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Abstract

The Leitner system is a review scheme for flashcards that uses spaced repetition.
Although there has been quite some research performed in ways to implement spaced
repetition on computers, no existing simple mathematical model for the physical use
of the Leitner system could be found. The Leitner system is modelled as a discrete-
time inhomogeneous Markov process. The system is analysed using three performance
measures, taking into account the efficiency of the system and the distribution of the
workload. The relation between the number of words in the system and both the
number of words mastered after as well as reviewed on day t is reasoned to be linear.
Moreover, the ratio between the number of words reviewed on two days of a cycle is
shown to be fixed. Furthermore, the influence of the global difficulty on the results is
examined. Several adjustments to the Leitner system are proposed to make the system
more user friendly, both in equalizing the distribution of workload over days and in
adjusting it to weekly cycles. Finally, the lessons learned from those adjustments are
used to propose an alternative to the Leitner system. However, the influence of the
adjustments to the system on the long-term retention of the studied words could not
be examined and needs further research.

Keywords: Leitner system, time-inhomogeneous Markov process

1 Introduction

Many students struggle with learning words of a foreign language in high school. Even
after high school quite some people try to learn a new language. There has been a lot of
research into the working of the human brain and memory models. From this research, it
became apparent that a particular learning strategy called spaced repetition is beneficial
for learning words. As the name already suggests, the repetition of words is spaced out,
causing more words to be stored in the long-term memory. Spaced repetition is in stark
contrast to cramming, where words are repeated very often in one single learning session.
There is an abundance of research, like [3], [4] and [7], showing that spaced repetition gives
better learning results than cramming. An excellent implementation of spaced repetition
is the use of so-called flashcards. The student writes a word on the front of the card and
its translation on the back. When practising with flashcards, the student tries to come up
with the translation and then flips the card over to check the given answer.

One of the first persons to develop a good system for learning new items with the
use of flashcards is Sebastian Leitner. In his book So lernt man lernen [6] from 1972 he
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introduced a repetition scheme which is widely used and rising in popularity again in the
past few years. Although in his Lernkartei he uses a large box with numbered sections
of varying sizes which indicate when certain words should be reviewed, the widely used
Leitner system has a fixed schedule, the Leitner calendar, which prescribes which deck
needs to be reviewed when so that no special box is needed. In this report the second
form will be considered. Each flashcard will be located in one of the seven decks. When
studying a deck of flashcards, the student checks for each word in the deck whether he
knows the translation of the word. If he knows the translation, the card goes one deck up,
else it goes back to deck one, as illustrated in Figure 1. Words reviewed correctly in the
last deck are considered mastered and will leave the system. This means that they are not
reviewed anymore.

Figure 1: Transition scheme for review of words.

Every deck has a different repetition interval. Lower decks are repeated often, deck 1
even daily, while higher decks are repeated less. So, in the long run, a student spends more
time on words that are difficult for him. The Leitner calendar is given in Figure 2.

Figure 2: The Leitner calendar for a learning cycle of 64 days, after which the
system repeats itself.

In past years quite some research in optimising human learning has been performed.
Some studies focus on implementing spaced repetition, like [9], [10] and [14]. However,
their approaches are quite complex and they focus on the selection of one item per time.
This is alright for implementation in online flashcard tools but not ideal for a physical
version. Furthermore, no found research matches the Leitner system as described above.
This paper is therefore the first accessible mathematical analysis of the Leitner system.
More specifically, in this paper, the following research question is discussed:

How can the Leitner system be made more user friendly while at the same time main-
taining the usefulness of spaced repetition?

To answer this research question, a distinction is made between two ways to improve
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the Leitner system. The first one is to make sure that the expected number of words
to be studied on each day of a learning cycle is approximately steady. The second one is
to make the review schedule easier to remember by adjusting it to biweekly learning cycles.

In this paper, the Leitner system as described above is modelled. The transition matri-
ces and results are provided for a Leitner system with five decks. A learning cycle will then
take 16 days and is the same as the left column of Figure 2. As Figure 1 might suggest, the
Leitner system can be modelled as a Markov process. The time steps are discrete, namely
a day. After a certain number of days the review scheme is the same as if one would start
again from day 1, so the Leitner system is modelled as a cyclic Markov process. Due to
this cyclic behaviour, it is often necessary to refer to a certain day of each cycle. Therefore,
throughout this paper an asterisk will be used to indicate that the mentioned day y refers
to the yth day of each cycle and not only to day y itself. That is, y∗ denotes all days t for
which t = y+mT , y ≤ T,m = 0, 1, 2, 3, . . . , where T is the length of a learning cycle, here
16 days.

Some theoretical background about cyclic Markov processes is given in Section 2. This
section also contains a small literature review on the recall probability that is needed to
determine transition probabilities. After the model is set up in Section 3, the model is anal-
ysed by means of three analytic performance measures in Section 4. Finally, in Section 5,
several possible adjustments to the Leitner system are discussed and their performances
are compared. The section ends with proposing an alternative to the Leitner system. In
Section 6, the limitations of this research are discussed and suggestions for future research
are made. An overview of the main symbols used in this paper can be found in Appendix A.

2 Theoretical Background

In this section some theoretic background is presented that is needed in this research.

2.1 Markov process

Most material on Markov processes immediately focuses on time-homogeneous Markov
processes, called Markov chains. In this report, however, a time-inhomogeneous Markov
process is used.

Consider a stochastic process {Xt, t = 1, 2, . . . } with discrete time. As can be found
in most textbooks on Markov chains, for example [11] and [15], Xt = i denotes that the
process is in state i at time point t and this stochastic process is a Markov process if

P (Xt+1 = j|Xt = i,Xt−1 = it−1, . . . , X1 = i1, X0 = i0) = P (Xt+1 = j|Xt = i)

for all states i0, i1,. . . ,it−1, i, j and all t ≥ 0. An important difference with a time-
homogeneous Markov chain is that the transition probability pi,j(t) depends on time t.
That is,

pi,j(t) := P (Xt+1 = j|Xt = i)

subject to

pi,j(t) ≥ 0, i, j ≥ 0 and
∞∑
j=0

pi,j(t) = 1, i = 0, 1, . . . , ∀t ≤ 0.
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At each time step t, the Markov process has an associated transition matrix Pt with
[Pt]i,j = pi,j(t). This is in contrast to a Markov chain for which only a single transition
matrix is needed. It can happen that a part of the process repeats itself every T time steps.
That is, the Markov process is cyclic with period T ∈ N, where T is the smallest number
such that pi,j(mT + y) = pi,j(y) ∀m ∈ N, 0 < y ≤ T . The Markov process can then
be described by T transition matrices according to [12]. The possible transitions after one
cycle are given by the matrix product P = P1P2 · · · PT . This matrix P does not depend
on time anymore. Due to the Chapman-Kolmogorov equations for this time-homogeneous
P, the t-step transition matrix with t = mT + y is given by

P (t) = P1 · · · Pt−1Pt = (P1 · · · PT−1PT )
mP1 · · · Py = PmP1 · · · Py.

In this paper, a Markov process with an absorbing state is considered. Since absorption
is certain, the question remains how long it takes until the process enters the absorbing
state. That is, the mean time to absorption. Please note that the method described here
to determine the mean time to absorption assumes a time-homogeneous matrix, but this
is still useful due to the time-homogeneous matrix P. Let Q be the submatrix of P from
which the rows and columns corresponding to absorbing states are removed. This matrix
Q is used to calculate the fundamental matrix F := (I−Q)−1, where I denotes the identity
matrix of the same size as Q and −1 the inverse. The entry Fi,j denotes the average number
of time steps the process is in transient state j before absorption when started in transient
state i. The inverse of (I − Q) exists by Theorem 3.2.1 of [5]. Let α0 denote the initial
state distribution at time t = 0, where [α0]i = P (X0 = i). Summing up all entries of α0F
yields the mean time to absorption.

2.2 Recall probability

To be able to determine realistic transition probabilities pi,j(t), some background infor-
mation about the probability that a certain item is reviewed correctly is needed. This
probability is called the recall probability and will be denoted by Precall(t). It is assumed
that a word will be reviewed correctly if the user still knows the translation of the word.
To determine Precall(t), a straightforward idea would be to use the forgetting curve. The
forgetting curve was first introduced by Ebbinghaus in 1885 [3]. It shows the decline of
memory retention in time by plotting the percentage of learning material retained against
time. The corresponding model for the percentage retained, Precall(t), is

Precall(t) =
100k

c · log10(t) + k
, (1)

where t is the time since last reviewed and c and k are constants. Unfortunately, both
the research of Ebbinghaus as well as a replicating study [8] were performed with only one
data subject and concerned the learning of meaningless syllables. It is therefore unknown
how well Equation (1) generalizes.

A variant on the ‘Ebbinghaus Forgetting Equation’ is examined in the paper Unbounded
Human Learning: Optimal Scheduling for Spaced Repetition [10] where the authors look
at different forms of exponential powers and assume that recall is binary (a user either
completely recalls or forgets an item). They test the different formulas on empirical data
of Mnemosyne, which is a popular flashcard software tool, to see which one fits best. Based
on their observations, they adopt the following exponential forgetting curve

Precall,z(t) = e−
θ·t
kz , (2)
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where θ is the global difficulty, t is the time since last reviewed and kz is the current deck
for a word z. By means of the global difficulty θ, Equation (2) can be adjusted to take into
account the level of the student, but also the general difficulty of a language. To illustrate
the latter, most Dutch people will have more trouble learning Chinese words than learning
German words, so for them θ for Chinese will be higher than for German. Since in this
research flashcards are used and Equation (2) is based on flashcard data, Equation (2) will
form the basis for the recall probability in this research.

3 Model

The Leitner system, as given in the first column of Figure 2, is modelled as a discrete
inhomogeneous Markov process, where the time steps are days. In the original Leitner
system words can arrive to a deck on different days before the next review. To make
sure that the basic setup of the model is understood well, first a naive model is given
in which these fragmented arrivals of words is not taken into account yet. That is, the
recall probability does not take into account the exact time since the last review of an
individual word. In this chapter, the states, transition probabilities and transition matrices
for this naive model are explained thoroughly in Section 3.2, Section 3.3 and Section 3.4
respectively. After that, in Section 3.5, a distinction is made between batches of words
arriving at different times, which makes the described Markov process suitable as a model
for the Leitner system. Only the adjustments to the naive model are mentioned. Before
the naive model is described further, the assumptions that are made during the modelling
are listed in the next paragraph. Throughout this paper, let d denote the number of decks
and w the number of words in the system.

3.1 Assumptions

There is one ‘fixed’ review session per day. During this review session all the
decks that are on the Leitner calendar for that day are reviewed entirely. Since time is
measured in days, there is exactly one day between two consecutive review sessions. This
means that a difference in hours that could be caused by the first review session taking
place in the evening and the next one in the morning in reality is neglected.

Each word will be reviewed at most once a day. Since every day deck 1 is
studied, often together with a higher deck, it can happen that a word moves to a deck
that is reviewed after the first deck of that day. The word would then be reviewed only
shortly before the second encounter, so the chance that the student still knows the word is
significantly higher. Therefore it is decided that each word can at most be reviewed once
a day.

The recall probability is deck-specific. A deck-specific recall probability pk is
used, since research, [10], shows that the recall probability depends strongly on the word
complexity. A uniform recall probability p would therefore be unrealistic. However, a
recall probability depending on word difficulty would be too difficult and not suited for
this approach, since then the intrinsic difficulty of each word needs to be determined.
Moreover, the recall probability does not take into account how often a certain word has
been reviewed before. This is necessary to have independence of the past (the way a word
arrived to a certain deck), which is needed to be able to model the system as a Markov
process, without having to store the number of past reviews of each word in the state
description, which would increase the size of the state space too much.

The recall of words is independent. There is no dependence between a single recall
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of words in a certain deck and there is also no dependence between the recall of words of
two different decks.

All words start in deck 1 and the student has studied them once. Before
the first day, all words are in the deck 1. The day before the Leitner calendar starts, the
student has studied all the words once. This is a realistic assumption since the student has
probably written the flashcards on that day. This guarantees that there can be spoken of
a recall on the first day.

3.2 States

It is important to know how many words are in each deck. Let nk denote the number
of words in deck k, nm the number of words mastered and ck the number of words that
are reviewed correctly in deck k, k ∈ {1, 2, . . . , d}. The state description is a vector
n = (n1, n2, . . . , nd, nm) containing the number of words in each deck at the end of the
day, after a review session. Storing nm in the state is both convenient to keep track of the
number of mastered words, which tells something about the efficiency of the systems, as
well as to ensure that all entries of a state always sum up to the number of words in the
system. So, for all n, we have

∑d
k=1 nk + nm = w. The state space S therefore consists of(

w+d
w

)
vectors.

3.3 Transition probabilities

Each word will be recalled correctly with deck-specific recall probability, pk. Since the
recall probability used here is deck-specific, Equation (2) is slightly adjusted to

pk := Precall,k(t) = e−
θ·tk
k , (3)

where k is the number of the reviewed deck and tk is the number of days since the words
in deck k are last reviewed. To all decks, except deck 1, words can arrive on different days
before the next review. In the naive model, the average between the arrival days is taken.
For example, words correctly reviewed in deck 2 on day 7* and 9* both are next reviewed
in deck 3 on day 10*. So, t3 = 3+1

2 = 2. In Section 3.5 the naive model is adjusted so that
a distinction between these different arrivals is made. For k ∈ {2, . . . , d}, tk will become a
vector with the different arrival days that occur in deck k.

The recall probabilities are not the same as the transition probabilities between states,
since multiple words, and even decks, are reviewed in one review session. The transition
probability uses the probability that a certain amount of words, c, is recalled correctly from
a total amount of words, n, where the probability of a correct recall is the recall probability
given in Equation (3). Let the random variable Ck denote the number of correct recalls
in deck k. Due to the independence between the recall of words, Ck ∼ B(nk, pk). Define
qnk,ck,pk as

qnk,c,pk := P (Ck = c) =

(
nk

c

)
pck(1− pk)

nk−c. (4)

On most days, multiple decks need to be studied. Due to the assumed independence
between the recall of different decks, the total transition probability for that day is just
the product of the individual transitions of each deck.
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3.4 Transition matrices

The transition matrix Pt depends on which decks have to be reviewed on day t. Due to the
cyclic behaviour of the Markov chains, only a limited number of unique transition matrices
are necessary. Moreover, even inside a cycle, certain combinations of decks to be reviewed
appear more often, so the transition matrices for these days will be the same. The dummy
variable s ∈ {0, 1, 2, . . . }, will be used in the subscript of the matrices to have a short-hand
notation for when the matrix is applicable for multiple days. To prevent the notation to
become too cumbersome for the realistic model, the transition matrices are explicitly given
for d = 5.

Constructing the transition matrices is quite straightforward once you understand how
the transition process works. Therefore, only the construction of the transition matrix for
the days on which deck 1 and 2 are reviewed is explained thoroughly. The other transition
matrices can be found in Appendix B.1.

When deck 1 and 2 are reviewed, only n1, n2 and n3 can change. The words from
deck 2 that are reviewed correctly will go to deck 3 and the rest will go to deck 1. That
is, the number of words in deck 3 will increase by c2 while the number of words in deck
1 will increase by n2 − c2. Words that are correctly reviewed in deck 1 will go to deck 2,
while those that were incorrect will stay in deck 1. So, the number of words in deck 1 will
decrease by c1 and the number of words in deck 2 will become c1. The latter is the case
since all words that were initially in deck 2 already went to deck 1 or 3 due to the review
of deck 2, so without the arriving c1 words the deck would have been empty at the end of
the day. Due to the assumption that no words are reviewed twice, the number of correctly
reviewed words in a deck can not exceed the number of cards in that deck at the start
of the day. In conclusion, on a day on which deck 1 and 2 are reviewed, only transitions
from a state (n1, n2, n3, n4, n5, nm) to the state (n1 − c1 + n2 − c2, c1, n3 + c2, n4, n5, nm)
are possible. The probability that such a transition takes place is given by qn1,c1,1 ∗qn2,c2,2,
where q is as defined in Equation (4). Deck 1 and 2 are studied on all odd days, except on
day 13 when deck 4 is studied as well. That is, on days 1 + 2s\13*, s = 0, 1, 2, . . . . This
means that the transition matrix for all odd days except day 13 is given by

[P1+2s\13∗ ]n,n+δ = qn1,c1,p1 ∗ qn2,c2,p2 for δ = (−c1 + n2 − c2,−n2 + c1, c2, 0, 0, 0)

if c1 ≤ n1, c2 ≤ n2

= 0 else.

3.5 Adjust the naive model to a realistic model for the Leitner system

In all decks except deck 1 words arrive on multiple days before that deck is reviewed again.
Since some words have arrived to that deck in an earlier review session than others, the
time since the last review is larger for these words. These words should therefore have a
lower recall probability than the words that arrived on a more recent day. So, a distinction
should be made between these sets of words in such a way that these sets have a different
recall probability, and thus a more accurate transition probability for the total deck. The
state description is changed: for k ∈ {2, . . . , d} nk is changed from a single number, the
number of words in deck k, to a vector (nk,old, nk,new). The first entry of the vector,
nk,old, contains the number of words that arrived first since the previous review of deck k.
Naturally, the second entry, nk,new, then contains the number of words that arrived in the
second review session of one deck lower. The state description becomes
(n1, (n2,old, n2,new),. . . , (nd,old, nd,new), nm).
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The transition matrices change as well. In order to determine the transition probability,
it should be taken into account to which of the two subdecks of deck k the words should
go when reviewing deck k − 1 and in which of the two subdecks of deck k the words were
when reviewing deck k. The realisation of these two different distinctions that have to be
made, is described below and illustrated with a transition matrix. The other transition
matrices can be found in Appendix B.2.

The latter of the two is achieved by not summing over the total number of words that
can be done correctly in deck k, with as maximum nk, but by distinguishing from which
subdeck the words are. So, summing over each of the two subdecks with as maximum nk,old
and nk,new respectively. This is important since the recall probability for these subdecks
are different. As mentioned in Section 3.3, tk is now a vector for k ∈ {2, . . . , d}, yielding a
pk,old and a pk,new for the two respective subdecks of deck k. For example, the transition
matrix for day 12*, on which deck 1 and 5 are reviewed, will now become

[P12∗ ]n,n+δ = qn1,c1,p1 ∗ qn5,old,c5,old,p5,old ∗ qn5,new,c5,new,p5,new for

δ = (−c1 + n5,old − c5,old + n5,new − c5,new, (0, c1), (0, 0), (0, 0), (0, 0),

c5,old + c5,new),

if c1 ≤ n1, c5,old ≤ n5,old, c5,new ≤ n5,new

= 0 else.

To which of the two subdecks a correctly reviewed word should go, depends on the day
and can be achieved by constructing more unique transition matrices. To illustrate this,
look at day 3* and 5*. On both days deck 1 and 2 are reviewed. So, in the naive model
the transitions of both days were represented by the transition matrix P1+2s\13∗ . However,
after day 3* deck 3 is reviewed on day 6* for the first time, meaning that both the words
of deck 2 that are reviewed correctly on day 3* and 5* have their next review on day 6*.
The words of deck 2 that were done correctly on day 3* should therefore be stored in the
‘old’ subdeck of deck 3, while the words from day 5* should go to the ‘new’ subdeck of
deck 3. So, instead of the same transition matrix, day 3* (and 7*, 11* and 15*) and 5*
(and 1* and 9*) are now defined by different transition matrices

[P3+4s]n,n+δ = qn1,c1,p1 ∗ qn2,old,c2,old,p2,old ∗ qn2,new,c2,new,p2,new for

δ = (−c1 + n2,old − c2,old + n2,new − c2,new, (−n2,old + c1,−n2,new),

(c2,old + c2,new, 0), (0, 0), (0, 0), 0),

if c1 ≤ n1, c2,old ≤ n2,old, c2,new ≤ n2,new

= 0 else

[P1+4s\13∗ ]n,n+δ = qn1,c1,p1 ∗ qn2,old,c2,old,p2,old ∗ qn2,new,c2,new,p2,new for

δ = (−c1 + n2,old − c2,old + n2,new − c2,new, (−n2,old + c1,−n2,new),

(0, c2,old + c2,new), (0, 0), (0, 0), 0),

if c1 ≤ n1, c2,old ≤ n2,old, c2,new ≤ n2,new

= 0 else.

A small remark on the words that arrive in deck 4: they arrive either two and six days
in advance or three and seven days in advance. The first is the case on day 4* while the
second is the case on day 13*. An extra distinction in recall probability, in the form of
t4 = ((2, 6), (3, 7)), is therefore necessary. Fortunately, no changes to the state description
are necessary.
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4 Analysis of the model

4.1 Performance measures

The performance of the Leitner system will be analysed by means of three performance
measures:

1. Mean number of cycles until all words are mastered
2. Expected number of words mastered after t days
3. Expected number of words reviewed at day t

The first two measure the efficiency of the system. The third shows the distribution of the
workload. Below each of these performance measures is outlined.

4.1.1 Mean number of cycles until all words are mastered

Students often would like to know how long it takes until they have mastered all their
words. The state in which all words are mastered, (0, (0, 0), . . . , (0, 0), w), is the only
absorbing state in the Markov process. Fortunately, absorption in (0, (0, 0), . . . , (0, 0), w)
is thus certain. We are interested in the mean time to absorption. In Section 2.1, a
common method to calculate the time to absorption for a time-homogeneous Markov chain
is described. To be able to use this method, we use the time-homogeneous matrix P =
P1P2 · · · PT . As a result of this, the mean time until all words are mastered is only
calculated in cycles instead of individual days. However, it will still be a good indication of
how efficient the system is, especially since there is only one fixed day per cycle on which
the highest deck is reviewed and thus on which words can become mastered. The mean
number of cycles until all words are mastered will be indicated by τ and is calculated with

τ = α0F1.

4.1.2 Expected number of words mastered after t days

The expected number of words mastered after a certain day t, which will be indicated by
mt, does not say that much about a system on it self. However, it is a good measure to
compare variants of the Leitner system to the original system and to each other. If system
A has a higher mt than system B, system A is preferred over system B when the rest is the
same. One may wonder what the benefit of this measure in addition to the first measure is.
For the first measure, the inverse of a matrix has to be taken. Moreover, contrary to the
first measure, the second measure scales linearly with the number of words in the system as
will be explained in Section 4.3.1. Both reasons make it feasible to analyse bigger systems
with this second measure.

To calculate mt, we need the matrix P (t), as defined in Section 2.1. Again, we are only
interested in the row corresponding to the initial state (w, (0, 0), . . . , (0, 0), 0). The vector
α0P

(t) contains for each state the probability of being in that state after day t. Each state
n contains the number of mastered words as the last entry of its state description, nm.
So, for each state the probability and the number of mastered words are known. Let the
random variable Mt denote the number of words mastered after day t. The expected value
of Mt can simply be calculated by multiplying the probability of being in a state n at time
t, denoted by [α0P

(t)]n, by nm and summing over all states. That is,

mt := E[Mt] =
∑

n∈S [α0P
(t)]nnm .
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Since mt is an increasing function with t, the system and its adjustments will only be
compared on the number of mastered words after one fixed day, which is chosen to be day
64. Day 64 is the last day of the fourth cycle, so possible phenomena specific to the start
up of the system should have disappeared and the review of deck 5 of the fourth cycle has
certainly taken place.

4.1.3 Expected number of words reviewed at day t

To determine the expected number of words reviewed at a certain day t, which will be
indicated by rt, we need to know in which state we are at the start of that day and
which decks have to be reviewed on that day. Since all words in a deck, which has to be
reviewed on that day, are reviewed once and only once on that day, no information about
the correctness of the review of the words on day t itself is necessary. The probability of
being in a certain state at the start of day t is the same as the probability of being in that
state on day t−1, when started in the initial state (w, (0, 0), . . . , (0, 0), 0) on day 1. So, we
need the vector α0P

(t−1). Let dt be the vector containing the numbers of the decks that
have to be reviewed on day t. For each state we can multiply the number of words initially
in the decks dt, nk for k ∈ dt, by the probability of being in that state at the start of day
t, which can be found in α0P

(t−1). States that are not possible after day t− 1 (and empty
decks) will automatically have a zero contribution, so we can just sum over all states. Let
the random variable Rt(k) be the number of words in deck k at time t. So, the expected
number of words reviewed at day t is calculated with

rt :=
∑

k∈dt
E[Rt(k)] =

∑
k∈dt

∑
n∈S [α0P

(t−1)]nnk.

This expected number rt can be used to analyze the distribution of the workload by
plotting the expected number of words reviewed per day during a cycle. Moreover, rt
can be used to calculate another useful measure for the distribution of workload: the ratio
between the lowest and highest expected number of words reviewed during one cycle, which
will be indicated by ρ and can calculated as follows

ρ :=
maxt=1+mT,...,T+mT rt
mint=1+mT,...,T+mT rt

for some m large enough.

4.2 Results for the Leitner system

All results are obtained by computations in the programming language Python. An inter-
ested reader can contact the author for the Python code used to obtain the results. Due to
limitations in the size of a matrix, at most 5 words in the system could be examined with
the current implementation. The analysis of the Leitner system below is given for both
w = 5 and w = 1 in the system. The reason for the latter is explained in the section below.
To obtain numerical results, a value for the global difficulty parameter θ in Equation (3)
has to be chosen. All the results in this paper are obtained with d = 5 and θ = 0.3, except
when stated differently. This choice for θ is explained in Section 4.3.3.

The numerical outcomes for the three performance measures are given in Table 1. To
make the reader familiar with the interpretation of these numerical values, the outcomes
for the system with w = 5 will also be described verbally.
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Table 1: The numerical values for the three performance measures for both five
words and one word in the system.

# words in the system τ m64 ρ
5 6.21 3.84 20.81 (day 8* and 12*)
1 3.59 0.77 20.81 (day 8* and 12*)

A student is expected to need 6.21 cycle to master all words in the system (τ). A word
can only become mastered if it is reviewed correctly in deck 5. Since deck 5 is reviewed
once in a cycle and only nonempty from cycle two on, the seemingly high number of cycles
necessary to master all words can be put into context. After 64 days, the student is ex-
pected to have mastered 3.84 words of the total of 5 words (m64). The biggest difference
in the expected number of words reviewed is between day 8* and 12*. On day 12* the
student is expected to review 20.81 times as many words as on day 8* of the same cycle
m, m sufficiently large (ρ).

The number of words reviewed per day for the first seven learning cycles is plotted in
Figure 3. For convenience, the first day of every learning cycle is marked on the x-axis.
It is clear that there is a repeating pattern in the number of words reviewed per day in
every learning cycle. This repeating pattern decreases in size, as was expected since every
cycle some words leave the systems as they are mastered. The expected number of words
reviewed per day fluctuates quite a lot. The least reviews per day take place on days on
which only one deck is reviewed, while the most reviews happen on days on which higher
decks are reviewed. This makes sense as there are multiple reviews of low decks before one
higher deck is reviewed, so there are more ‘chances’ for words to arrive in the higher deck
in the meantime.

Figure 3: The expected number of words reviewed for each day of the first seven
cycles.

4.3 Observations

4.3.1 mt and rt scale linearly with the number of words

Figure 4b and Figure 4c show that the second and third performance measures scale linearly
with w. Intuitively this makes sense as the distribution of words among the days remains
the same due to the assumption of independent recalls. So, a system with w words behaves
for these two measures as w independent systems of one word.
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Figure 4a shows that, unlike mt and rt, the first measure τ does not scale linearly with
the number of words. This is explained by the fact that the day that all w words are
mastered is the maximum of w days on which a single word in the system was mastered.

(a) The expected number of cy-
cles until all words are mastered.

(b) The expected number of
words mastered after day 64.

(c) The expected number of
words reviewed on day 45.

Figure 4: The performances measures plotted against the number of words in the
system.

The linearity of mt and rt ensures that w = 1 suffices for the computations for the
comparison of proposed alternatives. From now on, all results are therefore obtained with
w = 1, unless stated otherwise. This decreases the size of the state space, and thus of the
transition matrices, drastically. Problems like limited memory storage for big matrices and
long computing times are therefore avoided.

4.3.2 Fixed ratios for ry∗

Figure 3 might raise two questions. Namely (i) if there is a factor in the decrease of the
number of words reviewed on day t of every cycle and (ii) if the ratio between the number
of words reviewed on two days of a single cycle is fixed. That is,

(i) ry+mT

ry+(m+1)T
−→ constant as m grows large, ∀0 < y ≤ T

(ii) ry+mT

rx+mT
−→ constant as m grows large, ∀0 < x, y ≤ T .

Table 2 and Table 3 show that both (i) and (ii) are the case for m big enough, so after the
influence of the initial behaviour disappeared. (i) As the shape of Figure 3 already suggests
and Table 2 confirms, ry∗ shows asymptotic geometric decay. (ii) As Table 3 indicates, the
ratio between the r13∗ and r14∗ of the same cycle stabilizes around the value 2.91. The
ratio between other combinations of days stabilizes at approximately the same rate. For
example the ratio of day 5* and 6* is also given in Table 3.

If a margin of 0.01 between two consecutive cycles is taken, then one can say that
this system stabilizes for (ii) after the sixth cycle. We will therefore call the sixth cycle
and higher steady cycles. This enables us to study the distribution of workload over the
days for only one cycle, since the ratios are almost fixed. This distribution can now be
characterized by a plot of the expected number of words reviewed per day for only one
steady cycle, like Figure 5. This fixed ratio also guarantees that the ratio between the
lowest and highest expected number of words reviewed during one (steady) cycle, ρ, is a
good measure.
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Table 2: The ratio of the ex-
pected number of words reviewed
on day 13 and on day 5 for the
first 10 consecutive cycles.

m r13+mT

r13+(m+1)T

r5+mT

r5+(m+1)T

0 0.6270 0.4892
1 0.6149 1.2102
2 0.6186 0.5110
3 0.6174 0.6640
4 0.6178 0.6023
5 0.6177 0.6234
6 0.6177 0.6157
7 0.6177 0.6185
8 0.6177 0.6175
9 0.6177 0.6178

Table 3: The ratio of the ex-
pected number of words reviewed
on day 13 and 14 of the same cy-
cle and on day 5 and 6, for the
first ten cycles.

m r13+mT

r14+mT

r5+mT

r6+mT

0 2.2580 0.2995
1 3.2396 1.1750
2 2.8128 1.0880
3 2.9515 1.1214
4 2.9003 1.1085
5 2.9184 1.1129
6 2.9119 1.1113
7 2.9142 1.1119
8 2.9134 1.1117
9 2.9137 1.1118

Figure 5: The expected number of words reviewed per day for a steady cycle
(cycle 6).

4.3.3 Influence of the value of the global difficulty θ

As said before, the value of θ depends on several factors. Nevertheless, to generate nu-
merical results it is necessary to assume a value for θ. A first idea would be to use the
θ = 0.0077 from the paper on which the recall probability in this research is based, [10].

Figure 6: The expected number of words reviewed per day for θ = 0.0077.
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Figure 6 shows the expected number of words reviewed per day for θ = 0.0077. This
looks quite different from Figure 3 and not as an interesting system to examine. Moreover,
the number of cycles to master all words τ is 2.02. Given that only after two cycles a
word could be mastered, this is quite fast. These results are explained by the fact that
such a low θ results in a very high recall probability, and consequently most words are
reviewed correctly in the first (non-empty) review of each deck. These take place on day
1, 3, 6, 13 and 28 for deck 1 to 5 respectively, and therefore explain the five high peaks in
Figure 6. The low peaks are caused by an incorrectly reviewed word which has to go back
to deck 1 from where it follows a similar path to being mastered. So, with θ = 0.0077, we
are looking more at the limiting behaviour of the Leitner system than its use in a normal
learning setting. This also explains the unrealistically high value of ρ.

It is therefore preferred to look at other values for θ. For different values of θ, the
number of expected words reviewed per day in the sixth cycle is plotted in Figure 7 and
the expected number m64 and the ratio ρ are given in Table 4.

(a) θ = 0.1 (b) θ = 0.7 (c) θ = 1

(d) θ = 0.3 (e) θ = 0.5

Figure 7: The expected number of words reviewed per day in the sixth cycle for
different values of θ.

In the graph for θ = 0.1, the limiting behaviour observed with θ = 0.0077 can easily be
recognized. On the other hand, for θ = 1 the limiting behaviour, to which the graph for
θ = 0.7 already tends, seems to occur as well. The graphs for θ = 0.3 and θ = 0.5, which
are slightly bigger depicted in Figure 7, look more balanced. In the absence of reference
values for the performance measures, we have to resort to logical reasoning to select a
value for θ. The ratio ρ belonging to θ = 0.5 feels more realistic than the one belonging
to θ = 0.3 when keeping in mind that Leitner seems to have thought carefully about the
motivational aspect for the students. However, at the same time m64 for θ = 0.3 feels more
accurate, as one would imagine that after 64 days, a student should be able to learn three
quarters of the words he has to learn instead of only half. Though this depends strongly
on the language of the words as well. In this paper θ = 0.3 was chosen. With this section,
the reader is hopefully convinced that θ = 0.3 is a decent choice, but more importantly he
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is now aware of what, and how big, the influence of θ is.

Table 4: m64 and ρ for different values of θ in the original system.

Value of θ m64 ρ

1 0.09 2.38 (day 8* and 13*)
0.75 0.22 3.75 (day 8* and 13*)
0.5 0.48 7.51 (day 8* and 13*)
0.3 0.77 20.81 (day 8* and 12*)
0.1 0.98 260.68 (day 8* and 12*)

0.0077 1.00 354772.23 (day 16* and 12*)

5 Adjustments to the Leitner system

Several possible adjustments to the Leitner system are proposed and analysed in this
section. These adjustments can be divided into two categories. Some adjustments focus
on achieving a more even distribution of workload. The objective of the other, more
extreme, adjustments is to make the schedule easier to remember. The adjusted models
are analysed using the second and third performance measures of Section 4.1 and compared
to the original Leitner system. Since the second performance measure suffices to compare
models on their efficiency and scales linearly with the number of words, as highlighted
in Section 4.3.1, the first performance measure will not be taken into account due to
computational difficulties. For the first two adjustments, the changes to the original model,
as discussed in Section 3.5, are explained. The procedure for the other adjustments is
similar and is left out to avoid focusing too much on technicalities. The reader can find all
the results in Table 5 at the end of this section.

5.1 A more equal distribution of workload

Figure 5 shows quite a difference in the expected number ry∗ for different values of y∗.
While a student may have some extra motivation on the eighth day of each cycle since
little words are expected to be reviewed, the student could be very discouraged on day 12*
since he is expected to review a lot of words (20.81 times as many as on day 8*). It would
therefore be convenient if ry∗ is approximately constant for y∗.

5.1.1 Introducing a day 0

The number of words reviewed in the first cycle of the original Leitner system is given in
Figure 8a. What immediately stands out are the peaks on day 1, 3 and 6, which are not
present anymore in a steady cycle, shown in Figure 5. These extreme fluctuations in the
first days are caused by the fact that the Leitner system ‘just starts’, as if you already have
had a few review sessions. Deck 2 and 3 are certainly empty on day 1 and 2, respectively, so
their scheduled review is useless, while all cards are still in deck 1 and 2 on day 3, causing a
review of all words. The first non-empty review of deck 3 is only on day 6, causing another
big peak in the number of reviews for that day. Only after these first extreme days, the
words are spread out enough over the decks for the system to start working. A simple
adjustment would therefore be to introduce a day 0 on which deck 1 is reviewed, which is
only done when starting with the Leitner system. This would avoid scheduled decks being
guaranteed empty.
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The only change made to the original model is the introduction of the transition matrix
P0 which contains the transitions corresponding to reviewing deck 1. Since on day 8* and
16* also only deck 1 is reviewed, P0 will equal P8s. This means that instead of letting the
Markov process start at t = 1, starting it at t = 0 would naturally turn out correctly.

With the introduction of a day 0 the extreme fluctuations during the first days disap-
peared, as can be seen in Figure 8b. Due to the smoother start up of the system, it is
now also possible for words to be in deck 5 of the system after 12 days. This increased
the efficiency of the system, as can be seen by the fact that now m64 = 0.84, compared to
m64 = 0.77 when not having a day zero.

(a) Without the introduction of a day 0. (b) When a day 0 is introduced.

Figure 8: The expected number of words reviewed per day for the first cycle.

5.1.2 Adding an extra deck

Figure 5 shows that the days with the least expected number of words reviewed are mostly
day 8* and 16*. Not surprisingly, these are the only two days on which only one deck, deck
1, is reviewed. To increase r8∗ and r16∗ , the review of an extra deck could be added. Both
the individual adding of deck 2 and deck 3 are studied. Note that this adjustment causes
the total workload to increase a bit, since per cycle an extra deck is reviewed, instead of
flattening out the existing workload. If this would, however, pay off in having mastered
the words notably sooner, it would be a reasonable trade off.

Due to the adding of deck 2 (deck 3), an extra arrival of words to deck 3 (deck 4)
takes place. This means that an extra entry n3,middle (n4,middle) should be added to the
vector (n3,old, n3,new) ((n4,old, n4,new)) in the state description. All transition matrices are
adjusted accordingly, where only on day 8* and 16* words can be added to this middle
state. Naturally d8∗ changes to [1,2] ([1,3]) instead of [1] and t3 (t4) gets an extra entry
indicating the number of days from the batch of words arrived to the ‘middle’ subdeck
until the review of deck 3 (deck 4).

The influence of adding deck 2 on day 8* and 16* on the distribution of words reviewed
per day can be seen in Figure 9a. As expected, r8∗ and r16∗ increased, while r9∗ decreased
a bit. However, r9∗ is still higher than r8∗ of the original system. Therefore, the ratio
ρ decreased to 16.37 (between day 12* and 9*). Although an extra deck is reviewed per
cycle, the expected number of mastered words m64 decreased slightly to 0.76. This could
be explained by the fact that the words, which now arrive to deck 3 two days before their
review, would in the original system only arrive one day before. This means that in deck
3 the recall probability for these words is now lower than in the original system, so fewer
words are expected to go to deck 4.
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(a) On day 8* and 16* deck 1 and 2 are re-
viewed instead of only deck 1.

(b) On day 8* and 16* deck 1 and 3 are re-
viewed instead of only deck 1.

Figure 9: The expected number of words reviewed per day for certain adjustments.

Adding deck 3 on day 8* and 16* altered the distribution of workload as shown in
Figure 9b and decreased the ratio ρ to 13.95 (between day 11* and 12*). Moreover, m64

increased to 0.82. Although both performance measures seemed to improve from adding
deck 3, an important side note is made in Section 6.1.

5.1.3 Moving deck 4 and 5

The previous adjustment focused on equalizing the workload by increasing rt on the qui-
etest days. Another approach to reach this goal would be to decrease rt of one of the
busiest days. Two possibilities are studied. The first one focuses on the peak of day 12*,
while the second one focuses on the peak of day 13*.

Figure 5 shows a big difference between r11∗ and r12∗ . The influence of moving deck 5
from day 12* to day 11* is therefore examined. Figure 10a shows that the total distribution
improves a bit, although the biggest contribution of the high peak is the review of deck 5
itself, which can not be flattened out with the current approach. The words that are now
reviewed incorrectly in deck 5 will already be reviewed on day 12*, on which only deck 1
is reviewed, instead of contributing to a higher number of reviews on day 13* like in the
original schedule. This causes the peak of day 13* to be lowered and the dip of original
day 11* to be heightened, now on day 12*. This slight flattening of the distribution of
the workload is not reflected in the ratio ρ though. Since the expected number of reviews
on day 16* decreased, ρ increased to 31.09. The expected number of mastered word m64

increased slightly to 0.80.
Day 13* is the only day on which three decks are reviewed. This would be a logical

explanation for the high peak on this day. During this research it was examined what
happened when deck 4 is moved from day 13* to day 11*. Afterwards it does not seem like
a logical choice: one would expect that it is like only switching day 11* and 13* instead
of flattening out the workload. However, the results are quite remarkable and show an
important pitfall of this research. Figure 10b shows that, as expected, the peak on day 12*
did not change. The peak of day 13* did not move to day 11* but just disappeared, which
was not as expected. A slight decrease on day 16* caused the ratio ρ to increase to 36.35.
The most interesting observation is the enormous increase in which words are mastered.
The number on the x-axis of Figure 10b already suggests it and the drastic increase of
m64 to 0.97 confirms this. The reason for this increase is quite simple. By moving deck 4
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(a) The review from deck 5 is moved from day
12* to day 11*.

(b) The review from deck 4 is moved from day
13* to day 11*.

Figure 10: The expected number of words reviewed per day for certain adjust-
ments.

from day 13* to day 11*, deck 4 is now reviewed the day before deck 5 instead of the day
after. This means that words arriving to deck 5 were last reviewed only one (and eight)
day before instead of fifteen (and eight) days. This increases the recall probability for these
words significantly, causing more words to be reviewed correctly in deck 5. Although this
faster mastering of words sounds nice, the influence on the retention of the words in the
long run is unknown.

5.1.4 Spread introduction of new word

On the first days the expected number rt is the highest, since it is assumed that all words
start in deck 1 on day 1. When the introduction of new words is spread (evenly) over the
first four days, the graph of rt for one steady cycle looks identical to Figure 5, except for
the scale of the y-axis. Since the states have only integer entries and at least one word is
introduced per day, w = 4 is needed to obtain results. The expected number m64 of 3.04
should therefore be divided by 4 before comparing it to the original Leitner system. Both
ρ and the scaled m64 are almost the same as those of the original system, just like the
graph of rt. This illustrates that the behaviour in the long term is not influenced much.

5.2 An easier to remember schedule

Most people, and especially students, tend to think in weeks: they start a week on Monday
and end with one or two days of weekend. For remembering the Leitner calendar, it would
therefore be convenient to adjust the calendar such that the learning cycles are based on
weeks. However, the previously described adjustments show that caution is necessary when
deviating too much from the original Leitner system.

The original Leitner system has a learning cycle of 16 days for 5 decks, where the first
and second 8 days are quite similar. So, we will focus on a variant that takes two weeks
(14 days), where the first and second weeks are quite similar. Since the long-term learning
effects of deviating too much from the original division of decks are unknown, the choice
was made not to set up an own division of decks over the 14 days, but adjust the original
Leitner system by removing day 8* and day 16*, on which only deck 1 would have been
reviewed. For clarity this adjusted review calendar is given in Figure 11.

The new distribution of workload is shown in Figure 12. The distribution is different
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Figure 11: The review calendar for a biweekly system.

from the original system, as was shown in Figure 5, especially for the lower days, but
does not appear to have worsened. Based on the ratio ρ, which decreased significantly to
12.28, the difference between the review sessions is less extreme, so one could say that the
distribution of workload improved. The number of mastered words m64 did not change
much.

Figure 12: The expected number of words reviewed per day for a steady cycle
(cycle 6) of the biweekly system.

5.3 Proposed alternative system

Several possible adjustments have been analysed in the previous subsections. In this sub-
section, the obtained knowledge is used to propose an alternative to the Leitner system
that would be more user friendly, while at the same time maintaining the usefulness of
spaced repetition. One of the biggest drawbacks of the Leitner system is that it is hard to
remember. Therefore, the basis for the proposed alternative will be the biweekly system
as discussed in Section 5.2. A first simple improvement will be the addition of a day 0.
Although the adding of deck 3 on the original days 8* and 16*, the days on which only
deck 1 is reviewed, showed an improvement in both performance measures, no deck will
be added to the day on which only deck 1 is reviewed (day 4*). The reason for this is that
the influence on the retention in the long run is unknown and feared to be worse, as will
be explained in Section 6.1.

The biweekly system has its two largest expected review sessions on the day 11* and
12* which are similar to day 12* and 13* of the original system. Moving deck 5 to a day
earlier showed a slight increase in the expected number of words mastered, as described
in Section 5.1.3. Since deck 5 is reviewed only once per cycle, the moving of deck 5 does
not affect the easy-to-remember structure of the biweekly system. This adjustment of the
biweekly system, moving deck 5 from day 11* to day 10*, had indeed a similar effect as
on the original Leitner system: m26 increased to 0.83 while also ρ increased strongly due
to a decrease in expected number of reviews on the day on which only deck 1 is reviewed.
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Nevertheless, Figure 13a shows that the distribution of workload over the other days seems
to have slightly improved. The high ratio ρ is mostly caused by the low value of r4∗ . Since
r5∗ is quite high, deck 4 is moved from day 5* to day 4*. Due to the aspiration for an
easy-to-remember schedule, this means that deck 4 is moved from day 12* to day 11* as
well. This adjustment caused a strong decrease in the ratio ρ from 26.22 to 11.54 while
m64 did not change much. The total distribution of workload can be found in Figure 13b.

(a) Deck 5 is moved from day 11* to day
10*.

(b) Deck 5 is moved from day 11* to day 10*
and deck 4 is moved from day 12* and 5* to
day 11* and 4*, resp. (Proposed alternative)

Figure 13: The expected number of words reviewed per day for certain adjust-
ments to the biweekly system.

The biggest contribution to the highest peaks in Figure 13b is due to the review of
a single deck. These peaks seem therefore unavoidable with the chosen approach of only
adjusting the original Leitner system. No improvements to the system adjusted as described
above were found and therefore this is the proposed alternative to the Leitner system based
on this research. The review calendar of this proposed alternative is given in Figure 14.

Figure 14: The review calendar for the proposed alternative system.

The proposed alternative performs better on both performance measures and is easier
to remember. However, the biweekly system (14 days instead of 16 days) and the moving
of deck 4 decreased the time since last reviewed for the words, which makes it hard to
judge the influence of the proposed alternative on the long term retention.
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Table 5: The second and third performance measure for adjustments to the system
(and the reference values of the original system).

Adjustment Graph of ry∗ m64 ρ

Original Leitner system Figure 5 0.77 20.81 (day 8* and 12*)

Introduction of day 0 Figure 8b 0.84 20.80 (day 8* and 12*)
Adding deck 2 on day 8* and 16* Figure 9a 0.76 16.37 (day 9* and 12*)
Adding deck 3 on day 8* and 16* Figure 9b 0.82 13.95 (day 11* and 12*)
Deck 5 from day 12* to day 11* Figure 10a 0.80 31.09 (day 16* and 11*)
Deck 4 from day 13* to day 11* Figure 10b 0.98 36.35 (day 16* and 12*)
Spread introduction of words - ∼0.76 20.81 (day 8* en 12*)

Biweekly Figure 12 0.79 12.28 (day 4* and 11*)
Biweekly: deck 5 to day 10* Figure 13a 0.83 26.22 (day 4* and 10*)
Proposed alternative Figure 13b 0.82 11.45 (day 8* and 10*)

6 Discussion

First, a small remark on the choice of state description has to be made. One may wonder
if the time-inhomogeneity of the Markov process could be avoided by a different state de-
scription that also contains the decks that are reviewed ‘today’. If the order of decks that
have to be reviewed would have been the same, this would probably have worked. How-
ever, knowing which decks are reviewed ‘today’ does not uniquely determine which decks
have to be reviewed ‘tomorrow’. For example, both at day 3* and 5* deck 1 and 2 have to
be reviewed, but the next day deck 1 and 4 or deck 1 and 3 have to be reviewed, respectively.

Another remark is about the choice to explicitly state the transition matrices relating to
five decks while the original Leitner calendar, like in Figure 2, has seven decks. An attempt
was made to state the transition matrices more generally by making use of the vector dt.
Although this general formulation is possible for the naive model, the distinction between
‘old’ and ‘new’ subdecks made a general formulation of the transition matrix for the more
realistic model, as described in Section 3.5, too cumbersome. Therefore the choice was
made to facilitate a better understanding of the transition matrices by explicitly stating
the transition matrices for d = 5, at the expense of a general formulation for d decks. Five
decks sufficed to analyse the working of the Leitner system and to see the consequences of
adjustments to the Leitner system. Adding the two ‘missing’ decks would probably result
in a shift in days in the distribution of words reviewed (and mastered) per day, but would
not help to gain more insight. Conversely, it would cause more problems with computing
the transition matrices since the state space, and therefore the matrix size, increases dras-
tically with d. Since there were now already inconveniences with the size of the matrices,
as can be read below, d = 5 was preferred over d = 7 in this research. Moreover, our
motivation for studying the Leitner systems was the use of physical flashcards by high
school students. Since only one cycle of seven decks already takes 64 days, one may argue
that a learning cycle of 16 days (d = 5) would more often be used by high school students
than a 64 days learning cycle (d = 7).

In this research, no systematic approach was used to optimize the Leitner system.
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Based on Figure 3 and Figure 5 flaws of the system were determined and ways to improve
these by adjusting the system, as explained at the start of each subsection of Section 5.1,
were examined. A different approach would be to choose one adjustment and determine
the optimal execution of this adjustment or to select one parameter and determine the
optimum for this parameter.

6.1 Limitations and further research

A problem encountered in this research was that the transition matrices quickly became
too big to set up, let alone perform operations with, due to memory capacity. Due to this,
only a system with at most five words could be examined. However, due to the linearity of
the second and third performance measure with the number of words in the system and the
fact that most analyses were based on comparison of systems, meaning that w = 1 could
be used, the consequence of this computational problem was small. It did however cause
the first performance measure to be less useful than initially thought. Since the transition
matrices are sparse matrices, the problem could be circumvented by storing the nonzero
indices differently. It was decided not to focus on this since the current method sufficed
for this research as explained before. It might still be a topic for further study.

A Markov process is determined strongly by the chosen transition probabilities. This
means that the choice for a different recall probability could give quite different results. For
example, a recall probability that has a bigger contribution of the time since last reviewed
or a word-specific complexity parameter. The influence of the choice of memory model
[16] for recall probability could be examined further. Furthermore, Section 4.3.3 already
showed the big impact of the choice of θ on the outcome of the model. As said, there were
no good reference values available and an experimental study on which value of θ would
be most realistic was not in the scope of this research. This would be an interesting topic
for further research.

An important pitfall of this research is that it is tempting to conclude that it is always
positive for the effectiveness of the system to repeat a word as soon as possible since the
expected number of words mastered m64 would increase. This pitfall is caused by the
inability to see the performance of the student in the long run. Psychological research,
like [1], [2] and [13], shows that reviewing a word too soon means that it is still in the
student’s short-term memory, which means that the long-term retention will not improve.
So, you have to almost ‘forget’ words to really learn them in the long run. Furthermore,
the optimal time between reviews depends on how long you want to remember the words.

This psychological phenomenon makes it hard to really judge the proposed systems. An
adjustment to the original system could improve the distribution of workload by moving
the decks to different days, while at the same time also increasing the number of words
mastered after a fixed day, but this does not mean that in the long run this is the best
system. An extreme example of this was the shifting of deck 4 from day 13* to day
11*, as described in Section 5.1.3. This shifting caused words to arrive at deck 4 only
one day before their review in deck 4, meaning that they had a significantly higher recall
probability than in the original Leitner system, causing a higher number of words mastered
after a fixed day. However, it would not seem unlikely that students using this adjusted
system would perform less in retention in the long run. To a lesser extent, this could
also be the case with the adding of deck 3 on day 8* and 16* and with the proposed
alternative system, which showed higher effectiveness than the original Leitner schedule
with the second performance measure and a better distribution of workload with the third
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performance measure. A learning cycle of 16 days of the original Leitner system is in the
proposed alternative put into only 14 days and the number of days between the reviews of
deck 3 and 4 is decreased by one. These on average shorter times between reviews can cause
a better performance in effectiveness on the short term, while possibly performing worse
on the retention in the long run, by the phenomenon described above. Further research
into the effects of the proposed adjustments in the long run would therefore be necessary
to be able to judge the suggested alternatives properly. An example of such research would
be to have people studying by such a scheme and testing them a few months later.

7 Conclusion

In this paper, the Leitner system was modelled as a discrete-time inhomogeneous Markov
process in Section 3, and analysed using three performance measures, introduced in Sec-
tion 4.1. In Section 4.3, the relation between the number of words in the system and
both the number of words mastered after as well as reviewed on day t was reasoned to
be linear. This enabled us to compute the results for one word in the system, by which
the problem of limited memory capacity was circumvented while the results remained use-
ful. Moreover, the ratio between the number of words reviewed on two days of a cycle
was shown to approach a fixed value, making the maximum ratio ρ a valid performance
measure. Furthermore, the influence of the global difficulty θ on the results was examined.
The choice of θ = 0.3 was shown to be well-grounded, but more importantly the reader
was made aware of what, and how big, the influence of θ is.

In Section 5 several adjustments to the Leitner system were proposed to make it more
user friendly, both in equalizing the distribution of workload over days and in adjusting
it to weekly cycles. Most adjustments to the review schedule showed an improvement in
one or even all performance measures. However, the influence of these adaptations on the
retention in the long run is unknown but feared to be worse.

The biweekly system was adapted using the adjustments of Section 5.1 that performed
well, to serve as an alternative to the Leitner system. The proposed alternative, as given
in Figure 11, is easier to remember than the original Leitner system due to its learning
cycle of two weeks. It also showed a better distribution of workload, based on Figure 13b
and a significantly lower ρ, than the Leitner system. At the same time, the efficiency as
measured by m64 was maintained and even slightly improved. Therefore, the proposed
alternative answers the research question posed in Section 1. However, Figure 13b still
showed quite a difference in the expected number of words studied per day, which could
not be equalized with the approach used in this research.

So, the suggested alternative performed better than the original Leitner system in the
mathematical analysis. However, the change to a biweekly system (14 days instead of 16
days) and the moving of deck 4 decreased the time since last review of the words, which
makes it hard to judge the influence of the proposed alternative on the long term retention.
Further research into the effects of the proposed adjustments in the long run would therefore
be necessary to be able to judge the suggested alternatives properly. Another important
topic for further research would be the influence of the choice of the recall probability
and its parameter values on the modelled behaviour of the Leitner system. A systematic
approach to optimize (some part of) the Leitner system could also serve as a topic for
further research.
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A Overview of used symbols

Table 6: An overview of the important symbols and their description.

symbol description
S state space of Markov process
T length of a learning cycle
y∗ day y of a learning cycle, so all days t for which t = y +mT,m = 0, 1, 2, 3, . . .

d number of decks
w number of words in the system
nk number of words in deck k of state n

nm number of words mastered in state n

ck number of correctly reviewed words in deck k

pk recall probability for deck k

qn,c,p probability of c correct recalls out of n words with recall probability p

θ global difficulty
tk vector containing the number of days since the batches of words in deck k

are last reviewed
dt vector containing the numbers of the decks that have to be reviewed on day t

τ expected number of cycles until all words are mastered
mt expected number of words mastered after day t

rt expected number of words reviewed at day t

ρ ratio between the lowest and highest expected number of words reviewed
during one cycle

B Transition matrices

B.1 Naive Leitner model
[P2+4s]n,n+δ = qn1,c1,p1 ∗ qn3,c3,p3 , for δ = (−c1 + n3 − c3, c1,−n3, c3, 0, 0)

if c1 ≤ n1, c3 ≤ n3

= 0 else

[P4∗ ]n,n+δ = qn1,c1,p1 ∗ qn4,c4,p4 , for δ = (−c1 + n4 − c4, c1, 0,−n4, c4, 0)

if c1 ≤ n1, c4 ≤ n4

= 0 else

[P8s]n,n+δ = qn1,c1,p1 , for δ = (−c1, c1, 0, 0, 0, 0) if c1 ≤ n1

= 0 else

[P12∗ ]n,n+δ = qn1,c1,p1 ∗ qn5,c5,p5 , for δ = (−c1 + n5 − c5, c1, 0, 0,−n5, c5)

if c1 ≤ n1, c5 ≤ n5

= 0 else
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[P13∗ ]n,n+δ = qn1,c1,p1 ∗ qn2,c2,p2 ∗ qn4,c4,p4 , for
δ = (−c1 + n2 − c2 + n4 − c4,−n2 + c1, c2,−n4, c4, 0)

if c1 ≤ n1, c2 ≤ n2, c4 ≤ n4

= 0 else

B.2 Realistic Leitner model
[P2+8s]n,n+δ = qn1,c1,p1 ∗ qn3,old,c3,old,p3,old ∗ qn3,new,c3,new,p3,new for

δ = (−c1 + n3,old − c3,old + n3,new − c3,new, (0, c1), (−n3,old,−n3,new),

(0, c3,old + c3,new), (0, 0), 0),

if c1 ≤ n1, c3,old ≤ n3,old, c3,new ≤ n3,new

= 0 else.

[P4∗]n,n+δ = qn1,c1,p1 ∗ qn4,old,c4,old,p4,old ∗ qn4,new,c4,new,p4,new for

δ = (−c1 + n4,old − c4,old + n4,new − c4,new, (0, c1), (0, 0),

(−n4,old,−n4,new), (0, c4,old + c4,new), 0),

if c1 ≤ n1, c4,old ≤ n4,old, c4,new ≤ n4,new

= 0 else.

[P6+8s]n,n+δ = qn1,c1,p1 ∗ qn3,old,c3,old,p3,old ∗ qn3,new,c3,new,p3,new for

δ = (−c1 + n3,old − c3,old + n3,new − c3,new, (0, c1), (−n3,old,−n3,new),

(c3,old + c3,new, 0), (0, 0), 0),

if c1 ≤ n1, c3,old ≤ n3,old, c3,new ≤ n3,new

= 0 else.

[P8∗]n,n+δ = qn1,c1,p1 for δ = (−c1, (0, c1), (0, 0), (0, 0), (0, 0), 0) if c1 ≤ n1

= 0 else.

[P13∗]n,n+δ = qn1,c1,p1 ∗ qn2,old,c2,old,p2,old ∗ qn2,new,c2,new,p2,new ∗ qn4,old,c4,old,p4,old ∗ qn4,new,c4,new,p4,new

for δ = (−c1 + n2,old − c2,old + n2,new − c2,new + n4,old − c4,old + n4,new − c4,new,

(−n2,old + c1,−n2,new), (0, c2,old + c2,new), (−n4,old,−n4,new),

(c4,old + c4,new, 0), 0),

if c1 ≤ n1, c2,old ≤ n2,old, c2,new ≤ n2,new, c4,old ≤ n4,old, c4,new ≤ n4,new

= 0 else.
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