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ABSTRACT 

Objective: This study has for objective to identify if it is possible to calculate learning 

curves from data sets obtained from driving simulators and if there is transfer from 

online driving simulators to on the road driving. Proving transfer will demonstrate 

learning effectiveness of online simulators, enabling a safer and more cost effective 

driving learning experience.  

 

Method: This study was divided into three parts, in which data sets from different 

experiments were analyzed and learning curves were calculated.  The first data set 

included results from students that performed the online driving simulator lessons from 

the company Green Dino, this was an uncontrolled data set. The second data set 

contained semi-controlled data set and it was taken from van Wijk's (2020) research 

project performed in an online driving simulator. Finally, the controlled data set was 

taken from the Voskes experiment (2020), which consisted of participants performing 

trials on a physical driving simulator. A learning curve model was created and the results 

were analyzed according to the variables that each data set contained. 

 

Results: Learning curves from physical and online driving simulators from semi-

controlled and controlled experiments data sets can be observed, including transfer from 

experienced drivers. In this particular study, there was no success in calculating learning 

curves from an uncontrolled data set, however, recommendations for better data 

acquisition were made. 

 

Conclusion: The learning curve model used in this study showed that it is possible to 

show learning outcomes from driving simulators under specific conditions. These 

conditions can be used for a large-scale experiment to validate the best way to obtain 

quality data from driving simulators. 

 

Keywords: driving simulators, online driving simulators, learning curves, learning 

transfer. 
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2 GENERAL INTRODUCTION 

Road traffic injury is increasingly recognised as a major health concern, particularly for 

adolescents and young adults (Winston, et al., 2014; Alver, et al., 2014). The possibility 

of being involved in a crash in the first six months after receiving a driving license for this 

group of drivers, in the Netherlands, is 4.5 times higher than for older drivers (SWOV, 

2021). Higher risk can be associated to the absence of experience, lack of education, and 

risky driving behaviour (Clarke, et al., 2002). In a country such as the Netherlands, the 

amount of driving licenses emitted to young people has been increasing in the last few 

years, every year over 48 percent of young adult drivers are trained and certified to operate 

a device that put this population in risk (Trend in the Netherlands , 2018). Working towards 

improving driving learning methods for new drivers is, therefore, an urgent need.  

 

Driving demands both procedural skills and higher-order cognitive skills (Beanland, et. al, 

2013).  Procedural skills involve executing a sequence of actions, which may become 

automated with extensive practice (Schendel & Hagman, 1982).  These skills are best 

learned by following a sequenced and stepped approach to teaching, either a simple or 

complex task (Burgess, et. al, 2020). Higher-order cognitive skills involve situation 

monitoring, assessment, response planning, and execution (Pollatsek, et. al, 2011). 

Gaining early driving experience is a major protective factor for the reduction of crash risk 

in young novice drivers and this is mainly because it enables the improvement of high-

level driving-related cognitive skills (Kinnear, et al., 2013). 

 

Pre-license training involves teaching basic driving skills to learners before they obtain a 

driver’s licence, which is mandatory in most of the European countries, Canada and the 

US (Deppermann, 2018). The acquisition of driving skills was limited to on the road 

training until alternatives such as simulators and online driving simulators (ODSs) became 

available. Using a simulator to develop driving skills is safer and more cost-effective. 

Additionally, it can provide objective and repeatable measures of driver performance and 

allow complete control of the driving environment (Allen R. &., 2011). Not to leave behind 



  

 

the fact it can be easily administrated in a laboratory setting, which can benefit driving 

research.  

 

Although there are multiple advantages of using simulators, there isn´t enough scientific 

evidence of the efficacy of ODSs. Since we do not want to go on this journey without a 

target destination, we should be able to assess if skills are learned and transferred to on-

road driving. Learning curves (LCs) provide a mathematical representation of the learning 

process that takes place as task repetition occurs (Anzanello & Fogliatto, 2011). LCs were 

formally introduced by T.P Wright while studying the productivity trends of the 

production of aircraft (Wright, 1936). Nowadays LCs are not only used to assess 

productivity in manufacturing environments but they can also be used in the medical area, 

to estimate learning of the surgical skills needed in procedures such as laparoscopy 

(Huijser, 2015; Weimer, 2019). LCs are not limited to calculating past learning events, 

they are also a powerful tool that can act as a forecast engine, predicting future learning 

performance (Schmettow, 2021). Therefore, it is of great interest of this study to evaluate 

the data from an ODS using learning curves and to evaluate the feasibility of using them 

as part of a hybrid training, together with driving simulators and on the road training. The 

previously mentioned assessment of analysing the transfer of skills could determine if 

ODSs can provide young drivers with driving experience during the first months,  in a 

more cost efficient way. 

  

For the first section of this thesis, Green Dino, a company that produces driving simulators 

and that is a pioneer in ODSs, provided a data set with the information of the students that 

performed online driving lessons using their ODS. The training consisted of nine fifteen-

minute training modules and which were primarily developed to respond the need of online 

lessons during the coronavirus pandemic (Green Dino, 2021). The analysis of online 

lessons data will lead to a set of recommendations, that will serve as a guideline for a future 

experiment that has the intention to improve the design of online driving simulators at 

Green Dino.  

 



  

 

The study will also include a section that will analyse a data set from a semi-controlled 

environment, using records from an experiment that consisted of investigating 

performance after a driver training method in an online driving simulator using a speed 

episode (van Wijk, 2020). The data set from a very controlled environment, which 

consisted of a data set from a driving simulator that examined the potentials of simulator-

based driving training, with a specific focus on the use of speed-episodes and differences 

between experience levels of the drivers, will also be analysed (Voskes, 2020). Both data 

sets analysis mainly consist of the visualization of the data with the different predictors 

and the calculation of learning curves. Following the data analysis of the different data 

sets, recommendations for the previously mentioned experiment will be proposed. The 

recommendations will include all the lessons learned during the data analysis process and 

will focus on the acquisition of the right data for learning curves calculations. If we are 

able to gather the correct information to asses learning, skill transfer from OSs could also 

be proved. 

2.1 Simulators and Learning 

2.1.1 Learning with driving Simulators 

 

The use of simulators as an assessment and intervention tool for driving is an emerging 

field (Devos, et al., 2016). Supplying adequate simulator training can learn important 

higher-order cognitive skills such as eye scanning without exposing drivers to hazardous 

driving situations (Triggs & Regan, 1998).   It is environmentally friendly, flexible, and 

can train driver learners in different road traffic environments (Sætren, et al., 2018).  In 

addition, simulators make it possible to study hazard anticipation and perception in an 

ethical way (Underwood, et al., 2011). Driving simulators offer the opportunity for 

feedback and instruction that is not easily achieved in real vehicles. For example, it is 

possible to freeze, reset, or replay a scenario (Vlakveld, 2005). and in the particular case 

of Green Dino's simulators, the type of feedback is adaptive, regulated in three different 

levels based on student´s performance. Green Dino’s physical simulators have shown a 

decrease in the involvement in accidents and the total number of driving lessons on the 

road. Students´ percentage of passing the first exam increases with the use of the simulator 



  

 

training, additionally the cost of the training decreases for the student and the profit for the 

driving school increases (Kuipers, 2016).  

 

Contrary to the already mentioned advantages, it is claimed that the fact that trainees are 

not exposed to real danger and consequences of actions, can lead to a false sense of safety, 

responsibility, or competence (Kappler W. , 1993). Low-fidelity simulators may evoke 

unrealistic driving behaviour and therefore produce invalid research outcomes (de Winter, 

et al., 2012). However, a growing body of evidence indicates that driving-simulator 

measures are predictive for on-the-road driving performance (Shechtman, et al., 2009). 

 

2.1.2 Learning with online driving simulators 

 

Many countries in the world are now participants in the biggest unplanned experiment 

that education has ever seen, migrating to fully online learning methods. On the potential 

upside, the new forced reliance on technology in education may accelerate some changes 

that had already started (Thomas & Rogers, 2020). Online driving simulators allow users 

to experience as much of the actual driving. The ODSs can include 3D simulation, 

virtual reality and digital twin.  

 

Complex online virtual simulation (OVS) learning experiences, can increase student 

knowledge, exposure, and engagement with the diagnostic reasoning process in medical 

areas (Duff, et. al, 2016). An experiment using eye movement showed that a PC-based risk 

awareness and perception training can successfully help novice drivers to identify where 

potential risks are located and what information should be attended to (Pollatsek, et. al, 

2006). In a further study, Pollatsek and his research team found that young drivers who 

followed a PC based hazard anticipation training increased their scanning behaviour and 

were more likely to gaze at areas of the roadway with relevant information about potential 

risks than the untrained drivers (Pradhan, et al., 2009).  The previous findings can be 

indicators that online driving simulators could also have the same benefits.  

 



  

 

In order to evaluate the learning impact from ODSs, we need to investigate further the 

results that the already available ODSs have achieved so far, for this purpose, Green Dino 

provided a data set with the information of their students. Green Dino BV is specialized in 

automated driver behaviour assessment. The company focuses on relative validity. Driver 

behaviour in virtual environments should be reliable and predictive for on-road driving. 

According to the creators of the online simulator, the absolute validity of driving 

simulators is of minor importance and in most cases too expensive (Green Dino Driving 

Simulator, 2011). Their simulator offers an affordable solution for those who want to learn 

how to drive. A broad range of parameters can be observed, analysed, and stored in their 

software solution. Their driving simulation software is built upon a unique architecture 

based on driving tasks. Driving tasks are complex procedures used for the assessment of 

the driver’s behaviour controlling the traffic. For driving style assessment and driver 

training, a virtual instruction module is available with an adaptive feedback system and 

road safety assessment (Green Dino Driving Simulator, 2011). The reports obtained from 

Green Dino´s simulator could provide a helpful insight into how driving skills can or 

cannot be acquired. 

 

2.2 Assessing learning  

 

2.2.1 Learning curves 

 

A practical way to understand how learning happens is by referring to Schmettow´s (2021) 

learning phases. The first phase of learning is task knowledge,  this happens when the 

learner can generate an action plan based on the understood words. This knowledge has 

more or less a discrete learning function, which jumps from 0 to 1 at the exact moment the 

instructions are understood (Schmettow, 2021). According to Schmettow (2021), once 

there is comprehension, it won’t go away. The second phase of learning is building skills. 

The initial action plan is mostly just a general plan, leading to a not so good performance. 

Building skills is a long running, continuous process of refining the action plan. These 

refinements are tweaks like short-cuts, parallel execution out-of-loop execution, etc. 

Building skills can be ascribed as the process of finding possible tweaks (Schmettow, 



  

 

2021). These phases could be adapted to the process in which driving students are 

involved, each participant creates an action plan about how to perform certain tasks while 

driving based on the previous knowledge they have, then after performing a lesson, tweaks 

can be discovered producing learning outcomes.  

 

The notion that human learning follows a smooth power law of diminishing gains is well-

established in psychology (Donner & Hardy, 2015). There is a point of maximum 

performance, which is reached asymptotically, but never crossed and the process is non-

linear, such that the net effect diminishes over time (Schmettow, 2021). A learning curve 

can be used to monitor development progress, predict growth patterns, and plan programs 

for reliability improvement (Duane, 1964). The parameter Asymptote means the level of 

maximum performance which is reached asymptotically with continued practice. The 

Amplitude parameter describes the amount of improvement. It shows the difference 

between the performance before the first trial and the Asymptote. The last parameter is the 

Rate parameter which displays the overall speed of learning (Heathcot, et al., 2000).  

 

When all the refinements (or tweaks as previously explained), are found and applied, the 

learning organism has reached its level of maximum performance. Maximum performance 

usually is a person-specific parameter that is always finite and never zero, because some 

parts of the organism cannot be tweaked, such as the travel time in nerve cells and the 

inertia of limbs (Schmettow, 2021). A crucial aspect is the notion that learning continues, 

more slowly among those with greater task experience. Performance will improve with 

practice, becoming more accurate, reliable, and less prone to disruption (Groeger & Banks, 

2007). If we refer back to the driving learners, the number of tweaks found in the simulator 

lessons at the beginning for the inexperienced drivers should be higher at the beginning 

since there are more tweaks to discover and then dimmish after certain trials when there 

are not many tweaks left to discover. 

 

An example of how a learning curve can behave is shown in Figure 1 (Schmettow, 2021). 

In this image, you can see how the ToT (time on task), has a high amplitude, and after 



  

 

some trials, this starts to decrease until it reaches the maximum performance which in the 

case of ToT would be the lowest time required for every trial. 

 

 

FIGURE 1 LEARNING CURVE SIMULATION 

 

 

The formula to calculate learning curves consists of an amplitude, catch rate, and 

asymptote (Pt=Asym+Ampl×Survt) (Schmettow, 2021). If a model is run with the Stan 

engine, all parameters need to run without boundaries and this is done by converting the 

parameters using the log/exp and logit/inv_logit. Amp and Asym need conversion from 

non-negative to unbound and Surv needs double-bound to unbound conversion. 

(Schmettow, 2021). The reparametrization gives the following formula 

(Pt=expAsym+expAmpl×logit−1Survt) (Schmettow, 2021). The previous formula will be 

used for the calculation of the learning curve models in the different chapters. 

Learning curves have already been used to assess learning in simulators, more specifically, 

in laparoscopy simulators (Weimer, 2019). In Weimer’s experiment, for each of the 

participants, three individual learning curves were designed based on time-on-task and 

three based on damage. Each learning curve contained three parameters, namely 

Asymptote, Rate, and Previous experience. The asymptote parameter reflected the 

predicted maximum performance of an individual in the long run. The way learning was 



  

 

assessed in laparoscopy simulators could also be used to calculate learning curves in 

driving simulators if we replace the parameter damage for the number of errors or lane 

departures for example. 

2.2.2 Learning Transfer 

 

The ultimate goal of training is for the trainee to transfer what was learned in training to 

the actual real world. Transfer of training refers to the process of applying knowledge, 

skills and abilities learned from training programs to real-world situations and the 

maintenance of them over time (Liu, et al., 2008). Bi-directional online transfer learning 

uses knowledge learnt in each online domain to aid predictions in others (McKay, et al., 

2020),  this allows us to make predictions about driving performance from one scenario to 

another one. Transfer can be positive, when an individual correctly applies knowledge 

skills and abilities learned in one environment (e.g. a driving simulator) to a different 

setting (e.g. on-road driving) (Liu, et al., 2008).  Negative transfer on the other side occurs 

when existing knowledge and skills obstruct proper performance in a different task or 

setting, or that the trainee reacts to the transfer stimulus correctly as he or she has practiced 

and was trained, but incorrectly in relation to the real world (Liu, et al., 2008). 

 

Basic skills can be identified using the reverse transfer technique. According to Gopher 

(1989), a complex task such as flying can be decomposed into simple subtasks. The skills 

that are learned during a simple situation, like flying straight ahead, can then build up to 

be implemented in a complex situation like a low altitude flight (Kappler W. , 2008). The 

aim is to speed up learning by transferring from simple situations at the start to subsequent 

situations which increase in difficulty. It is not known yet if certain tasks like the ones 

performed during gaming that involve visual, spatial, and motor coordination skills 

(Adams, et.al, 2012) , could be then transferred to a more complex situation like driving 

in a simulator. It would also be interesting to analyse if experienced drivers could transfer 

the skills gained on the road to online simulators. 

 

2.3 Research question 

 



  

 

In order to provide hybrid driving training including online driving simulators, we need to 

know if skills are developed during the online lessons and if they are transferable. If this 

information is available we could max out the possibilities that online simulators provide, 

without facing the risk of over-trusting them. 

 

- Can learning curves be observed after performing online driving simulator lessons? 

- Is there transfer from on-the-road driving experience to simulator driving 

performance? If so, can we expect transfer from simulator driving skills to on the 

road performance? 



  

 

3 DRIVING SIMULATORS DATA EXPLORATION DATA 

The enormous amounts of data that result from driving simulator experiments must be 

reduced into meaningful information that provides insight into driver behaviour. 

According to Reyes and Lee (2011) in order to get good quality data, researchers should 

plan how the software code will be written and tested, use the plan to create the data 

reduction software using good coding practices, and test the code during the writing 

process using visualization techniques to verify that it is performing the functions required 

to reduce and transform the data as intended. If planning occurs throughout the Project, 

rather than doing it until the data have been collected, adjustments and changes can be 

made to the other phases if needed (Reyes & Lee, 2011). The reality is that it is not always 

possible to plan the data gathering and sometimes unstructured data, or as some authors 

refer to “big data jungle” (Yan, 2017) needs to be analysed, then detecting quality in large 

unstructured data sets becomes very complex and computational building block 

approaches for data clustering can help (Dresp-Langley, et al., 2019). Even if there are 

already some developments being done that will help analyse data from the wild (Dresp-

Langley, et al., 2019), this study aims to focus on quality data gathering. The journey of 

going from uncontrolled data to controlled data set analysis will allow us to evaluate the 

feasability of the calculation of learning curves in a controlled environmet and evaluate if 

it is posible to see learning curves in wild data so we can prove that the online driving 

simulator is effective for learning purposes. If learning curves cannot be observed we can   

come up with recommendations for an experiment that can gather quality data in order to 

answer our research question about the possibility of having learning curves and transfer 

in simulators based on our results in more controlled data sets. 

 

3.1 Exploring “wild” data. 

 

 

During this phase, we want to explore the possibility of finding learning outcomes in a 

non-controlled dataset from an online driving simulator report. The data acquisition was 

not planned to serve for learning curve model analysis, participants had the freedom to 

perform the lessons at any time and in any order they preferred and there was no formal 



  

 

monitoring for the completion of the training. The information from 403 students that 

participated in the online driving simulator training at Green Dino was used. The data 

provided by the driving simulators company contained a lot of participants that only 

performed a few lessons or only did some exams, these made it difficult to see the 

development of certain skills or improvements within lessons. Therefore, a sample of 17 

participants that completed 2000 or more trials was created in order to measure individual 

learning effects on specific tasks or lessons. 

 

The online driving simulator environment was provided by Green Dino (Green Dino, 

2021). Participants could log in on their own computer via an internet portal to 

download the software on their computer. This was only compatible with the Windows 

operating system, and a computer mouse had to be used in order to control the car in the 

game. Moving the mouse forward resulted in acceleration, moving the mouse down in 

deceleration, and left and right controlled the steering wheel direction The left and right 

arrows, or the z and c keys were used to open a viewport which displayed the mirrors and 

a view to the left and right of the car. Green Dino offers driving simulators with automated 

feedback for training and assessment of learner and experienced drivers. The automated 

feedback system works with driving tasks and instruction levels (Victor, the Virtual 

Driving Instructor). 

 

The student driver had a particular level for each of the driving tasks distinguished by the 

simulator. This is the degree to which the student has mastered the driving task. The 

simulator distinguished the following levels, in ascending order of learning: 1. Deliberate 

(Acting on instructions) 2. Semi-automatic (Acting with the need for fewer instructions) 

3. Automatic (Acting without the need for instructions). Level of instructions change 

depending on the students performance. The level of learning is the most important means 

of assessment within the operator program (The Dutch Driving Simulator Operator 

Manual V20, 2007).  

 

3.1.1 Data exploration 

 



  

 

The online lessons data set consisted of a document with different and after the data 

exploration, the most relevant variables resulted in the following: 

 

Independent variables 

- Trial: A continuous variable was added which cumulatively counted the task 

performance within the different lessons for each individual (amount of training). 

- Student ID: Categorization for participant-level learning curves analysis.  

- Lesson ID: Number that identified the lesson that was then used to categorize 

lessons in clusters. 

- Category level: Variable created for analysis purposes. The level was assigned to 

each cluster of lessons being, beginner, advanced, specialized, exam, and NA. 

 

Dependent variable 

- OverallTaskScore: The Strength & Weakness report shows task scores as 

explained in Figure 1Figure 2 and the analysis was done using the number 

identified with 4 (Victor, the Virtual Driving Instructor). 

- Taks Score: Is the amount of driving task that has been performed correctly over 

the amount of times the driving task has occurred as shown in Figure 2 in section 

3. 

FIGURE 2 DESCRIPTION OF TASK SCORE (VICTOR, THE VIRTUAL DRIVING 

INSTRUCTOR) 

-  

  

The sample selection was done using Tableau and the data analysis in Rstudio. The data 

set with the initial variables were used to explore the information about all participants and 

possible visualization of the data. After discovering that there were many internal users 



  

 

(Green Dino accounts) these were eliminated in order to have only data from students. 

Personal information from students was also removed for privacy reasons. In order to have 

a continuous variable that will allow a learning curve calculation, an extra variable which 

was named trial, was created. The trial variable is based on the end date and time. The 

visualizations were made based on the overall task score see Figure 3 and Figure 4. 

 

FIGURE 3 OVERALL TASK SCORE TRIAL AND PARTICIPANTS 

 



  

 

FIGURE 4 OVERALL TASK SCORE AND TRIAL TASK 

  

 

Lessons were clustered in different categories and levels based on the level determined in 

the online driving program, the categories were beginner, specialist, or advanced and an 

exam category was also included.  Also, the variable trial_lesson was created to see the 

development within a lesson and a variable that counted the trials for each task specifically. 

So no matter what lesson the task was encountered in, it was counted 

cumulatively. Individual learning curves were explored for specific during their entire 

training process, but also specific lessons or just the general learning process.  

 

In the wobbling curves performed in the exploratory phase, there was a drop in most of 

the curves. An individual file of the data was created for two participants (1016, 1215), to 

be able to explain the graphs and see where the lower scores appear and what might cause 

this drop. Figure 5 shows the development of the OverallTaskScore of participant 1215, 

indicating a decrease in performance from trial 1 to 600. The individual file shows that 

this low score is caused more than 5 lessons. The explanation for the decrease is that the 

trials represented different parts of a lesson which were ordered alphabetically in the data 

set and not in the order that were performed. Therefore no accurate conclusions on learning 

effects could be obtained from these visualisations. 



  

 

 

FIGURE 5 PART. 1215 OVERALL TASK SCORE 

  

 

3.1.2 Results  

 

With the data from the online simulator, it is not possible to plot the learning curve of the 

participants, therefore the answer to our research question is that no learning curves can 

be obtained from an uncontrolled data set from an online driving simulator.  Different steps 

were followed to make the data useful for learning curve analysis, such as cleaning the 

data, clustering the tasks in categories, defining levels for the lessons, and implementing a 

trial variable, however it was not possible to conclude any learning outcome. The 

following recommendations are proposed for better data acquisition, 

 

- The system should only enable a lesson if the previous lessons are already 

completed. This does not have to be limited to performing the lesson, a test could 

also replace certain lessons. 

- Lessons that were not taken and just passed with a test should be identifiable. 

- Start time and end time per task should be available, in order to analyze the time 

on task (ToT). 



  

 

- The report should contain the chronological number of tasks performed. 

- There should be individual task scores, additional to the averaged ones. 

- There should be a classification that divides students with previous experience and 

students without it. If possible, there should be a pre-assessment of the student´s 

level prior to the course, that can later be retrieved in the report from the system.  

- Ideally, the type of feedback from the system should remain consistent during a 

lesson. This is only for the calculation of the curve purposes since the adaptive 

system can be beneficial for learning purposes. 

- In order to assess fatigue and re-learning, the time that the person spent driving in 

the same log-in should be available. 

3.1.3 Discussion 

 

The enthusiasm for “big data” encourages the use of larger datasets with massive numbers 

of measured variables (Kaplan, et. al., 2014). Although having a large data set may be very 

attractive, due to the almost unlimited possibilities for analysis, positive outcomes are not 

always the case. In this chapter, the aim was to prove that learning curves could be plotted 

from a data set that included the results of students that performed driving lessons with 

Green Dino’s online simulator, which was not possible due to the conditions of the data 

set. Green Dino designed their system based on their particular needs of data acquisition 

at the time of implementation and although their report works for assessing students by 

comparing them between each other, the data obtained is not that flexible for other analysis 

purposes, such as learning curves calculation.  

 

Ideally, systems should be enabled with high flexibility such that the system is adaptive to 

complex analytical applications (Xiong, et. al., 2010).  Green Dino´s system design could 

include the recommendations discussed in the results section so that in addition to the 

current valuable features they provide, individual learning curves could also be obtained.  

An experiment to test if performing lessons in order from low complexity to high 

complexity could work, additionally to having the ToT and individual scores for each task 

could result in learning curves from their students. 

 



  

 

If the results from the experiment including all the recommendations turn out to be 

favourable, a new feature in their assessment system could be added. Instead of analysing 

the data posterior to the lessons, the learning curve model from (Schmettow, 2021) could 

be integrated and therefore provide with the calculation of the learning curves at the 

moment, and not only that, it could also predict the learning rate for each participant. This 

could be an additional feature offered by the simulator system in which it can predict the 

amount of training time needed individually.  

 

 

3.2 Analysing semi-controlled data 

 

During phase 2 of the data analysis, we want to discover if it is possible to plot learning 

curves from a semi-controlled experiment. The data obtained for this chapter is from a 

thesis project which was performed using a Green Dino online driving simulator and which 

is detailly explained in van Wijk´s (2020) thesis. This experiment examined performance 

after training in an online driving simulator using a speed episode. This episode is a block 

of trials performed in between blocks of trials focused on accuracy, where participants aim 

to finish the task as fast as possible instead of error-free. The objective was to discover 

whether the speed episode effect was also observable in an online driving simulator and to 

investigate if the skills learned in a simulator could be retained after a week. According to 

van Wijk´s (2020) research, there is evidence that procedural skills in simulators are hardly 

forgotten. Participants were divided into two groups, one of them performed the speed 

episode and the other one was the control group, doing only accuracy blocks. Van Wijk 

(2020) was interested in the level of skill retention, therefore her study consisted of two 

driving sessions with a week of no driving in between. Participants drove 2 kilometres per 

trial, in 4 blocks of 8 trials, divided into 2 sessions. The blocks and sessions were 

performed as shown in  Table 1 (van Wijk, 2020). 

 



  

 

TABLE 1 BLOCKS AND TRIALS SET UP 

 

 

For the purpose of the analysis in this chapter, only the participants from the accuracy 

group will be taken into consideration. Therefore the impact of the speed episode will not 

be looked into and only learning curves from the accuracy group will be analysed, together 

with the level of retention after a week and not the impact of speed episodes. 

 

All of the sessions took place remotely with online support, the screen from the participant 

was shared with the experimenter and a video call took place for guidance during the 

experiment. Participants did not have the freedom to choose which lessons to perform and 

for how long they wanted to do it. Nevertheless, there was no control of the environment 

in which the participant performed the experiment, such as light conditions, internet speed, 

or size of the screen, that is why it is considered a semi-controlled experiment.  

 

The data set from the study contained the variables participant, training, ToT, crashes, 

speed, and steer. The variables that were included in the analysis were the following: 

 

Independent variables 

- Trial: A variable that cumulatively counts the task performance within the different 

lessons for each individual. 



  

 

- Participant: This categorization will for the participant level analysis, making 

individual learning curves) 

- Training: The type of training that the participants performed was identified, this 

could be accuracy training or speed training. The analysis was done just for the 

accuracy group, due to the ToT variability. 

 

Dependent variables 

- ToT: Time on task. Time that the participant took to complete the task. 

  

The analysis was performed using R studio and the code can be found in appendix 6.1. 

 

3.2.1 Data exploration 

 

The data visualization was done using the ToT variable. The participants that were 

analysed belong to the accuracy group. It is important to mention that after trial 24 there 

was a one-week break.  We can already observe from the data visualization made prior to 

the model, that participants 3, 11 that the amplitude increases after the break which could 

imply learning-forgetting or a readaptation phase. Participants 13 and 19 start showing this 

increase even from trials before the break which could be derived from fatigue (Figure 6). 

 



  

 

FIGURE 6 TOT ACCURACY GROUP 

  
 

MODEL ESTIMATION 

A statistical model was built, following the LACY model (Pt = expAsym+ expAmpl× 

logit−1(1−Ctch)t) from Schmettow (2021). In the previous formula, the parameters have 

been converted. The amplitude and the asymptote were converted from non-negative to 

unbound and the catch rate was converted from double bound to unbound. The previous 

conversion was done because we have random effects and these require normal 

distribution, which is unbound, this removes the difficult assumption of constant variance 

(Schmettow, 2021).  

 

The model was built to analyse the ToT at a participant level for the accuracy group. The 

GAMMA family was used because our variable is continuous and has cero as a lower 

boundary.  

 



  

 

FIGURE 7 SCHMETTOW´S DECISION CHART FOR GENERALIZED LINEAR 

MODELS 

 

 

The formula used was (ToT = exp Asym + exp Ampl + logit-1 (1-Ctch)t) (Schmettow, 2021). 

Priors, which are estimations of the lower and upper values made by the researcher had to 

be used (Schmettow, 2021). For linear models such as learning curves, Brms (used in the 

models presented in this thesis) do not have an automatic choice of weak priors 

(Schmettow, 2021), that is why they were estimated.  The R code with the details of the 

model can be found in appendix 6.1. 

3.2.2 Results 
 

The model outcome is shown in Figure 8 and fitted responses can be found in Table 2. The 

amplitude shown is not large, we can see in the coefficients table that the reduction of ToT 

was around one minute. These results could be a consequence of a poor model fit, therefore 

we included LOESS to assess the model fit (Figure 9).  

 



  

 

FIGURE 8 TOT ACCURACY GROUP 

 
 

 

TABLE 2 PARAMETER COEFFICIENT TABLE TOT 
Coefficient estimates with 95% credibility limits 
 

Parameter  Center  Lower  Upper  

Amplitude 66.8187102  5.1387683  7.561582e+02  

Catch rate  0.2712452  0.0025894  5.998450e+00  

Asymptote   206.7272108  5.4560123  2.424027e+02  

 

 



  

 

FIGURE 9 MODEL FIT LOESS 

 
The poor model fit shown in Figure 9 outcome could be because of the fatigue factor which 

participants showed during the last trials of the first session and also because of the 

forgetting factor or re adaption to the first trials of session 2. 

 

3.2.3 Discussion 

 

From this chapter we can conclude that the research question regarding the possibility of 

showing learning curves from online driving simulators data analysis is feasible, however, 

the model fit was not good. From the results section, we can remember that the amplitude 

dropped after certain trials and then increased again. This can have its origins in two 

different factors, fatigue or forgetting. Learning curves from trials that were taken on the 

same day can show that performance starts declining at a certain point and this is caused 

by fatigue (Schmettow, 2021). Task repetitiveness can reduce a person's physical and 

cognitive resources and ultimately lead to fatigue (Asadayoobi, et. al., 2021).   

 



  

 

In the learning field, forgetting occurs in any of the following situations: (1) when 

encoding confitions are not similar and retention of material learned, (2) when old learning 

interferes with new learning, and (3) when there is an interruption in the learning process 

for a period of time (Jaber, 2006). For this particular case, forgetting may have been caused 

by the one-week break included in the experiment, and shorter breaks may be 

recommended. However, there were not enough trials to estimate if the amplitude 

decreased over time during session 2. If we were able to see more trials we could say that 

rather than forgetting, the amplitude increase was due to an adaptation phase from the 

participants.  

 

From this chapter, we can conclude that in order to have accurate data acquisition,  too 

many trials on the same day, together with long breaks, such as one week, could have an 

impact on the variation of the amplitude of the learning curves. In van Wijk´s experiment 

(2020), each trial consisted in driving 2 kilometres and each block included 8 trials. Most 

of the participants show an amplitude increase in the third block which can give us a guide 

that participants should drive approximately 30 kilometres and then take a short break. For 

future studies a model that takes into consideration fatigue and learning-forgetting 

relationship will be a better fit, so the assumptions found in this analysis become more 

clear. 

 

Although the characteristics of the participants were mentioned in van Wijk´s experiment 

(2020), it could have been useful to include a category in the data set with the driving 

experience that each participant had. In the thesis project, it is also mentioned that 

participants reported feeling exhausted after session 1, however, no formal assessment of 

workload was done. For the future experiment, a questionnaire including driving 

experience and workload could serve as good predictors in the analysis. Another limitation 

of this data set was that there was no performance measure other than ToT that could be 

analysed. The number of crashes was either 0 or 1, and for analysis purposes, we need a 

continuous variable. 

 

 

 



  

 

.  
 

3.3 Analysing controlled data 

 

During phase 3 we want to learn if there is a learning outcome that can be plotted in a 

learning curve from lessons in a driving simulator and if driving experience is transferred 

to driving simulator performance. The information from 37 participants that performed the 

driving lessons included in the experiment from the effect of speed episodes on acquiring 

driving skills study, were analysed. The data obtained for this chapter is from a thesis 

project which was performed in the BMS laboratory of the University of Twente in a very 

controlled environment. It took place with a physical driving simulator and not an online 

driving simulator like in the rest of the chapters in this thesis. The participants performed 

the trials under the same conditions that were provided by the BMS lab and under the 

supervision of the experimenters (Voskes, 2020). This experiment consisted of 3 blocks 

of 12 trials, with a duration of 1.5 minutes approximately. The track was fixed for all trials 

and there were no other road users, to reduce complexity. All participants started with an 

accuracy block, then the experimental group did a speed training block in which they were 

told that the objective was to finish as fast as possible and that making mistakes was not 

important. The control group did a second accuracy training block. The last block 

consisted of an accuracy training for both groups (Voskes, 2020).  

 

The data set from the study contained the variables, participant, training, driving 

experience, ToT, number of lane departures, number of collisions, and trial. For this phase 

the information about driving experience was available and it was used as a predictor. The 

variables were analysed as follows: 

 

Independent variables 

- Trial: Amount of training. 

- Participant: Classification of participants that allowed plotting participant-level 

learning curves. 

- Training: The type of training that the participants performed was identified, this 

could be accuracy training or speed training. 



  

 

Predictor 

- Experience: Whether participants had driving experience or not was identified in 

the data set. 

Dependent variables 

- ToT: Time on task. Time that the participant took to complete the task. 

- Number of lane departures: This variable counted the number of errors made on 

staying on the lane. 

  

 

3.3.1 Data exploration  

 

The analysis was done only for the participants that performed the accuracy training, since 

the focus of this study is not the effect of speed episodes. The variables ToT (Figure 10) 

and number of lane departures (Figure 11) were analysed for the predictor experience. The 

expectation is that experienced drivers would already start with a lower amplitude in both 

dependent variables, ToT and number of lane departures. The number of collisions is not 

included because it was very low, almost none of the participants had collisions and if they 

did, they would only have one. 

 

 



  

 

FIGURE 10 TOT EXPERIENCED VS INEXPERIENCED ACCURACY GROUP 

 

FIGURE 11 NUMBER OF LANE DEPARTURES EXPERIENCED VS 

INEXPERIENCED ACCURACY GROUP 

 

 



  

 

 

MODEL ESTIMATION 

 

The analysis was performed using R studio and the code can be found in appendix 6.2. 

Two statistical multilevel models were built, following the LACY model (Pt = expAsym+ 

expAmpl× logit−1(1−Ctch)t) from Schmettow chapter 9 (2021).  

 

In the previous formula, the parameters have been converted as in model from chapter 

3.2.1. The previous conversion was done because it is required for normal distributed 

random effects (Schmettow, 2021). Priors had to be estimated as in the model from section 

3.2.1. 

  

The first model was built to analyse the ToT on participant level, with the predictor 

experience. The model was built using a GAMMA family, based on the decision chart for 

generalized linear models (Figure 7) (Schmettow, 2021) and the Lacy formula, from 

Chapter 9 (Schmettow, 2021). The R code can be consulted in Appendix 6.2 

 

The second model was built to analyse the number of lane departures on participant level, 

for the predictor experience. The model was built using a Poisson family because we used 

a discrete measure with no upper boundary (Figure 7) (Schmettow, 2021) and the formula 

is the same as the one in the previous model, also including experience as a predictor. 

 

3.3.2 Results 

 

Participant level learning curves according to experience, concerning the variable ToT, 

can be observed in Figure 12. It can be noted how inexperienced participants 5, 12, 20, 24, 

and 27 start with higher amplitude in ToT, and over the different trials, the amplitude 

decreases. If we see the differences in amplitude from experience in Table 3, where 

coefficients are shown we can see that the difference in upper and lower limits is very high 

and that participant 20 starts as high as 91 seconds.  Experienced participants such as 3, 



  

 

30, 33, and 35 start with a low amplitude, which may be an indicator of transfer from on-

the-road driving skills. 

 

FIGURE 12 LEARNING CURVES TOT EXPERIENCED AND INEXPERIENCED 

ACCURACY TRAINING 

 
 

 

TABLE 3 PARAMETER COEFFICIENT TABLE TOT 
Coefficient estimates with 95% credibility limits 
 

Parameter Center  Lower  Upper  

Amplitude 10.1135023 3.9140782 24.0846282 

Amplitude Experience 3.6231893 1.2941236 91.6300502 

Catch rate 0.4558779 0.0696004 2.1563626 

Asymptote 63.0992493 58.6956680 66.8753854 



  

 

 

 

For the second model which included the number of lane departures and the predictor 

experience, the results in a participant level can be observed in Figure 13 and the 

coefficients in Table 4. The amplitude difference between experienced and inexperienced 

participants is not as high as for the model that analysed ToT but there is a difference from 

the experienced group that shows possible transfer from on the road driving skills. 

 

We can observe close to a flat line in participants 20, 27, 30, 3, 39, and 40, this can be an 

indicator that tweaks have already been found. The interesting part is that participants that 

presented this phenomenon are not exclusive to the experienced group which can indicate 

that there is an overlap of the skills acquired in a simpler task, these skills could have been 

learned in a simpler task (Gopher & Siegel, 1989). Gaming experience could be a predictor 

for this skill overlap and it will be interesting to include it in the large-scale experiment. 

 

The data analysis from this data set can give us a good approximation about the model that 

needs to be used to calculate the learning curves, using the predictors established in the 

research question like gaming experience, driving experience, and skill level for the 

experiment. It also shows a difference between experienced drivers and inexperienced 

drivers in ToT which can also show that there is a transfer from experienced drivers into 

driving simulators. The previous statement can indicate that there might also be a transfer 

to online driving simulators. 

 

 



  

 

 

FIGURE 13 LEARNING CURVES NUMBER OF LANE DEPARTURES 

EXPERIENCED AND INEXPERIENCED ACCURACY TRAINING 

 
 

 

 

TABLE 4 PARAMETER COEFFICIENT TABLE NUMBER OF LANE DEP. 

Coefficient estimates with 95% credibility limits 

Parameter Center  Lower  Upper  

Amplitude 2.5318383 0.9921394 5.1191386 

Amplitude Experience 1.9859707 0.9251256 5.9198259 

Catch rate 1.0038568 0.1599318 5.7525477 

Asymptote 1.3281985 0.8608116 2.2932144 

 



  

 

 

3.3.3 Discussion 
 

If we refer back to the research question section where we speculated whether or not 

learning curves can be observed after performing online driving simulator lessons, this 

chapter´s analysis provides us with evidence that the learning curve models work in a 

controlled driving simulator environment. Although this chapter did not include an ODS, 

rather a physical driving simulator, the formula used showed that there is evidence of 

learning outcomes and a food fit of the LACY model. This analysis method can be then 

used in future experiments with ODS. It is important to highlight that for this chapter we 

had a performance measure which was lane departure, in addition to ToT, and that it is 

recommended to include these measures for the future experiment. Additionally, driver 

experience from participants was distinguishable in the data set and this served as a 

predictor for skill transfer from one scenario to a different one.  From all the advantages 

mentioned, we can conclude that a controlled experiment is preferred for learning curve 

analysis. However, if we evaluate the bigger picture, performing this kind of experiments 

is not the most practical approach. Ideally, a controlled experiment could be done in order 

to test the best way to improve flexibility in Green Dino’s system and the rest of the 

learning analysis could be done with the report obtained from Green Dino´s system 

updated. This data could have the benefit of having more trials and also a bigger sample 

for deeper analysis. 

 

Regarding transfer, experienced drivers, in general, showed a lower amplitude in both ToT 

and number of lane departures. We could say there was a positive transfer shown in this 

experiment. Positive transfer happens when a person correctly applies knowledge skills 

and abilities learned in one environment, in this case, on the road driving to a different 

setting like the simulator (Liu, et al., 2008).  In most of the cases, the transfer is expected 

reversely, happening from the training environment to the real-life situation however this 

chapter showed us that it can also be the other way. This opens possibilities to explore 

different scenarios from which drivers can transfer skills from their everyday life to driving 

performance. For the future experiment using gaming experience, which is an activity that 

involves visual, spatial, and motor coordination skills (Adams, et. al, 2012) should be 



  

 

considered as a predictor.  Research has already shown that there is a positive impact on 

laparoscopic skills using a Wii console for psychomotor skills (Kulkarni, et. al., 2020), 

driving skills could also be benefited from this transfer.  

 

Regarding the number of trials, in this experiment, there were 3 blocks of 12 trials, with a 

duration of 1.5 minutes approximately. Although the driven distance is not measured we 

can use the driven time to assess the ideal duration per session for the future experiment. 

In this chapter, there was no clear evidence of fatigue after the completion of all the trials, 

which leads us to the conclusion that the time spent performing the task was a better fit 

than the previous chapter. From chapter Analysing semi-controlled data3.2 we concluded 

that around 30 was the maximum number of trials performed, before reaching fatigue, and 

if we divide the average time that participants took for the entire session 1, this would be 

around 45 minutes. Therefore the experiment should aim for sessions of 45 minutes to 1 

hour driving before a break. These findings show the importance of having the start time 

and end time of each log-in session in the Green Dino simulator system. 

 

 

 

 
  

 

 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/psychomotor-performance


  

 

4 GENERAL DISCUSSION 

This study analysed the data from three different scenarios and the results of each analysis 

helped answer the research question presented in section 2.3. It is possible to get learning 

curves from a controlled experiment using a driving simulator and there is transfer from 

experienced drivers from on the road to a simulator which gives us an indication that 

reverse transfer could also happen (Liu, et al., 2008). Additional to answering the research 

question this study provided us with guidelines for a future large-scale experiment design 

for calculating learning curves from online driving simulators, the findings are described 

in the discussion section of each chapter, however, a summary is presented in Table 5.  

 

TABLE 5 COMPARISON 3 DATA SETS SUMMARY 
 Advantages Limitations Proposal exp. 

Uncontrolled 

data set 

Large sample. 

More trials available. 

Variety of lessons ranging 

from low complexity to 

high complexity. 

Real representation of a 

course. 

Learner freedom to select 

what to learn and for how 

long to learn it. 

Data report not suitable 

for learning curve 

analysis. 

No control over lessons 

performed. 

No control of driving time 

per session. 

 

Lessons should follow a 

certain order. 

Availability of ToT. 

Availability of individual 

task scores.  

Availability of time per log-

in.  

Semi 

controlled 

data set 

Performance of the same 

trials in the same order 

according to group. 

Remote monitoring, 

without the need for a 

laboratory environment. 

No predictors available. 

Experiment took too long 

in the first session causing 

fatigue. 

One-week break with 

possible learning-

forgetting. 

Not enough trials. 

 

Driving sessions should not 

be longer than an hour. 

The break between one 

session and another should 

be established. 

Include workload 

assessment. 



  

 

Controlled 

data set 

Performance measure 

included (number of lane 

departures). 

Driving experience 

information available 

 

A not practical approach 

for large samples. 

 

Include predictors such as 

driving or gaming 

experience. 

 

 

Simulators have shown that it is possible to replace a certain amount of training in the 

medical areas such as the performance of bronchoscopy operations, in which students in 

one hour of training basic bronchoscopy and familiarity with airway anatomy were 

effectively taught (Blum, et al., 2004). Similar results have been shown in laparoscopy 

training simulator studies in which speed episodes were used and time pressure improved 

the performance in simulator-based training (Weimer, 2019). Driving simulators show 

similar results, and this can be observed in the results of chapter 3.3.2, in which not only 

learning curves can be observed, the transfer from experienced drivers is also visible. 

 

There have not been many studies that look into the learning effect of ODS training, 

however, it is thought that low-fidelity simulators or simulators that intentionally alter the 

driving experience may be more effective than those that focus on a more precise 

representation of the driving setting and vehicle dynamics (Lee J. , 2004). In this study a 

low fidelity simulator did not show to be more effective than a driving simulator, however, 

this may have been due to the poor model fit. The future experiment should focus on 

addressing the analysis of learning curves from ODS and identify the skills that can be 

transferred. Even the most sophisticated driving simulators do not deliver all of the visual, 

vestibular,  and proprioceptive changes that occur when the steering wheel is turned and 

the vehicle changes course (Charles, 2003), therefore a hybrid model proposal will be 

preferred for future new drivers. 

 

According to Gopher (1989), a complex task can be decomposed into simple subtasks. The 

skills that are learned during a simple situation, can then be implemented in a more 

complex situation (Kappler W., 2008). In other words, tweaks can be trained separately 



  

 

(Schmettow, 2021).  This was the possible reason for the observations made in section 

3.3.2 where there were no more tweaks found but the performance was good. This leads 

us to think that not only driving experience can be transferred as shown in section 3.3.2 

but skills learned in a different environment such as gaming could be transferable. The 

assessment of gaming experience in the large-scale experiment could contribute to proving 

this idea.  

 

Learning measurement tends to be retrospective as if measuring should be done only after 

a training program is completed rather than using measurement data to achieve a 

successful training program (Spitzer, 2005). If the large-scale experiment results 

successful, and data can be acquired including all the recommendations made in this thesis 

then the measurement can be done at the moment of the training performance, since 

measuring is most powerful when used early and often (Spitzer, 2005). As mentioned in 

section 3.1.3, learning curves can not only be used for measurement, but they can predict 

future performance, giving us the possibility to predict the learning rate at a participant 

level (Schmettow, 2021). 

 

Following the prediction proposal made for the learning rate, it could also be useful to 

predict the number of kilometres driven before fatigue at an individual level. In section 

3.2.2, we discovered that the performance declined after an hour and that this could be 

linked to fatigue. Since the main purpose of this study is to improve driving performance 

in young drivers, developments can be made so that fatigue can be tracked and participants 

get a report of the number of kilometres they can drive safely without being affected by 

fatigue. Since mental fatigue onset is seen to have variable patterns amongst the subjects 

performing the same task and under the same conditions (Wang, et al., 2018), this could 

be analysed individually, tracking their performance. This way online driving simulators 

could offer two additional features to the already provided which would be estimating the 

time each student will take to complete the training on an individual level and the driving 

safe distance before fatigue so that participants know their limits. 

 

 



  

 

CONCLUSION 

 

Learning curves from a controlled experiment data set can be calculated. There is transfer 

from experienced drivers to driving simulators and there might also be transfer from other 

activities such as gaming. A larger-scale experiment with the lessons learned in this study 

should be implemented to demonstrate that learning curves can be calculated from online 

driving simulators too. 
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6 APPENDIX 

6.1 R code analysis phase 2 
 

OnlineSimulator_Thesis 
Estefania Villalobos 

15-12-2021 

D_OST <- read_csv("~/HFE/Thesis/Data Online Simulator Lara/AH_1SECONDS_
1.csv") 

##  
## -- Column specification --------------------------------------------
------------ 
## cols( 
##   Part = col_double(), 
##   Training = col_character(), 
##   Block = col_double(), 
##   block = col_double(), 
##   Blk_type = col_character(), 
##   trial = col_double(), 
##   crashes = col_double(), 
##   speed = col_double(), 
##   steer = col_double(), 
##   ToT = col_double() 
## ) 

D_OST_ACC <- D_OST %>% 
  filter(Training == "Accuracy") 

D_OST_ACC %>% 
    ggplot(aes(x = trial, y = ToT)) + 
    geom_smooth(se = F, scale = "free_y") + 
  geom_smooth() + 
  geom_point( size= .2)+ 
    facet_wrap(~Part) 

## Warning: Ignoring unknown parameters: scale 

## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 
## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 



  

 

 

D_OST_ACC %>% 
  filter(ToT> 140) %>% 
    ggplot(aes(x = trial, y = ToT, group = Part)) + 
    geom_smooth(se = F)  +                                                              
geom_point(size = .2)+ 

## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 

  



  

 

D_OST_ACC <- 
D_OST%>% 
filter(Training == "Accuracy") 

D_OST_ACC %>% sample_n(10) 

 

Par
t 

Trainin
g 

Bloc
k 

bloc
k 

Blk_typ
e 

tria
l 

crashe
s speed steer 

To
T 

11 Accurac
y 

4 4 Accurac
y 

27 0 9.42352
2 

-
0.02182

0 

22
0 

11 Accurac
y 

2 2 Accurac
y 

10 0 6.66297
2 

0.00564
3 

29
8 

9 Accurac
y 

4 4 Accurac
y 

26 0 9.70779
0 

0.01338
4 

20
7 

3 Accurac
y 

4 4 Accurac
y 

34 0 9.00653
7 

0.00486
2 

22
5 

11 Accurac
y 

1 1 Accurac
y 

8 0 7.99729
9 

-
0.01580

0 

25
1 

13 Accurac
y 

1 1 Accurac
y 

2 0 6.09934
3 

0.01938
3 

32
8 

11 Accurac
y 

2 2 Accurac
y 

13 0 9.81069
0 

-
0.01919

0 

20
4 

3 Accurac
y 

1 1 Accurac
y 

5 0 9.37038
2 

-
0.01006

0 

21
7 

11 Accurac
y 

3 3 Accurac
y 

17 0 8.02626
0 

-
0.00321

0 

25
2 

13 Accurac
y 

1 1 Accurac
y 

4 0 9.36136
8 

0.00779
6 

27
5 

 

F_lacy_prior <- c(set_prior("normal(5.25, 0.576)", nlpar = "ampl"), 
set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
set_prior("normal(1.84, 0.576)", nlpar = "asym")) 

F_lacy <- formula(ToT ~ exp(asym) + exp(ampl) * inv_logit((1-ctch))^tri
al) 



  

 

F_lacy_ef_ToT <- list(formula(ampl ~ 1|Part), 
              formula(ctch ~ 1|Part), 
              formula(asym ~ 1|Part)) 

F_lacy_prior_1 <- c(set_prior("normal(5.25, 0.875)", nlpar = "ampl"), 
set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
set_prior("normal(1.84, 0.576)", nlpar = "asym")) 

 

F_lacy_prior_3 <- c(set_prior("normal(5.25, 1.05)", nlpar = "ampl"), 
set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
set_prior("normal(1.84, 0.875)", nlpar = "asym")) 

 

F_lacy_prior_4 <- c(set_prior("normal(5.25, 1.43)", nlpar = "ampl"), 
set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
set_prior("normal(1.84, 1.05)", nlpar = "asym")) 

 

F_lacy_prior_5 <- c(set_prior("normal(5.25, 1.76)", nlpar = "ampl"), 
set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
set_prior("normal(1.84, 1.43)", nlpar = "asym")) 

 

M_OnlineSim_ToT_3 <- 
D_OST_ACC %>% 
brm(bf(F_lacy, 
flist = F_lacy_ef_ToT, 
nl = T), 
prior = F_lacy_prior_5, 
family = Gamma(link = identity), iter = 4000, 
data = .) 

## Compiling Stan program... 

## Start sampling 

## Warning: There were 771 divergent transitions after warmup. See 
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-wa
rmup 
## to find out why this is a problem and how to eliminate them. 

## Warning: There were 8 transitions after warmup that exceeded the max
imum treedepth. Increase max_treedepth above 10. See 
## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded 

## Warning: Examine the pairs() plot to diagnose sampling problems 

## Warning: Bulk Effective Samples Size (ESS) is too low, indicating po
sterior means and medians may be unreliable. 



  

 

## Running the chains for more iterations may help. See 
## http://mc-stan.org/misc/warnings.html#bulk-ess 

## Warning: Tail Effective Samples Size (ESS) is too low, indicating po
sterior variances and tail quantiles may be unreliable. 
## Running the chains for more iterations may help. See 
## http://mc-stan.org/misc/warnings.html#tail-ess 

coef(M_OnlineSim_ToT_3, mean.func = exp) 

## Warning: `funs()` was deprecated in dplyr 0.8.0. 
## Please use a list of either functions or lambdas:  
##  
##   # Simple named list:  
##   list(mean = mean, median = median) 
##  
##   # Auto named with `tibble::lst()`:  
##   tibble::lst(mean, median) 
##  
##   # Using lambdas 
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE)) 

 

 

 

Coefficient estimates with 95% credibility limits 

parameter 
typ
e 

nonl
in 

re_fac
tor 

re_en
tity center lower upper 

b_ampl_Intercept fixe
f 

amp
l 

NA NA 66.8187
102 

5.1387
683 

7.561582
e+02 

b_ctch_Intercept fixe
f 

ctch NA NA 0.27124
52 

0.0025
894 

5.998450
e+00 

b_asym_Intercept fixe
f 

asy
m 

NA NA 206.727
2108 

5.4560
123 

2.424027
e+02 

r_Part__ampl[3,Int
ercept] 

ran
ef 

amp
l 

Part 3 0.68847
16 

0.0000
000 

6.902572
e+01 

r_Part__ampl[5,Int
ercept] 

ran
ef 

amp
l 

Part 5 0.97715
14 

0.0000
000 

3.966559
e+03 

r_Part__ampl[9,Int
ercept] 

ran
ef 

amp
l 

Part 9 0.63064
24 

0.0000
000 

5.588153
e+01 

r_Part__ampl[11,In
tercept] 

ran
ef 

amp
l 

Part 11 1.09741
94 

0.0000
000 

2.815917
e+01 

r_Part__ampl[13,In
tercept] 

ran
ef 

amp
l 

Part 13 1.05885
02 

0.0000
000 

5.774518
e+01 



  

 

r_Part__ampl[19,In
tercept] 

ran
ef 

amp
l 

Part 19 0.87378
99 

0.0000
000 

4.363443
e+01 

r_Part__ctch[3,Inte
rcept] 

ran
ef 

ctch Part 3 1.80187
68 

0.0000
000 

4.466409
e+24 

r_Part__ctch[5,Inte
rcept] 

ran
ef 

ctch Part 5 2.72286
52 

0.0000
000 

1.762075
e+28 

r_Part__ctch[9,Inte
rcept] 

ran
ef 

ctch Part 9 1.51397
95 

0.0000
000 

3.497092
e+24 

r_Part__ctch[11,Int
ercept] 

ran
ef 

ctch Part 11 0.61949
26 

0.0000
000 

1.591017
e+19 

r_Part__ctch[13,Int
ercept] 

ran
ef 

ctch Part 13 2.11702
38 

0.0000
000 

7.155064
e+21 

r_Part__ctch[19,Int
ercept] 

ran
ef 

ctch Part 19 1.69585
34 

0.0000
000 

5.115972
e+25 

r_Part__asym[3,Int
ercept] 

ran
ef 

asy
m 

Part 3 1.03486
80 

0.5996
326 

1.370932
e+00 

r_Part__asym[5,Int
ercept] 

ran
ef 

asy
m 

Part 5 0.90332
79 

0.3785
957 

1.119912
e+00 

r_Part__asym[9,Int
ercept] 

ran
ef 

asy
m 

Part 9 0.98631
94 

0.4377
972 

1.248524
e+00 

r_Part__asym[11,I
ntercept] 

ran
ef 

asy
m 

Part 11 1.14629
21 

0.8476
568 

2.766312
e+00 

r_Part__asym[13,I
ntercept] 

ran
ef 

asy
m 

Part 13 1.09427
34 

0.7394
181 

1.675209
e+00 

r_Part__asym[19,I
ntercept] 

ran
ef 

asy
m 

Part 19 0.92231
17 

0.3134
455 

1.152089
e+00 

 

P_M_OnlineSim_ToT_3 <- posterior(M_OnlineSim_ToT_3) 
PP_M_OnlineSim_ToT_3 <- post_pred(M_OnlineSim_ToT_3) 

T_pred_M_OnlineSim_ToT_3 <- PP_M_OnlineSim_ToT_3 %>%  
  group_by(Obs) %>%  
  summarize(center = median(value)) 

D_OST_ACC$M_OnlineSim_ToT_3 <- T_pred_M_OnlineSim_ToT_3$center 
D_OST_ACC$M_OnlineSim_ToT_3_resid <- D_OST_ACC$ToT - D_OST_ACC$M_Online
Sim_ToT_3 

D_M_OnlineSim_ToT_3 <- 
  as_tibble(M_OnlineSim_ToT_3$data) %>%  
  mutate(M_OnlineSim_ToT_3 = T_pred_M_OnlineSim_ToT_3$center) 

D_OST_ACC %>%  
  ggplot(aes(x = trial, y = ToT)) + 



  

 

  facet_wrap(~ Part) + 
  geom_point(size = .2) + 
  geom_smooth(aes(y = M_OnlineSim_ToT_3), se = F) + 
  theme_minimal() 

## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 

 

 

6.2 R code analysis phase 3 

Voskes thesis data 
Estefania Villalobos 

16-12-2021 

D_SimPar <- read_csv("~/HFE/Thesis/Data Driving Simulator/Data_Bachelor
_Master.csv") 

##  
## -- Column specification --------------------------------------------
------------ 
## cols( 
##   Participant = col_double(), 
##   ToT = col_double(), 
##   Nld = col_double(), 



  

 

##   Nc = col_double(), 
##   trial = col_double(), 
##   Training = col_character(), 
##   Experience = col_character() 
## ) 

D_SimPar %>% sample_n(10) 

Participant  ToT  Nld  Nc  trial  Training  Experience  
18  51.21  NA  NA  16  Speed  Experienced  

9  47.69  NA  NA  17  Speed  Inexperienced  
18  48.00  NA  NA  23  Speed  Experienced  
33  60.42  0  0  26  Accuracy  Experienced  
12  61.49  2  0  13  Accuracy  Inexperienced  
32  72.90  4  0  9  Accuracy  Inexperienced  
36  62.31  0  0  33  Accuracy  Experienced  
20  72.61  0  0  27  Accuracy  Inexperienced  
18  50.39  NA  NA  22  Speed  Experienced  
17  100.93  0  0  1  Speed  Experienced  

D_SimPar %>% 
    filter(Training == "Accuracy") %>% 
    ggplot(aes(x = trial, y = ToT, group = Participant)) + 
    geom_smooth(se = F) + 
  geom_point(size = .2) + 
    facet_wrap(~Experience) 

## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 

Participant  ToT  Nld  Nc  trial  Training  Experience  
18  51.21  NA  NA  16  Speed  Experienced  

9  47.69  NA  NA  17  Speed  Inexperienced  
18  48.00  NA  NA  23  Speed  Experienced  
33  60.42  0  0  26  Accuracy  Experienced  
12  61.49  2  0  13  Accuracy  Inexperienced  
32  72.90  4  0  9  Accuracy  Inexperienced  
36  62.31  0  0  33  Accuracy  Experienced  
20  72.61  0  0  27  Accuracy  Inexperienced  
18  50.39  NA  NA  22  Speed  Experienced  
17  100.93  0  0  1  Speed  Experienced  

 



  

 

 

D_SimPar %>% 
    filter(Training == "Accuracy") %>% 
    ggplot(aes(x = trial, y = Nld, group = Participant)) + 
    geom_smooth(se = F) + 
  geom_point(size = .2) + 
  labs(y= "Number of lane departures") + 
    facet_wrap(~Experience) 

## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 



  

 

 

D_SimParAcc <- 
  D_SimPar %>% 
  filter(Training == "Accuracy") 

D_SimParAcc %>% sample_n(10) 

Participant  ToT  Nld  Nc  trial  Training  Experience  
12  63.01  4  0  5  Accuracy  Inexperienced  
40  63.40  2  0  28  Accuracy  Inexperienced  
31  82.39  2  0  3  Accuracy  Experienced  
27  61.97  3  1  33  Accuracy  Inexperienced  
33  62.70  1  0  22  Accuracy  Experienced  

3  67.58  2  0  19  Accuracy  Experienced  
27  57.64  2  1  20  Accuracy  Inexperienced  
39  57.01  2  0  34  Accuracy  Experienced  
29  74.32  0  0  28  Accuracy  Inexperienced  
40  62.58  3  0  35  Accuracy  Inexperienced  

 MODEL ESTIMATION 

F_lacy_prior <- c(set_prior("normal(5.25, 0.576)", nlpar = "ampl"), 
                  set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
                  set_prior("normal(1.84, 0.576)", nlpar = "asym")) 

F_lacy_prior_1 <- c(set_prior("normal(5.25, 0.875)", nlpar = "ampl"), 
                  set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
                  set_prior("normal(1.84, 0.576)", nlpar = "asym")) 



  

 

F_lacy_prior_2 <- c(set_prior("normal(5.25, 1.05)", nlpar = "ampl"), 
                  set_prior("normal(-2.76, 2.07)", nlpar = "ctch"), 
                  set_prior("normal(1.84, 0.576)", nlpar = "asym")) 

F_lacy <- formula(ToT ~ exp(asym) + exp(ampl) * inv_logit((1-ctch))^tri
al)  

F_acy_ef_1 <- list(formula(ampl ~ 1|Participant), 
                 formula(ctch ~ 1|Participant), 
                 formula(asym ~ 1|Participant)) 

F_acy_ef_4 <- list(formula(ampl ~ 1 + Experience + (1|Participant)), 
                   formula(ctch ~ 1 + (1|Participant)), 
                   formula(asym ~ 1 + (1|Participant))) 

M_7 <-  
  D_SimParAcc %>%  
  brm(bf(F_lacy, 
         flist = F_acy_ef_4, 
         nl = T),  
      prior = F_lacy_prior_1, 
      family = Gamma(link = identity), 
      iter = 4000, 
      data = .) 

## Compiling Stan program... 

## Start sampling 

## Warning: There were 323 divergent transitions after warmup. See 
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-wa
rmup 
## to find out why this is a problem and how to eliminate them. 

## Warning: Examine the pairs() plot to diagnose sampling problems 

## Warning: Bulk Effective Samples Size (ESS) is too low, indicating po
sterior means and medians may be unreliable. 
## Running the chains for more iterations may help. See 
## http://mc-stan.org/misc/warnings.html#bulk-ess 

## Warning: Tail Effective Samples Size (ESS) is too low, indicating po
sterior variances and tail quantiles may be unreliable. 
## Running the chains for more iterations may help. See 
## http://mc-stan.org/misc/warnings.html#tail-ess 

coef(M_7, mean.func = exp) 

## Warning: `funs()` was deprecated in dplyr 0.8.0. 
## Please use a list of either functions or lambdas:  
##  
##   # Simple named list:  
##   list(mean = mean, median = median) 



  

 

##  
##   # Auto named with `tibble::lst()`:  
##   tibble::lst(mean, median) 
##  
##   # Using lambdas 
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE)) 

Coefficient estimates with 95% credibility limits 

parameter  typ
e  

non
lin  

fixef  re_fact
or  

re_en
tity  

center  lower  upper  

b_ampl_Intercept  fix
ef  

am
pl  

Intercept  NA  NA  10.113
5023  

3.9140
782  

24.0846
282  

b_ampl_ExperienceIn
experienced  

fix
ef  

am
pl  

ExperienceInex
perienced  

NA  NA  3.6231
893  

1.2941
236  

91.6300
502  

b_ctch_Intercept  fix
ef  

ctch
  

Intercept  NA  NA  0.4558
779  

0.0696
004  

2.15636
26  

b_asym_Intercept  fix
ef  

asy
m  

Intercept  NA  NA  63.099
2493  

58.695
6680  

66.8753
854  

r_Participant__ampl[
3,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

3  0.5569
444  

0.0012
394  

2.21690
29  

r_Participant__ampl[
5,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

5  0.8734
891  

0.0271
452  

2.56564
00  

r_Participant__ampl[
12,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

12  0.8223
005  

0.0070
906  

3.59501
21  

r_Participant__ampl[
20,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

20  1.3567
194  

0.0389
326  

2.89036
55  

r_Participant__ampl[
24,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

24  0.5202
453  

0.0092
983  

1.23914
77  

r_Participant__ampl[
27,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

27  0.6243
462  

0.0087
120  

1.60142
58  

r_Participant__ampl[
28,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

28  0.3391
476  

0.0000
019  

1.67126
46  

r_Participant__ampl[
29,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

29  0.4372
827  

0.0050
622  

1.05506
76  

r_Participant__ampl[
30,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

30  0.9981
152  

0.1550
618  

5.92930
37  

r_Participant__ampl[
31,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

31  2.0014
889  

0.7621
021  

7.34057
29  

r_Participant__ampl[
32,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

32  0.5103
622  

0.0135
565  

1.17775
95  

r_Participant__ampl[
33,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

33  0.6510
922  

0.0136
682  

2.32442
30  

r_Participant__ampl[
35,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

35  0.4960
025  

0.0000
096  

1.99034
95  

r_Participant__ampl[
36,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

36  1.6048
091  

0.6441
812  

4.23208
39  



  

 

r_Participant__ampl[
39,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

39  2.3956
117  

1.0032
021  

6.22936
93  

r_Participant__ampl[
40,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

40  0.3436
277  

0.0141
251  

1.41818
79  

r_Participant__ctch[3
,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

3  1.7187
571  

0.0031
952  

344.184
9064  

r_Participant__ctch[5
,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

5  6.4794
980  

0.9511
299  

55.8508
829  

r_Participant__ctch[1
2,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

12  9.6106
438  

0.9614
995  

153.438
8132  

r_Participant__ctch[2
0,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

20  4.0671
348  

0.7430
735  

26.1227
039  

r_Participant__ctch[2
4,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

24  2.5644
106  

0.4847
975  

19.1116
912  

r_Participant__ctch[2
7,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

27  3.7547
795  

0.6824
902  

30.1253
354  

r_Participant__ctch[2
8,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

28  0.2440
474  

0.0007
559  

1179.33
48269  

r_Participant__ctch[2
9,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

29  0.1769
017  

0.0236
690  

1.15216
55  

r_Participant__ctch[3
0,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

30  4.4085
407  

0.1072
467  

82.8489
901  

r_Participant__ctch[3
1,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

31  0.7542
594  

0.0718
870  

17.7982
982  

r_Participant__ctch[3
2,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

32  0.1447
862  

0.0240
775  

0.94825
07  

r_Participant__ctch[3
3,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

33  0.7940
507  

0.0419
092  

39.3272
529  

r_Participant__ctch[3
5,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

35  0.4946
106  

0.0010
149  

669.626
9164  

r_Participant__ctch[3
6,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

36  0.4737
303  

0.0742
496  

3.26202
47  

r_Participant__ctch[3
9,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

39  0.4032
781  

0.0777
637  

2.71569
24  

r_Participant__ctch[4
0,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

40  0.8927
545  

0.0529
291  

40.3678
685  

r_Participant__asym[
3,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

3  1.0715
803  

0.9123
291  

1.15786
76  

r_Participant__asym[
5,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

5  0.9828
632  

0.9238
044  

1.05669
54  

r_Participant__asym[
12,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

12  0.9525
289  

0.8964
431  

1.02517
85  

r_Participant__asym[
20,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

20  1.0571
516  

0.9932
321  

1.13674
24  

r_Participant__asym[
24,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

24  1.0626
894  

0.9997
595  

1.14370
49  



  

 

r_Participant__asym[
27,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

27  0.9806
637  

0.9223
944  

1.05475
88  

r_Participant__asym[
28,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

28  1.1045
078  

0.8603
339  

1.21395
37  

r_Participant__asym[
29,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

29  0.9934
981  

0.8201
917  

1.11365
88  

r_Participant__asym[
30,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

30  0.9746
955  

0.9005
159  

1.04863
61  

r_Participant__asym[
31,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

31  1.2526
204  

0.9827
914  

1.37134
93  

r_Participant__asym[
32,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

32  0.9469
367  

0.7925
076  

1.06445
20  

r_Participant__asym[
33,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

33  0.9629
204  

0.8529
541  

1.03355
99  

r_Participant__asym[
35,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

35  1.0621
637  

0.8986
669  

1.14787
16  

r_Participant__asym[
36,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

36  0.9721
597  

0.8655
641  

1.05654
53  

r_Participant__asym[
39,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

39  0.8743
161  

0.7815
659  

0.94951
91  

r_Participant__asym[
40,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

40  1.0137
866  

0.8449
957  

1.09607
37  

 P_M_7 <- posterior(M_7) 
PP_M_7 <- post_pred(M_7) 

T_pred_M_7 <- PP_M_7 %>%  
  group_by(Obs) %>%  
  summarize(center = median(value)) 

D_SimParAcc$M_7 <- T_pred_M_7$center 
D_SimParAcc$M_7_resid <- D_SimParAcc$ToT - D_SimParAcc$M_7 

D_M_7 <- 
  as_tibble(M_7$data) %>%  
  mutate(M_7 = T_pred_M_7$center) 

D_SimParAcc %>%  
  ggplot(aes(x = trial, y = ToT, col = Experience)) + 
  facet_wrap(~ Participant, nrow = 7) + 
  geom_point(size = .2) + 
  geom_line(aes(y = M_7)) + 
  theme_minimal() 



  

 

 

NUMBER OF LANE DEPARTURES 

F_lacy_Nld <- formula(Nld ~ exp(asym) + exp(ampl) * inv_logit((1-ctch))
^trial)  

M_Test_Nld_exp_1 <-  
  D_SimParAcc %>%  
  brm(bf(F_lacy_Nld, 
         flist = F_acy_ef_4, 
         nl = T),  
      prior = F_lacy_prior_2, 
      family = poisson(link = identity), iter = 4000,  
      data = .) 

## Compiling Stan program... 

## Start sampling 



  

 

## Warning: There were 20 divergent transitions after warmup. See 
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-wa
rmup 
## to find out why this is a problem and how to eliminate them. 

## Warning: Examine the pairs() plot to diagnose sampling problems 

## Warning: Bulk Effective Samples Size (ESS) is too low, indicating po
sterior means and medians may be unreliable. 
## Running the chains for more iterations may help. See 
## http://mc-stan.org/misc/warnings.html#bulk-ess 

coef(M_Test_Nld_exp_1, mean.func = exp) 

Coefficient estimates with 95% credibility limits 

parameter  typ
e  

non
lin  

fixef  re_fact
or  

re_en
tity  

center  lower  upper  

b_ampl_Intercept  fixe
f  

am
pl  

Intercept  NA  NA  2.5318
383  

0.9921
394  

5.119138
6  

b_ampl_ExperienceIn
experienced  

fixe
f  

am
pl  

ExperienceInex
perienced  

NA  NA  1.9859
707  

0.9251
256  

5.919825
9  

b_ctch_Intercept  fixe
f  

ctch
  

Intercept  NA  NA  1.0038
568  

0.1599
318  

5.752547
7  

b_asym_Intercept  fixe
f  

asy
m  

Intercept  NA  NA  1.3281
985  

0.8608
116  

2.293214
4  

r_Participant__ampl[
3,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

3  0.9626
174  

0.1888
867  

1.750886
4  

r_Participant__ampl[
5,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

5  0.9829
819  

0.3427
158  

1.818190
1  

r_Participant__ampl[
12,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

12  0.9362
206  

0.3169
464  

1.557433
4  

r_Participant__ampl[
20,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

20  0.9564
941  

0.0798
452  

1.702961
4  

r_Participant__ampl[
24,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

24  1.0049
230  

0.4901
218  

1.959954
4  

r_Participant__ampl[
27,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

27  0.9696
086  

0.1187
399  

1.762810
1  

r_Participant__ampl[
28,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

28  0.9973
212  

0.4470
783  

1.956502
1  

r_Participant__ampl[
29,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

29  0.9786
545  

0.3465
035  

1.702734
5  

r_Participant__ampl[
30,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

30  0.9567
944  

0.2037
672  

1.751585
1  

r_Participant__ampl[
31,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

31  0.9837
861  

0.3290
314  

2.139891
0  

r_Participant__ampl[
32,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

32  0.9999
215  

0.2287
249  

1.707704
6  



  

 

r_Participant__ampl[
33,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

33  1.0325
794  

0.5835
595  

2.954073
3  

r_Participant__ampl[
35,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

35  1.1003
861  

0.7391
896  

3.719931
3  

r_Participant__ampl[
36,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

36  0.9680
142  

0.2445
338  

1.871699
2  

r_Participant__ampl[
39,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

39  1.0200
033  

0.4393
045  

3.153600
2  

r_Participant__ampl[
40,Intercept]  

ran
ef  

am
pl  

Intercept  Partici
pant  

40  0.9684
125  

0.1118
917  

1.806148
8  

r_Participant__ctch[3,
Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

3  4.3580
413  

0.0196
181  

882.0801
387  

r_Participant__ctch[5,
Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

5  0.1709
070  

0.0075
669  

7.017623
9  

r_Participant__ctch[1
2,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

12  0.3688
246  

0.0480
123  

5.248293
3  

r_Participant__ctch[2
0,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

20  25.367
0256  

0.4807
860  

3545.839
5527  

r_Participant__ctch[2
4,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

24  0.2982
939  

0.0473
116  

1.998469
0  

r_Participant__ctch[2
7,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

27  9.6940
830  

0.4254
393  

1248.808
6886  

r_Participant__ctch[2
8,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

28  0.2312
770  

0.0221
341  

3.073352
2  

r_Participant__ctch[2
9,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

29  0.9319
742  

0.1294
430  

8.171096
4  

r_Participant__ctch[3
0,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

30  4.8104
504  

0.0466
112  

1079.126
1373  

r_Participant__ctch[3
1,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

31  1.4973
534  

0.1233
544  

91.78309
65  

r_Participant__ctch[3
2,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

32  0.0317
905  

0.0001
632  

37.01834
09  

r_Participant__ctch[3
3,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

33  0.7004
461  

0.0967
558  

6.510123
7  

r_Participant__ctch[3
5,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

35  0.2864
665  

0.0456
773  

2.083418
1  

r_Participant__ctch[3
6,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

36  3.0877
103  

0.2880
286  

689.3526
708  

r_Participant__ctch[3
9,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

39  1.0822
801  

0.0672
097  

21.33025
51  

r_Participant__ctch[4
0,Intercept]  

ran
ef  

ctch
  

Intercept  Partici
pant  

40  13.932
8861  

0.4706
522  

1701.985
7375  

r_Participant__asym[
3,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

3  1.1168
272  

0.3357
467  

1.860695
3  

r_Participant__asym[
5,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

5  1.6874
133  

0.3324
982  

4.019434
2  



  

 

r_Participant__asym[
12,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

12  1.0143
504  

0.2519
986  

2.004595
3  

r_Participant__asym[
20,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

20  0.9407
372  

0.4717
568  

1.555158
4  

r_Participant__asym[
24,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

24  0.7063
781  

0.1752
602  

1.472917
4  

r_Participant__asym[
27,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

27  1.2860
255  

0.6646
154  

2.106384
6  

r_Participant__asym[
28,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

28  1.5667
853  

0.3796
386  

3.231065
2  

r_Participant__asym[
29,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

29  0.8120
087  

0.3656
766  

1.430275
3  

r_Participant__asym[
30,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

30  0.8898
710  

0.2857
552  

1.504034
7  

r_Participant__asym[
31,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

31  0.5631
080  

0.2103
368  

1.009085
5  

r_Participant__asym[
32,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

32  2.0337
576  

0.4477
616  

6.041059
1  

r_Participant__asym[
33,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

33  0.4874
226  

0.1714
658  

0.929258
6  

r_Participant__asym[
35,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

35  0.5401
307  

0.1505
070  

1.133571
6  

r_Participant__asym[
36,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

36  0.2566
508  

0.0814
483  

0.538683
7  

r_Participant__asym[
39,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

39  1.2682
919  

0.5836
794  

2.081904
6  

r_Participant__asym[
40,Intercept]  

ran
ef  

asy
m  

Intercept  Partici
pant  

40  0.9239
805  

0.4714
661  

1.546730
9  

 P_M_Test_Nld_exp_1 <- posterior(M_Test_Nld_exp_1) 
PP_M_Test_Nld_exp_1 <- post_pred(M_Test_Nld_exp_1) 

T_pred_M_Test_Nld_exp_1 <- PP_M_Test_Nld_exp_1 %>%  
  group_by(Obs) %>%  
  summarize(center = median(value)) 

D_SimParAcc$M_Test_Nld_exp_1 <- T_pred_M_Test_Nld_exp_1$center 
D_SimParAcc$M_Test_Nld_exp_1_resid <- D_SimParAcc$Nld - D_SimParAcc$M_T
est_Nld_exp_1 

D_M_Test_Nld_exp_1 <- 
  as_tibble(M_Test_Nld_exp_1$data) %>%  
  mutate(M_Test_Nld_exp_1 = T_pred_M_Test_Nld_exp_1$center) 

D_SimParAcc %>%  
  ggplot(aes(x = trial, y = Nld, col = Experience)) + 
  facet_wrap(~ Participant, nrow = 7) + 
  geom_point(size = .2) + 
  geom_smooth(aes(y = M_Test_Nld_exp_1), se = F) + 



  

 

  labs(y= "Number of lane departures") + 
  theme_minimal() 

## `geom_smooth()` using method = 'loess' and formula 'y ~ x' 

 

 
 


