
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Accelerating selective sweep
detection software

with the GPU architecture

Reinout Corts
M.Sc. Thesis

20 January 2022

Supervisors:
dr. ir. M. E. T. Gerards

dr. ir. N. Alachiotis
dr. ir. A. B. J. Kokkeler

Computer Architecture for Embedded Systems
Faculty of Electrical Engineering,

Mathematics & Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Selective sweep detection software processes sequenced genomic data to localize
targets of recent and strong positive selection. These targets are found by analyz-
ing Single-Nucleotide Polymorphisms (SNPs) in the genomic data which is stored
as Multiple Sequence Alignments (MSAs). Due to advances in DNA sequencing,
the amount of DNA data available is increasing rapidly. This causes Bioinformatics
workloads to become more complex and especially more computational demand-
ing. As multiple sequence alignment algorithms have been a big topic of research
to cope with the surge of genomic data, Bioinformatics algorithms further up the
processing pipeline, as selective sweep detection software, reveal high execution
times for these large amounts of genomic data. This master thesis describes ac-
celeration of a state-of-the-art selective sweep detection tool called OmegaPlus [1],
[2], using the GPU architecture. The goal of this project is to boost performance of
the selective sweep detection tool by utilizing the massively parallel architecture of
the GPU and by providing a stepping stone for further research on this topic. The
project focuses on implementing an optimized GPU kernel in which several GPU ac-
celeration techniques are applied. The developed solution extends OmegaPlus with
GPU-acceleration capabilities using the OpenCL General-Purpose GPU (GPGPU)
framework [3]. OmegaPlus is based on Linkage Disequilibrium (LD), which is the
non-random association of SNPs on different positions in the genomic data. The
tool implements the ω-statistic that uses LD to accurately localize selective sweeps.
Both the LD computation and the ω-statistic computation are compute intensive
parts of the tool which together take up >95% of the total execution time. These
compute intensive parts are targeted for GPU-acceleration. The LD computation in
OmegaPlus is accelerated using an adaptation of an existing, highly optimized tool
that utilizes Dense Linear Algebra (DLA) operations mapped on the GPU architec-
ture. The ω-statistic computation is accelerated using a novel dynamic approach
for different workloads. Two kernels have been developed for either a high or low
ω-statistic workload. A performance evaluation using simulated datasets showed
that the GPU-accelerated ω-statistic computation is up to 3.37x faster than the cor-
responding sequential implementation and the GPU-accelerated LD computation
is up to 33.75x faster than the corresponding sequential implementation using the

iii

IV ABSTRACT

same system for both versions. The complete GPU-accelerated OmegaPlus ver-
sion, including both LD and ω-statistic computation, showed speedups up to 12.02x
over the sequential OmegaPlus version using the same system for both versions.
Speedups indicate a boost in performance but can be improved by applying addi-
tional acceleration techniques.

Contents

Abstract iii

List of acronyms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Research questions . 3

1.3 Scientific contribution . 4

1.4 Outline . 5

2 Background 7

2.1 Population genetics . 7

2.1.1 Data collection and preparation 10

2.1.2 Natural selection and selective sweeps 12

2.1.3 Signatures of selective sweeps 13

2.2 Graphics processing unit . 15

2.2.1 GPU architecture . 16

2.2.2 GPU frameworks . 18

2.2.3 Acceleration techniques . 20

3 Related work 27

3.1 Phylogenetics . 27

3.1.1 Phylogenetic Parsimony Function (PPF) 28

3.1.2 Phylogenetic Likelihood Function (PLF) 32

3.2 Population genetics . 35

3.2.1 Linkage Disequilibrium . 35

3.2.2 Epistasis . 39

3.3 Methods and tools for selective sweep detection 41

3.4 Discussion and Conclusion . 43

v

VI CONTENTS

4 OmegaPlus and quickLD 45
4.1 OmegaPlus . 45

4.1.1 Input data representation . 45
4.1.2 Linkage Disequilibrium computation 47
4.1.3 Omega statistic computation 49

4.2 High-performance LD . 51
4.2.1 LD as Dense Linear Algebra operations 51
4.2.2 BLIS based implementation . 54

4.3 Acceleration target selection . 58

5 Designs 61
5.1 Introduction . 61
5.2 quickLD adaptation . 65
5.3 GPU kernels . 66

5.3.1 Kernel I: GPU kernel for low computational load 66
5.3.2 Kernel II: GPU kernel for high computational load 71

5.4 Host and interfacing . 78
5.4.1 Host implementation for kernel I 79
5.4.2 Host implementation for kernel II 81

5.5 Overview . 84

6 Performance evaluation 87
6.1 Experimental setup . 87
6.2 GPU kernels verification . 89

6.2.1 Kernel I . 89
6.2.2 Kernel II . 90

6.3 Performance comparisons . 91
6.3.1 Omega statistic performance 91
6.3.2 Linkage Disequilibrium performance 96
6.3.3 Total performance . 96

7 Conclusions and future work 103
7.1 Conclusion . 103
7.2 Future work . 107

Acknowledgements 111

References 113

List of acronyms

CPU Central Processing Unit

GPU Graphics Processing Unit

FPGA Field Programmable Gate Array

SNP Single-Nucleotide Polymorphism

DNA deoxyribonucleic acid

RNA ribonucleic acid

LD Linkage Disequilibrium

DLA Dense Linear Algebra

CU Compute Unit

SM Streaming Multiprocessor

SP Stream Processor

CUDA Compute Unified Device Architecture

SC SIMD Core

PB Processing Block

TMRCA time to the most recent common ancestor

RBD Receptor-Binding Domain

HPC High Performance Computing

PSA Pairwise Sequence Alignment

MSA Multiple Sequence Alignment

GATK Genome Analysis Tool Kit

vii

VIII LIST OF ACRONYMS

SFS Site Frequency Spectrum

ALU Arithmetic and Logic Unit

SIMT Single Instruction Multiple Threads

SIMD Single Instruction Multiple Data

GCN Graphics Core Next

RDNA Radeon DNA

GPGPU General-Purpose GPU

HLC High-Level Computing

PPF Phylogenetic Parsimony Function

PLF Phylogenetic Likelihood Function

PN Progressive Neighborhood

PLL Phylogenetic Likelihood Library

BLAS Basic Linear Algebra Subprograms

GEMM General Matrix Multiplication

BLIS BLAS-Like Instantiation Software

ISM Infinite Sites Model

FSM Finite Sites Model

GWAS Genome-Wide Association Studies

PE Processing Element

SW software

VCF Variant Calling Format

DP Dynamic Programming

Chapter 1

Introduction

Within health and life sciences processing of molecular data, e.g. deoxyribonucleic
acid (DNA), to answer complex biological questions is an important topic. These
questions can range from untangling the evolutionary history of organisms [4] to
identifying clinically meaningful genes for cancer risk assessment, diagnosis, prog-
nosis, and treatment [5]. The field of Bioinformatics plays an important role by
providing researchers in this field with the necessary toolset in order to be able
to answer these complex questions. Bioinformatics is a subdiscipline of biology and
computer science where computer programs are used for the acquisition, storage
and analysis of molecular data.

1.1 Motivation

The variation of molecular data, usually referring to genes, DNA, RNA and pro-
teins, is acquired using direct and nowadays also indirect DNA sequencing tech-
nologies. Advances in DNA sequencing technologies in the past years, however,
increased sequencing throughput while reducing sequencing costs, leading to an
ever-increasing accumulation of whole genomes in private and public databases
such as GenBank [6], GISAID [7], ENCODE [8], and The Cancer Genome Atlas [9].
As a result, studies today include a constantly growing number of organisms (sam-
ple size) in an effort to improve statistical power and thus accuracy and reliability
of the outcome [10]. This has, inevitably, transformed Bioinformatics to a computa-
tional discipline that increasingly requires scalable algorithms and high-performance
processing systems.

The COVID-19 pandemic brought Bioinformatics into the spotlight, exposing weak-
nesses in existing methods and tools with respect to handling large datasets effi-
ciently. For instance, in April 2020, the authors of the widely used software MAFFT [11]
for aligning multiple protein/DNA sequences released an experimental implementa-

1

2 CHAPTER 1. INTRODUCTION

tion only suitable for SARS-CoV-2. This implementation exploits certain characteris-
tics of the viral genome (e.g., the high similarity between sequences due to the rapid
spread of the virus) to approximate the alignment process in an effort to prevent pro-
hibitively long processing times as the number of available SARS-CoV-2 genomes
continue to increase rapidly. A phylogenetics study by Morel et al. [12] concluded
that one of the two reasons why constructing the phylogenetic tree of 75,000 SARS-
CoV-2 genomes is ”difficult” is the excessive computational requirements due to the
large number of sequences (the other reason is the small number of mutations due
to the rapid spread of the virus). The phylogenetic analysis was restricted to just
5% of the parameter space, possibly due to the heightened urgency to reach con-
clusions because of the pandemic.

Tools and algorithms that directly process the raw molecular data, e.g. the field
of sequence alignment, have been an important topic of research to meet these
higher computational demands. Performance advancements in these fields have
shifted the computational load to algorithms further up the processing pipeline, thus
requiring similar optimisations or acceleration to cope with the surge of data. A
field further up the processing pipeline of Bioinformatics as a whole, is population
genetics. Population genetics studies the genetic composition of populations as well
as changes in this genetic composition. Algorithms in this field generally process
aligned sequences to find these changes in the genes of a population. Selective
sweep is a process within population genetics where a recent beneficial mutation
has driven out all other variations of a gene in a population. This process is fueled
by positive selection and subsequently leads to reduction in genetic variation near
this mutation. Genetic variation in a DNA sequence is typically observed in the form
of Single-Nucleotide Polymorphisms (SNPs), i.e., smallest variation of a gene on
this sequence. So because of the sweep-induced reduction of genetic variations,
a region on the chromosome will appear that exhibits a reduced number of SNPs
when compared to the rest of the chromosome.

Detection of selective sweeps can be of importance in fighting diseases through
understanding recent genetic changes in pathogenic bacteria and viruses. As pre-
viously stated, selective sweeps allow for rapid genetic changes in a population, Sá
et al. [13] found that this process can play a key factor in the ability of pathogens
to attack their hosts and survive medicines humans use to treat them. This can be
seen as a competition between host and parasite about which organism can adapt
its method of attack or defence, thus its genetics, the fastest. An individual being
more resistant to a pathogen or itself being a more effective pathogen will have an
advantage over its congeners, thus providing the fuel for a selective sweep. The hu-
man influenza virus, which has been involved in a genetic competition with humans
for hundreds of years is an example for this phenomenon. Rambout et al. [14] found

1.2. RESEARCH QUESTIONS 3

that besides antigenic drift, which is considered the traditional model for changes
in the viral genotype, selective sweeps have an effect as well. The time to the
most recent common ancestor (TMRCA) of ”sister” strains in several flu populations
showed, that within a few years they all evolved from a common ancestor indicating
a selective sweep has acted on the population. Kang et al. [15] found signatures of a
selective sweep in the SARS-CoV-2 virus, which acted in the spike protein Receptor-
Binding Domain (RBD). Kang et al. suggest that this mutation likely contributed to
SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-
human transmission. Due to advancements in DNA sequencing technologies and
subsequently the computational advancements in the sequence alignment field, the
need for more optimised selective sweep detection software is of great importance
to keep execution times feasible.

Over the years, the computing landscape has become highly heterogeneous,
with modern platforms currently integrating multi-core CPUs with GPUs and/or Field
Programmable Gate Arrays (FPGAs). Modern GPUs exhibit massively parallel com-
puter architectures with thousands of processing cores. FPGAs, on the other hand,
do not have a fixed processing architecture but can implement any specialized com-
puter architecture by configuring and interconnecting millions of fine-grained logic
elements. The exploitation of hardware acceleration and high-performance comput-
ing solutions is an important factor in coping with the ever-increasing accumulation
of whole genomes. Binder et al. [16] observe that GPUs hold great performance
for SNP comparison computations, which is generally a computationally intensive
part of selective sweep detection software. In a work by Alachiotis et al. [17], the
observation is made that other parts of the detection software can be cast in terms
of a series of Dense Linear Algebra (DLA) operations, which are well-studied by the
High Performance Computing (HPC) community. It can therefore be concluded that
GPUs hold great potential in accelerating selective sweep detection to cope with the
surge of molecular data. Advantages of using a GPU as accelerator are, relatively
low implementation times and high portability over multiple architectures when us-
ing a framework. Moreover, due to the big commercial market GPU performances
have grown significantly when compared with CPUs and FPGAs. Since many per-
sonal computers and laptops already feature a reasonable powerful GPU nowadays,
researchers can easily make use of this computing power.

1.2 Research questions

As previously stated, the use of a GPU to accelerate selective sweep detection
software has some great advantages. The general goal of this research will be
the acceleration of a state-of-the-art selective sweep detection tool using the GPU

4 CHAPTER 1. INTRODUCTION

architecture. The main research question to answer for this project is:

• How much performance gain can be achieved when accelerating a state-of-
the-art selective sweep detection tool using GPU architectures?

In order to achieve the best results, with respect to the main research question,
the following sub-question is set up to target the most time consuming parts:

• Which parts of the state-of-the-art tool are the most computationally intensive
to target for acceleration?

After pinpointing the most intensive parts of the tool the following sub-question is
set up to research the best design choices in order to achieve the main goal:

• How can the computationally intensive parts be mapped optimally on the com-
putational units and the different types of memory of the GPU?

The last sub-question is set up for design validation and performance evaluation
under different input parameters:

• How do performance values scale for datasets with different number of genomes
and datasets with different number of SNPs per genome?

These sub-questions are formulated in order to be able to answer the main re-
search question of this project to the best extend. Through analysis of the tool its
algorithm the most computationally intensive parts can be found. Accelerating these
parts will result in the highest performance gain as they are the most time consum-
ing. In order to maximise the performance gain an optimal mapping of the intensive
parts to the computational units and memory of the GPU needs to be found. To
specifically answer the measurable part of the main research question, the last sub-
question is formulated. By performing a thorough performance evaluation with a
variety of datasets the resulting overall performance gain can be specified.

1.3 Scientific contribution

As mentioned earlier in this chapter, the advances in DNA sequencing technolo-
gies have transformed Bioinformatics to a computational discipline that increasingly
requires scalable algorithms and high-performance processing systems. Further-
more, the COVID-19 pandemic brought Bioinformatics into the spotlight, exposing
weaknesses in existing methods and tools with respect to handling large datasets ef-
ficiently. Selective sweep detection specifically, is proven to play a role in pathogens
evolution and thus can be of importance in fighting these pathogens. The time span

1.4. OUTLINE 5

for developing medicines or vaccines to counter diseases greatly depends on the
time needed for analysing the genetic data and subsequently processing this data.
Researchers thus benefit from high-performance tools and algorithms in order to
reduce development time and have a bigger impact on fighting diseases.

Within this research the computational possibilities of applying GPU computing
power in selective sweep detection software are explored, with the aim of reducing
execution times of a state-of-the-art tool. Lower execution times can contribute in
making analysis work by biologists more convenient and subsequently increase its
impact in fighting diseases for example. Furthermore this research can act as a
building block for future research to continue on, or as a building block for applying
GPU computing power in other related tools and algorithms that heavily rely on SNP
comparisons.

1.4 Outline

The outline of this work is as follows.
Chapter 2 gives background information about population genetics, selective

sweeps and corresponding methods and tools for selective sweep detection in sec-
tion 2.1 and information about the GPU architecture, programming model and ac-
celeration techniques in section 2.2.

Chapter 3 gives an insight into related work regarding other hardware accelera-
tion efforts within Bioinformatics and particularly in fields related to selective sweep
detection. This literature research was conducted to gather initial knowledge and
global insight in the topic of optimisation and acceleration of Bioinformatics tools/al-
gorithms. Tools and algorithms closely related to population genetics, and in partic-
ular positive selection, are topic of this research. Attention will be paid to the initial
problem of the tool (computationally/memory), the platform used for optimisation
and/or acceleration (CPU, GPU, FPGA), the methods and techniques used to tackle
this initial problem and a performance evaluation. Section 3.1 and section 3.2 focus
on phylogenetics and population genetics tools and algorithms respectively. Sec-
tion 3.3 will elaborate on selective sweep detection software, where multiple tools
with their respective methods are discussed. Section 3.4 concludes the chapter
with an performance overview of different platforms and a definitive selective sweep
detection tool to accelerate.

Chapter 4 will elaborate on the chosen selective sweep detection tool and on an
already existing GPU-accelerated tool for computing LD. Section 4.1 and section 4.2
will thoroughly explain these respective implementations. The chapter is concluded
with section 4.3, in which the computationally intensive parts of the chosen tool are
found through profiling.

6 CHAPTER 1. INTRODUCTION

Chapter 5 will talk about the adaptation of the existing GPU-accelerated LD tool
and the developed design for GPU-acceleration of the chosen selective sweep de-
tection tool. An introduction will be presented in section 5.1, the adaptation of the
GPU-accelerated LD tool will be explained in section 5.2, section 5.3 will elaborate
on the developed GPU kernels and the host processor code will be explained in
section 5.4. The chapter is concluded with an overview of the complete design in
section 5.5.

At the end of this work a performance evaluation is presented in chapter 6,
with section 6.1 explaining the experimental setup to get an insight in the scaling
of the solution’s performance and section 6.2 will present a kernel verification with
respect to correctness and resulting errors. The chapter is concluded with a per-
formance comparison between the original tool and the GPU-accelerated version in
section 6.3, which includes discussion of these results.

This work as a whole is concluded in chapter 7 with a conclusion and future work
recommendation.

Chapter 2

Background

This chapter will elaborate on important background information for this project. An
introduction to population genetics will be given in order to explain the foundation
of selective sweep theory. Signatures of selective sweeps will be discussed in this
chapter, and respective selective sweep detection tools that exploit these signatures
through various methods. Furthermore some background information will be given
about the GPU architecture, where programming frameworks and acceleration tech-
niques for this specific architecture will be discussed.

2.1 Population genetics

Population genetics studies the genetic composition of populations as well as changes
in this genetic composition. The DNA determines the genetic composition and is
build up of genes, where these genes are a region on the DNA that have its own
function. A set of genes, or a single gene make up a genotype which determines,
together with environmental and development factors, an organisms’ phenotype. A
phenotype is a certain observable trait an organism has, e.g., eye colour but also a
persons’ blood group. Genes can have different variants, hence the multiple phe-
notypes, these variants are determined through alleles. An allele is a variant of the
same gene at the same position on the chromosome in a population, which can be
one, two or more variants. The genetic composition can also be described as the
frequency of alleles in the DNA of populations. The position of a gene or allele on
the chromosome is called a locus, or loci in plural. Alleles can differ in size, from
thousands of base-pairs to only a single base-pair which is called a single-nucleotide
polymorphism (SNP). A base-pair consists of two nucleotide bases and within DNA
four different nucleotide bases exist, i.e., guanine (G), adenine (A), cytosine (C) and
thymine (T). The nucleotide bases form pairs in the DNA, where Adenine always
pairs with thymine (A-T) and cytosine always pairs with guanine (C-G), these pairs

7

8 CHAPTER 2. BACKGROUND

can be stacked upon each other to form a long-chain helical DNA structure. A graph-
ical representation of the DNA is shown in fig. 2.1.

Figure 2.1: Graphical representation of the DNA, zoomed in on a chromosome. An example of
a gene formed of multiple base-pairs is showed, with nucleotide bases G, A, C and T. The pairs
together form the long-chain helical DNA structure found in chromosomes and cells.

Typically genetic variation is observed in the form of SNPs and this variation is
driven through four main evolutionary processes, i.e., natural selection, genetic drift,
gene flow and repeating mutation.

Natural selection occurs when a phenotype is preferred for survival and/or repro-
duction over an other phenotype [18]. Over time this specific phenotype will occur
more in the population due to its advantages. Positive selection is a form of natural
selection where an advantageous allele increases in frequency and eventually be-
comes fixed reducing genetic variation. This phenomenon was first discovered by
Darwin and Wallace [19]. Figure 2.2 shows an illustration of natural selection where
a light coloured butterfly is advantageous over a darker coloured butterfly, which
results in it occurring more over time.

Figure 2.2: Illustration of natural selection over time. At a certain point in time the phenotype of more
light coloured wings becomes the preferred one for survival/reproduction (left). Over time this will
result in this phenotype to occur more in the population, a directional shift in allele frequency (right)
(adapted from [20]).

A mutation is an alternation in the DNA or RNA sequence which can be caused
by errors during replication, exposure to ionizing radiation, exposure to chemicals,
or infection by viruses [18]. When mutations occur in the eggs or sperm these can

2.1. POPULATION GENETICS 9

be passed on to offspring and are called germ line mutations, otherwise they are
called somatic mutations. Other evolutionary processes as natural selection heavily
depend on mutations, as it is the foundation of genetic variation. Figure 2.3 shows
a single base-pair mutation after DNA replication.

Figure 2.3: Illustration of a base mutation in the DNA (change of one base-pair to another), where
the mutation is permanent after replication of this part of the DNA (adapted from [21]).

Genetic drift is the change in the frequency of an existing allele from generation
to generation due to chance events, i.e., random fluctuations [18], [22]. Genetic drift
can initiate a reduction in genetic variation by causing gene variants to disappear
from a population or make certain traits more dominant and appear more frequent.
Effects of genetic drift are more notable in smaller populations due to the fact that a
variation of a gene faces a greater chance of being lost when it occurs infrequently
[18]. Figure 2.4 shows an example of a chance event reducing genetic variation,
i.e., genetic drift.

Figure 2.4: Illustration of genetic drift over multiple generations. At a certain point in time the pop-
ulation experienced a sudden reduction due to a chance event (left). Due to the small size of the
population, over time this chance event caused a reduction in genetic variation (red wing phenotype
disappeared) (adapted from [23])

Gene flow is a collective term that explains every way of gene transfer from one
population to another [24]. Gene flow rates are high within a single effective popula-
tion, when these rates decrease under a certain level, a population can split into two.
Gene flow largely determines the independence of genetic changes in local popula-
tions within a single species. Figure 2.5 shows an illustration of gene flow through a

10 CHAPTER 2. BACKGROUND

geographical barrier resulting in an increase in genetic variation in population A.

Figure 2.5: Illustration of gene flow from population B to A through a geographic barrier (moun-
tain/river etc.), where population A only consists of individuals with the red coloured wing phenotype
and B only with the yellow coloured wing phenotype. Due to the movement of a individual from B to
A the genetic variation in population A increases (adapted from [25]).

An excellent book that further elaborates on the evolutionary processes and pop-
ulation genetics as a whole is ”Essentials of Genetics” by Klug et al. [18].

2.1.1 Data collection and preparation

A big part of Bioinformatics and population genetics as a whole is focused on the
analysis of molecular data, which generally consists of DNA, RNA or proteins. This
section will elaborate on the collection of molecular data through DNA sequencing
and the preparation of the data through sequence alignment and pinpointing SNPs.
The resulting aligned sequences with the acquired SNPs are the input data for se-
lective sweep detection software.

DNA sequencing is the process of determining the order of four nucleotide bases
that make up the DNA molecule [26]. The ability of these nucleotide bases to form
pairs is the basis for DNA replication, needed for cell division, and the pairing un-
derlies the basic principle DNA sequencing methods are built on. DNA sequencing
is also used to indirectly sequence other types of molecular data, e.g., RNA or pro-
teins. In RNA thymine is replaced with the nucleotide base uracil (U), which also
pairs with adenine. Protein sequences consist of a larger number of characters as
these are made up of amino acids instead of the 5 nucleotide bases.

In order to find genetic variation within a population, DNA sequences are com-
pared to each other to find existing alleles and subsequently SNPs. These compar-
isons are done by aligning sequences based on the same loci. Sequence alignment

2.1. POPULATION GENETICS 11

is performed to identify regions of similarity that may be a result of functional, struc-
tural, or evolutionary relationships between sequences. There are three types of
sequence alignment, i.e., one-to-one, one-to-many or many-to-many comparisons,
all with the goal to find the optimal alignment distance, i.e., the highest similarity be-
tween sequences. One-to-one is also called Pairwise Sequence Alignment (PSA),
one-to-many and many-to-many comparisons are also called Multiple Sequence
Alignment (MSA), in which multiple sequences are analysed and sub-groups of
these sequences are aligned. The Smith-Waterman (S-W) [27] algorithm is a fre-
quently used PSA algorithm. NCBI BLAST [28] and ClustalW [29] are tools for
performing MSA. Typically the sequences are represented as rows in a 2D ma-
trix where the nucleotide base characters are the entries in this matrix. Sequence
alignment can be performed with gaps between the nucleotide bases or gapless,
where a gap is an insertion of a dummy character in order to have a higher sim-
ilarity between characters in successive columns. Gap insertion however yields a
gap penalty which reduces the alignment distance score. Figure 2.6 shows the re-
sult of a multiple sequence alignment where sequences are grouped based on their
distance score.

Figure 2.6: Result of a MSA with 9 DNA sequences where the sequences are ordered based on the
alignment score.

After two or more sequences have been aligned, possible SNPs can be found
in the range of these sequences. As previously stated a SNP is a single base-
pair variation of a gene, the smallest sized allele. SNP calling is the process of
pinpointing SNPs, which is based on single locus variations in aligned sequences.
It is however, much easier to correctly call an SNP using a reference sequence
that represents the neutral genetic composition of an organism [30]. A number of
methods for SNP calling have been developed which have been implemented in
multiple tools, e.g., Genome Analysis Tool Kit (GATK) [31], Samtools/mpileup [32],
FreeBayes [33], Platypus [34], SNVer [35], VarDict [36], and VarScan [37].

Figure 2.7 shows a SNP at a single locus of multiple aligned sequences. Two
individuals together can pass on one of the two possible alleles or SNPs to their
offspring.

12 CHAPTER 2. BACKGROUND

Figure 2.7: Illustration of a SNP at a locus of six aligned sequences of individuals, where G and A
are the two possible alleles for this position (adapted from [38]).

2.1.2 Natural selection and selective sweeps

Natural selection is one of the four main evolutionary processes that cause genetic
variation. It occurs when one phenotype is preferred over an other, resulting in
an increase of frequency of that phenotype. Positive selection is a form of natural
selection where an allele is favoured over other alleles and its frequency will shift in
the direction of that phenotype and eventually sweep the population, i.e., completely
omitting the non favoured alleles. When this process happens fast the frequencies
of alleles at closely linked loci, loci in the same chromosome, will increase due to
the so-called ’hitch-hiking effect’ [39]. This process is called a selective sweep.
Because of the sweep-induced reduction of genetic variations, a subgenomic region
will appear that exhibits a reduced number of SNPs when compared to the rest of
the chromosome.

When a single recent strongly beneficial mutation has occurred in a popula-
tion, a selective sweep can occur on this rare allele. The frequency of this allele
will increase rapidly due to natural/positive selection which can trigger a selective
sweep through genetic hitch-hiking. Typically this is called a classic or hard se-
lective sweep [39], [40]. A soft selective sweep occurs when beneficial mutations
appear in multiple individuals in a population, which results in a lower reduction of
genetic variation and has a less pronounced hitch-hiking effect [41]–[43]. Figure 2.8
illustrates the process of both a soft and hard selective sweep. The remainder of
this work will focus on hard selective sweeps.

2.1. POPULATION GENETICS 13

Figure 2.8: Illustration of a) soft selective sweep and b) hard selective sweep. 1) Beneficial muta-
tion(s) has/have occurred. 2) The frequency of the beneficial mutation(s) increase(s) in the popula-
tion 3) All individuals have either of the beneficial mutations (soft sweep) or the same mutation (hard
sweep). The regions on the left and the right side of the selection site comprise pairs of SNPs with
high LD values. Pairs of SNPs on different sides have low LD

2.1.3 Signatures of selective sweeps

A selective sweep can be characterised by three distinct signatures in genomes.
The first signature is, as previously stated, a reduced number of SNPs that can be
observed in a subgenomic region [39]. The second signature is a directional shift
in the Site Frequency Spectrum (SFS), i.e., the distribution of allele frequencies in
DNA sequences, toward low- and high-frequency derived variants [44]. The last
signature that can be observed is a localised pattern of Linkage Disequilibrium (LD)
levels. LD is the non-random association of alleles at different loci in a population,
and appears when genotypes at two loci are dependent. This dependency is present
when the frequency of association of their different alleles is higher or lower. Kim
and Nielsen [45] found that increased levels of LD are observed on neighbouring
regions on both sides of a beneficial mutation, whereas the level of LD between loci

14 CHAPTER 2. BACKGROUND

that are located on different sides of the beneficial allele remains low.

The most commonly used measure of LD relies on Pearson’s correlation coef-
ficient, r2, as provided for the calculation of LD between SNPs A and B in Equa-
tion 2.1:

r2AB =
D2

AB

pA(1− pA)pB(1− pB)
, (2.1)

where pA and pB are the frequencies of the derived allele at SNPs A and B, respec-
tively, while DAB is the coefficient of LD, defined as follows:

DAB = pAB − pApB, (2.2)

where pAB is the frequency of occurrence of the derived allele at both SNPs A and
B. Whenever DAB ̸= 0, A and B are said to be in linkage disequilibrium, otherwise
A and B are in linkage equilibrium, i.e., SNPs A and B occur independently of each
other.

Figure 2.9 gives an illustration of LD in two different populations with both two
SNPs on two loci. The figure shows SNPs A, a for the colour of the shape and SNPs
B, b for the shape itself, where the LD is only calculated for the association of A and
B. In the situation with two loci consisting both of two SNPs, also called biallelic,
the restrictions are so strong that one measure of LD represents all the other LD
relationships DAB = −DAb = −DaB = Dab with:

DAB = pAB − pApB,

−DAb = pAb − pApb,

−DaB = paB − papB,

Dab = pab − papb.

(2.3)

2.2. GRAPHICS PROCESSING UNIT 15

Figure 2.9: Illustration of LD in two different populations, where in the left population the association
between the shape and colour allele is random (no LD) and in the right population the association is
non-random, every circle is yellow and every diamond is red (maximum LD) (adapted from [46]).

The significance of LD, as can been observed from titles of population genetics
papers declaring “Population genomics: Linkage disequilibrium holds the key” [47],
has motivated various studies for high-performance LD computation.

Kim and Nielsen developed the ω-statistic to detect the genomic pattern LD ex-
hibits.

Every ω is computed at a specific location in a genomic region with a total of W
SNPs. This genomic region is split up into a left L and right R subgenomic region
which consist of l and W − l SNPs respectively. Then ω at a location in the region is
computed as follows:

ω =

(
(l
2
) + (W−l

2
)
)−1(∑

i,j∈L r
2
ij +

∑
i,j∈R r2ij

)(
l(W − l)

)−1∑
i∈L,j∈R r2ij

. (2.4)

High ω-statistic values indicate regions for positive selection since the average
LD is high within the L and R subgenomic regions but not across the beneficial
mutation.

2.2 Graphics processing unit

This section will give background information about the general architecture of a
GPU, an explanation about programming a GPU through so-called GPU program-
ming frameworks and an introduction about the main acceleration techniques for the
GPU architecture.

16 CHAPTER 2. BACKGROUND

2.2.1 GPU architecture

There are two main manufacturers that produce GPUs used for high performance
computing, i.e., AMD and Nvidia, both with their own specific architectures. The
general architecture however applies to both of these GPUs, where the naming con-
vention differs slightly. In this section names used by AMD and Nvidia will both be
given respectively, a single name applies to both manufacturers. The GPU architec-
ture has evolved through the years, this model GPU architecture applies to GPUs of
the past 10 years.

Where a CPU can consist of 2 to even 32 cores per chip, a GPU typically consists
of more than 2000 cores nowadays which are grouped in NCU Compute Units (CUs)
or Streaming Multiprocessors (SMs). Each CU/SM is built up with NSP Stream
Processors (SPs) or CUDA cores, with NSP typically being 64 or a multiple of 64.
The SPs or CUDA cores are effectively the Arithmetic and Logic Units (ALUs) of
the GPU which execute instructions of scheduled threads. Within a CU/SM, NG

number of SPs/CUDA cores are grouped in NSC SIMD Cores (SCs) or Processing
Blocks (PBs), where each group of SPs/CUDA cores can execute threads indepen-
dently. The total number of ALUs in a GPU is then equal to: NCU ∗ (NG ∗NSC).

The massive parallelism of a GPU comes from the fact that a multiple number
of threads Ws, together called a wavefront or warp, execute the same instruction
on different data from the memory, called the Single Instruction Multiple Threads
(SIMT) exectution model. During kernel execution on a GPU, NW number of wave-
fronts/warps are hosted on the GPU for executing instructions, where a wavefron-
t/warp executes independently on a SC/PB. On older AMD architectures (GCN) a
wavefront consisted of 64 threads, on newer architectures (RDNA, RDNA 2) this
number is reduced to 32. In Nvidia architectures 32 threads form a warp, the equiv-
alent of a wavefront. The size of a wavefront or warp is fixed, so in order to fully
utilise the computing power of a GPU, all threads in a wavefront or warp should
have a data element to execute an instruction on.

In order to operate, a GPU needs a host, which is typically a CPU. The host trans-
fers data from its own memory to the global memory of the GPU and can instruct the
GPU to execute a kernel, which is a pre-compiled routine that calls the instructions.
Within a GPU architecture there are 5 main types of memory and additional caches.
From slowest to fastest memory, the 5 are organised as follows:

• Global and local memory
• Texture memory
• Constant memory
• Shared memory
• Registers

2.2. GRAPHICS PROCESSING UNIT 17

Global memory is off-chip memory in the order of gigabytes nowadays. It allows
for read and write access and it is allocated by the host. All threads can access
global memory but accesses are slow due to it being off-chip. Local memory is
an abstraction of global memory used when the compiler determines there is not
enough space for variables in the registers. The same rules of global memory apply
to local memory. Texture memory is a L2 cached read-only off-chip memory similar
to global memory. It is allocated by host on the device. All threads can access texture
memory. Constant memory is also a L2 cached read-only off-chip memory. Constant
memory is allocated by host on device. It is in the order of tens of kilobytes. Constant
memory can be accessed by all threads and is fast as long accesses to the memory
are executed in parallel. Constant memory is managed by the compiler. Shared
memory is on-chip memory shared by all threads in a CU or SM and is also in the
order of tens of kilobytes. Shared memory is explicitly managed by the programmer
but is allocated by the GPU itself. Registers are assigned to each thread on-chip.
Besides that each CU or SM has its own register file. Register allocation however,
is not managed by the programmer but managed by the compiler.

As with a CPU, memory accesses on a GPU typically go through cache. Memory
transfers between off and on-chip memory are all cached by L2 cache, which is
connected to off-chip memory via several memory controllers. L2 cache is on-chip
and can be accessed by all CUs or SMs. Within every CU or SM, L1 cache is used
for reading and writing L2 cache. Shared memory and registers are able to read from
and write to global memory through L2 and L1 cache. Every cache has a certain line
size which is the chunk of bytes a cache line transfers in one iteration determined
by the hardware. Line sizes are typically 32, 64 or 128 bytes. Whenever a read or
write is issued the cache line transfers a complete chunk of aligned memory, even
though less data elements are needed. Whenever data accesses are misaligned
and elements are spaced more than the line size, multiple transfers are needed.

Cache hierarchy can differ between current GPU architectures but the concept
of reading and writing is generally the same.

A graphical representation of a general GPU architecture can be found in fig. 2.10,
where the AMD naming convention is used. A detailed view on a GPU architecture
can be found in the work by Cheramangalath et al. [48].

18 CHAPTER 2. BACKGROUND

Figure 2.10: General GPU architecture using the AMD naming convention. The figure shows the
placement of the different memories/registers, caches, Compute Units, SIMD cores and Stream Pro-
cessors on the GPU and the communication with the host processor.

2.2.2 GPU frameworks

A GPU can be used and programmed via certain GPGPU frameworks. These
frameworks make it possible to transfer data between the GPU and CPU mem-
ory, compile, develop and run kernels on the GPU and can be used to request
information of the device. Well known frameworks are OpenCL [3] and CUDA [49],
where OpenCL is vendor independent and can also be used on different architec-
tures (GPU, CPU, FPGA), and CUDA being specifically for Nvidia CUDA supported
GPU’s. Both of these frameworks are C-based and mainly used in GPU High-Level

2.2. GRAPHICS PROCESSING UNIT 19

Computing (HLC). For this project it was decided to use OpenCL due to its flexibil-
ity with regards to multiple vendors, which can benefit researchers. The following
information will be applicable to the OpenCL framework.

After transferring data to the global memory of the GPU, pre-compiled kernels
can be called that perform computations on this data through various instructions.
The kernels can be developed using a C-based language dialect and are very simi-
lar to regular functions annotated with kernel. The function parameters can either
be pass by reference (pointer) or pass by value, where a reference is a location on
the GPU its global memory and a value can be a single value used in the kernel.
Pointers are annotated with the global, constant, local and private quali-
fiers reflecting the memory hierarchy, where local variables are stored in shared
memory and private variables in the registers. Default variables declared within
the kernel are stored in the thread registers and are private.

In order to set pointer arguments to an allocated space on the memory or to spec-
ify a pass by value argument, the clSetKernelArg function can be used. Whenever
a global memory pointer argument is used, i.e., global and constant, a space on
the memory should be allocated with clCreateBuffer. After allocation, this space
can be written and read with clEnqueueWriteBuffer and clEnqueueReadBuffer re-
spectively. The kernel itself can be executed with the clEnqueueNDRangeKernel func-
tion, which has three important arguments that specify the kernel name, the number
of threads and the thread group size. The number of threads passed to the function
determines how many threads or work-items will be deployed to execute the kernel
on and is called the global size, Gs. The number of wavefronts/warps, NW , exe-
cuting on the GPU is then equal to Gs/Ws, with Ws being the number of threads in
a wavefront/warp. The thread group size specifies how many work-items together
are scheduled on a CU or SM and is called the local or work-group size, Ls, which
should be a multiple of Ws. The global size should be a multiple of the local size
in order to create an integer number, NWG = Gs/Ls, of so-called work-groups. All
Enqueue functions expect an OpenCL command queue as argument in which the is-
sued event can be placed for execution. The issued event in the queue can also be
added to an OpenCL event wait list which can be used for waiting on certain events
to finish.

In listing 2.1 an example kernel is shown where array x of length Gs is multiplied
with a scalar y and stored in array z. x is stored in constant memory since its values
are only read, where z is read/write since it is in global memory. The get functions
return the current global work-item id, the current local work-item id, the current
work-group id and the specified local size, Ls, respectively. Hence the result of the
get global id function can be rewritten as the return values of the other functions

get global id = wid ∗ lsz + lid (2.5)

20 CHAPTER 2. BACKGROUND

These functions can be used to read specific data elements per work-item and per-
form many calculations in parallel.

__kernel void vecscal(__constant uint *x,

uint y, __global uint *z)

{
uint gid = get_global_id(0); // Global id

uint lid = get_local_id(0); // Local id

uint wid = get_group_id(0); // Group id

uint lsz = get_local_size(0); // Local size

uint scalar = x[wid * lsz + lid] * y;

z[gid] = scalar;

}

Source Code 2.1: Kernel example

2.2.3 Acceleration techniques

The performance of a GPU kernel is typically limited by memory bandwidth. Calcu-
lations are always performed on data that is initially transferred to the GPU’s global
memory, which is the slowest memory on the GPU. Thus, it is of great importance
to optimise data transfers between global memory and local memories, i.e., shared
memory and registers.

Minimize data transfer A very simple but efficient acceleration technique is to
minimise data transfer. For example, instead of adding a certain value to an element
on global memory multiple times, it is good practice to use a temporary register
variable that accumulates the values and write it to global memory once.

Coalesced memory access An global memory access pattern that results in high
transfer rates is called a coalesced memory access. A coalesced memory access
refers to combining accesses to multiple data elements into a single memory trans-
fer. As previously stated the cache line size determines the number of bytes that are
transferred in one iteration. Given a line size of 64 bytes, a coalesced memory ac-
cess would mean 16 consecutive work-items in a wavefront or warp access 16 con-
secutive single precision words (4 bytes/word) from global memory. This sequential
and aligned access would translate into a single transfer by using a single cache line
and is therefore coalesced. Whenever an access is misaligned, multiple cache lines
are addressed and transfers may be serialised due to a limited number of cache
lines. Current architectures do combine an aligned but nonsequential access into a
single coalesced memory access. The same holds for uncached memory, whenever

2.2. GRAPHICS PROCESSING UNIT 21

an access is misaligned this results in more memory transfers. A GPU only features
a limited number of memory controllers per CU or SM, thus more memory transfers
can result in serialising transfers and degrading performance. The main difference
between cached and uncached memory transfers is the chunk size determined by
a cache line or memory controller. Figure 2.11 shows a graphical representation of
an aligned but nonsequential memory access hitting two cache lines, which results
in a coalesced memory access. Figure 2.12 shows a graphical representation of
an misaligned and nonsequential memory access hitting three cache lines, which
results in an uncoalesced memory access.

Figure 2.11: Aligned but nonsequential access resulting in a coalesced access

Figure 2.12: Misligned and nonsequential access resulting in a uncoalesced access

Constant memory utilization In many cases elements from arrays are not altered
during kernel execution. For these cases it is good practice to use the constant

qualifier, which informs the compiler that the elements from an array can be stored
in constant memory which is cached. As previously stated, constant memory has a
limited size in the order of tens of kilobytes, when a variable qualified as constant

22 CHAPTER 2. BACKGROUND

exceeds this size it is stored on global memory which results in lower throughput.
When multiple work-items in a wavefront or warp access the same element in a
constant array this access is hardware accelerated and is as fast as accessing a
register. However if multiple work-items in a wavefront or warp access different ele-
ments in a constant array, these accesses are serialised resulting in global memory
performance. As such, the constant qualifier is used best when work-items in the
same wavefront or warp accesses only a few distinct locations.

Shared memory utilization Whenever work-items in the same work-group ac-
cess different elements of an array multiple times, using shared memory can benefit
performance massively. Shared memory has a much higher bandwidth than global
memory has (typically 10x higher) and about twice the bandwidth L1 cache has
with far lower latency. Furthermore shared memory doesn’t require coalesced ac-
cesses, shared memory can thus be filled from global memory using coalesced
accesses and afterwards read by work-items in a nonsequential misaligned man-
ner. Shared memory is built up with so-called banks, where each bank has a certain
depth and accesses to the different banks can be executed simultaneously. Typically
a shared memory has 32 banks of 512 elements, with each element consisting of 4
bytes resulting in a memory size of 64kB. Maximum performance is achieved when
n memory accesses fall in n distinct memory banks, which are then executed si-
multaneously. If memory accesses of multiple work-items in a work-group fall in the
same bank a so-called bank conflict occurs. These accesses to the same bank are
serialised which degrade the performance by the number of conflict-free accesses
necessary. A typical access pattern that prevents bank conflicts is for each work-
item in a work-group access an element from shared memory with the work-item id.
This results in each work-item writing or reading a subsection of an array, with all the
work-items executing in parallel the whole array is processed. When applying such
a parallel access structure it is necessary to synchronise the work-items afterwards.
This is done by using barrier(CLK LOCAL MEM FENCE), this function ensures correct
ordering of memory operations, where this specific parameter is used for shared
memory.

Cache utilization Instead of using shared memory, certain applications can ben-
efit from using L1 cache. L1 is part of the read path on current architectures and
offers high performance when cache hit rates are high but is typically smaller than
shared memory. Choo et al. [50], however found that L1 cache hit rate is substan-
tially lower when compared to CPU caches. As with shared memory, to achieve high
throughput L1 cache needs to be filled from global memory using coalesced mem-
ory access patterns, after which a random accesses come at no extra cost. Where

2.2. GRAPHICS PROCESSING UNIT 23

shared memory is not capable of sharing its data across multiple work-groups, L1
is. Data in L1 cache is independent of work-group execution, so whenever another
work-group is executing on a CU or SM, data from L1 can be reused in the form of
cache hits. However, it is not possible to explicitly control this sharing across multi-
ple work-groups. One last advantage of relying on L1 cache is the fact that it is not
needed to synchronise the work-items, as is the case for shared memory.

Hardware utilization In order to maximise performance it is key to utilise available
hardware in CUs or SMs and limit practices that cause SPs and CUDA cores to wait
for further executions. The number of scheduled wavefronts/warps per CU/SM is a
key metric, often called occupancy, that influences the hardware utilisation. On a
GPU, kernel instructions are executed sequentially, where multiple work-items ex-
ecute these instructions in parallel. Previous sections have shown that certain de-
sign choices can introduce latencies for work-items, which cause stalls. A solution
to hide these latencies and keep the hardware busy, is to schedule multiple wave-
fronts/warps on a single CU/SM. This allows for pipelining different wavefronts/warps
on a single SC/PB which can prevent instruction stalling. Higher number of wave-
fronts/warps per CU/SM doesn’t automatically result in higher performance. Every
application has its optimum which is related to shared memory and register usage in
the kernel. This is due to the fact that every wavefront/warp executing on a CU/SM
requires its own portion of memory to make alternate scheduling possible. Further-
more the work-group size is also an important factor in hiding latencies, this is due
to the fact that work-items in a work-group can share data through shared mem-
ory which reduces global memory accesses. AMD and Nvidia present a number of
heuristics that provide a guideline on these parameters. For AMD architectures it is
good practice to schedule at least 4 wavefronts/CU since a typical CU has 4 SCs,
8 to 32 wavefronts/CU is desirable for pipelining however. This can vary depending
on the kernel complexity and kernel memory usage. On Nvidia architectures a typ-
ical SM also has 4 PBs, resulting in the same 4 warps/SM, with a multiple of that
being desirable for pipelining. The optimal work-group size is an integer multiple of
the wavefront/warp size, i.e., 64 and 32 work-items. Generally larger work-groups
perform better when the scheduled global size, Gs, is big.

Figure 2.13 shows an example of scheduling a high enough number of wave-
fronts/warps per CU/SM, good occupancy, for hiding memory latencies and therefor
improve hardware utilization.

24 CHAPTER 2. BACKGROUND

Figure 2.13: Example of scheduling enough wavefronts/warps on a single CU/SM to hide memory
latencies and improve hardware utilization.

Prevent thread divergence Conditional statements can severely decrease in-
struction throughput by causing work-items in the same wavefront or warp to diverge,
i.e., to follow different execution paths. These execution paths need to be executed
separately which can heavily increase the number of instructions that need to be
performed by this warp. Whenever an application requires control flow, the condi-
tional statement should be written such that the number of divergent wavefronts or
warps is minimised.

Execution overlapping In order to hide CPU-GPU transfer latency it can be useful
to overlap transfers with GPU computations. This can be applied by executing a non-
blocking transfers for a portion of the data and launch the kernel on this part of data.
Then while the kernel is executing a new chunk of data can be written to a different
location on the global memory, thus hiding the transfer latency. Figure 2.14 shows a
graphical representation of this technique.

Figure 2.14: Overlapping transfers with execution

General techniques Generally, typical CPU techniques as loop unrolling, compiler
optimisations and using specific math instructions can improve performance of a
GPU kernel.

More information about acceleration techniques for both AMD and Nvidia archi-
tectures can be found in the respective optimization guides (AMD [51], Nvidia [52]).

2.2. GRAPHICS PROCESSING UNIT 25

More information about OpenCL programming can be found in [53].

26 CHAPTER 2. BACKGROUND

Chapter 3

Related work

This chapter will elaborate on work related to this project with regards to optimisation
and acceleration of Bioinformatics software. Section 3.1 focuses on phylogenetics
and discusses solutions for the two main scoring functions of phylogenetic trees, i.e.,
the phylogenetic parsimony function (Section 3.1.1) and the phylogenetic likelihood
function (Section 3.1.2). Section 3.2 focuses on population genetics and discusses
solutions for the calculation of linkage disequilibrium (Section 3.2.1) and epistasis
(Section 3.2.2). Section 3.3 focuses specifically on selective sweep detection soft-
ware, where multiple tools with their respective methods are discussed. section 3.4
concludes this chapter with a performance overview followed by the decision on the
selective sweep detection tool.

3.1 Phylogenetics

Phylogenetics reconstruct the evolutionary history of organisms (taxa) based on
shared ancestry. After an MSA has been created, phylogenetic inference meth-
ods can construct a phylogenetic tree given an optimality criterion. Due to advances
in DNA sequencing technologies, the field of phylogenetics is currently in need for
accelerated solutions; tree reconstruction increasingly becomes more computation-
ally intensive with an increasing number of taxa. As with the field of population
genetics, phylogenetics have also attracted the attention for optimization and hard-
ware acceleration. Both of the fields also process MSAs to gather information about
the genetic composition. The search for the maximum likelihood phylogenetic tree
is NP-hard [54], which is why heuristics are inevitably employed to search the tree
space for the optimal tree (given some optimality criterion).

Tree-scoring functions are used for evaluating phylogenetic trees. One method
for this purpose is the Phylogenetic Parsimony Function (PPF) [55], which is a dis-
crete function that aims to find the phylogenetic tree based on the least number of

27

28 CHAPTER 3. RELATED WORK

mutations among taxa. Another method for evaluating phylogenetic trees is the
Phylogenetic Likelihood Function (PLF) [56]. The PLF is the most widely used
method for tree construction, and is employed in several phylogenetics tools like
RAxML [57], GARLI [58], and MrBayes [59]. Yang and Rannala [60] provide a de-
tailed review of the major methods and principles in phylogenetics.

3.1.1 Phylogenetic Parsimony Function (PPF)

The PPF is used when the main objective is to find the tree topology that requires
the least number of mutations to explain the data. Figure 3.1 depicts two possible
topologies and the required mutations to explain the observed data at the tips; the
tree that requires only one character change is the most parsimonious one. In com-
parison with the PLF, which relies on likelihood calculation (discussed in the next
section), the PPF is considerably less compute- and memory-intensive [61] due to
a simpler scoring function that produces an integer output representing the number
of evolutionary changes. Because of this, the PPF is highly suitable for large-scale
analyses. Various studies have already focused on optimizing the calculation of the
PPF. Two algorithms can be used to implement the PPF, i.e., Fitch’s algorithm [62]
and Sankoff’s algorithm [63], with Fitch’s algorithm being more commonly used be-
cause of lower computational complexity [64].

Figure 3.1: Parsimony tree scoring visualisation: less changes in sequence data from the ancestral
state to the current state result in a higher parsimony score, and thus a more parsimonious topology.

CPU

Alachiotis and Stamatakis [65] employ an optimized, in-house parallel implementa-
tion, dubbed parsimonator, as the reference software for evaluating performance of
a hardware accelerator (discussed in a following section). This reference software
implementation deploys vector instructions such as the Intel SSE (128-bit streaming

3.1. PHYLOGENETICS 29

SIMD extensions) and AVX (256-bit advanced vector extensions) intrinsic instruc-
tions. The study shows (based on execution time comparisons) that the AVX imple-
mentation is 1.14x to 1.73x faster than the SSE implementation, yet between 5.6x
and 9.65x slower than a FPGA accelerator.

Santander et al. [66] present an optimized solution for CPU, which is used for per-
formance comparisons with their hardware-accelerated PPF implementation. The
software (SW) implementation is parallelized and optimized using the OpenCL frame-
work in combination with SIMD instructions. The solution is compared to an unop-
timized sequential implementation and a newer version of the parsimonator (1.0.2)
(available at: cme.h-its.org/exelixis/web/software/parsimonator/index.html)
tool that is parallelized using OpenMP. All performance values are acquired using
two Intel Xeon E5-2630v3 CPUs. The optimized parallel solution is between 8.7x
and 77x faster than the sequential implementation, and between 1.1x and 9.3x faster
than the parallel AVX implementation of parsimonator.

Block and Maruyama [67] present a CPU-optimized solution developed using
C++, which is used as reference for their hardware accelerated PPF implementation
(discussed in a following section). The C++ solution implements a local search
algorithm that relies on the Progressive Neighborhood (PN) [68] search method. A
PN search starts with a large neighborhood and takes more topologies into account
to ensure a more intensive search. The C++ software solution is compared with
the respective FPGA implementation and with TNT [69], a highly optimized tool for
parsimony analysis. Using an Intel core i7-860 CPU running at 2.8 GHz as test
platform, the software solution is considerably slower than both TNT and the FPGA
accelerator, with TNT achieving, on average, comparable execution times with the
FPGA accelerated implementation (inferred from Block and Maruyama [67], Table
3).

FPGA

Kasap and Benkrid [70], [71] presented an FPGA implementation based on a systolic-
array architecture for the acceleration of the PPF using Sankoff’s algorithm [63]. The
authors applied fine- and coarse-grained parallelism on multiple FPGAs, with each
device hosting a systolic array with 20 Processing Elements (PEs). The accelerated
system only supported up to 12 taxa. To evaluate performance, the authors used
the Maxwell supercomputer [72] with Intel Xeon processors running at 2.8GHz, and
8 processing nodes, each hosting a Virtex-4 FPGA clocked at 157 MHz. Speedups
between 5x and 32,414x were reported based on comparisons with PAUP [73], a
software tool for phylogenetics analyses that was executed on an Intel Centrino Duo
CPU running at 2.2 GHz.

https://cme.h-its.org/exelixis/web/software/parsimonator/index.html

30 CHAPTER 3. RELATED WORK

Alachiotis and Stamatakis [65] accelerated the PPF using a vector-like pipelined
architecture on an FPGA. The size of the vector of PEs could be adjusted based
on the available FPGA resources. As previously mentioned, the authors employed
an optimized software implementation as a reference for assessing performance.
Profiling revealed that ancestral-vector computations and final-score computations
at the virtual root account for 99% of the total execution time, which were subse-
quently accelerated. In comparison with the AVX-based implementation, the re-
ported speedups ranged between 5.6x and 9.6x using a Xilinx Virtex-6 FPGA.

Block and Maruyama [67] also employed FPGAs for the PPF, accelerating the
complete tree-search algorithm using a versatile approach that is not limited by the
number of taxa. As with the SW solution previously mentioned, the accelerated so-
lution uses a local search algorithm that relies on the Progressive Neighborhood
(PN) [68] search method. Every algorithmic step was translated into a dedicated
hardware unit, thereby allowing them to operate in parallel in a pipelined architec-
ture. The solution is implemented on a Xilinx Kintex-7 FPGA operating at 157 MHz.
The performance comparison, already presented in section 3.1.1, shows that the
FPGA accelerator achieves speedups in the order of thousands over the respective
unoptimized software solution, but only matches the execution times of TNT, even
though TNT constructs and evaluates 5x more trees than the FPGA implementation.

The more recent works of Block and Maruyama [64], [74] extend the acceler-
ator design to also implement the Indirect Calculation of Tree Lengths [75] search
method. When using the Indirect Calculation of Tree Lengths, the time required to
visit all the internal nodes of a tree is fixed at 1/T , where T is the number of taxa.
The benefit of this search method is that the time required for this search does not in-
crease with T [75]. The same Kintex-7 FPGA is used running at 156.25 MHz. When
compared to the previous work the approach achieves speedups between 34x and
45x per tree, and between 2x and 6x for the whole local search. When compared
with TNT (version 1.1), the speedups per tree range from 2x to 4x, and from 18x to
112x for the whole local search.

GPU

Santander et al. [76] employed a GPU to accelerate phylogenetic tree inference
based on the PPF. The authors used OpenCL [3], a framework for parallel program-
ing of heterogeneous systems, and assessed performance on various GPU cards.
In a subsequent study, Santander et al. [66] presented a comparative assessment
of various parallel-programming frameworks (OpenCL [3], CUDA [49], and Ope-
nACC [77]) on different GPU architectures. The PPF was computed by organizing
the entire computational task into independent sub-tasks that you could be pro-

3.1. PHYLOGENETICS 31

Work by Year System details Achieved speedup/Reference
Satander et al. [78] 2020 CPU + GPU 22x-299x / CPU (single-core)
Satander et al. [66] 2019 CPU + GPU 8.8x-324x / CPU (single-core)
Satander et al. [66] 2019 CPU 8.7x-77x / CPU (single-core)
Block and Maruyama [64], [74] 2017 CPU + FPGA 18x-112x / CPU (multi-core)
Block and Maruyama [67] 2013 CPU N/A
Block and Maruyama [67] 2013 CPU + FPGA 1x / CPU (multi-core)
Alachiotis and Stamatakis [65] 2011 CPU 1.14x-1.73x / CPU (SSE, multi-core)
Alachiotis and Stamatakis [65] 2011 CPU + FPGA 5.6x-9.6x / CPU (AVX, multi-core)
Kasap and Benkrid [70], [71] 2010 CPU + FPGA 5x-32,414x / CPU (single-core)

Table 3.1: Overview of high-performance computational solutions for the Phylogenetic Parsimony
Function (PPF).

cessed in parallel; each sub-task corresponded to a partial calculation of the PPF.
A tree topology is stored on the GPU’s constant memory since this data structure
has to be read only, while the sequences are stored in global memory due to their
size. A row-major layout is adopted to ensure coalesced memory accesses. The
performance results of the GPU-accelerated solution are compared with a sequen-
tial software implementation. Of the three GPUs used for evaluation, the Nvidia
GeForce GTX TITAN X achieves the highest performance with speedups ranging
from 8.8x to 324x. The lowest performance gain is measured on a dataset with
short sequences (759 characters), where the memory transfer overhead is large.
Santander et al. [66] shows that implementing the solution using the CUDA toolkit
outperforms the OpenCL implementations while both CUDA and OpenCL consid-
erably outperform OpenACC, with OpenCL being between 2.3x to 3x faster than
OpenAcc.

Santander et al. [78] present a new solution that solely focuses on processing
protein sequences, which results in higher complexity due to the larger number of
states (20 amino acids). This work also presents a comparative view on multiple
GPU architectures and different implementation frameworks. Profiling the acceler-
ated design revealed that nearly 40% of the execution time is spent on data transfers
and pre-processing tasks. By overlapping data transfers with pre-processing tasks,
this time can be reduced. Overall, the CUDA implementation on the Nvidia GeForce
RTX 2080 Ti achieves the highest performance, with speedups ranging from 22x to
299x when compared to a sequential software implementation.

A summarized overview of the performance-driven solutions for the phylogenetic
parsimony function that were reviewed in this section are provided in table 3.1.

32 CHAPTER 3. RELATED WORK

3.1.2 Phylogenetic Likelihood Function (PLF)

The PLF is used by Maximum Likelihood and Bayesian inference tools like Mr-
Bayes [79] and RAxML [80] to evaluate phylogenetic trees by calculating the like-
lihood of the tree. The calculation of the PLF is both computationally and memory
intensive, and takes approximately between 85% and 95% of the runtime [80]. This
amounts to several CPU hours and is therefore of great importance to be acceler-
ated. The PLF is recursively applied, starting from the tips and proceeding toward a
virtual root, calculating likelihood vectors at the inner nodes of the tree topology. A
detailed explanation of the PLF is provided by Malakonakis et al. [81].

CPU

Pratas et al. [82] improved performance of the PLF on a CPU, a Cell Broadband
Engine, and a GPU. The authors developed an OpenMP implementation and paral-
lelized the outermost loop of the PLF to minimize synchronization overheads. The
solution is implemented on 3 different systems with multiple CPUs: 2x Intel Xeon
Quad-core CPUs (System A), 4x AMD Opteron Quad-core CPUs (System B), and
8x AMD Opteron Dual-core CPUs (System C), and performance comparisons are
performed with sequential execution on an Intel Core2 Duo E8400 CPU. Overall
System B achieves the highest speedups, ranging from 4x to 11x depending on the
dataset. System C achieves the same maximum speedups but lower on-average
performance. System A delivered lower performance than the other two systems
under test (speedups between 6x and 7x), but performance was more consistent
over varying dataset sizes.

Flouri et al. [83] present the Phylogenetic Likelihood Library (PLL), a highly op-
timized application programming interface for developing likelihood-based phyloge-
netic inference and post-analysis software. Similarly, Ayres et al. [84], [85] present
BEAGLE, an optimized software library that implements both likelihood-based and
Bayesian-based development. BEAGLE implements solely the likelihood calculation
while the PLL also implements the tree data structure. The PLL implementation em-
ploys Intel 128-bit SSE and 256-bit AVX intrinsic instructions, whereas BEAGLE only
employs 128-bit SSE instructions. Both libraries support parallel processing, with
the PLL relying on Posix threads while BEAGLE uses OpenMP. In the latest work
of Ayres et al. [85], a performance comparison is presented between the AVX PLL
(Version 2) and SSE BEAGLE (Version 3.1.2) implementations. Both solutions are
executed on a single thread of an Intel Core i7-2600 CPU, where the PLL achieves
speedups of up to 3.1x over BEAGLE.

3.1. PHYLOGENETICS 33

FPGA

Alachiotis et al. [86] implement a subset of the PLF functions required to conduct a
full real-world tree search on an FPGA, limiting functionality to fixed tree topologies.
The solution is evaluated using trees with between 4 and 512 taxa, and compared
with an efficient parallel C code for multicore CPUs (a stripped down version of
RAxML). A Xilinx Virtex-5 SX240T was used as the target FPGA, which achieved
speedups between 3x and 13.5x faster than a single CPU core. When compared
with 8 CPU cores, the FPGA implementation led to a slowdown of 0.96x for the
16-taxon tree, and speedups up to 5.08x for the rest of the tree sizes.

Zierke and Bakos [87] present a FPGA-accelerated solution based on MrBayes
[79] using the Bayesian Metropolis-Coupled Markov Chain Monte Carlo (MC3) method.
In addition to the PLF, the normalisation and log-likelihood steps of MrBayes are also
accelerated. For likelihood calculations, the internal nodes of the tree are processed
via a post-order traversal with minimal intervention from the host to reduce CPU-
FPGA communication overheads. The solution utilizes on-board memory to cache
the output vectors of the computations to minimize host-FPGA communication. A
deep pipeline architecture is devised and the solution is implemented on a Xilinx
Virtex-6 SX475 FPGA running at 310 MHz, and a Xeon 5500-series CPU is used as
the host processor. For performance evaluation, the solution is compared with the
software implementation of MrBayes executed on the same Xeon CPU, resulting in
speedups between 4.7x and 8.7x.

Recently, Malakonakis et al. [81] implemented the complete RAxML algorithm on
a hybrid system. The calculation of the PLF is done on a FPGA while the rest of the
algorithm runs on the host CPU. Two different target systems are expored: a Xil-
inx ZCU102 development board, which consists of a system-on-chip that combines
reconfigurable logic with a quad-core ARM A53 general purpose processor, and a
cloud-based Amazon AWS EC2 F1 instance that hosts multiple FPGAs connected
to Intel Xeon E5-v4 CPUs through PCIe. The first system deploys at most two PLF
accelerators at a frequency of 250 MHz, due to memory bandwidth limitations. This
implementation is 7.7x faster than a pure software implementation run on a AWS
EC2 F1 instance. The AWS-based accelerated system is about 5.2x faster than the
software implementation. In comparison with previous work by Alachiotis et al. [86],
the implementation on the Xilinx development board is about 2.35x faster.

GPU

Pratas et al. [82] accelerate the calculation of the PLF within MrBayes on a GPU.
A fine-grained architecture is adopted where parallelization is done at the likelihood
vector entry level. Calculation of each vector entry is assigned to one independent

34 CHAPTER 3. RELATED WORK

thread to minimize thread synchronization. To improve performance, data parti-
tioning is done on three levels: a) global partitions are created when the data is
larger than the GPU’s global memory, b) block partitioning is used to distribute the
likelihood array elements among processing engines which are processed indepen-
dently, and c) thread partitioning for a set of computations. For every call to the PLF,
the input data is transferred to the GPU’s global memory, and the results are returned
when the computation is finished. The percentage of time spent on calculating the
PLF is reduced from more than 90% to 5-10%. The CPU-GPU communication how-
ever, severely limits overall performance. The resulting speedup, when executed
on a Nvidia GeForce GTX 285, is approximately 1.5x over the respective single-
thread CPU implementation executed on an Intel Core2 Duo E8400. The presented
speedup is scaled with respect to the clock frequencies of the GPU and CPU, which
are 1.48 GHz and 3.0 GHz respectively.

Zhou et al. [88] propose an improvement over the work by Pratas et al [82].
While the work presented by Pratas et al. mainly focuses on the GPU-side com-
putations, this work adopts a more hybrid approach where the CPU performs com-
putations in parallel with the GPU. Besides that, the authors employ pipelining in
order to reduce the idle time of both platforms and overlap CPU-GPU communica-
tion with computations. In order to further improve performance, shared memory is
exploited and thread idle operations are reduced to the minimum. When compared
with the fastest–at the time of publication–CPU multi-core implementation, the so-
lution achieves speedups between 0.9x to 5.4x. In comparison with the work by
Pratas et al., the performance gain is between 7.5x and 12.6x.

Ayres et al. [84], [85] also include GPU acceleration in BEAGLE and present var-
ious optimizations in version 3.1.2 [85] to further improve GPU acceleration. Both
CUDA and OpenCL have been used in different implementations to target a wide
range of GPUs, as well as solutions implementing single- and double-precision arith-
metic. Fine-grained parallelization of the likelihood calculation is applied. BEAGLE
version 3.1.2 optimized thread utilisation by identifying additional opportunities for
parallelization in order to prevent thread idle operations. Data partitioning has been
improved to prevent sequential execution of BEAGLE instances on the GPU. Over-
all, the optimizations in version 3.1.2 focus on higher utilization of the massively
parallel architecture of the GPU. When executed on a Nvidia Tesla P100 GPU and
two Intel Xeon E5-2690v4 CPUs as host, the solution achieves a 32x speedup over
the single-thread PLL [83] software implementation on the same CPU.

A summarized overview of the performance-driven solutions for the phylogenetic
likelihood function that were reviewed in this section are provided in table 3.2.

3.2. POPULATION GENETICS 35

Work by Year System details Achieved speedup/Reference
Malakonakis et al. [81] 2020 CPU + FPGA 7.7x / CPU (multi-core)
Ayres et al. [84], [85] 2019 CPU + GPU 32x / CPU (AVX, single-core)
Flouri et al. [83] 2015 CPU 3.1x / CPU (SSE, single-core)
Zhou et al. [88] 2011 CPU + GPU 0.9x-5.4x / CPU (multi-core)
Zierke and Bakos [87] 2010 CPU + FPGA 4.7x-8.7x / CPU (multi-core)
Pratas et al. [82] 2009 CPU 4x-11x / CPU (single-core)
Alachiotis et al. [86] 2009 CPU + FPGA 3x-13.5x / CPU (single-core)
Pratas et al. [82] 2009 CPU + GPU 1.5x / CPU (single-core)

Table 3.2: Overview of high-performance computational solutions for the Phylogenetic Likelihood
Function (PLF).

3.2 Population genetics

As previously stated population genetics studies the genetic composition within one
and among different populations. This includes the detection and understanding of
footprints caused by evolutionary phenomena such as positive selection, epistasis,
recombination, linkage disequilibrium, and genetic drift, among others, which can
explain changes in the frequencies of genes over space and time. The current
section focuses on computational solutions for linkage disequilibrium and pairwise
epistasis.

3.2.1 Linkage Disequilibrium

As the number of sequenced genomes increases and more genetic variation is
discovered, the calculation of LD becomes increasingly compute- and memory-
intensive. Computational and memory requirements increase quadratically with the
number of Single-Nucleotide Polymorphisms (SNPs), while computational require-
ments also increase linearly with the number of genomes (sample size).

CPU

Chang et al. [89] present an optimized version of PLINK [90] which is a widely
used tool for whole-genome association studies and population genetics. The opti-
mized version (PLINK1.9) calculates both Pearson’s correlation coefficient and D′,
as measures of LD. PLINK1.9 implements various improvements, such as bit-level
parallelism, vector instructions, and higher memory efficiency than its predecessor.
For pairwise LD computations, PLINK1.9 is between 754x and 8,450x faster than
PLINK1.07 (initial release), as can be inferred from the reported execution times by

36 CHAPTER 3. RELATED WORK

the authors (Chang et al. [89], Table 5).
Tang et al. [91] present LDkit, a parallel computing toolkit for linkage disequi-

librium analysis. The tool implements both Pearson’s correlation coefficient and
D′. Using task-level parallelism to deploy multiple threads/cores, the authors report
speedups of up to 12.8x (over single-thread execution) with 32 threads. Performance
comparisons with other tools reveal than LDkit does not outperform PLINK1.9 [89],
which is between 1.3x and 25x faster. LDkit, however, has a user-friendly graphical
user interface.

Zhang et al. [92] present PopLDdecay, a C++ tool for LD decay analysis that
can be used to study the rate of recombination in a population. Similarly to the
previous tools, PopLDdecay implements both Pearson’s correlation coefficient and
D′. PopLDdecay does not outperform the second-generation of PLINK, which is
approximately 2.7x faster, but it achieves higher memory efficiency, utilizing up to
12x less memory than PLINK, on average.

Alachiotis and Pavlidis [93] present a series of parallelization strategies to over-
come the problem of load imbalance when computing LD on multi-core processors.
A fine-grained parallelization approach is suitable for large sample sizes, achieving
up to 11.1x speedup with 16 threads/cores, whereas a coarse-grained approach is
proposed for better parallel performance on long genomes. Because the coarse-
grained approach is particularly sensitive to load imbalance (varying SNP density
along the genome), a generic algorithm is proposed that achieves up to 2.5x faster
processing than the coarse-grained approach on 16 threads/cores. All paralleliza-
tion alternatives are implemented in the open-source software OmegaPlus [1].

Alachiotis et al. [17] demonstrate that the calculation of LD can be cast in terms
of Dense Linear Algebra (DLA) operations. The authors describe the caclulation of
LD as a series of Basic Linear Algebra Subprograms (BLAS) [94]–[96] operations,
and show that the GotoBLAS [97] approach (now maintained as OpenBLAS [98])
can be used to compute LD as a high-performance General Matrix Multiplication
(GEMM). The proposed approach is implemented based on BLAS-Like Instantiation
Software (BLIS) [99], i.e., a high-performance framework for rapidly implementing
DLA operations using the GotoBLAS approach, and is up to 17x and 6.7x faster
than PLINK1.9 [89] and OmegaPlus [1], respectively.

FPGA

Alachiotis et al. [100] present an FPGA accelerator for computing Pearson’s corre-
lation coefficient as a measure of LD, using the Infinite Sites Model (ISM) [101]. The
hardware architecture is automatically generated based on a number of parame-
ters that were used to explore the accelerator design space. The study reports that

3.2. POPULATION GENETICS 37

throughput improves when a moderate amount of wide, pipelined population count1

operators are used instead of a larger number of narrow operators. A host CPU runs
an iterative algorithm that schedules execution on the accelerator hardware based
on the available number of accelerator instances on the FPGA. To evaluate perfor-
mance, the proposed solution is mapped on a Xilinx Virtex-7 VX980T-2 FPGA with a
clock frequency of 137Mhz. When compared with PLINK1.9 [89] running on a work-
station with an Intel Xeon E5-2630 hexa-core 2.6 GHz CPU, the FPGA achieves
50x faster processing than 12 CPU threads, and 200x faster processing than 1 CPU
thread.

Bozikas et al. [102] also implement the Pearson’s correlation coefficient as a
measure of LD, with the architecture supporting the more compute-intensive Finite
Sites Model (FSM). An accelerator architecture that supports any number of sam-
ples is presented and mapped to a system with four FPGAs. The authors observe
that transferring SNPs to the FPGAs is limiting performance, and propose a mem-
ory layout that facilitates the parallel retrieval of SNPs through multiple memory con-
trollers. The Convey HC-2ex platform with 4 Xilinx Virtex-6 LX760 FPGAs is used.
When compared with PLINK1.9 running on an Intel Xeon E5-2630 CPU at 2.3 GHz,
one FPGA is 4.7x faster than 12 CPU threads, whereas processing becomes up
to 12.7x faster than 12 CPU threads when all 4 FPGAs are used. Despite using
FPGA technology as well, the speedups by Bozikas et al. [102] are lower than the
50x speedup previously achieved by Alachiotis et al. [100] because of the additional
support of the FSM model that requires more computations and hardware resources.

GPU

Xian et al. [103] present a GPU-accelerated solution for LD, computing Pearson’s
correlation coefficient under the ISM model. The authors employ the popc instruc-
tion of the CUDA Toolkit API [49] for faster bit counting (population count operation).
Furthermore, a data reorganization scheme and atomic instructions are used for re-
ducing memory footprint and latency. The proposed solution is implemented on a
cluster of Nvidia Tesla C2075 GPUs (two GPUs per node), achieving speedups be-
tween 906x and 1,589x in comparison with a sequential software implementation on
an Intel Xeon E5410 quad-core CPU running at 2.33 GHz. The overall processing
capacity of the cluster (number of nodes, CPU cores, and GPUs) is not specified.

Theodoris et al. [104], [105] present quickLD, an optimized software for comput-
ing LD statistics using either a CPU or a GPU. The GPU implementation is based
on the OpenCL framework. The authors focus on handling large-scale datasets by

1Population counting describes the operation of counting the number of set bits (’1’) in a computer
register.

38 CHAPTER 3. RELATED WORK

Work by Year System details Achieved speedup / Reference
Tang et al. [91] 2020 CPU 12.8x / CPU (single-core)
Theodoris et al. [104] 2020 CPU + GPU 20x / CPU (SSE, multi-core)
Zhang et al. [92] 2019 CPU N/A / N/A
Binder et al. [16] 2019 CPU + GPU 7.8x / CPU (multi-core)
Bozikas et al. [102] 2017 CPU + FPGA 4.7x-12.7x / CPU (SSE, multi-core)
Alachiotis et al. [93] 2016 CPU 2.5x-11x / CPU (multi-core)
Alachiotis et al. [17] 2016 CPU 17x / CPU (SSE, multi-core)
Alachiotis et al. [100] 2016 CPU + FPGA 50x / CPU (SSE, multi-core)
Chang et al. [89] 2015 CPU 754x-8450x / CPU (multi-core)
Xian et al. [103] 2013 CPU + GPU 906x-1589x / CPU (single-core)

Table 3.3: Overview of high-performance computational solutions for computing Linkage Disequilib-
rium (LD) statistics.

introducing a two-step process that separates parsing from processing. This allows
for more flexibility in scheduling computation between distant SNPs without increas-
ing memory requirements. For performance evaluation, quickLD is compared with
PLINK1.9 on two different computing systems: a) a personal computer with an Intel
Core i5-8300H 2.3 GHz CPU and a Nvidia GeForce GTX 1050-M GPU, and b) the
Aris supercomputer (https: // hpc. grnet. gr/ en/) with two Intel Xeon E5-2660v3
2.6 GHz CPU and a Nvidia Tesla K40 GPU per node. Using datasets with up to
100,000 samples and 10,000 SNPs on the supercomputer, the authors report up to
29x faster processing than PLINK1.9 (20 threads).

Binder et al. [16] present a portable framework for performing CPU-based SNP
comparison algorithms on a GPU. Comparing SNPs is the core of LD calculations.
For portability, the implementation of LD is based on OpenCL [3] and maps the
BLIS [99] framework onto the GPU. The SNP-comparison framework is evaluated
on a Nvidia TITAN V GPU, a GeForce GTX 980 GPU, and an AMD Radeon Vega
GPU, and performance comparisons with a BLIS-based CPU implementation [17]
are performed. The authors report that the GPU implementation is up to 7.8x faster
than the CPU implementation on an Intel Xeon E5-2620v2 6-core CPU running at
2.10 GHz.

A summarized overview of the performance-driven solutions for computing link-
age disequilibrium statistic that were reviewed in this section are provided in ta-
ble 3.3.

https://hpc.grnet.gr/en/

3.2. POPULATION GENETICS 39

3.2.2 Epistasis

Epistasis is the phenomenon where interaction between different genes is antag-
onistic in such a way that one gene overrules or interferes with the expression of
another gene. This section focuses on pairwise epistasis (direct gene-gene interac-
tion). An example of pairwise epistasis is the interaction between genes that control
hair color and genes responsible for total baldness. The gene that is responsible for
total baldness is epistatic to the gene that controls hair color because the gene for
total baldness supersedes the effect of the gene that controls hair color. The gene
that controls hair color is called hypostatic to the gene for total baldness.

Detecting pairwise epistasis consists of two stages: a) creation of contingency
tables that contain the (multivariate) frequency distribution of the variables, and b)
statistical testing of each created table. A contingency table is created for every SNP
pair, which leads to excessive compute and memory requirements. Because of this,
approximate statistical tests [106], [107] have been proposed in order to shorten
analysis times when conducting Genome-Wide Association Studies (GWAS). Com-
monly used tools for epistasis detection are BOOST [108], MB-MDR [109], and
iLOCi [110]. Cordell [111] provides a detailed explanation of epistatis and related
statistical methods.

CPU

Wienbrandt et al. [112] present an optimized implementation of the BOOST [108]
algorithm, which performs an exhaustive pairwise analysis using statistical regres-
sion and is used by PLINK [90]. To improve performance, sample covariance is not
supported, and a logistic regression test based on contingency tables is used. This
optimization reduces the computational complexity from O(NT) to O(N +T), where
N is the number of samples and T is the number of iterations required for a single
test. When executed on a system with two Octa-core Intel Xeon E5-2667v4 3.2 GHz
CPUs, the optimized version is between 10x and 15x faster than the original PLINK
BOOST implementation.

González-Domı́nguez et al. [113] also optimize the PLINK BOOST algorithm us-
ing logistic regression, targeting the Intel Xeon Phi 5110P co-processor with be-
tween 57 and 61 simplified Intel CPU cores running at 1.0-1.2 GHz. Optimizations
are mainly focused on exploiting the available 512-bit-wide vector instructions, in-
cluding the popcount instruction. In addition, an embarrassingly parallel workflow
is adopted to employ the underlying many-core architecture. Moreover, the au-
thors present a heterogeneous CPU/GPU implementation that additionally deploys
a Nvidia Tesla K20m GPU. This heterogeneous implementation is between 8x and
33x faster than the Phi-only software implementation, as can be inferred from the

40 CHAPTER 3. RELATED WORK

reported execution times by the authors (González-Domı́nguez et al. [113], Table
3).

FPGA

Wienbrandt et al. [114] present an FPGA-accelerated GWAS epistasis detection
tool. The solution combines fine- with coarse-grained parallelism through systolic
arrays on multiple FPGAs, resulting in a large number of PEs operating in parallel.
The systolic array architecture is used for both the creation of large contingency ta-
bles and the application of a statistical test that is adopted from iLOCi [110]. The
authors introduce a nearly redundant-free SNP pairing scheme while maintaining
load balance among a large number of FPGAs. The proposed solution is imple-
mented on the RIVYERA [115] system that features 128 Xilinx Spartan 6-LX150
FPGAs and two Intel Xeon E5-2620 CPUs as host processor. All FPGAs run at
a clock frequency of 150 MHz, and each one of them implements 100 PEs. The
accelerated implementation achieves up to 285x faster processing than the iLOCi
software executed on two Intel Xeon quad-core 2.4 GHz CPUs.

González-Domı́nguez et al. [116] also target the RIVYERA [115] system for im-
plementation of the commonly used BOOST [108] algorithm, including its statistical
tests. A similar systolic architecture as in the work by Wienbrandt et al. [114] is used
for large-scale parallel pairwise contingency table creation and preparation, followed
by the statistical tests. A total of 128 FPGAs running at 133 MHz are deployed, with
each device hosting 56 PEs. For performance evaluation purposes, the authors
created an optimised parallel software implementation using PThreads. The FPGA
solution achieves a speedup of 190x when the software implementation is run on an
Intel Core i7-3930K using 12 threads.

GPU

Hemani et al. [117] propose a GPU-accelerated pairwise epistasis analysis tool
called epiGPU, which uses the OpenCL framework [3]. The solution performs an
exhaustive pairwise analysis where each SNP is statistically tested against all other
SNPs, resulting in a two-dimensional search grid with calculations distributed over
the massive parallel architecture of the GPU. To increase performance, the program
does not consider the effect of covariates in the analysis. Also, the authors observe
that the slow access to global memory limits performance considerably, and intro-
duce optimizations to the regression algorithm in order to achieve higher utilisation
of the faster shared memory on the GPU. Moreover, the CPU-GPU communication
overhead is minimised by using bit-packed compression, while the memory access
time is minimised by using coalesced memory accesses. The optimizations result in

3.3. METHODS AND TOOLS FOR SELECTIVE SWEEP DETECTION 41

a 15x speedup over the unoptimised implementation. For performance evaluation,
the Nvidia GeForce GTX 580 was used with an Intel Core i7-970 CPU as host pro-
cessor. In comparison with the respective parallel software implementation running
on the host CPU (6 CPU cores), the accelerated epiGPU solution is 15.7x faster.

Yung et al. [118] present GBOOST, a GPU-accelerated implementation of BOOST
[108] using the CUDA toolkit. The creation and preparation of the contingency tables
as well as the statistical test are performed on the GPU. The log-linear filter, how-
ever, is executed on the CPU to avoid thread divergence. The performance of the
statistical test calculation is improved through coalesced memory accesses to the
global memory. The solution omits the effects of covariates. For performance com-
parison GBOOST is tested on a Nvidia GeForce GTX 285 and compared to BOOST,
which is executed on an unknown CPU running at 3 GHz. GBOOST achieves a 40x
speedup compared with BOOST.

Wang et al. [119] present an optimised version of GBOOST [118] called GBOOST
2.0. The solution achieves higher true positive rates than GBOOST through the
implementation and consideration of covariates. Performance comparison is per-
formed using the Nvidia GeForce GTX 285, but no host CPU is reported. The au-
thors report a speedup of 1.5x speedup of GBOOST 2.0 over GBOOST.

González-Domı́nguez et al. [116], in addition to the FPGA implementation pre-
viously discussed, also present a hybrid CPU-GPU implementation of the BOOST
algorithm. The same contingency table creation and statistical test calculation steps
are performed as with the FPGA implementation. The GPU solution, however, uses
a single kernel to perform the whole analysis on a batch of SNP-pairs. This im-
proves performance since large tables do not need to be stored in global memory.
The resulting SNP information is stored in binary form in global memory before be-
ing transferred back to the host. As with the FPGA implementation, the GPU imple-
mentation is also compared with the same optimized software solution that employs
PThreads, executed on an Intel Core i7-3930K using 12 threads. The GPU solution
is also compared with BOOST [108] executed on the same CPU but using a single
thread. Using a Nvidia GeForce GTX TITAN GPU, speedups of 269x and 31x are
achieved over BOOST and the PThreads implementation, respectively.

A summarized overview of the performance-driven solutions for epistatis evalua-
tion that were reviewed in this section are provided in table 3.4.

3.3 Methods and tools for selective sweep detection

There are a number of tools that apply a variety of methods to detect selective
sweeps, these methods rely on the sweep signatures to indicate an affected region.
This section will discuss a number of tools and their applied method.

42 CHAPTER 3. RELATED WORK

Work by Year System details Achieved speedup / Reference
Wienbrandt et al. [112] 2019 CPU 10x-15x / CPU (multi-core)
Wang et al. [119] 2016 CPU + GPU 1.5x / GPU
González-Domı́nguez et al. [113] 2015 CPU N/A
González-Domı́nguez et al. [116] 2015 CPU + FPGA 190x / CPU (multi-core)
González-Domı́nguez et al. [116] 2015 CPU + GPU 31x / CPU (multi-core)
Wienbrandt et al. [114] 2014 CPU + FPGA 285x / CPU (multi-core)
Hemani et al. [117] 2011 CPU + GPU 15.7x / CPU (multi-core)
Yung et al. [118] 2011 CPU + GPU 40x / CPU (single-core)

Table 3.4: Overview of high-performance computational solutions for calculating pairwise epistasis.

Nielsen et al. [120] developed a tool called Sweepfinder which applies a para-
metric test based on composite likelihood, similar to the method of Kim and Stephan
[121]. Instead of solely focusing on identifying regions with aberrant frequency spec-
tra, this method is based on considerations of the way the spatial distribution (along
the chromosome) of frequency spectra is affected by a selective sweep. The test
differs from previous composite likelihood methods in that the null hypothesis is de-
rived from the background patterns of variation in the data itself, rather than a spe-
cific population genetic model. The SNP ascertainment process is explicitly taken
into account to correct for concomitant biases.

DeGiorgio et al. [122] continued on the work of Nielsen et al. and developed
an improved version called Sweepfinder2. Besides the effect of positive selection,
Sweepfinder2 also takes background selection and local recombination into account
in order to increase sensitivity and robustness. Background selection is a loss of
neutral variation due to negative selection [123]. The effect of local recombination is
taken into account because background selection may be pronounced in regions of
low recombination.

Pavlidis et al. [124] implemented a new method in SweeD, a tool that uses the
SFS in order to pinpoint regions of selective sweeps. The SweeD code is based
on the work of Nielsen et al. and can be used for whole genome rapid detection
of sweeps. SweeD implements calculation of the SFS analytically for demographic
models that comprise instantaneous population size changes and, optionally, also
an exponential growth as the most recent event. Thereby, a neutral SFS can be
obtained without the need to compute the empirical average SFS for the genome.
This makes the result more robust.

Voight et al. [125] presented a new test statistic they denote iHS (integrated hap-
lotype score). The statistic identifies loci where strong selection has driven new al-
leles up to intermediate frequency. This event can be followed by a selective sweep
where fixation will take place, or the alleles become balanced polymorphisms. The

3.4. DISCUSSION AND CONCLUSION 43

iHS relies on the first two signatures, i.e., a shift in the SFS and a subgenomic re-
gion with a reduction of the polymorphisms level. The iHS statistic uses the EHH
(extended haplotype homozygosity) statistic proposed by Sabeti et al. [126], to de-
termine a measure of how unusual the haplotypes around a given SNP are, relative
to the genome as a whole. In other words, at each SNP the iHS measures the
strength of evidence for selection acting at or near that SNP.

Alachiotis et al. [1] presented OmegaPlus, a high-performance dynamic pro-
gramming implementation of the ω-statistic proposed by Kim and Nielsen [45]. The
ω-statistic measures the specific localised pattern of LD, the third signature, to accu-
rately pinpoint selective sweeps. OmegaPlus is used for rapid detection of selective
sweeps in whole genome data. Overall the LD-based selective sweep detection
method has showed to be more fruitful than other detectable signatures due to ac-
curacy and computation complexity. Crisci et al. [127] observed that when com-
pared to other tools for detecting selective sweeps (SweepFinder, SweeD, and iHS),
OmegaPlus was found to be the most sensitive to various model parameters, and
exhibits the highest true positive rates of the tools.

Alachiotis and Pavlidis [128] present RAiSD (Raised Accuracy in Sweep Detec-
tion) that implements a novel, to the authors knowledge, and parameter-free detec-
tion mechanism that relies on multiple selective sweep signatures via the enumer-
ation of SNP vectors. The authors introduce the µ statistic, a composite evaluation
test that scores genomic regions by taking all three signatures into consideration.
Due to the use of SNP vectors to detect the SFS and LD changes, the computa-
tional requirements are considerably reduced. A SNP vector is an entire alignment
column, which the µ statistic employs as a unit. To compute the µ statistic, a SNP-
driven, sliding-window algorithm is employed that reuses calculated data between
overlapping windows.

3.4 Discussion and Conclusion

Due to advances in DNA sequencing technologies in the past years, Bioinformat-
ics gradually transformed into a computational discipline that requires scalable algo-
rithms and high-performance processing systems. The use of hardware acceleration
and high-performance computing solutions in Bioinformatics is found to be a viable
solution for this trend. In this literature research. heterogeneous FPGA-/GPU-based
systems and CPU-based algorithmic solutions that boost performance of compute-
intensive kernels in the fields of phylogenetics and population genetics have been
reviewed, providing insights into the potential of these accelerator technologies in
Bioinformatics. Based on the reviewed literature we observe that CPU optimizations
can lead to performance improvements up to 18x faster than unoptimized implemen-

44 CHAPTER 3. RELATED WORK

tations, while hardware-accelerated solutions empowered by FPGAs and GPUs are
capable of reducing analyses times further, achieving speedups up to 77x and 86x,
respectively.

From the multiple selective sweep detection tools reviewed, OmegaPlus uses
the more fruitful LD signature to locate the selective sweep. When compared to
RAiSD, more extensive literature is available that evaluates OmegaPlus as supe-
rior in comparison with other tools [127], [129]. Furthermore OmegaPlus is more
compute intensive then the other reviewed tools since it examines the LD signature
more thoroughly, where RAiSD for example examines the three signatures with a
rough approximation. The rough approximation of the three signatures results in
high performance but may be suboptimal, as the different signatures might be par-
tially correlated since they depend on the same underlying coalescent trees [45], or
lead to conflicting outcomes [128]. OmegaPlus is the chosen tool to accelerate as it
implements a full likelihood based evaluation of LD, where LD has been extensively
reviewed and found to be more accurate [45].

Chapter 4

OmegaPlus and quickLD

This chapter will give information about the chosen selective sweep detection tool,
OmegaPlus, in section 4.1. The target tool for GPU acceleration is decomposed
in three main parts, i.e., input data representation, LD computation and ω-statistic
computation, which will be explained in the OmegaPlus section. Furthermore a high-
performance LD computation implementation, including the knowledge that lies at
the foundation of this implementation, will be described in section 4.2.

4.1 OmegaPlus

This section will elaborate on the chosen selective sweep detection tool OmegaPlus
[1], [2]. Section 4.1.1 will explain the input data of the tool and how this data is repre-
sented within the tool. Section 4.1.2 explains the LD calculation within OmegaPlus
from the stored data and how the results are prepared for calculating the ω-statistic.
Section 4.1.3 elaborates on the calculation of the ω-statistic.

4.1.1 Input data representation

OmegaPlus can process two types of input data, DNA in the FASTA and VCF
(Danecek et al., [130]) format and binary data in the ms (Hudson, [131]) or MaCS
(Chen et al., [132]) format. The DNA data formats comprise of nucleotide data with
four possible states, ’A’, ’C’, ’G’, and ’T’, where one is ancestral and the remaining
are derived. The binary data format relies on the Infinite Sites Model (ISM) [133],
where individuals can either carry an ancestral state (0) or a derived state (1). An
ancestral state corresponds to no mutation while a derived state is used when a
mutation has occurred. Where the FASTA format consists of MSA(s), and the VCF
(Variant Calling Format), ms and MaCS formats consist of sites of interest, i.e., allele
variations. The FASTA format can be seen as an MSA N ∗m matrix, consisting of N

45

46 CHAPTER 4. OMEGAPLUS AND QUICKLD

rows representing the sequences/samples and m columns representing the align-
ment sites. An example of an MSA with 4 sequences (individuals), each consisting
of 29 alignment sites is shown in fig. 4.1, where 5 SNPs are highlighted in red.

Figure 4.1: MSA example with with 4 individuals, each consisting of 29 alignment sites. The 5 SNPs
in this dataset are highlighted in red.

Before storing the data, the FASTA MSA format is pre-processed by removing all
the alignment sites that do not contain a SNP, also called the monomorphic sites.
This results in the dataset represented by a reduced matrix of dimension N ∗ W
only comprising of polymorphic sites, with N sequences/samples and W remaining
segregating sites or SNPs.

Now this N ∗ W matrix containing either binary or DNA data is first mapped
from characters to 32-bit unsigned integers, where these unsigned integers can
be seen as bit vectors. This is an iterative process where 32 characters from a
sequence are converted to either a single or multiple bit vectors, which are stored
in the compressedArrays matrix. For the binary data this process is straightforward,
every 0 state character translates to a ’0’ bit and every 1 state character to a ’1’
bit. For the DNA data four 32-bit unsigned integers represent the data, one for each
of the possible states. For example, when an ’A’ state is read, this translates into
a ’1’ bit in the ’A’ 32-bit unsigned integer with the other three are set to ’0’ for that
bit position. Figure 4.2 illustrates the data representation for the DNA format. For
binary data only the first row of the compressedArrays matrix is filled with ancestral
(0) or derived (1) states, making it a one-dimensional array of unsigned integers.

4.1. OMEGAPLUS 47

Figure 4.2: Illustration of the data representation in OmegaPlus for the DNA format input data after
filtering out the monomorphic sites and compressing the data in 32-bit unsigned integers.

Assume an alignment with a total of W SNPs or segregating sites and N se-
quences, then the number of elements in each used row of the compressedArrays

matrix is equal to: ⌈N
32
⌉W .

Each of these one-dimensional rows can be seen as a matrix itself with Nint rows
and W columns. In this matrix each column represents a SNP that is stored as a
group of Nint 32-bit unsigned integers, where Nint is defined as:

Nint = ⌈
N

32
⌉, (4.1)

with zero padding the columns if N mod 32 ̸= 0.
Effectively the stored data can then be looked at as a genomic matrix named

G, with dimension (Nint ∗ 32) ∗W . Where the Nint ∗ 32 padded rows represent the
sequences/samples, and the W columns represent the SNPs or sites of interest.
The genomic matrix G is often referred to in the remainder of this chapter.

For DNA data, four of these genomic matrices can be formed, one for each row
in the compressedArrays matrix.

4.1.2 Linkage Disequilibrium computation

After the input data has been processed and stored in the compressedArrays matrix
the LD computation will execute.

Assuming the ISM with binary data, pi, pj are the frequencies of alleles that have
the state ’1’ at SNPs i and j, respectively and pij is the frequency of the alleles that
have the state ’1’ at both SNPs i and j. Assume a total of N sequences where the
states of the input data are denoted by S ({A, C, G, T} for DNA, {0, 1} for binary).
First r2sisj is calculated as follows:

r2sisj =
(psisj − psipsj)

2

psipsj(1− psi)(1− psj)
, (4.2)

48 CHAPTER 4. OMEGAPLUS AND QUICKLD

where si, si ∈ S, psi is the number of si ’1’ states in SNP i divided by the total
number of sequences N , psj is the number of sj ’1’ states in SNP j divided by the
total number of sequences N , and psisj is the number of sisj combined ’1’ states
divided by the total number of pairs of sequences N . When the input data are in
binary format, then r2ij = r2sisj since only one mutation array in the compressedArrays

matrix represents the states. For DNA input data, r2sisj is calculated for each of the
four possible states, where si and sj are extracted from the corresponding state
array (0, 1, 2, 3) in the compressedArrays matrix. Then r2ij is calculated as follows,
according to [134]:

r2ij =
(vi − 1)(vj − 1)vij

vivj

∑
sisj∈S

r2sisj , (4.3)

where vi is the number of valid states in SNP i (vi ≤ 4), vj is the number of valid
states in SNP j (vj ≤ 4), and vij is the number of valid pairs of states (si, sj ∈ S, vij ≤
16). When input DNA data is gapless, the number of valid pairs of states is equal to
the number of sequences N .

The counting of the ’1’ states in the compressedArrays matrix is done using a
lookup table called bits in 16bitsLocal, which is populated using an iterative bit-
counting function.

Previous experimental results revealed that LD calculations on binary data re-
quire approximately 7–9 times less operations than on DNA data, therefore signifi-
cantly reducing exection times for the LD calculations [93]. To force the deduction of
a DNA alignment to binary within OmegaPlus, the -binary option can be used.

In the input parameters of OmegaPlus the user defines a grid size D, which de-
termines a number of equidistant locations Ci (1 < i < D) to be assessed. The size
of the genomic region, centered at Ci, is determined by the length of the input data
and the user specified minimum and maximum window size. Between all possible
SNP pairs i and j in the genomic regions, the Pearson’s correlation coefficient is
calculated, r2ij. The coefficients are stored in a lower triangular matrix M using a
Dynamic Programming (DP) algorithm based on eq. 4.4:

Mi,j =


0 1 ≤ i ≤ W, j = i

r2ij 2 ≤ i ≤ W, j = i− 1

Mi,j+1 +Mi−1,j−

Mi−1,j+1 + r2ij 3 ≤ i < W, i− 1 > j ≥ 0

, (4.4)

where W is the total number of SNPs in the genomic region. The lower triangular
matrix M has correlationMatrix as variable name with matrix size W (W − 1)/2.

Typically, the number D of locations to be assessed is in the order or thousands,
which can lead to extended overlapping areas between neighbouring genomic re-

4.1. OMEGAPLUS 49

gions, depending on the length of the input data. This overlapping results in re-
dundant computations which are avoided using a data-reuse optimization. For grid
position i, genomic region Ci and corresponding matrix Mi, the subsequent matrix
Mi+1 is calculated in two steps. The first step consists of copying the lower n rows of
Mi to the higher n rows in Mi+1, where n is the number of SNPs in the overlapping
area between subsequent genomic regions Ci and Ci+1. Step two is the calcula-
tion of the remaining rows of Mi+1. This optimization can achieve up to an order of
magnitude faster overall execution [1].

4.1.3 Omega statistic computation

Every genomic region centered at Ci, consists of W SNPs and is split up into a left
L and right R subgenomic region. These subgenomic regions consist of l and W − l

SNPs respectively, where ω can be computed for every Ci as follows:

ω =

(
(l
2
) + (W−l

2
)
)−1(∑

i,j∈L r
2
ij +

∑
i,j∈R r2ij

)(
l(W − l)

)−1∑
i∈L,j∈R r2ij

. (4.5)

The numerator in the ω-statistic quantifies the level to which average LD is in-
creased on the left and right side of selective sweep, against the level across the
site of the selection in the denominator. For every selective sweep center Ci, ω is
assessed for all SNP intervals in subgenomic regions L and R in l(W − l) number
of steps, illustrated in fig. 4.3. These subgenomic regions typically consist of a few
thousand of SNPs resulting in multiple million steps in which ω is computed. The
goal is to find the maximum ω value and the corresponding l of all the steps that lie
within the borders of the candidate region. All

∑
i,j∈L r

2
ij,

∑
i,j∈R r2ij, and

∑
i∈L,j∈R r2ij

values required by the ω-statistic are retrieved from matrix M .

50 CHAPTER 4. OMEGAPLUS AND QUICKLD

Figure 4.3: Illustration of two consecutive ω computations in the subgenomic regions L (left border)
and R (right border) at center location Ci (thick line). The SNPs in the dashed squares are included
in each computation step with LD values taken from M . At step n + 1 note the shift of the dashed
square with the smallest interval (adapted from [2].

Figure 4.4 shows a general view of the work-flow in OmegaPlus as described in
this chapter.

4.2. HIGH-PERFORMANCE LD 51

Figure 4.4: General view of the work-flow in OmegaPlus with the described steps. First input data
is processed and compressed, which after LD values are relocated in matrix M where needed and
new values are computed. With the computed LD values the ω-statistic is computed. This process is
repeated for all the grid positions specified by the user.

4.2 High-performance LD

In this section a deeper understanding of the computation of LD is given with an cor-
responding implementation on both the CPU and GPU architecture. In section 4.2.1,
the computation of LD is explained in terms of Dense Linear Algebra (DLA) opera-
tions. With this knowledge a high-performance implementation is developed for both
the CPU and GPU architecture, named quickLD and described in section 4.2.2.

4.2.1 LD as Dense Linear Algebra operations

Alachiotis et al. [17] present a deeper understanding of LD and observed that the
calculation of LD can be rewritten in terms of Dense Linear Algebra (DLA) opera-
tions. This allows for high-performance implementations for various microprocessor

52 CHAPTER 4. OMEGAPLUS AND QUICKLD

architectures due to collective knowledge in the high-performance computing (HPC).
The rest of this section explains the casting of LD as DLA operations.

When assuming the ISM where ’0’ represents the ancestral state and ’1’ the
derived state, the allele and haplotype frequencies can be computed using linear al-
gebra. When given N sequences, the allele frequency pi of SNP si can be computed
using linear algebra operations as follows:

pi =
sTi si
N

. (4.6)

The counting of the number of derived states in si is possible by calculating the
dot product of the bit vector si with itself. The haplotype frequency with SNPs si and
sj can then be computed the same:

pij =
sTi sj
N

. (4.7)

Then using eq. 4.6 and 4.7, the standard coefficient of LD is equal to:

Dij = pij − pipj

=
1

N
(sTi sj)−

1

N2
(sTi si)(s

T
j sj).

(4.8)

As with the LD computations in OmegaPlus, Dij should be computed for for all
possible pairs of SNPs, si and sj, in a region of W SNPs. Alachiotis et al. note that
every dataset that consists of more than one SNP can be regarded as a genomic
matrix G, where each column in the matrix is a SNP. Now the LD computations can
be written as matrix multiplications with the following sequence of DLA operations:

H =
1

N
GTG

D = H − ppT ,
(4.9)

where H is a matrix with all the possible haplotype frequencies, Pij and the matrix
D is then formed by subtracting the product of allele frequencies from H. When us-
ing the Level 3 Basic Linear Algebra Subprograms (BLAS3) [135] operations, which
are essentially matrix multiplications of different forms, these DLA operations can be
mapped efficiently on modern day computer architectures with hierarchy of caches
for memory. Computing the haplotype frequency matrix H is of O(n3) complexity,
as it is a matrix multiplication. The subtraction of the allele frequencies is of O(n2)

complexity since it an outer product of vector p with itself. The higher complexity of
calculating H results in it dominating the overall required operations, and thus opti-
mizations focused on computing H have the biggest impact. The remainder of this

4.2. HIGH-PERFORMANCE LD 53

chapter will focus on optimizing the computation of the haplotype frequency matrix
H.

The computation of H is essentially a General Matrix Multiplication (GEMM) op-
eration, which can be implemented using the GotoBLAS [97] approach for high-
performance GEMM. The core of the GotoBLAS approach is a highly optimized
GEMM kernel, this kernel has a particular shape and implementation.

With matrices A, B and C with dimensions m ∗ k, k ∗ n and m ∗ n respectively,
the optimized GEMM operation computes the following:

C = αAB + βC. (4.10)

The input matrices, A, B and C, are partitioned in the k dimension, reducing the
GEMM operation size to m ∗ kc, kc ∗ n and m ∗ n respectively, with m,n ≫ kc. This
smaller GEMM operation is the actual optimized GEMM kernel in the GotoBLAS
approach. The performance of the GotoBLAS GEMM kernel can reach close to the
peak performance of the architecture (≈ 90%), if the kernel parameters are tuned to
the specific computer architecture.

In order to fully utilize all cache levels in the architecture, each matrix is further
partitioned in specific manner. This is achieved by implementing each GEMM kernel
as a series of block-panel multiplications, where these block-panels are packed into
contiguous memory. The resulting matrix multiplication is implemented as a blocked-
dot product.

Given the genomic matrix G with N number of sequences and W number of
SNPs, with typically W being much larger than N , the computation of the haplotype
frequency matrix:

H =
1

N
GTG, (4.11)

can be seen as a GEMM operation with A being GT and B being G, with dimen-
sions m ∗ k and k ∗ n respectively. Now k can be seen as the number of sequences
with m = n≫ k, as m and n are the number of SNPs. With α = N−1 and β = 0 the
computation of H can be cast to the highly optimized GEMM kernel as every input
matrix and output matrix are already of the correct shape and can be partitioned in
the k dimension. As the number of sequences (k) increases due to advances in DNA
sequencing technologies, the GotoBLAS approach does not need to be changed
because the partitioning is happening in the k dimension. Thus, the GotoBLAS ap-
proach to implementing the GEMM operation is suitable for LD computations, now
and in the future.

54 CHAPTER 4. OMEGAPLUS AND QUICKLD

4.2.2 BLIS based implementation

Theodoris et al. [104], [105] present quickLD, a highly optimized GEMM implemen-
tation using the GotoBLAS approach for LD computation. The software utilizes the
BLAS-Like Instantiation Software (BLIS) [99] for rapid implementation of this Go-
toBLAS approach for high-performance DLA on both CPU and GPU. The GPU-
accelerated version extends the work in BLIS to computing LD on the GPU, as
described by Binder et al. [16]. With the BLIS framework, only a highly efficient
micro-kernel needs to be implemented, which is a much smaller GEMM operation
than the GotoBLAS approach. This results in high-performance GEMM implementa-
tion with existing parallelization schemes available in the framework. The developed
tool can reach up to 95% and 97% of the theoretical peak performance of a CPU and
a GPU respectively.

CPU

Where the GotoBLAS GEMM kernel expected dimensions m ∗ kc, kc ∗ n and m ∗ n
for matrices A, B and C respectively, the BLIS micro-kernel performs the GEMM
operation on much smaller dimensions mr ∗ kc, kc ∗ nr and mr ∗ nr, with kc ≫ mr, n

2
r.

The partitioning to the smaller matrix dimensions is performed in a total of five loops
around the micro-kernel itself.

In the fifth loop the output matrix C and input matrix B are partitioned to m ∗ nc

and k ∗ nc respectively, in the fourth loop input matrices A and B are partitioned to
m ∗ kc and kc ∗ nc respectively, in the third loop C and A are partitioned to mc ∗ nc

and mc ∗ kc respectively, in the second loop C and B are partitioned to mc ∗ nr and
the final size kc ∗ nr respectively and in the first loop around the actual micro-kernel
C and A are partitioned to their respective final sizes mr ∗ nr and mr ∗ kc.

As with the GotoBLAS approach, the BLIS implementation performs partitioning
in the k dimension, this is executed in the fourth loop, after which the block-panel
multiplications are performed. The k dimension is partitioned into chunks of size kc

where the resulting packed matrices, called Ap and Bp, are stored in a new contigu-
ous memory. These matrices are showed in the third lowest layer of fig. 4.5 and the
following loops refer to this new contiguous memory. The BLIS micro-kernel itself is
shown in the top layer of fig. 4.5.

4.2. HIGH-PERFORMANCE LD 55

Figure 4.5: Illustration of the GotoBLAS approach of the GEMM operation with the BLIS micro-kernel.
From bottom to top, matrices C and B are first partitioned in the n dimension, after which the input
matrices are partitioned in the k dimension and stored in contiguous memory. The matrices are then
partitioned into cache optimal dimensions for block-panel multiplications. At the top of the figure the
BLIS micro-kernel is showed which is a smaller kernel implementation than the GotoBLAS approach
(adapted from [17] and [136]).

Recall the genomic matrix G, where SNPs are stored as groups of Nint 32-bit
unsigned integers or vectors in OmegaPlus. QuickLD uses the same data represen-
tation where the SNPs are stored in 64-bit vectors for the CPU implementation. The
BLIS micro-kernel can now be used for the computing the haplotype frequencies as
we earlier stated that its computation:

H =
1

N
GTG, (4.12)

can be cast as GEMM operation. The BLIS micro-kernel however is designed
for double-precision floating-point matrix multiplications instead of binary data. Thus

56 CHAPTER 4. OMEGAPLUS AND QUICKLD

the kernel needs to be adapted to this by changing the matrix data types to 64-bit
long unsigned integers.

The core of the micro-kernel however, can also be rewritten due to the binary
data. Where the computation of the haplotype frequency of SNPs si and sj is as
follows:

pij =
sTi sj
N

, (4.13)

which has the same result as the following, computer architecture optimal, oper-
ations:

pij =
1

N
POPCNT(si&sj), (4.14)

where the a bit-wise AND (&) operation between bit vectors si and sj and then
counting the number of ’1’ bits in the resulting vector with an optimized bit-count
instruction, has the same effect as calculating the dot product between the two vec-
tors. However, each SNP is stored as a group of Nint unsigned integers, which
requires the following computation for retrieving the haplotype frequency:

pij =
1

N

Nint∑
k=0

POPCNT(si&sj). (4.15)

QuickLD however, omits the division by the number of sequences N in the core
of the adapted BLIS micro-kernel. The computation of the actual haplotype fre-
quencies, as well as the allele frequencies, is performed together with the Pearson
correlation coefficient r2ij. These computations are executed outside of the BLIS
micro-kernel using the results from matrix C, consisting of the absolute haplotype
’1’ states, sTi sj, and another matrix consisting of the absolute allele ’1’ states, sTi si.

GPU

The GPU implementation of quickLD is an extension of BLIS to map the computation
of the absolute haplotype ’1’ states, sTi sj or matrix C, on the GPU, as described by
Binder et al. [16]. The Pearson correlation coefficient computations are performed
on the CPU as described with the CPU implementation of quickLD. The approach
of Binder et al. is to first cast a model GPU hardware abstraction onto the CPU
abstraction underlying BLIS. Then software parameters are determined that guide
how the GPU kernel is to be written using the BLIS framework, this is done by
leveraging the analytical models in Low et. al. [137].

An abstraction that is often used for mapping the GPU architecture to the CPU
architectures is the SIMD/SIMT abstraction [138]. Where the SIMD (Single Instruc-
tion Multiple Data) execution model applies a single instruction on similar datasets,

4.2. HIGH-PERFORMANCE LD 57

resulting in simultaneous execution by multiple execution units. SIMT (Single In-
struction Multiple Threads) is the thread equivalent of SIMD, where instruction-level
parallelism is improved by mapping the same instruction on multiple threads to exe-
cute on different datasets.

On current CPUs, multiple SIMD functional units are present in every core which
allows for multiple SIMD instructions to be executed in parallel. Queuing sufficient
number of SIMD instructions increases performance due to pipelining of these in-
structions.

For the explanation of the abstraction recall section 2.2, in which we stated that
multiple wavefronts/warps can execute independently and on different SIMD Cores
(SCs)/Processing Blocks (PBs) at the same time. Each SC/PB on the GPU can
then be seen as a SIMD functional unit on the CPU. When taking the pipe-lining of a
SIMD functional unit into consideration, this abstraction is further confirmed. Recall
that in order to hide latencies for work-items or Stream Processors (SPs)/CUDA
cores, a multiple number of wavefronts/warps should be scheduled on a SC/PB,
lets call this number Lfn. This number is equal to the latency of an instruction,
where Lfn is made equal for all instruction for simplicity of the abstraction. Now
wavefronts/warps can be seen as the equivalent of SIMD instructions, as the multiple
scheduled wavefronts/warps can be seen as multiple pipelined SIMD instructions,
where every wavefront/warp has independent outputs.

On the basis of the above abstraction, we can assume that a GPU Compute
Unit (CU)/Streaming Multiprocessor (SM) is the equivalent of a CPU core. This is
a logical continuation due to the fact that every CPU core contains multiple SIMD
functional units and every CU/SM contains multiple SCs/PBs.

Now with this CPU/GPU abstraction the authors describe how the GPU kernel is
designed for LD computation within the BLIS framework.

The CPU BLIS framework implementation uses the cores to perform both the
nr and mc partitioning in the second and third loop around the micro-kernel in a
hierarchical fashion, resulting in each core computing an independent mc ∗nr matrix
of C [139]. Similarly, Binder et al. appoint matrices of size mc∗nr of C to each CU/SM
on the GPU after parallelizing the second and third loops around the micro-kernel
amongst the available GPU CUs/SMs.

The mc ∗ nr matrices assigned to the CUs/SMs are further partitioned to smaller
sizes and computed by the wavefronts/warps scheduled on that particular CU/SM.
The partitioning is performed as follows, each mc ∗ nr matrix is divided into a mr ∗
(nr/Lfn) sub-matrix, which is computed by multiplying two input matrices, A and
B, of sizes mr ∗ kc and kc ∗ (nr/Lfn). Wavefronts/warps scheduled on the same
SC/PB are assigned sub-matrices in the same row. Wavefronts/warps which are
executing simultaneously, and thus scheduled on different SCs/PBs, are assigned

58 CHAPTER 4. OMEGAPLUS AND QUICKLD

sub-matrices from the same column.
The developed GPU framework from Binder et al., implements all the content

from the second loop around the micro-kernel to the BLIS micro-kernel itself on the
GPU. The fifth to third loop are executed on the CPU where data is transferred to
the GPU in order to correctly set up all the parameters and needed data. This imple-
mented parameterized GPU kernel first loads a sub-matrix of A into shared memory,
which after computations are performed assuming that A resides in shared memory
while B is retrieved from global memory. The parameterization is done via C macros
which are present in a C header file. The four variables in the header file are mc, mr,
kc and nr which correspond with the required BLIS framework values. The values
of these variables should be tuned to the available hardware resources on the GPU,
such as memory sizes, cache line width, wavefront/warp size, instruction latency
and number of CUs/SMs and SCs/PBs.

4.3 Acceleration target selection

This chapter has given an insight in the chosen selective sweep detection tool
OmegaPlus. The workflow of the tool has been explained on the basis of three
main parts, i.e., input data representation, LD computation and at last ω-statistic
computation.

In order to achieve the best results the following sub-question was set up to target
the most time consuming parts:

• Which parts of the state-of-the-art tool are the most computationally intensive
to target for acceleration?

In this chapter we gained an insight in the computational intensity of computing
LD and the ω-statistic, which are the expected compute intensive parts to accelerate.
After profiling the main parts of the tool, with a dataset comprising of 7,000 samples
and 13,000 SNPs, the LD and ω-statistic computation together take up 98.2% of the
total execution time. Solely the LD computation takes up 50.3% of the execution
time and solely the ω-statistic computation takes up 47.9% of the execution time.
Table 4.1 shows the complete profiling results of the OmegaPlus tool for the used
dataset.

Time (s) Time (%)
Parsing input data 4.14 1.8
LD computation 114.7 50.3
ω computation 109.1 47.9

Table 4.1: Overview of OmegaPlus profiling result

4.3. ACCELERATION TARGET SELECTION 59

From the profiling together with the information provided in this chapter, we can
conclude that both the LD and ω-statistic computation are the most computational
intensive parts of OmegaPlus.

Furthermore, in section 4.2 a deeper understanding of the computation of LD is
given together with a high-performance implementation using the BLAS approach.
This implementation, quickLD, which extends the BLIS framework, utilizes the com-
puting power of the GPU architecture and achieving up to 97% of the theoretical
peak performance. Given this implementation, the choice has been made to imple-
ment an adaptation of this already existing high-performance tool in order to reduce
the workload of this project and prevent reinventing something that is already re-
searched and developed. The following chapter will elaborate on this adaptation as
well as on the design of the ω-statistic GPU implementation.

60 CHAPTER 4. OMEGAPLUS AND QUICKLD

Chapter 5

Designs

This chapter will give an insight into the adaptation of quickLD as well as the de-
veloped implementation for GPU-accelerated ω-statistic computation. First an intro-
duction will be given about the general idea of the implementation in section 5.1.
Section 5.2 will elaborate on the quickLD adaptation and which exact parts of the
existing tool are used for the GPU-accelerated LD computation. Section 5.3 will
describe the GPU kernel itself and the design choices that have been made to im-
prove performance. In section 5.4 the developed C-code on the host CPU will be
described, i.e., the preparation of the data, setting up arguments and launching of
the actual GPU kernel. The last section, section 5.5, will give an complete overview
of the design to give a clear understanding of the final implementation.

5.1 Introduction

The overall idea of the GPU-accelerated implementation of OmegaPlus is to extend
the original tool in order to boost performance, improve throughput and reduce ex-
ecution times. This is achieved by introducing a specific OmegaPlus executable
called OmegaPlus-GPU, which utilizes GPU acceleration. This version of OmegaPlus
can be compiled with the Makefile.GPU.gcc makefile which will create the corre-
sponding executable. The GPU-accelerated functions are inserted into the original
main function and general header file OmegaPlus.h by using the #ifdef and #infdef

directives, which react to the defined USE GPU flag in the corresponding makefile. All
inserted GPU specific functions or adapted functions from OmegaPlus are located
in a new C-file named OmegaPlus gpu.c.

The previous chapter stated that the LD and ω-statistic computation are the two
compute intensive parts within OmegaPlus and are therefore targeted for GPU ac-
celeration.

Chapter 4 also concluded that the LD computation can be accelerated using

61

62 CHAPTER 5. DESIGNS

an adaptation of the high-performance BLIS implementation in quickLD, which will
further be elaborated on in section 5.2. This will essentially be a stripped down
version of the tool that fits well into the existing work-flow and code of OmegaPlus,
thus preserving most of the original tool.

The accelerated ω-statistic computation is an adaptation of the original function,
computeOmegas. This function performs all the ω computation steps per grid posi-
tion, shown in fig. 4.3, iteratively. The general idea of the accelerated function is to
perform these multiple ω computation steps simultaneously on the GPU, leveraging
its massive parallel capabilities. For this approach the variables needed for each
computation step are packed in contiguous memories and transferred to the GPU
for kernel execution. The kernel computes many ω values in parallel, which after
they are sent back to the CPU for further processing.

Dynamic kernel execution Within the sliding window algorithm for computing ω-
statistics, the number of computation steps can vary a lot from grid position to grid
position. These large variations are the result of varying number of SNPs in either
the left or right subgenomic region. This is due to a non-uniform SNP distribution
along the genome, of which the effect is more profound at the edges of the com-
plete genome. This non-uniformity results in subgenomic regions that can exhibit a
relatively low number of SNPs which are taken into account for the ω-statistic com-
putation.

Depending on the user specified window parameter values, the number of SNPs
exhibited in a subgenomic region, can vary from a few tens to thousands due to
the non-uniformity. Given the number of ω computation steps is the product of the
number of SNPs in the subgenomic regions, the number of steps can vary from a
few thousands to millions from grid position to grid position.

These two situations, where the number of computations differ massively led to
the decision of making two different kernels. One suitable for a low number of simul-
taneous computations and one for a high number of simultaneous computations.

Original omega computation Recall section 4.1, where the OmegaPlus ω-statistic
computation for every genomic region centered at Ci was explained. For every com-
putation step, seven sliding window dependable variables are needed for computing
an ω value which are either read from memory or computed.

As stated in section 4.1, all the needed Pearson correlation values are retrieved
from the lower triangular correlation matrix M . The left, L, and right, R, sub-region
correlation values,

∑
i,j∈L r

2
ij and

∑
i,j∈R r2ij are stored in respective floating point

variables LS and RS. The third correlation value needed for the ω-statistic computa-
tion,

∑
i∈L,j∈R r2ij, is calculated by subtracting the left and right sub-region correlation

5.1. INTRODUCTION 63

values from the complete region correlation value. Lets assume the complete grid
position centered genomic region is called S, which is the combination of the two
sub-regions, L and R. The complete genomic region correlation value,

∑
i,j∈S r

2
ij,

from M is stored in TS, where
∑

i∈L,j∈R r2ij, is then calculated as follows: TS−LS−RS.

The number of SNPs in the left and right subgenomic region window, l and W− l,
are stored in integer variables k and m respectively, with W being the number of
SNPs in the genomic region ω is computed for. In every step, one or both of these
values change with the smallest interval as shown in fig. 4.3. The values of l

2
and

W−l
2

are computed from k and m and are stored in integer variables ksel2 and msel2

respectively.

Left sub-region variables, LS and k, and right sub-region variables, RS and m only
depend on the state of the sliding window in their corresponding sub-region. Variable
TS depends on the sliding window in both the left and right subgenomic region.

The sliding window algorithm is implemented as nested loop where the outer
loop updates the left subgenomic region variables, LS, k, ksel2, and the inner loop
updates the right subgenomic region variables, RS, m, msel2 and TS which depends
on both regions. Every iteration performs a single computation step or ω-statistic
computation and determines if this computed value is the up to the current loop
maximum value. Per assessed grid position this results in l outer loop iterations,
W − l inner loop iterations and l(W − l) total computation steps. Algorithm 1 shows
pseudocode of the sliding windows algorithm with ω-statistic computation and win-
dow location storing.

64 CHAPTER 5. DESIGNS

Algorithm 1 Compute omega values algorithm
function COMPUTEOMEGA(LS,RS, TS, k, ksel2,m,msel2)

num← (LS +RS)/(ksel2 +msel2)

den← (TS − LS −RS)/(k ∗m)

omega← num/den

return omega

end function
procedure COMPUTEOMEGAVALUES

MaxOmega← 0

for each left region SNP interval do
LS ← LeftRegionCorrelation

k ← LeftWindowSNPs

ksel2← k ∗ (k − 1)/2

for each right region SNP interval do
RS ← RightRegionCorrelation

m← RightWindowSNPs

msel2← m ∗ (m− 1)/2

TS ← RegionCorrelation

TmpOmega← COMPUTEOMEGA(LS,RS, TS, k, ksel2,m,msel2)

if TmpOmega > MaxOmega then
MaxOmega← TmpOmega

LeftWindow ← LeftSNP

RightWindow ← RightSNP

end if
end for

end for
RegionMaxOmega←MaxOmega

RegionLeftWindow ← LeftWindow

RegionRightWindow ← RightWindow

end procedure

In section 5.3 the design choices of the GPU kernels are explained, where sec-
tion 5.4 describes the preparing of the data, data transfer and kernel launch of the
two different kernels. Both of these are closely related as a specific data access
pattern within a kernel, requires the host CPU to pack the data in the correct way.

5.2. QUICKLD ADAPTATION 65

5.2 quickLD adaptation

The GPU LD computation in OmegaPlus is an adaptation of the GPU-accelerated
BLIS framework implementation in quickLD. This section will describe which parts of
quickLD are adapted and implemented and which are omitted from the adaptation.

As described in the work by Theodoris et al. [104] and in section 4.2, quickLD
uses the same compressed data representation as OmegaPlus does. The genomic
matrix G is used and SNPs are stored as groups of Nint unsigned integers which
can be seen as bit vectors. The data parsing and preparation algorithm of quickLD
can thus be omitted since this is similarly implemented in OmegaPlus.

The tools only differ in the size of each bit vector the SNPs are stored in, where
OmegaPlus uses 32-bit unsigned integers, quickLD uses 64-bit unsigned integers.
Every function adopted from quickLD that has the genomic matrix G as parameter,
compressedArrays in OmegaPlus, is thus adapted to process 32-bit unsigned inte-
gers. Any depending parameters are taken from the OmegaPlus parsing algorithm.

Another difference between OmegaPlus and quickLD is the steps around the LD
computation and the computation itself. OmegaPlus computes a number of LD val-
ues per grid position and sums the values where needed to form the lower triangular
matrix M . Furthermore in every grid position iteration, the last and current genomic
region is checked for overlap in order to prevent redundant LD values computation,
which is accomplished with a data-reuse optimization.

The quickLD implementation only computes the Pearson correlation values, rij,
and computes the values at once for all possible SNP pairs. These correlation val-
ues are stored in an W 2 resulting matrix, with W being the number of SNPs in the
complete genomic region. This resulting matrix is effectively the full matrix M , in-
stead of the lower triangular matrix, without the computation of the summed values.

The GPU-accelerated version of OmegaPlus is adapted to this approach. The
quickLD implementation is called outside of the for-loop that iterates over the grid
positions, and the needed values are copied from the quickLD resulting matrix and
stored in the lower triangular matrix M . These correlation values stored in M are
then summed using the original OmegaPlus function. Furthermore, the original
data-reuse optimization is also retained in order to prevent redundant data trans-
fer and correlation value summing.

In order to give a good understanding of the adaptation a short overview of the
implemented parts will be given.

The GPU adaptation of quickLD in OmegaPlus is limited to a stripped down
version of the quickLD correlate gpu function including its child functions. This
stripped down function receives the compressed input data of OmegaPlus, denoted
as genomic matrix G, all absolute allele ’1’ states sTi si, the number of SNPs, W , the

66 CHAPTER 5. DESIGNS

number of unsigned integers for each SNP, Nint, and the number of sequences N .
Within the function the input data matrix is first transposed and stored in a new con-
tiguous memory location. After transposing, the gpu gemm function is called in which
the GEMM operation is executed to compute the absolute haplotype ’1’ states. In
this function the transposed and original input matrices are packed, partitioned and
transferred to the GPU for kernel execution, as described in section 4.2.2. With the
resulting matrix C and the number of sequences N the Pearson correlation coeffi-
cients, r2ij, are computed and stored in the quickLD resulting m ∗ n matrix which is
used for the ω-statistic computation.

Besides the computational function, correlate gpu, the GPU initialization and
release functions of quickLD are adapted and extended for the ω-statistic GPU com-
putation.

Figure 5.1 shows a general flow chart of the GPU-accelerated OmegaPlus tool
in which the two GPU kernels of both quickLD and the ω-statistic computation are
shown. The quickLD GPU adaptation will further be referred to as the GEMM-based
LD implementation.

5.3 GPU kernels

In this section the two designed kernels will be described in detail. The general
idea of the kernel will be elaborated on, as well as acceleration techniques, memory
types and memory access patterns used in the kernel. The kernel described in
the following section, is designed for a low number of ω-statistic computations and
referred to as ”Kernel I”, where the second kernel is designed for higher number of
computations and referred to as ”Kernel II”.

5.3.1 Kernel I: GPU kernel for low computational load

As previously stated, certain grid positions in the genomic region reveal a low num-
ber of SNPs in either the left of right subgenomic region, resulting in a relatively low
number of computation steps. This section describes the GPU kernel designed for
this situation. Every scheduled work-item for this kernel computes a single step,
where the number of scheduled work-items should always be a multiple of the work-
group size. This results in a global size of:

Gs =

⌈
l(W − l)

Ls

⌉
∗ Ls. (5.1)

These Gs scheduled work-items each perform a single computation step, result-
ing in the minimum number of performed computations on the GPU with a wavefron-

5.3. GPU KERNELS 67

Figure 5.1: Illustration of general design flow chart, where the data is first compressed on the CPU,
which after the GEMM-based LD implementation partitions and packs the data before transferring
it to the GPU for BLIS kernel execution. After computing all the LD values, data is packed per grid
position and transferred to the GPU for ω-statistic kernel execution in which all steps are performed.
Depending on the remaining grid positions results are presented or new grid position computations
are performed.

t/warp multiple sized work-group. This kernel will be executed when the number of
scheduled work-items, and thus needed computation steps, is smaller than:

Nthr = NCU ∗Ws ∗ 32, (5.2)

with NCU being the number of Compute Units/Streaming Multiprocessors on the
GPU and Ws being the wavefront/warp size of the GPU architecture. Recall from
section 2.2 that it is good practice to schedule multiple wavefronts/warps per CU/SM,
with the optimal being between 8 and 32 wavefronts/warps per CU/SM. This kernel
will thus be executing up to the maximum of the optimal occupancy metric. This
methodology is optimal for low number of computation steps since the occupancy
and hardware utilization is maximized this way. Work-items computing multiple steps
would reduce the total number of schedulable work-items resulting in underutilization

68 CHAPTER 5. DESIGNS

of the hardware and longer latencies. With typical GPUs consisting of multiple tens
of CUs/SMs and wavefront/warp sizes of 32 to 64, multiple thousand or a couple
of ten thousand work-items can be scheduled for this kernel performing the equal
number of computation steps. Grid positions with more computation steps require
a different approach as higher occupancy does not further improve performance
necessarily.

This kernel effectively mimics the behaviour of the OmegaPlus sliding window
nested loop, with the parallel approach of each work-item performing a single iter-
ation/computation step. In the original OmegaPlus code the inner loop would take
care of the sliding window in the right subgenomic region where the outer loop would
slide over the left region. The number of inner loop and outer loop iterations are then
equal to W − l and l, the number of SNPs in the right and left sub-region respec-
tively. Recall that grid positions close to either the left of right border of the complete
genomic region can exhibit a low number of SNPs in the corresponding subgenomic
region. In order to ensure an equal number of outer and inner loops for every ker-
nel execution, the sub-region exhibiting the highest number of SNPs is placed in
the inner loop. This dynamic sub-region sliding placement in the nested loop gives
the opportunity for the kernel to be specifically designed for a higher number of inner
loops and a lower number of outer loops. The number of inner loops, either l or W−l
for sub-region L and R respectively, is transferred to the GPU kernel as parameter
in cnt. This parameter is used for indexing the kernel buffers.

In order to reduce data transfer overhead and increase overall execution speed
the calculation of ksel2 and msel2 is performed on the GPU. This results in five
remaining variables that need to be transferred to the GPU for ω computation.

To further reduce data transfer overhead, buffers LS and RS and buffers k and m

are merged into a single floating point buffer and single integer buffer named LR and
km respectively.

Depending on the dynamic sub-region sliding placement, the values of LS/RS and
k/m are stored in the respective merged buffer with an offset equal to the number of
inner loop iterations, incnt.

All three input buffers, LR, km and TS are stored in global memory on the GPU
using the global qualifier. The use of constant memory for the LR and km buffers,
using the constant qualifier, could enable higher kernel optimization with this im-
plementation. This would however, make the maximum allowed size of the sub-
regions dependent on the size of the GPUs constant memory, which can be as
small as 16kB.

Within the kernel the global work-item ID is first retrieved, using the get global id

function. The index for the outer loop variables is retrieved using the following equa-
tion:

5.3. GPU KERNELS 69

Oi =
Gi

incnt

+ incnt, (5.3)

with Gi being global work-item ID. The outer loop index, Oi, will increase by 1
if the global work-item ID is greater than the number of iterations in the inner loop,
incnt. The variable index has an offset equal to the number of iterations in this inner
loop.

The index for the inner loop variables is retrieved using the following equation:

Ii = Gi mod incnt, (5.4)

where the inner loop index Ii, will increase with the global work-item ID until it
overflows the number of iterations in the inner loop.

The index for variable TS is equal to the global work-item ID, Gi.
Figure 5.2 shows how the buffers for kernel I are built up, with the sub-buffers

offset, used size depending on the number of SNPs and index variables, Ii and Oi.

Figure 5.2: Illustration of how the inner and outer loop merged buffers, LR and km, region correlation
values buffer TS and output buffer omega are built up for kernel I, with their respective sizes and index
values. The inner and outer loop sub-buffers in LR and km are of sizes incnt and oucnt respectively
and region correlation values buffer TS and output buffer omega are sized equal to the number of
computation steps, or the product of the number of loop iterations.

As stated earlier, this approach mimics and parallelizes the flow of the origi-
nal nested loop in OmegaPlus, with every work-item performing a single iteration/-
computation step and where Oi is updated after the inner loop is finished and Ii

is updated every iteration of the inner loop but reset to 0 after finishing. With this
approach, Gi can be seen as the current computation step index.

Due to the dynamic sub-region sliding placement in the nested loop, the left and
right sub-region values are also dynamically placed in the LR and km buffers. The
sub-region values of the inner loop are placed at the beginning of the buffers, where
the sub-region values of the outer loop are placed at an offset of in cnt elements
in the buffers. This dynamic value placement is possible due to the fact that the left

70 CHAPTER 5. DESIGNS

and right subgenomic region values are interchangeable in the ω-statistic. This inter-
changeability allows for a single kernel suitable for both nested loop configurations.
In the case of W − l ≪ l, the inner loop index, Ii, accesses the values of RS and m,
and the outer loop index, Oi, accesses the values of LS and k. For when l≪ W − l,
this is the other way around.

Using the global work-item ID, Gi as index value for buffer TS, results in a se-
quential and aligned coalesced memory access for the complete buffer. This is the
most optimal access pattern for TS as it resides on global memory. Such an optimal
access pattern for TS is of great importance as it is by far the largest buffer for ω

computation, with up to Nthr elements.

This kernel is designed to perform the minimum number of computations, which
is equal to the number of ω computation steps l(W − l) extended to a multiple of
the work-group size, Ls. This requires the minimum number of transferred values to
the GPU, no duplicates, no padding. Together with the coalesced memory access
approach for TS this results in suboptimal memory accesses to both LR and km.

Inner loop values, indexed with Ii, are largely accessed through a misaligned
and therefore uncoalesced memory access. This is due to the fact that the number
of inner loops is not a multiple of the wavefront/warp size. Memory accesses with Ii

are sequential, aligned and therefore coalesced, for the initial incnt scheduled work-
items. However, when Ii is reset to 0, Gi ≡ incnt, misalignment occurs as shown in
fig. 2.12. Due to the misalignment more cache lines are addressed than optimally
needed. This approach however, does not degrade performance by a great part
due to data reuse in these cache lines [52]. Unused data from a cache line fetched
by work-group n can be reused by the adjacent work-group n + 1. Furthermore,
global work-items (incnt ∗ n) to (incnt ∗ n) + incnt − 1 repeatedly access the same
memory elements for n = 0 to n = oucnt − 1. With oucnt being the number of outer
loop iterations. Whenever the number of work-items in simultaneously executing
wavefronts/warps is larger than incnt, different wavefronts/warps access identical
memory elements simultaneously, causing memory access latencies. As modern
day GPUs typically consist of dozens of CUs/SMs, each hosting single or multiple
wavefronts/warps, the number of simultaneously executing work-items can quickly
be over NCU ∗Ws = 20 ∗ 64 = 1280. As the number of SNPs in a subgenomic region,
the number of inner loop iterations, is in the same range, latencies can quickly occur.
Furthermore due to the misaligned memory accesses, work-groups scheduled on
the same CU/SM are barely able to reuse previously read elements by that CU/SM
which are stored in shared memory.

A single outer loop value is accessed at an offset of incnt elements and by incnt

consecutive work-items, where the next incnt consecutive work-items access the
following outer loop values. An access pattern where all work-items in a wavefront

5.3. GPU KERNELS 71

or warp access the same element in global memory requires a single transaction
via cache, which after the value is broadcast to all work-items [52]. As the first incnt

work-items access the same element in global memory, all the wavefronts/warps
that host these work-items will perform this optimal access. However, due to incnt

not being a multiple of the wavefront/warp size, certain wavefronts/warps will access
two different elements from global memory as Gi/incnt will overflow to the next index.

An obvious solution to these suboptimal memory accesses is to make incnt a
multiple of the work-group size. As this automatically makes incnt a multiple of Ws

and enables work-groups to reuse previously read elements stored on the CU/SM
its shared memory. This however, would require buffers LR, km and TS to be padded
with dummy values, resulting in higher number of computation steps and higher
data transfer overhead. Given the low number of computation steps this kernel is
designed for, the advantage of a more optimal memory access pattern is outweighed
by the mentioned disadvantages combined with clever data reuse by the GPU.

Due to the fact that every work-item computes a single ω value, these values can
be written to the omega buffer in a coalesced way. Every global work-item ID, Gi, is
used for indexing the current ω value that has been computed and is written to this
position. This results in l(W − l), ω values that need to be transferred back to the
GPU.

Figure 5.3 shows how the work-groups and work-items access memory and how
the massive parallelism is applied to the nested loop and ω computation steps within
kernel I.

5.3.2 Kernel II: GPU kernel for high computational load

This section describes the GPU kernel that is suited for grid positions with more
than the Nthr specified computation steps. As stated earlier kernel I is optimal for
grid positions with up to Nthr computation steps due to the optimal occupancy limit
on the GPU. This kernel is designed to work optimal beyond that number, with a
single work-item performing multiple computation steps or ω-statistic computations
in order to keep occupancy optimal and output buffer data transfer overhead low.

For this kernel the number of scheduled work-items is set to an indicative value
and fluctuates dynamically around this value depending on the number of inner loop
iterations in the sliding window nested loop. The global size, Gs or number of work-
items indication can be set beforehand using C macros which are present in a C
header file. Section 5.4 will elaborate on adjusting this parameter which depends on
a set work-group size and number of wavefront/warps per CU/SM. The set number
of wavefront/warps per CU/SM should be between 8 and 32 for optimal occupancy
and thus performance. Since the kernel described in this section is designed for

72 CHAPTER 5. DESIGNS

Figure 5.3: Illustration of an abstract view on kernel I. Each of the four work-groups shown host four
work-items that can be scheduled on the SPs/CUDA cores in a CU/SM. The figure shows Gs work-
items, which is equal to the number of computation steps and ω values that need to be computed
for a specific grid position. The figure makes the abstraction that the number of computation steps
is an integer multiple of the work-group size, Ls. In reality some padding is applied to ensure this
requirement. Every work-item reads the required elements from the sub-buffers in LR and km and
from buffer TS to compute a single ω value. The computed ω values together are written to the omega

buffer in a coalesced way.

computing multiple computation steps per work-item, exceeding 32 wavefront/warps
per CU/SM would violate this design requirement since the dynamic kernel transition
at Nthr, is set to 32 wavefront/warps per CU/SM. The default values for the work-
group size and wavefront/warps per CU/SM metric are 128 and 24 respectively as
these values are found to perform well.

As the number of scheduled work-items narrowly fluctuates around the set fixed
value, the number performed computations steps per work-item is dynamic for every
grid position. This variable, the work-item load, is transferred to the kernel as the
wi load parameter.

Besides the different approach with regards to the work-item load, the methodol-
ogy of this kernel is identical to kernel I. The nested loop dynamic sub-region sliding
placement is used again, the kernel input buffers are kept the same and how data is
stored is kept the same.

The difference with the first kernel, is the implementation of a for-loop that cov-
ers the work-item load. The for-loop performs WILD iterations, with every iteration
computing a single ω value. The iterations together cover all the computation steps
of a single grid position. A single iteration of the for-loop can be seen as a single
execution of kernel I, with identical memory access patterns to the input buffers and
ω-statistic computation.

To optimize the for-loop execution, loop unrolling is applied using the OpenCL

5.3. GPU KERNELS 73

unroll #pragma derivative. A loop unrolling factor of 4 is applied as it was found to
perform the best over the range of tested WILD values.

In order to ensure the same optimized coalesced memory access pattern to TS,
a new variable, G ic, is introduced with corresponding value Gic. Within the for-
loop Gic is used for indexing the largest buffer TS, and can be seen as a virtual
global work-item ID that is updated every iteration. The variable is initialized to the
global work-item ID, Gi and incremented at the end of the for-loop with the number
of scheduled work-items or global size, Gs. This way Gic is equal to the current
computation step index as Gi was in kernel I. Using Gic as index value for TS results
in a sequential, aligned and thus optimal coalesced memory access pattern which
is performed WILD times.

As with TS index value Gic, outer loop index value Oi is also updated every for-
loop iteration to cover all needed values. Inner loop index value Ii is initialized once
outside of the for-loop which results in high data reuse in the for-loop itself. The
memory access patterns using Oi and Ii are identical to those in kernel I, but with a
more optimal approach which will be described in the following paragraph.

Due to a far higher number of computation steps handled by kernel II, an optimal
memory access pattern will have a more profound effect on kernel performance.
Within kernel I, memory accesses to LR and km were either mainly uncoalesced,
or suboptimal with single wavefronts/warps accessing different elements in global
memory. These suboptimal memory accesses occurred due to the number of inner
loop iterations, incnt, not being a multiple of the wavefront/warp or work-group size.
For a far higher number of computation steps the advantage of performing the min-
imum number of computations on the GPU, and therefore requiring minimum data
transfer times, is outweighed by the detrimental effect of suboptimal memory ac-
cesses on kernel performance. In order to optimize memory accesses to LR and km,
the inner loop sub-buffers in LR and km of size incnt, are padded with dummy values
to a multiple of the work-group size Ls. The size of the sub-buffers are then:

incntpad =

⌈
incnt

Ls

⌉
∗ Ls, (5.5)

with incntpad automatically being a multiple of the wavefront/warp size since Ls is
a multiple of Ws. This ensures solely coalesced accesses using the inner loop index
variable Ii and solely wavefront/warp single element optimized accesses using the
outer loop index variable Oi.

The outer loop sub-buffers in LR and km, at offset incntpad and size being equal to
the number of outer loop iterations, oucnt, are padded with dummy values up to the
rounded up division of the total number of computation steps performed and incntpad:

74 CHAPTER 5. DESIGNS

oucntpad =

⌈
WILD ∗Gs

incntpad

⌉
, (5.6)

which results in the minimum number of needed outer loop variables to ensure
that index variable Oi does not overflow buffers LR and km.

The size of the LR and km buffers are thus equal to incntpad + oucntpad. The size,
the sub-buffers offset, the index values and grey indicated dummy values padding
of LR and km are is shown in fig. 5.4.

Figure 5.4: Illustration of how the inner and outer loop merged buffers, LR and km, region correlation
values buffer TS and output buffers omega and indexes are built up for kernel II, with their respective
sizes, index values and padding. The inner and outer loop sub-buffers in LR and km are of sizes
incntpad and oucntpad respectively where the grey area represents the padded dummy values. Region
correlation values buffer TS is sized equal to the product of the work-item load, WILD, and the set
number of work-items, Gs, which is approximately the product of the number of outer loop iterations
and the padded number of inner loop iterations. The output buffers omega and indexes are the same
size as the number of set work-items as every work-items produces a single maximum ω value and
corresponding index.

Due to the fact incntpad is a multiple of the work-group size and thus wave-
front/warp size, the access pattern using Oi has become more optimized for the
global memories LR and km. Unlike kernel I, every wavefront/warp accesses a sin-
gle element from global memory resulting in a single transaction that is broadcast
to all work-items in that wavefront/warp [52]. However, the access pattern also
causes incntpad consecutive work-items to access the same global memory element.
These latencies can be hidden by scheduling multiple work-groups and thus wave-
fronts/warps on every CU/SM.

A second optimization is applied to the access pattern using Ii, which focuses
on data reuse by work-items and CUs/SMs. Despite the optimization with regards to
using incntpad instead of incnt, work-items and therefore work-groups still repeatedly
access the same memory elements as was the case in kernel I. This property of the

5.3. GPU KERNELS 75

access pattern is exploited to maximize data reuse. This is achieved by setting the
number of scheduled work-items or global size, Gs, initially set to the indicative value,
to the nearest integer multiple of incntpad. The number of scheduled work-items thus
fluctuates around the indicative value set by the user for every grid position. Gs

being an integer multiple of incntpad ensures that every for-loop iteration requires
the same inner loop memory elements, while working over the outer loop and TS

memory elements. This is due to the fact that in every for-loop iteration the ’virtual’
global work-item ID Gic is incremented with Gs. Since the inner loop access pattern,
identical to kernel I, using Ii, is determined as follows:

Ii = Gic mod incntpad, (5.7)

Ii remains the same value every for-loop iteration as Gic is incremented with a
value which is a multiple of incntpad. This enables every scheduled work-item to
require a single inner loop value from both LR and km, which are solely accessed
through a coalesced pattern by the work-group on the CU/SM.

Given Gs is an integer multiple of incntpad, the calculation of index variable Oi in
every for-loop iteration can be simplified with an additional initialization. Since the
outer loop access pattern, identical to kernel I, using Oi, is determined as follows:

Oi =
Gic

incntpad

+ incntpad, (5.8)

the calculation of Oi can be simplified to a single constant value increment at
the end of the for-loop. This is due to the fact that Gic is incremented every for-loop
iteration with a value which is a multiple of incntpad. This makes Gic

incntpad
a constant,

which is stored in variable O inc with value Oinc and used to increment the initialized
value of Oi =

Gi

incntpad
+ incntpad.

As with kernel I, the memory access pattern using inner loop index Ii, still indi-
cates a repeated access pattern over the incntpad sub-buffer elements if Gs > incntpad.
As stated earlier, on current GPUs the number of work-items in simultaneously ex-
ecuting wavefronts/warps is regularly larger than typical number of inner loop iter-
ations, incntpad in this kernel. Given a GPU consisting of NCU CUs/SMs, which can
each execute a Ls sized work-group simultaneously, the number of CUs/SMs that
need to access the same Ls memory elements is:

N = NCU −
incntpad

Ls

. (5.9)

Due to the repeated access pattern using Ii, the additional scheduled work-
groups on the ’overlapping’ CUs/SMs can’t be used to hide memory latencies as
they require the same data. However, due to the previously mentioned optimization,

76 CHAPTER 5. DESIGNS

work-items require a single inner loop value from both LR and km. This enables mas-
sive data reuse after every CU/SM has read the Ls elements from both LR and km

for the initial NCU scheduled work-groups. Work-group range:

n ∗ incntpad

Ls

to (n+ 1) ∗ incntpad

Ls

− 1 (5.10)

repeatedly access the same elements from LR and km inner loop sub-buffers for
n = 0 to n = Gs

incntpad
. Work-groups requiring the same data can easily be scheduled

on the CUs/SMs that fetched the exact same data to shared memory, for the initial
NCU scheduled work-groups.

The access pattern using outer loop index value Oi, results in all work-groups in
the following range:

n ∗ incntpad

Ls

to (n+ 1) ∗ incntpad

Ls

− 1 (5.11)

to access the same single element from both LR and km, for n = 0 to n = Gs

incntpad
.

In order to prevent high memory latencies, work-groups should be scheduled and
executed in such a way that simultaneously executing work-groups are from another
n range. Scheduling multiple work-groups on every CU/SM enables this. Whenever
a work-group memory instruction stalls due to that element being accessed by a
simultaneously executing work-group, another work-group queued on that CU/SM
can take over execution and hide that high memory latency i.e., optimal occupancy.

Because of the inner loop sub-buffers padded dummy values in LR and km, dummy
values are also inserted in TS to ensure that the correct elements are read from TS

every iteration, using a coalesced memory access pattern. The size of TS is equal
to WILD ∗ Gs due to every work-item performing WILD iterations. After every incnt

elements, TS consists of dummy values up to incntpad elements. The buffer consists
of the number of outer loop iterations, oucnt, of these padded sequences which after
the buffer is padded with dummy values from oucnt ∗ incntpad to WILD ∗Gs. Figure 5.4
shows the size, the index values and the grey indicated dummy values padding of
TS.

Due to the fact that multiple ω values are computed in a for-loop an additional
variable is needed to keep track of the up to the current loop maximum value. A
conditional statement checks if the current computed ω value tmpW is larger than the
stored maximum value maxW, which is updated if the statement is true.

Due to the coalesced write to the omega buffer and work-items computing a sin-
gle ω value in kernel I, the array index of a value in omega is the same as the corre-
sponding computation step index, and can therefore be used to find the region that
ω value is found in. Since a single work-item performs multiple computation steps
or ω-statistic computations in kernel II, the array index of a found maximum ω value

5.3. GPU KERNELS 77

no longer reveals any information about the region of that value. In order to find the
region of the work-item found maximum ω value in omega, the current computation
step of that value is stored in a second buffer called indexes. Variable G ic holds
the current computation step index which is stored in variable maxI when the above
mentioned conditional statement is true.

After the for-loop is finished, the found maximum ω value and the corresponding
computation step index are written in a coalesced access pattern to buffers omega

and indexes respectively.

Figure 5.5 shows how the work-groups and work-items access memory and how
the massive parallelism is applied to the nested loop and ω computation steps within
kernel II.

Figure 5.5: Illustration of an abstract view on kernel II. Each of the four work-groups shown host four
work-items that can be scheduled on the SPs/CUDA cores in a CU/SM. 15 work-items are scheduled
which can be seen as the set number of work-items Gs, which is near the indicative value set by
the user. The dummy values padding of the input buffers is shown, where TS is made up of WILD

sections of the global size, Gs. The additional buffer shown above the work-groups, indicates which
elements are read to perform the work-item load in multiple iteration. The green part in this additional
buffer indicates the memory access pattern increment for every work-item load iteration. Every work-
item reads a single value from LR and km using the inner loop index value Ii, and WILD values from
LR, km and TS using outer loop index value, Oi, and global index value, Gic, respectively. Every work-
item computes WILD, ω values, of which the maximum and its global index are written in a coalesced
way to the omega and indexes buffers respectively.

78 CHAPTER 5. DESIGNS

5.4 Host and interfacing

In this section the host and interfacing code will be described. The preparing of the
data for each of the kernels will be elaborated on, as well as some small optimiza-
tions to speed up this process.

An introduction will be given about OpenCL functions used for device information
requests which are needed for optimal and dynamic kernel execution. Besides that
this section will elaborate on some general variable calculation required by both
kernel designs.

In the gpu init function, the target GPU is selected, the kernels are compiled,
the GPU buffers are allocated and the device specific specifications are requested
using OpenCL functions.

In order to work with the occupancy metric, the number of CUs/SMs and wave-
front/warp size on the GPU in use, should be known.

The clGetDeviceInfo function can be used to request the number of CUs/SMs
on the GPU.

The clGetKernelWorkGroupInfo function can be used for requesting the wave-
front/warp size and the maximum possible work-group size that can be scheduled
on a CU/SM.

In order to know what size a single buffer or all buffers combined can be, the
maximum buffer allocation size and global memory size are requested. These are
also requested using the clGetDeviceInfo function.

Within computeOmegaValues gpu, the GPU-accelerated ω-statistic computation
function, some variable initilization is performed outside of the dynamic kernel con-
ditional statement.

For every designed kernel, the number of SNPs in the left and right subgenomic
region are calculated in order to know the number of iterations per loop. The number
of SNPs in the left sub-region for a specific grid position, is the difference of the
leftmost SNP position and rightmost SNP position in this sub-region. This is the
other way around for the number of SNPs in the right sub-region. The number of
SNPs in the left and right subgenomic regions, l and W−l, with W being the number
of SNPs in the complete region, are stored in variables L SNP and R SNP respectively.

The total number of computation steps, l(W − l), of a grid position is stored in
tot step. The dynamic kernel execution is implemented using a conditional state-
ment that checks if the number of computation steps is larger than the specified
threshold, steps thresh.

Outside of the dynamic kernel conditional statement body, the found maximum
ω value and the corresponding region borders are stored in the omega structure with
the current grid position index. At the end of the computeOmegaValues gpu function

5.4. HOST AND INTERFACING 79

the initialized pointers for the GPU buffers are freed for subsequent function calls,
i.e., subsequent grid positions.

The original nested for-loop of OmegaPlus features an approximation for the ω-
statistic computation per ω grid position using a variable named borderTol. This ap-
proximation effectively limits the maximum difference between the number of SNPs
in sub-regions sliding windows. This balances the number of SNPs in the left and
right sub-region sliding windows. This implementation can modify the grid position
dependable borders of the right subgenomic region during nested loop execution.
This would produce varying number of SNPs in the assessed genomic region re-
sulting in buffer size changes from computation step to computation step making
optimal buffer index patterns impossible. Therefore, it has been chosen to not sup-
port this implementation for the GPU-accelerated version of OmegaPlus.

5.4.1 Host implementation for kernel I

This section will describe the data preparation, GPU interfacing including data trans-
fers and kernel execution, and result processing for kernel I.

Data preparation Kernel I requires 3 input buffers LR, km and TS and a single
output buffer, omega. Floating point buffer LR and integer buffer km are of size tot SNP

which is the sum of L SNP and R SNP. Floating point buffers TS and omega are of size
tot step. These buffers are initialized as pointers using malloc.

As with the dynamic kernel execution, the dynamic sub-region sliding placement
is implemented with a conditional statement, where the inner loop of the nested loop
always contains the most iterations. The two nested loops variations, l > W − l or
W − l > l, are both fully written out in code instead of using a single nested loop
with dependable variables. This increases code size but benefits code readability
and performance.

The original nested for-loop of OmegaPlus is adopted, where instead of stor-
ing the parameters of the ω-statistic in variables, the parameters are stored in the
initialized pointers/arrays eponymous to the kernel buffers. As previously stated,
correlation values originally stored in LS and RS are stored in array LR, and window
dependable number of SNPs originally stored in k and m are stored in array km. Left
sub-region values LS and k are stored using left region index variable L i. Right
sub-region values RS and m are stored using right region index variable R i. A third
index variable, T i, is used to store correlation values in array TS, where the index
variable is incremented every computation step at the end of the inner loop.

Index variable of the outer loop placed region, either L i or R i, is initialized to
the number of SNPs in the inner loop placed region to ensure the correct sub-buffer

80 CHAPTER 5. DESIGNS

offset. At the end of the outer loop this index variable is incremented.
Due to the fact that the borderTol approximation implementation is discarded

from the nested loop, only one nested loop completion is required to loop over and
store all inner loop values using either L i or R i. This is implemented through a
conditional statement in the inner loop, that checks if the outer loop index variable is
equal to the initialized offset, i.e., the first nested loop call.

GPU interfacing After populating all the GPU kernel input buffers, the Graphics
Processing Unit (GPU) interfacing function for kernel I, computeOmega gpu1, is called
with the correct offset value, either L SNP or R SNP. This function call is still in the body
of the conditional statement that takes care of the dynamic sub-region placement.

Within the function the offset value or number of inner loop iterations is hold by
in cnt. This variable is set as kernel argument using clSetKernelArg.

The local and global kernel execution values are determined and stored in local

and global respectively, where local is set to the maximum supported work-group
size and global to the nearest multiple of local and the number of computation
steps tot step.

The complete input buffers LR, km and TS are written to the GPU using the
clEnqueueWriteBuffer function. The writes are issued to the io queue OpenCL
command queue as non-blocking. The last issued write is additionally stored in the
OpenCL event wait list, events. By merging the buffers, less write events are issued
which marginally reduces data transfer overhead.

After the writes are issued and added to the command queue, the kernel launch
can be issued. The kernel launch is issued to the same io queue command queue
using the clEnqueueNDRangeKernel function. The kernel launch event is set to wait
on the last write event to finish by using the event wait list. Kernel I is launched by
using the OpenCL kernel variable omega kernel1, and with global work-size and
local work-group size. The kernel launch event is also stored in the OpenCL event
wait list.

The OpenCL clEnqueueReadBuffer function is used to read back the output
buffer, textttomega. This read is also issued to the io queue command queue and is
set to wait on the kernel launch event to finish.

At the end of the function, the clFinish function is called with the io queue com-
mand queue as argument. This ensures that every event issued to this command
queue is finished.

Result processing After finishing the GPU interfacing, a for-loop iterates over the
computed ω values in the omega buffer to find the maximum value and its corre-
sponding index.

5.4. HOST AND INTERFACING 81

After the for-loop is finished, the region borders where the maximum ω value is
found in are calculated. The region borders are the leftmost and rightmost SNP
within the window ω value was found in. In the original OmegaPlus sliding win-
dow nested loop, the current window border positions are known during ω computa-
tion. Since the GPU-accelerated version computes all the values on the GPU using
buffers, only the computation step index of a computed ω value is available by look-
ing at the omega array index. The positions of the corresponding window borders
can be retrieved with the whole grid position region borders. The leftmost border
position, i in the original loop, is retrieved by subtracting the outer loop index of
the found ω value, Oi, from the starting position of the left window, leftMinIndex.
The rightmost border position, j in the original loop, is retrieved by adding the in-
ner loop index of the found ω value, Ii, to the starting position of the right window,
rightMinIndex. Oi and Ii are retrieved as in kernel I, by performing the same cal-
culations on the computation step index but without adding the offset to Oi. The
eventual leftmost and rightmost SNP positions of the maximum value are retrieved
by adding the leftmost SNP position of the complete grid position region.

Figure 5.2 shows how the buffers for kernel I are built up, with the sub-buffers
offset and used size depending on the number of SNPs.

5.4.2 Host implementation for kernel II

This section will describe the data preparation, GPU interfacing including data trans-
fers and kernel execution, and result processing for kernel II.

Data preparation For kernel II the global size, Gs or number of work-items indica-
tion can be set beforehand using C macros which are present in a C header file. This
indicative value depends on the set work-group size and the set number of wavefron-
t/warps per CU/SM. The default values for the work-group size and wavefront/warps
per CU/SM metric are 128 and 24 respectively as these values are found to per-
form well with the tested GPUs. This can differ is newer or older architectures differ
from current architectures. The values can be edited in the OmegaPlus.h header
file where the relevant variables can be found at the end after the GPU setting

comment. The work-group size variable is called GPU GROUP SIZE and the wavefron-
t/warps per CU/SM metric variable is called WAVE CU.

Kernel II requires the same 3 input buffers LR, km and TS, the same output buffer,
omega and an additional integer output buffer, indexes. The buffers are initialized the
same using malloc but have different sizes from kernel I as padding is applied.

The dynamic sub-region sliding placement implementation is identical to the one
for kernel I, with the two nested loops variations, l > W − l or W − l > l, both fully

82 CHAPTER 5. DESIGNS

implemented in code to retain readability and performance.
The two nested loop implementations are also identical to the ones for kernel

I, with an additional increment for the T i index variable due to the dummy values
padding.

As explained in the section of kernel II, section 5.3, the inner and outer loop sub-
buffers in LR and km are padded with dummy values for memory access optimizations
and the number of scheduled work-items is adapted from the indicative value for
data reuse optimization. With these values the work-item load and total number of
computation steps are calculated, which are further used for the kernel execution.

First the the number of SNPs in the inner loop placed region or inner loop iter-
ations is incremented to a multiple of the work-group size. This value is placed in
either R SNP pad or L SNP pad, depending on the dynamic sub-region sliding place-
ment. The incremented number is used for initializing either L i or R i in order to
ensure the correct sub-buffer offset.

The number of scheduled work-items or global work-size, Gs, is then set to the
nearest integer multiple of the incremented number of inner loop iterations and the
indicative number of scheduled work-items, and stored in integer set wi.

With the incremented number of inner loop iterations, stored in either R SNP pad

or L SNP pad, the minimum number of computation steps needed for covering all
correlation values in TS is calculated by multiplying the actual number of SNPs/iter-
ations in the outer loop with the incremented number of SNPs/iterations in the inner
loop. This value is stored in tot step pad.

Now the work-item load can be calculated by dividing the minimum number
of computation steps, tot step pad, by the set number of scheduled work-items,
set wi, and rounding this number up to the nearest integer. The work-item load is
stored in wi load and is an additional kernel parameter besides the number of inner
loop iterations.

The number of computation steps in tot step pad, is then updated to the value
of the work-item load, wi load, multiplied with the set number of scheduled work-
items, set wi. This gives the actual number of computation steps that are performed
by the kernel. This is the minimum number of steps needed as the work-item load
itself is calculated using the actual number of SNPs in the outer loop placed region.

Given the actual number of computation steps and the incremented number of
inner loop iterations, the actual number of outer loop iterations is calculated. The ac-
tual number of outer loop iterations that will be performed is the round up division of
the actual number of computation steps, tot step pad, by the incremented number
of inner loop iterations, either R SNP pad or L SNP pad.

The adapted number of loop iterations/SNPs of both regions are then added and
stored in tot SNP pad.

5.4. HOST AND INTERFACING 83

The size of the floating point buffer LR and integer buffer km is set to the total
number of inner and outer loop values that are going to be accessed in the kernel,
tot SNP pad. The size of floating point buffer TS is set to the actual number of com-
putation steps that will be performed by the kernel, tot step pad. The sizes of the
floating point output buffer omega, and integer output buffer indexes are set to the
set number of scheduled work-items, set wi, that all return a single a single ω and
corresponding computation step index value.

As previously stated, the T i index variable is incremented at an additional loca-
tion in the nested loop in order to account for the dummy values padding in TS. At
the end of the outer loop, besides incrementing the outer loop index variable, either
Rm i or Lk i, T i is incremented with the difference of the actual number of SNPs
in the inner loop placed region and the incremented number of SNPs in that region.
This ensures that the inner loop skips over the padded dummy values inserted in TS

from R SNP/L SNP to R SNP pad or L SNP pad.
The dummy values in the different buffers are added through a series of addi-

tional for-loops. The left and right sub-region correlation values are set to 0.0, the
left and right sub-region window SNP count values are set to 2 and the complete
region correlation values are set to FLT MAX, which is the maximum value a floating
point number can be. These values are chosen to ensure ω values computed with
the dummy values are either zero or extremely small. Work-items iterating over the
dummy values will store the correct found maximum ω value instead of a outliers
computed with padded dummy values.

GPU interfacing After finishing the nested loop and dummy values for-loops the
GPU interfacing function, computeOmega gpu2, is called with the correct incremented
offset value, either R SNP pad or L SNP pad depending on the nested loop configura-
tion.

Within the function the incremented offset value or number of inner loop iterations
is hold by in cnt pad. The offset value, together with the work-item load, wi load,
are set as kernel arguments using clSetKernelArg.

The approach of queuing the writes and reads to the GPU is identical to the one
in computeOmega gpu1 with an additional read event at the end of the function for the
indexes buffer. The only difference is the sizes of the buffers, which are set to the
corresponding initialized sizes.

The queuing of the kernel launch is also identical, but with omega kernel2 as
kernel variable, set wi as global work-size stored in global and C macro set work-
group size stored in local.

Given the fact the same buffers are used as with kernel I, with the additional
indexes buffer, the writing and reading of these buffers is identical to the approach

84 CHAPTER 5. DESIGNS

in computeOmega gpu1. The indexes buffer is read after the omega buffer and before
clFinish is called with the same OpenCL command queue, io queue, as argument.

Result processing After finishing the GPU interfacing, a for-loop iterates over the
computed ω values by the set wi number of work-items in the omega buffer to find
the maximum value. The array index of the maximum value is stored in integer
variable indexes, which is used to retrieve the computation step index of that value
from the indexes buffer. The calculation of the leftmost and rightmost SNP position
of the maximum value is then identical to the one performed for kernel I, using the
computation step index from indexes.

Figure 5.4 shows how the buffers for kernel II are built up, with the sub-buffers
offset and used size depending on the number of SNPs. The grey areas indicate the
padded dummy values needed for optimal memory access patterns.

5.5 Overview

Two kernels are designed for the GPU-accelerated version of OmegaPlus. The ker-
nels are scheduled dynamically depending on the number of computation steps per
grid position, and the number of Stream Processors (SPs) or CUDA cores available
on the GPU.

For both kernels, correlation values LS and RS, and sub-region SNP count values
k and m are merged together in two buffers to reduce data transfer overhead. These
buffers are placed in global memory in order to enable optimized coalesced memory
accesses and optimized wavefront/warp single element accesses.

Both implementations also apply a dynamic sub-region sliding placement in the
nested loop to allow for a more specifically optimized memory access pattern.

Kernel I performs the minimum number of computation steps and applies a rather
naive approach of mimicking the OmegaPlus sliding window nested loop approach.
A single scheduled work-item performs a single computation step of the nested loop
by computing an ω value. All the work-items together complete all the nested loop
computation steps or iterations with additional steps to ensure the global work-size,
Gs is an integer multiple of the work-group or local size, Ls. The kernel applies a full
coalesced memory access pattern to correlation value buffer TS. Memory accesses
to both LR and km are unoptimzed, but due to the low number of computation steps
this kernel needs to perform, this approach is found to be more optimal than using
padded buffers. As every work-item computes a single ω value, the returned omega

buffer has the same size as the global work-size which approximately the number of
computation steps of a grid position.

5.5. OVERVIEW 85

Kernel II applies the same sliding windows nested loop approach, but with every
work-item performing multiple computation steps, the work-item load. This enables
the kernel to be scheduled with an optimal number of work-items with regards to
occupancy. The addition of padded dummy values in the LR and km sub-buffers,
enables the kernel to perform a full coalesced, and optimized wavefront/warp single
element accesses to these buffers while also increasing data reuse massively. The
full coalesced memory access pattern to the largest buffer TS is preserved. The
padded dummy values require additional dummy computation steps, but the found
performance gain outweighs this disadvantage. As every work-item computes mul-
tiple ω values, an additional buffer is introduced that keeps track of the computation
step of the found maximum value. Both of these output buffers, omega and indexes,
are the size of the global work-size. This is substantially smaller than the number of
computation steps this kernel is designed to perform, which reduces data transfer
overhead.

Both the host C-code, and OpenCL GPU kernels can be found at github.com/
MrKzn/omegaplus.git. Examples of how to compile the GPU-accelerated version of
OmegaPlus and how to perform a test run can be found in the README.md file shown
on the main page.

https://github.com/MrKzn/omegaplus.git
https://github.com/MrKzn/omegaplus.git

86 CHAPTER 5. DESIGNS

Chapter 6

Performance evaluation

This chapter will present an evaluation of the designed kernels as well as an per-
formance evaluation of the kernels and the GPU-accelerated OmegaPlus tool as
a whole. First the experimental setup will be described in section 6.1. This sec-
tion will elaborate on the datasets used for evaluation, with different number of se-
quences/samples and SNPs, and on the platforms used for testing. Section 6.2
will describe the correctness evaluation of the kernels and the corresponding host
code. In section 6.3 the performance evaluation will be presented in which the ex-
perimental setup is used to gather performance values to compare to the original
tool.

6.1 Experimental setup

In order to get an insight into the execution time, throughput and performance scaling
of the designed kernels, datasets with different number of sequences/samples and
different number of SNPs will be used. These will be simulated datasets with either,
fixed number of sequences/samples and varying number of SNPs, or fixed number
of SNPs and varying number of sequences/samples.

To get a good insight in the performance of the complete GPU-accelerated tool
and either of the GPU-accelerated compute intensive parts, LD and ω-statistic com-
putation, three different dataset ranges are used. The datasets are used to compare
execution times and throughput values of the GPU-accelerated tool and its parts to
their CPU counterparts. This will give an insight in the performance gain with respect
to the original sequential OmegaPlus version.

The simulated datasets are generated using ms (Hudson, [131]), which can
be found at home.uchicago.edu/~rhudson1/source/mksamples.html. The datasets
are generated using the following command:

./ms nsam nreps -s nsites,

87

http://home.uchicago.edu/~rhudson1/source/mksamples.html

88 CHAPTER 6. PERFORMANCE EVALUATION

which generates nsam sequences/samples, nsites SNPs/sites with nreps align-
ments. All the generated datasets consist of a single alignment.

For performance evaluation of the LD computation, datasets are used with vary-
ing number of SNPs and varying number of sequences/samples as the computa-
tional intensity of the LD computation depends on both of these factors.

For performance evaluation of the ω-statistic computation, a single dataset range
is used with varying number of SNPs as the computational intensity of the ω-statistic
computation only depends on the number of SNPs.

The dataset ranges used to evaluate the performance of the GPU-accelerated
LD computation consists of either 10,000 sequences/samples and varying number
of SNPs, from 1,000 to 10,000 with an interval of 1,000 SNPs, or 5,000 SNPs with
varying number of sequences/samples from 10,000 to 100,000 with an interval of
10,000 sequences/samples. These dataset ranges give a good representation of
execution times for high and low number of SNPs and high and low number of se-
quences/samples with executing times high enough to get a good insight in perfor-
mance gain.

The dataset range used to evaluate the performance of the GPU-accelerated
ω-statistic computation consists of 50 sequences/samples and varying number of
SNPs, from 1,000 to 20,000 with an initial interval of 1,000 SNPs to 10,000 SNPs
and the additional 20,000 SNP dataset. As the number of sequences/samples does
not affect the computational intensity for the ω-statistic computation, these are kept
to the minimum to reduce overall execution times. These dataset configurations
give a good representation of execution times for high and low number of SNPs with
executing times high enough to get a good insight in performance gain.

For the performance evaluation of the complete GPU-accelerated OmegaPlus
tool the same datasets are used as for the LD computation evaluation as these
datasets with varying number of SNPs and varying number of sequences/samples,
put high and low load on both compute intensive parts and therefore also on the
complete tool.

All the tests are performed with OmegaPlus set to compute the ω-statistic at
1,000 equidistant location with the left, L, and right, R sub-region windows set to a
maximum of 20,000 SNPs and minimum of 1,000 SNPs and the alignment length
set to 100,000.

./OmegaPlus -grid 1000 -length 100000 -minwin 1000 -maxwin 20000

Two platforms used for testing are shown in table 6.1

6.2. GPU KERNELS VERIFICATION 89

System I System II
Description off-the-shelf laptop Google Colab
CPU Model AMD A10-5757M Intel Xeon E5-2699 v3
Base Freq. 2.5 GHz 2.3 GHz
Processors 1 1
Cores/Processor 4 2∗

Threads/Processor 1 1∗

GPU Model Radeon HD8750M NVIDIA Tesla K80
Internal GPUs 1 1∗

Compute Units 6 13
Streaming Processors 384 2496
GPU Memory 2 GB 11 GB

Table 6.1: Overview of the platform specifications (∗ the corresponding device has more
cores/threads available but the number is restricted within Google Colaboratory).

6.2 GPU kernels verification

This section describes the approach of verifying the kernel produced ω-statistic val-
ues for the sake of correctness. This is achieved by adding test code to the GPU-
accelerated host code that compares ω-statistic values computed on the GPU to
values computed on the CPU.

Due to the fact that GEMM-based LD implementation applies a different order in
computing the floating point correlation values than OmegaPlus does, the resulting
values can differ. From verification it is found that the resulting ω-statistic values
can differ by at most one thousandth, 0.001. Given the GEMM-based LD correlation
values can differ from those computed by OmegaPlus, resulting in ω-statistic values
differences (≤ 0.001), the GEMM-based LD implementation is not used for verifying
the ω-statistic GPU kernels. By not using the GEMM-based LD values, the GPU-
accelerated ω-statistic computation and sequential CPU ω-statistic computation are
performed using the exact same input values enabling correct verification and error
measurements.

6.2.1 Kernel I

As kernel I writes back all the computed ω-statistic values for a specific grid position,
every value can be compared for correctness on the CPU. This is performed by
computing the ω values of every computation step as in the original tool, and storing
these values in an additional test array. After executing the nested loop and the

90 CHAPTER 6. PERFORMANCE EVALUATION

complete GPU interfacing, the kernel computed ω values in omegas can be compared
to the CPU computed values for correctness.

The result of floating point calculations is sensitive to different approaches and
different architectures, which can be the case with CPUs and GPUs [140]. The
resulting ω-statistic values are thus verified taking a relative error into account that
is compared to a maximum allowed relative error:∣∣∣∣ω − ωtest

ωtest

∣∣∣∣ < 0.00001. (6.1)

If the error limit is exceeded the values are printed to indicate the faulty answer.
The resulting grid positions maximum ω-statistic values in the OmegaPlus ”Re-

port” of both the sequential and the GPU-accelerated versions are compared to each
other to get an insight in the average and maximum absolute error in the found max-
imum ω values. For this verification the absolute error is used in order to get a good
insight in the actual found error values. Two datasets have been tested which both
consist of 50 sequences/samples, and one with 1,000 SNPs and one with 7,000
SNPs. Table 6.2 shows the absolute errors for the found ω-statistic values in the
report. In the dataset with only 1,000 SNPs a relatively high maximum ω value is
found, where as in the dataset with 7,000 SNPs a much lower maximum ω value is
found. These two cases give a good insight in the kernel its correctness.

7,000 SNPs 1,000 SNPs
Avg. abs. err. 9.0E-08 4.5E-07
Max. abs. err. 1.0E-06 7.8E-05
Max. ω 1.534736 96.486229
Max. ω err. 0.0 1.5E-05

Table 6.2: Kernel I average, total maximum and found ω maximum absolute ω-statistic errors for two
datasets consisting of 50 sequences/samples and either 1,000 or 7,000 SNPs.

As expected, the table shows a bigger error with the larger found maximum ω

value in the 1,000 SNP dataset. But even with the relatively high found maximum ω

value, the maximum absolute error is still acceptably low.

6.2.2 Kernel II

Unlike kernel I, not all computed ω-statistic values of a specific grid position are writ-
ten back to the CPU within kernel II. Due to this property it is much more challenging
to verify the correctness of the complete kernel. In order to verify correctness of the
kernel, only the values that are written back are compared to values computed on
the CPU. This is performed by essentially mimicking the GPU kernel on the CPU. In

6.3. PERFORMANCE COMPARISONS 91

this approach the same buffers are used as those transferred to the GPU. A nested
loop is used to mimic the scheduled work-items, Gs, in the outer loop and mimic
the work-item load, WILD in the inner loop. The index variables, Oi, Ii and Gic are
determined in the outer loop identical to the work-item approach in the kernel, and
the work-item load is performed in the inner loop as in the kernel its for-loop. The
computed work-item maximum values are stored in an additional test array, and ver-
ified in the same way as with kernel I after finishing both the GPU interfacing and
CPU kernel mimic.

This approach requires the kernel and thus the CPU version of the kernel to
already work correct with respect to data accessing. In order to verify correct data
accessing and verify ω values correctness, the same verification approach is used
as with kernel I. The grid positions maximum values in the OmegaPlus ”Report” of
both implementations are compared to each other to gather absolute error values.
Table 6.3 shows the absolute errors for the found ω-statistic values in the report.

7,000 SNPs 1,000 SNPs
Avg. abs. err. 9.0E-08 4.5E-07
Max. abs. err. 1.0E-06 7.8E-05
Max. ω 1.534736 96.486229
Max. ω err. 0.0 1.5E-05

Table 6.3: Kernel II average, total maximum and found ω maximum absolute ω-statistic errors for two
datasets consisting of 50 sequences/samples and either 1,000 or 7,000 SNPs.

Given the order of all the calculations in the ω-statistic in kernel II are kept iden-
tical to kernel I, the resulting errors are also identical.

6.3 Performance comparisons

In this section a thorough performance evaluation will be presented of both GPU-
accelerated compute intensive parts separately and the complete GPU-accelerated
OmegaPlus tool.

6.3.1 Omega statistic performance

In this section performance values will be presented of the GPU-accelerated ω-
statistic computation with multiple graphs presenting different views on the perfor-
mance.

92 CHAPTER 6. PERFORMANCE EVALUATION

Both the CPU and GPU model names of the two different systems are abbrevi-
ated in the various graph legends, the CPU models to their respective series names
and the GPU models to their respective model names.

With the GPU execution times the #1, #2 and D indicate the use of solely kernel
I, solely kernel II or the dynamic kernel execution respectively. The dynamic ker-
nel execution times for either the GPU interfacing and GPU kernel, are a sum of
the execution times for both implementations which depend on the Nthr conditional
statement, elaborated on in section 5.3.

All CPU execution times indicated by either the A10 (-5757M) or the Xeon (E5-
2699 v3), are obtained using the original sequential OmegaPlus version using a
single core.

Execution times comparisons

Figure 6.1 illustrates the execution times of the ω-statistic computation on both the
CPU and GPU of the two systems. The three graphs, fig. 6.1a, fig. 6.1b and fig. 6.1c,
represent the execution times of the complete GPU-accelerated ω-statistic compu-
tation, the GPU interfacing, which includes the input and output data transfers and
kernel launch, and the GPU kernels itself.

As expected, all three graphs show a quadratic increase in execution time with
the number of SNPs, as the total number of computation steps grows quadratic with
linear increase in SNPs.

As expected, kernel I performs well with low number of computation steps per
grid position but gradually becomes slower as the number SNPs and thus computa-
tion steps increase. With 1,000 SNPs kernel I is 1.09x and 1.07x faster than kernel
II on System I and II respectively.

Kernel II performs well over the complete range and the dynamic kernel performs
almost identical as only a few grid positions exhibit a low number of computation
steps. As reference, the dynamic kernel on the K80 is 1.0x to 1.14x faster than
kernel II. From 2,000 to 20,000 SNPs, the dynamic kernel execution is 1.25x to
2.59x and 1.08x to 2.54x faster than kernel I on System I and II respectively.

6.3. PERFORMANCE COMPARISONS 93

(a) Complete ω-statistic execution times (b) GPU interfacing execution times

(c) GPU kernel execution times

Figure 6.1: Execution times of ω-statistic computation for increasing number of SNPs (from 1,000 to
20,000) and 50 sequences/samples. Figure 6.1a shows the execution times of the complete GPU-
accelerated ω-statistic computation, fig. 6.1b shows the execution times of the GPU interfacing, which
includes the input and output data transfers and kernel launch, and fig. 6.1c shows the execution
times of the GPU kernels itself. We observe a quadratic increase in execution time of all graphs with
the number of SNPs. The execution time scales identical to the total number of computation steps
or ω values of all the grid positions combined. The kernel execution times of the HD8750M GPU in
fig. 6.1c only show some minor discontinuity.

Execution time distributions

Figure 6.2 illustrates the execution times distributions of only the GPU-accelerated
ω-statistic computation on both systems. This distribution consists of three main
parts that contribute to the total ω-statistic computation execution time (fig. 6.1a):

• Data Preparation & Result Processing (DPRP): Initializing of the input and
output buffers needed for the used kernel, nested loop execution with eventual
dummy values padding and processing of the returned ω values with eventual
index values.

• Data Transfer (DT): Setting the kernel arguments, writing of the input buffers
and reading of the output buffers of the used kernel.

• GPU Kernel Execution (GKE): Launching of the used kernel with the set
number of work-items or global work-size and work-group or local size.

94 CHAPTER 6. PERFORMANCE EVALUATION

The data preparation & result processing share in total execution time increases
linearly and the GPU transfer share decreases linearly with the number of SNPs.
The GPU kernel share in total execution time roughly stays the same. The graphs
show that with higher number of SNPs the data preparation & result processing
becomes the predominant part in the GPU-accelerated ω-statistic computation with
respect to execution time.

(a) ω-statistic execution time distributions on HD8750M (b) ω-statistic execution time distributions on K80

Figure 6.2: Complete GPU-accelerated ω-statistic execution times distributions for increasing number
of SNPs (from 1,000 to 20,000) and 50 sequences/samples. Figure 6.2a shows the time distributions
using the HD8750M on System I and fig. 6.2b shows the time distributions using the K80 on System
II. The Data Preparation & Result Processing (DPRP), Data Transfer (DT) and GPU Kernel Execution
(GKE) shares are shown in the graphs. A linear increase in data preparation & result processing time
can be observed with the number of SNPs in both graphs. This is as expected, as the execution
times graphs in fig. 6.1 showed a large increase in execution times from the GPU interfacing to the
complete ω-statistic computation with higher number of SNPs.

Throughput comparisons

Figure 6.3 illustrates the complete GPU-accelerated ω-statistic throughput values on
both systems and architectures using the dynamic kernel (fig. 6.3a), and the kernel
throughput values on both GPUs (fig. 6.3b).

The GPU kernels graph clearly shows the aforementioned speedups kernel II,
and therefore the dynamic kernel, achieves over kernel I when the number of SNPs
increase. After an initial steep increase in throughput of kernel I for relatively low
number of SNPs, the throughput of the kernel flattens as the number of SNPs, and
thus computations steps, increases. The throughput of kernel II keeps increasing
until 20,000 SNPs on both systems.

Even though the throughput of kernel II and the dynamic kernel increases on both
systems with the number of SNPs (fig. 6.3b), the throughput of the complete GPU-
accelerated ω-statistic computation decreases on both systems after a maximum
at 7,000 SNPs (fig. 6.3a). The complete GPU-accelerated ω-statistic computation
achieves speedups from 0.41x to 2.41x, comparing the System I CPU and GPU, and

6.3. PERFORMANCE COMPARISONS 95

speedups from 0.47x to 3.37x, comparing the System II CPU and GPU, at 1,000 and
7,000 SNPs and 1,000 and 10,000 SNPs respectively. At relatively low number of
SNPs (<2,500 SNPs) the GPU-accelerated ω-statistic computation performs worse
compared to the OmegaPlus sequential counterpart on the same system.

(a) Complete ω-statistic computation (b) GPU kernels

Figure 6.3: Throughput values for increasing number of SNPs (from 1,000 to 20,000) and 50 se-
quences/samples. Figure 6.3a shows the throughput values (Mω/s) of the complete ω-statistic com-
putation on both systems and architectures using the dynamic kernel and fig. 6.3b shows the through-
put values (Gω/s) of the kernels on both systems.

When looking at fig. 6.2, it is clear that the data preparation & result processing
on the host, linearly takes up more of the total ω-statistic computation execution
time with the number of SNPs. When the number of SNPs becomes larger than
5,000, the data preparation & result processing execution time share becomes larger
than 50%. From looking at fig. 6.1a and fig. 6.1b it can be deduced that there is a
quadratic increase in data preparation & result processing execution time with the
number of SNPs. This causes a decrease in total ω-statistic computation throughput
with the number of SNPs shown in fig. 6.3a.

The increase in data preparation & result processing execution time, is due to
a far higher number of SNPs per grid position. This requires initialization of larger
input buffers and results in high number of nested loop iterations.

With low number of SNPs (<5,000 SNPs), it is clear from fig. 6.2 that the data
transfers take up most of the GPU-accelerated ω-statistic computation time. This
causes the GPU-accelerated ω-statistic computation performing worse with low num-
ber of SNPs (<2,500 SNPs), as shown in fig. 6.3a.

The slowdown with low number of SNPs and thus low number of computation
steps is caused by the data transfer overhead which is too large to still benefit from
the GPU its massive parallel computation.

96 CHAPTER 6. PERFORMANCE EVALUATION

6.3.2 Linkage Disequilibrium performance

In this section performance values will be presented of the GEMM-based LD im-
plementation in OmegaPlus. As with the ω-statistic performance graphs, the model
names are abbreviated, the CPU models to their respective series names and the
GPU models to their respective model names. The GPU execution times are split
up into 2 different parts which give a good representation of the time distributions:

• Total GPU-accelerated LD execution time (Tot.): Total execution times of
both the GEMM-based LD implementation outside of the grid positions for-
loop and the original correlation value summing and data reuse optimization
within the grid positions for-loop.

• GEMM-based LD implementation execution time (GEMM): Execution times
of only the GEMM-based LD implementation in OmegaPlus outside of the grid
positions for-loop.

Figure 6.4 illustrates the various LD execution times for increasing number of
SNPs (from 1,000 to 10,000) in fig. 6.4a and increasing number of sequences/sam-
ples (from 10,000 to 100,000) in fig. 6.4b. The execution times of the original CPU
implementation are shown, as well as the execution times of the GEMM-based LD
implementation. The GPU execution times show both the actual GEMM-based LD
implementation and total GPU-accelerated LD computation times.

The GEMM-based implementation performs identical to the performance results
presented in the work by Theodoris et al. [104]. The GPU adapted implementation
is up to 7.19x faster on System I and up to 7.93x faster on System II for increas-
ing number of SNPs, when comparing to the original CPU implementation on the
corresponding system. The GPU adapted implementation is up to 27.04x faster
on System I and up to 33.75x faster on System II for increasing number of se-
quences/samples, performing the same comparison.

6.3.3 Total performance

In this section performance values will be presented of the total GPU-accelerated
OmegaPlus tool. The model names are again abbreviated, the CPU models to their
respective series names and the GPU models to their respective model names.

Execution time comparisons Figure 6.5 illustrates the complete OmegaPlus ex-
ecution times on both systems and both architectures, including both compute in-
tensive parts as well as input and output data processing. Figure 6.5a shows the
execution times for increasing number of SNPs (from 1,000 to 10,000) with 10,000

6.3. PERFORMANCE COMPARISONS 97

(a) Increasing SNPs (b) Increasing sequences/samples

Figure 6.4: Execution times of LD computation for increasing number of SNPs (from 1,000 to
10,000) and 10,000 sequences/samples (fig. 6.4a) and increasing number of sequences/samples
(from 10,000 to 100,000) and 5,000 SNPs (fig. 6.4b). As presented in the original work by Theodoris
et al. [104], the execution times increase quadratic with the number of SNPs and linear with the num-
ber of sequences/samples, excluding minor discontinuities. The GEMM-based LD implementation
especially performs well with increasing number of sequences/samples, with speedups ranging from
7.55x to 33.75x when comparing the System II CPU and GPU and speedups ranging from 6.05x to
27.04x when comparing the System I CPU and GPU.

sequences/samples and fig. 6.5b shows the execution times for increasing number
of sequences/samples (from 10,000 to 100,000) with 5,000 SNPs.

As expected, the execution times increase quadratic with the number of SNPs
and linear with the number of sequences/samples.

When comparing the original sequential version to the GPU-accelerated version
on System I and II respectively, speedups range from 0.62x to 3.68x and 1.24x to
3.63x for increasing number of SNPs, and 2.66x to 3.52x and 2.73x to 3.55x for
increasing number of sequences/samples.

(a) Increasing SNPs (b) Increasing sequences/samples

Figure 6.5: Complete OmegaPlus executions times of both compute intensive parts as well as input
and output data processing. Figure 6.5a shows the execution times for increasing number of SNPs
(from 1,000 to 10,000) with 10,000 sequences/samples and fig. 6.5b shows the execution times for
increasing number of sequences/samples (from 10,000 to 100,000) with 5,000 SNPs.

98 CHAPTER 6. PERFORMANCE EVALUATION

Execution time distributions

Figure 6.6 illustrates the OmegaPlus execution times distributions of the compute
intensive parts on both systems and both architectures. Besides the original se-
quential version, also the generic parallel version is used to get a good performance
comparison of the different versions using different workload distributions.

Three different workload distributions are evaluated over the sequential, generic
parallel and GPU-accelerated OmegaPlus version.

Since the total execution time depends on the proportion of LD computation exe-
cution time and ω-statistic computation execution time, a performance evaluation is
performed with high ω-statistic workload (≈90%), high LD workload (≈90%) and bal-
anced workload (≈50%/50%). For high ω-statistic workload a dataset with 15,000
SNPs and 500 sequences/samples is used, for high LD workload a dataset with
5,000 SNPs and 60,000 sequences/samples is used and for a balanced workload a
dataset with 13,000 SNPs and 7,000 sequences/samples is used.

Figure 6.6a illustrates the executions with balanced workload in which the LD and
ω-statistic computations take up an equal amount of time on the sequential version.
The distribution on System I clearly shows the GPU-accelerated OmegaPlus tool
is outperforming the sequential version as both compute intensive parts have lower
execution times. The parallel version however, exhibits a lower execution time for the
ω-statistic computation but a higher execution time for the LD computation resulting
in an overall higher execution time. On System II we can observe the same acceler-
ation of both parts with respect to the sequential and GPU-accelerated version. The
parallel version however, exhibits a higher LD execution time while the ω-statistic
execution time is lower than the sequential version. The total execution time of the
parallel version on System II is therefore also higher than the GPU-accelerated ver-
sion. Due to the fact that only 2 cores are available of the Xeon CPU it is expected
that the speedup isn’t as noticeable as on System I (1 to 4 cores increase) but the
multi-core utilization on System II seems low.

Figure 6.6b illustrates the executions with a high ω-statistic workload in which
approximately 90% of the execution time is used by the ω computations on the se-
quential version.

The time distribution on System I clearly shows a notable speedup of the GPU-
accelerated ω-statistic computation with respect to the sequential version. The LD
computation however shows a higher execution time using the GPU-accelerated
version, indicating inefficiency in the GEMM-based LD implementation performing
computations with low number of sequences/samples. Due to this inefficiency the
parallel execution time is notably lower than that of the GPU-accelerated version.
The GPU-accelerated ω-statistic computation is also marginally slower than the par-
allel ω-statistic computation. As expected from fig. 6.3a, the total GPU-accelerated

6.3. PERFORMANCE COMPARISONS 99

ω-statistic execution time remains fairly high for a higher number of SNPs.

System II shows similar results with respect to the sequential CPU version and
the GPU-accelerated version. The GPU-accelerated LD computation execution time
increases slightly due to the GEMM-based LD implementation while the GPU-accelerated
ω-statistic execution time reduces. The GPU-accelerated speedup is more notably
however due to the faster GPU. The LD computation in the parallel version on Sys-
tem II performs better with low number of sequences/samples and exhibits a lower
execution time than both the GPU-accelerated and sequential OmegaPlus version.

Figure 6.6c illustrates the executions with a high LD computation workload in
which approximately 90% of the execution time is used by the LD computations on
the sequential version.

The distribution on System I clearly shows the efficiency of the GEMM-based LD
implementation at high number of sequences/samples, as expected from fig. 6.4.
Due to the massive decrease in GPU-accelerated LD computation execution time, it
is much faster than the sequential version and also notably faster than the parallel
version using 4 cores.

System II shows the same expected results with respect to the GPU-accelerated
LD computation and with respect to the LD computation on the parallel version. As
in fig. 6.6a, the parallel version on System II using 2 cores shows an increase in
execution time for the LD computation with high number of sequences/samples.

When looking at both systems it can be seen that the GPU-accelerated ω-statistic
execution times decrease slightly from the sequential version and are approximately
on par with the parallel version on both systems. This can be expected from fig. 6.1a
which showed the expected efficiency for 5,000 SNPs.

From fig. 6.6 it is clear that the ω-statistic computation generally takes up most
of the total execution time in the GPU-accelerated OmegaPlus version. To further
improve performance of the GPU-accelerated OmegaPlus version, improving per-
formance of the ω-statistic computation would have the biggest impact.

As stated earlier the data preparation & result processing takes up most of
the GPU-accelerated ω-statistic computation execution time with higher number of
SNPs. Improving performance of this part would have the biggest impact on the
overall GPU-accelerated OmegaPlus performance, given the GPU-accelerated LD
computation implementation as well as the ω-statistic GPU kernels are optimized.
The performance curve of the GPU-accelerated ω-statistic computation, shown in
fig. 6.3a, could then be more flat towards higher number of SNPs instead of the
drop.

As stated earlier, with low number of SNPs (<5,000 SNPs), the data transfers
take up most of the GPU-accelerated ω-statistic computation time. Improving per-
formance of this part would increase throughput values in the low number of SNPs

100 CHAPTER 6. PERFORMANCE EVALUATION

(a) Balanced workload ≈50%/50% (7k samples/13k SNPs)
(b) High Omega workload ≈90%/10% (500 samples/15k
SNPs)

(c) High LD workload ≈10%/90% (60k samples/5k SNPs)

Figure 6.6: Time distributions of both compute intensive parts for a balanced workload (≈50%/50%
ω-statistic and LD computation time, fig. 6.6a), a high ω-statistic workload (≈90%/10% ω-statistic
and LD computation time, fig. 6.6b) and a high ω-statistic workload (≈10%/90% ω-statistic and LD
computation time, fig. 6.6c).

range and therefore reduce the slowdown of the GPU-accelerated ω-statistic compu-
tation with respect to the original sequential version in this range, shown in fig. 6.3a,

The GEMM-based LD implementation performs especially well with increasing
number of sequences/samples. However, performance eventually drops significantly
when the number of sequences/samples become really low and the number of SNPs
remain high (<1000 sequences/samples and >10,000 SNPs).

Overall the GPU-accelerated LD computation achieves much higher speedups
than the GPU-accelerated ω-statistic computation. This reveals a highly optimized
approach for the LD computation and potential performance improvements for the
aforementioned ω-statistic computation parts.

Table 6.4 shows the speedups between all combinations of 3 OmegaPlus ver-
sions, 2 systems and using the 3 different workload distributions. The table shows
that the GPU-accelerated version achieves speedups, over either the generic paral-
lel or sequential OmegaPlus version, between 1.26x to 6.3x with balanced workload,
between 0.64x to 3.21x with high ω-statistic computation workload and between
4.86x to 24.0x with high LD computation workload. This shows the high efficiency
of the GPU-accelerated LD computation which is beneficial for real-world datasets

6.3. PERFORMANCE COMPARISONS 101

which tend to have more and more sequences/samples resulting in an imbalanced
distribution with respect to number of SNPs and number of sequences/samples.
The performance of the GPU-accelerated OmegaPlus version will thus be closer
to the evaluated performance using real-world datasets with imbalanced, high LD
computation workload.

One example is the sample size in SARS-CoV-2 datasets which increased from
a few thousand to a few million since the beginning of the global pandemic (https:
//www.gisaid.org/).

CPU seq. vs. par. CPU vs. GPU (same system) CPU seq. vs. par. CPU vs. GPU (different system)

Dist.
ω/LD

A10
vs.
A10

(G #4)

Xeon
vs.

Xeon
(G #2)

A10
vs.

HD8750M

A10
(G #4)

vs.
HD8750M

Xeon
vs.
K80

Xeon
(G #2)

vs.
K80

A10
vs.

Xeon
(G #2)

Xeon
vs.
A10

(G #4)

A10
vs.
K80

A10
(G #4)

vs.
K80

Xeon
vs.

HD8750M

Xeon
(G #2)

vs.
HD8750M

50/50 2.72x 1.03x 3.43x 1.26x 3.51x 3.40x 1.86x 1.52x 6.30x 2.31x 1.91x 1.85x
90/10 2.87x 1.63 1.83x 0.64x 2.30x 1.41x 2.28x 2.05x 3.21x 1.12x 1.31x 0.81x
10/90 2.47x 0.75x 12.02x 4.86x 11.48x 15.33x 1.57x 1.18x 24.00x 9.71x 5.75x 7.68x

Table 6.4: Table showing the speedups between all combinations of 3 OmegaPlus versions (sequen-
tial, generic parallel, GPU-accelerated), 2 systems (Laptop, Colab) and using the 3 different workload
distributions. The seq. and par. affixes indicate the sequential and generic parallel OmegaPlus ver-
sions respectively. The CPU is indicated with the (G #n) affix for the generic parallel version in which
the n indicates the used number of threads.

https://www.gisaid.org/
https://www.gisaid.org/

102 CHAPTER 6. PERFORMANCE EVALUATION

Chapter 7

Conclusions and future work

In this chapter the conclusion of the project is presented in section 7.1, which elab-
orates on answering the main research question and the subquestions, as well as
concluding the work.

After the conclusion some future work is presented in section 7.2, which will give
recommendations for future work/research that can further improve performance of
the developed solution.

7.1 Conclusion

This thesis presented the acceleration of a state-of-the-art selective sweep detection
software called OmegaPlus using the massive parallel GPU architecture.

The goal of the project was to boost performance of OmegaPlus by mapping the
compute intensive parts of the tool optimally on the GPU architecture. The OpenCL
General Purpose GPU (GPGPU) framework has been used to achieve this.

Within the project, OmegaPlus has been decomposed to elaborate on the com-
pute intensive parts of the tool and to gather information about the execution time
distribution within the tool. The LD computation, OmegaPlus is based on, was found
to be a compute intensive part as well as the ω-statistic computation, which is used
to localize the selective sweeps.

The thesis elaborated on an adaptation of the highly optimized LD computation
tool quickLD, a GPU-accelerated GEMM-based LD implementation. This GEMM-
based implementation accelerates the compute intensive LD computation using
high-performance Dense Linear Algebra (DLA) operations mapped on the GPU ar-
chitecture.

The ω-statistic computation is accelerated using a novel dynamic approach that
distinguishes workloads for dynamic GPU kernel execution. The two GPU kernels
are developed for either a high or low ω-statistic workload. The complete kernel

103

104 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

designs are described, as well as the host CPU code that prepares the data for
optimal kernel execution and takes care of the GPU interfacing.

A performance evaluation has been conducted to verify correctness of the de-
veloped solution and to gather performance comparisons of the compute intensive
parts as well as the complete GPU-accelerated OmegaPlus version.

In the following paragraphs the formulated research questions for this thesis are
answered.

Sub-questions The first two sub-research questions are set up to steer the re-
search in the right direction to achieve better results with respect to the main re-
search question and main goal of this project.

• Which parts of the state-of-the-art tool are the most computationally intensive
to target for acceleration?

As stated in the conclusion, within this project the chosen state-of-the-art se-
lective sweep detection tool, OmegaPlus, is decomposed to describe the compute
intensive parts and to perform profiling to gather execution times of the compute
intensive parts. The two compute intensive parts were found to be the LD compu-
tation and ω-statistic computation which together take up >95% of the total execu-
tion time. With a simulated dataset of consisting of 7,000 sequences/samples and
13,000 SNPs, the LD computation takes up 50.3% of the total execution time and
the ω-statistic computation takes up 47.9% of the total execution time.

• How can the computationally intensive parts be mapped optimally on the com-
putational units and the different types of memory of the GPU?

For the compute intensive LD computation the highly optimized quickLD tool is
adapted in order to apply GPU-acceleration. This decision has been made to pre-
vent reinventing the wheel and be able to shift the focus on GPU-accelerating the
compute intensive ω-statistic computation.

Due to non-uniform SNP distribution along the genome, large variation in compu-
tational workload for the ω-statistic computation can occur during execution. The ω-
statistic computation has therefore been accelerated using two GPU kernels that are
executed dynamically depending on the computational workload. For a low number
of computations a rather naive approach is applied that mimics the original work-flow
of the sequential OmegaPlus version. For a high number of computations a second
kernel is applied that applies multiple acceleration techniques in order to optimize
kernel execution.

The kernel designed for low computational load applies minimal data transfers
with respect to the input buffers, which are stored on global memory. In order to fully

7.1. CONCLUSION 105

utilize the GPU its computational units, Compute Units (CUs)/Streaming Multipro-
cessors (SMs), with the low computational load, every scheduled work-item sched-
uled on the GPU computes only a single ω value. This prevents underutilization of
the hardware as much as possible, in which memory latencies can be more preva-
lent. A fully coalesced access pattern is applied to the largest input buffer in order
to minimize memory latencies. The two other input buffers are accessed through an
unoptimized pattern in order to facilitate minimal input buffers data transfers. The
single output buffer is written using coalesced memory accesses to maximize per-
formance of the result storing.

The kernel designed for high computational load applies optimal occupancy through
a global work-size indication based on the number of computational units, CUs/SMs,
on the GPU. The number of total work-items is set closest to the set optimal occu-
pancy metric and as an integer multiple of the number of iterations in the dynamically
placed inner loop. This enables memory latency hiding and optimized memory ac-
cess patterns. Input buffers are stored on global memory and accessed through
either coalesced memory accesses or single element accesses. Dummy values are
used to achieve the optimal coalesced memory accesses which results in dummy
computations and non-minimal data transfer. A loop unrolled for-loop with factor 4
is applied to perform all the computation steps of a specific grid position. Given a
single work-items performs multiple computation steps within this kernel, fewer re-
sulting ω-statistic values need to written to the output buffer. An additional output
buffer is however needed for index values of the corresponding maximum ω-statistic
values. Both output buffers are written using coalesced memory accesses to maxi-
mize performance of the result storing.

• How do performance values scale for datasets with different number of genomes
and datasets with different number of SNPs per genome?

As expected, the GPU-accelerated ω-statistic computation showed a quadratic
increase in execution time in the performance evaluation with increasing number of
SNPs. With higher number of SNPs however (>8,000 SNPs), the GPU-accelerated
ω-statistic computation showed a decrease in throughput which resulted in lower
speedups when compared to the sequential OmegaPlus version at lower number
of SNPs. This is caused by an increase in data preparation & result processing
execution time for the GPU-accelerated ω-statistic computation.

When looking at the performance evaluation of the LD computation the per-
formance values scale identical to the values presented in the original work by
Theodoris et al. [104], [105]. A quadratic increase of execution time with the number
of SNPs and a linear increase of execution time with the number of sequences/sam-
ples.

106 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

When looking at the complete GPU-accelerated OmegaPlus version, perfor-
mance values scale as expected when considering the results of the compute in-
tensive parts separately. With increasing number of SNPs the execution time shows
a quadratic increase and with increasing number of sequences samples the execu-
tion time shows a linear increase.

Main question The main research question will be answered by looking at the
performance values presented with the varying workloads. This provides a good
insight in the potential performance gain for different workload distributions which
can be compared to real-world datasets.

• How much performance gain can be achieved when accelerating a state-of-
the-art selective sweep detection tool using GPU architectures?

The performance evaluation with the balanced workload dataset, in which the
execution time of both compute intensive parts is equally distributed over the two
compute intensive parts, showed speedups ranging from 1.91x to 6.3x and from
1.26x to 3.4x when comparing the GPU-accelerated OmegaPlus version to the se-
quential and generic parallel OmegaPlus versions respectively. The generic parallel
version used 4 and 2 cores for the mentioned speedups respectively.

The performance evaluation with the high ω-statistic computation workload, in
which the execution time of the ω-statistic computation takes up approximately 90%
of the combined execution time, showed speedups ranging from 1.31x to 3.21x and
from 0.64x to 1.41x when comparing the GPU-accelerated OmegaPlus version to
the sequential and generic parallel OmegaPlus versions respectively. Again 4 and 2
cores were used with the generic parallel version. The lower exhibited speedups are
due to the inefficiency of the GEMM-based LD implementation with a low number
of sequences/samples, 500 in the case of this dataset. The sequential and generic
parallel OmegaPlus versions exhibit higher LD computation performance with low
number of sequences/samples.

The performance evaluation with the high LD computation workload, in which the
execution time of the LD computation takes up approximately 90% of the combined
execution time, showed speedups ranging from 5.75x to 24.0x and from 4.86x to
15.33x when comparing the GPU-accelerated OmegaPlus version to the sequential
and generic parallel OmegaPlus versions respectively. The mentioned speedups
were again acquired using 4 and 2 cores for the generic parallel version. These
speedups show the high efficiency of the GEMM-based LD implementation with a
high number of sequences/samples, 60,000 in the case of this dataset. Given the
fact real-world datasets tend to have more and more sequences/samples, evaluated

7.2. FUTURE WORK 107

performance values using the high LD computation workload distribution, are more
representative for real-world applications.

To conclude, performance values heavily depend on the workload distribution
between the two compute intensive parts and on the number of SNPs and se-
quences/samples in the dataset used. Speedups can however be as high as 24.0x
when datasets consist of a high number of sequences/samples and moderate num-
ber of SNPs.

7.2 Future work

This section will elaborate on future work that can be carried out to further boost
performance and/or optimize the GPU-accelerated OmegaPlus version. In the para-
graphs below, each recommendation is separately discussed.

As stated in section 6.3, to further improve performance of the GPU-accelerated
OmegaPlus version, improving performance of the ω-statistic computation would
have the biggest impact. Within this compute intensive part the data preparation &
result processing takes up most of the ω-statistic computation execution time.

Execution overlapping An acceleration technique that can be applied, and was
mentioned in section 2.2, is overlapping data transfers and GPU kernel execution.
From fig. 6.2 we can only conclude that the GPU kernel execution time takes up
less than 10% of the total ω-statistic computation execution time. Overlapping these
parts would therefore result in a marginal performance gain.

Overlapping of both the GPU kernel execution and the data transfers with the
data preparation would result in higher performance gains, especially with higher
number of SNPs.

This can be implemented by dividing the execution of the nested loop, and there-
fore the input data, into smaller parts using an additional for-loop. This would enable
to queue data transfers and kernel execution, using the OpenCL command queue,
for the part of the data that has been prepared in a part of the complete nested loop.
After queuing the data transfers and kernel execution for this part of the input data,
the next part can be prepared and thereafter queued, resulting in overlap. Given the
fact the queuing is non-blocking and there exist no data dependencies in the ker-
nel, host code execution can continue while the GPU handles the queued OpenCL
events.

Important is that the partial data preparation execution time, or nested loop exe-
cution time, is balanced with the data transfers and kernel execution time in order to
maximize overlap and therefore performance gain. This depends on the partial size

108 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

of the input data which can be defined by the number of iterations of the additional
for-loop.

After all the parts, including data transfer and kernel execution, are finished
executing, only one blocking read needs to be performed to retrieve all the GPU-
computed ω values as in the current approach using the OpenCL event wait list. It is
also possible to read parts of the GPU-computed ω values, by reading values com-
puted in the previous additional for-loop iteration which are ready if the execution
time is balanced.

Besides improving performance, the overlapping execution also enables lower
memory usage as only parts of the grid position dependable data need to be tem-
porarily stored.

Host code parallelization An additional approach to improve performance of the
GPU-accelerated ω-statistic computation, is to parallelize the CPU host code. Espe-
cially the nested loop in the implemented approach can consists of several mullion
iterations in which data is stored in the input buffers.

This can however also degrade performance as the computation to thread syn-
chronisation ratio can be unfavourable within this implementation. This should be
evaluated to obtain the actual performance values.

GEMM-based LD implementation optimization The GEMM-based LD imple-
mentation can also be optimized. In the original sequential OmegaPlus version,
the correlation values are computed per grid position and stored in lower triangular
matrix M . The GEMM-based LD implementation omits the computation of corre-
lation values per grid position and instead computes all the correlation values at
once using GPU-acceleration. The GPU-accelerated LD computation however, im-
plements a data transfer from the GEMM-based LD resulting correlation matrix to
the original OmegaPlus lower triangular matrix. These transfers are redundant if the
original OmegaPlus lower triangular correlation matrix can be bypassed, and only
the GEMM-based results are used for within the data-reuse optimization and the
ω-statistic computation.

Higher GPU utilization Performance gain can also be achieved by performing
more computations on the GPU. The current approach accelerates the computa-
tion of the haplotype frequency matrix H, recall section 4.2, essentially a general
matrix multiplication operation (GEMM) operation, and the complete computation of
the ω-statistic. However, all the computations and data processing in between the
two GPU-accelerated parts is performed sequentially on the CPU. The developed

7.2. FUTURE WORK 109

solution would require a large change to enable all the computations and data pro-
cessing in between the two GPU-accelerated parts to be performed on the GPU. An
additional GPU kernel for computing the Pearson correlation values with haplotype
frequency matrix H would be required as well as a complete different kernel for com-
puting the ω-statistic values from the correlation values on the GPU. This approach
would minimize data transfer overhead but would increase GPU kernel execution
time. The potential performance improvement of this approach however, depends
on whether these extra computations are suitable for GPU acceleration.

110 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Acknowledgements

At the end of my thesis and thus the end of my time on the University of Twente,
I look back on an instructive, interesting and challenging period with a bittersweet
ending. The global pandemic made certain times during my graduation, and the pe-
riod before that, feel very strange and provided little motivation. Luckily, I had enough
people around who motivated me to keep working on my project, and enough people
around to enjoy my spare time with.

First of all, I want to thank dr. ir. Nikolaos Alachiotis, my daily supervisor and the
helping hand in solving the more challenging problems I encountered. Thank you
for letting me work on this interesting project where I learned a lot about this specific
topic which was completely new to me.

I also want to thank my roommates from my student house B100, which is now
slowly becoming a house full of ’normal civilians’. Thank you for hearing me out
about my project and giving me useful tips on the continuation.

I also want to thank my uncle who was always interested in how my study was
progressing and what I was working on, no matter how difficult the topic.

Next, I want to thank my friends with whom I made great memories the last, and
previous years, and will certainly make a lot more memories with. Even though most
of the time we spend together is devoted to drinking beer, I can always talk to you
about all sorts of stuff, for which I’m truly grateful.

At last I want to thank my loving family of which especially my parents. You have
been my greatest support, motivation and inspiration during my school days, my
time at the university and throughout my entire life. You gave me the resources and
possibilities to work on my career path and to develop myself into the person I am
today. Dankjewel!

111

112 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] N. Alachiotis, A. Stamatakis, and P. Pavlidis, “Omegaplus: a scalable tool for
rapid detection of selective sweeps in whole-genome datasets,” Bioinformat-
ics, vol. 28, no. 17, pp. 2274–2275, 2012.

[2] N. Alachiotis, P. Pavlidis, and A. Stamatakis, “Exploiting multi-grain parallelism
for efficient selective sweep detection,” in International Conference on Algo-
rithms and Architectures for Parallel Processing. Springer, 2012, pp. 56–68.

[3] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard
for heterogeneous computing systems,” Computing in science & engineering,
vol. 12, no. 3, pp. 66–73, 2010.

[4] R. M. Ames, D. Money, V. P. Ghatge, S. Whelan, and S. C. Lovell, “Determining
the evolutionary history of gene families,” Bioinformatics, vol. 28, no. 1, pp.
48–55, 2012.

[5] A. Shen, H. Fu, K. He, and H. Jiang, “False discovery rate control in cancer
biomarker selection using knockoffs,” Cancers, vol. 11, no. 6, p. 744, 2019.

[6] E. W. Sayers, M. Cavanaugh, K. Clark, K. D. Pruitt, C. L. Schoch, S. T. Sherry,
and I. Karsch-Mizrachi, “Genbank,” Nucleic acids research, vol. 49, no. D1,
pp. D92–D96, 2021.

[7] Y. Shu and J. McCauley, “Gisaid: Global initiative on sharing all influenza
data–from vision to reality,” Eurosurveillance, vol. 22, no. 13, p. 30494, 2017.

[8] C. A. Davis, B. C. Hitz, C. A. Sloan, E. T. Chan, J. M. Davidson, I. Gabdank,
J. A. Hilton, K. Jain, U. K. Baymuradov, A. K. Narayanan et al., “The encyclo-
pedia of dna elements (encode): data portal update,” Nucleic acids research,
vol. 46, no. D1, pp. D794–D801, 2018.

[9] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger,
K. Ellrott, I. Shmulevich, C. Sander, and J. M. Stuart, “The cancer genome
atlas pan-cancer analysis project,” Nature genetics, vol. 45, no. 10, pp. 1113–
1120, 2013.

113

114 BIBLIOGRAPHY

[10] K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson,
and M. R. Munafò, “Power failure: why small sample size undermines the
reliability of neuroscience,” Nature reviews neuroscience, vol. 14, no. 5, pp.
365–376, 2013.

[11] K. Katoh and D. M. Standley, “Mafft multiple sequence alignment software
version 7: improvements in performance and usability,” Molecular biology and
evolution, vol. 30, no. 4, pp. 772–780, 2013.

[12] B. Morel, P. Barbera, L. Czech, B. Bettisworth, L. Hübner, S. Lutteropp, D. Ser-
dari, E.-G. Kostaki, I. Mamais, A. Kozlov et al., “Phylogenetic analysis of sars-
cov-2 data is difficult,” bioRxiv, 2020.

[13] J. M. Sá, O. Twu, K. Hayton, S. Reyes, M. P. Fay, P. Ringwald, and T. E.
Wellems, “Geographic patterns of plasmodium falciparum drug resistance dis-
tinguished by differential responses to amodiaquine and chloroquine,” Pro-
ceedings of the National Academy of Sciences, vol. 106, no. 45, pp. 18 883–
18 889, 2009.

[14] A. Rambaut, O. G. Pybus, M. I. Nelson, C. Viboud, J. K. Taubenberger, and
E. C. Holmes, “The genomic and epidemiological dynamics of human in-
fluenza a virus,” Nature, vol. 453, no. 7195, pp. 615–619, 2008.

[15] L. Kang, G. He, A. K. Sharp, X. Wang, A. M. Brown, P. Michalak, and J. Weger-
Lucarelli, “A selective sweep in the spike gene has driven sars-cov-2 human
adaptation,” bioRxiv, 2021.

[16] E. Binder, T. M. Low, and D. T. Popovici, “A portable gpu framework for snp
comparisons,” in 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2019, pp. 199–208.

[17] N. Alachiotis, T. Popovici, and T. M. Low, “Efficient computation of linkage dis-
equilibria as dense linear algebra operations,” in 2016 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
2016, pp. 418–427.

[18] W. S. Klug, M. R. Cummings, C. A. Spencer, M. A. Palladino, and D. J. Killian,
Essentials of genetics. Pearson Education, Inc., 2020.

[19] C. Darwin, A. R. Wallace, S. C. Lyell, and J. D. Hooker, “On the tendency of
species to form varieties: and on the perpetuation of varieties and species by
natural means of selection.” Linnean Society of London, 1858.

BIBLIOGRAPHY 115

[20] “[LS4-4] Natural Selection and Adaptation,” Accessed on: Sept. 28, 2021.
[Online]. Available: https://biologydictionary.net/ngss-high-school-tutorials/
ls4-4-natural-selection-and-adaptation/

[21] “What is a mutation?” Accessed on: Sept. 28, 2021. [Online]. Available:
https://www.yourgenome.org/facts/what-is-a-mutation

[22] S. J. Gould, The structure of evolutionary theory. Harvard University Press,
2002.

[23] “Genetic drift,” Understanding Evolution. University of California Museum
of Paleontology., Accessed on: Sept. 28, 2021. [Online]. Available:
https://evolution.berkeley.edu/evolibrary/article/evo 24

[24] M. Slarkin, “Gene flow in natural populations,” Annual review of ecology and
systematics, vol. 16, no. 1, pp. 393–430, 1985.

[25] “Gene flow,” Understanding Evolution. University of California Museum
of Paleontology., Accessed on: Sept. 28, 2021. [Online]. Available:
https://evolution.berkeley.edu/evolibrary/article/evo 21

[26] D. W. Mount, Bioinformatics: Sequence and Genome Analysis, ser. Cold
Spring Harbor Laboratory Series. Cold Spring Harbor Laboratory Press,
2004. [Online]. Available: https://books.google.nl/books?id=M8pqAAAAMAAJ

[27] T. F. Smith and M. S. Waterman, “Identification of common molecular subse-
quences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981.

[28] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman, “Gapped blast and psi-blast: a new generation of protein
database search programs,” Nucleic acids research, vol. 25, no. 17, pp. 3389–
3402, 1997.

[29] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice,” Nucleic
Acids Research, vol. 22, no. 22, pp. 4673–4680, 11 1994. [Online]. Available:
https://doi.org/10.1093/nar/22.22.4673

[30] H. Lopez-Maestre, L. Brinza, C. Marchet, J. Kielbassa, S. Bastien,
M. Boutigny, D. Monnin, A. E. Filali, C. M. Carareto, C. Vieira et al., “Snp
calling from rna-seq data without a reference genome: identification, quan-
tification, differential analysis and impact on the protein sequence,” Nucleic
Acids Research, vol. 44, no. 19, pp. e148–e148, 2016.

https://biologydictionary.net/ngss-high-school-tutorials/ls4-4-natural-selection-and-adaptation/
https://biologydictionary.net/ngss-high-school-tutorials/ls4-4-natural-selection-and-adaptation/
https://www.yourgenome.org/facts/what-is-a-mutation
https://evolution.berkeley.edu/evolibrary/article/evo_24
https://evolution.berkeley.edu/evolibrary/article/evo_21
https://books.google.nl/books?id=M8pqAAAAMAAJ
https://doi.org/10.1093/nar/22.22.4673

116 BIBLIOGRAPHY

[31] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl,
A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna et al., “A framework
for variation discovery and genotyping using next-generation dna sequencing
data,” Nature genetics, vol. 43, no. 5, pp. 491–498, 2011.

[32] H. Li, “A statistical framework for snp calling, mutation discovery, associa-
tion mapping and population genetical parameter estimation from sequencing
data,” Bioinformatics, vol. 27, no. 21, pp. 2987–2993, 2011.

[33] E. Garrison and G. Marth, “Haplotype-based variant detection from short-read
sequencing,” arXiv preprint arXiv:1207.3907, 2012.

[34] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. Twigg, A. O. Wilkie,
G. McVean, and G. Lunter, “Integrating mapping-, assembly-and haplotype-
based approaches for calling variants in clinical sequencing applications,” Na-
ture genetics, vol. 46, no. 8, pp. 912–918, 2014.

[35] Z. Wei, W. Wang, P. Hu, G. J. Lyon, and H. Hakonarson, “Snver: a statistical
tool for variant calling in analysis of pooled or individual next-generation se-
quencing data,” Nucleic acids research, vol. 39, no. 19, pp. e132–e132, 2011.

[36] Z. Lai, A. Markovets, M. Ahdesmaki, B. Chapman, O. Hofmann, R. McEwen,
J. Johnson, B. Dougherty, J. C. Barrett, and J. R. Dry, “Vardict: a novel and
versatile variant caller for next-generation sequencing in cancer research,” Nu-
cleic acids research, vol. 44, no. 11, pp. e108–e108, 2016.

[37] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A.
Miller, E. R. Mardis, L. Ding, and R. K. Wilson, “Varscan 2: somatic muta-
tion and copy number alteration discovery in cancer by exome sequencing,”
Genome research, vol. 22, no. 3, pp. 568–576, 2012.

[38] “Single Nucleotide Polymorphisms (SNPs),” National Human Genome
Research Institute, Accessed on: Sept. 28, 2021. [Online]. Available: https:
//www.genome.gov/genetics-glossary/Single-Nucleotide-Polymorphisms

[39] J. M. Smith and J. Haigh, “The hitch-hiking effect of a favourable gene,” Ge-
netics Research, vol. 23, no. 1, pp. 23–35, 1974.

[40] N. L. Kaplan, R. R. Hudson, and C. H. Langley, “The” hitchhiking effect” revis-
ited.” Genetics, vol. 123, no. 4, pp. 887–899, 1989.

[41] H. Innan and Y. Kim, “Pattern of polymorphism after strong artificial selection
in a domestication event,” Proceedings of the National Academy of Sciences,
vol. 101, no. 29, pp. 10 667–10 672, 2004.

https://www.genome.gov/genetics-glossary/Single-Nucleotide-Polymorphisms
https://www.genome.gov/genetics-glossary/Single-Nucleotide-Polymorphisms

BIBLIOGRAPHY 117

[42] J. Hermisson and P. S. Pennings, “Soft sweeps: molecular population genetics
of adaptation from standing genetic variation,” Genetics, vol. 169, no. 4, pp.
2335–2352, 2005.

[43] M. Prezeworski, G. Coop, and J. D. Wall, “The signature of positive selection
on standing genetic variation,” Evolution, vol. 59, no. 11, pp. 2312–2323, 2005.

[44] J. M. Braverman, R. R. Hudson, N. L. Kaplan, C. H. Langley, and W. Stephan,
“The hitchhiking effect on the site frequency spectrum of dna polymorphisms.”
Genetics, vol. 140, no. 2, pp. 783–796, 1995.

[45] Y. Kim and R. Nielsen, “Linkage disequilibrium as a signature of selective
sweeps,” Genetics, vol. 167, no. 3, pp. 1513–1524, 2004.

[46] S. Maloy and K. Hughes, Brenner’s Encyclopedia of Genetics. Else-
vier Science, 2013. [Online]. Available: https://books.google.nl/books?id=
4cj64BhrnjcC

[47] D. B. Goldstein and M. E. Weale, “Population genomics: linkage disequilibrium
holds the key,” Current Biology, vol. 11, no. 14, pp. R576–R579, 2001.

[48] U. Cheramangalath, R. Nasre, and Y. N. Srikant, GPU Architecture and
Programming Challenges. Cham: Springer International Publishing, 2020,
pp. 123–136. [Online]. Available: https://doi.org/10.1007/978-3-030-41886-1
5

[49] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 11.4,” 2021.
[Online]. Available: https://developer.nvidia.com/cuda-toolkit

[50] K. Choo, W. Panlener, and B. Jang, “Understanding and optimizing gpu cache
memory performance for compute workloads,” in 2014 IEEE 13th International
Symposium on Parallel and Distributed Computing. IEEE, 2014, pp. 189–
196.

[51] “OPENCL Optimization,” OPENCL Optimization - ROCm Documentation
1.0.0, Accessed on: Oct. 3, 2021. [Online]. Available: https://rocmdocs.amd.
com/en/latest/Programming Guides/Opencl-optimization.html

[52] “CUDA C++ Best Practices Guide,” CUDA Toolkit Documentation v11.4.2,
Accessed on: Oct. 3, 2021. [Online]. Available: https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html

https://books.google.nl/books?id=4cj64BhrnjcC
https://books.google.nl/books?id=4cj64BhrnjcC
https://doi.org/10.1007/978-3-030-41886-1_5
https://doi.org/10.1007/978-3-030-41886-1_5
https://developer.nvidia.com/cuda-toolkit
https://rocmdocs.amd.com/en/latest/Programming_Guides/Opencl-optimization.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/Opencl-optimization.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

118 BIBLIOGRAPHY

[53] “OpenCL Programming Guide,” OpenCL Programming Guide -
ROCm Documentation 1.0.0, Accessed on: Oct. 3, 2021. [On-
line]. Available: https://rocmdocs.amd.com/en/latest/Programming Guides/
Opencl-programming-guide.html

[54] B. Chor and T. Tuller, “Maximum likelihood of evolutionary trees: hardness and
approximation,” Bioinformatics, vol. 21, no. suppl 1, pp. i97–i106, 2005.

[55] W. H. Day, D. S. Johnson, and D. Sankoff, “The computational complexity of
inferring rooted phylogenies by parsimony,” Mathematical biosciences, vol. 81,
no. 1, pp. 33–42, 1986.

[56] J. Felsenstein, “Evolutionary trees from dna sequences: a maximum likelihood
approach,” Journal of molecular evolution, vol. 17, no. 6, pp. 368–376, 1981.

[57] A. Stamatakis, “Raxml version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies,” Bioinformatics, vol. 30, no. 9, pp. 1312–1313,
2014.

[58] D. J. Zwickl, “Genetic algorithm approaches for the phylogenetic analysis of
large biological sequence datasets under the maximum likelihood criterion,”
Ph.D. dissertation, 2006.

[59] F. Ronquist and J. P. Huelsenbeck, “Mrbayes 3: Bayesian phylogenetic infer-
ence under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574,
2003.

[60] Z. Yang and B. Rannala, “Molecular phylogenetics: principles and practice,”
Nature reviews genetics, vol. 13, no. 5, pp. 303–314, 2012.

[61] P. A. Goloboff, S. A. Catalano, J. Marcos Mirande, C. A. Szumik, J. Sal-
vador Arias, M. Källersjö, and J. S. Farris, “Phylogenetic analysis of 73 060
taxa corroborates major eukaryotic groups,” Cladistics, vol. 25, no. 3, pp. 211–
230, 2009.

[62] W. M. Fitch, “Toward defining the course of evolution: minimum change for a
specific tree topology,” Systematic Biology, vol. 20, no. 4, pp. 406–416, 1971.

[63] D. Sankoff and P. Rousseau, “Locating the vertices of a steiner tree in an
arbitrary metric space,” Mathematical Programming, vol. 9, no. 1, pp. 240–
246, 1975.

[64] H. Block and T. Maruyama, “Fpga hardware acceleration of a phylogenetic
tree reconstruction with maximum parsimony algorithm,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 100, no. 2, pp. 256–264, 2017.

https://rocmdocs.amd.com/en/latest/Programming_Guides/Opencl-programming-guide.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/Opencl-programming-guide.html

BIBLIOGRAPHY 119

[65] N. Alachiotis and A. Stamatakis, “Fpga acceleration of the phylogenetic parsi-
mony kernel?” in 2011 21st International Conference on Field Programmable
Logic and Applications. IEEE, 2011, pp. 417–422.

[66] S. Santander-Jiménez, M. A. Vega-Rodrı́guez, J. Vicente-Viola, and L. Sousa,
“Comparative assessment of gpgpu technologies to accelerate objective func-
tions: A case study on parsimony,” Journal of Parallel and Distributed Com-
puting, vol. 126, pp. 67–81, 2019.

[67] H. Block and T. Maruyama, “A hardware acceleration of a phylogenetic tree
reconstruction with maximum parsimony algorithm using fpga,” in 2013 Inter-
national Conference on Field-Programmable Technology (FPT). IEEE, 2013,
pp. 318–321.

[68] A. Goeffon, J.-M. Richer, and J.-K. Hao, “Progressive tree neighborhood ap-
plied to the maximum parsimony problem,” IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, vol. 5, no. 1, pp. 136–145, 2008.

[69] P. A. Goloboff, J. S. Farris, and K. C. Nixon, “Tnt, a free program for phyloge-
netic analysis,” Cladistics, vol. 24, no. 5, pp. 774–786, 2008.

[70] S. Kasap and K. Benkrid, “A high performance fpga-based core for phyloge-
netic analysis with maximum parsimony method,” in 2009 International Con-
ference on Field-Programmable Technology. IEEE, 2009, pp. 271–277.

[71] ——, “High performance phylogenetic analysis with maximum parsimony on
reconfigurable hardware,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 5, pp. 796–808, 2010.

[72] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson,
A. Trew, A. McCormick, G. Smart et al., “Maxwell-a 64 fpga supercomputer,”
in Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS
2007). IEEE, 2007, pp. 287–294.

[73] D. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4.0b10, 01 2002, vol. Version 4.0.

[74] H. Block and T. Maruyama, “An fpga hardware acceleration of the indirect cal-
culation of tree lengths method for phylogenetic tree reconstruction,” in 2014
24th International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2014, pp. 1–4.

[75] P. A. Goloboff, “Methods for faster parsimony analysis,” Cladistics, vol. 12,
no. 3, pp. 199–220, 1996.

120 BIBLIOGRAPHY

[76] S. Santander-Jiménez, A. Ilic, L. Sousa, and M. A. Vega-Rodrı́guez, “Acceler-
ating the phylogenetic parsimony function on heterogeneous systems,” Con-
currency and Computation: Practice and Experience, vol. 29, no. 8, p. e4046,
2017.

[77] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc:
First experiences with real-world applications,” in Proceedings of the
18th International Conference on Parallel Processing, ser. Euro-Par’12.
Berlin, Heidelberg: Springer-Verlag, 2012, p. 859–870. [Online]. Available:
https://doi.org/10.1007/978-3-642-32820-6 85

[78] S. Santander-Jiménez, M. A. Vega-Rodrı́guez, A. Zahinos-Márquez, and
L. Sousa, “Gpu acceleration of fitch’s parsimony on protein data: from kepler
to turing,” The Journal of Supercomputing, pp. 1–27, 2020.

[79] F. Ronquist and J. P. Huelsenbeck, “Mrbayes 3: Bayesian phylogenetic infer-
ence under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574,
2003.

[80] A. Stamatakis, “Raxml-vi-hpc: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models,” Bioinformatics, vol. 22, no. 21,
pp. 2688–2690, 2006.

[81] P. Malakonakis, A. Brokalakis, N. Alachiotis, E. Sotiriades, and A. Dollas, “Ex-
ploring modern fpga platforms for faster phylogeny reconstruction with raxml,”
in 2020 IEEE 20th International Conference on Bioinformatics and Bioengi-
neering (BIBE). IEEE, 2020, pp. 97–104.

[82] F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa, “Fine-grain parallelism
using multi-core, cell/be, and gpu systems: accelerating the phylogenetic
likelihood function,” in 2009 International Conference on Parallel Processing.
IEEE, 2009, pp. 9–17.

[83] T. Flouri, F. Izquierdo-Carrasco, D. Darriba, A. J. Aberer, L.-T. Nguyen,
B. Minh, A. Von Haeseler, and A. Stamatakis, “The phylogenetic likelihood
library,” Systematic biology, vol. 64, no. 2, pp. 356–362, 2015.

[84] D. L. Ayres, A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O. Lewis, J. P.
Huelsenbeck, F. Ronquist, D. L. Swofford, M. P. Cummings et al., “Beagle:
an application programming interface and high-performance computing library
for statistical phylogenetics,” Systematic biology, vol. 61, no. 1, pp. 170–173,
2012.

https://doi.org/10.1007/978-3-642-32820-6_85

BIBLIOGRAPHY 121

[85] D. L. Ayres, M. P. Cummings, G. Baele, A. E. Darling, P. O. Lewis, D. L. Swof-
ford, J. P. Huelsenbeck, P. Lemey, A. Rambaut, and M. A. Suchard, “Beagle 3:
improved performance, scaling, and usability for a high-performance comput-
ing library for statistical phylogenetics,” Systematic biology, vol. 68, no. 6, pp.
1052–1061, 2019.

[86] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis, “Exploring fpgas for
accelerating the phylogenetic likelihood function,” in 2009 IEEE International
Symposium on Parallel & Distributed Processing. IEEE, 2009, pp. 1–8.

[87] S. Zierke and J. D. Bakos, “Fpga acceleration of the phylogenetic likelihood
function for bayesian mcmc inference methods,” BMC bioinformatics, vol. 11,
no. 1, pp. 1–12, 2010.

[88] J. Zhou, X. Liu, D. S. Stones, Q. Xie, and G. Wang, “Mrbayes on a graphics
processing unit,” Bioinformatics, vol. 27, no. 9, pp. 1255–1261, 2011.

[89] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J.
Lee, “Second-generation plink: rising to the challenge of larger and richer
datasets,” Gigascience, vol. 4, no. 1, pp. s13 742–015, 2015.

[90] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender,
J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly et al., “Plink: a tool set for whole-
genome association and population-based linkage analyses,” The American
journal of human genetics, vol. 81, no. 3, pp. 559–575, 2007.

[91] Y. Tang, Z. Li, C. Wang, Y. Liu, H. Yu, A. Wang, and Y. Zhou, “Ldkit: a paral-
lel computing toolkit for linkage disequilibrium analysis,” BMC bioinformatics,
vol. 21, no. 1, pp. 1–8, 2020.

[92] C. Zhang, S.-S. Dong, J.-Y. Xu, W.-M. He, and T.-L. Yang, “Poplddecay: a fast
and effective tool for linkage disequilibrium decay analysis based on variant
call format files,” Bioinformatics, vol. 35, no. 10, pp. 1786–1788, 2019.

[93] N. Alachiotis and P. Pavlidis, “Scalable linkage-disequilibrium-based selec-
tive sweep detection: a performance guide,” GigaScience, vol. 5, no. 1, pp.
s13 742–016, 2016.

[94] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear
algebra subprograms for fortran usage,” ACM Transactions on Mathematical
Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

122 BIBLIOGRAPHY

[95] S. Hammarling, J. Dongarra, J. Du Croz, and R. Hanson, “An extended set of
fortran basic linear algebra subprograms,” ACM Transactions on Mathematical
Software, vol. 14, no. 1, pp. 1–32, 1988.

[96] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level 3 ba-
sic linear algebra subprograms,” ACM Transactions on Mathematical Software
(TOMS), vol. 16, no. 1, pp. 1–17, 1990.

[97] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix multipli-
cation,” ACM Transactions on Mathematical Software (TOMS), vol. 34, no. 3,
pp. 1–25, 2008.

[98] http://www.openblas.net, 2021.

[99] F. G. Van Zee and R. A. Van De Geijn, “Blis: A framework for rapidly instantiat-
ing blas functionality,” ACM Transactions on Mathematical Software (TOMS),
vol. 41, no. 3, pp. 1–33, 2015.

[100] N. Alachiotis and G. Weisz, “High performance linkage disequilibrium: Fpgas
hold the key,” in Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 2016, pp. 118–127.

[101] M. Kimura, “The number of heterozygous nucleotide sites maintained in a
finite population due to steady flux of mutations,” Genetics, vol. 61, no. 4, p.
893, 1969.

[102] D. Bozikas, N. Alachiotis, P. Pavlidis, E. Sotiriades, and A. Dollas, “Deploying
fpgas to future-proof genome-wide analyses based on linkage disequilibrium,”
in 2017 27th International Conference on Field Programmable Logic and Ap-
plications (FPL). IEEE, 2017, pp. 1–8.

[103] F. L. J. W. Xian-Yu, L. C.-X. B. Hai-Nan, and Z. J.-S. Lai, “Fast computing of
linkage disequilibrium on gpu,” in GPU Technology Conference. Citeseer,
2013.

[104] C. Theodoris, N. Alachiotis, T. M. Low, and P. Pavlidis, “qld: High-performance
computation of linkage disequilibrium on cpu and gpu,” in 2020 IEEE 20th In-
ternational Conference on Bioinformatics and Bioengineering (BIBE). IEEE,
2020, pp. 65–72.

[105] C. Theodoris, T. M. Low, P. Pavlidis, and N. Alachiotis, “quickld: an efficient
software for linkage disequilibrium analyses,” Molecular Ecology Resources,
2021.

http://www.openblas.net

BIBLIOGRAPHY 123

[106] Y. Wang, G. Liu, M. Feng, and L. Wong, “An empirical comparison of several
recent epistatic interaction detection methods,” Bioinformatics, vol. 27, no. 21,
pp. 2936–2943, 2011.

[107] K. Van Steen, “Travelling the world of gene–gene interactions,” Briefings in
bioinformatics, vol. 13, no. 1, pp. 1–19, 2012.

[108] X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N. L. Tang, and W. Yu, “Boost:
A fast approach to detecting gene-gene interactions in genome-wide case-
control studies,” The American Journal of Human Genetics, vol. 87, no. 3, pp.
325–340, 2010.

[109] M. L. Calle, V. Urrea Gales, N. Malats i Riera, K. Van Steen et al., “Mb-mdr:
model-based multifactor dimensionality reduction for detecting interactions in
high-dimensional genomic data,” 2008.

[110] J. Piriyapongsa, C. Ngamphiw, A. Intarapanich, S. Kulawonganunchai, A. As-
sawamakin, C. Bootchai, P. J. Shaw, and S. Tongsima, “iloci: a snp interac-
tion prioritization technique for detecting epistasis in genome-wide association
studies,” in BMC genomics, vol. 13. Springer, 2012, pp. 1–15.

[111] H. J. Cordell, “Epistasis: what it means, what it doesn’t mean, and statistical
methods to detect it in humans,” Human molecular genetics, vol. 11, no. 20,
pp. 2463–2468, 2002.

[112] L. Wienbrandt, J. C. Kässens, M. Hübenthal, and D. Ellinghaus, “1000× faster
than plink: Combined fpga and gpu accelerators for logistic regression-based
detection of epistasis,” Journal of Computational Science, vol. 30, pp. 183–
193, 2019.

[113] J. González-Domı́nguez, S. Ramos, J. Touriño, and B. Schmidt, “Parallel pair-
wise epistasis detection on heterogeneous computing architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 8, pp. 2329–
2340, 2015.

[114] L. Wienbrandt, J. C. Kässens, J. González-Domı́nguez, B. Schmidt, D. Elling-
haus, and M. Schimmler, “Fpga-based acceleration of detecting statistical
epistasis in gwas,” Procedia Computer Science, vol. 29, pp. 220–230, 2014.

[115] G. Pfeiffer, S. Baumgart, J. Schröder, and M. Schimmler, “A massively parallel
architecture for bioinformatics,” in International Conference on Computational
Science. Springer, 2009, pp. 994–1003.

124 BIBLIOGRAPHY

[116] J. González-Domı́nguez, L. Wienbrandt, J. C. Kässens, D. Ellinghaus,
M. Schimmler, and B. Schmidt, “Parallelizing epistasis detection in gwas on
fpga and gpu-accelerated computing systems,” IEEE/ACM transactions on
computational biology and bioinformatics, vol. 12, no. 5, pp. 982–994, 2015.

[117] G. Hemani, A. Theocharidis, W. Wei, and C. Haley, “Epigpu: exhaustive pair-
wise epistasis scans parallelized on consumer level graphics cards,” Bioinfor-
matics, vol. 27, no. 11, pp. 1462–1465, 2011.

[118] L. S. Yung, C. Yang, X. Wan, and W. Yu, “Gboost: a gpu-based tool for de-
tecting gene–gene interactions in genome–wide case control studies,” Bioin-
formatics, vol. 27, no. 9, pp. 1309–1310, 2011.

[119] M. Wang, W. Jiang, R. C. W. Ma, and W. Yu, “Gboost 2.0: A gpu-based tool for
detecting gene-gene interactions with covariates adjustment in genome-wide
association studies,” in 2016 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE, 2016, pp. 1437–1437.

[120] R. Nielsen, S. Williamson, Y. Kim, M. J. Hubisz, A. G. Clark, and C. Busta-
mante, “Genomic scans for selective sweeps using snp data,” Genome re-
search, vol. 15, no. 11, pp. 1566–1575, 2005.

[121] Y. Kim and W. Stephan, “Detecting a local signature of genetic hitchhiking
along a recombining chromosome,” Genetics, vol. 160, no. 2, pp. 765–777,
2002.

[122] M. DeGiorgio, C. D. Huber, M. J. Hubisz, I. Hellmann, and R. Nielsen,
“Sweepfinder2: increased sensitivity, robustness and flexibility,” Bioinformat-
ics, vol. 32, no. 12, pp. 1895–1897, 2016.

[123] B. Charlesworth, M. Morgan, and D. Charlesworth, “The effect of deleterious
mutations on neutral molecular variation.” Genetics, vol. 134, no. 4, pp. 1289–
1303, 1993.

[124] P. Pavlidis, D. Živković, A. Stamatakis, and N. Alachiotis, “Sweed: likelihood-
based detection of selective sweeps in thousands of genomes,” Molecular
biology and evolution, vol. 30, no. 9, pp. 2224–2234, 2013.

[125] B. F. Voight, S. Kudaravalli, X. Wen, and J. K. Pritchard, “A map of recent
positive selection in the human genome,” PLoS biology, vol. 4, no. 3, p. e72,
2006.

[126] P. C. Sabeti, D. E. Reich, J. M. Higgins, H. Z. Levine, D. J. Richter, S. F.
Schaffner, S. B. Gabriel, J. V. Platko, N. J. Patterson, G. J. McDonald et al.,

BIBLIOGRAPHY 125

“Detecting recent positive selection in the human genome from haplotype
structure,” Nature, vol. 419, no. 6909, pp. 832–837, 2002.

[127] J. L. Crisci, Y.-P. Poh, S. Mahajan, and J. D. Jensen, “The impact of equilibrium
assumptions on tests of selection,” Frontiers in genetics, vol. 4, p. 235, 2013.

[128] N. Alachiotis and P. Pavlidis, “Raisd detects positive selection based on mul-
tiple signatures of a selective sweep and snp vectors,” Communications biol-
ogy, vol. 1, no. 1, pp. 1–11, 2018.

[129] P. Pavlidis and N. Alachiotis, “A survey of methods and tools to detect recent
and strong positive selection,” Journal of Biological Research-Thessaloniki,
vol. 24, no. 1, pp. 1–17, 2017.

[130] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo,
R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry et al., “The variant call
format and vcftools,” Bioinformatics, vol. 27, no. 15, pp. 2156–2158, 2011.

[131] R. R. Hudson, “Generating samples under a wright–fisher neutral model of
genetic variation,” Bioinformatics, vol. 18, no. 2, pp. 337–338, 2002.

[132] G. K. Chen, P. Marjoram, and J. D. Wall, “Fast and flexible simulation of dna
sequence data,” Genome research, vol. 19, no. 1, pp. 136–142, 2009.

[133] M. Kimura, “The number of heterozygous nucleotide sites maintained in a
finite population due to steady flux of mutations,” Genetics, vol. 61, no. 4, p.
893, 1969.

[134] D. V. Zaykin, A. Pudovkin, and B. S. Weir, “Correlation-based inference for
linkage disequilibrium with multiple alleles,” Genetics, vol. 180, no. 1, pp. 533–
545, 2008.

[135] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level 3 ba-
sic linear algebra subprograms,” ACM Transactions on Mathematical Software
(TOMS), vol. 16, no. 1, pp. 1–17, 1990.

[136] F. G. Van Zee and T. M. Smith, “Implementing high-performance complex ma-
trix multiplication via the 3m and 4m methods,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 44, no. 1, pp. 1–36, 2017.

[137] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti, “Analytical model-
ing is enough for high-performance blis,” ACM Transactions on Mathematical
Software (TOMS), vol. 43, no. 2, pp. 1–18, 2016.

126 BIBLIOGRAPHY

[138] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus and
the future of parallel computing,” IEEE micro, vol. 31, no. 5, pp. 7–17, 2011.

[139] T. M. Smith, R. Van De Geijn, M. Smelyanskiy, J. R. Hammond, and F. G.
Van Zee, “Anatomy of high-performance many-threaded matrix multiplication,”
in 2014 IEEE 28th International Parallel and Distributed Processing Sympo-
sium. IEEE, 2014, pp. 1049–1059.

[140] N. Whitehead and A. Fit-Florea, “Precision & performance: Floating point and
ieee 754 compliance for nvidia gpus,” rn (A+ B), vol. 21, no. 1, pp. 18 749–
19 424, 2011.

	Abstract
	List of acronyms
	Introduction
	Motivation
	Research questions
	Scientific contribution
	Outline

	Background
	Population genetics
	Data collection and preparation
	Natural selection and selective sweeps
	Signatures of selective sweeps

	Graphics processing unit
	GPU architecture
	GPU frameworks
	Acceleration techniques

	Related work
	Phylogenetics
	Phylogenetic Parsimony Function (PPF)
	Phylogenetic Likelihood Function (PLF)

	Population genetics
	Linkage Disequilibrium
	Epistasis

	Methods and tools for selective sweep detection
	Discussion and Conclusion

	OmegaPlus and quickLD
	OmegaPlus
	Input data representation
	Linkage Disequilibrium computation
	Omega statistic computation

	High-performance LD
	LD as Dense Linear Algebra operations
	BLIS based implementation

	Acceleration target selection

	Designs
	Introduction
	quickLD adaptation
	GPU kernels
	Kernel I: GPU kernel for low computational load
	Kernel II: GPU kernel for high computational load

	Host and interfacing
	Host implementation for kernel I
	Host implementation for kernel II

	Overview

	Performance evaluation
	Experimental setup
	GPU kernels verification
	Kernel I
	Kernel II

	Performance comparisons
	Omega statistic performance
	Linkage Disequilibrium performance
	Total performance

	Conclusions and future work
	Conclusion
	Future work

	Acknowledgements
	References

