the sum ∑t∈Km |Ct | will always be smaller or equal to the sum ∑t∈Tm |Nt |.
Thus the former sum divided by the latter sum will always fall between 0 and 1 and subsequently
the coverage-based quality will also fall between 0 and 1, just like the ‘normal’ quality metric.
Second of all, when a mutant is covered by all test cases, and all test cases cover all mutants,
then Tm = T and ∀t ∈ T |Nt | = |M| − |E|. Then the denominator in Formula 3.14 simplifies to
∑t∈T |M| − |E| = (|M| − |E|) · |T |, which is equal to the denominator of Formula 3.7. Thus, in
this case, QCm = Qm. Lastly, concerning the different mutant categories, weak mutants are given
the lowest quality value, for the same reason as was given when using ‘normal’ quality. Next
a coverage-based resistant mutant will be given a relatively high quality, as it is covered by the
complete test suite, but only killed by one test case. Thus in Formula 3.14 the first sum will
have a larger value, and the second sum a smaller value, making the overall quality value higher.
Coverage-based hard-to-kill mutants are given the highest quality, as they are covered by all test
cases (Tm = T ), and are killed by only one test case which kills no other mutants, ∑t∈Km |Ct |= 1.

One may notice that in the case of the coverage-based resistant mutant, where Tm = T , the
calculation for coverage-based quality is equal to that for difficult to reach mutants (M ∈ DR). This
was done on purpose by the authors, as they argue that even though a mutant may be difficult to
reach it can still provide a necessary test case and thus benefit the creation of a high-quality test
suite.

Analogous to the quality metric by Estero-Botaro et al., the coverage-based quality of a
mutation operator is the average of the coverage-based qualities of the mutants it generated.

QCO =
1

|MO| ∑
m∈MO

QCm (3.15)

Here O is the mutation operator and MO the set of mutants generated by it. Delgado-Pérez et al.
also advocate for the minimisation of the used test suite when calculating coverage-based quality,
as it makes the results more reliable.

Coverage Matrix

Much like the kill matrix explained above, a coverage matrix is defined to help calculate the
coverage-based quality metric. This is a binary matrix with the same dimensions as the kill matrix,
|T | by |M|. A value of true in this matrix indicates that the test case corresponding to that row
covers (or reaches) the mutant corresponding to that column. An example coverage matrix is given
in Table 3.2, which is coupled to the example kill matrix in Table 3.1.
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m1 m2 m3 m4

t1 × × ×

t2 × × × ×

t3 × ×

t4 × × ×

Table 3.2: Example coverage matrix paired with the kill matrix in Table 3.1. Instead of true and
false (or 0’s and 1’s) crosses and empty spaces are used.

Similar to the kill matrix, the values for Tm and Mt can be easily read from the matrix. Tm1 is
equal to all the test cases that have a cross in the column of m1, so Tm1 = {t1, t2, t3, t4}. Similarly,
Mt1 is equal to all the mutants that have a cross in the row of t1, so Mt1 = {m1,m2,m4}. Because of
the relation between killing a mutant and covering a mutant, any cell in the kill matrix with a cross,
means the corresponding cell in the coverage matrix also has a cross.

Method

The experimental method for calculating the coverage-based quality metric is slightly altered from
that of the quality metric of Estero-Botaro et al. Step 3 is extended to also include extracting
the coverage matrix from the final mutation testing run. Minimising the test suite in step 4 or 5
remains unchanged. Step 6 uses the coverage matrix in addition to the kill matrix to calculate the
coverage-based quality metric. Prior to this it must be checked which mutants are difficult to reach
according to Formula 3.13, so that the correct case is used per mutant in Formula 3.14. For this the
variable MCOV must be set, which is a measure for the minimum coverage information needed for
a mutant to be deemed significantly reachable. The rest of the process is unaltered.
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4. Callisto

In order to determine the resolution and performance impact of mutation operators a tool is
developed called Callisto. This chapter describes the design and implementation of Callisto. Since
the mutation testing framework Stryker is used to evaluate the use of mutation levels, Callisto is
largely designed to be compatible with Stryker and the mutation report it generates.

First the design of Callisto is explained. This largely revolves around the steps required to
calculate the coverage-based quality as described in Section 3.4, since this metric is used to quantify
resolution. Several other design choices are discussed, such as the minimising of test suites, and
which programming language is used for implementation. Second, several implementation details
and encountered problems are discussed. This includes minimising test suites in practice, deducing
mutation operator names and testing Callisto using Stryker.NET.

4.1 Design

The primary goal of Callisto is to quantify the resolution and the performance impact of mutation
operators, such that this information can be used for the design of mutation levels. As the mutation
testing framework Stryker is used to evaluate the use of mutation levels, Callisto is designed to be
compatible with Stryker and its JSON mutation reports.

In order to quantify the resolution of mutation operators, the coverage-based quality metric
by Delgado-Pérez et al. [6] described in Section 3.4 is used. This metric was chosen over the
‘normal’ quality metric by Estero-Botaro et al. [12], as coverage-based quality provides a direct
improvement to ‘normal’ quality. The experiments performed by Delgado-Pérez et al. have shown
that coverage-based quality is better equipped than ‘normal’ quality to identify the subtle, hard-
to-kill mutants that lead to the design of high-quality test cases [6]. Stryker has the capability
to report all the needed coverage information of a performed mutation testing run to calculate
coverage-based quality. Therefore in the remainder of this thesis the coverage-based quality metric
shall be referred to as just ‘quality’, for the sake of simplicity. This should thus not be confused
with the quality metric of Estero-Botaro et al.

Quantifying the performance impact of mutation operators is done by counting the number of
test case executions performed during mutation testing. Executing test cases takes up the majority of
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time needed for mutation testing, as each mutant requires up to a full run of the test suite. Counting
the number of test case executions for all mutants of a mutation operator relative to the total number
of test case executions is therefore deemed a suitable metric to quantify the performance impact
that operator had. One could also use the number of mutants generated by an operator as a metric,
however this would only be an approximation of the performance impact. Every mutant requires
a different amount of test case executions, since every mutant is covered by a varying amount of
test cases. Remember that Stryker only executes the test cases that have coverage over a mutant, to
save time. Furthermore no coverage information is available for static mutants, so Stryker resorts
to executing the whole test suite for such mutants. Thus the performance impact of mutants may
vary greatly1. Stryker already counts the number of performed test case executions per mutant and
stores them in its report, so the information is readily available.

This metric assumes that each test case in the test suite takes an equal amount of time to
execute for each mutant. In reality this will not be the case, as in practice integration tests can be
used to try and kill mutants, which can take significantly longer than using unit tests. Nevertheless,
this does not impact the use of this metric to measure performance impact, as the number of test
case executions will range from hundreds to thousands per mutation operator, and thus outliers will
have less of an impact. Moreover, Stryker currently does not measure the time taken for executing
test cases. Therefore Callisto cannot use that to quantify the performance impact. Expanding
Stryker to provide this is outside the scope of this project, and thus this assumption is used instead.
This does provide an opportunity for future work, see Section 7.3.

Workflow

Counting the number of test case executions is trivial compared to calculating the quality of
mutation operators. Therefore, the greater part of Callisto focusses on the latter. The necessary
steps needed to calculate quality have already been described in Section 3.4, which is based on the
steps for calculating the quality of Estero-Botaro et al. as described in Section 3.3. These steps
are illustrated in the context of Stryker in the activity diagram in Figure 4.1. Here the tasks are
numbered and colour-coded.

A clear relation can be seen between the steps in the workflow in Chapter 3, and the tasks
in Figure 4.1. Task 1 to 3 relate to the program and test suite that are used and do not occur in
the workflow. Step 1 and 2 of that workflow set up the adequate test suite, which is Task 4 and 5
in Figure 4.1. Step 3, extract the kill and coverage matrices, is Task 6, and Step 4, minimise the
main test suite, is Task 7. Finally Step 5 and 6, which minimise the test suite for one mutation
operator and subsequently calculate its quality, are represented by Task 8 to 10. Task 11 does not
relate to calculating quality, but counts test case executions per mutation operator to determine their
performance impact.

Task 1 up to 5 are done manually with help from Stryker and prepare the JSON mutation report
that Stryker generates. In Task 6 to 11 Callisto then takes this report as input and calculates the
quality and counts the test case executions for each mutation operator involved.

Task 1, 2 and 3 define the context in which quality will be determined. First of all a flavour
of Stryker must be chosen, out of StrykerJS, Stryker.NET and Stryker4s. This determines the
programming language used. For Task 2 a set of mutation operators from the chosen Stryker flavour

1A mutant covered by only one test case will be processed approximately ten times faster than a mutant covered by
ten test cases.
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Figure 4.1: Activity Diagram for calculating the quality and performance impact of mutation
operators of Stryker using Callisto. The orange tasks are done manually, the blue tasks are
performed by Callisto.

must be selected for which quality will be determined. Task 3 is to choose the program for which
mutants are generated. This program must be compatible with the chosen Stryker flavour2.

Task 4 consists of expanding the existing test suite of the chosen example program until it
is adequate, i.e. a mutation score of 100% is achieved for the mutants generated by the chosen
mutation operators. In general this task will take the most time and effort, as a good understanding
of the example program is required to design new test cases. This is an iterative process: survived
mutants are investigated, new test cases are designed to kill them and Stryker is used to see if the
new test cases are effective in raising the mutation score. This is repeated until the test suite is
adequate. This process also involves identifying all equivalent mutants generated from the example
program.

The purpose of Task 5 is to use Stryker to generate the mutation report in JSON format, which
forms the singular input for Callisto. Callisto will require specific information to calculate quality,
such as coverage information. Therefore Stryker must be correctly configured in this step to
generate a suitable mutation report. The required configuration is explained in Chapter 5.

In Task 6 Callisto deserialises the given JSON report into a suitable data structure to hold all
the raw information contained within. As is explained in Chapter 3, the kill- and coverage matrix
hold most of the required information to calculate quality. Therefore the next step in the process is
to extract the kill- and coverage matrix from the deserialised structure.

Task 7 consists of determining the main minimal test suite from the adequate test suite designed
in Task 4. This is done solely from the information contained in the kill matrix. In short, rows
corresponding to redundant test cases are removed from the matrix, while every killed mutant

2The program must match the chosen programming language and be able to run Stryker on it.
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remains killed3. The process to accomplish this goal is explained in detail in the next section, 4.2.

Task 8 to 10 calculate the quality for each involved mutation operator. In Task 8 a mutation
operator is selected which has not been processed yet. In Task 9 the mutation operator specific
minimal test suite is determined. This involves extracting a smaller kill- and coverage matrix from
the one created in Task 6 by selecting only the mutants generated by the chosen mutation operator.
Then the main minimal test suite of Task 7 is minimised again to correct for the reduced number of
mutants. Now these matrices are used in Task 10 to calculate the quality of the mutation operator
according to Formulae 3.14 and 3.15, as is explained in Chapter 3.

Alongside quality, the deviation in the quality of individual mutants is also calculated per
mutation operator. This allows insight into whether the quality of individual mutants is dispersed or
not, which helps judge the reliability of the mutation operator quality. This plays a role in answering
research sub-question 3. The deviation used is the Mean Absolute Deviation (MAD). This was
chosen over the standard deviation, as it better reflects reality: MAD is the average absolute distance
from the mean of a set.

Finally in Task 11 the test case executions are counted for each mutant generated by the
selected operator and summed. This is done using the JSON file directly, since Stryker saves the
count per mutant in its report, as was mentioned above. The resulting quality values and test case
execution totals of all involved mutation operators are reported back to the user.

Workflow Remarks

In Task 2, generally all available mutation operators are chosen, however should the quality of only
one mutation operator be of interest (for example a mutation operator new to Stryker), then this can
be selected at that point in time to save work for subsequent tasks.

For Task 3, the example program that is used should have a high initial mutation score, as
this will save work during Task 4. Section 5.2 will go into more detail concerning the criteria for
suitable example programs.

Stryker does not have any formal label for equivalent mutants, so they will remain as ‘survived’
mutants when expanding the test suite in Task 4. Stryker will therefore not report a mutation score
of 100%, but that is because it calculates mutation score using Formula 2.7, where equivalent
mutants are not taken into account, as opposed to Formula 2.4 upon which the definition of adequate
test suite is based. As there should be no actual survived mutants after Task 4, Callisto assumes
that any mutants marked as survived by Stryker are in fact equivalent, and therefore gives them a
quality of 0. In the kill matrix they can be identified by a column of empty cells.

As was explained in Section 2.2, no coverage information is available for static mutants. When
calculating their quality, Callisto therefore assumes they are covered only by the test cases that kill
them, formally Tm = Km. This is based on the fact that when a mutant is killed by a test case, it
implies it is also covered by that test case. Because of this, static mutants have a lower quality on
average than others, according to the calculation of quality, Formula 3.14.

For the experiments performed with Stryker in the remainder of this thesis, Task 4 is skipped.
This was done because expanding the test suite to adequacy was infeasible for the scope of this

3Equivalent mutants are ignored during this process.
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project. Task 4 is not essential for the rest of the tasks to function. When only the mutants killed by
the initial test suite are used, and all others are ignored, then the initial test suite is adequate for the
remaining subset of mutants. Stryker cannot leave out this subset, so in the JSON report of Task 5
any non-killed mutants will simply have another status. Callisto therefore needs to be configured to
only use killed mutants. Section 5.3 goes into more detail on the decision to skip Task 4.

Filtering Mutants

During Task 9 all relevant mutants of a mutation operator are selected to calculate quality for. At
this point the user is given the option to filter out mutants in two ways. First of all, when skipping
Task 4, only mutants killed by the initial test suite should be used to calculate quality. By default
Callisto assumes that adequate test suites are used and any survived mutant is equivalent. The user
can change this so that Callisto only selects the killed mutants of a mutation operator. This way any
non-killed4 mutants are completely ignored by Callisto and do not show up in any results.

Second of all, the user is given the option to include static mutants. As was explained in
Section 2.2, every static mutant requires a full run of the test suite to determine if it is killed. As
mentioned above, this causes static mutants to achieve a lower quality on average, which influences
the quality of mutation operators. Therefore, Callisto ignores static mutants by default. One can
configure Callisto to include static mutants in the analysis. This allows investigating the impact of
static mutants during mutation testing, by comparing results with and without static mutants.

These two filtering options also influence the counting of test case executions to determine the
performance impact of a mutation operator: when static mutants are ignored, then only the test case
executions of non-static mutants are counted, and similarly for using killed mutants only. It should
be stated that these two options can be used simultaneously.

Minimising a Test Suite

As is explained in Chapter 3, minimising the adequate test suite of an example program increases
the reliability of the resulting quality calculation. Formula 3.14 shows that the size of the test suite
influences the found quality: the sum ∑t∈Km |Ct | has the tendency to attain a higher value with a
larger test suite, as Km can contain more test cases. Therefore minimising the test suite removes
this bias caused by the size.

Minimising the test suite can be done entirely from the information contained in the kill
matrix. In that context, minimising consists of removing a maximum amount of rows from the
matrix, such that every column retains at least one cell with a true value, excluding columns
corresponding to equivalent mutants. This minimisation problem can be formulated as a Binary
Integer Linear Programming (BILP) problem, as is shown by Palomo-Lozano et al. [36]. In an
ILP problem, the problem is described using a linear function of integers, the value of which
must be minimised (or maximised) under a set of constraints, which are also described as a linear
function of integers. A Binary ILP is simply an ILP where the integer values are restricted to the
values 0 and 1. Palomo-Lozano et al. show that using binary decision variables x1, ...,xn, where
n = |T | can be used to represent which test cases are kept when minimising. A value of xi = 0
would then indicate that test case ti is removed. The objective is then to minimise the sum ∑

n
i=1 xi,

4These are mostly survived mutants, but in the case of Stryker other types of mutants can occur, such as timeout
mutants.
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such that the maximum amount of test cases is removed. This is done under the constraints that
every killed mutant remains killed after minimising is done. These constraints are formulated by
Palomo-Lozano et al. for one mutant m j ∈ D as the sum ∑

n
i=1 ki jxi ≥ 1, where ki j corresponds to

the binary integer value in the kill matrix at row i and column j. Mutant m j initially has status
killed, as a survived mutant is deemed equivalent and thus ignored when minimising. Multiplying5

ki j with xi ensures that only the test cases which are preserved in minimising can contribute to the
killing of mutant mi. Now the full BILP can be formulated as:

Minimise
n

∑
i=1

xi subject to ∀i ∈ [1, |M|]
n

∑
j=1

ki jx j ≥ 1 (4.1)

where kill matrix k only contains killed mutants, i.e. all survived mutants are removed, and has
size n×|M|. With this formalisation of the test suite minimisation problem, suitable (B)ILP solver
software can be used to find a solution. The solution will then consist of values 0 or 1 for the binary
decision variables xi, ...,xn. Minimising is then the simple matter of removing all test cases with a
binary decision variable of value 0.

Design Choices

Here several design choices regarding Callisto are explained. First of all, Callisto is designed as
a Command-Line Interface (CLI) tool. This was done as Callisto’s input and output are clearly
defined, making a CLI tool a suitable form factor. Furthermore, Stryker itself is also a CLI tool,
which makes running Callisto alongside Stryker easier in, for example, a pipeline. Moreover, any
configuration for Callisto can be easily passed by use of command-line options this way. See
Appendix A for a complete overview of the command-line usage of Callisto.

Second of all, Callisto is implemented in C#. This language was chosen for several reasons.
Firstly C# and the .NET environment allow access to libraries needed for calculating quality. Most
notably, the ability to solve (B)ILP problems to minimise test suites is a mandatory requirement for
Callisto. This can be performed using libraries available in the .NET environment. Secondly C#
is a suitable language to develop CLI tools. Lastly it allows the use of Stryker (Stryker.NET) for
mutation testing during development.

Third of all, Callisto’s output takes the form of a simple CSV (Comma-Separated Values)
file. Since the result of running Callisto consists of several statistics paired with a mutation
operator (quality, performance impact, mutant count, etc.), this output can be most easily written as
comma-separated values. This format allows them to be easily interpreted by other programs.

Last of all, as was explained at the start of this section, Callisto has been designed to be
compatible with Stryker and the JSON mutation reports it provides. However, this does not mean
that Callisto is solely compatible with Stryker. As was explained in Section 2.2, Stryker has
presented their mutation report structure as an open-source standard to be used by other mutation
testing frameworks as well. This automatically makes Callisto compatible with those frameworks
as well, provided they store all the needed information for Callisto in their reports. Moreover,
Callisto can always be extended to accept other forms of mutation reports. The activity diagram in
Figure 4.1 can easily be adapted for other frameworks and languages. Callisto can then still use
the same internal data structures such as the kill and coverage matrices, and the same algorithm to
minimise test suites.

5Multiplying two binary values can also be interpreted as a logical AND.
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4.2 Implementation

This section goes into detail concerning the implementation of Callisto and discusses any major
problems that were encountered and their solutions.

Minimising Test Suites in Practice

In order for Callisto to be able to minimise test suites using the formalised problem described in
Section 4.1, a framework and solver for (B)ILP problems compatible with .NET had to be found.
In addition the solver should be open source, so that it can be distributed with Callisto for free.
Many well-known solvers such as CPLEX and Gurobi either require a paid license or are only
usable from C++. In the end the framework that is used in Callisto is Google OR-tools [15], an
open-source software suite for solving several types of problems such as vehicle routing, flow
graphs, integer and linear programming, and constraint programming. OR-tools provides an API to
programmatically model the problem to solve, after which one of several open-source solvers can
be chosen, either third-party or developed by Google.

Encoding and solving a linear programming problem in Google OR-tools follows these steps:

1. Instantiate the main Solver object, with the name of the solver that will be used.
2. Define the variables of the problem.
3. Define the constraints using the variables.
4. Define the objective of the problem using the variables, stating whether the goal is to minimise

or maximise.
5. Call upon the Solver object to find an optimal solution for the problem.
6. Retrieve the found solution from the Solver object.

Performing these steps for the problem of minimising a test suite is relatively straightforward using
the formal definition of the problem shown in Section 4.1. For the variables an array of boolean
variables is created which will represent x1, ...,xn, the decision variables for the test cases. Next
they are used to encode the constraints that each killed mutant must remain killed after minimising,
for which the information in the kill matrix is used. The sum of the decision variables forms the
objective, which must be minimised. Now the Solve() method can be called from the Solver

object to try and find an optimal solution. Once this process is completed the status of the result is
interpreted to see if an optimal solution was indeed found. If this is the case, then the values for the
decision variables defined earlier are retrieved to interpret which test cases are kept and removed.
This is then used to remove rows from the kill- and coverage matrix corresponding to test cases
which are removed. Although minimising is done solely using the kill matrix, the coverage matrix
must always match its corresponding kill matrix, thus the same rows are also removed from the
coverage matrix.

For step 1 a solver must be chosen. Google provides its own linear programming solver, called
GLOP (Google Linear OPtimisation). Besides this, third-party solvers can be chosen from the open-
source world, such as GLPK, or from proprietary projects, such as CPLEX or Gurobi, provided
a license has been acquired. For Callisto the main qualities needed from a solver are speed and
reliability. Therefore a benchmark was set up to test the available solvers. This benchmark consisted
of minimising a test suite of 50 test cases, subject to killing 1000 mutants. The corresponding kill
matrix of 50 rows and 1000 columns was filled with random data, i.e. every cell has a 50% chance
to contain true and a 50% chance to contain false. Such a kill matrix is not representative of a
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real scenario for Callisto, but for the purposes of a benchmark it was suitable, and easy to set up.
Next the time in milliseconds needed to solve this problem and the status of the found solution was
recorded for each solver. The results were as follows:

1. GLOP: 16 ms
2. CLP: 27 ms
3. CP-SAT: 4927 ms
4. SAT: 4500-5500 ms
5. SCIP: 20704 ms
6. CBC: 87880 ms
7. BOP: 20+ minutes

The BOP solver was the only solver which did not complete the benchmark in a reasonable time,
and its execution was halted after 20 minutes. The other solvers were all able to achieve optimal
solutions. As can be seen, GLOP and CLP outperform the other solvers by several orders of
magnitude. As it performed the best, GLOP was chosen as the solver for minimising test suites.

However, when testing the functionality of GLOP further, an error in the solutions was found.
For kill matrices with a certain configuration GLOP would give solutions with non-integer values
for the variables, despite the fact that the variables were configured to only take integer values.
Such a kill matrix is shown in Table 4.1.

m1 m2 m3

t1 × ×

t2 × ×

t3 × ×

Table 4.1: Kill matrix with three separate optimal solutions for minimising. GLOP cannot solve
this matrix.

Minimising the test suite according to this kill matrix results in three separate optimal solutions.
Removing one of the three test cases automatically makes the remaining two a minimal test suite
for mutants m1,m2,m3. One would therefore expect to see a solution from GLOP where 2 of the
three decision variables are given value 1, and the other value 0. Instead GLOP gives all three a
value of 0.5, which cannot be interpreted as a solution. This could be interpreted as GLOP not
being able to choose one of the three solutions and instead ‘spreading’ the solution out over all
three test cases. However this choice of value is not by chance, as it is technically a better solution
according to the objective and constraints of the problem. The objective now resolves to a minimal
value of 1.5 (sum of all decision variables), which is lower than the expected value of 2. Meanwhile
the constraint for each column is satisfied, as they become 0.5 ·1+0.5 ·1 ≥ 1. GLOP therefore
does not hold itself to the implied constraint that all decision variables should only take values 0 or
1. This is caused by the fact that GLOP is a pure linear programming solver, which only solves
the relaxation of a Mixed Integer Programming (MIP) problem. Therefore an alternative solver is
required for this minimising case, for which SAT, CBC or BOP are suited as they do not have this
problem. Out of these three SAT is chosen as it performed the best in the above benchmark. In
conclusion, Callisto uses GLOP by default and warns the user to use SAT when GLOP gives back
non-integer solution values. A command-line option for Callisto allows specifying which solver to
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use.

Deducing Mutation Operator Names

As mentioned in Section 2.2, Stryker’s mutation operators are divided over a set of mutators, which
serve as categories of mutation operators. In the mutation report JSON file that is given to Callisto
the data for each mutant only shows the name of the mutator category it belongs under, and not
the mutation operator name. In this project resolution and performance impact are determined per
mutation operator and not per mutator. This is done to allow a more fine-grained analysis of the
different kinds of mutants that Stryker generates. Therefore, Callisto must deduce the name of the
mutation operator used per mutant. Fortunately the JSON file holds all the necessary data for this:
the original source code of the program, the location of the mutation in the source code, and the
replacement code which forms the mutation. Stryker uses all this information in the HTML mutation
report to show a user what part of their code is mutated and in which way. Using the location and
the source code the original piece of unmutated code is determined. This can then be compared
with the replacement code to deduce the mutation operator that was used. For example, if the
original code was a + b and the replacement is a - b, then the ‘arithmetic operator replacement’
mutation operator was used which replaces an addition operator with a subtraction operator. In the
context of Stryker and Callisto, a distinction is made between the individual mutations that can take
place and labels them as separate mutation operators. Therefore the mutation a - b to a + b is
generated by a different mutation operator than the mutant described before.

Stryker does not currently have an official system of names for each of the mutations performed.
Therefore Callisto uses a placeholder system. In general the name of a mutation operator uses the
name of the containing mutator category with a postfix that describes the mutant. For mutation
operators where a syntax token is replaced, the postfix contains the original code and the mutated
code separated by the word ‘To’. For example, the mutation a - b to a + b is performed by
the ArithmeticOperator-To+. The use of symbols in the name was chosen as it shortens the
name significantly6 and quickly conveys what mutation is performed. For mutations where a
part of code is ‘emptied’, ‘filled’ or removed, the postfix contains the word ‘Empty’, ‘Fill’ or
‘Removal’ respectively. For example, mutating any string to an empty string "" is done by the
StringLiteralEmpty mutation operator. When a syntax token is removed that token is also mentioned
in the postfix. Some of the mutators of Stryker only contain a single mutation, for example the
BlockStatement mutator in StrykerJS, which empties any block statement by mutating it to {}. As
the mutator only performs one mutation, the underlying mutation operator is simply given the same
name as the mutator, without a postfix.

Following these rules, a full list of every mutation operator in StrykerJS at the time of writing
is provided here:

· ArithmeticOperator%To*
· ArithmeticOperator*To/
· ArithmeticOperator/To*
· ArithmeticOperator+To-
· ArithmeticOperator-To+
· ArrayDeclarationEmpty
· ArrayDeclarationEmptyConstructor
· ArrayDeclarationFill

· ArrowFunction
· BlockStatement
· BooleanLiteralfalseTotrue
· BooleanLiteralRemoveNegation
· BooleanLiteraltrueTofalse
· ConditionalExpression!==Tofalse
· ConditionalExpression!==Totrue
· ConditionalExpression!=Tofalse

6A much longer name could be ArithmeticOperatorSubtractionToAddition.
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· ConditionalExpression!=Totrue
· ConditionalExpression<=Tofalse
· ConditionalExpression<=Totrue
· ConditionalExpression<Tofalse
· ConditionalExpression<Totrue
· ConditionalExpression===Tofalse
· ConditionalExpression===Totrue
· ConditionalExpression==Tofalse
· ConditionalExpression==Totrue
· ConditionalExpression>=Tofalse
· ConditionalExpression>=Totrue
· ConditionalExpression>Tofalse
· ConditionalExpression>Totrue
· ConditionalExpressionConditionTofalse
· ConditionalExpressionConditionTotrue
· ConditionalExpressionEmptyCase
· EqualityOperator!==To===
· EqualityOperator!=To==
· EqualityOperator<=To<
· EqualityOperator<=To>
· EqualityOperator<To<=
· EqualityOperator<To>=

· EqualityOperator===To!==
· EqualityOperator==To!=
· EqualityOperator>=To<
· EqualityOperator>=To>
· EqualityOperator>To<=
· EqualityOperator>To>=
· LogicalOperator&&To||
· LogicalOperator??To&&
· LogicalOperator||To&&
· ObjectLiteral
· OptionalChaining
· Regex
· StringLiteralEmpty
· StringLiteralFill
· UnaryOperator+To-
· UnaryOperatorRemove∼
· UnaryOperator-To+
· UpdateOperatorPost++To--
· UpdateOperatorPost--To++
· UpdateOperatorPre++To--
· UpdateOperatorPre--To++

There are a few notable exceptions in this list when it comes to names.
ConditionalExpressionConditionTo- true and false is a more generic mutation operator. Any mutant
that falls under the ConditionalExpression mutator but not in any of the other mutation operators
under this mutator are named this way. These are mutants where a condition in for example an
if-statement or for-loop is given using method calls or a boolean variable, and not using a relational
operator. An example of such a mutation is ‘while (array.isEmpty()) {}’ to ‘while (fal ⌋
se) {}’. Similarly the ConditionalExpressionEmptyCase mutation operator groups all mutants
where a case: or default: is emptied inside a switch-case statement. Furthermore the Regex
(regular expression) mutator is not split up into mutation operators here, as it contains 22 mutation
operators and this would clutter the list. Regular expressions are written in their own language,
and for that reason they are deemed largely outside of the scope of this project. Their quality and
performance impact are still determined in this project, but for all regex mutants as a whole. For a
finer-grained analysis of regex mutations they should be analysed as a set of mutation operators for
the regex language in a future project.

The developers of Stryker intend to implement their own system of mutation operator names
in the near future, which is then also included in the JSON report. Once this is implemented Callisto
can simply use that information to find mutation operator names, and the deduction technique above
becomes obsolete.

Testing

In order to ensure Callisto functions correctly, a test suite of unit tests was created using the MSTest
framework. In total 35 test cases were created which mostly test the four major parts of Callisto.
These are deserialising and interpreting the input JSON file, manipulating the kill- and coverage

192199978 - FINAL PROJECT 36 of 87



matrix, minimising test suites, and calculating the quality of mutation operators. Ensuring these
four parts function correctly is essential for Callisto to determine the resolution and performance
impact of mutation operators. In most test cases example data is used to test functionality, such as a
test JSON report or example kill matrix.

As Callisto is written in C#, Stryker.NET can be used to determine the quality of the test suite.
Running Stryker.NET version 1.01 on Callisto generates a total of 1099 mutants. The achieved
mutation score is 45.13%. This is a low score, however this is mostly caused by the fact that 459
mutants have no coverage by the test suite. The test suite does not test all code of Callisto. Most
notably, configuration like that of the CLI interface such that the right command-line options are
available to the user are not tested, but do contain mutants. When only the covered mutants are
taken into account, 481 out of 609 mutants are killed, 78.98%. In important parts of Callisto,
such as the actual calculation of quality or minimising a test suite nearly all mutants are killed.
This is deemed the most important aspect of testing Callisto, and therefore the created test suite is
considered to be sufficient. An improvement can be made by including end-to-end tests for Callisto,
as currently the high-level control code which outlines the steps for calculating quality is untested.
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5. Evaluation

This chapter starts to evaluate the technique of designing and using mutation levels by applying it
on Stryker. The main purpose of the evaluation is to assess the viability and validity of designing
and using mutation levels to speed up mutation testing. This is done by first mutating a set of
example programs using a flavour of Stryker. Then Callisto can use the resulting mutation reports
to determine the resolution and performance impact of the involved mutation operators. This is
used to design several trial mutation levels. Doing this will determine how difficult this process
is to follow, and if it can be easily applied to other frameworks and languages. By analysing the
resulting levels it can be assessed if they indeed speed up mutation testing, without losing too much
resolution. This evaluation also provides an opportunity to see how Callisto performs in a realistic
use case.

This chapter starts by choosing a flavour of Stryker to use for the evaluation. Then the criteria
for suitable example programs are explained, after which nine example programs are found. Next,
the use of inadequate test suites is discussed. To finish, the methodology used to analyse the
mutation operators of StrykerJS with Callisto is described in detail, after which it is applied on the
nine example programs and its results are discussed.

The evaluation is continued in Chapter 6, where the results of this chapter are used to design
and assess mutation levels for StrykerJS.

5.1 Choice of Stryker Flavour

Figure 4.1 shows that the first step in using Callisto with Stryker is choosing a flavour of Stryker.
For the experiments performed in this project, StrykerJS was chosen. This choice was primarily
made because, as of writing, StrykerJS is the only flavour able to provide test case information. This
information, such as which test case covers and/or kills which mutant, is essential for calculating
quality. Stryker.NET and Stryker4s do use test coverage information to save time during mutation
testing, but the information is not saved in the resulting JSON report yet. For the purpose of
calculating quality, StrykerJS is therefore the only choice left. Consequently, only the resolution
and performance impact of mutation operators applicable to JavaScript can be determined. Thus
all further experiments performed with Callisto are done using StrykerJS with example programs
written in JavaScript and/or TypeScript. The mutation levels which are designed in Chapter 6 are
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therefore for StrykerJS only.

5.2 Example Programs

The example programs form the basis of the data that Callisto uses. Using the mutants gener-
ated from these programs the resolution and performance impact of mutation operators will be
determined.

Criteria

There are several criteria that an example program should meet for use with Callisto and StrykerJS.
A suitable example program:

1. is written in JavaScript and/or TypeScript,
2. is compatible with StrykerJS and its required configuration,
3. has at least 200 killed mutants.

The first criterion is quite evident: as StrykerJS is used, example programs should be written in
JavaScript and/or TypeScript. The second criterion builds on this: to be compatible with StrykerJS
several requirements must be met. First the example program should use a compatible framework.
Several popular JavaScript frameworks are supported, such as React, Angular, VueJS and NodeJS.
Next the accompanying test suite should also be compatible with StrykerJS. In practice this means
the test runner used should be supported by StrykerJS. Supported test runners are CucumberJS,
Jasmine, Jest, Karma and Mocha. Lastly the StrykerJS configuration needed for Callisto should
be working with the example program. Most notably, Stryker must be configured to collect kill-
and coverage information for each test case and mutant. For this StrykerJS version 5.4.0 or later is
required.

As was mentioned before in Section 4.1, in this project the test suites of example programs are
not expanded until adequate. Quality can therefore only be determined for the mutants killed by the
initial test suite1. Remember that the quality of a mutation operator is determined by taking the
average of the qualities of its mutants. If only a handful of mutants are killed, then the resulting
quality of the operator will be unreliable. Therefore the last criterion states that a minimum of 200
mutants are generated and killed in an example program. This value was chosen based on a previous
initial experiment done with a program called Robobar (see Section 5.3), which contained 97 killed
mutants. Because of the large amount of mutation operators present in StrykerJS (see the list in
Section 4.2), many generated very few mutants for Robobar, which resulted in unreliable quality
measurements. Thus for a reliable result a minimum of 200 killed mutants is deemed sufficient.
Using (much) more than 200 mutants should show little difference in quality and only make it
more reliable. To meet this requirement a program should be of sufficient size to generate enough
mutants, and have a test suite that kills at least 200 of these mutants.

Example Programs Used

Table 5.1 gives an overview of the nine example programs used to evaluate Callisto. All of these
programs were accessed using GitHub.

1Quality cannot be determined for survived, non-equivalent mutants.
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Name Mutant Count Mutation Score Description

BigMath [2] 1671 88.51% A library for working with large numbers

CucumberJS [5] 2677 66.23% A test framework adding cucumber testing to JavaScript

Express [13] 1984 88.77% “Fast, unopinionated, minimalist web framework for Node”

Freecodecamp [14] 8465 10.02% FreeCodeCamp.org’s open-source codebase and curriculum

Minesweeper [29] 398 97.14% Well-known puzzle game implemented in JavaScript

Mutation Testing Elements [44] 1170 74.28% Metadata and visualisation for the mutation reports of Stryker

Nest [28] 8779 51.85% Framework for server-side Node.js apps

StrykerJS Core [46] 3052 69.82% Core module of StrykerJS

StrykerJS Instrumenter [47] 1197 90.63% Instrumenter module of StrykerJS

Table 5.1: Overview of all example programs used to evaluate Callisto. The mutation score shows
the achieved score using the initial test suite.

Several of these programs were found by looking through GitHub’s most starred public
repositories under the topic ‘Node.js’2. Node.js projects have a high chance of being compatible
with StrykerJS. The other programs were referred to this research project by peers and supervisors.

As the data consists of mutants, the number of generated mutants for a program are used as
an indication of its size. This is not directly comparable with using the number of lines of code, a
more traditional measure of program size, as certain code can cause more mutants to be generated
than others. However for the purposes of this project it is fitting, as the mutants form the data for
Callisto.

There are several reasons why these programs were chosen. First of all, they cover a wide
variety of types of programs. This includes games (Minesweeper), educational (Freecodecamp),
testing (CucumberJS), maths (BigMath), frameworks (Express, Nest), frontend (Mutation Testing
Elements) and mutation testing (StrykerJS) software. This diversity ensures the group better
represents the wide spectrum of the practical applications of JavaScript, and no bias is possible by
only focussing on one type of software.

Second of all, for five of these programs StrykerJS was used during development. These are
BigMath, Minesweeper, Mutation Testing Elements, StrykerJS Core and StrykerJS Instrumenter.
This ensures that the test suite of those programs has been created with the help of Stryker, which
generally means a higher mutation score is achieved, as developers could react to survived mutants.
When the developers make use of the Stryker Dashboard, the mutation report these programs
initially generate is also available upfront. This helps assessing the suitability of an example
program, without taking the time to set up StrykerJS.

Third of all, some of these programs achieve a high mutation score. This ensures that a
large portion of the generated mutants are killed, which provides more data to calculate quality.
Furthermore a higher mutation score brings the test suite closer to adequate without requiring work.
This decreases any possible bias introduced by the decision not to expand the test suites (see Section
5.3).

2The URL for this is https://github.com/topics/nodejs?o=desc&s=stars.
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Fourth of all, large programs are preferred, simply because they will generate more mutants.
This gives a higher chance of passing the third example program criterion, which requires a
minimum of 200 killed mutants. The more mutants are generated, the lower the mutation score
must be to pass this requirement. When searching for example programs one generally3 does not
know beforehand how many mutants will be generated from it exactly, or how many of these will
be killed. Freecodecamp is an example of such a case. It seemed a large program, which ended up
having over 8000 mutants. It has a very low mutation score of only 10%, significantly lower than
all the other example programs. However, it is included as 10% of 8000 still results in 800 killed
mutants. This passes the criterion, and also provides more data than for example Minesweeper,
which has a near perfect mutation score.

Last of all, several programs were found because they are quite well-known. This is seen
as an advantage, as well-known open-source software has a tendency to be well-tested4, partly
because all its users have the ability to contribute to and check the software. Some of the programs
above were found due to their popularity on GitHub (measured in ‘stars’). These are CucumberJS,
Express, Freecodecamp and Nest.

5.3 On Inadequate Test Suites

Estero-Botaro et al. state that when calculating quality, an adequate test suite should be used
[12]. This is recommended, as any mutants left alive can influence the resulting quality of its
mutation operator. The workflow shown in Figure 4.1 has been created from the process described
by Estero-Botaro et al. and therefore contains a task dedicated to ensuring that the test suites of
example programs are made adequate.

However, the work involved in this is far greater than that of all other tasks combined.
Expanding the test suite of any program requires a good understanding of the functionality, structure
and programming of said program. Furthermore, creating an adequate test suite implies that all
equivalent mutants must also be found. As this cannot be easily automated, it requires even more
work.

As an experiment to gauge the effort required for this work, the test suite of the program
Robobar was expanded. Robobar is a small web application written in JavaScript using Angular by
the developers of Stryker as an example of the effectiveness of mutation testing [45]. It features
a test suite with 100% code coverage, but a mutation score of only 58.73%, to show that code
coverage is not always a suitable metric to measure the effectiveness of a test suite. Robobar
contains a total of 126 mutants and a test suite with 16 test cases. During the expansion of the
test suite it was discovered that several parts of the code were difficult to test, due to the nature of
Angular. Thus these mutants were ignored. Out of the remaining 98 mutants, 97 were killed after
writing an additional 8 test cases. The surviving mutant was an equivalent mutant. This work took
a full day, as discovering which mutants could be ignored was not trivial. This example shows that
significant time is needed for the expansion of a test suite, and unforeseen complications may arise
in the process.

In the end Robobar is not used as an example program, as it is too small. Despite its size it still
took considerable time to expand its test suite. The amount of time needed for this step scales with

3Unless Stryker has been used before.
4Being open source, the test suite can also be inspected beforehand.
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the size of the program. Therefore, with limited time, it effectively restricts the size of example
programs that can be used. Thus the decision was made to forego the expansion of test suites to
adequacy, and instead use the unaltered test suites that come with example programs to calculate
quality. This works by only taking into account the mutants which are killed, and ignoring anything
else. Effectively this subset of killed mutants can be viewed as a ‘new’ set of generated mutants,
for which the test suite achieves a mutation score of 100% and is thus adequate.

The advantage of this decision is that far larger and more complex programs can be used,
such as Nest. Expanding the test suite of Nest to adequate is simply infeasible in the scope of this
project5. Using larger programs means that far more data can be used to calculate quality, which
makes the result more reliable. The nine example programs above provide 11,033 killed mutants
to calculate quality with. As a comparison, the experiments of Estero-Botaro et al. only used 749
killed mutants [12].

This section investigates how using inadequate test suites can influence the found quality of
mutation operators. This is done to ensure that this decision will not significantly skew the quality
results, as this could compromise the mutation levels that are designed based on those results as
well.

Deviation Experiment

There is a risk that by ignoring a large part of generated mutants, the calculated quality of mutation
operators deviates from its ‘true’ value when all mutants are killed. In order to measure this
deviation, a small experiment is performed. This consists of removing a portion of killed mutants
from an example program and comparing the resulting quality with that of the whole set of killed
mutants. The set of mutants that is removed is chosen randomly.

This experiment was done using BigMath and the two StrykerJS modules, Core and Instru-
menter. In order to get a better view of the deviations that occur, the experiment was performed by
removing either 10%, 20% or 30% of killed mutants from the example program. Furthermore, for
each case the experiment was repeated four times with a different random set of mutants removed,
so that the results were less biased for the choice of removal. More repetitions could have been
added to increase the reliability of the results, but for the purposes of this experiment four times is
deemed sufficient.

The random sets were determined using a Random Number Generator (RNG), for which
different numerical seeds were used to choose different sets of mutants. The deviated quality can
either end up higher or lower than the original, which is both seen as equally damaging. Each
result is therefore the average absolute quality deviation of all mutation operators involved in that
program. Figure 5.1 shows the average result over the four iterations for all three programs in a
graph. See appendix B for the individual results per program and iteration.

Looking at the graph it seems the deviation in quality scales linearly with the percentage of
mutants removed. This cannot be concluded with certainty however, as the experiment was not
performed with higher percentages of removal of mutants.

Note that none of these programs have an adequate test suite. Therefore the deviations in
quality are measured from the ‘true’ quality calculated according to the method in this section: by

5One would practically need to become an active contributor and developer for Nest.
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Figure 5.1: Quality deviations for removing 10%, 20% and 30% of killed mutants from BigMath,
StrykerJS Core and StrykerJS Instrumenter.

only using the mutants which are killed by the (unexpanded) test suite and ignoring any others.
This is not a problem for this experiment, as it is assumed that setting the ‘true’ quality does not
affect the measured deviations. After all, the deviations are relative to the ‘true’ quality.

An interesting phenomenon that was observed during this experiment is that some mutation
operators consistently had a low or high quality deviation. For example, the BlockStatement mutator
in BigMath originally6 achieved a quality of 0.027. Its average deviation when removing 10%
mutants was 0.001: it practically remained the same. This can be explained by looking at a different
kind of deviation: the absolute deviation of the original quality of the individual BlockStatement
mutants, which is 0.045. Remember that the quality of a mutation operator is simply the average of
the qualities of its mutants. In the case of BlockStatement the quality of all its mutants lies close
to 0.027, which means that removing some of these mutants will influence the resulting quality
very little. Conversely, the UnaryOperator mutator7 has a relatively high quality deviation when
removing 10% of mutants: 0.054. This can be an indication that the absolute deviation in quality of
the individual mutants is high as well. This is indeed the case: it is 0.391. When some mutants
with outlier quality values are part of the 10% removed mutants, the resulting new quality will also
deviate more. Thus, it seems that this experiment can also be used to gauge the deviation of the
quality of individual mutants under a mutator. To test this hypothesis, this deviation was calculated
for the mutators of BigMath, and compared to the average deviation of quality when removing 10%
of mutants. The result is visible in Figure 5.2.

Here, the blue bars show the relative size of a number compared to others in its column. It can
be seen that in general where one deviation is high or low, so will the other be. The BooleanLiteral
mutator is a clear exception to this rule: its deviation of quality of individual mutants is relatively
very high, but its quality deviation when removing mutants is not. This could be explained by the
fact that the quality of an individual mutant can change when other mutants are removed. In other
words, the quality of a mutant is influenced by other mutants. This can be seen in Formula 3.14:
the value of |Ct | is directly dependent on the presence of other mutants. Thus, due to this effect,
when 10% of mutants were removed from BooleanLiteral, the remaining 90% of mutants must

6I.e. without removing mutants.
7This experiment was held prior to the implementation of deducing mutation operator names, so quality is determined

per mutator.
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Figure 5.2: Comparing the relative sizes (blue bars) of deviation of quality when removing 10% of
mutants (left column), and deviation of quality of individual mutants (right column), of mutators in
BigMath.

have resulted in a quality not too dissimilar to that of the original 100%. This would explain the
relatively low deviation when removing mutants, even though there is a high deviation in quality
among the mutants. Looking back at Figure 5.1, this effect could also explain why the quality
deviations for StrykerJS Instrumenter are higher than those of the other two programs.

Conclusion

In conclusion, the experiment described above shows that there is indeed a deviation in the found
quality when only a subset of generated mutants are used. However, the found deviation is quite
low, with absolute values under 0.1 when 30% of mutants or less are removed. Thus it is deemed
valid to forego expanding test suites to adequacy for calculating quality. The deviation could still
be harmful to the design of mutation levels using quality, but the benefits of skipping this step
outweigh the danger. This way more and larger example programs can be used. Furthermore, the
risk can be managed by using example programs with high mutation scores, such that the test suite
is still close to adequacy, resulting in a minimal deviation of quality. Looking at Table 5.1, most
example programs have a high mutation score, with the exception of CucumberJS, Freecodecamp
and Nest. Finding programs with a high mutation score is unfortunately not easy. For a program to
achieve a mutation score as high as Minesweeper, it usually means that Stryker was already used in
the development. As of writing, there are still very few open-source programs that use Stryker and
are of sufficient size. Therefore programs such as Freecodecamp, where the mutation score is very
low, were still included as they can provide a large amount of data.

Another downside to not creating adequate test suites is that equivalent mutants are also not
detected. Remember that mutation operators are penalised for generating equivalent mutants: these
are given a quality of 0. Therefore this penality is removed. It is estimated that this will have little
impact on the resulting quality however, as it is assumed that equivalent mutants are quite rare
in StrykerJS. For example, in Robobar only one equivalent mutant was found out of 98 mutants.
Nonetheless, an overview of how many equivalent mutants are generated by each of the mutation
operators of Stryker could have been valuable information for the developers of Stryker.
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5.4 Methodology

The main experiment that is done with Callisto is determining the resolution and performance
impact of mutation operators in StrykerJS. This is done primarily to design and assess mutation
levels for these mutation operators. In addition it is used to assess the difficulty of applying this
process. It also provides an opportunity to evaluate Callisto and see how it performs in a realistic
use case. The data used for this experiment comes from the nine example programs discussed in
Section 5.2. There it is explained how and why these programs were chosen.

The steps that were performed with Callisto using these example programs are as follows:

1. Run StrykerJS with the correct configuration for each example program and collect the
resulting JSON files.

2. Manually edit JSON files until they are compatible with Callisto.
3. Use Callisto to merge all JSON files into one large JSON file.
4. Run Callisto with the large JSON file as input to determine resolution and performance

impact.

The first step requires using StrykerJS with the correct configuration, such that all kill- and coverage
information is collected. This comes down to setting configuration options disableBail: true

and coverageAnalysis: perTest. To enable the generation of JSON files, the option reports

should contain "json". For the experiments in this project the option timeoutMS was set to 60,000
ms. This setting adds one minute of time to the timeout before Stryker considers a mutant as a
timeout mutant. This was done to minimise the number of false positive timeout mutants, as a
computer doing mutation testing may simply not be given the computational resources to execute
all test cases in the normal time limit due to circumstances8.

As is explained in Section 4.2, Callisto deduces mutation operator names using the information
in the JSON files. Due to several problems with test frameworks that Stryker uses, this information
occasionally contains small mistakes. This prevents Callisto from deducing a mutation operator
name. Step 2 in the methodology therefore consists of manually correcting the mistakes by editing
the JSON files by hand. This is necessary, as the mistakes are unpredictable and of a diverse nature.
Furthermore it is only a temporary solution, until Stryker implements their own system of mutation
operator names: taking the time to implement an automated solution was not deemed worthwhile.
To help find such mistakes Callisto will report any mutants for which it cannot determine a mutation
operator name through the terminal.

Callisto has the ability to accept multiple JSON reports in one session, determine results for
each separately, and then merge these results at the end. However, the mean absolute deviation of
quality cannot be merged in any statistically meaningful way. Therefore, if this deviation must be
calculated for multiple programs, then the JSON files of those programs should be merged prior.
Callisto will then regard it as one program. For this purpose Callisto has been expanded with
the ability to merge JSON mutation reports as separate functionality. Finding the mean absolute
deviation is desirable for this experiment, as it provides an answer to research sub-question 3, and
thus step 3 of the methodology consists of merging all nine JSON files into one. Furthermore,
several mutation operators in StrykerJS generate very few mutants, as the syntax token they operate
on is rarely used in JavaScript and/or TypeScript. A low mutant count will result in an unreliable
quality value. Therefore, by merging the nine example programs together, it is hoped enough
mutants are collected for such mutation operators to create a more reliable result. Note that only

8For example, other programs running in the background.
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mutant and test information in JSON files is merged, such that it can be used by Callisto. Other
information that is stored, such as the project root directory or the Stryker configuration that was
used, is not merged and is taken from the first JSON report during merging.

The last step consists of running Callisto with the merged JSON file as input. As explained
in Section 5.3, test suites are not expanded, and therefore only killed mutants9 are used. For this
Callisto is configured to filter non-killed mutants, as was explained in Section 4.1. Similarly, no
static mutants are used for calculating quality. Test executions are counted once with and once
without static mutants. This allows comparing these two results to observe the performance impact
of using static mutants.

5.5 Results

This section shows and discusses the results of applying the methodology in Section 5.4. Table 5.2
shows the raw results that Callisto produced. These are sorted alphabetically based on mutation
operator name. This table combines the results of two separate sessions of Callisto: the third
column (test executions) was taken from a second run where Callisto was configured to also count
the test executions of static mutants. All other results are from one session, where only non-static
mutants were used. Note that, aside from whether a mutant is static, test executions are counted for
all types of mutants besides killed, and that this is therefore not influenced by the decision to use
inadequate test suites. For minimising the test suite Callisto was configured to use the SAT solver,
as several indecisive minimisations occurred when using the GLOP solver. Appendix C shows the
results that Callisto produced for each example program individually.

As can be seen from the ‘count’ column, the number of killed mutants a mutation operator
may generate ranges from tens (e.g. OptionalChaining) to thousands (e.g. BlockStatement,
StringLiteralEmpty) of mutants. Note that the count represents killed, non-static mutants only: it
shows how many mutants were used to calculate the quality of an operator, and not how many
were generated by that operator in total. However, it still gives a good overview of which types
of mutants are common and which are rare. Subsequently, it indicates which syntax elements
occur often in the example programs, which represents JavaScript and TypeScript as a whole. For
example, looking at the counts of ConditionalExpression mutation operators, it is apparent that the
strict equality operator === is used far more than the ‘normal’ equality operator == in JavaScript.

There is one mutation operator in StrykerJS which is not present in Table 5.2: UpdateOpera-
torPre--To++. This is because the pre-decrement operator (--a) does not occur in any of the nine
example programs, and subsequently this mutation operator did did not generate a single mutant.
This is most likely caused by the fact that the pre-decrement operator is rarely used.

Table 5.2 makes it seem like mutating === to false occurs more often than mutating to true,
which would make no sense considering both mutations originate from the same syntax token and
therefore would be equally frequent. The difference in count is caused by the mutant filtering that
Callisto does: killed and non-static mutants are ignored. Thus, ConditionalExpression===Tofalse
may have more killed mutants and fewer static mutants than ConditionalExpression===Totrue.

9That is, only mutants killed by the initial test suite.
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Mutation Operator Count Test Executions Test Executions
Non-static Quality Quality Deviation

ArithmeticOperator%To* 14 440 440 0.929 0.027

ArithmeticOperator*To/ 39 5,941 549 0.713 0.344

ArithmeticOperator/To* 24 1,067 447 0.844 0.141

ArithmeticOperator+To- 70 3,045 1,697 0.682 0.361

ArithmeticOperator-To+ 73 1,708 1,708 0.728 0.321

ArrayDeclarationEmpty 164 58,218 2,218 0.774 0.251

ArrayDeclarationEmptyConstructor 5 1,433 85 0.767 0.08

ArrayDeclarationFill 83 19,340 3,979 0.776 0.254

ArrowFunction 371 90,508 5,600 0.772 0.246

BlockStatement 2912 169,046 45,468 0.499 0.314

BooleanLiteralfalseTotrue 112 23,899 2,635 0.707 0.357

BooleanLiteralRemoveNegation 397 22,693 8,894 0.756 0.266

BooleanLiteraltrueTofalse 100 32,168 2,133 0.879 0.164

ConditionalExpression!==Tofalse 106 18,329 9,917 0.802 0.243

ConditionalExpression!==Totrue 93 12,056 7,094 0.743 0.254

ConditionalExpression!=Tofalse 9 396 130 0.818 0.06

ConditionalExpression!=Totrue 7 396 130 0.756 0.113

ConditionalExpression<=Tofalse 23 174 174 0.694 0.362

ConditionalExpression<=Totrue 16 144 144 0.852 0.065

ConditionalExpression<Tofalse 44 6,018 2,568 0.886 0.126

ConditionalExpression<Totrue 34 3,142 3,142 0.794 0.249

ConditionalExpression===Tofalse 463 40,842 19,578 0.69 0.274

ConditionalExpression===Totrue 438 43,255 17,099 0.623 0.316

ConditionalExpression==Tofalse 6 1,135 1,135 0.833 0

ConditionalExpression==Totrue 5 437 171 0.8 0

ConditionalExpression>=Tofalse 31 2,693 2,693 0.544 0.408

ConditionalExpression>=Totrue 29 1,715 1,715 0.786 0.194

ConditionalExpression>Tofalse 123 6,656 2,810 0.794 0.236

ConditionalExpression>Totrue 114 17,409 2,779 0.691 0.336

ConditionalExpressionConditionTofalse 755 94,863 32,381 0.804 0.184

ConditionalExpressionConditionTotrue 806 76,647 27,458 0.693 0.26

ConditionalExpressionEmptyCase 142 4,083 2,113 0.704 0.376

EqualityOperator!==To=== 80 5,798 4,327 0.804 0.255

EqualityOperator!=To== 16 573 307 0.546 0.41

EqualityOperator<=To< 15 118 118 0.937 0.013

EqualityOperator<=To> 16 97 97 0.931 0.021

EqualityOperator<To<= 29 2,683 2,683 0.892 0.109

EqualityOperator<To>= 41 3,754 1,514 0.82 0.236

EqualityOperator===To!== 364 23,708 10,354 0.68 0.295

EqualityOperator==To!= 17 1,369 219 0.927 0.021

EqualityOperator>=To< 18 787 787 0.933 0.022

EqualityOperator>=To> 16 1,774 1,774 0.934 0.02

EqualityOperator>To<= 93 2,138 2,138 0.689 0.397

EqualityOperator>To>= 56 2,126 2,126 0.78 0.265

LogicalOperator&&To|| 267 30,220 7,582 0.775 0.227

LogicalOperator??To&& 27 1,761 414 0.955 0.014
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LogicalOperator||To&& 246 35,834 10,839 0.785 0.223

ObjectLiteral 456 113,759 9,945 0.627 0.364

OptionalChaining 24 2,277 929 0.945 0.023

Regex 45 97,309 889 0.688 0.232

StringLiteralEmpty 1410 644,497 47,412 0.61 0.325

StringLiteralFill 111 5,190 4,023 0.682 0.322

UnaryOperator+To- 10 167 167 0.88 0.032

UnaryOperatorRemove∼ 1 1 1 0 0

UnaryOperator-To+ 40 15,086 1,471 0.488 0.435

UpdateOperatorPost++To-- 22 1,354 1,354 0.876 0.096

UpdateOperatorPost--To++ 4 33 33 0.625 0.125

UpdateOperatorPre++To-- 1 2 2 0 0

Totals 11,033 1,752,311 320,589

Table 5.2: The quality and performance impact of all mutation operators of StrykerJS based on the
nine example programs of Table 5.1. Results are sorted alphabetically based on mutation operator
name. The performance impact can be seen with and without the inclusion of static mutants.

Figure 5.3 shows a pie chart of the mutant counts relative to the total of 11,033. It is clear
that just four mutation operators contribute more than half of all mutants. BlockStatement and
StringLiteralEmpty account for 39.2% of all mutants alone. This is not unexpected, as the syntax
tokens which these mutation operators operate on, code blocks and non-empty strings, are common
in JavaScript and TypeScript. The mutant count also hints at the performance impact of mutation
operators. After all, more mutants will require more test case executions.

Figure 5.3: Percentage of mutant counts of mutation operators relative to total of 11,033. This only
includes mutants which are killed and non-static. Note that the legend only shows the 21 mutation
operators with the highest mutant count, due to space constraints.

192199978 - FINAL PROJECT 48 of 87



Figure 5.4 shows two more pie charts concerning the test case execution counts including
and excluding static mutants. Figure 5.4 A includes static mutants, for a total of 1,752,311
test case executions. This shows that although BlockStatement accounts for the most mutants,
StringLiteralEmpty has the highest performance impact when static mutants are included. The third
largest slice here belongs to ObjectLiteral, which contributes 6.5%, even though it only contains
4.1% of mutants. The Regex mutation operator seems even more out of place here: it accounts
for 5.6% of test executions, but only contains 45, or 0.4% of mutants. This surprising number
of test executions can be explained by excluding the static mutants. Figure 5.4 B contains an
analogous pie chart for test executions for non-static mutants only, for a total of 320,589. Here
Regex only accounts for 0.28% of test executions. Comparing the two values shows that 99.09% of
test executions for all mutants of Regex originate from static mutants. In other words, ignoring
static mutants could make testing the mutants of Regex approximately 100 times faster. A similar
story can be told for many other mutation operators: most have 50% or more of test executions
come from static mutants. Some mutation operators do not have any static mutants, such as
ArithmeticOperator%to*. This is because they all generated few mutants across the nine example
programs, which happened to not include any static mutants.

Comparing the two different counts of test executions shows that static mutants account for
a majority of test executions. Only 18.30% (320,589 out of 1,752,311) of test executions are
non-static. Therefore ignoring static mutants could speed up the testing of mutants approximately
six times. This puts into perspective what performance impact static mutants have during mutation
testing. That is not to say that static mutants are less useful than others: they can also contribute to
the design of a test suite. However, as was explained in Section 4.1, static mutants have a lower
quality on average. This is why static mutants have been ignored in the calculation of quality in
Table 5.2.

Figure 5.5 shows the mean absolute quality deviation, sorted by quality. This graph serves to
illustrate how the deviation of a mutation operator relates to its quality. It clearly shows that this
deviation decreases when the quality approaches 1. This is logical, as quality cannot be higher than
1. The deviation in quality becomes much higher when it goes towards 0.5. This indicates that for
those mutation operators the quality of individual mutants is more scattered. This would in turn
explain why their quality lies around 0.5, as that is the middle value that quality can take. Thus
the quality of those mutation operators is less reliable. However, when the deviation of a mutation
operator is significantly lower than that of its neighbours in Figure 5.5, it indicates that this quality
calculation is more reliable. This is the case, for example, for the BlockStatement mutation operator,
which corresponds to the second to last point in Figure 5.5. Other low values of deviation occur due
to a low mutant count. For example, the two neighbouring visibly lower values around the middle
of the graph correspond to ArrayDeclarationEmptyConstructor and ConditionalExpression!=Totrue,
which only have five and seven mutants respectively.

This figure also gives a general overview of the quality that mutation operators have achieved
in the nine example programs. LogicalOperator??To&& has the highest quality at 0.955, and
UnaryOperator-To+ has the lowest quality at 0.488. Thus almost all mutation operators have a
quality above 0.5. What is noteworthy is that the top ten mutation operators all have a mutant count
under 30. This makes their quality less reliable, as fewer mutants were used to calculate it. There
are two mutation operators with a quality of 0 as they only have one mutant each10. These are
UnaryOperatorRemove∼ and UpdateOperatorPre++To--. They therefore also have a deviation of
0.

10Only one killed mutant automatically results in quality 0, see Formula 3.14.
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Figure 5.4: A: Percentage of test executions of mutants from mutation operators relative to total of
1,752,311.
B: Percentage of test executions of non-static mutants from mutation operators relative to total of
320,589. Note that the legends only show the 21 mutation operators with the highest test execution
count, due to space constraints.
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Figure 5.5: Mean absolute quality deviation of all mutation operators, sorted by the achieved
quality.

It can also be seen that mutation operators which are paired achieve differing quality values.
For example, BooleanLiteralfalseTotrue has quality 0.707, whereas BooleanLiteraltrueTofalse has
a higher quality of 0.879. One would expect such mutation operators get the same quality, as they
perform a very similar mutation. The difference is most likely caused by a coincidence in the data:
in the nine example programs used, BooleanLiteraltrueTofalse happens to achieve a higher quality
by chance.

To conclude, this experiment has determined the resolution and performance impact of the
mutation operators of StrykerJS, using the nine example programs of Table 5.1. It has also shown
that the applicability and difficulty of the process to get to these results is for a large part dependent
on the used mutation testing framework. Looking back at the methodology in Section 5.4, the
greater part consists of configuring StrykerJS to provide the required information, and subsequently
preparing this information for use with Callisto. Therefore, if the used mutation testing framework
is able to provide the needed information in a suitable format, then the only remaining step is to let
Callisto use this to determine the resolution and performance impact.

The other part of the process consists of finding a set of suitable example programs. This
determines how many mutants can be analysed for each mutation operator. Furthermore, to
improve the results it is recommended that adequate test suites are developed for each program,
although Section 5.3 has shown that it is possible to skip this step. In conclusion, performing the
experiment has shown that finding and mutating suitable example programs is the most arduous
task in the process. Once this is done Callisto can be easily applied. The process is therefore
deemed applicable to other mutation testing frameworks besides Stryker, given that said framework
provides the required information to calculate quality and performance impact in a usable format.

This experiment has also provided an opportunity to evaluate the performance of Callisto itself.
This has shown that it is able to come to a result in an acceptable time frame. For any example
program alone, using a modern laptop, Callisto takes less than 20 seconds to finish, with most
finishing in less than five seconds. Once all nine example programs are merged, processing with
Callisto takes approximately 15 minutes. This is longer than the times required for the individual
programs summed, as the time needed to minimise a test suite scales exponentially with the size of
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the test suite, and the number of mutants involved. Indeed, minimising the test suite takes up the
majority of the time needed by Callisto. Still, 15 minutes is quite adequate for a tool like Callisto,
as it should not be needed frequently and can be automated using a CI/CD pipeline.

The experimental results presented here will be further used in Chapter 6 to create several trial
mutation levels for StrykerJS, which are subsequently assessed to finalise the evaluation.
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6. Mutation Levels

This chapter continues with the results of Section 5.5 by using them to design mutation levels for
StrykerJS. First it is explained how the effectiveness and performance of a mutation level can be
determined using Callisto. Then several mutation levels are designed based on the found resolution
and performance impact of mutation operators. To conclude the evaluation started in Chapter 5, the
effectiveness and performance of these levels is determined, and the results are discussed.

6.1 Effectiveness of Mutation Levels

As was mentioned in the introduction, Section 1.1, selective mutation is a technique to speed up
mutation testing [27]. This technique is very similar to that of mutation levels: mutation operators
are removed to lower the cost of mutation testing, while trying to retain effectiveness. The goal is
to find a subset of mutants which is representative of the full set. To measure the effectiveness of
a chosen subset, a test suite is obtained for that set only. The subset is effective, if the mutation
score achieved by that test suite for all mutants is comparable to the mutation score achieved for the
subset. However, Delgado-Pérez et al. point out that the quality metric used here cannot be judged
in such a way [6]: “the presented quality metric focuses on test suite improvement with high-quality
test cases. Therefore, it is not the purpose of the quality metric to value operators for their potential
to predict the mutation score of the full set of operators.” They give a clear example to illustrate
this. If mutants are selected based on their quality, resistant hard-to-kill mutants are a good choice,
as these mutants are killed by only one test case, which kills only that mutant (see Section 3.4).
Then the test suite for such a subset of mutants would consist of only these test cases. However,
they would achieve a poor mutation score for the whole set of mutants, as they only kill the subset
of mutants, according to their definition. The effectiveness technique of above would therefore
judge this a poor subset of mutants for selective mutation, whereas for the design of mutation levels
such mutants are desirable.

Delgado-Pérez et al. therefore propose a new metric for evaluating the effectiveness of a
chosen subset of mutation operators. This metric will reward a subset when it leads to the design of
many high-quality test cases, by investigating survived mutants of those operators. Instead of the
mutation score, the size of the minimal test suite corresponding to a subset is compared to the size
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of the original minimal test suite. Formally:

EL =
|TL|
|T |

·100 (6.1)

Here EL is the effectiveness of the subset of mutation operators L, and |TL| is the size of the minimal
test suite induced by subset L. T is the original minimal test suite when all mutation operators
are used. Note that TL is a subset of T , i.e. it is derived from the original minimal test suite. EL is
therefore the percentage of test cases remaining in TL out of T . As a mutation level is nothing other
than a subset of mutation operators, EL can also be interpreted as the effectiveness of mutation level
L.

This metric is a suitable means for evaluating the effectiveness of a mutation level. When EL is
100%, this means no test cases were lost when using mutation level L, but as a subset of mutation
operators is used, fewer mutants are generated and therefore less time is needed to perform mutation
testing. This metric reasons from the perspective of the software tester: they want to create a high
quality test suite for their software. They can do this by using mutation testing and subsequently
investigating any survived mutants. This should lead to the design of new test cases which kill more
mutants. The tester can iterate this until they reach an adequate test suite1, which was therefore
induced by the survived mutants. When a mutation level L is used and EL is 100%, they were able
to create a test suite of equal size compared to using all mutants, while needing fewer mutants, thus
saving performance.

Another metric which naturally follows from this is the amount of performance which is saved
when using a mutation level. Callisto measures performance impact with the number of test case
executions necessary during mutation testing. Therefore, the performance saved can be calculated
using this information:

PL =
X −XL

X
·100 (6.2)

Here PL is the performance of mutation level L, and X and XL the number of test executions when
using all mutation operators or only the mutation level, respectively. PL is therefore the percentage
of test case executions that is saved by using mutation level L, as opposed to using all mutation
operators.

The ideal mutation level therefore strives to have a high effectiveness and performance. In
order to calculate these two metrics, Callisto has been equipped with the option to give a list of
mutation operators that comprises a mutation level. Then, using a provided example program,
Callisto will first determine the minimal test suite for all mutants (T ), and count the number of test
executions (X). Then the mutation level is applied by only keeping mutants generated by mutation
operators in the level. Much like with calculating quality for a mutation operator, Callisto then
minimises the test suite T again with respect to the remaining mutants, resulting in TL. Then the
test executions of these mutants can be counted to find XL. Now Formulae 6.1 and 6.2 are used to
calculate the effectiveness and performance of the mutation level, and the results are reported back
to the user in a short text file. Section 6.2 will use this functionality to gauge the usefulness of the
mutation levels designed there.

1An adequate test suite is rarely created in practice.
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6.2 Designing Mutation Levels

To conclude the evaluation performed with Stryker, several trial mutation levels are designed for
StrykerJS. These are based on the results in Table 5.2. The resolution and performance impact
determined by Callisto for each mutation operator is used to make decisions for which operators
should be selected for a level, such that it has a high effectiveness and performance according to
the two above metrics, EL and PL.

Overview

The fewer mutation operators are included in a level, the more performance, as less test case
executions are required. However, with fewer mutants the effectiveness of a level will decrease,
as the minimal test suite needed to kill them will become smaller. Designing a mutation level is
therefore a game of removing many test case executions without decreasing the size of the minimal
test suite too much.

Due to the scope of this project, a thorough investigation into which methods are effective
to design mutation levels, given the resolution and performance impact of mutation operators, is
not performed. Instead, several trial mutation levels are designed here using techniques based on
intuition. Therefore not all mutation levels here are suitable for practical use. Nonetheless, for the
purposes of the evaluation performed in this project with Stryker, the results here show promise
for the use of mutation levels to speed up mutation testing. The used techniques also provide an
answer to research sub-question 4.

The first set of mutation levels is designed in a relatively straightforward manner: a quality
threshold is set, and only mutation operators that achieved a quality greater than or equal to the
threshold are included in the level. Given that the found quality values range from around 0.50 to
0.95 in Table 5.2, thresholds were set from 0.60 to 0.85, with increments of 0.05, for a total of six
mutation levels. This increment is deemed right to illustrate how mutation levels behave throughout
the spectrum of possible thresholds. No higher or lower thresholds are used, as this would result in
mutation levels with either almost all, or barely any mutation operators.

Next a couple of levels are designed based on the performance impact measured by Callisto.
First of all, a level is created where only StringLiteralEmpty is removed from the set, as it is the
mutation operator with the highest performance impact. In a similar manner a level is created
where the four mutation operators with the highest performance impact are removed, which are
StringLiteralEmpty, BlockStatement, ConditionalExpressionConditionTofalse and ConditionalEx-
pressionConditionTotrue. Lastly a performance impact threshold was set at 1%: only mutation
operators which contribute less than or equal to 1% of test case executions were included: 40 out of
59.

Creating and testing the effectiveness and performance of a mutation level takes little effort,
as only a list of mutation operators needs to be written and given to Callisto along with an example
program to calculate the metrics. Therefore, in addition to the ones above, some mutation levels are
created which intuitively do not seem like good mutation levels. They provide the opportunity to
see how the performance and effectiveness of a ‘badly’ designed mutation level behave. Two of
such levels are inversions of previously mentioned levels: they contain all mutation operators which
its inverse does not and vice versa. These are two levels which contain only StringLiteralEmpty,
and only the four mutation operators with the highest performance impact, respectively. A similar
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level was created with only the BlockStatement operator included. Finally, to test the usefulness of
the EqualityOperator- and LogicalOperator-based mutation operators, a mutation level is created
where these operators are removed. This level is named ‘No ROR’, as effectively the ROR mutation
operator as defined in literature ([27] [7] [21] [22]) is excluded.

All the above levels are designed using techniques based solely on the quality and performance
impact of mutation operators. However, it should be remembered that mutation levels are meant
to be used in practise with StrykerJS. Although the design of the levels up to now can be justified
using quality and performance impact, on a surface level many of them seem like a random sample.
A good example of this is a level where a mutation operator such as ArithmeticOperator+To- is
included, but its counterpart ArithmeticOperator-To+ is not, due to (small) differences in quality
or performance impact. For a user of StrykerJS that wants to use mutation levels this must seem
like an odd decision. Therefore, the last set of designed mutation levels consists of several custom,
hand-made levels which try to remove mutation operators consistently. These levels build upon
themselves: The first custom level removes several mutation operators. Then the second custom
level removes more operators in addition to custom level 1, and so forth. This ensures that further
levels have a higher performance, but lower effectiveness than previous levels. By offering multiple
custom levels this way a user is given the choice of how much effectiveness they wish to ‘sacrifice’
to gain performance.

The first custom level (Custom 1), is created by removing BlockStatement, StringLiteral,
ObjectLiteral, Regex, ConditionalExpression===Tofalse, ConditionalExpression===Totrue, Equal-
ityOperator===To!== and UnaryOperator-based operators. These were chosen as most had a large
performance impact, while their quality was not exceptionally high. Any mutation of the syntax
token === is removed, as this is a common token and therefore generates many mutants.

The second custom level (Custom 2) builds on this by additionally removing ConditionalEx-
pressionEmptyCase, ConditionalExpressionConditionTofalse, ConditionalExpressionCondition-
Totrue and BooleanLiteralRemoveNegation. Once again these mutation operators are chosen as
they have a high performance impact and relatively low quality out of the remaining ones in Custom
1.

Custom level 3 additionally removes ArrayDeclarationEmpty, ArrayDeclarationEmptyCon-
structor, ArrayDeclarationFill and ArrowFunction, for the same reasons as above. Finally Custom
level 4 is the smallest of the set, where LogicalOperator||To&& and LogicalOperator&&To|| are
removed as well. Appendix D shows the exact contents of these four custom levels in a table.

Evaluation

Table 6.1 shows the results for evaluating the above mutation levels using Callisto. As example
program the merged JSON file of the nine example programs in Table 5.2 is used, as these are
also the programs from which quality and performance impact is used to design the levels. When
minimising test suites to calculate effectiveness, the SAT solver was used, just as for the results in
Section 5.5. Performance was calculated by counting test case executions for non-static mutants
only, as the same was done in Section 5.5. In addition to the effectiveness and performance, the
percentage of mutants removed is also calculated. This value usually lies close to the performance,
as the percentage of mutants removed correlates with the percentage of test case executions saved,
which is performance.
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Mutation Level Name % Mutants Removed Effectiveness (EL) Performance (PL)

<1%testsexecuted 88% 26% 83%

Custom1 57% 69% 49%

Custom2 74% 48% 71%

Custom3 81% 37% 75%

Custom4 86% 28% 80%

No ROR 32% 90% 50%

Only4WorstPerforming 47% 85% 52%

OnlyBlockStatement 78% 63% 86%

OnlyStringEmpty 83% 37% 85%

Remove4WorstPerforming 46% 76% 32%

RemoveStringEmpty 17% 92% 15%

Threshold 0.60 23% 88% 16%

Threshold 0.65 50% 74% 39%

Threshold 0.70 66% 63% 60%

Threshold 0.75 70% 57% 65%

Threshold 0.80 87% 36% 80%

Threshold 0.85 96% 13% 96%

Table 6.1: The % of mutants removed, effectiveness and performance for all mutation levels.
Results were obtained using Callisto.

Figure 6.1 plots the effectiveness against the performance of each mutation level. Levels
placed close to the top-right corner have a high effectiveness and performance, making them better
levels. An average trend line is added to better show the outliers.

Contrary to expectations, several of the ‘badly’ designed mutation levels achieved the best
effectiveness to performance ratio. ‘No ROR’, ‘Only4WorstPerforming’ and ‘OnlyBlockStatement’
scored the best. ‘No ROR’ managed to retain 90% of the test cases, while removing 50% of test
executions, which halves the time needed for executing the test suite for all mutants. This is under
the assumption that all test cases take equal time to execute, as was explained before in Section 4.1.
This indicates that the ROR-like mutation operators can be omitted without losing too many test
cases for these example programs.

Using only the BlockStatement mutation operator resulted in an effectiveness of 63%, while
86% of test case executions are removed: the effectiveness at that performance level is relatively
high. This could be caused by the nature of the mutations. First, BlockStatement empties code
blocks, which are often present all throughout the code. In other words, BlockStatement mutations
can be found spread throughout the code. Second, because of the drastic change introduced by such
mutants, they are often killed by any test case that covers them. Combining these two observations,
many test cases will remain in the test suite when minimising. At the same time, BlockStatement
alone is responsible for 14% of test case executions, which is the second-highest. However, just
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Figure 6.1: Effectiveness and performance of mutation levels visualised. A trend line is added to
showcase outliers: the closer to the top-right corner of the graph, the better a level, and vice versa.

using BlockStatement will therefore lead to a decrease in test case executions of 86%.

BlockStatement may retain many test cases, but these will often be basic test cases. Block-
Statement mutations do not often lead to well-designed test cases, as they can be easily killed by
any test case using the concerned code block. In that sense, BlockStatement can give a tester a
good overview of which code has not been covered yet.

Another factor that may have caused the OnlyBlockStatement mutation level to do so well,
is the decision to use inadequate test suites for the nine example programs. It could be that on
average, the test cases contained in the accompanying test suites are relatively simple. Perhaps
more advanced and hard-to-design test cases would have been added if the surviving mutants were
investigated. Such test cases would remain in the main minimal test suite, as they are needed to
kill specific (non-BlockStatement) mutants. But if only BlockStatement mutants are used, then
these are generally removed when minimising, resulting in a smaller test suite, and thus a lower
effectiveness for such a level. Because test suites were not made adequate, such test cases are
not present, and thus this could explain why the effectiveness of the OnlyBlockStatement level is
higher.

The Only4WorstPerforming mutation level most likely did well for the same reasons as
mentioned above for OnlyBlockStatement. After all, one of the mutation operators present in it is
BlockStatement.

The threshold mutation levels mostly performed average. Following the trend line from top to
bottom, the threshold levels can be found nearby in the order of the threshold set. This order is
logical, as a lower threshold means more mutants are included, which raises the effectiveness but
lowers the performance of a level.

Finally the four custom mutation levels achieved mixed results. Custom 1 and 2 perform
average and are placed almost exactly on the trend line. Custom 3 and 4 are very close to custom 2,
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but experience a drop in effectiveness. In the end custom 1 and 2 are favourable mutation levels, as
they use a consistent list of mutation operators, and have a decent performance and effectiveness.
Both levels can be added to StrykerJS, such that a user can choose how much effectiveness they
want to lose to gain performance. Custom 1 retains a high 69% effectiveness, while removing 49%
of test case executions, effectively doubling performance. Custom 2 flips these numbers and has an
effectiveness of 48%, while removing 71% of test case executions, between three and four times
faster.

What is apparent from these results is that there is a clear benefit to using mutation levels.
All trial levels are placed in the top-right half of the graph in Figure 6.12. This means that the
performance percentage achieved is always higher than the effectiveness percentage lost compared
to 100% effectiveness. This is a strong indication that mutation levels are a valid means to speed up
mutation testing.

This experiment showed once again that when it comes to the performance of Callisto,
minimising the test suite takes the most time. Testing the effectiveness and performance of a
mutation level often takes longer than calculating the quality, as first the main test suite needs to
be minimised, and afterwards the test suite corresponding to the mutation level must be as well.
Callisto can only test one mutation level at a time. The main test suite of the example program
must be minimised each time, which is the exact same process regardless of the mutation level.
Therefore testing several mutation levels in a row is quite inefficient. A possible solution for this
problem could be a function where Callisto can export the minimisation of a test suite, so that it
can be reused later. Alternatively an option could be added for users to provide the size of the main
minimal test suite for the process, after it has been determined once. After all, the only property of
the main minimal test suite needed is its size when analysing a mutation level.

2I.e. they are above the line from the top-left to the bottom-right corners.
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7. Conclusion

This chapter concludes the project. First the project is summarised and the research questions of
Section 1.2 are revisited and answered, after which conclusions are drawn from the project. Next
several aspects of the project and the threats to validity are discussed. Finally options for future
work concerning Callisto and the project are described.

7.1 Conclusion

This project has proposed and evaluated the use of mutation levels as a technique to speed up
mutation testing. A mutation level consists of a subset of mutation operators such that fewer
mutants are generated without losing too much resolution. Thus the focus lies on keeping subtle,
hard-to-kill mutants, such that the creation of a high-quality test suite is encouraged. In order to
design mutation levels the resolution and performance impact of mutation operators is determined.
Resolution is quantified using an existing quality metric from literature: the coverage-based quality
by Delgado-Pérez et al. [6], which in turn is an improvement upon the quality metric by Estero-
Botaro et al. [12]. Quality must be determined in an experimental setting for an example program
and its accompanying test suite. Performance is measured in the same setting by counting the
number of test case executions for each mutant. To calculate these two metrics the tool Callisto is
designed and implemented, which automates large parts of the analysis of mutation operators.

To evaluate the effectiveness of designing and using mutation levels, the technique is applied
to the mutation testing framework Stryker. Nine example programs written in JavaScript and/or
TypeScript are mutated using StrykerJS. Callisto is then used to analyse all the involved mutation
operators and determine their resolution and performance impact. These results were subsequently
used to design several trial mutation levels for StrykerJS. The effectiveness and performance of
these mutation levels were evaluated by Callisto using the decrease in minimal test suite size, and
number of test case executions saved, respectively. The mutation levels show that there is indeed
potential for an increase in performance for mutation testing, without losing too much resolution.
The performed evaluation also showed that in the process for designing mutation levels, finding
and mutating suitable example programs takes the most effort. After this, Callisto can be easily
applied, so long as the used mutation testing framework provides the required information in a
usable format.
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Looking back at the five research sub-questions described in Section 1.2, several have clear
answers now. Sub-question 1 and 2 asked how to determine the resolution and performance impact
of mutation operators, respectively. Resolution is quantified by the coverage-based quality metric
of Delgado-Pérez et al. [6], while performance impact is measured by counting the number of
test case executions during mutation testing for the mutants of a mutation operator. Callisto was
designed to calculate these metrics, based on the JSON mutation reports that Stryker creates.

Sub-question 3 asked how consistent the resolution of mutation operators was across multiple
programs. This question was addressed through Callisto by determining the mean absolute deviation
of quality for each mutation operator. The deviations in Table 5.2 and Figure 5.5 show that not
every mutation operator is consistently given the same quality across the nine example programs.
More on this in the discussion in Section 7.2.

Sub-question 4 concerned finding techniques to design suitable mutation levels, given the
resolution and performance impact of mutation operators. Section 6.2 showed several quality
thresholds being used for trial mutation levels. Based on Figure 6.1, thresholds set at 0.70 and 0.75
resulted in mutation levels with a high effectiveness to performance ratio. Another technique that
was used is the removal of mutation operators with the highest performance impact. In Section
6.2 this was done by removing only one operator, four operators, or all operators with a relative
performance impact of above 1%. Because the above techniques do not take the consistent removal
of mutation operators into account, custom designed mutation levels were made as well, such
that paired mutation operators are removed or kept together. These custom levels are linked and
incrementally remove more mutation operators, such that more performance is gained at the cost of
more effectiveness with further levels.

Finally, the effectiveness and performance of a mutation level are determined by measuring the
decrease in minimal test suite size (EL), and number of test case executions saved (PL) respectively,
which provides the answer to Sub-question 5.

For an answer to the main research question, “How to partition a set of mutation operators
into mutation levels such that these levels balance performance with resolution?”, the process
described in Chapters 4 to 6 can be followed. First the resolution and performance impact of
mutation operators is determined with Callisto, using the workflow in Figure 4.1. For this a set of
example programs is used which should meet the criteria as described in Section 5.2. Then with
the results of Callisto mutation levels can be designed by establishing thresholds or hand-picking
mutation operators based on their quality and performance impact, as demonstrated in Section 6.2.
Finally Callisto can be used to test the effectiveness and performance of designed mutation levels
using the metrics of Section 6.1.

For the mutation levels designed in Chapter 6, Custom 1 and 2 provide an adequate solution
for StrykerJS. These two levels have demonstrated a decent performance and effectiveness, where
Custom 1 retains 69% of the test suite while removing 49% of test case executions, and Custom 3
retains 48% of the test suite while removing 71% of test case executions. Other mutation levels did
better, but these two are chosen as they use a consistent set of mutation operators, which ensures
a consistent mutation testing experience, as explained in Section 6.2. Multiple levels are chosen
as this allows users of Stryker the option to choose how much resolution they wish to lose to gain
performance. Of course the third option of using all mutation operators is always available. This
will guarantee the highest resolution possible, as using the mutants generated by all operators
has the highest potential to lead to the design of new test cases. This conversely also has the
worst performance compared to any mutation level. However, should a user of Stryker disregard
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performance, for example because the program they are mutating is quite small or time is not a
factor, then using all mutation operators is the best choice.

As was mentioned in Section 1.3, the set of mutation operators that Stryker uses is always
subject to change. Consequently, the mutation levels should evolve with these changes, and therefore
the mutation levels as designed right now in this project are temporary. This is where Callisto shows
its usefulness, as it can be (re)used to determine the resolution and performance of new mutation
operators to facilitate the design of mutation levels in the future as well. Furthermore, Callisto
itself is language-agnostic: it can calculate quality and performance impact for any language, as
long as a mutation report with the required information complying to the Stryker mutation report
standard is given. This enables the possibility for the design of mutation levels for Stryker.NET and
Stryker4s1, and even other mutation testing frameworks as well. For example, PIT for Java [4] has
the capability to generate Stryker mutation reports, and therefore could be compatible with Callisto,
given that the right kill- and coverage information is present in the report. As was mentioned at the
end of Section 4.1, Callisto can also be extended to accept other forms of mutation reports, as the
workflow on which Callisto is based, Figure 4.1, can easily be adapted to other frameworks. In
conclusion, a more robust answer to the main research question is therefore Callisto itself.

Besides designing mutation levels, several other interesting and useful results were found
during the project. First of all, a thorough analysis of several mutation reports was never done for
StrykerJS. In addition to the quality and performance impact the results presented in Section 5.5
are therefore novel. An overview of how many mutants which mutation operator generates as in
Figure 5.3 is new information that provides a better perspective of the applicability of mutation
operators in JavaScript and/or TypeScript.

Second of all, comparing the third and fourth column in Table 5.2 provides an example of how
many test case executions are caused by static mutants. Moreover, as is stated in Section 5.5 as well,
a majority of 81.70% of test case executions are due to static mutants. This gives a good indication
of the performance impact that static mutants have during mutation testing, and shows that in the
case of the nine example programs used, Stryker could run approximately six times faster during
the mutant execution phase when ignoring static mutants.

Third and last of all, Callisto has implemented the minimising of test suites in order to calculate
quality. It is possible that software testers, such as users of Stryker, would like to use this directly to
analyse their test suite and remove redundant test cases. When that is the case, Callisto will already
have a working algorithm and implementation to minimise test suites. Callisto can then easily be
expanded to provide the result of minimising directly to the user.

7.2 Discussion

One of the most influential decisions for this project was to forego the expansion of test suites to
adequacy for example programs. This has allowed more and larger example programs to be used
to determine the resolution and performance impact of mutation operators in StrykerJS. Section
5.3 discussed whether this decision did not harm the reliability of the results, and showed with an
experiment that there is a small deviation in the quality when removing mutants. The deviation was
deemed safe enough to proceed, as the benefits of being able to use more mutants outweighed the
risk of the deviation. Programs such as Freecodecamp were included, despite their low mutation

1Once they provide the needed information in their mutation reports.
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score, as they still provided a large amount of mutants due to their size.

However, when designing and evaluating the mutation levels, there was an unexpected result
as some of the unintuitive mutation levels (‘No ROR’, ‘Only4WorstPerforming’, ‘OnlyBlockState-
ment’) achieved the best results. As was stated in Section 6.2, this could be explained by the use of
inadequate test suites. Furthermore, any survived mutants in an example program might be harder
to kill than those that were already killed, exactly because they were not killed by the initial test
suite. These harder to kill mutants would be given a higher quality when killed. Therefore using
adequate test suites may result in a significant increase in quality for mutation operators, especially
when the current mutation score for a program is low, such that many more mutants can be killed.
For these reasons one of the avenues for future work would be to gather a set of example programs
with (near) adequate test suites, such that their effect can be studied. Despite this possible effect,
the core methodology for calculating quality, and using it to design mutation levels is still sound.

Research sub-question 3 asked how consistent the resolution of mutation operators is over
multiple programs. To answer this question Callisto calculates the mean absolute deviation in
quality for each mutation operator. In Table 5.2 and Figure 5.5 it can be seen that the deviation for
many mutation operators is high, especially when their quality is relatively low. In other words, the
found quality of individual mutants under such mutation operators lies in a broad range. This then
indicates that there could be some inconsistency in quality among the nine individual programs
used. Appendix C shows the results that Callisto produced for each example program individually.
Comparing the results of the same operator across different programs shows the found quality can
indeed vary. For example, the BlockStatement operator achieves a quality of 0.031 in the program
BigMath (412 mutants), but in Express it achieves a quality of 0.716 (143 mutants). This can be
explained by looking at the differences in code between these programs. BigMath is written such
that it contains many BlockStatement mutants that are easily killed, which has as result that this
operator is given a low quality. In Express BlockStatement generates mutants that are harder to kill,
which results in a higher quality. In conclusion, this suggests that some mutation operators by their
nature generate mutants of diverse quality. This makes them harder to place in a mutation level.

In the process to calculate the quality of a mutation operator, as described by Estero-Botaro et
al. [12], the test suite of an example program is minimised twice. In Figure 4.1 this can be seen in
Task 7 to 9: first the initial test suite is minimised, then to calculate the quality of an operator only its
mutants are selected, after which the test suite must be minimised again to account for the reduced
number of mutants. Estero-Botaro et al. give no direct reason for this approach, but one advantage
is that it saves significant performance when calculating quality for multiple mutation operators. By
minimising the initial test suite beforehand, determining the mutation operator specific minimal test
suites has become easier, as fewer test cases and thus decision variables are present at that point.
However, this introduces the possibility for mutation operators to influence each other’s quality.
As minimising the main test suite is done with the mutants of all mutation operators, there exists
the possibility that certain test cases are removed which would have been retained when just one
mutation operator is considered for minimising. When the minimal test suite for that operator is
then determined, such test cases cannot be selected as they have been removed already in the main
minimal test suite. A different number of test cases, or test cases that kill fewer or more mutants
will change the quality outcome. An example of this effect is given in Table 7.1.
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m1 m2 m3 m4

t1 × ×

t2 × ×

t3 × ×

Table 7.1: Example kill matrix where minimising for all mutants or just m2 and m3 has different
results.

If the test suite is minimised with regard to all mutants, then retaining t1 and t2, and removing
t3 is the clear solution. However, if mutants m2 and m3 are from the same mutation operator O, and
the test suite is minimised only for O, then t3 forms the minimal test suite, as it kills both mutants. If
the workflow described above is followed, then the minimal test suite for mutation operator O will
be t1 and t2, as t3 was already removed when determining the main minimal test suite. Alternatively,
if the mutation operator specific minimal test suite of O is determined directly from the initial test
suite, then only t3 will be retained. This difference in minimal test suites will cause a difference in
quality for operator O as well.

One way to avoid this effect is thus to minimise only once for each mutation operator, directly
from the initial test suite. This way every mutation operator can choose from all test cases in the
initial test suite to form an operator specific minimal test suite. The downside is that Callisto will
require more time for minimising, as more decision variables will be present. For small programs
this performance hit will be negligible, but for large programs with several hundred test cases and
thousands of mutants this can significantly impact performance. Furthermore, the difference in
quality between the two strategies is quite small, as situations such as in Table 7.1 do not occur
often, and minimising once or twice will frequently have near-equal results.

Threats to Validity

External Validity

One threat to external validity for the experiments of Chapters 5 and 6 is the restriction to the
StrykerJS flavour of Stryker, and thus all experimental results apply to JavaScript and TypeScript
only. There is no guarantee that the same mutation operators will obtain the same quality and perfor-
mance impact when applied to another programming language, for example C# with Stryker.NET.
However, this only concerns the experimental results of this project. As mentioned above in Section
7.1, the methodology and use of Callisto is sound for any mutation testing framework and program
which can produce a suitable mutation report.

Another threat to external validity is the unreliability of some of the results in Table 5.2, caused
by low mutant counts. Because the mutators of StrykerJS are split up into 59 mutation operators,
several of those operators account for very few mutants, as they are rarely applied. By merging
the generated mutants of multiple example programs it was hoped that enough mutants would be
generated for each mutation operator to produce reliable results. However, despite the use of around
11,000 mutants, some mutation operators still have a mutant count of below ten. For example,
mutating == and != to true and false using the ConditionalExpression mutator is exceedingly
rare, as those comparison operators are seldom used in JavaScript and TypeScript.
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Internal Validity

One of the key elements for calculating quality is the test suite that comes with an example program.
It directly determines the kill- and coverage information that Callisto uses. One threat to internal
validity here is that the structure and characteristics of the initial test suite can influence the found
quality and performance impact of mutation operators. The initial test suite is created by the
developers of the nine example programs, therefore their skill and methodology for writing test
cases influences the experimental results of this project. Callisto minimises test suites to ensure
that their size does not form a bias, but there are other problems possible. For example, one test
case might contain too many assertions and should have been written as two separate cases. This
will influence the kill- and coverage information, and subsequently the results of Callisto. There is
no guarantee that such test cases are not present in the nine example programs used in this project.

7.3 Future Work

There are multiple options for future work with this project, regarding both Callisto itself, and the
experiments performed with it.

The method used for quantifying the performance impact of mutation operators can be further
improved. Currently the number of test executions needed to test the generated mutants of an
operator are counted. This relies on the assumption that each test execution takes an equal amount
of time for each mutant. As was explained in Section 4.1, this assumption does not always hold, as
test cases can have significant differences in execution time based on how they test the program.
For the scope of this project the assumption is deemed valid, as no further information regarding
the execution time of test cases is currently available for Callisto. However, a future project can
investigate this further by looking at whether test cases that take a relatively long time to execute
are commonplace or not. Alternatively an improvement can be made to Stryker to measure the time
taken for executing each test case. This information can then be included in the mutation report, so
that Callisto can use it as well.

Equivalent mutants do not play a significant role in this project. Because of the decision to
not use adequate test suites for the nine example programs, no equivalent mutants were identified
for them. It is assumed that equivalent mutants rarely occur in StrykerJS, as could be seen with
the program Robobar in Section 5.3. A possibility for future work is therefore to conduct a study
to find the frequency of occurrence of equivalent mutants in Stryker. This could be done using a
variety of existing techniques to find equivalent mutants [25]. When done on a mutation operator
basis, problematic mutation operators that generate equivalent mutants often can be identified and
re-evaluated. The results of such a study could also apply to other mutation testing frameworks or
languages where similar mutation operators are used.

In the related work, Section 2.3, the fault hierarchies of Kaminski et al. [22] were discussed.
They provide the opportunity to generate fewer mutants using the ROR mutation operator, based on
subsumption relations identified using detection conditions and logic. Future work can consist of
applying this technique on Stryker to evaluate its usefulness. Lindström and Márki [24] have shown
that the fault hierarchies only hold if the concerned mutant is executed only once. Stryker should
therefore be augmented with the ability to count this. This can be achieved using code coverage
tools.

As was explained above in Section 7.2, more suitable example programs with high mutation
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scores should be found. This way the effect of (near) adequate test suites on calculating quality can
be further investigated. It could also have an effect on the effectiveness calculation for mutation
levels, as explained in Section 6.2.

This project has not done an in-depth analysis for the individual mutation operators present
for regular expressions. As is explained in Section 4.2, regular expressions are written in their own
language and their analysis was therefore outside the scope of this project. A future project could
therefore investigate their mutation operators using Callisto. For this a sufficiently sized set of
regular expressions should be gathered, so that enough mutants are generated for each operator. For
mutation one of the flavours of Stryker can be used, so that the regular expressions are used and
tested in one of those languages.

Due to the scope of the project a limited number of methods is used in Chapter 6 to design trial
mutation levels for StrykerJS. An option for future work could therefore be to further investigate
how the resolution and performance impact of mutation operators can be used for the design of
mutation levels. This way techniques that consistently produce effective mutation levels can be
identified.

Although mutation levels were designed for StrykerJS, they have not been implemented yet.
Not all mutation levels present in Section 6.2 are usable, but as was said in the conclusion, Custom
1 and 2 are suitable. They can therefore be provided to the users of StrykerJS as an option to use
when mutation testing. The developers of StrykerJS have expressed that they would like to use
mutation levels. For this documentation should also be placed on the Stryker website, to explain
the purpose of mutation levels.

As of writing, Callisto is not yet released to the public2. One of the first tasks is therefore to
publish it. First, the open-source repository for Callisto can be hosted under the Stryker organisation
on GitHub3. This will also include a comprehensive readme to explain the purpose of Callisto,
and how to use it. Second, Callisto can be published to a package manager so that it can be easily
downloaded by anyone.

Because Callisto is currently private, it lacks several practical and quality-of-life features.
Callisto is quite naive when it comes to the given JSON file and assumes it is in good order. Several
mistakes could be present in the supplied data however. Callisto should therefore be extended
to verify the integrity of the data it is being given, and report any peculiarities to the user as
warnings. Furthermore, the current list of CLI options that Callisto accepts can be improved,
see Appendix A. Several options require the use of another option, without specifying this. For
example, when merging JSON reports, the option -m is used to indicate this, but also options -i
and -o need to be used to specify input reports and the output report path, respectively. This can be
improved by not using an option to indicate a merge, but a command word, followed by options
related to that command. Then merging with Callisto can be done by invoking callisto merge

-i input-report.json -o output-report.json. A similar approach can be followed for
determining the effectiveness and performance of a given mutation level.

The developers of Stryker would like to have the use of Callisto automated in a pipeline. Then
all steps in Figure 4.1 will be done automatically. For this a set of example programs should be set
up so that Stryker can run and collect the resulting JSON reports. This can make use of the example
programs used in this project, Table 5.1. Then Callisto can merge the reports and subsequently use

2To access (the source code of) Callisto, please contact the author.
3Found at https://github.com/stryker-mutator
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the merged report as input. This will allow Callisto to be more easily used when for example new
mutation operators are considered for Stryker.

Another possibility for Callisto is to integrate parts of it into the HTML mutation report of
Stryker. Currently there are two pages in these reports, one for the generated mutants and achieved
mutation score, and one for the test cases and their coverage of mutants. A third page could be
added for information regarding the used mutation operators. This could give an overview with the
results of Callisto as seen in Table 5.2. This will allow users to more easily see which mutation
operators have a high performance impact for their own program, so that they can choose to exclude
them for a performance increase.

Once Stryker4s and Stryker.NET support the inclusion of test case information into their
mutation reports, Callisto can be used to determine the resolution and performance impact of their
mutation operators. This can be used in the first place to design mutation levels for these flavours
of Stryker. Additionally, Stryker shares many mutation operators between its flavours: it will be
interesting to see if there is a significant difference between the results for the same operator but
across two languages.
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A. Callisto Usage

This appendix gives an overview of the usage of Callisto. Table A.1 shows all the command-line
options that Callisto can be configured with.

Name Option Arguments Description

Input -i Path(s) to JSON reports to be used Specify which JSON reports are to be used in an operation.

Output -o Path to output file Specify where to store the results of an operation.

Merge -m - Specify that Callisto will merge the input reports and store
the result in the output file.

Level -l File containing a mutation level Specify that Callisto will determine the effectiveness and
performance of the given level, using the input JSON files as
example program. Result is stored in the output file.

Killed only -k - Only use killed mutants in the operation, for when inade-
quate test suites are used.

Static -t - Include static mutants in the operation

Solver -s Name of the solver Specify which solver to use when minimising test suites.

Verbose -v - Enable detailed status updates during an operation.

Table A.1: Overview of all the command-line options that Callisto can be used with.

Callisto has three different modes of operation. By default Callisto will calculate the quality
(and its deviation) and count the test case executions for each mutation operator used in the given
example program(s), and save the result to the output file. When the merge option is used, it will
merge the input JSON files into one and store the result in the output file. When the level option is
used, Callisto will determine the effectiveness and performance of a given mutation level, according
to the metrics in Section 6.1. The level is described in a simple text file, which contains all the
mutation operators present in the level on separate lines. The calculated results are stored in a
small text report in the output file. Therefore the options -m and -l cannot be used simultaneously.
Furthermore, options -k, -t and -s are only relevant when not merging reports using -m.
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B. Deviation Experiment Tables

This appendix shows the results of the deviation experiment described in Section 5.3 per program.
Tables B.1, B.2 and B.3 show what the deviation in quality is when removing 10%, 20% or 30% of
mutants using different RNG seeds for the programs BigMath [2], StrykerJS Core [46] and StrykerJs
Instrumenter [47], respectively. Note that each value in the tables is already an average of the
deviations in quality of individual mutators for that particular RNG seed and removal percentage.

RNG Seed 10% Removed 20% Removed 30% Removed

1 0.024 0.033 0.047

2 0.018 0.022 0.039

3 0.020 0.031 0.044

4 0.013 0.025 0.030

Average 0.019 0.028 0.040

Table B.1: Deviations in quality when removing mutants from BigMath.

RNG Seed 10% Removed 20% Removed 30% Removed

1 0.019 0.025 0.034

2 0.017 0.025 0.035

3 0.021 0.029 0.036

4 0.017 0.034 0.040

Average 0.018 0.028 0.036

Table B.2: Deviations in quality when removing mutants from StrykerJS Core.
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RNG Seed 10% Removed 20% Removed 30% Removed

1 0.020 0.031 0.050

2 0.028 0.042 0.060

3 0.021 0.046 0.048

4 0.013 0.048 0.056

Average 0.021 0.042 0.054

Table B.3: Deviations in quality when removing mutants from StrykerJS Instrumenter.
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C. Callisto Individual Program Results

This appendix shows the results that Callisto produced for each of the nine example programs from
Table 5.1. Here the mutant count, quality and quality deviation were determined using non-static
mutants only. The test execution counts do include static mutants. Note that these results cannot be
directly combined to form the results of Table 5.2. The results there are calculated from the merged
JSON report of all nine example programs, and therefore the found quality was determined using all
mutants of an operator across all those programs. The results here are isolated from other programs.
The quality of an operator is influenced by the number of mutants used for the calculation, and thus
the results here cannot be averaged to find the results of Table 5.2.

Several results show a mutant count of 0. This occurs when all the mutants a mutation operator
generated were not usable to calculate quality with, i.e. they were not killed, or static mutants. The
result is still shown, as test executions could be counted for those mutation operators, since that is
done for survived or static mutants as well.

The tables do not show the results for the complete set of 59 mutation operators, as not every
operator could be applied to every example program. Furthermore, operator results where no
mutants or test executions were counted have been removed as well. This occurs when a mutation
operator generates mutants that cannot be tested, for example because they are not covered by any
test cases, or caused an error. They therefore cannot be used to calculate quality, and also did not
cause any test case executions, making them irrelevant for the design of mutation levels.

Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator%To* 10 407 0.906 0.036

ArithmeticOperator*To/ 24 392 0.543 0.418

ArithmeticOperator/To* 10 294 0.718 0.144

ArithmeticOperator+To- 16 567 0.756 0.189

ArithmeticOperator-To+ 20 991 0.238 0.358

ArrayDeclarationEmpty 3 11 0.667 0.000

ArrowFunction 0 8,370 0.000 0.000

BlockStatement 412 4,652 0.031 0.049

BooleanLiteralfalseTotrue 35 3,741 0.643 0.354

BooleanLiteralRemoveNegation 16 70 0.926 0.022

BooleanLiteraltrueTofalse 14 684 0.688 0.310
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ConditionalExpression!==Tofalse 18 869 0.525 0.363

ConditionalExpression!==Totrue 13 370 0.406 0.311

ConditionalExpression<=Tofalse 8 57 0.750 0.094

ConditionalExpression<=Totrue 7 29 0.694 0.105

ConditionalExpression<Tofalse 15 1,154 0.800 0.132

ConditionalExpression<Totrue 13 897 0.563 0.317

ConditionalExpression===Tofalse 58 1,503 0.728 0.261

ConditionalExpression===Totrue 58 896 0.376 0.330

ConditionalExpression>=Tofalse 3 126 0.667 0.000

ConditionalExpression>=Totrue 3 126 0.667 0.000

ConditionalExpression>Tofalse 18 1,168 0.664 0.262

ConditionalExpression>Totrue 20 1,168 0.378 0.287

ConditionalExpressionConditionTofalse 32 1,090 0.708 0.252

ConditionalExpressionConditionTotrue 30 821 0.345 0.386

ConditionalExpressionEmptyCase 6 946 0.333 0.333

EqualityOperator!==To=== 9 341 0.709 0.135

EqualityOperator<=To< 5 41 0.800 0.000

EqualityOperator<=To> 5 20 0.800 0.000

EqualityOperator<To<= 11 1,002 0.780 0.137

EqualityOperator<To>= 15 798 0.588 0.350

EqualityOperator===To!== 45 635 0.628 0.336

EqualityOperator==To!= 5 24 0.720 0.096

EqualityOperator>=To< 3 126 0.667 0.000

EqualityOperator>=To> 3 126 0.667 0.000

EqualityOperator>To<= 19 1,162 0.297 0.372

EqualityOperator>To>= 11 1,181 0.794 0.137

LogicalOperator&&To|| 10 84 0.788 0.115

LogicalOperator||To&& 14 191 0.898 0.035

ObjectLiteral 70 7,411 0.313 0.349

StringLiteralEmpty 94 4,095 0.434 0.126

StringLiteralFill 6 554 0.333 0.222

UnaryOperator+To- 8 163 0.844 0.047

UnaryOperatorRemove∼ 1 1 0.000 0.000

UnaryOperator-To+ 26 3,787 0.220 0.218

UpdateOperatorPost++To-- 4 47 0.750 0.000

Table C.1: Callisto results for BigMath.

Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator%To* 1 12 0.000 0.000

ArithmeticOperator*To/ 3 26 0.444 0.148

ArithmeticOperator/To* 1 2 0.000 0.000

ArithmeticOperator+To- 9 226 0.328 0.381

ArithmeticOperator-To+ 5 125 0.790 0.080

ArrayDeclarationEmpty 26 6,548 0.474 0.405

ArrayDeclarationFill 29 1,287 0.560 0.257

ArrowFunction 73 4,215 0.606 0.244

192199978 - FINAL PROJECT 76 of 87



BlockStatement 415 15,900 0.367 0.214

BooleanLiteralfalseTotrue 9 346 0.099 0.176

BooleanLiteralRemoveNegation 9 439 0.892 0.032

BooleanLiteraltrueTofalse 7 280 0.607 0.173

ConditionalExpression!==Tofalse 10 599 0.818 0.055

ConditionalExpression!==Totrue 12 594 0.665 0.255

ConditionalExpression!=Tofalse 5 381 0.320 0.192

ConditionalExpression!=Totrue 3 381 0.750 0.000

ConditionalExpression<Tofalse 4 170 0.458 0.146

ConditionalExpression<Totrue 2 93 0.000 0.000

ConditionalExpression===Tofalse 73 1,735 0.642 0.218

ConditionalExpression===Totrue 55 4,071 0.704 0.249

ConditionalExpression==Tofalse 3 31 0.667 0.000

ConditionalExpression==Totrue 1 297 0.000 0.000

ConditionalExpression>=Tofalse 1 12 0.000 0.000

ConditionalExpression>=Totrue 2 18 0.500 0.000

ConditionalExpression>Tofalse 15 233 0.632 0.274

ConditionalExpression>Totrue 14 233 0.755 0.136

ConditionalExpressionConditionTofalse 103 4,460 0.746 0.167

ConditionalExpressionConditionTotrue 99 3,611 0.529 0.292

ConditionalExpressionEmptyCase 17 143 0.581 0.377

EqualityOperator!==To=== 11 407 0.824 0.127

EqualityOperator!=To== 7 489 0.095 0.163

EqualityOperator<To<= 1 93 0.000 0.000

EqualityOperator<To>= 3 93 0.333 0.222

EqualityOperator===To!== 60 1,945 0.530 0.315

EqualityOperator==To!= 3 31 0.667 0.000

EqualityOperator>=To< 1 12 0.000 0.000

EqualityOperator>=To> 0 16 0.000 0.000

EqualityOperator>To<= 14 210 0.451 0.407

EqualityOperator>To>= 10 210 0.763 0.121

LogicalOperator&&To|| 15 547 0.623 0.264

LogicalOperator||To&& 15 275 0.789 0.141

ObjectLiteral 157 8,926 0.432 0.248

OptionalChaining 1 16 0.000 0.000

Regex 3 2,216 0.444 0.148

StringLiteralEmpty 201 15,284 0.502 0.280

StringLiteralFill 49 727 0.299 0.304

UnaryOperator-To+ 2 2 0.500 0.000

UpdateOperatorPost++To-- 0 8 0.000 0.000

Table C.2: Callisto results for CucumberJS.

Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator+To- 6 239 0.550 0.272

ArithmeticOperator-To+ 1 71 0.000 0.000

ArrayDeclarationEmpty 2 1,157 0.500 0.000
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ArrayDeclarationEmptyConstructor 1 11 0.000 0.000

ArrayDeclarationFill 2 2,135 0.667 0.000

BlockStatement 143 32,830 0.716 0.186

BooleanLiteralfalseTotrue 8 6,185 0.833 0.056

BooleanLiteralRemoveNegation 31 5,374 0.705 0.204

BooleanLiteraltrueTofalse 2 16,249 0.500 0.000

ConditionalExpression!==Tofalse 25 16,219 0.883 0.102

ConditionalExpression!==Totrue 28 10,417 0.773 0.160

ConditionalExpression!=Tofalse 4 15 0.855 0.037

ConditionalExpression!=Totrue 4 15 0.688 0.094

ConditionalExpression<Tofalse 4 4,447 0.625 0.125

ConditionalExpression<Totrue 3 1,953 0.889 0.000

ConditionalExpression===Tofalse 45 23,703 0.847 0.109

ConditionalExpression===Totrue 45 22,985 0.771 0.158

ConditionalExpression==Tofalse 2 1,077 0.500 0.000

ConditionalExpression==Totrue 2 93 0.500 0.000

ConditionalExpression>=Tofalse 5 2,195 0.551 0.140

ConditionalExpression>=Totrue 4 1,211 0.688 0.094

ConditionalExpression>Tofalse 3 1,234 0.444 0.148

ConditionalExpression>Totrue 2 1,234 0.500 0.000

ConditionalExpressionConditionTofalse 68 23,483 0.927 0.059

ConditionalExpressionConditionTotrue 69 18,071 0.809 0.125

ConditionalExpressionEmptyCase 6 1,303 0.611 0.111

EqualityOperator!==To=== 17 4,510 0.840 0.153

EqualityOperator!=To== 6 63 0.806 0.093

EqualityOperator<To<= 4 1,373 0.786 0.071

EqualityOperator<To>= 4 2,644 0.625 0.125

EqualityOperator===To!== 30 11,512 0.692 0.226

EqualityOperator==To!= 2 1,243 0.500 0.000

EqualityOperator>=To< 2 476 0.750 0.000

EqualityOperator>=To> 2 1,459 0.000 0.000

EqualityOperator>To<= 2 81 0.500 0.000

EqualityOperator>To>= 1 81 0.000 0.000

LogicalOperator&&To|| 24 6,003 0.813 0.183

LogicalOperator||To&& 29 10,390 0.809 0.109

ObjectLiteral 6 10,599 0.889 0.030

Regex 3 9,220 0.000 0.000

StringLiteralEmpty 168 120,987 0.815 0.129

StringLiteralFill 8 2,021 0.929 0.023

UnaryOperator-To+ 4 384 0.625 0.125

UpdateOperatorPost++To-- 5 1,128 0.545 0.168

UpdateOperatorPre++To-- 1 1 0.000 0.000

Table C.3: Callisto results for Express.
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Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator*To/ 2 16 0.500 0.000

ArithmeticOperator/To* 2 11 0.500 0.000

ArithmeticOperator+To- 0 5 0.000 0.000

ArithmeticOperator-To+ 5 19 0.320 0.192

ArrayDeclarationEmpty 3 1,117 0.667 0.000

ArrayDeclarationFill 3 337 0.667 0.000

ArrowFunction 25 5,723 0.800 0.165

BlockStatement 149 1,820 0.343 0.411

BooleanLiteralfalseTotrue 1 804 0.000 0.000

BooleanLiteralRemoveNegation 16 130 0.871 0.071

BooleanLiteraltrueTofalse 8 476 0.833 0.056

ConditionalExpression!==Tofalse 9 206 0.716 0.143

ConditionalExpression!==Totrue 4 206 0.625 0.125

ConditionalExpression<=Tofalse 0 6 0.000 0.000

ConditionalExpression<=Totrue 0 4 0.000 0.000

ConditionalExpression<Tofalse 2 30 0.000 0.000

ConditionalExpression<Totrue 2 18 0.500 0.000

ConditionalExpression===Tofalse 25 354 0.708 0.231

ConditionalExpression===Totrue 26 354 0.903 0.068

ConditionalExpression>=Tofalse 1 5 0.000 0.000

ConditionalExpression>=Totrue 1 5 0.000 0.000

ConditionalExpression>Tofalse 12 68 0.803 0.092

ConditionalExpression>Totrue 14 68 0.491 0.421

ConditionalExpressionConditionTofalse 33 414 0.815 0.150

ConditionalExpressionConditionTotrue 34 394 0.731 0.262

ConditionalExpressionEmptyCase 1 12 0.000 0.000

EqualityOperator!==To=== 9 144 0.765 0.066

EqualityOperator<=To< 0 4 0.000 0.000

EqualityOperator<=To> 0 4 0.000 0.000

EqualityOperator<To<= 1 17 0.000 0.000

EqualityOperator<To>= 2 17 0.500 0.000

EqualityOperator===To!== 21 254 0.909 0.030

EqualityOperator==To!= 2 20 0.000 0.000

EqualityOperator>=To< 1 5 0.000 0.000

EqualityOperator>=To> 1 5 0.000 0.000

EqualityOperator>To<= 7 26 0.816 0.058

EqualityOperator>To>= 3 26 0.444 0.148

LogicalOperator&&To|| 22 311 0.655 0.284

LogicalOperator??To&& 1 8 0.000 0.000

LogicalOperator||To&& 10 104 0.840 0.048

ObjectLiteral 20 1,920 0.856 0.091

OptionalChaining 3 243 0.667 0.000

Regex 18 288 0.503 0.391

StringLiteralEmpty 211 4,891 0.281 0.340

StringLiteralFill 9 311 0.741 0.165

UpdateOperatorPost++To-- 1 14 0.000 0.000

UpdateOperatorPost--To++ 1 10 0.000 0.000
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Table C.4: Callisto results for Freecodecamp.

Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator*To/ 4 50 0.000 0.000

ArithmeticOperator/To* 3 38 0.583 0.111

ArithmeticOperator+To- 7 180 0.122 0.210

ArithmeticOperator-To+ 9 245 0.766 0.035

ArrayDeclarationEmpty 33 730 0.767 0.138

ArrayDeclarationEmptyConstructor 2 30 0.000 0.000

ArrayDeclarationFill 0 20 0.000 0.000

ArrowFunction 15 1,048 0.887 0.065

BlockStatement 52 862 0.487 0.221

BooleanLiteralfalseTotrue 8 221 0.677 0.212

BooleanLiteralRemoveNegation 3 26 0.800 0.000

BooleanLiteraltrueTofalse 2 36 0.500 0.000

ConditionalExpression!==Tofalse 1 3 0.000 0.000

ConditionalExpression!==Totrue 1 3 0.000 0.000

ConditionalExpression<Tofalse 5 68 0.627 0.152

ConditionalExpression<Totrue 3 44 0.444 0.148

ConditionalExpression===Tofalse 18 303 0.546 0.364

ConditionalExpression===Totrue 18 303 0.468 0.312

ConditionalExpression>=Tofalse 5 170 0.000 0.000

ConditionalExpression>=Totrue 5 170 0.600 0.080

ConditionalExpression>Tofalse 8 116 0.829 0.059

ConditionalExpression>Totrue 8 116 0.590 0.244

ConditionalExpressionConditionTofalse 11 206 0.883 0.048

ConditionalExpressionConditionTotrue 11 206 0.649 0.157

ConditionalExpressionEmptyCase 8 233 0.234 0.293

EqualityOperator!==To=== 1 3 0.000 0.000

EqualityOperator<To<= 4 56 0.829 0.029

EqualityOperator<To>= 4 56 0.375 0.188

EqualityOperator===To!== 12 210 0.491 0.234

EqualityOperator==To!= 1 3 0.000 0.000

EqualityOperator>=To< 2 68 0.000 0.000

EqualityOperator>=To> 2 68 0.000 0.000

EqualityOperator>To<= 3 76 0.000 0.000

EqualityOperator>To>= 3 76 0.467 0.178

LogicalOperator&&To|| 14 214 0.425 0.373

LogicalOperator??To&& 1 42 0.000 0.000

LogicalOperator||To&& 1 13 0.000 0.000

ObjectLiteral 6 362 0.444 0.148

StringLiteralEmpty 17 1,563 0.261 0.328

UpdateOperatorPost++To-- 3 66 0.000 0.000

UpdateOperatorPost--To++ 2 22 0.000 0.000

Table C.5: Callisto results for Minesweeper.
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Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator+To- 1 68 0.000 0.000

ArithmeticOperator-To+ 4 9 0.750 0.000

ArrayDeclarationEmpty 1 3,719 0.000 0.000

ArrayDeclarationFill 4 137 0.700 0.100

ArrowFunction 33 828 0.849 0.093

BlockStatement 119 2,156 0.838 0.151

BooleanLiteralfalseTotrue 6 162 0.875 0.000

BooleanLiteralRemoveNegation 13 231 0.908 0.042

BooleanLiteraltrueTofalse 6 139 0.880 0.015

ConditionalExpression<=Tofalse 2 20 0.000 0.000

ConditionalExpression<=Totrue 1 20 0.000 0.000

ConditionalExpression<Tofalse 0 5 0.000 0.000

ConditionalExpression===Tofalse 21 571 0.716 0.191

ConditionalExpression===Totrue 20 589 0.711 0.266

ConditionalExpression==Tofalse 1 27 0.000 0.000

ConditionalExpression==Totrue 1 27 0.000 0.000

ConditionalExpression>=Tofalse 4 81 0.000 0.000

ConditionalExpression>=Totrue 4 81 0.000 0.000

ConditionalExpression>Tofalse 11 256 0.862 0.099

ConditionalExpression>Totrue 9 241 0.296 0.395

ConditionalExpressionConditionTofalse 22 614 0.831 0.143

ConditionalExpressionConditionTotrue 22 708 0.825 0.141

ConditionalExpressionEmptyCase 27 1,049 0.756 0.288

EqualityOperator<=To< 1 10 0.000 0.000

EqualityOperator<=To> 1 10 0.000 0.000

EqualityOperator<To<= 0 5 0.000 0.000

EqualityOperator<To>= 0 5 0.000 0.000

EqualityOperator===To!== 21 423 0.706 0.189

EqualityOperator==To!= 1 27 0.000 0.000

EqualityOperator>=To< 2 33 0.000 0.000

EqualityOperator>=To> 2 33 0.667 0.000

EqualityOperator>To<= 11 194 0.413 0.451

EqualityOperator>To>= 7 156 0.122 0.210

LogicalOperator&&To|| 8 266 0.787 0.148

LogicalOperator??To&& 1 34 0.000 0.000

LogicalOperator||To&& 10 284 0.764 0.153

ObjectLiteral 1 75 0.000 0.000

OptionalChaining 0 23 0.000 0.000

StringLiteralEmpty 161 10,722 0.880 0.107

StringLiteralFill 7 353 0.661 0.209

UnaryOperator-To+ 1 20 0.000 0.000

UpdateOperatorPost++To-- 2 37 0.000 0.000

Table C.6: Callisto results for Mutation Testing Elements.
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Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator%To* 1 2 0.000 0.000

ArithmeticOperator*To/ 0 5,392 0.000 0.000

ArithmeticOperator+To- 6 1,497 0.778 0.074

ArithmeticOperator-To+ 11 57 0.793 0.114

ArrayDeclarationEmpty 53 34,085 0.929 0.087

ArrayDeclarationEmptyConstructor 0 1,352 0.000 0.000

ArrayDeclarationFill 37 14,042 0.868 0.151

ArrowFunction 167 68,506 0.825 0.234

BlockStatement 1,197 103,614 0.605 0.279

BooleanLiteralfalseTotrue 23 11,150 0.951 0.012

BooleanLiteralRemoveNegation 253 15,503 0.689 0.299

BooleanLiteraltrueTofalse 33 11,181 0.933 0.067

ConditionalExpression!==Tofalse 37 284 0.792 0.250

ConditionalExpression!==Totrue 28 304 0.803 0.175

ConditionalExpression<=Tofalse 7 51 0.900 0.000

ConditionalExpression<=Totrue 4 51 0.625 0.125

ConditionalExpression<Tofalse 2 6 0.500 0.000

ConditionalExpression===Tofalse 120 10,710 0.647 0.382

ConditionalExpression===Totrue 123 12,043 0.635 0.361

ConditionalExpression==Totrue 1 20 0.000 0.000

ConditionalExpression>=Tofalse 4 16 0.625 0.125

ConditionalExpression>=Totrue 5 16 0.720 0.096

ConditionalExpression>Tofalse 21 2,961 0.877 0.093

ConditionalExpression>Totrue 19 13,752 0.935 0.022

ConditionalExpressionConditionTofalse 365 60,401 0.786 0.206

ConditionalExpressionConditionTotrue 442 49,570 0.717 0.248

ConditionalExpressionEmptyCase 47 102 0.791 0.303

EqualityOperator!==To=== 28 156 0.764 0.292

EqualityOperator!=To== 1 2 0.000 0.000

EqualityOperator<=To< 7 51 0.900 0.000

EqualityOperator<=To> 8 51 0.875 0.037

EqualityOperator<To<= 1 2 0.000 0.000

EqualityOperator<To>= 2 6 0.500 0.000

EqualityOperator===To!== 93 7,450 0.738 0.290

EqualityOperator==To!= 2 12 0.500 0.000

EqualityOperator>=To< 4 12 0.750 0.000

EqualityOperator>=To> 3 12 0.667 0.000

EqualityOperator>To<= 9 68 0.864 0.038

EqualityOperator>To>= 4 75 0.625 0.125

LogicalOperator&&To|| 144 22,065 0.813 0.190

LogicalOperator??To&& 11 1,495 0.909 0.023

LogicalOperator||To&& 132 23,486 0.783 0.244

ObjectLiteral 153 76,484 0.852 0.216

OptionalChaining 18 1,834 0.925 0.031

Regex 12 72,918 0.781 0.069

StringLiteralEmpty 160 396,086 0.603 0.413

StringLiteralFill 14 302 0.910 0.036
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UnaryOperator+To- 2 4 0.500 0.000

UnaryOperator-To+ 4 10,816 0.750 0.000

UpdateOperatorPost++To-- 2 9 0.500 0.000

UpdateOperatorPre++To-- 0 1 0.000 0.000

Table C.7: Callisto results for Nest.

Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator%To* 2 19 0.500 0.000

ArithmeticOperator*To/ 6 65 0.762 0.063

ArithmeticOperator/To* 8 722 0.611 0.194

ArithmeticOperator+To- 16 183 0.697 0.228

ArithmeticOperator-To+ 14 163 0.815 0.150

ArrayDeclarationEmpty 23 8,356 0.888 0.104

ArrayDeclarationEmptyConstructor 2 40 0.667 0.000

ArrayDeclarationFill 7 1,380 0.816 0.058

ArrowFunction 46 1,375 0.820 0.213

BlockStatement 319 4,989 0.569 0.309

BooleanLiteralfalseTotrue 6 641 0.833 0.000

BooleanLiteralRemoveNegation 36 429 0.914 0.064

BooleanLiteraltrueTofalse 13 2,678 0.889 0.073

ConditionalExpression!==Tofalse 5 106 0.833 0.000

ConditionalExpression!==Totrue 6 119 0.810 0.063

ConditionalExpression<Tofalse 10 124 0.903 0.028

ConditionalExpression<Totrue 9 123 0.747 0.175

ConditionalExpression===Tofalse 53 855 0.823 0.178

ConditionalExpression===Totrue 43 854 0.861 0.151

ConditionalExpression>=Tofalse 2 47 0.000 0.000

ConditionalExpression>=Totrue 1 47 0.000 0.000

ConditionalExpression>Tofalse 26 365 0.840 0.151

ConditionalExpression>Totrue 19 339 0.868 0.099

ConditionalExpressionConditionTofalse 69 2,453 0.886 0.123

ConditionalExpressionConditionTotrue 63 1,852 0.818 0.225

ConditionalExpressionEmptyCase 16 82 0.877 0.101

EqualityOperator!==To=== 4 194 0.575 0.188

EqualityOperator!=To== 2 19 0.500 0.000

EqualityOperator<To<= 5 121 0.800 0.000

EqualityOperator<To>= 9 121 0.778 0.173

EqualityOperator===To!== 49 746 0.815 0.207

EqualityOperator==To!= 1 9 0.000 0.000

EqualityOperator>=To< 1 42 0.000 0.000

EqualityOperator>=To> 1 42 0.000 0.000

EqualityOperator>To<= 23 297 0.897 0.034

EqualityOperator>To>= 14 297 0.916 0.029

LogicalOperator&&To|| 15 274 0.908 0.074

LogicalOperator??To&& 10 69 0.860 0.048

LogicalOperator||To&& 10 126 0.643 0.235
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ObjectLiteral 28 7,067 0.881 0.115

OptionalChaining 1 103 0.000 0.000

Regex 0 7,440 0.000 0.000

StringLiteralEmpty 351 76,931 0.687 0.303

StringLiteralFill 12 847 0.826 0.096

UnaryOperator-To+ 3 27 0.667 0.000

UpdateOperatorPost++To-- 5 45 0.667 0.133

UpdateOperatorPost--To++ 1 1 0.000 0.000

Table C.8: Callisto results for StrykerJS Core.

Mutation Operator Count Test Executions Quality Quality Deviation
ArithmeticOperator+To- 9 80 0.716 0.143

ArithmeticOperator-To+ 4 28 0.800 0.000

ArrayDeclarationEmpty 20 2,495 0.622 0.282

ArrayDeclarationFill 1 2 0.000 0.000

ArrowFunction 12 443 0.525 0.231

BlockStatement 106 2,223 0.601 0.273

BooleanLiteralfalseTotrue 16 649 0.365 0.320

BooleanLiteralRemoveNegation 20 491 0.733 0.165

BooleanLiteraltrueTofalse 15 445 0.635 0.201

ConditionalExpression!==Tofalse 1 43 0.000 0.000

ConditionalExpression!==Totrue 1 43 0.000 0.000

ConditionalExpression<=Tofalse 6 40 0.000 0.000

ConditionalExpression<=Totrue 4 40 0.000 0.000

ConditionalExpression<Tofalse 2 14 0.750 0.000

ConditionalExpression<Totrue 2 14 0.000 0.000

ConditionalExpression===Tofalse 50 1,108 0.681 0.194

ConditionalExpression===Totrue 50 1,160 0.606 0.248

ConditionalExpression>=Tofalse 6 41 0.000 0.000

ConditionalExpression>=Totrue 4 41 0.438 0.188

ConditionalExpression>Tofalse 9 255 0.289 0.385

ConditionalExpression>Totrue 9 258 0.821 0.071

ConditionalExpressionConditionTofalse 52 1,742 0.831 0.117

ConditionalExpressionConditionTotrue 36 1,414 0.639 0.166

ConditionalExpressionEmptyCase 14 213 0.612 0.301

EqualityOperator!==To=== 1 43 0.000 0.000

EqualityOperator<=To< 2 12 0.000 0.000

EqualityOperator<=To> 2 12 0.000 0.000

EqualityOperator<To<= 2 14 0.750 0.000

EqualityOperator<To>= 2 14 0.000 0.000

EqualityOperator===To!== 33 533 0.461 0.310

EqualityOperator>=To< 2 13 0.000 0.000

EqualityOperator>=To> 2 13 0.750 0.000

EqualityOperator>To<= 5 24 0.857 0.000

EqualityOperator>To>= 3 24 0.667 0.000

LogicalOperator&&To|| 15 456 0.851 0.074
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LogicalOperator??To&& 3 113 0.444 0.148

LogicalOperator||To&& 25 965 0.789 0.101

ObjectLiteral 15 915 0.688 0.184

OptionalChaining 1 58 0.000 0.000

Regex 9 5,227 0.679 0.066

StringLiteralEmpty 47 13,938 0.757 0.214

StringLiteralFill 6 75 0.611 0.111

Table C.9: Callisto results for StrykerJS Instrumenter.
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D. Custom Mutation Level Contents

This appendix shows the contents of the four custom mutation levels designed in Chapter 6. Table
D.1 shows a list of all the 59 mutation operators present in StrykerJS. A cross marks that they have
been included in the custom mutation level corresponding to that column. Because the custom
mutation levels progressively remove more mutation operators, any mutation operator not present
in Custom 1 is also removed from subsequent custom levels. Any operator removed in Custom 2 is
also removed from Custom 3 and 4, and so on.

Mutation Operator Custom 1 Custom 2 Custom 3 Custom 4
ArithmeticOperator%To* × × × ×

ArithmeticOperator*To/ × × × ×

ArithmeticOperator/To* × × × ×

ArithmeticOperator+To- × × × ×

ArithmeticOperator-To+ × × × ×

ArrayDeclarationEmpty × ×

ArrayDeclarationEmptyConstructor × ×

ArrayDeclarationFill × ×

ArrowFunction × ×

BlockStatement

BooleanLiteralfalseTotrue × × × ×

BooleanLiteralRemoveNegation ×

BooleanLiteraltrueTofalse × × × ×

ConditionalExpression!==Tofalse × × × ×

ConditionalExpression!==Totrue × × × ×

ConditionalExpression!=Tofalse × × × ×

ConditionalExpression!=Totrue × × × ×

ConditionalExpression<=Tofalse × × × ×

ConditionalExpression<=Totrue × × × ×

ConditionalExpression<Tofalse × × × ×

ConditionalExpression<Totrue × × × ×

ConditionalExpression===Tofalse

ConditionalExpression===Totrue

ConditionalExpression==Tofalse × × × ×

ConditionalExpression==Totrue × × × ×
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ConditionalExpression>=Tofalse × × × ×

ConditionalExpression>=Totrue × × × ×

ConditionalExpression>Tofalse × × × ×

ConditionalExpression>Totrue × × × ×

ConditionalExpressionConditionTofalse ×

ConditionalExpressionConditionTotrue ×

ConditionalExpressionEmptyCase ×

EqualityOperator!==To=== × × × ×

EqualityOperator!=To== × × × ×

EqualityOperator<=To< × × × ×

EqualityOperator<=To> × × × ×

EqualityOperator<To<= × × × ×

EqualityOperator<To>= × × × ×

EqualityOperator===To!==

EqualityOperator==To!= × × × ×

EqualityOperator>=To< × × × ×

EqualityOperator>=To> × × × ×

EqualityOperator>To<= × × × ×

EqualityOperator>To>= × × × ×

LogicalOperator&&To|| × × ×

LogicalOperator??To&& × × × ×

LogicalOperator||To&& × × ×

ObjectLiteral

OptionalChaining × × × ×

Regex

StringLiteralEmpty

StringLiteralFill

UnaryOperator+To-

UnaryOperatorRemove∼

UnaryOperator-To+

UpdateOperatorPost++To-- × × × ×

UpdateOperatorPost--To++ × × × ×

UpdateOperatorPre++To-- × × × ×

UpdateOperatorPre--To++ × × × ×

Table D.1: Contents of the four custom mutation levels designed in Chapter 6.
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