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Abstract

Michael Yang, Christian Duriez
EEMCS

Master of Science

Pose Estimation with Deep Neural Networks Trained on Tiny
Datasets

by Yueying LIANG

This report presents my project on the pose estimation from training
a deep neural network with small datasets. The primary object of
this project comes from the project on a soft medical robot. Since soft
robots have unlimited degrees of freedom and convenience, being
hard to control is a great challenge. A camera and a sensor are
attached to it to have enough information to control the robot’s end-
effector. The camera can shoot videos while the robot is working,
and the sensor provides the pose information of the end-effector.
However, the implementation of the sensor is not only complicated
but also expensive. Fortunately, the camera pose collected by the
sensor can now be estimated with deep learning algorithms.

Deep neural networks usually perform much better on large
datasets. What comes with the great advantage of the performance of
deep neural networks is the constraints on the dataset size. A pruning
strategy on the most state-of-the-art deep learning frameworks is
proposed to overcome the limited performance while training with
small datasets, which is more common in practical use. According to
experimental results, translation and rotation test errors are reduced
after training a model on small datasets. Therefore, the strategy could
also be promoted to other applications when the training dataset is of
limited size.
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Chapter 1

Introduction

Compared to traditional rigid robots, soft robots naturally have
countless advantages due to their flexibility. Similarly, as sonar
technologies, soft robots are also inspired by nature. With the
term soft, the mechanics of the robots usually rely on deformable
structures. The materials used to build a soft robot are much more
compliant than rigid robots, thus significantly improving the safety
of the robots since soft robots could avoid many possible collisions
that rigid robots might have with the environment while working.
Moreover, combined with the redundant actuation, a soft robot’s
infinite degrees of freedom will make it possible for complicated
manipulations in constrained space. Such benefits have made soft
robots competitive in many fields, especially for medical and surgical
study, for soft robots have much less damage to bodies and unlimited
operabilities while treating patients.!']

However, what comes along with the great benefits is the great
difficulty of simulating and controlling such a robot. Although
the difficulties are exactly the causes of the slow progress in
studying soft robots, plenty of work has been done to overcome the
difficulties. Previous methods to simulate soft robots include voxel-
based discretization[?! and Finite-Element-Method(FEM)! [4],

INRIA is one of the teams that has been investigating the soft
robots, and this project is done within the team led by Doctor
Christian Duriez. The INRIA team proposed a FEM-based simulation
tool called SOFA years ago, and the simulation tool has become
one of the most widely used tools worldwide.’) SOFA is an open-
source framework that focuses on real-time simulation; it is especially
emphasized in the field of medicine and surgeons. From all possible
advantages, SOFA has conspicuous ones over other tools of the same
category in:

¢ Flexible:

— Efficient design and prototyping of simulation
— Multiple representations

— Multi-physics

* Modular with its plugin-activation system
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FIGURE 1.1: Main Structure of the robot!®}

e Interactive
— User interactions to take into account
e Efficient:

— Multi-threading
— GPU computing

INRIA has developed a deformable manipulator robot based on a
compliant spine with all these advantages!®l. Spine animals inspire it.
Each section of a spine can move in a certain region. By attaching a
couple of sections, the deformable robot can move in a larger working
space and accomplish tasks in a rather narrow space. The robot is
designed and controlled with a method based on numerical models
and simulations. It is modeled by FEM and controlled by a closed-
loop control strategy. Simulation and real-world experiments have
shown the advantages of the robot, including the large workspace it
could work in; dexterity so that the end-effector of the robot could
move in more than one direction in the task space; ability to avoid
obstacles while moving, and compliance to the environment so that it
will not cause damage to the patient.

The structure of the robot is shown in Fig 1.1 and a picture of the
robot is shown in Fig 1.2

This project is based on this deformable robot. Although it has
shown great effectiveness, obstacles remain that hinder the robot from
being widely used. Unacceptable costs and the complexity of settling
are part of those. For example, apart from the camera attached to the
end-effector to help with the robot’s vision, a sensor is also attached
to collect the pose information of the end-effector. However, suppose
the pose information of the robot could be estimated from the images
and videos shot by the monocular camera attached. In that case,
the implementation of the sensor can be safely removed, thus could
considerably cut the budget and simplify the settling process.

This project will be focusing on the pose estimation of a camera
according to the images and videos the camera obtains. It is a
computer vision task, and obviously, a great amount of work has been
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FIGURE 1.2: Real photo of the robot!®!

done in the task, and with much prior knowledge of a camera, the
pose information can be easily calculated years ago. Nevertheless, in
more recent work, researchers have been bringing deep learning to
this task; with the algorithm, the pose information could be predicted
even without prior knowledge of a camera.

The most recent work is called Unsupervised Scale-consistent
Depth and Ego-motion Learning from Monocular Video.l’l Tt was
published in 2020 with an end-to-end framework. This paper has
been a success in estimating the depth of an image and the pose
of a camera since the experiments on KITTI and NYU datasets
show improvements in previous work. However, recent work is
based on an extremely large dataset that is not usually available for
practical use. When a dataset is small, a neural network with great
expression ability can cause an overfitting problem. Fortunately,
model pruning is an efficient method to deal with the problem.
Moreover, since pruned model is sparse, the inference process could
also be accelerated, which will be a bonus while in practical use by
saving time and computation costs.

Above all, the primary objectives of this project are:

* Improving the accuracy on deep neural network models while
training with small datasets.

* Accelerating the inference process.

The neural network and model pruning algorithm will be further
introduced in the following sections. The structure of this project is:

¢ Related Work: In this section, the evolution of the related study
will be presented. Comparisons among different methods will
also be presented.
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* Methodology: In this section, the design of the robot, the
most recent deep learning neural network, and model pruning
algorithm will be introduced.

e Experiments and Discussion: In this section, experiments on
the KITTI dataset will be listed, including dataset preparation,
experiments setup, and evaluation of their performance.

¢ Conclusion: In this section, the conclusion will be drawn.
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Related Work

2.1 Visual Odometry

For the last thirty years, great effort has been put into developing an
accurate and robust monocular Visual Odometry(VO) system. The
workflow of the conventional method is illustrated in Fig 3.1. As
shown in the figure, the pipeline is consisted of calibrating the camera,
detecting features, matching or tracking features, rejecting outliers,
estimating motions and scales, local optimizing, etc. Moreover, it
has been treated as a golden rule for good performance. However, a
classic algorithm usually has many constraints; for example, specific
design and fine-tuning are required for different tasks to ensure
performance. Moreover, prior knowledge of the camera is also
essential to estimate the absolute scale.

2.1.1 Supervised Learning

DeepVO: Towards End-to-End Visual Odometry with Deep
Recurrent Convolutional Neural Networks!®! is the first research that
introduces deep learning into visual odometry, it proposes an end-to-
end deep learning method to skip camera calibration while estimating
the pose of a camera for the first time. It is a network-based on
Recurrent Convolutional Neural Networks(RCNNs). Thanks to its
end-to-end training manner, it could estimate the poses of a camera
directly from a sequence of raw RGB images. Moreover, DeepVO can
learn effective feature representation from CNN and model sequential
dynamics and relations between frames with the help of deep RNN.

________________________________________________________________

, Conventional Method . .
| Qutlier Camera Scale '
' Rejection Calibration Estimation !
! |
: 'L 'L A/ :
]
! Image Feature Feature Matching Motion Bundle \
i Detection F (Tracking) g Estimation | | Adjustment _> :
1
]

FIGURE 2.1: Workflow of Conventional VO system!®]
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DeepVO training is a supervised learning process; although it has its
drawbacks, it brings new insights to researchers.

2.1.2 Unsupervised Learning

Although supervised learning methods have shown effectiveness in
single view depth estimation and visual odometry, labeled data is not
always available in practical use, especially for the enormous dataset.
Therefore, several self-supervised learning models appeared in the
following three years.

Unsupervised Learning of Depth and Ego-Motion from Videol’]
is the first one of them. The self-supervised process is achieved by
training the depth and pose estimation networks simultaneously. The
task of view synthesis is used as the supervisory signal. Therefore,
the networks could be coupled during training, yet separated during
testing.

UnDeepVO:  Monocular Visual Odometry through
Unsupervised Deep Learning!!”! is another work that focuses
on self-supervised learning networks. Apart from the advantage of
self-supervision, UnDeepVO also achieves another salient feature —
absolute scale recovery. To do so, the UnDeepVO is trained by using
stereo image pairs. Uniquely, monocular images are used to test, so
the network is considered a monocular system. However, it is not
acceptable when stereo image pairs are not available.

Unsupervised Learning of Monocular Depth Estimation and
Visual Odometry with Deep Feature Reconstruction!'!l is another
unsupervised learning algorithm. Similar to UnDeepVO, this paper
also adopts stereo sequences to learn depth and visual odometry.
Spatial and temporal warp errors are allowed using stereo sequences
since stereo image pairs can correct spatial errors, and relationships
between frames could correct temporal warp errors. Moreover, the
framework could estimate the depth of a single image and two-view
odometry from a monocular image sequence during the test.

Digging Into Self-Supervised Monocular Depth Estimation!'”]
proposes a sequence of improvements on previous unsupervised
learning methods. The paper proposes a minimum re-projection loss
to handle possible occlusions more robustly. Moreover, the paper also
proposes a novel full-resolution multi-scale sampling method so that
the visual artifacts could be greatly reduced.

GANVO: Unsupervised Deep Monocular Visual Odometry
and Depth Estimation with Generative Adversarial Networks!'’]
introduces a generative unsupervised learning algorithm. With
deep convolutional Generative Adversarial Networks(GANSs), the
proposed framework could estimate the 6-DOF pose information of a
camera and monocular depth map of the scene from raw RGB image
sequences.
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Unsupervised Scale-consistent Depth and Ego-motion Learning
from Monocular Videol’] stresses the challenges that remain in the
previous unsupervised learning frameworks, including limitations of
the performance caused by unknown moving objects, the existence
of these objects violate the underlying static scene assumption
in geometric image reconstruction. The paper proposes a kind
of geometry consistency loss for scale-consistent predictions to
overcome the challenges. In addition, the paper also proposes an
induced self-discovered mask to deal with unrecognized moving
objects and occlusions.

D3VO: Deep Depth, Deep Pose and Deep Uncertainty for
Monocular Visual Odometry!'*l is one of the most state-of-art
frameworks focusing on Monocular Visual Odometry. The novel
D3VO framework exploits deep neural networks on three levels
for monocular visual odometry— deep depth, deep pose, and deep
uncertainty. The paper first proposes a self-supervised monocular
depth estimation network trained on stereo videos. Particularly,
D3VO separates the stereo image pairs with predictive brightness
transformation parameters. Thus they could have similar lighting
conditions. Additionally, the paper also models the photometric
uncertainties on the input image pixels to further improve the depth
estimation performance.
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2.2 Model Pruning

However, unsupervised learning models normally take advantage
of large size of datasets. Therefore, the accuracy will suffer when
applying it on a small, unlabeled dataset. When the model is too
large, maybe too wide or too deep for a dataset, the model will also
learn about outliers and noises. The extra expression ability will make
inference accuracy drop. Model pruning is helpful for this situation;
by cutting some weights off, the expression ability of a model reduces
to match the size of a dataset. Tons of previous works have attempted
to apply pruning strategy to the models.

The pruning strategy is now widely used in computer vision
and classification tasks. No pruning has been attempted to apply
on visual odometry tasks so far. All kinds of pruning strategies
can be roughly divided into three categories: Unstructured Pruning,
Structured Pruning, and Pattern Pruning.

2.2.1 Unstructured Pruning

The unstructured pruning, i.e., irregular pruning, was first proposed
in'°l. In this paper, models are compressed irregularly with an
iterative and heuristic method. Although the compression rate is
limited, it opened the gate of pruning deep networks and offered a
new thought to accelerate the training and inference process and make
deep neural networks dealing with small datasets possible.

The work!!"®! is further improved byl'®l and!'”l with a more
powerful optimization framework - The alternating direction
method of multipliers (ADMM)!'®]. With the ADMM optimization
framework, the compression ratio of unstructured pruning greatly
increases while retaining a comparable accuracy.

However, designing and successfully implementing a powerful
model requires an efficient algorithm and hardware. As for
the pruning strategies, the coordinates of the pruned weights
need to be stored in RAM. Unfortunately, the overheads for
unstructured pruning are especially high because of the irregularity
in the coordinates of the unstructured pruned weights. Therefore,
structured pruning started to come into researchers’ sights.

2.2.2 Structured Pruning

On the contrary of unstructured pruning, structured pruning was first
proposed byl'”l, and[?l to deal with the unacceptable overheads on
the hardware. Thus there is regularity in the pruning strategy. More
specifically, structured pruning usually refers to channel pruning and
filter pruning, channel pruning prunes columns, and filter pruning
prunes rows.
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The main benefit of structure pruning is saving storage on indices,
for the pruned weights exist in a row or column. Structured pruning
could dismiss all the unimportant weights in a model irregularly; the
compression ratio is considerable. Nevertheless, on the contrary of the
unstructured pruning, to guarantee a comparable accuracy, structured
pruning sacrifices the compression ratio to benefit on overheads.

2.2.3 Pattern Pruning

To better handle the trade-off between unacceptably high overheads
and low compression ratio, pattern pruning became the first attempt
in?!l.  Theoretically, pattern pruning has some regularities in
patterns, thus reducing some overheads compared to unstructured
pruning, and since patterns could differ in different channels,
the compression ratio could be increased compared to structured
pruning. Unfortunately, the accuracy inl*!l is too low to be widely
used.

Later, by applying the pruned filters to DNNs before pooling,
another work[?’l made pattern pruning more popular.

The pruning strategies will be further elaborated in Chapter 3.
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Chapter 3

Methodology

This chapter introduces one of the most state-of-art monocular visual
odometry framework — SC-Depth!?’], and the improvements on it.
Compared to D3VO, SC-Depth has a significant advantage apart from
performance, SC-Depth is an end-to-end framework, which simplifies
the training process a lot. Moreover, different from most datasets
that are used to train visual odometry models, like KITTI datasets
and Cityscapes, dataset from INRIA is completely collected from a
monocular camera. Fortunately, compared to TrianFlow!?*], SC-Depth
framework does not require stereo image pairs to train on visual
odometry tasks. Thus, the SC-Depth model would be the perfect
model to work on.

But these frameworks all have a problem, which is the training
is based on large datasets. Therefore, when large datasets are not
available, overfitting will be a serious problem that greatly infects the
performance of the model. Fortunately, model pruning has been an
effective strategy to deal with the problem. The pruned model will
solve the overfitting problem and save computation and time costs by
accelerating the training and inference process.

3.1 SC-Depth Model

Previous supervised learning frameworks usually take advantage of
labeled data, however, it is not always available to label data in
practical use. Luckily, unsupervised learning models help solve the
problem.

As the novelty stated in the paper, SC-Depth Model takes
advantage of consecutive frames sampled from unlabeled videos to
train a model to learn depth. Afterwards, with the knowledge of
predicted depth and relative pose between two frames, the Photometric
Loss will supervise the model to learn about pose of the camera.
Additionally, the Geometry Consistency Loss and the Self-Discovered
Mask are introduced to deal with the problems of scale inconsistency
and moving objects, respectively.
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! ﬁ? 4
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Net
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FIGURE 3.1: Workflow of the SC-Depth model’!

3.1.1 Overview

The overview of the workflow is illustrated in Fig 3.1.1%’]

As indicated in the figure, I, and I, are two consecutive frames
sampled from a video without labels, the images are firstly fed into
Depth Networks to predict depth maps (D,, D).

At the same time, the 6-DOF pose of the camera Py,

is estimated from the relationship between the two frames (I,
Iy) with the Pose Network. With the knowledge of predicted depth
maps and predicted pose of the camera, reference image I could be
generated by interpolating input image I,.I°1°l. Then, the network
could be trained under the supervision of the Photometric Loss
between the reference image I} and the input image Ij,.

Nevertheless, scale inconsistency remains a problem due to the
movements of camera and objects. Similarly, as the objects moving
in the scene, obscure and occlusions could happen as well. Both
problems have negative influences on the performance of the model.
Here states the motivation of authors to introduce the Geometry
Consistency Loss and Self-Discovered Mask strategy. One thing is
worth noting that the Photometric Loss is weighted by generated
mask in the final loss function.

Finally, the total loss of the framework is a combination of the
scaled three losses, i.e., the weighted Photometric Loss, the Geometry
Consistency Loss, and a smoothness Loss which is adopted directly
from previous work.

3.1.2 Loss Functions

Photometric Loss

Similarly as inl?1l°l, with the difference between synthesized image

I; and reference image I, the Photometric Loss function is defined as
Equation 3.1

be =197 ) H(Ia<p> - 1;@))”1 (3.1)
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V in the equation represents the set of successfully projected dots from
the image plane I, to the image plane I,. And the |V stands for
the number of successfully projected points in set V. L1 norm is used
here as the loss because of its high robustness to outliers. However,
according tol?®l, to deal with the illumination changes in real-world
applications, an additional image dissimilarity loss SSIM is required
to be added to the photometric loss function. Thus, the Photometric
Loss is modified to Equation 3.7

, 1-SSIM,y,)
(Ia(p) - Ia(p)) Hl + As 2 ) (32)

Smoothness Loss

The Smoothness Loss is adopted from[?’! to regularize the predicted
depth maps since the photometric loss itself is not sensitive to textures
in real-world scenarios. Same asl?’! the smoothness function is
Equation 3.3
Ly =Y (e Vi) . VD,(p))? (33)
p

Geometric Consistency Loss

To guarantee the geometric consistency while training, the depth
map of one image should also be consistent with the warped depth
map of the other image by the predicted 6-DOF pose information.
Thus, the geometric inconsistency could be reduced by minimizing
the difference between predicted depth maps of the two mentioned
depth maps. Because the last image from a batch is still consecutive
to the first image in the next batch, this consistency will pass on not
only in the same batch but also in the whole sequence. For each
p € V, the mathematic expression of the difference Dyig(p) is shown
in Equation 3.4.

/

|©3(p) = D))
Di(p) + D, (p)

The depth map Dj(p) is obtained by warping the predicted depth
map D, with P,;,. By the reason that the warping flow does not lie on
pixel grids, the predicted depth map D, can not be directly used here
to calculate the difference as analyzed before. Alternatively, to have
the depth map Dj, aligned with the warped depth map Dj(p), D; is
used and obtained by interpolating the depth map D;,. Moreover, the
difference is normalized by dividing the sum of the two depth maps.
The advantage of doing so is that normalized differences will equally
treat points on different depth levels. Besides, normalized loss could
contribute in statistical stability in training as well.

(3.4)

Dyig(p) =
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To consider the point gaps as a whole, the Geometric Consistency
Loss could be defined as Equation 3.5

1
Lge = Wl Z Ddiﬁ‘(P) (3.5)
| | peV

By minimizing the distance between the two depth maps,
geometric consistency is guaranteed and passed on to the whole
sequence frame by frame.

Self-Discovered Mask

Object moving and occlusions could be a disaster while training a
model on multiple tasks, depth prediction models suffer most since
the depth of objects that are moving or occluded by other objects can
not be estimated reliably anymore. Previous work has tried a couple
of solutions to deal with the problem. For example, introducing
additional optical flow[?®! and introducing semantic segmentation
network[”’l are some of the options. The methods are effective but
require too much additional computation costs.

Luckily, with the definition and knowledge of Dy, this problem
could be solved much more easily by generating a self-discovered
mask with the difference between depth maps. It is quite an intuitive
idea, because ideally the difference between the two depth maps
are supposed to be the same. If the gap is too large, it must have
been a result from moving objects or occlusions. In addition, as
described earlier, since the difference Ddiﬁf is normalized, this mask
could be simply defined as Equation 3.6 to illustrate the opposite of
the difference Dy

M =1- Dy (3.6)

So the mask could assign weights for the inconsistent pixels, i.e.,
small M indicates possible disturbances like occlusions and moving
objects. The impact of the frames facing this inconsistency could be
mitigated by adding the weighted mask M in the Photometric Loss.
The modified loss function is shown in Equation 3.7.

Ly = - Y (M(p) - Ly(p)) (3.7)
vl =

Total Loss

Now that all the three losses are defined and modified, each work for
a different purpose. The total loss will be a combination of the scaled
three losses. The total loss function is given in Equation 3.8.

L =aLy' 4+ BLs+ vLcc (3.8)
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(@

FIGURE 3.2: Visualization Results of Mask Map!*!

The escalators «, B, v will be hyperparameters given by operators.
The visual mask map is shown in Fig 3.2. The figures are raw
images, depth maps and self-discovered masks from top to bottom,
respectively. In the self-discovered mask figures, the darker part are
more likely to be moving objects or occlusions. The lighter part are
still scenes. The visual results are especially convincing in (b), the two
vehicles are the moving objects in the sampled images. And they are
accurately detected in the self-discovered mask map.
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FIGURE 3.3: Scheme of Structure Pruning!*’!

3.2 Model Pruning

As mentioned in the related work section, many previous works
have been focusing on model pruning. Under a computer vision-
related context, convolution layers and fully connected layers Pruning
strategies can be classified as structure pruning, pattern pruning and
irregular pruning. The pruning strategies will be elaborated in the
following subsections. The scheme of different pruning strategies is
illustrated in Fig 3.3.

3.2.1 Irregular Pruning

Irregular pruning, as the name indicates, removes weights at arbitrary
positions. As indicated in the Fig 3.3 (a) and (b), the 4D dimensional
weight matrices of the convolution layers are first reshaped in 2D
weight matrix format. Then the weights in the convolution layers
and the fully connected layers are pruned to 0 in an arbitrary manner.
Finally, the convolution layers will be reshaped back in 4D dimension
format. The white boxes in the figure indicate pruned weights yet the
colored boxes represent the remaining weights.

There is a trade-off between compression rate and accuracy.
Normally, the accuracy will drop as the compression rate increases
since the expression ability of the model is impaired; the balance
between compression rate and accuracy should be taken extra care of
while pruning. In other words, pruning should be done while making
the accuracy drop acceptable as a premise. The accuracy of the
pruned model should be comparable to the original model. When the
premise is satistied, one could consider increasing the compression
rate; otherwise, the pruning will make no sense.

The compression rate of irregular pruning will be the most exiting
in all pruning strategies since it will learn and cut the least important
weights in a model. Irregular pruning also has its own disadvantages
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though, for example, in the hardware content, enormous number of
the irregular indices of the pruned weights are required to be stored,
thus increases the overhead and influences the whole performance.

3.2.2 Structured Pruning

Structured Pruning usually refers to filter pruning and channel
pruning. The pruning scheme is shown in Fig 3.3 (c), (d).

The 2D convolution and fully connected weight matrices are
defined as filter pruning by pruning the whole row and channel
pruning by pruning the whole column. Similarly as irregular pruning,
while applying structure pruning on convolution layers of a model,
the first step is to reshape the weight matrix in a 2D shape format.
Then the pruned 2D convolution weight matrix is reshaped back to
the shape of the original weight matrix.

However, compared to irregular pruning, the drawbacks of
structured pruning are relatively limited compression rate. The main
reason is that the channel and filter pruning strategies will cause
greater accuracy drop than irregular pruning. But since the indices of
pruned weights are regular, storing them in memory could save some
time and energy, thus accelerates the training and inference process.

3.2.3 Pattern Pruning

Pattern Pruning is more like a compromise between the irregular
pruning strategy and the structure pruning. Because usually there
are some regularities in a pattern, such as pruning a whole column
or a whole row in each filter of a kernel. Additionally, patterns
applied to different filters can be different, thus there could be some
irregularities as well. Consequently, pattern pruning could balance
the trade-off much better. Compared to structure pruning, pattern
pruning could achieve higher compression ratio with a comparable
accuracy; compared to irregular pruning, pattern pruning could save
some storage on hardware. The scheme is shown in Fig 3.3 (c).

Now that pattern pruning has all these advantages, the remain
problem for this strategy is how to choose patterns for kernels.
According to enormous experimental results on different models, the
basic rule of applying pattern pruning is to keep the middle weight in
the kernel from pruning. Possible patterns are shown in red blocks in
the Fig 3.4.

Note that the gray filters shown in the Fig 3.4 are pruned
weights in Connectivity Pruning!®!l, the essence of which is adding
filter pruning in pattern pruning. Both pruning strategies can be
implemented in the same algorithm. The motivation of implementing
filter pruning in pattern pruning is that by selectively cutting
some connections between certain input and output channels, the
compression ratio and speed for training and inference will increase
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¥y Convolution kernel

Kernel pattern

Connectivity
pruning

FIGURE 3.4: [Illustration of pattern pruning and
connectivity pruning!®!!

even further®™.  Thus, connectivity pruning will be a great
supplement to pattern pruning.
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3.3 ADMM Regularized Optimizations

The alternating direction method of multipliers (ADMM)!'®l is
an algorithm that solves convex optimizations problems by
decomposing them into two sub-problems, so that each of them could
be solved separately and iteratively.[**]

Consider an DNN network has N layers and each layer is denoted
as the i-th layer. Correspondingly, the weight matrices and bias
matrices are denoted as W; and b;. Therefore, the loss function could
be represented with:

L{WH b,

Then the loss function of the model can be minimized with
constraints subject to pruning strategy. The global problem can be
rewritten as:

inimize C{W;}Y,, {b;}}" 3.9
minimize {Witita, {bitis (3.9)

subjectto W;e€ S;,i=1,..,N

S; stands for the constraint sets of Pruning strategy.

Similar to ADMM-NN[4, the ADMM-Regularized Optimization
Process is iterative. With the constraints in Function 3.9, the loss can
not be minimized with the conventional stochastic gradient descent
(SGD) method.[*"] Fortunately, it can be solved with ADMM by
decomposing the problem to two small problems and solve them
iteratively.

As the detailed inference process presented inl*°], the problem can
be solved by several steps:

¢ Step 1: Reformulate Problem 3.9

N
minimize {{W;}¥,, {b;}N, + Y ¢i(Z: 3.10
Wb HWitiZe, {bitis 1_218( ) (3.10)

subjectto W;=1Z27;,i=1,..,N

¢ Step 2: Decompose the problem 3.10 into two sub-problems by
applying Augmented Lagrangian Method!'®!

N
C . j 2
minimize {{W;}¥,, {b;}N, + Z% W —Zi + Uf||z (3.11)
i=1

Wit {bi}
N N 0 2
minimize Y ¢;(Z;)+ Y} T |[WIT —Z,+U!||  (3.12)
{Zi} i=1 =2 F
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e Step 3: Solve the problem 3.11 with SGD and solve the
problem 3.12 by:

ZH =TIy, (Wt + U (3.13)

In the whole solving procedure, Z; is an auxiliary variable; U; stands
for dual variable and t is the index of iteration. The hyperparameter
p; represents the scalar assigned to the L2 regularization as a penalty.
ITy, is the Euclidean projection to X; € {S;}. Additionally, to solve
the problem iteratively, U; is updated by Equation 3.14 until the
convergence is guaranteed.

ut =ut+wi -zt (3.14)
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3.4 Training Procedure

Now that pattern pruning has the highest performance overall as
analyzed in previous section, it will be mainly implemented in this
project. While applying pattern pruning strategy in training, there are
also several steps to follow:

¢ Step 1: load a pre-trained model.

To shorten the training process and achieve higher accuracy, a
pre-trained model should be loaded, the higher accuracy, the
better.

* Step 2: Initialize the ADMM parameters.

¢ Step 3: Choose Patterns.

In this step, a set of patterns are given, containing different
pattern designs. The patterns are binary matrices of the same
shape with the weight matrices need to be pruned. Some
example patterns are shown in Fig 3.5. The white blocks
represent 0's and the colored blocks stand for 1’s in the pattern
matrix.

The patterns are designed manually, note that according to
practical experiments, the middle element in a weight matrix
should be prevent from pruning. The number of patterns in a
set is given as a hyperparameter, the best pattern for each kernel
will then be chosen from the set based on the L2 norm.

o Step 4: Apply patterns on weight matrices.
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Then the selected best pattern will be applied on the weight
matrices by dot multiplying them together. Thus the weights
in corresponding positions with 0’s in the patterns are removed
and the others remain.

Step 5: Train the model.

Step 6: Apply patterns on gradient weight matrices.

Normally pruned weights will be updated after applying
gradient weight matrices. To keep the weight matrices
being hard-pruned, the same pattern must also be applied on
corresponding gradient weight matrices. To do so, the pruned
weight matrices are read, positions of 0’s will be found in the
weight matrices, and then the same mask composed of 0's and
1’s is applied on gradient weight matrices, similarly as Step 4,
element-wisely.

Step 7: Update the ADMM parameters.

Finally, the ADMM parameters are updated as introduced in the
previous section at each training step.
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Experiments and Discussion

In this section, details of experiments are presented. Additionally,
results, evaluation, and comparisons with previous work and
discussions also come along.

4.1 Experiment Setup

4.1.1 Platform and Datasets
Platform

The experiments are implemented in the PyTorch framework. The
project was run on a server with eight GPUs provided by the
University of Texas at San Antonio; the models of the GPUs are
Quadro RTX 6000.

Datasets

Similarly as in the paper!’], two datasets, Cityscapes!®’l and KITTI®I
are used here to show effectiveness of model pruning and the
improvements it could get while training on small datasets.

¢ (Cityscapes:
Cityscapes is a large-scale dataset shot in different cities in
Europe. Cityscapes provide annotations for 30 classes grouped
into eight categories and focus mainly on semantic segmentation
tasks.

Some example input images of Cityscapes are shown in Fig 4.1
and Fig 4.2.

e KITTL

Unlike Cityscapes, KITTI consists of a set of image sequences
and their corresponding ground truths of camera poses.
Moreover, the ground truths are the main superior over
Cityscapes. Therefore, KITTI has been used to train and
test performance on deep learning algorithms under visual
odometry tasks in all kinds of previous work. Normally
sequences 00-07 are used for training, 08 is used for evaluating,
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FIGURE 4.1: Example image of Cityscapes!®’]

iIHEINKRAF1

| A

FIGURE 4.4: Example image of KITTI*®!
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FIGURE 4.5: Example image of INRIA Dataset

and sequences 09-10 are used for testing. Even in unsupervised
deep learning algorithms, ground truths of the camera are still
essential for testing.

Some example raw images of KITTI are shown in Fig 4.3 and
Fig 4.4.

e INRIA Dataset: Apart from Cityscapes and KITTI datasets,
which are public, there is also a private dataset provided by
INRIA, and it was shot by the camera attached to the robot.
It is not in real use under medical context though, the dataset
contains two short videos shooting a QR code, and the scene
changes slightly along with the movements of the camera.
As mentioned above, the main problem of the dataset is too
small and it brought my thought of improving the performance
of training SC-Depth on small datasets is an interesting and
meaningful task.

Some example raw images of INRIA Dataset are shown in
Fig 4.5 and Fig 4.6. Unfortunately, in this project, experiments on
INRIA Dataset is not possible because the intrinsic parameters of
the camera are unknown and not able to be collected because of
pandemic.
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FIGURE 4.6: Example image of INRIA Dataset

Reproduce the Results in the Paper

After 200 epochs of training, the rotation and translation error
of sequence 09 in test set could be plotted as in Fig 4.7 and
Fig 4.8, respectively. Similarly, the rotation and translation errors
of sequence 10 are plotted in Fig 4.9 and Fig 4.10.
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FIGURE 4.7: FIGURE 4.8:
Rotation Error of Translation Error
Sequence 09 of Sequence 09

Last but not least, the trajectory plot of the camera pose is also
used to evaluate the accuracy of prediction. The trajectory plots
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for sequence 09 and 10 are shown in Fig 4.11 and Fig 4.12,
respectively.

From the figures, we could tell that when the training set is
relatively large, the prediction of the unsupervised training
framework is reliable.

4.1.2 Preparation and Hyperparameters
Preparation

e Pretrain:

Now that the real training set is small, a pre-trained
model becomes beneficial. Cityscapes have similar features
as real training sets and are thus suitable for pretraining.
Additionally,”l uses Cityscapes to pre-train the model as
well; doing the same thing makes the performance of the
experimental results more convincing. To make it compatible
with the input size of the KITTI dataset, the raw images are
resized to the same size as the KITTI dataset.

* Prepare the dataset:

To prove the disadvantages of the proposed model on small
datasets and the effectiveness of improvements on small
datasets with model pruning strategy. The training set is
reduced to 1 of the original size. Therefore, only one sequence
is used for training, and evaluation and test sets remain the
same. The same training dataset is first used to train the original
network and then used to train the pattern-pruned network.
The same dataset will be used for testing to guarantee fairness
in evaluation. To further strengthen the generalization of the
pruning strategy, the experiments are extended by changing
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FIGURE 4.12: Trajectory Plot of prediction on sequence
10
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training sets a couple of times, such as using sequence 00, 01,
or 02 for training.

Hyperparameters

To ensure the consistency with”], the hyperparameters are set to be
the same:

* Batch Size: 4

e Learning Rate: 104

* Scalars in Function 3.8: « =1.0, f=0.1and 7y = 0.5
* Epochs: 200

Pruning Strategy

Unstructured pruning, structure pruning and pattern pruning are all
used in this project to evaluate the efficiency of the pruning strategy
while training a deep neural network with small datasets. In the
structured pruning, filter pruning is applied as an example, and in
the pattern pruning, the pattern set is the same as Fig 3.5. Only the
convolution layers are pruned, and according to the pattern designs,
the sparsity of the pruned layers is 55.6%. To ensure the fairness of
comparison among pruning strategies, the sparsity ratio is set to be
the same, i.e. 55.6%.
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Model Trainset Size Sequence 09
Zhou et al.13] 8 Seq Tranlsjglrlr("/o) Rot. Er6r(7° g 100m)
SC-Depth!”! 8 Seq Transé..2E4rr(°/o) Rot. Erzr.(lO 9/ 100m)
SC-Depth 1Seq Tranlsé.};gr(o/o) Rot. Er;(g ?{ 100m)
Irregular Pruned SC-Depth 1 Seq Tranlsi.}éir(o/ o) Rot. Erz_f(zog/ 100m)
Structure Pruned SC-Depth 1 Seq Tranls%.}gér(o/ o) Rot. El‘;.(; ?{ 100m)
Pattern Pruned SC-Depth 1 Seq Tranlsé.}ggr(o/ o) Rot. ElZ(; 5/ 100m)

TABLE 4.1: Numerical comparison between models of

KITTI sequence 09

Model Trainset Size Sequence 10
Zhou et al.[3] 8 Seq Tran;g;r(%) Rot. Eir7(°7 g 100m)
SC-Depth!”! 8 Seq Tranlsili;r(o/o) Rot. Er;(; 6/ 100m)
SC-Depth 1Seq Trar12si .}(E)gr(%) Rot. Er7r(2° ({ 100m)
Irregular Pruned SC-Depth 1 Seq Tranlsé.};;r(%) Rot. 151‘;(6o 1/ 100m)
Structure Pruned SC-Depth 1 Seq Tranzsél.}i;r(o/ o) Rot. Ergr(; 2/ 100m)
Pattern Pruned SC-Depth 1 Seq Tranlsi .]i:r))r(o/ o) Rot. ElZ(go 9/ 100m)

TABLE 4.2: Numerical comparison between models of

KITTI sequence 10

4.2 Results

In this section, numerical and visualization results are given to
evaluate the improvements that pruning strategy could make while
training on small datasets.

4.2.1 Error Comparison

Each sequence in sequence 00-07 is used once for training an original
network and the pruned network. The mean translation error and
rotation error are compared in Table 4.1 and Table 4.2.

Table 4.1 and Table 4.2 together indicate that when the dataset
size is greatly reduced, the translation error and rotation error are
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significantly increased. For instance, the translation error of sequence
09 trained by SC-Depth for the large dataset is 8.24% while the
translation error trained by the same model for the small dataset is
14.92%, which is increased 1.8 x. The rotation error of sequence
09 trained by SC-Depth for the large dataset is 2.19 °/100m, while
the rotation error trained by SC-Depth for the small dataset is 5.116
°/100m, which is 2.33 x greater. Nevertheless, the test errors on
sequence 10 increase much less. When training SC-Depth with large
and small datasets, the translation error is comparable, 12.45% on
large datasets and 12.89% on a small dataset.

However, although the test error of training on a small dataset
increases a lot compared to the SC-Depth algorithm trained with a
large dataset, the performance is still superior over certain previous
work to some extent. For example, the translation error of sequence 09
trained by SC-Depth for the small dataset is 14.92%, yet the translation
error trained by Zhou et al.*°! is 17.84%. Moreover, the rotation error
of sequence 09 is also reduced from 6.78 °/100m to 5.12 °/100m. The
reduction is even more for sequence 10 since the translation error
oft*l on sequence 10 is 37.91%, and the translation error of SC-Depth
trained on the small dataset is only 12.89%, which is a reduction of
1.94 x. As for the rotation error, it is also reduced from 17.78 °/100m
to 5.03 °/100m, which is a reduction of 2.53 x.

When it comes to the performance of pruned SC-Depth model
while training on small datasets, although different pruning strategies
obtain different results, overall both translation error and rotation
error on sequence 09 and sequence 10 reduce compared to normal
SC-Depth. Take sequence 09 as an example; the translation error of
irregular pruned, structure pruned and pattern pruned SC-Depth are
12.24%, 17.05% and 13.00%, respectively, all of them are smaller than
normal SC-Depth trained on small datasets, i.e., 18.36%. Compared
to previous work!®”], the error reduction on sequence 10 is even more
significant: translation error of pattern pruned SC-Depth is reduced
by 2.32 x, and the rotation error is reduced by 2.56 x. Therefore, it
indicates that the pruned SC-Depth is more powerful while dealing
with small datasets.

Theoretically, irregular pruning surpasses the other two pruning
strategies on sparsity since it could filter out the weights that make
least significance on performance and prune them. However, the
ideal sparsity for different tasks differs and it usually takes long
time for experiments to find out. In this experiment, to compare the
performance among different pruning strategies, the sparsity is set to
be the same. As shown in the results, while testing on sequence 09, the
error of irregular pruned SC-Depth is the smallest among the three
pruning strategies. However, while testing on sequence 10, pattern
pruned SC-Depth performs the best. Nevertheless, no matter which
pruning strategy performs the best, experimental results obviously
have shown that both irregular and pattern pruning strategy surpass
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the basic SC-Depth. Thus, it is safe to conclude that involving
pruning strategy can make improvements while training a deep
neural network on small datasets.

4.2.2 Visualization Results

In this subsection, the visualization results of SC-Depth and Pruned
SC-Depth trained on small datasets will be presented, the predicted
and true trajectory paths are given for the baseline (base SC-Depth)
and pruned SC-Depth by different pruning strategies.

From the visualization plots, the accuracy of prediction can be
seen more intuitively. Similar conclusion could be drawn from this
subsection as well: pruned SC-Depth could predict the trajectory
more accurately.
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Irregular Pruned SC-Depth
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Pattern Pruned SC-Depth
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4.3 Discussion

Theoretically, many datasets have been challenging under the context
of computer vision, but each dataset has its focus. As for the visual
odometry task, KITTI is the most important dataset to evaluate
performance, especially for deep learning frameworks.  KITTI
provides raw images, and ground truth of camera poses thus is
superiority over other datasets of the same category. Therefore, the
experiments presented in this section are all based on the dataset
KITTI. To make evaluating results more reliable, the translation and
rotation errors of normal and pruned SC-Depth presented in Table 4.1
and Table 4.2 are mean values calculated from several experiments.

Camera calibration is a requirement while implementing the SC-
Depth, although it can be a drawback compared to DeepVO[S], the
much better accuracy and unsupervised learning framework of SC-
Depth can easily surpass DeepVO. Additionally, camera calibration
is certainly a much simpler task in practical use than collecting the
ground truth of camera poses for the training dataset.

As for the pruned SC-Depth, the patterns given in the pattern set
are 3 x 3. Thus only 16 convolution layers can be pruned. According
to the patterns given in Fig 3.5, the sparsity of the pruned layers is
55.6%. The patterns are usually given manually so that the shape can
influence the performance. Tons of experiments could be done to find
an optimal. However, the time cost was unacceptably high at the time,
I could only test on a couple of pattern combinations. Implementing
reinforcement learning to search for best patterns is also an option,
and it could be addressed as future work.

Other pruning strategies like channel pruning and filter pruning
can also be added to increase the sparsity further. A combination of
different pruning strategies could also be addressed as another future
work.

Another benefit of pruning is discovered during the experiments,
i.e., the inference process is accelerated. The inference time on testing
2792 images with the original model is 179 seconds, while it only costs
173 seconds for the pruned mode, saving 6 seconds for 2792 images.
Although not countable, the computation cost is also saved due to
the sparsity in the model. The saved time and computation costs will
increase along with sparsity in the model.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

For the specific task related to the soft medical robot given by Inria,
if the estimation of the pose of the camera is accurate and applicable,
the implementation of the sensor could be safely removed. Thus, both
the budget and complexity of implementation could be greatly saved.
However, the main challenge is the extremely small size of training
dataset. To further promote the project in many other scenarios and
make it more general, i.e. when dataset is too small to train a model
for visual odometry tasks, how can we improve the accuracy, in this
project, an effective pruning strategy is proposed to solve the problem.
Moreover, since the model is somehow pruned, the inference process
will involve less computation and time costs. Thus, the inference
process will be accelerated.

In summary, the primary objective of this study is to improve
the accuracy on deep neural network models while training with
small datasets on visual odometry tasks and accelerate the inference
process.

Visual odometry has been a classic task and has been studied for
a long. Deep learning models have been introduced to solve visual
odometry tasks until recent years. Thanks to the good accuracy, much
more studies have been focusing on improving the deep learning
framework these years.

It is not hard to imagine that many datasets are too small to take
advantage of the novel algorithms in practical use. However, in this
context, the dataset is too small to train a deep neural network and
obtain a good prediction. Moreover, it is not the only case for deep
neural networks (DNNSs) to deal with small datasets. Therefore, this
study’s main focus is to make such DNNs work for small datasets
under the visual odometry context.

One of the most state-of-the-art end-to-end unsupervised learning
frameworks is the SCI?’l. The advantages of the study state in
high accuracy and unsupervised learning framework. Therefore, this
graduate project will be extended to the SfMLearner to deal with small
datasets.
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To operate experiments on small datasets, the training set of KITTI
is reduced from 8 sequences to 1 sequence in this project. To make
experimental results more general and reliable, experiments are done
several times on different training sets of the same size, and the
average value is presented in Section 4.

Pruning is a powerful strategy for compressing a deep model
and fitting it with small datasets. However, many different pruning
strategies are possible options. As analyzed in Section 3, pattern
pruning is surpassed compared to other pruning strategies. Patterns
are usually manually designed and given in a pattern set. In this
study, the patterns are in the shape of 3 x 3. Thus inconsistency with
convolution layers and the 16 convolution layers are pruned with a
sparsity of 55.6%.

According to the detailed discussion in Section 4, as a summary,
pruning a deep network has benefits as follows:

* Improving accuracy while training on relatively small datasets.

¢ Accelerating inference process.
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5.2 Future Work

As explained in previous section, experiments on INRIA Dataset are
temporarily not available since intrinsic parameters of the camera are
not known. Fortunately, camera calibration is not a difficult task. The
experiments can definitely be done as soon as the camera is reachable.

Moreover, there are also many other pruning strategies that we
could use to solve the problem, such as connectivity pruning. Plus,
we could also try to combine the different pruning strategies together
to achieve an even better result. Therefore, my plan of future work is
stated as follows:

¢ Shooting images of a chessboard with the camera, calibrating
the camera and obtain the intrinsic parameters.

* Same as the experiments operated on KITTI dataset, I will
operate experiments on INRIA Dataset as well.

* Investigate other pruning strategies and operate experiments.

e Combine different pruning strategies and see if there will be
further improvements.
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