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Abstract

Gyro is a deep spiking event-based deep belief network architecture used in a range of Edge-AI
applications. The existing Gyro architecture consists of a neuron model based on a timer and
input encoded with temporal information. The model was not wholly event-driven, instead using
complex, time-dependent calculations to calculate each neuron’s membrane potential. The current
system also utilises BRAM for storing its synaptic weight values which can pose the issue of lower
maximum value compared to the use of alternative memory types. The synaptic weight storage
is done in a parameterized manner, allowing the user to configure the throughput of the network.
The use of round-robin schedulers to arbitrate the input and output was also found to be memory
inefficient for large networks. Furthermore, Gyro does not currently support fully event-driven
spiking neurons and recurrent connections, limiting the potential accuracy that can be achieved by
the system for a relatively lower number of physical neurons.

Inspired by the capabilities of a spiking neural network, this work aims to develop an efficient
architecture to run an event-based recurrent spiking neural network on an FPGA platform. The
availability of the large and fast on-chip memory enables implementation of networks with a large
number of neurons and synapses in a parallel manner. This project focuses on improving the exist-
ing deep spiking event-based deep belief network architecture named Gyro. Since the initial version
of Gyro’s Edge-AI architecture, the scope of improvement has been broad, including but not limited
to enhanced functionalities, reduced memory consumption, reduced complexity of the design and
computations, improved energy efficiency and reduced power consumption.

Exploration of different types of memory elements on an FPGA provided with possibilities on
how these synaptic weights can be stored using on-board memory, but not limited with an upper
boundary on the available memory as low as that of BRAMs. An investigation into how the network
can be redesigned to incorporate recurrently spiking neurons was conducted, making the system
truly event-triggered. This meant that time-dependent calculations were removed along with redun-
dant computations, making the neuron model much simpler. The recurrent spiking functionality
was backed up by a synaptic weight memory mapping which supported recurrent synaptic weights.
Moreover, round-robin arbiters were replaced with sequential schedulers.

The resulting architecture was functionally verified on a Register Transfer Level, simulations and
analysis of which concluded the following. The neuron model was made fully event-triggered and
memory efficient, without any redundant computations. The network supports recurrently spiking
neurons which is achieved by studying and using different types of on-board memory. Memory
requirements were also reduced due to the replacement of round-robin schedulers. The change in
the network at the fundamental level meant that the network inputs and outputs are less complex.
The system also attains higher throughput compared to its previous iteration.
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Chapter 1

Introduction

Neuromorphic computing or neuromorphic engineering is a field that focuses on the synthetic equiv-
alent of neuro-biological networks present in the nervous system, implemented using VLSI (Very
Large-Scale Integration) systems. It aims to imitate how a nervous system works by incorporating
and realizing the parameters that affect a biological neural architecture. Neuromorphic architec-
tures emerged as early as the 1980s as a more feasible alternative for neurological models that
compare well to the biological brain. The main advantage of neuromorphic computing is its ability
to provide an energy-efficient way to enable intelligent algorithms on hardware [26]. Factors like op-
timal architectures for efficient computation, learning, development and adapting to local changes
in inputs are critical deciding aspects in neuromorphic computing. These can vary depending on
the field of application, spanning multiple disciplines like biology and chemistry [4], data science
and image processing [30], and robotics [35].

The realization of different network architectures over the years has various applications, for
which they are optimized. While the conventional hardware implementations are based on massive
parallelism for neuromorphic computing, Edge-based applications have constantly been evolving.
These are applications where the system that uses a machine learning algorithm processes data
locally on the device. Memory requirements and massive computations are the challenges for effi-
cient implementations since these are dependent on the hardware. Architectural optimizations can
further reduce latency and power consumption without a reduction in computational accuracy or
throughput. This is where FPGAs (Field-Programmable-Gate-Arrays) come into play, as FPGAs
are versatile, which suits well for the realization of a neural network with sparse activity on them
and the architecture specific custom hardware optimizations. Hardware implementations involving
off-the-shelf components, opt for FPGAs because of its efficiency. Furthermore, inherent parallelism
and scalability of neural networks can be exploited on FPGAs, without demanding high resource.

Current technological leaps in artificial intelligence using machine learning and deep learning
signify the importance of brain-inspired neuromorphic computing elements [29]. Machine learning
algorithms have evolved to implement neural networks that have become increasingly complex over
the years. However, the requirements for such computing elements in energy consumption, area or
computing power have low tolerances. In a traditional Von Neumann architecture, time and power
are required in the extremities since the algorithms have increased computational density. This
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bottleneck is overcome using novel architectures and running these neural networks on dedicated
hardware, which can provide massive parallelization in computing [15]. In this project, one such
implementation of neural network, Gyro, on a dedicated hardware is being explored with the aim
of design optimization and performance improvement.

Gyro implements a Spiking Neural Network (SNN), which is an event-driven neural network
with sparse activity, modelled after biological neural networks. Implementation on FPGA provides
the advantages like flexibility and parallelism in terms of architecture design. On-chip memories
are used to store the synaptic weights to ensure a high memory bandwidth as opposed to off-
chip memory. It uses a parameterized method to map the synaptic weights to on-chip memories
facilitating both feed-forward and feed-back networks. The weight memory mapping parameters
offer a configurable trade-off between forward and backward throughput and hardware resource
utilization. Furthermore, a hardware efficient LIF neuron model has been implemented to avoid
the necessity of neuron time-multiplexing. The neuron model uses time-dependent input for its
computations. Gyro achieved a classification accuracy of 99,3% on the MNIST dataset using a
network of 2954 neurons which is among the highest of the related SNN implementations. Gyro
paved a way for deploying SNNs on power and energy constrained systems, and achieved an energy
efficiency superior to all the related works.

1.1 Problem Statement

The focus of this work is the Gyro architecture [5], which is implementation of a spiking neural
network on a FPGA, supporting forward and backward spike propagation in a time-dependent man-
ner. While this implementation leverages custom hardware, parallel processing, on-chip memory
and performs adequately in terms of efficiency, the main goal of this project was to improve memory
and power requirements, efficiency of computations, and functionality. This is mainly because of
how the application of Gyro consisted of Edge deployment. Specifically, the time-dependency of the
computations in the neuron model meant the system is not event-driven in nature. This is crucial
when it comes to memory requirements of FPGA implementation. The current Gyro architecture
also only supports feed-forward networks - the lack of recurrent connections can decrease the pre-
dictive power of the network. Gyro is designed for edge-computing applications such as drones,
which are defined by their operation at or near the source of the data, and therefore the need to
operate independently of a central data center once deployed. This means that there are limited
resources available, requiring that Gyro needs to be further optimized for computational efficiency.

The research question being ”Can the sparsity in time and space of a neural network be exploited
to reduce power consumption and memory requirements?” Exploration of potential solutions meant
significant changes to the architecture in terms of performance of the existing Gyro architecture.

This project therefore focuses on the following sub-questions and exploring the pathways:

• Event-triggered systems are preferred for designs where resource utilization is required to
be optimized [28]. Moreover, event-triggered systems are scalable when compared against
time-triggered systems [14]. How can the system be made event-driven in nature and thereby
reduce memory consumption? How can the event-driven nature of the SNNs be exploited to
implement a much more memory efficient architecture?
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• Spiking neural networks are sparse in nature. What is the potential of exploiting this sparse
nature that could result in an improvement in terms of performance gains or memory require-
ments?

• Current architecture of Gyro supports feed-forward and feedback connections in the network.
It does not support recurrent connections. Can the architecture be modified such that it
supports recurrent connections? How does this change affect the predictive power of the
network?

• Gyro focuses on Edge-AI applications. How can the memory and power requirements be
reduced since computations are done locally on the system?

• Computations consume memory and power, and increase the complexity of the design for
hardware implementation. Does the system contain redundant computations, and if so, how
can it be removed to reduce the complexity of the design?

• Both the network architecture and the hardware have the potential to support parallelization
in its implementation. Is the parallel nature of the architecture fully utilized? If not, how can
it be implemented using the custom hardware?

• The architecture supports networks of different sizes. Does the system benefit from the
scalability of the network? How can this prove to be useful for making the system more
dynamic?

1.2 Scientific Contributions

Overall improvement of the architecture includes improved efficiency in terms of power and compu-
tations by taking advantage of the said event-driven and sparse nature of Spiking Neural Networks.
The design changes were made in such a way that it does not increase latency, reduce throughput,
or reduce accuracy, of the system.

This work, the second iteration of Gyro architecture, therefore contains the following improve-
ments in terms of design and functionality:

• Removal of timestamp and tracking of time, and making the neuron model event-driven in
nature by using a trigger signal

• Reduced memory requirements in architecture for implementation of a network that compares
based on the same application test cases

• Elimination of redundant computations, thereby reducing the design complexity and playing
a crucial role in reduced resource consumption

• Extended capability to handle recurrent spikes using a weight memory mapping patterns for
synaptic weight storage

• Increased throughput by handling recurrently spiking neurons

• Reduced memory overhead using sequential schedulers instead of round-robin arbiters
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1.3 Section Overview

The report structure for the master’s thesis is as follows. Relevant background information on spik-
ing neural networks and FPGA implementations, for understanding the work is described in chapter
2 along with a glimpse into the results of the first version of Gyro architecture. Literature study is
chapter 3 which contains a brief description of similar implementations to the Gyro architecture,
mainly FPGA implementations. The design of the modified Gyro architecture is explained in detail
in chapter 4. VHDL implementation and simulation results are in chapter 5. The evaluation results
of synthesized design are explained in chapter 6. Chapter 7 is conclusion of the work along with
possible improvements that can be implemented in future.
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Chapter 2

Background Material

There exists different types of artificial neural networks, with different models and algorithms to
implement the core computational element. There are also different platforms when it comes to
hardware implementation of neural networks. Specific model of computing element, the type of neu-
ral network, relevant hardware implementation and a brief description of the focus of this project
is explored in this chapter.

The neuron model chosen for Gyro has its advantages when it comes to hardware implementation
due to the simplicity of the algorithm. Spiking neural networks are event-driven in nature and closely
resembles or mimics a human brain, and is the type of network used by Gyro. Deep spiking neural
networks define a network topology using the spiking neural network as its backbone. When it comes
to hardware implementations of deep spiking neural networks, current technology offers different
platforms, each unique with its own advantages and disadvantages. Among these platforms, FPGAs
are custom hardware with different types of memory elements available, having different use cases.
Gyro uses a combination of these aspects for its FPGA implementation.

2.1 Leaky Integrate-and-Fire Model

Neurons are the main computing elements in a neuromorphic computing systems. The realization
of neurons can be done with different complexities, each model being optimized for a specific
application or network configuration. Among these models, the Leaky Integrate-and-Fire (LIF) is
one of the simplest models with ease of simulation and analysis. In its simplest form, the neuron is
modelled as a RC-filter, a circuit with a resistor and capacitor in parallel. A LIF neuron model is
described as:

τm
dV m(t)

dt
= −Vm(t) +RmI(t) (2.1)

where V is the membrane potential at time t, Rm is the membrane resistance and Cm is the
membrane capacitance, with τm=Rm*Cm being the time constant, and I is the total input current.
The temporal evolution of membrane potential of a typical LIF neuron model is shown in figure 2.1
along with the input and output spikes.
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Figure 2.1: Membrane potential temporal evolution of a LIF neuron [23]

When a neuron receives an input spike, the synaptic weight associated to the spike is integrated
to the membrane potential. When this membrane potential is above the threshold voltage Vth, the
neuron fires an output spike, and the membrane potential is reset. The neuron retains this state for
a fixed amount of time, known as refractory period, ∆trefr, during which time period input spikes
are not integrated and output spikes are not fired. Membrane potential retains the reset value
during this period and will not change. This is where the time-dependent data arises in the neuron
model. The leakage is an exponential decay of membrane potential which is observed between every
input spike and in refractory period. The neuron needs to store the previous input spike time and
is compared to the current input spike time to calculate the decay voltage. The output is decided
after comparing the potential to the threshold value and can be defined as:

xlj(t) =

{
1, if V l

m(t) > Vt and t− tspike > Tr

0, otherwise.
(2.2)

where tspike is the last time step at which neuron fired and t is time. Tr is refractory period.
Vm and Vt are membrane potential and threshold voltage, respectively.

2.2 Spiking Neural Networks

Spiking Neural Network is directly inspired by a naturally occurring neural networks, mainly a bio-
logical brain. SNNs easily enable low power hardware evaluation. The event-driven nature of SNN
makes it efficient for both computation and communication [24]. Its operating model consists of
neuronal state and synaptic state, in which neurons transmit information only when the membrane
potential overcomes a threshold voltage. The information is propagated between neurons in the
form of spikes. The neuron receives input spikes from other neurons and integrates them into its
membrane potential. Each neuron fires a spike when the membrane potential reaches the threshold
value. The spike is then propagated to other neurons depending on the network configuration,
like feed-forward, recurrent network, etc. The connections between the neurons are implemented as
synapses weighted according to the network topology. A post-synaptic neuron receives the weighted
activation w value, which is multiplied with the pre-synaptic value x.
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y =

n∑
i=1

xi ∗ wi (2.3)

This is a linear perceptron, and non-linearity is what plays a crucial role in neural networks.
To implement that, a non-linear function F known as activation function is applied onto y. The
network can learn non-linear dependencies because of the activation function.

y = φ(

n∑
i=1

xi ∗ wi) (2.4)

A neural network can have different network configurations. With each layer containing a spe-
cific number of neurons or computing elements and the number of layers depending on the network
size, the interconnect of neurons decides the network topology, which in turn affects the neuron
architecture and its computations [3]. A Fully Connected Network will have all neurons in one
layer connected to every other neuron in its adjacent layers. These connections are synapses, which
means that for two layers of n1 and n2 number of neurons in a fully connected configuration, they
will have n1 ∗ n2 synapses. Other configurations include Feed-Forward Networks, Recurrent Neu-
ral Networks (RNN), Boltzmann machines, Deep Belief Network (DBN), etc. The combination of
feed-forward and feed-back network topology is advantageous compared to a strictly feed-forward
network. It can integrate multi-sensory inputs and do predictive error correction, made possible by
the recurrent connections.

SNNs also take advantage of event-driven nature by updating the neurons only when there is
a spiking activity. In contrast to synchronous systems, the neurons are not updated at every time
step. The amount of computation required for such synchronous systems are much higher when
compared to event driven spiking neural networks.

Spiking Neural Networks require equal or lesser number of computing elements to realize a
function, when compared to artificial neural networks or convolutional neural networks, depending
on the function. Since the information propagated also contains the element of time in some
format, it enables SNNs to extract temporal information from this time dependent data, much
more efficiently.

2.3 Deep Spiking Neural Networks

A Deep Neural Network (DNN) is a type of Artificial Neural Network composed of many layers
between the input and output. These have the same components as other neural networks, like a
neuron, synapse, axons, weights, etc. DNNs can model complex non-linear relations.

DNNs are usually designed as feed-forward networks. Data flows to the output layer from the
input layer without looping back. The extra layers have proven to be much more effective in ap-
proximating sparse multivariate polynomials than shallow networks [25]. At first, the DNN assigns
random weights to the synapses, which is multiplied with the input to return an output between
0 and 1. If the pattern is not recognized accurately, the algorithm adjusts the weights. This way,
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some parameters become more influential until the correct mathematical manipulation to process
the data entirely is determined.

Varying architectures of DNNs are used depending on application. Recurrent Neural Networks
are configured in such a way that data flow is enabled in every direction, not limited to only forward
connections, and is used for applications involving language modeling. Convolutional Deep Neural
Networks are particularly effective for computer vision and natural language processing.

A Spiking Neural Network is a DNN with neuron models inspired by the biological neuron model.
These neuron models are designed to mimic the nervous system, which transmits sharp electrical
potentials across the cell membrane, which are called action potentials or spikes. These spikes
are transmitted across the axon and synapses to many other neurons, the primary information
processing units. LIF neuron models are such spiking neuron models that are mathematically
simpler. The membrane voltage is described as a function of input current, without being dependent
on biophysical processes that decide the action potential.

2.4 Hardware Implementation of Neural Networks

Hardware implementation of a neural network is a task that depends on the targeted application
and the resource requirements. When comparing a Spiking Neural Network and an Artificial Neu-
ral Network (ANN), spiking hardware is intrinsically sparse in its activity. Low power machine
applications benefit from this, along with better performances in accuracy and computation cost
on event-driven datasets. Therefore, the hardware requirements differ in terms of area, power,
flexibility, etc.

Relevant applications include neuromorphic sensor processing, and signal analysis, such as sili-
con retina, silicon cochlea, sonar, radar, lidar, etc. The SNN for this application focuses mainly on
basic building blocks useful to run the streaming tasks as in [38], but as a first step, the accelerators
designed are benchmarked on the MNIST digit recognition dataset (Modified National Institute of
Standards and Technology) [5]. DBNs are composed of many processing elements and even more
synaptic connections. With all the neurons operating parallelly, the number of computations is Giga
Synaptic Operations per Second (GSOPS). This does not suit the sequential nature of a general
CPU, and the resource constraints and energy requirements are not met on a CPU. GPUs, on the
other hand, can handle the computation due to the parallel computing architecture. Still, it is a
power-hungry system that does not suit the application and the event-driven nature of SNN.

Implementation of SNN on custom hardware has proven to improve the network’s final accuracy
while reducing the memory requirements [6], [16]. This is because a custom hardware design can
provide the versatility required for this specific need. It can be a parallel computing architecture
optimized for event-driven configurations and meets the required power constraints. This increases
the efficiency in terms of computation, energy, and latency. The event-driven approach also does
not need a digital clock since it is asynchronous. When designing the custom hardware on a Field
Programmable Gate Array (FPGA), the system configurations’ changes can be quickly adapted
without incurring additional hardware costs.
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2.5 Memory Elements in FPGA

Memory Efficiency is defined as the throughput achieved per unit on-chip memory consumed. High
throughput means more data bits can be transferred per unit time or clock cycle. When it comes to
an FPGA, different types of memory are available, each having its own pros and cons. Some of the
memory elements in FPGAs are Flip-flop, Distributed RAM, Block RAM (BRAM) and Ultra RAM.

Flip-flops are the default memory elements for saving a digital state. A single flip-flop stores a
single bit and are synchronous in nature. They are ideal for smallest memories since their numbers
are limited. Flip-flops are also spread throughout the FPGA which makes it difficult to route larger
memories. Flip-flops also do not support multiple ports for read and write operations. Distributed
RAM is built with Look-Up Tables (LUTs) and are mainly employed in creating the logic of a
design. A LUT with 6 inputs can store upto 64 bits. It supports read from upto four ports but
writes are limited to a single port (depending on the FPGA). Distributed RAM is ideal for fast
buffers because it supports asynchronous read and values can be used immediately, but are not
suited for large memories.

Block RAM is implemented using dedicated circuitry on FPGAs and are better than distributed
RAM for larger memories. BRAMs support true dual-ports (2 read/write ports with independent
clocks) and are flexible in organisation [9]. For example, 36 Kb BRAM blocks can have data widths
of 1, 2, 4, 9, 18 and 36 bits, of varying memory depths, depending on which the amount of data that
needs to be stored could be increased or decreased. If usage is restricted to simple dual-port (one
read and one write port) then data width can be upto 72 bits. For a reduced maximum data width,
36Kb block can be split into two blocks of 18Kb each. Ultra RAM has bigger capacity (usually
8 times regular BRAM) compared to BRAM but less agile. Ultra RAM also does not support
independent clocks when dual-ported.

2.6 Gyro

Gyro is a custom event-driven architecture that implements a spiking DBN on an FPGA, and it is
the focus of this project. The usage of SNN in Gyro implies that the network is capable of high
computation and that power and energy requirements are kept in check. The input spikes are re-
ceived from event-driven neuromorphic sensors. The network topology includes both feed-forward
and feed-back connections based on layered structure of fully connected neurons, with the weight
connections, mapped to on-chip memories. The neuron model is a LIF neuron, and this being a
simplified model, the hardware resource requirements are reduced [3]. Calculating membrane po-
tential requires exponentiation, which is approximated using bit-shifts. All neurons in a layer are
updated simultaneously. Using an event-driven algorithm means that unnecessary computations
are eliminated. The main focus of Gyro is on flexibility, and it can deploy arbitrary sized SNNs
with a configurable trade-off between performance and hardware resource requirement.

Gyro uses a digital spiking neuron model based on an event-driven LIF neuron algorithm as its
computing element. All the neurons in a layer are fully connected and are therefore updated simul-
taneously. The implemented neuron model also avoids negative values for the membrane potential.
A time-driven algorithm loops through the time-steps for the input spikes, while an event-driven
algorithm loops through the spike events, ensuring that computations happen only on demand. The
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membrane potential leakage is implemented using hardware efficient bit-shifts as opposed to using
Tailor series, which can be resource heavy and time consuming. Usage of refractory time period
means that the membrane potential remains zero after an output spike, even if it has received new
input spikes. A behavioral model of the LIF neuron model can be seen in figure 2.2.

Figure 2.2: LIF neuron model

The synaptic weight are distributed over the on-chip memories in such a way that it deter-
mines the memory bandwidth and the system throughput. The synaptic weight matrices contain
the weights for both forward and backward connection. Trade-off can be made between forward
and backward weight accesses, depending on how they are mapped in the memory. For example,
in figure 2.3, a simple 4 by 4 network can be seen, along with 2 patterns in which the synaptic
weights can be stored. In the first pattern, when a neuron in the visible layer Vn spikes, all the
weights can be read in a single read. This gives a throughput of 4 neuron updates per clock cycle.
However, when a neuron in the hidden layer Hn spikes, 4 reads are required to fetch all the weights,
and the throughput is one neuron update per clock cycle. In the second pattern, only two reads
are required for both the scenarios, and the resulting throughput is 2 neuron updates per clock cycle.

Figure 2.3: Sample network and weight memory mapping patterns

Since gyro implements networks in layered structure, seen in figure 2.4, there is a layer module
for each layer of the SNN. It consists of spike queues, which receives one or two streams of input.
The weight controller module fetches the synaptic weights from the memory, depending on the
source of the input spikes. The neuron wrapper contains the LIF neuron cluster along with the
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spike arbitration. The timer module provides temporal information, which is required for the cal-
culations in the neurons. The AXI4-lite interface is used to configure the parameters of the network
with a set of registers. The main input of the network are spikes that stream into the spike queue
at the input of the first layer module. The spikes can either be streamed in directly or they can be
generated using mean-rate spike generators. The output of the network are the spikes at the output
layer. There are three ways to monitor the behavior of the output layer. The literal spikes can
be streamed through a buffer and the Inter-Spike Interval (ISI), and a low-pass filtered membrane
potential is computed for each neuron at the output layer. Each weight memory contains one or
more true dual-port on-chip memories.

Figure 2.4: Gyro SNN architecture

The performance metrics [5] for the Gyro architecture is as follows. A SNN of 784-330-330-10
(i.e. an SNN with four layers, layer 1 has 784 neurons, layer 2 and 3 has 330 neurons each, and
output layer has 10 neurons, each layers having fully connected neurons between them) configuration
uses 53466 LUTs, 48310 Flip-Flops, 100 BRAMs, and 10 DSPs in terms of resource consumption
and performance. This network has a clock frequency of 250 MHz and uses 2008 mW of power.
A feed-forward network of 2954 neurons and 1,608,440 synapses achieved a peak throughput of
40,71 GSOPS. The energy efficiency varies depending on network size, mapping parameters, and
clock frequencies, from 0,050 nJ/SO to 0,151 nJ/SO. Gyro achieved a classification accuracy of 99,3
percent on the MNIST dataset using a network of 2954 neurons and 99,7 percent on the sensory
fusion task of cropland classification.
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Chapter 3

Related Work

Many implementations of SNNs on FPGA, including the current state of the art and other hard-
ware realizations were explored to understand the working principles and trade-offs of previous
realizations. The optimization of various architectures was usually for performance gains and in
some cases, application dependent. Different neuron models were also used, and some architectures
focus on bio-realistic implementations. Some notable ones are listed in table 3.1.

An architecture with hybrid updating algorithm [10], that is a combination of time-stepped al-
gorithm and event-driven updating, eliminates the need for sorting of events with same timestamp.
The model shows shows a reduced runtime latency by avoiding sorting operations required for even
queues. An event queue is sorted according to the event timestamps Qn in event-driven algorithm
and in time-stepped algorithm, each neuron is updated at fixed time intervals. For the hybrid
model, multiple event queues with timestamps are used, which eliminates the need for sorting of
events with same timestamps. These event queues are managed using a global time-steps, where
at each time-step, queue tagged with Q0 is processed and current time-step finishes, after which,
tags of all queues is decremented by 1. This model has a low power and memory requirements, and
therefore focuses on applications with strict power constraints.

The minitaur [19] and n-minitaur [12] architectures use conventional event-driven models. When
there is an input spike, it checks for firing after the membrane potential has been updated and time
of update is stored. Membrane decay is calculated based on the time difference calculated from this
stored time and is summed with the current input. Emission of spikes from a layer does not happen
until all inputs to that layer have been evaluated. Spike generation is a performance-limiting step
and determining recipient neurons is a memory-intensive task in minitaur. ROM lookup is table
used for neuron decay. In n-minitaur however, the design complexity was reduced, and system
latency was improved. The interface block was modified to handle events from multiple sensors as
input. Redesign of state machines for spike heap, neurocore blocks, and weighing caching strat-
egy provided 2.5-fold improvement. Core frequency was increased from 75 MHz to 105 MHz and
operation frequency of RAM was increased to 264 MHz. Total performance improvement is 4-fold
compared to minitaur. The applications vary; minitaur is suitable for embedded robotics and n-
minitaur is optimized for sensory fusion, which is relevant for this project.
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uCaspian [17] is an event-driven pipelined network. The components operate as a separate stage
of the pipeline with global time synchronization. BRAM utilization allows the design to be flexible
and modular. Within each time-step, the system controller does not proceed to its next step until
every module of pipeline reports idle, after which time is incremented, and a sync pulse is sent. This
method of pausing the system progress is of interest since a spike queue that should be emptied
can be implemented, which requires a trigger to be processed. The highlights of this implementa-
tion are low power requirements and low cost of implementation due to utilization of off-the-shelf
components. The application of uCaspian is best suitable for edge deployment applications, which
is also relevant for this project.

Siegert approximation for LIF neurons for an event-driven SNN can be suitable for hardware
implementation [20]. It also facilitates the demonstration of simulation of sensory fusion of silicon
retina and silicon cochlea. The DBN was trained to associate the visual and auditory stimuli and
integrating both input streams. The advantage is the ability to include inputs from different do-
mains, possibly noisy or ambiguous inputs. The combination provides a more conclusive evidence
of the true label rather than a single modality.

FDF architecture [36] is based on a reconfigurable neural layer, which is implemented using
time-multiplexing. The neuron model performs a leaky integration of the post synaptic currents to
calculate membrane potential. A single physical neuron is time multiplexed up to 20,000 virtual
neurons. A trade-off between speed and network size makes it possible to make the network run
faster. Limitation of time multiplexing is data storage requirement. The on-chip memory used in
this architecture is limited in size, while off-chip memory is limited by bandwidth. The latency
of the design is reduced by implementing a 7 stage pipelining. An address buffer is used, which
generates synaptic weight on the fly without using memory.

Fast SNN [11] is a serial feed-forward network architecture. It uses inter-spike time for internal
calculations and is independent of number of inputs due to the architecture being serial, which
greatly reduces memory requirements. Compared to a parallel architecture, it has a disadvantage
of non-parallelism only for very large networks. Temporal or threshold spike coding is used, which
converts active inputs into a spike train according to the parameters set. It also uses a pipelined
neuron design, which processes n inputs in n+ 1 clock cycles, compared to the usual of one input
in two clock cycles. The neuron model requires only one multiplier and 2 memory blocks for weight
storage and post-synaptic fucntional model. The benchmarking was done using a pattern classifi-
cation problem.

SNAVA [31] is a bio-inspired simulation platform implemented on FPGA for prototyping SNNs
faster than CPUs/GPUs by exploiting the FPGA re-configurability and minimizing implementation
time. A program flexible SNN architecture for efficient SNN simulation with scalability is one of
the main features offered by SNAVA, which allows the simulation of large scale SNN by connecting
multiple FPGA boards.Its features of interest include time-multiplexed neural computations and a
distributed memory system utilizing BRAMs. Specific time slots are used for sending spikes via the
shared channel to obtain the minimum error rate, thereby avoiding spike contention. The program
flexibility is shown by the simulation of three SNN models with different levels of computational
complexity. These features enable the simulation of large scale SNN models at high processing and
communication speed.
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EMBRACE-FPGA [21] is a flexible, reconfigurable architecture with time-multplexed inter-
neuron communication channels. The interconnects are also scalable. Neuron implementation is
visualized as a 2D N ∗ M array of interconnected SNN neural tiles, each connected in 4 direc-
tions. Communication between tiles achieved by routing data packets through round-robin based
ports. Network routers enable propagation of spikes from source tile to destination tile using
time-multiplexing of connection lines.Spikes are queued by buffering of neuron fire requests. Re-
configuration of synapses and synaptic weight modification of different tiles is easily possible, which
is facilitated by the Network-on-Chip (NoC) routers. The design has proved to be compact with
low power requirements, with high synaptic densities compared to other hardware implementations.
This architecture is more applicable towards fault tolerant embedded computing, adaptive environ-
ment applications, etc.

Bluehive architecture [18] is a scalable architecture for simulation of SNN in real-time with a re-
configurable communication topology. It focuses on a communication centric approach rather than
computation centric design, allowing simulation of large networks. Network topologies demanding
high bandwidth and low-latency communication are suitable for Bluehive. It uses Izhikevich spiking
neuron model and evaluates inputs in continuous time using floating point arithmetic.

The adaptive spiking recurrent neural network (SRNN) [38] achieves a state-of-the-art perfor-
mance compared to other SNNs and in some cases that of classical RNNs while exhibiting sparse
activity, even though it is not a FPGA implementation. The result is attained by modeling stan-
dard and adaptive multiple-timescale spiking neurons as self-recurrent neural units. The adaptive
spiking neurons were effective because of training the individual time-constants of the neurons. The
adaptive spiking neuron maintains a multiple-timescale memory due to having two time constants,
and this allows the memory in the network to be adapted to the temporal dynamics of the task.
The network was tested with significant energy efficiency, in applications such as sequential and
streaming classifications benchmarks, QTBD waveform classification of ECG, and other applica-
tions on low power always-on edge computing devices.

RESPARC [2] is a reconfigurable architecture that utilizes Memristive Crossbar Arrays (MCA)
for its energy efficient implementation of deep spiking neural networks. The crossbars store the net-
work weights which enables in-memory processing.The event-driven nature of SNNs is also utilized
for achieving the energy efficiency. Different spiking network topologies with applications such as
digit recognition, house number recognition, object classification etc. are mapped onto RESPARC.
The design also highlights the importance of weight bit precision and how it contributes towards
the energy consumption and area of the memristive device. The power and memory bottlenecks of
modern computing systems are circumvented in this architecture by combining energy benefits of
post-CMOS technologies and event-driven nature of bio-inspired SNNs.

The bio-realistic model [1] focuses on implementation of a bio-realistic spiking neural network
composed of Izhikevich neurons which works in hard real-time, i.e., it keeps the same biological time
of simulation at the millisecond scale. The architecture of network implementation allows working
on a single computation core. Different networks ranging from independent-neuron configuration
to all-to-all configuration or a mix of several independent small networks can be configured. This
model requires only a single multiplier for its computational core, which can reproduce the required
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firing activities. It also allows to freely scale and configure the network, including different neuron
models and different network connectivity. This architecture is used for development of Brain Ma-
chine Interface for neuroprosthesis. It is also efficient in resource consumption, and allows scaling
of the network due to low resource requirements.
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Chapter 4

Design

This chapter presents the design changes implemented to the existing Gyro architecture. The
neuron model is described in the first section with the event-driven network update algorithm.
Following that, the architecture is described in a bottom-up manner, covering the weight memory
mapping, network layer, finite state machine, spike queue, weight controller, neuron wrapper, and
the external interface.

4.1 Neuron Model

The basic neuron model is based on LIF model described in section 2.1. The LIF neuron model with
minimal changes was implemented.For every spike from a neuron i in the visible layer to neuron j
in the hidden layer, the membrane potential of neuron j is updated. It is increased or decreased
with a step of size W ij . The event-driven network update algorithm was adapted for improved
functionality and reduced resource consumption. Previously, every input spike was represented as
a combination of a timestamp and the neuron source address. In the updated neuron model for
modified Gyro architecture, the time element is removed from every calculation. Timestamp was
also used to calculate the decaying membrane voltage of the neuron. Removing timestamp allows
the system to take advantage of its sparsity in time and thereby reduces the resource consumption
and reduces the number of mathematical operations performed per input spike.

Figure 4.1 shows the block diagram for the updated neuron model. The dotted elements and
gray modules were removed. These were timestamp input, refractory time calculation block and
membrane voltage decay module.

The neurons in a layer are updated simultaneously since it is a fully connected network. To
include the functionality of neuron evaluation upon a trigger signal, the algorithm is modified by
removing time-dependent values and calculations. The membrane potential is set to zero if it goes
to a negative value. Since it is an event-driven algorithm, the neuron model performs the compu-
tations only upon spiking activity.
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Algorithm 1 Event-driven LIF neuron update independent of time

Require: set of Source neurons Ssrc ∈ 1..N corresponding to every Input spike Is
Require: set of Destination neurons Sdst ∈ 1..M
Require: set of synaptic weights W ∈ RNxM

Require: active high toggle signals tick and decay
for f in Is do

for s in Ssrc do
for d in Sdst do

V i
m ← V i

m +WSk
src,i

if tick = 1 then
if decay = 1 then

V i
m ← V i

m · 0.5
end if
if V i

m > Vthr then
Spike()
V i
m ← V i

reset

else if V i
m < 0 then

V i
m ← V i

reset

end if
end if

end for
end for

end for

Figure 4.1: Revised neuron model

The neuron now evaluates input spikes based on an internal trigger signal. This signal, ‘tick’,
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triggers the neuron to compare its membrane voltage to the threshold value depending on which an
output spike is produced. This provides more control over the system since this signal can also be
modified to be a user input and/or an external signal. Until a ‘tick’ signal is received, the neuron
accumulates its membrane voltage. So, in definition, the time-period between two ‘tick’ signals are
considered as a chunk of time and all the input spikes that is inside that period is accumulated
until the ‘tick’ signal is received, upon which an output spike is produced depending on whether
the membrane voltage is above the threshold voltage or not.

The neuron model follows the algorithm in Algorithm 1. No action is performed until an input
spike or tick signal is received. Upon receiving a spike, it updates the membrane voltage by adding
the input synaptic weight to the current membrane voltage. This cycle is followed and membrane
voltage is incremented until a tick signal is received. This triggers the comparison of the membrane
voltage against the threshold voltage and an output spike is produced depending on the comparison
result.

The decay of membrane voltage is implemented using a shift register which calculates a 50
percent decay before evaluation against threshold. Since this is a fixed decay and not a time-
dependent value, no dynamic calculation is needed. Decay of the neuron voltage can be enabled or
disabled depending on the use case scenario. Decay is not calculated for every input spike, thereby
eliminating redundant computation. The neuron model also discards usage of refractory time since
the time element itself is removed from the design. This enables immediate processing of input
spikes without any delay, and no input spikes will be unaccounted for.

4.2 Architecture

One of the many advantages of using custom hardware is the versatile nature of the different types of
available on-chip memories. In FPGAs, the on-chip memories being close to computations achieve
lower latency. Utilizing on-chip memories also provides higher memory bandwidth when compared
to off-chip memory. Gyro architecture therefore opted on-chip memories for storing the connection
weights, and the way in which continuous weights are stored determines the memory bandwidth
which affects the performance of the entire network. Gyro focused on storage of connection weights
in Block RAMs or BRAMs. BRAMs were initialised upon synthesis with the trained network con-
nection weights. In this modified iteration of Gyro, usage of flip-flops for storage of weights are
explored. The advantage using flip-flops is that the required memory can be immediately accessed
depending on how it is stored, thus improving the parallelism of weight storage and fetching. There
no significant increase in resource consumption due to the sparse nature of the network and most
of the values are zeroes.

The second iteration of Gyro maintains the layered structure as in the previous version, which
was based on layered structure of DBNs. The network has fully connected layers, i.e., there is an
all-to-all connection between neurons in one layer to the neuron in the previous and next layer.
The neurons within a layer are also fully connected which constitutes the recurrent connection of
each layer. What this means for the network is that when a neuron spikes, it is sent to all the
neurons in the next layer and also to every neuron within the same layer, depending on whether
recurrent connections are enabled or not. The design mainly consists of two modules: the layer
and weight memory. To facilitate proper timing and processing of spikes, the layer is designed to
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have proper interface at both the input side and output side, either of which could also be another
layer. A layer module is instantiated for every layer except the input layer since it does not require
any computations. Between every layer module, a weight memory module is required to store the
connection weights between the two layers. So for a network of N layers, there are N-1 layers and
N-1 weight memories.

Figure 4.2: Network instance with 3 hidden layers

A sample network instance of 3 layers with its sub-modules can be observed in figure 4.2. The
layer module contains the following sub-modules: input spike queue, weight controller, neuron clus-
ter and output spike buffer. The working of layer module and interfacing at the input and output
side is controlled by a finite state machine or request controller. The input spike queue acts as
a buffer to store the incoming spikes until they are ready to be processed. It contains separate
queues for forward spikes and recurrent spikes. The weight controller fetches the right weights from
the weight memory by decoding the memory address depending on the source address of the input
spikes. The neuron addressing module inside the weight controller generates weight valid signals for
each cluster of neurons to facilitate activating the neuron corresponding to the connection weight.
The neuron cluster, which has the LIF neurons, and output spike buffer is what constitutes the
neuron wrapper. The parallel output from the neurons are converted to serial and then are sent out
as the output of the layer upon request from the output side. The layer module is further elaborated
in section 4.4. The timer module present in Gyro architecture is removed in its entirety since the
modified architecture of Gyro has no dependency on time for its calculation of membrane potential
or voltage decay.The dotted signals and gray modules in figure 4.2 were removed from the Gyro
architecture, namely, the backward spike propagation, backward BRAM access and timer module.
The network interfaces at the input and output were also modified such that AXI-lite registers,
spike generator, ISI calculator and low-pass IIR filter were also removed, since these modules did
not fit with the working principles of the new design.

The main input of the network is received as a stream of spikes by the first layer, with the
output spikes being the same data type, received at the output side of the network. The behaviour
of the output layer can be monitored in two ways. The literal spikes can be streamed through a
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buffer, and membrane potential computed for each neuron at the output layer. The weight memory
module remains as a dual-port on-chip memory. However, 2 layers are not simultaneously accessing
the same weight memory since the architecture now supports recurrent connections, and the weights
for which are stored in the same weight memory.

4.3 Weight Memory Mapping

Weight memory mapping is the key enabler of Gyro and Gyro II. The pattern in which weights are
stored and read from the on-chip memory is crucial when it comes to the latency of the system and
memory bandwidth. Each of the weight memory modules stores a weight matrix that represents
the connections between two layers and the recurrent connections.

Figure 4.3: A sample network of two layers and 2 weight mapping patterns

Consider the example of a simple four by two network with the corresponding weight mapping
patterns shown in figure 4.3. There are 4 pre-synaptic neurons and 2 post-synaptic neurons. For-
ward and recurrent connections are present to the post-synaptic neurons. In the weight mapping
patterns in the figure, one row of weights can be read per clock cycle. For the first mapping pat-
tern, when a neuron in the visible layer spikes, each of the two neurons in the hidden layer needs
to be updated and the corresponding weight can be read from one row in one clock cycle. When a
neuron in the hidden layer spikes, the same procedure applies, where the weights for two neurons
can be read in a single clock cycle. The resulting throughput is therefore two neuron updates per
6 clock cycles for both forward and recurrent spikes, or two neuron updates per 4 clock cycles for
a feed-forward network, as it effectively reads one weight per clock cycle.

For the second mapping pattern, when a neuron in the visible layer spikes, 2 weights can be
read from one row in one clock cycle. When a neuron in the hidden layer spikes, the weights for
two neurons can be read in a single clock cycle. The resulting throughput is two neuron updates
per 3 clock cycles for both forward and recurrent spikes, or two neuron updates per 2 clock cycles
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for a feed-forward network, as it effectively reads two weights per clock cycle.

To make the weight mapping generalized, a parameterized method is opted. For storing the
weight matrices between V visible neurons and H hidden neurons, the memory is visualized as a
three-dimensional block with x, y and z coordinates as in figure 4.4. X represents the memory
width of a single weight. Y represents the number of weights in a single row of the memory, or
memory width, and Z represents the number of distinct memories, where all the values x, y and z
are integers. The memory width is represented in number of weights and can give you the width
in number of bits when multiplied by the bit-width of a single weight.

Figure 4.4: 3-dimensional visualization of memory

When visualized in a three-dimensional manner, as in figure 4.4, the first cube with dimensions
x1, y1, z1, contains the set of H weights corresponding to a single visible neuron V. The volume of
this cube is the number of hidden neurons H, x1 · y1 · z1 = H. This cube is repeated x2 times in x
dimension, y2 times in y dimension and z2 times in the z dimension, for the entire forward weight
matrices between the 2 layers. The number of repetitions gives the amount of visible neurons,
since there is a single cube for each forward spiking neuron. That is, x2 · y2 · z2 = V . To update a
set of hidden neurons upon spiking of a forward neuron, x1 by y1 weights are read from z1 memories.
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The recurrent connections are stored with an offset in the y dimension but in the same pat-
tern. That is, the cube for a single recurrent spiking neuron is represented in the same way as a
forward spiking neuron, with x1, y1, z1, and is repeated x2 times in the x dimension, y2 r times
in the y dimension and z2 r times in the z dimension. y2 r and z2 r is derived from the previ-
ous parameters, where y2 r is minimum of y1 and z1 times x1, and z2 r is maximum of y1 and
z1. Maximizing z parameter utilizes more distinct memories and increases the number of weights
read parallelly in a single clock cycle and effectively increasing the memory bandwidth. To up-
date a set of hidden neurons upon spiking of a hidden neuron, x1 by y1 weights are read from z1
memories like for forward spikes, but difference being the memory locations and weights themselves.

The parameters xn and zn indicates effective weights read per clock cycle, which means that
the number of neurons that are simultaneously updated per clock cycle is xn · zn, which is the
neuron cluster size C. The weight memory mapping parameters and variables are listed in table 4.1
along with the constraints. It is written as an optimization problem and the objective is maximum
throughput for both forward and recurrent connections.

Variable Type Description

x1, y1, z1, x2, y2, z2, y2 r, z2 r Integer Memory mapping parameters
C1 Integer Forward neuron cluster size, i.e., x1 · z1
C2 Integer Recurrent neuron cluster size, i.e., x2 · z2
Mx Integer Maximum memory width in bits
My Integer Maximum memory depth
Mz Integer Maximum number of distinct memories
V Integer Number of neurons in visible layer
H Integer Number of neurons in hidden layer
W Integer Weight bit width

Table 4.1: Variables related to weight mapping

x1 · y1 · z1 >= H, (4.1)

x2 · y2 · z2 >= V, (4.2)

x1 · x2 <= Mx/W, (4.3)

y1 · y2 <= My, (4.4)

z1 · z2 <= Mz, (4.5)

y2 r = Min(y1, z1) · x1, (4.6)
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z2 r = Max(y1, z1) (4.7)

x2 = 1 (4.8)

4.4 Layer

The layer is the computational core of the design. The structure of the layer with its sub-modules
can be seen in figure 4.5. It contains the state machine, input spike queue, weight controller, the
LIF neuron cluster and output spike queue, along with the external interfaces. Each of the sub-
modules and its functions are explored in the sections below. In the figure 4.5, the gray modules
and dotted line connections represents connections and modules which was removed. They are
backward BRAM access and round-robin arbiters for scheduling queue reads.

The interface of the layer at the input and output sides were modified from the Gyro architecture
to suit the needs. A 4-phase handshake is implemented to implement a proper processing of spikes.
The internal structure was changed to accommodate recurrent connections instead of backward
connections. The output spikes are buffered and source addresses for output spikes are generated
inside the neuron wrapper using a parallel to serial shift register.

4.4.1 Finite State Machine

The finite state machine controls the internal functioning of the layer and manages and observes
the external interface. The finite state machine takes into account all the possible states the entire
layer system can attain and controls the sub-modules through the control signals. It manages the
external interface based on its internal state, and control signals from the input and output inter-
face, which could also be interface of another layer. The transition diagram of the state machine
can be seen in figure 4.6.

The state machine contains 5 states: Idle, process, communicate, acknowledge, and finish. The
state diagram can be observed in figure. Each state and its function, along with control signals are
as follows:

• Idle: In idle state, the layer is ready to receive input spikes from the user input or the previous
layer. It accumulates the spikes in the spike queue, and a maximum of V spikes in forward
spike queue and maximum of H spikes in recurrent spike queue are accumulated. These spikes
are represented as neuron address in the queue. All the control signals are reset or initialised
in idle state.

• Process: When a request is received from the input or previous layer, it transitions from idle
to process state. In process state, the neuron spikes are processed, and the membrane voltage
is accumulated with each of the input spike received. The spikes in the queue received before
the request signal are processed until both recurrent and forward spike queue are empty.
The spikes received after receiving a request signal are not processed until the next request
is received and are buffered in the queue until then. The transition occurs when the input
queues are emptied.
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Figure 4.5: Structure of a network layer
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Figure 4.6: Finite state machine of a layer

• Communicate: once the input spike queues are emptied and neuron voltages updated, the
state machine triggers the threshold evaluation of the LIF neurons through the ‘tick’ signal
and thereby conveys to the neurons that the spikes are ready to be evaluated. This evaluates
the neuron membrane voltage against the threshold voltage and generates an output spike
depending on whether it is beyond the threshold voltage or not. If a neuron spikes, the
output spike is stored in the output spike queue as the address of the neuron that spiked.
This buffering of output spike enables the layer to send a burst of output spikes upon receiving
a ‘ready-to-receive’ signal from the output or next layer.

• Acknowledge: once the neurons complete evaluation of spikes against threshold, which takes
3 clock cycles in communicate state, the layer sends the output spikes out. This is signalled by
setting the ’ack’ signal as high to the input side to convey that data processing is complete (to
complete the request-acknowledge 4-phase handshake). The output spikes are sent as a burst
of spikes to the output or next layer (which is in its idle state, accumulating input spikes).
Acknowledge state is maintained until the output spike queue is empty and the request signal
is zero at the input side.

• Finish: in finish state, the request signal for the next layer is set as high, which triggers
the next layer into the same state transitions through which it processes the input spikes
received from the current layer. Upon receiving an acknowledge signal from the next layer
or output, the layer goes back to idle state to reset its control signals. This completes the
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request-acknowledge handshakes on both input and output sides of the layer and thereby
processing of a set of input spikes.

4.4.2 Spike Queue

The spike queue receives two streams of spikes, one for forward spikes from the previous layer and
one for recurrent spikes from the same layer. A spike is represented by the address of the neuron
the spike originated from, represented as Ssrc. Each stream is separately buffered using a FIFO.
The input queues are emptied based on triggers from the state machine. This is done in such a
way that the recurrent spikes are processed first, followed by the spikes in the forward spike queue.
The maximum number of spikes in both the queues are monitored to ensure that no input spikes
are left out from being processed.

Since it is the state machine that schedules the reading of the spike queues, the round-robin
arbiter is no longer required in the design. Arbiter also reads the queues in parallel which is not
suitable for the design. Recurrent spikes and forward spikes need to be processed separately and
sequentially. Removal of the round-robin arbiter is also beneficiary since it is resource heavy for
queues with large values of queue depth.

The input of recurrent spike queue is an internal signal. The output from the neuron wrapper
is sent to both the output of the layer and to the recurrent queue. The maximum length of the
queues are also parameterized. The maximum queue length for forward spike queue is same as the
number of inputs, since the maximum number of input spikes at a time cannot exceed the total
number of inputs. The maximum queue length for recurrent spike queue is same as the number of
neurons in the same layer, since the maximum number of recurrent spikes at a time cannot exceed
the total number of neurons in the layer.

4.4.3 Weight Controller

The weight controller performs the function of fetching the right weights from the memory depend-
ing on the spiking neuron. The behaviour of the weight control module is controlled by a finite state
machine (figure 4.7 shows the state transitions), which synchronizes the sub-modules and manages
its interface with other modules within the layer. The spike source address and spike direction are
latched from the spike queue in the initial state. During decode 1 and decode 2, memory address is
derived from source address by the address decoder. The y index of the weight is derived in forward
or backward state to multiplex the weights that are read from the memories.

The structure of weight controller can be seen in figure 4.8. The state machine latches the spike
source address and the direction to the address decoder. The address decoder also receives the
y-indices from the state machine, and it generates the memory addresses for forward and recurrent
weights. The weight control modules fetches the weights as vectors and then provides the right
weights to the neurons for spike processing, while the neuron addressing module makes sure that
the right neuron receives the intended weight value.

Compared to the Gyro architecture, the weight memory mapping is same for forward connec-
tions. However, the recurrent weights are stored in a different pattern in the current architecture,
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Figure 4.7: Finite state machine of weight controller

and it follows the same pattern as the forward connections. The difference is in the y2 and z2
parameters. In the memory, the recurrent weights are also stored ‘beneath’ the forward weights,
i.e., the y indices of recurrent weights have an offset of y1 · y2.

Figure 4.8: Weight controller structure

The weights corresponding to a forward spike are the weights within a virtual cube. x1 · z1
weights are read in parallel, and the address decoder module iterates through the rows, i.e., the y
index, until the entire cube is read. Index yf from state machine counts from 0 to yn − 1, going
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row by row. To obtain the weights from a cube in y dimension, y offset is added to the y index.
Dividing Ssrc by z2 gives the cube offset in the y dimension and multiplying this by cube height y1
gives the row offset within the cube. The forward address is thus generated as:

Forward memory address = yf +
Ssrc · y1
z2

(4.9)

For a recurrent spike, the same calculation applies, with y offset being yr = yf + y1 · y2. The
recurrent address is therefore generated as:

Recurrent memory address = yf + y1 · y2 +
Ssrc · y1
z2

(4.10)

In forward and recurrent weight control modules, data is received from memories and is multi-
plexed to filter out relevant weights. The cube offset in z dimension is calculated in the same way
for both forward and recurrent weights as:

zf = Ssrc mod z2 (4.11)

zr = Ssrc mod z2 r (4.12)

There is no multiplexing in x dimension since x2 is fixed to 1. However, the weight offset in x
dimension is calculated as:

x = Ssrc mod x1 (4.13)

The neuron addressing module generates weight valid signals to control the neurons and the
weight each neuron receives. It is generated from a counter which counts from 0 to max(y1, y2)
with step size of 1, i.e., reading weights row by row in the memory. Depending on the weight valid
signals, the respective neuron cluster is activated.

By implementing a weight memory mapping in this format, the Gyro architecture was corrected.
Previous implementation consisted of a backward connection between layers which was not optimal
for the use case scenario. This was removed and instead, a recurrent connection was implemented.
This however meant an increase in resource consumption because recurrent connection requires to
store the weights in a square matrix of dimension equal to the number of neurons in the hidden
layer, compared to a one-to-one connection to the previous layer.

4.4.4 Neuron Wrapper

Neuron wrapper consists of a set of LIF spiking neurons along with parallel to serial converter to
buffer and serialize the output spikes, as can be seen in figure 4.9. This is because the neurons func-
tion in parallel and the output spikes from a layer has to be a serial stream of spike source addresses.

To serialize the output, a N bit parallel in serial out shift register is implemented, where N is the
total number of neurons in the layer. It takes in the output spikes from N neurons as N bit vector.
The shift register then shifts the vector to the right and depending on the bit value, it determined
whether neuron number n spiked or not. For every neuron that spiked, an output spike is generated
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as the address of the neuron that spiked. The output spikes are sent out one per clock cycle.

For a single request signal at the input side, the maximum number of spikes that can generate
from a layer is the total number of neurons, since each neuron is evaluated against the threshold
only once per request. This therefore eliminates the need to multiplex the output spikes between
the neuron clusters.

Gyro architecture implemented output spike arbitration using a round-robin scheduler. This
was resource heavy in terms of flip-flops and amount of logic required to implement the arbiter for
large values of N, and thus lowers the maximum clock frequency. This was overcome by using a
parallel to serial shift register.

Figure 4.9: Neuron wrapper with output spike buffer

4.5 External Interface

The network interface at both input and output sides were modified from Gyro since the core
computing element itself changed in terms of how the input is received and processed. This also
changes how the output has to be interpreted at the network output interface. The interfaces will
be covered in the following sub-sections.
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4.5.1 Network Input

The input spikes of the first layer are encoded as a combination of a binary valid signals and a
source address of the input neuron. The binary valid signal avoids processing of any unwanted
or erroneous input for source address. Source address conveys which input neuron spiked, just as
the name implies. For each valid input source address, the spike valid signal should have a rising
edge since the source address is sampled or latched by the system at every rising edge of the spike
valid signal. So for a continuous stream of input spikes, the spike valid signal will resemble a clock
signal, where it oscillates or completes a cycle for every valid source address. If the spike valid
signal maintains a binary value of ’1’ and does not have rising edge for a continuous stream of valid
source addresses, the input spike queue would simply treat it as one input spike, with the source
address being the source address during the rising edge of the spike valid signal.

The processing of the spikes in the queue is triggered using a request signal, and an acknowledge
signal is received as a confirmation of receiving the request. These inputs handle the functioning
of the network from the input side and does not require any timer input for providing the input.
Every spike is sequentially sent, which will be stored in the queue, and the request signal processes
these spikes. Every spike that are sent between 2 request signals are basically treated as a set of
input spikes under a ’chunk’ of time. Because of this model of working of the network and that
of the spike generation, a timer module is redundant while providing inputs. For a network with
28 input neurons with an input of 28*28 spikes, this method spike generation requires 784 clock
cycles or 7.84 µs at 100 MHz clock frequency just for the providing the inputs. This does not take
into consideration the latency of the system to process the spikes, which is the time taken between
providing a request signal and receiving an acknowledge signal.

The main difference of the network input interface compared to that of Gyro is that the input
spikes does not require temporal coding or mean rate coding. Temporal coding represented how
spikes were represented between network layers in Gyro. Temporal coding involved implicit coding
of time, since timestamp was also used to represent an input spike. Because of this, communication
latency and jitter had to be limited. Latency had no effect on functional correctness but rather
affected the feasibility of real-time requirements. An increase in communication latency meant an
increase in response time of the whole system. Large values of jitter resulted in erroneous time
related calculations, for instance, neurons might leak more than they should or it is incorrectly
decided that the refractory period has expired. Avoidance of time-related calculations as a whole
meant that the system no longer had these disadvantages of temporal coding.

Mean rate coding, on the other hand, had no dependence on communication latency or jitter.
But it required additional logic to convert mean rate for each input neuron into a sequence of
spikes and was dependent on timestamp for its generation of input spikes. This was done using a
spike generator module with mean rate as input, which represents the probability that an input
neuron has spiked, and sets registers for the input accordingly. The spike generator module was
time-multiplexed, which meant that multiple instances were required depending on the number of
input neurons. The mean rate encoding method is no longer required since input spike generation
is not dependent on timestamp at all.
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4.5.2 Network Output

Evaluation of the proper functioning of the network is done by monitoring the neurons of the last
layer of the network. The output spikes can be observed in 3 ways mainly. The first option is a
stream of sequential output spikes along with the source addresses of the spiking neurons. The
second option is a parallel bus with the bit positions representing the address of the neuron that
spiked. The third possibility is to monitor the individual membrane voltages of every neuron as and
how it is processed.The sequential spikes is what facilitates the spike propagation between the layers
and that is how the spikes are represented between the layers. The parallel bus of output spikes
enable the user to monitor which neuron spiked at every request. Since the threshold evaluation
of every neuron happens in parallel, the output spikes are sent out at the same instant and can be
observed as a burst of output spikes. Monitoring the membrane voltage of every neuron enables
the verification of proper functioning at the lowest layer of the network.

The previous design, Gyro, used 2 additional methods along with output spikes to monitor the
network which are Inter-Spike Interval (ISI) and Low-pass filtered voltage. ISI was a reliable mea-
sure for high spike rates. It computes the time interval between 2 output spikes, as had a highest
limit of the period of the clock signal used. For a time triggered approach, ISI values proved useful,
but for a request triggered system, it does not apply. This is because the neurons are processed
in parallel and all neurons will send output spikes when it gets the request signal. What results is
a burst of output spikes, and when serialized, it will have an ISI value equal to that of the time
period of the clock signal. This makes the ISI module redundant.

For spike rates below ISI value, membrane potential was monitored by passing it through a
low-pass filter. This provides an average potential without high frequency variations. It used a
first-order IIR filter, which sampled data based on a time trigger, and a sampling frequency derived
from the time resolution from the timer module. Since it is a time-dependent calculation, it was
not used and the design relies on monitoring the raw values of membrane voltages instead.
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Chapter 5

VHDL Implementation

The VHDL implementation of the modified Gyro architecture was executed with a bottom-up ap-
proach and are synthesized for Xilinx FPGAs. Starting from the smallest element, which is the
neuron, then the weight control module, output spike buffer, layer and ending with a network with
multiple layers. The hierarchy of the SNN can be observed in figures 4.2 and 4.5. The changes
brought about in the architecture is easier to ripple throughout the system with a bottom-up ap-
proach.In a bottom-up design methodology, the building blocks are first identified. Using these
building blocks, bigger cells are built. These cells are then used for higher-level blocks until the
top-level block in the design is reached. This design flow results in a library of all necessary build-
ing block elements required to complete the design. Since there are no restrictions on the top-level
design, top-down methodology is not really required for the design of this system.

Using bottom-up approach, each module is written and verified separately with block-level sim-
ulations. This was followed by integration of these modules which were verified using system level
simulations. The simulations and synthesis were done using Xilinx’s Vivado. The parameters in
table 5.1 along with the memory mapping parameters are specified in the VHDL implementation
for realising the recurrent networks. The weight values are specified using ASCII text files contain-
ing binary data. Vivado parses these files during synthesis, which initializes the weight memory
accordingly. These ASCII text files are generated using a python script which converts the weight
matrices to the weight values in the same pattern intended for the BRAM, using the weight map-
ping parameters.

The VHDL simulation was performed for a single neuron, a network of 2 neurons and a network
of 96 neurons for the simulation of MNIST dataset. Throughout the design flow, verification of
weight fetching, output spike buffer and the recurrent spike functionality was observed and its
functional correctness was verified manually against the weights generated using python script.

5.1 Leaky Integrate-and-Fire Neuron

The LIF neuron model is the core computing element of the SNN. It constitutes the LIF neuron
cluster in figure 4.5. The functional correctness of the neuron model is crucial for the proper work-
ing of the network itself. The expected behaviour of the redesigned LIF neuron is that a series of
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Parameter Data Type Default Value
Number of Layers Integer -
Recurrent Connections Boolean True
Input spike queue depth Integer 64
Bit width of neuron address Integer 10
Bit width of neuron membrane potential (V) Integer 9
Bit width of weights Integer 4
Threshold voltage Integer 2V − 1

Table 5.1: Network Parameters

Figure 5.1: RTL simulation of event-driven LIF neuron model

input spikes are accumulated over time until a flag signal is received, upon which it is evaluated
against the threshold voltage. The VHDL simulation can be observed in figure 5.1 where the neu-
ron behaves exactly as intended. The input provided to the neuron model are spikes with different
weight values, such that every scenario of the type of input can be observed. This includes normal
input spikes, negative weight values, accumulation of membrane potential above threshold, accu-
mulation of membrane potential below zero, threshold evaluation at positive and negative values of
membranes potential etc.

The incoming spikes are processed immediately. Evaluation against the threshold is done at
every ’tick’ signal. If the membrane voltage is greater than the threshold voltage, an output spike
is produced. If the membrane voltage is greater than zero and less than threshold value, then no
output spike is produced and the membrane voltage value is held. For negative values of weight
for input spikes, the voltage goes below zero and an evaluation against threshold value resets the
membrane voltage to zero (as can be observed in figure 5.1), without producing any output spikes.
Fixed membrane decay reduces the complexity of the design when membrane decay is enabled. It
is implemented using a left bit-shift to apply a 50 percent decay of membrane voltage.

38



5.2 Simple Network

Through simulation of a simple 2 neuron network with a single input, the transfer function of the
LIF neuron can be obtained. Furthermore, this also helps in verifying other sub-modules of a layer
from figure 4.5. The design flow includes comparison of the VHDL implementation against an
identical network implemented and simulated in python. This enables comparison of the network
with expected behaviour.

The synaptic weights are kept identical for all forward connections, which is ’1’, and ’2’ for
recurrent connections. This is to verify the proper working of the weight control module. The
simulated input is that a single input spike and a request to process the spike is provided in a
sequentially repeating manner. The expected output of the neuron membrane voltage is a constant
step incremental climb up (step value of ’1’, which is the forward weight) until the threshold voltage.
After threshold evaluation, the membrane voltages reset to zero, since an output spike is produced.
This can be observed in figure 5.2, where the 2 signals with a slope are the membrane voltages
of the 2 neurons.The output spike in-turn produces recurrent spikes within the layer which is ac-
cumulated afterwards. Proper propagation of the recurrent spikes with the corresponding weights
being fetched can be observed in the same figure (5.2). The step increment in membrane voltage
after threshold evaluation is steeper, since the recurrent weights have value ’2’, and is accumulated
initially. This is identical to the expected behaviour in as can be observed in figure 5.3 where the
membrane potential of the neuron goes through a step increment. The first increment after firing
an output spike is higher because of the higher synaptic weight values for the recurrent spikes. The
steep fall in membrane voltage at every time-step is due to the neuron firing an output spike and
resetting the membrane potential to zero.

Processing of recurrent spikes is an added functionality in the second iteration of Gyro design.
The output spikes from a layer is not only passed to the output (or next layer, depending on the
network) but also to the input spike queue of the same layer. The recurrent spike queue enables this.
The working of this functionality can be observed in figure 5.2, where output spikes are forwarded
to the recurrent spike input queue of the layer. Enabling recurrency of a layer is what triggers the
processing of recurrent spikes in the layer.

The output spikes are produced as a burst and are read in parallel. This is converted to serial
spikes using a N to 1 parallel to serial converter, where N is the number of neurons in the layer
and only one output spike is sent at a given moment. The source addresses are generated in the
neuron wrapper module. Working of the neuron wrapper module can be seen in figure 5.4, where
output spikes originating from the neuron cluster is converted to serial output spikes along with
the generation of the address of the neuron from which the output spike was generated.

The transfer function of the neuron can therefore be inferred from this model. It can be observed
in figure 5.5 for different ratios of weight bit-resolution against the threshold voltage.
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Figure 5.2: RTL simulation of layer with 2 neurons

Figure 5.3: Membrane voltage temporal evolution of the neuron model

Figure 5.4: Conversion of parallel spikes to serial spikes
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Figure 5.5: Transfer function of the neuron model

5.3 MNIST Dataset Simulation

After the functionality of each of the sub-modules are verified through the implementation of a
simple network, a bigger network of the configuration 28-64-32 (28 inputs, 64 neurons in layer 1,
32 neurons in layer 2) with synaptic weights from a trained network is simulated. The weights
are generated from a python script, which are binary files with synaptic weights in them. Weight
memory module simulates BRAM modules and reads the weights from the binary files. The weight
control module reads the weights from this ”BRAM” and performs the accumulation. The input
spikes are a series of 28 inputs. These simulate the handwritten digits dataset provided by MNIST.
It can be used as a base for comparison against other related implementations. It contains 60,000
training images and 10,000 test images. The images are black and white and is represented in 28x28
pixels, which in binary, is a matrix of 28 rows and 28 columns (figure 5.6). The testbench reads the
test images in a binary format from the binary file and simulates the input for the network. Each
row of pixels are read and sent to the first hidden layer of 64 neurons with the source address (from
1 to 28). After each row, the request signal is provided to process the first row of inputs. This is
repeated 28 times to process one image. The results are observed at the output from the first 10
neurons of the 32 neurons in the second hidden layer or the output layer.

The simulation was first done in python for a trained network. The synaptic weights provided
to both the python simulation and RTL simulation were identical, which was for a network that
included recurrent connections. The expected output is a one-to-one matching of output spikes and
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membrane voltages between both the simulations, with the python simulation acting as a reference.
In the RTL simulation in figure 5.7, it can be observed that the output spikes from second layer are
only produced by the first 10 neurons. This is identical to the result from the python simulation in
figure 5.8, where output spikes from both layers can be observed at every time-step. The first block
represents the first layer and the second block represents the second layer, of output spikes. Only
first 10 neurons are spiking in the second layer which is the result of the classification. Furthermore,
it was verified that the output spikes were identical for the first layer and that the output spike
addresses were correct for both the layers. In figure 5.9 proper signal propagation from input, first
hidden layer, second hidden layer and output can be observed. The signals in order are simulated
input spikes and addresses, forward and recurrent spikes with their addresses, tick signal, output
spikes and their addresses. These signals from the first layer are followed by the same signals from
the second layer.

Figure 5.6: MNIST input digits
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Figure 5.7: Output spikes from second layer

Figure 5.8: MNIST output spikes from first and second layers respectively
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Figure 5.9: RTL simulation of a network running MNIST test case
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Chapter 6

Results

The assessment of results obtained from the design modifications of Gyro are divided into subsec-
tions as follows: Characterization, Case studies and Comparisons. Section 6.1 presents quantitative
results in terms of throughput and resource utilization. Section 6.2 evaluates the accuracy and func-
tional correctness of the implementation for the test cases. Comparison against other related works
will be discussed in section 6.3.

6.1 Characterization

This section presents a theoretical analysis of the design on throughput and latency. The results of
the implementation is also explored in regards to the accuracy and resource utilization. Networks
are represented in the format I-L1-L2-...-Ln where for instance, 28-64-32 represents a network with
28 inputs, 64 neurons in the first hidden layer and 32 neurons in the output layer.

6.1.1 Throughput

For artificial neural networks, throughput is defined as number of synaptic operations per second
(SOPS). When a neuron generates an output spike to N neurons, it causes N synaptic operations.
The peak throughput is decided by the weight mapping parameters and the clock frequency. The
weight mapping parameters define the memory size and layer size, as can be seen in section 4.3.
Upon receiving a forward input spike, the layer does x1 ∗ z1 synaptic operations per clock cycle.
The layer requires y1 clock cycles plus one clock cycle overhead to update all neurons in the layer.
The maximum amount of forward input spikes the layer processes per time unit is therefore:

1

tclk(y1 + 1)
(6.1)

Thus, the peak throughput in synaptic operations per time unit for a layer is:

x1 · y1 · z1
tclk(y1 + 1)

(6.2)

Summing this over all the individual layers gives the peak throughput of the whole SNN. Only
the hidden layers are taken into accounting when calculating the throughput, since the input layer
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does zero calculations. The peak throughput of the SNN therefore is:

L∑
l=2

xl1 · yl1 · zl1
tclk(yl1 + 1)

(6.3)

where l indicates the hidden layers, L is the total number of hidden layers, and xl1, y
l
1, z

l
1 are the

parameters of the respective layer.

The calculation of the peak throughput for recurrent spikes follows the same method, only
difference being the parameters will be having suffix r. One key factor here is that both the
forward and recurrent synaptic weights are stored in the same memory bank, which is in contrast
with Gyro, where synaptic weights for forward connections and backward connections (not recurrent
connections) were stored in different memory blocks. So, for peak throughput of the SNN for
recurrent input spikes are:

L∑
l=2

x1 r
l · y1 rl · z1 rl

tclk(y1 rl + 1)
(6.4)

where l indicates the hidden layers, L is the total number of hidden layers, and x1 r
l, y1 r

l, z1 r
l

are the recurrent parameters of the respective layer. The peak throughput for forward spike and
recurrent spike are virtually the same since the parameters are identical (section 4.3). Essentially,
both types of input spikes update the same number of neurons with the same throughput.

From these equations,it is evident that the throughput is maximized by minimizing y1 and y1 r.
However, to maximize the utilization of the memory in terms of memory depth, it is favourable
to maximize y1 ∗ y2 and y1 r ∗ y2 r to the maximum limit of My, which is the maximum available
memory depth. So a trade-off can be made by minimizing y1 and y1 r to increase the throughput,
and increasing y2 and y2 r proportionately to maximize the utilization of memory in terms of depth.

Both the test cases used to evaluate Gyro II had recurrent connections by default. The param-
eters for the network that implemented MNIST test case are as in table 6.1.

Parameter Layer 1 Layer 2
x1 / x1 r 1 1
y1 / y1 r 16 8
z1 / z1 r 4 4
x2 / x2 r 1 1

y2 7 16
z2 4 4
y2 r 4 4
z2 r 16 8

Table 6.1: Weight mapping parameters for 2 layers of MNIST test case network

The network configuration is 28-64-32 with a clock frequency of 250 MHz. Throughput for each
layers are calculated using equation 6.3 or 6.8 as follows:
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Layer1 :
xl1 · yl1 · zl1
tclk(yl1 + 1)

=
64

4 · 10−9(16 + 1)
= 941.17MSOPS (6.5)

Layer2 :
xl1 · yl1 · zl1
tclk(yl1 + 1)

=
32

4 · 10−9(8 + 1)
= 888.88MSOPS (6.6)

This gives a total of 1.83 GSOPS for the MNIST test case network. The throughput can be
further increased by increasing the x1 parameter, but was kept to 1 for this test case for ease of
functional verification.

Now consider the cropland classification test case. Table 6.2 contains the parameters for the
network for cropland classification test case.

Parameter Layer 1 Layer 2
x1 / x1 r 1 1
y1 / y1 r 20 1
z1 / z1 r 30 8
x2 / x2 r 1 1

y2 1 75
z2 17 8
y2 r 20 1
z2 r 30 8

Table 6.2: Weight mapping parameters for 2 layers of cropland classification test case network

The network configuration is 17-600-8 with a clock frequency of 250 MHz. Throughput for each
layers are calculated in the same way as follows:

Layer1 :
xl1 · yl1 · zl1
tclk(yl1 + 1)

=
600

4 · 10−9(20 + 1)
= 7.14GSOPS (6.7)

Layer2 :
xl1 · yl1 · zl1
tclk(yl1 + 1)

=
8

4 · 10−9(1 + 1)
= 1GSOPS (6.8)

This gives a total of 8.14 GSOPS for the cropland classification test case network. From the
above throughput numbers, it can be concluded that the bigger the value of the cluster size, i.e.,
x1 · y1, higher will be the throughput of the network. Gyro attained a throughput of 83.3 MSPS
for 240 neurons, which is relatively low, considering how it was only a feed-forward network. For a
network of 240 neurons with backward spike propagation, Gyro attained a throughput of 20.8 MSPS.
Comparing the throughput with that of Gyro, the stark difference is that in Gyro, throughput is
significantly lower for backward synaptic connections when compared to forward connections. This
was overcome in Gyro II by opting for a synaptic weight storage pattern that is the same for both
the forward and recurrent connections.
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6.1.2 Resource Utilization

Resource utilization of the design is measured in terms of the amount of FPGA resources that
are required, mainly the different types of memories associated with it. They are Lookup Tables
(LUTs), Flip-Flops (FF) and BRAMs. Table 6.3 shows the numbers associated to the resource uti-
lization for the implementation of the networks for the two test cases, MNIST dataset classification
and cropland classification. The resource utilization of the networks can be observed in table 6.3.
This does not include the external registers, resets or the AXI interface logics.

Network FPGA LUTs FFs BRAMs
28-64-32 (Recurrent) ZU7EV 7,559 3,604 16
17-600-8 (Recurrent) ZU7EV 54,516 21,756 312

Table 6.3: FPGA resource utilization for test cases

For both the MNIST network and cropland network, the weight memory was initialised in such
a way that they will be implemented as LUTs. That is, in the RTL design and the synthesis of the
design, the synaptic weights were specified to be used as LUTs and not as BRAMs, since LUTs
are suited for fast access of the values. The MNIST network uses 7,559 LUTs and 3,604 FFs. The
network logic is what mainly contributes towards these numbers. It also requires 16 BRAMs for the
implementation. The Cropland network has a significantly higher number of neurons and therefore
increased number of synaptic weights. 54,516 LUTs and 21,756 FFs were required to implement
the network, along with 312 BRAMs. The tool also optimizes the resource utilization depending
on the sparsity of the network, i.e., for synaptic weight values of zero, which occurs frequently,
the realization would not require any dedicated logic on the FPGA. Plots of how the resources are
allocated within the network can be seen in figure 6.1.

The resource utilization is predictably directly proportional to the number of neurons in a layer.
More neurons require more configurable logics for implementation. This can be seen in figure 6.2,
where the neuron cluster takes up the majority of resources in a layer of the network. The relatively
large number of FFs is due to the storage of membrane potential. After dividing the total resources
used by a neuron cluster by the number of neurons, the amount of logic required to implement
a single neuron can be obtained. A single neuron uses 62 LUTs, 30 FFs, no BRAMs, no DSPs.
Furthermore, the weight controller requires its own combinatorial logic for the proper fetching of
neuron weights and for memory address decoding. Compared to the weight controller and neuron
cluster modules, the input and output spike queue uses very small quantities of the resources. This
is due to a simplistic approach for emptying the queue using the state machine rather than using
a round-robin arbiter. A layer of neurons do not require any DSPs due to removal of redundant
calculations and simplification of others. Additionally, removal of the modules timer, ISI monitor,
low-pass filter, and spike generators also greatly reduced the complexity and resource utilization of
the design.
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Figure 6.1: Plots of resource distribution within the network

6.2 Case Studies

Using the case studies for reference, Gyro is compared against Gyro II, mainly in terms of resource
consumption. Two case studies were performed to evaluate the design; MNIST dataset classification
and cropland classification. The functional correctness of the implemented networks for these test
cases were discussed in chapter 5. They also provide quantifiable measures that can be used to com-
pare the design to other works. The networks were trained using python and the synaptic weights
were converted to 4-bit signed values for RTL implementation. Table 6.4 shows the results obtained
after running the test cases. It can also be observed that the networks implemented using Gyro II
architecture contains significantly lesser number of neurons. This is because the added functional-
ity of recurrently spiking neurons enables networks of smaller sizes have comparable performance
figures for the same application or case, while significantly reducing the resource consumption of
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Figure 6.2: Plots of resource distribution within a layer of the neurons

the implementation.

Test case Network Neurons Accuracy
MNIST 28-64-32 (Recurrent) 96 93.5%
Cropland Classification 17-600-8 (Recurrent) 608 95%

Table 6.4: Accuracy of test case networks
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6.2.1 MNIST Classification

MNIST dataset contains 60,000 training images and 10,000 test images. The images are black
and white and are represented in 28x28 pixels, which in binary, is a matrix of 28 rows and 28
columns. The network of 64-32 neurons uses 28 inputs in 28 time-steps to classify the image.
From the results obtained during simulation of MNIST dataset test case, it was observed that the
RTL implementation has identical results as that of the python simulation. This means that the
accuracy for classification of the RTL implementation is same as that of the python version and
hence, performance metrics can be measured using the python version of the network. The network
was trained for a weight bit-resolution of 4-bits. The weight matrices occupies the BRAM or the
weight memory. For a weight bit-resolution of 4-bits, the implemented network for MNIST test
case achieved an accuracy of 93.5%. Figure 6.3 shows a plot of accuracy against different weight
bit resolutions.

Figure 6.3: Plot of accuracy against different weight bit resolutions for MNIST test case (network
28-64-32).

Network Neurons LUTs FFs BRAMs Accuracy
784-720-720-720-10 (Gyro, feed-forward) 2954 140,206 131,977 306 99.3%
28-64-32 (Gyro II, recurrent) 96 7,559 3,604 16 93.5%

Table 6.5: Comparison between Gyro and Gyro II for MNIST classification cases

For the MNIST classification application, Gyro required a network of 2954 neurons with 6-bits
weight precision to attain accuracy of 99.3%, whereas the second iteration achieved an accuracy
of 93.5% with just 96 neurons and a weight bit resolution of 4-bits. Gyro required all the inputs
to be provided parallelly, i.e., for an input image of 28x28 pixels, it required 784 inputs, while for
Gyro II, the time-step approach meant only 28 inputs were required, to which 28 set of inputs were
provided in a sequential manner. When it comes to resource utilization, Gyro required 140,206
LUTs, 131,977 FFs and 306 BRAMs. Gyro II required 7,559 LUTs, 3,604 FFs and 16 BRAMs for
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its implementation. A comparison of the networks implemented in Gyro and Gyro II can be seen
in table 6.5.

6.2.2 Cropland Classification

Cropland classification uses optical radar data from a large set of numerical features collected by an
Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) over agricultural regions. The
dataset contains labels of 8 crop types. A network of 600-8 neurons was implemented for this classi-
fication. It uses 17 inputs in 6 time steps to provide a full image for classification. The implemented
network achieved an accuracy of 95%, for a weight bit-resolution of 4-bits. Figure 6.4 shows a plot
of accuracy against different weight bit resolutions.

Figure 6.4: Plot of accuracy against different weight bit resolutions for Cropland classification

Network Neurons LUTs FFs BRAMs Accuracy
102-600-600-600-7 (Gyro, feed-forward) 1,807 101,583 104,738 170 99%
17-600-8 (Gyro II, recurrent) 608 54,516 21,756 312 95%

Table 6.6: Comparison between Gyro and Gyro II for cropland classification cases

For the cropland classification test case, Gyro required a network of 1,807 neurons with 6-bit
weight precision bits to achieve an accuracy of 99%. It required 101,583 LUTs, 104,738 FFs and 170
BRAMs. For the same test case, Gyro II was able to achieve an accuracy of 95% using a network
of 608 neurons with 4-bits weight precision bits. This network required 54,516 LUTs, 21,756 FFs
and 312 BRAMs. A comparison of the networks implemented in Gyro and Gyro II can be seen in
table 6.6. The number of BRAMS used in Gyro II is higher because the xilinx tool automatically
optimizes the memory elements and therefore allocates BRAMs for the entirety of weight memory
1, as can be seen in the resource distribution in figure 6.1, and not for any other module.
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6.3 Inference

When compared against Gyro, Gyro II has the added functionality of a recurrently spiking neurons,
whereas the peak accuracy achieved by Gyro was a feed-forward network. The reduced resource
utilization observed in tables 6.5 and 6.6 is a combined result of removal of redundant computations,
simplification of neuron model and converting it to an event-driven model, removal of redundant
modules like round-robin arbiters, ISI calculators, low-pass filters, etc. Furthermore, the recur-
rency feature enables realization of much smaller networks with comparable performance while
significantly reducing the memory overhead of the implementation. And from this comparison of
Gyro II against its first iteration Gyro, the classification accuracy is relatively low. Even though
this is not a significant dip in performance, the reason for this is the low weight bit-resolution of
4-bits and reduced network size. However, the trade-off is that these smaller networks handled
the application testcases sufficiently without taking up too much memory, when compared to the
networks implemented on Gyro. The accuracy of the network can be increased by a mere 1% to
96% if the weight bit-resolution is increased to 10 bits. However, this will dramatically increase the
resource utilization, which is not favorable.

An increase in the weight bit-resolution beyond 4-bits does not significantly contribute to the
accuracy, as can be seen in figures 6.3 and 6.4. The network configurations along with the accu-
racies can be seen in table 6.4. It can therefore be concluded that a relatively low bit precision of
4 bits is not a limiting factor in achieving high accuracy. However, sufficient number of neurons
in the hidden layers are significant for reducing the error rate for low weight bit precision. Gyro
II also handles inputs in a parallelized manner, thereby elimination the number of inputs received
by the first layer of the network. Time-stepped approach of providing inputs was possible because
the event-driven nature of the implemented neuron model. This allowed the design to incorporate
inputs provided in a sequential time-multiplexed manner. This was done without removing the
parameterized network implementation of Gyro, meaning that any network topology with a large
number of neurons can be configured depending on the requirement and resource availability of the
FPGA being used.

The peak throughput of Gyro II is heavily depending on network size. For a network of 28-
64-32 neurons, a peak throughput of 1.83 GSOPS is achieved, which includes both forward and
recurrent connections. For a network of 17-600-8 neurons, a peak throughput of 8.14 GSOPS is
achieved. The relation between the cluster size or the parameters and the throughput can be taken
into account when configuring the weight mapping, such that a higher throughput can be obtained.
The numbers attained using Gyro II is not comparable to other related works since the networks
usually implemented has significantly larger number of neurons and layers. However, compared to
Gyro, there is a substantial increase in the throughput considering how the network is considerably
smaller and has the added functionality of recurrent spiking neurons.

The presented results are also compared against similar works (table 6.7 and 6.8) to get a bigger
picture of how well the second iteration of Gyro performs, despite its implementation of smaller
networks. All the other networks in table 6.7 contains large number of neurons, upwards 2000. Gyro
II achieved this accuracy for significantly reduced number of neurons, which is 608. Except Gyro,
all the other implementations mentioned in table 6.7 used time multiplexed neurons. This means
that the number of physically implemented neurons are lower than the actual number of neurons
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in the layer, which reduces memory overhead and enables realization of really large networks. The
second iteration of Gyro does not have time multiplexed neurons, which contributes to the LUT
usage. However, this does not hinder Gyro II from achieving a high accuracy compared to other
works. A comparison of Gyro II against some other related works from chapter 3 can be seen in
table 6.8. The implementation of networks using Gyro II architecture is also much more convenient,
given how the inputs provided to the network has changed from Gyro. This is mainly because of
the absence of temporal information in the input and output, and how output interpretation does
not require analog filters or ISI counters.

Model Year Architecture Accuracy
Neil [13] 2016 DBN 94.1%
Stromatias [33] 2015 DBN 94.9%
Stromatias [32] 2015 DBN 95%
Han [10] 2020 SNN 97.1%
Gyro [5] 2020 DBN 99.3%
Gyro II (this work) 2021 Recurrent SNN 96%
Esser [8] [7] 2015 Deep SNN 99.4%
Rueckauer [27] 2017 Spiking CNN 99.4%

Table 6.7: Spiking neural networks MNIST accuracy [34]

A benefit of the current implementation of the architecture is that it supports a range of layers
and network sizes, Depending on the size and availability of resources on the FPGA board, many
layers can be stacked on top of each other. The parameterized weight mapping patterns also
makes it possible to make a trade-off between resources and throughput of the layer. Optimisation
of these parameters depend on the network size, application and the FPGA board used. The
comparison of test cases also gives an insight into how efficient the network is in terms of resource
utilization compared to Gyro. For achieving a high accuracy, the networks implemented were
recurrent networks with significantly lesser number of neurons.
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Chapter 7

Conclusion

This work presents Gyro II, an architecture to deploy Recurrent Spiking Neural Networks on FP-
GAs for Edge-AI applications. It is the second iteration of Gyro, which itself was an architecture for
Spiking Deep Belief Networks. FPGAs were chosen due to the versatile nature it offers. It facilitates
parameterized designs which can be altered or adapted according to the network size required for
the application. Furthermore, FPGAs provide multiple options when it comes to the usage of on-
chip memories required for storing the synaptic weights of the network. In Gyro, synaptic weights
were significantly lesser compared to Gyro II due to only having feed-forward or feedback networks.
Gyro II has the new included functionality of having networks with recurrent connections, which
requires the storage of an increased number of synaptic weights. A method is presented to map
these synaptic weights to the on-chip memories.

The mapping of the synaptic weights to the on-chip memories is realized in a parameterized
manner, which enables the user to configure how the weights are stored in the memory. This plays
a crucial role when it comes to the bandwidth of the weight memory, which affects the throughput
of the system as a whole. The configurable nature also allows the user to prioritize the hardware
utilization over throughput, which results in having a trade-off between hardware utilization and
latency of the system. When more memories can be used, a higher memory bandwidth and ulti-
mately higher throughput can be attained.

A hardware efficient, truly event-triggered, LIF neuron model is used in Gyro II. The conver-
sion of the conventional LIF neuron model to an event-triggered model required elimination of
time-triggered calculations. This also avoids the necessity of neuron time-multiplexing. Removal
of time-dependent calculations from the neuron model also proved useful when it came to resource
efficiency, by reducing the memory requirement significantly.

Looking back at the research question in section 1.1, the resulting architecture has successfully
exploited the sparsity in time to make the system more event-driven and reduced the memory
requirement significantly. In FPGAs, reduced memory consumption inherently implies reduced
power and energy requirements. The implementations also showed that for the same use case
scenario, a smaller network works just as well, due to the recurrent nature of the network means
the design takes up lesser space for implementation in the FPGA. Furthermore, a glimpse into the

56



sub-questions from section 1.1 concludes the following:

• The system was converted into a truly event-driven model by removing time-based calcula-
tions. Calculations are simplified and memory requirements were reduced upon making the
design event-triggered. This was possible only due to the event-driven nature of SNNs, which
made it possible to make the architecture more memory efficient.

• The architecture now supports recurrent connections within a layer. This made it easier for
a smaller network to attain similar performance for handling the same task, whereas the
previous architecture required a significantly bigger network, and therefore higher memory
requirement.

• Memory requirements were significantly reduced by removing redundant sub-modules and
calculations in the design. Reduced memory requirement implies reduced energy requirement
in FPGAs. Eventhough no direct results were attained regarding power consumption, the-
oretical analysis shows how the system demands lesser power. This can prove to be helpful
considering how Gyro II is geared towards Edge-AI applications.

• The parameterized design makes it possible to alter the network size and also enables con-
figuring the synaptic weight storage mapping in the memory. This saves time when it comes
to implementing multiple networks of different sizes. The architecture is scalable due to this
aspect of the design.

• The parallel nature of the architecture is taken into account while making the system request
based. The network now supports input in a time multiplexed manner.

The architecture is implemented using VHDL and the proper functioning was verified on dif-
ferent hierarchical levels, through both theoretical and empirical analyses. Theoretical analysis on
throughput shows that a recurrently connected network of 96 neurons achieves a peak throughput
of 1.83 GSOPS and a network of 608 neurons achieves a peak throughput of 8.14 GSOPS. This is
a merit of using on-chip memory and configuring the parameters for weight memory in such a way
that it maximizes throughput. These throughput numbers were also attainable due to the recurrent
nature of the network, which was not possible in the first iteration, i.e., Gyro.

Two case-studies were performed, handwritten digit recognition and cropland classification.
These prove the applicability and functional correctness of the architecture. Gyro II achieved a
classification accuracy of 93.5% on the MNIST dataset using a recurrent network of 96 neurons
which is impressive considering the network contains relatively lesser number of neurons compared
to similar works of SNN implementations. Gyro paved the way for deploying spiking DBNs on power
and energy constrained systems, and Gyro II improved upon it in terms of memory requirement and
improved its functionality. Research and development in the area of deep spiking neural networks
are nowhere near the end, and Gyro II is a link in one of the many possible improvements and
iterations in the domain.

7.1 Future Work

This proposed architecture is the second working iteration which can be improved in many ways.
Before and during the execution of the project, a list of desired features were prioritized and only
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a select few were implemented. This section discusses some possible improvements that can be
brought to Gyro II.

• Reconfigurable Weights : The weights of the network are set by initialising the FF memory
or BRAM with the synaptic weights during synthesis of the design. The values are not adapted
afterwards. FF memory cannot be changed dynamically, but BRAMs and UltraRAMs can be
changed while the SNN is running on the FPGA, due to their true dual-port nature. This has
the potential to avoid long synthesis and implementation times between updates of weight
values where the network topology remains same but the synaptic weights change. UltraRAM
memory blocks also have larger width and depth compared to BRAM, enabling storage of
more weights. A key difference is that UltraRAM memory contents are initialized to zeros at
power up, and therefore weight reconfiguration functionality is required to use them.

• Pipelining : Currently, the finite state machines of the layer and the weight controller works
in sequential manner. The state machine of the layer accumulates spikes first, then processes
them, evaluates the threshold voltage and so on. The state machine of the weight controller
finishes fetching all the weights before it starts decoding the next spike source. This sequential
flow of data can be optimized by handling multiple steps at the same time, but multiplexed
in time. For example, the layer state machine can trigger the weight fetching once spikes are
present in the queue, and upon receiving the request signal, the weights are ready to be sent
to the LIF neuron cluster. The weight controller can be pipelined to start address decoder for
the next spike before it finishes fetching weights. This could eliminate overhead clock cycles
for each spike source address that is processed and increase the throughput.

• Weight Memory Mapping : The current weight memory mapping is a paremeterized,
straightforward pattern where the weights are considered as blocks and clustered together in
the memory. Optimization techniques can be explored where the weight storage is handled
in a pattern such that the clusters are stored in a pattern that maximizes throughput even
more. Current pattern stores recurrent weights at an offset in ’y’ dimension. Offsetting in ’z’
dimension is a viable option but it will require larger area of implementation on the FPGA,
eventhough it increases the throughput. This can also facilitate parallel fetching of forward
and recurrent weight, and thereby provide a means to empty both the forward and recurrent
spike queues simultaneously. Currently, the emptying of the queues and the weight fetching
is executed in a sequential manner.

• Neuron Time Multiplexing : From figure 6.2 it is evident that the neuron cluster is the
major contributor to LUT usage. Time multiplexing of neurons can therefore help in reducing
the amount of physical neurons. Since memory bandwidth is the common bottleneck for
performance, having a subset of neurons will be sufficient to achieve maximum performance.
When it comes to time-multiplexing the neurons, the vast majority of the LUTs will be
used to store the multiplexed voltages only. For the previous design, it would have required
multiplexing of voltages and refractory end times, but since time-based calculations have been
removed, time multiplexing of neurons could be beneficial in reducing memory requirements
even further.

• Parallel Weight Fetching : Current design uses both ports of the true dual-port memory
during weight fetching. However, the weights are still being read in a sequential manner,
since forward synaptic weights and recurrent synaptic weights have to be fetched separately.
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Fetching these weights in parallel could increase the throughput significantly, and thereby
reduce the latency. This can be achieved by assigning multiple clock domains to the forward
and recurrent weights, which can be incorporated with pipelined design where weights are
fetched beforehand for processing.
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neuromorphic cortex simulator. Frontiers in Neuroscience, 12:213, 2018.

[38] Bojian Yin, Federico Corradi, and Sander M. Bohté. Effective and efficient computation with
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