
Using logic to win a Dating Game Show
Algorithmic techniques for solving permutation mastermind

and the related ”Are you the one?” variant.

Denise Graafsma

January 2022

1 Introduction

In the game show ”Are you the one?”, twenty contestants have to work together
to find their perfect match and win a cash prize. Ten men and ten women have
been paired up by production beforehand, they have ten weeks to find out who
their partner is. At the end of each week, the contestants form couples during
the matching ceremony. After they have all chosen a partner, it is revealed how
many of the pairings are correct. In order to win, they have to find all the
perfect matches by the end of the tenth week.

Before each matching ceremony, the contestants also have the opportunity
to send one couple into the ”truth booth”. This booth confirms whether the
pairing is a perfect match or not.

While the show itself encourages the contestants to play using their heart,
we take a more logical approach. In this report, we present several algorithmic
techniques for both Are you the one? and the related game of permutation
mastermind.

1.1 Mastermind

The game played in Are you the one? (AYTO) is closely related to the well-
known code-breaking game mastermind. Mastermind is played by two people, a
codemaker and a codebreaker. The codemaker chooses a secret code consisting
of four coloured pegs, which the codebreaker tries to guess in as few turns as
possible. There are six colours for the codemaker to choose from and repetition
is allowed. On each turn, the codebreaker guesses a code and receives feedback
from the codemaker, which consists of black and white pegs. A black peg is
given for each peg that is correct in both colour and position and a white peg
for each guess that is correct in colour but not in the right position. This process
of guessing and receiving feedback continues until the codebreaker receives four
black pegs.

1

1.2 Permutation Mastermind

Since its invention, many different variants of the game have been created. For
example, static mastermind where all the guesses have to be done at once,
without receiving feedback in between, and the codebreaker has to deduce the
secret code from all the feedback.

But the variant that is most closely related to AYTO is permutation master-
mind. In this variant, all available colours must be included and no repetition
is allowed. In other words, the secret code is a permutation of the n available
colours. Since all the colours in the code are already known, the answer to
each query only consists of black pegs: the number of colours that are in the
correct position. In Section 2, we will discuss how AYTO can be modelled as a
permutation mastermind variant.

1.3 Outline of this report

In this report, we will examine four different algorithms: two for permutation
mastermind and two for the AYTO variant. For permutation mastermind, we
will discuss an existing binary search algorithm, and present our own algorithm
based on a swap operation in Section 4. The latter will also be extended to the
AYTO variant in Section 5. In addition, we contribute a second algorithm for
this variant by introducing an inference table.

All four algorithms were implemented and tested for secret codes of different
lengths. We will present our results in Section 6 and discuss our findings in
Section 8.

2 Problem Description

We can model the different pairings of the twenty contestants as permutations
of ten different numbers. If the men and women are both numbered from one
to ten, we consider the men the positions and the women the number in the
permutation. So for permutation (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), woman 10 is paired
with man 1, woman 9 with man 2, and so on. The aim of the game now becomes
to uncover a secret permutation s = (s1, s2, . . . , s10) of the numbers 1 to 10.
Each matching ceremony, the contestants decide on a query q = (q1, q2, . . . , q10)
that is also a permutation of the numbers 1 to 10 and are given an answer a(q, s).
This answer is a number from 0 to 10, indicating how many of the numbers in
q are in the correct position:

a(q, s) = |{i ∈ [1, n]|qi = si}|. (1)

We will refer to these correct entries as hits. The game is won when a = 10
and all the women are with the correct man.

Without the addition of the truth booth, the game is equivalent to permu-
tation mastermind with 10 different colours.

2

The truth booth takes a number k and corresponding position i and returns
whether s has k in position or not:

b(i, k) =

{
1 if si = k

0 otherwise.
(2)

3 Related Literature

Many algorithms for solving mastermind have been published. In this section,
we will discuss the most relevant results. Permutation mastermind, on the other
hand, has not been studied as extensively. To the best of our knowledge, only
two algorithms have been published for this mastermind variant, both employing
a binary search technique. We will discuss both of these algorithms.

3.1 Mastermind

In [2] Knuth presents an algorithm for the classic version of mastermind, with
six colours and a secret code length four. It requires a maximum of five turns to
win, and is often cited as the first published algorithm for solving mastermind.

The algorithm is derived in the following manner. After every turn, a test
code is chosen that minimizes the maximum number of remaining possibilities
over all possible feedback from the codemaker. If several codes qualify as the
next test code, preference is given to a ”valid” code, that does not contradict any
of the earlier feedback. If this still leaves multiple options, the first in numerical
order is selected.

The resulting strategy is given in the form of a table where the next test
code can be determined by the number of possibilities still available and the
feedback from the current test code.

Rao [4] published an algorithm for solving mastermind that keeps track of
the remaining possible positions of a colour. For each colour, first its frequency
and then the corresponding positions are determined. For example, if we know 1
appears once in the secret code, we can determine the frequency of 2 by guessing
(1, 2, 2, 2). In addition, if we do not have any white pegs, we know 1 is in the
correct position. Otherwise, our next guess would be (3, 1, 3, 3) to test for the
position of 1, and the frequency of 3 simultaneously. Suppose we find this is
indeed the correct position for 1, then the possible positions of 2 and 3 are
updated to be (2, (1, 3, 4)) and (3(1, 3, 4)), meaning both 2 and 3 cannot be in
the second position anymore.

3.2 Permutation mastermind

Ko and Teng [3] introduced the permutation mastermind variant and presented
an algorithm that identifies a permutation of size n by O(n · log2 n) turns. The
algorithm uses a binary search technique to find all the hits in a query.

3

Suppose we have a query q with a correct entry which that not yet been
identified. The algorithm then creates a new query with the first half consisting
of entries known to be wrong and the second half identical to q. From the
answer, we can derive whether the correct entry was in the first or second half
of q. This process is then repeated, but with only half of the section of q known
to contain the correct entry. By repeatedly halving the number of possible hits,
we end up with only one option, which we then know to be a hit.

To find a wrong section for the search, the algorithm requires some extra
testing involving swapping two entries. El Ouali and Sauerland [1] improved on
this by cleverly choosing a so-called pivot that separates the wrong sections and
the section identical to q. We will further discuss their algorithm in Section 4.1.

4 Permutation mastermind algorithms

We present two different algorithms for solving permutation mastermind. The
algorithm from [1] employs a binary search and identifies the secret code in
O(n · log2 n) turns. We also present our first own contribution: the swap search
algorithm. This algorithm requires O(n2) turns to identify the secret code, but
was found to be more suitable for the AYTO variant than the binary search
algorithm.

4.1 Binary search

In [1] an algorithm for permutation mastermind using a binary search is pre-
sented. Let n be the number of colours and s = (s1, s2, . . . , sn) the secret code.
The algorithm starts by querying for ten different permutations q1 to qn, with

q1 = (1, 2, . . . , n)

q2 = (n, 1, 2, . . . , n− 1)

q3 = (n− 1, n, 1, 2, . . . , n− 2)

. . .

qn = (2, 3, . . . , n, 1).

For each of these queries, the algorithm determines the number of hits
a(qj , s). It then keeps track of how many of these still need to be identified. We
define a partial solution p = (p1, p2, . . . , pn), where pi = si when we have identi-
fied si and pi = 0 when si is still unknown. Since a(q, p) returns the entries for
which qi = pi, this is the number of hits in q that have already been identified.
When can then define the number of unidentified hits in q as

a(q, s, p) := a(q, s)− a(q, p). (3)

We should note that, since p is known, a(q,p) can be determined without using
any turns.

4

For the binary search, we need we need a pair of consecutive queries that
satisfy a(qj , s, p) > 0 and a(qj+1, s, p) = 0, or a(qn, s, p) > 0 and a(q1, s, p) = 0.
We will only discuss the former case, as the latter results in a very similar
procedure. For the sake of readability, we define r := j + 1. In addition to this
pair of queries, we require an entry c, referred to as the pivot, for which the
position has already been identified: pi = c for some i. We denote the position
of c in qj and qr as lj and lr, respectively. The aim of our search is to find the
index m of an unidentified hit in qj : qjm = sm and pm = 0. We first construct
a new permutation

qj,0 = (c, (qr)
lj
i=2, (q

j)ni=lj+1).

Since a(qr, s, p) = 0, the first lj entries of qj,0 cannot contain any unidenti-
fied hits. Thus, if a(qj,0, s, p) > 0 we know m > lj . On the other hand, if
a(qj,0, s, p) = 0, then we must have that m ≤ lj . Suppose we find the latter,
then for our next query we define

qj,l = ((qj)l−1
i=1, c, (q

r)
lj
i=l+1, (q

j)ni=lj+1)

where l = ⌈lj/2⌉. This time, we know only the first l − 1 entries can possi-
bly contain an unidentified hit. Hence, if a(qj,l, s, p) > 0 then m < l and if
a(qj,l, s, p) = 0 we have l ≤ m ≤ lj . By repeating this process, we continue
halving the section containing a hit until we have identified m.

Since this search requires a pivot c that has already been identified, a mod-
ified version is used to find the first hit. We will not go into detail but want to
specify that it contains a swap operation that inspired the swap search algorithm
discussed in the next section.

The binary search algorithm identifies a secret code length n in O(n · log2 n)
turns.

4.2 Swap search

The swap search algorithm identifies the location of hits by swapping two entries
and observing how the number of hits changes. It consists of two main phases,
that are repeated until all the entries of secret code s have been identified. An
overview can be found in Algorithm 1.

We first define the unidentified subsequence of query. If we have query q
and partial solution p, then

u(q, p) = {qi | pi = 0}. (4)

So if q = (1, 2, 3, 4) and p = (1, 0, 0, 4) then we have unidentified subsequence
u(q, p) = (2, 3).

In the first phase, the procedure nextQuery is called to find a query
with unidentified hits. Suppose we have a query q with no unidentified hits:
a(q, s, p) = 0. To obtain a new query, a circular shift to the right is applied to

5

Algorithm 1 Swap Search Algorithm

Input: Secret code s
Output: Solution p

q := (1, 2, ..., n)
p := (0, 0, ..., 0) ▷ A sequence of n zeros
while p contains 0 do

while a(q, s, p) = 0 do
nextQuery ▷ Find query with unidentified hits

while a(q, s, p) > 0 do
swapSearch ▷ Find unidentified hits in query

return p

the entries in qp. More specifically, for the unidentified subset qp = u(q, p) we
define the shift

shift(qpi) =

{
qpn

if i = 1

qpi−1
if i > 1.

(5)

Then by applying this shift, we find our next query q′ = next(q, qp) with

q′i =

{
shift(qpj

) if qi = qpj
for some j

qi otherwise.
(6)

We repeat this until we find a q′ with a(q, s, p) > 0. An overview of the next-
Query procedure can be found in Algorithm 2.

Once we have found such a query, we move on to the second phase. To
find the unidentified hits in a query q, we use the procedure swapSearch, as
specified in Algorithm 31. For this, we define the swap operation, where a new
query is created by swapping two entries. Let q = (q1, q2, . . . , qn), then we create
a new permutation q′ = swap(q, x, y) with

q′i =


y if qi = x

x if qi = y

qi otherwise.

(7)

The entries of qp are tested in pairs by employing the swapTest. The full
details on this procedure can be found in Appendix A.2, but we will illustrate
the general idea behind it.

Suppose for simplicity that qp = q. First, we obtain a new query q′ =
swap(q, q1, q2). If a(q′, s) = a(q, s) then neither q1 or q2 is a hit. If a(q′, s) =
a(q, s)− 2, then both q1 and q2 are hits. If a(q′, s) = a(q, s)− 1 then either q1
or q2 is a hit, and we create a third query q′′ = swap(q, q1, q3). Suppose we find

1In the actual implementation, some changes were made to further reduce the number of
turns. The details on this can be found in Appendix A.1

6

Algorithm 2 Function nextQuery

Input: Query q, secret code s, partial solution p
Output: New query q with unidentified hits and total number of hits as

procedure nextQuery(q, s)
qp := u(q, p)
as := a(q, s)
ap := a(q, p)
while as = ap do ▷ a(q, s, p) = 0

q := next(q, qp)
qp := u(q, p)
as := a(q, s)

return q, as

a(q′′, s) = a(q, s), then q1 can’t be a hit, and thus it has to be q2. However,
in some cases, we require a fourth and sometime even a fifth query to identify
all hits. Note that we could also have cases where a(q′, s) > a(q, s) and have
accidentally identified a new hit with the swap.

If q still has unidentified hits, we repeat the procedure for the next two
entries. This process continues until all the hits in q have been identified.

After identifying all the hits, we go back to the first phase.
In general, we know only qp can contain unidentified hits. So we limit our

search and only apply swapTest and nextQuery to the entries of qp. This
also means that once we have identified a hit, it remains in the correct position
for the rest of the algorithm.

Algorithm 3 Function swapSearch

Input: Query q with number of hits as, secret code s, partial solution p
Output: Partial solution p

procedure swapSearch(q, as, s)
qp := u(q, p)
ap := a(q, p)
i := 1
while as > ap & i ≤ |qp| − 2 do

p := swapTest(q, qpi
, qpi+1

, qpi+2
)

ap := a(q, p)
i := i+ 2

if as > ap then ▷ Hits are at the end of q
p := swapTest(q, qpn−1 , qpn , qp0)

return p

Concerning the number of turns needed to win, we have the following result.

Lemma 1. The swap search algorithm for permutation mastermind identifies
a secret code length n in at most 7

4n(n+ 1) turns.

7

Proof. To find the first query with more than zero hits, we need at most n turns.
For the swap search to find the hits, we need to test at most n

2 pairs and each
pair requires at most 5 turns.

Since we have now identified at least one entry of s, to find the next permu-
tation with an unidentified hit, we require at most n− 1 turns. To identify the
hits, we now need to test at most n−1

2 pairs with at most 5 turns each.
From this, we find that the amount of turns needed to identify the secret

code has upper bound

n∑
i=0

(n− i+ 5
n− i

2
) =

n∑
i=1

7

2
(n− i) =

7

2
(n

n+ 1

2
) =

7

4
n(n+ 1).

Both nextQuery and swapSearch require O(n) turns. The outer loop
that repeats the two phases also iterates O(n) times. We conclude that the
swap search algorithm identifies the secret code in O(n2) turns.

4.3 Comparing binary and swap search

Given their complexity, we expect the binary search algorithm to perform better
than the swap search algorithm for larger n.

On the other hand, when considering the AYTO variant (where n = 10) the
binary search algorithm does not seem like a fitting choice. Since we are trying
to win within ten rounds, the first phase where we query for q1 to q10 guarantees
we will always lose. Although we have the addition of the truth booth, there is
no straightforward way of using it during this phase that significantly reduces
the number of turns needed.

Therefore, we will use the swap search algorithm to construct an algorithm
for the AYTO variant.

5 AYTO algorithms

Using the swap search algorithm described in Section 4.2, we construct an al-
gorithm for the AYTO variant. We also present a second algorithm, which
employs an inference table in a similar way to [4].

5.1 Swap search

For the AYTO variant, the truth booth can be used to significantly reduce the
number of turns needed in the swap search algorithm.

As mentioned in Section 4.2, the swap test can take up to five turns to
identify the hits in a pair of entries. For the AYTO variant, we only need one
turn to test the pair. In Algorithm 4, the swapTest for the AYTO variant can
be found.

8

Suppose we have query q and q′ = swap(q, qi, qj). We distinguish five differ-
ent cases:

• Case 1: a(q′, s) = a(q, s)− 2

• Case 2: a(q′, s) = a(q, s) + 2

• Case 3: a(q′, s) = a(q, s)− 1

• Case 4: a(q′, s) = a(q, s) + 1

• Case 5: a(q′, s) = a(q, s).

In cases 3 and 4, we use the truth booth to identify the one hit in the pair.
Suppose we have case 3, that is, we find a(q′, s) = a(q, s)− 1. Then either qi or
qj is a hit. If b(i, qi) = 1 then clearly qi is the hit, if b(i, qi) = 0 then it has to
be qj . Similarly, in case 4 we can find the hit by testing b(i, q′i).

Algorithm 4 Function swapTest (AYTO Variant)

Input: Query q with number of hits as, entries qi and qj , secret code s,
partial solution p
Output: Partial solution p, Boolean truthBooth

procedure swapTest(q, as, qi, qj , s, p)
q′ := swap(q, qi, qj)
a′s := a(q2, s)
if a′s = as − 2 then

pi := qi, pj := qj ,
truthBooth := true ▷ The truth booth is available again

if a′s = as + 2 then
pi := q′i, pj := q′j ,
truthBooth := true

if a′s = as − 1 then ▷ Either qi or qj is a hit
if b(i, qi) = 1 then

pi := qi
else

pj := qj
truthBooth := false ▷ We have used the truth booth

if a′s = as − 1 then ▷ Either q′i or q′j is a hit
if b(i, q′i) = 1 then

pi := q′i
else

pj := q′j
truthBooth := false

if a′s = as then ▷ No hits were found, p remains unchanged
truthBooth := true

return p, truthBooth

9

In the other cases, we do not need any further truth booth for the pair.
Instead, we use it to check the next entry in the unidentified subset, so we do
not need to test it with the swapTest anymore. The details of the entire swap
search algorithm for the AYTO variant can be found in Appendix B.

With this addition of the truth booth, we find a new upper bound for the
required number of turns. While the swap search algorithm for permutation
mastermind required at most 7

4n(n + 1) turns, we find the following result for
the AYTO variant.

Lemma 2. The swap search algorithm for the AYTO variant identifies a secret
code length n in at most 3

4n(n+ 1) turns.

Proof. To find the first query with more than zero hits, we need at most n turns.
For the swap search to find the hits, we need to test at most n

2 pairs which can
be done in 1 turn.

Since we have now identified at least one entry of s, to find the next permu-
tation with an unidentified hit, we require at most n− 1 turns. To identify the
hits, we now need to test at most n−1

2 turns.
From this, we find that the amount of turns needed to identify the secret

code has upper bound

n∑
i=0

(n− i
n− i

2
) =

n∑
i=1

3

2
(n− i) =

3

4
n(n+ 1).

Even though swapSearch for the AYTO variant requires fewer turns than
for permutation mastermind, the search is still done in O(n) turns. The com-
plexity of the outer loop also remains O(n). Consequentially, the total algorithm
identifies a secret code length n in O(n2) turns.

5.2 Inference table

In the swap search algorithm, much of the obtained information remains unused.
For example, if a(q, s) = 0 then we know none of the entries are correct.

To make use of this information, we introduce an inference table T , similar
the the one presented in [4]. This is an n by n matrix where the entries are
either zero or one. A one in position (i, j) indicates si could still be j, a zero
indicates this is not possible. So if, for example, we have truth booth result
b(1, 5) = 0, then T1,5 is set to zero. However, if we would have found b(1, 5) = 1,
then all T1,j with j ̸= 5 and Ti,5 with I ̸= 1 are set to zero.

If, at any point, we have that Ti,j is the only non-zero entry in either its row
or column, then we know that si = j (if we hadn’t yet discovered this).

An overview of the swap search algorithm with inference table can be found
in Algorithm 5. After every swapSearch, the procedure checkTable updates
T for the new identified hits, and checks if we can derive any new hits from the
table. The details on checkTable can be found in Algorithm 6.

10

Algorithm 5 Swap Search Algorithm (Inference Table)

Input: Secret code s
Output: Solution p

q := (1, 2, ..., n)
p := (0, 0, ..., 0) ▷ A sequence of n zeros
truthBooth := true
T := n by n matrix of ones
while p contains 0 do

while a(q, s, p) = 0 do
nextQuery ▷ Find query with unidentified hits

while a(q, s, p) > 0 do
swapSearch ▷ Find unidentified hits in query

checkTable
return p

We should note that checkTable is also called during the nextQuery
procedure, and that for certain cases of the swapTest, additional changes are
made to T . The details on this can be found in Appendix C.

Preferably, the table would also be checked during swapSearch, to prevent
checking for information we could already have derived. However, this would
make the algorithm more involved, as will be further discussed in Section 8.2.

Algorithm 6 Function checkTable

Input: Partial solution p, inference table T
Output: Updated partial solution p and inference table T

procedure checkTable(p, T)
change:=false
for all entries in p do ▷ Update table for current p

if pi > 0 then
Ti,j := 0 for all j ̸= pi
Tk,pi := 0 for all k ̸= i

for all rows of T do
if there is an x s.t. Ti,x > 0 and Ti,j = 0 for all j ̸= x then

pi = x
change:=true ▷ There is a change in p

for all columns of T do
if there is a k s.t. Tk,j > 0 and Ti,j = 0 for all i ̸= k then

pk = j
change:=true

while change = true do ▷ Update and check table again
checkTable

return p, T

11

6 Results

We implemented the binary search and swap search algorithm for permutation
mastermind, and the swap search with and without inference table for the AYTO
variant. In this section, the result for all four algorithms will be presented.

6.1 Permutation mastermind

We tested both the binary search and the swap search algorithm for 100 000
uniformly at random selected secret codes of length n = 10. The results can be
found in Table 1.

We found that, on average, the swap search algorithm performs better. It
does have a larger standard deviation and the maximum and minimum are
further apart. This is not surprising, since the performance of the swap search
algorithm is more dependent on the distribution of the hits over the queries.
It starts at the beginning of the query and identifies all the hits by running
through the query once. As a result, it will perform better if we find many hits
in one query and they are towards the beginning of the unidentified set.

The binary search on the other hand, only identifies one hit per run. It also
takes about the same amount of turns to identify each hit, with little influence
from its location in the query. Hence, the total amount of turns needed will not
vary as much.

binary search swap search
mean 46.528 25.284
std 2.078 4.162
max 55 43
min 38 8

Table 1: Comparison of the binary and swap
search algorithm for permutation mastermind.

In addition, we also tested the two algorithms for different permutation
lengths. We tested for lengths ranging from 0 to 110, each for 1000 secret
codes. The results can be seen in Figure 1. While the swap search performs
better for smaller n, the number of turns grows much faster as n becomes larger.
This is what we would expect, considering the swap search algorithm grows with
O(n2), compared to the binary search algorithm with O(n · log2 n).

12

Figure 1: Binary search and swap search for
different code lengths.

6.2 AYTO variant

In Table 2 the results for both the swap search algorithm and the swap search
algorithm with inference table are presented. We tested the number of turns
needed to identify the secret code and considered it a win if this was ten or
lower. For both algorithms, we tested 100 000 uniformly at random selected
secret codes.

swap search inference table
win rate 16.97% 50.03%
mean 12.581 10.542
std 2.208 1.802
max 23 19
min 4 1

Table 2: Comparison of the swap search algo-
rithm with and without inference table.

We can see the win rate is more than three times larger when including the
inference table. The mean, maximum and minimum number of turns are also
lowered. For the swap search algorithm, we found upper bound 3

4n(n+ 1). For
n = 10 this amounts to 82.5 turns. This is much larger than the maximum
amount we found testing.

In addition, we tested the algorithm with inference table for all possible
secret codes. These are all permutations of the number one to ten, which is a
total of 10! = 3 628 800 secret codes. The results can be seen in Table 3.

13

inference table
win rate 49.88%
mean 10.545
std 1.804
max 19
min 1

Table 3: Swap search algorithm with inference
table for all possible secret codes.

In Figure 2, the results for different n for swap search with and without
inference table can be seen. We tested 100 random secret codes with lengths
ranging from 0 to 150. The algorithm without inference table grows faster as n
grows larger. However, the algorithm with inference table still appears to grow
much faster than O(n).

Figure 2: Swap search with and without infer-
ence table for different code lengths.

7 Conclusion

For permutation mastermind, we found the swap search algorithm performs
better for secret codes length n = 10. For longer permutations, say n = 100,
the binary search algorithm performs better.

Introducing an inference table improves the swap search algorithm for the
AYTO variant. With inference table, the algorithm has a win rate of 49,88%
and takes a maximum of 19 turns.

14

8 Discussion

We discuss the results for both permutation mastermind and the AYTO variant
and mention possible improvements.

8.1 Permutation mastermind

We concluded that the binary search algorithm is not a fitting choice for a secret
code of length n = 10. This is, however, for the specific binary search algorithm
that was presented in [1].

We could change the first phase in a way that would require fewer turns.
For example, like the one in [3] where, if the first query has a(q, s) > 0, the hits
are identified similarly to swap search. We can then always guarantee a pair of
queries with a(qi, s, p) > 0 and a(qj+1, s, p) = 0 exists. This removes the need
to start by testing ten queries.

In addition, we could limit the binary search to the unidentified subset,
reducing the number of turns needed to identify a hit.

Finally, the algorithm could be adjusted to keep track of the locations of all
the unidentified hits. For example, assume we find the section from 1 to l − 1
and the section from l to n both have one unidentified hit. We could first search
in entries 1 to l−1 and then, after identifying the hit, return to searching in the
section from l to n instead of considering the entire query all over again. This
would improve the algorithm, but also require a significant amount of additional
bookkeeping.

With the mentioned improvements, it could very well be that the binary
search algorithm also outperforms the swap search algorithm for n = 10.

Concerning the implementation of the binary search algorithm, the maxi-
mum found while testing exceeds the theoretical upper bound of (n−3)⌈log2n⌉+
5
2n−1 as found in [1]. The observed maximum over 100 000 random secret codes
was 55, while the theoretical upper bound would be 52. This could indicate that
our implementation was not fully identical to the original algorithm, but we were
not able to identify any differences.

8.2 AYTO variant

We are certain that the algorithm with inference table is not yet optimal, and
could still be improved upon. For example, by checking the table after each
iteration in SwapSearch. However, this improvement would introduce some
complications. Say, for example, that we have query q = (1, 2, 3, 4, 5) with
a(q, s, p) = 2 and unidentified subset qp = (2, 3, 4, 5). Suppose that we check the
inference table and identify s2 = 5. If we simply remove 5 from the unidentified
subset, we obtain qp = (2, 3, 4) with partial solution p = (1, 5, 0, 0, 0). But this
would correspond to a query q = (1, 5, 2, 3, 4), which is not the original query
that we know contains another unidentified hit.

A solution would be to swap 2 and 5 in q, but then we would also have to
consider the possibility that the new q′p5

= 2 is a hit.

15

Although these improvements would make the algorithm more involved, they
are likely to improve the win rate even further.

Interestingly enough, while we obtained a win rate of 49.88%, the actual show
has a win rate of 87,5%, with 7 out of the 8 seasons being won by the contestants.
A possible, but improbable explanation would be that the contestants have
discovered a much more clever approach to playing the game. It is, perhaps,
more likely that their personalities do help with identifying their perfect match.

However, we believe the most probable cause of this high win rate is that
the show is not entirely truthful. Especially considering that, in quite a few
seasons, the number of hits increases by a surprising amount from the 9th to
the 10th week.

References

[1] Mourad El Ouali and Volkmar Sauerland. “Improved approximation al-
gorithm for the number of queries necessary to identify a permutation”.
In: International Workshop on Combinatorial Algorithms. Springer. 2013,
pp. 443–447.

[2] Donald E Knuth. “The computer as master mind”. In: Journal of Recre-
ational Mathematics 9.1 (1976), pp. 1–6.

[3] Ker-I Ko and Shia-Chung Teng. “On the number of queries necessary to
identify a permutation”. In: Journal of Algorithms 7.4 (1986), pp. 449–462.

[4] T Mahadeva Rao. “An algorithm to play the game of mastermind”. In:
ACM SIGART Bulletin 82 (1982), pp. 19–23.

16

A Swap search algorithm for permutation mas-
termind

We will discuss the specifics of the swap search algorithm and the utilized
swapTest, as discussed in Section 4.2.

A.1 Swap search

In Algorithm 3, we always swap test the entries at the end of the query, if there
are still unidentified hits. In the actual implementation, for the cases where
t = |qp| with a(q, s, p) = 1, and t = |qp| − 1 with a(q, s, p) = 2 no swap test was
performed, since the remaining entries to check and the remaining unidentified
hits are equal. Thus, in these cases, we identify the hits to be the last one or
two entries of qp, respectively.

In some cases, swapTest ends up identifying qpi+2 in addition to testing
qpi and qpi+1 . In this case, we can skip qpi+2 and move on to entries qpi+3 and
qpi+4

. We should point out that in some cases, qpi+2
is not identified, but has

been checked. In this case, we could also skip it, but this was not implemented
in the swap search algorithm and remains a possible improvement.

A.2 Swap test

The swapTest used in swapSearch, creates a new permutation q2 = swap(q, qi, qj),
and tests if qi and qj are hits by considering several cases

• Case 1: a(q2, s) = a(q, s)− 2

• Case 2: a(q2, s) = a(q, s) + 2

• Case 3: a(q2, s) = a(q, s)− 1

• Case 4: a(q2, s) = a(q, s) + 1

• Case 5: a(q2, s) = a(q, s)

an overview of conclusions from each cases can be found in Algorithm 7.
In case 3 and 4, extra testing is needed to determine the location of the

hits. Since the procedure for both cases is almost identical, we will only discuss
the details of case 3, which can also be found in Algorithm 8. We create q3 =
swap(q, qi, qj), and once again distinguish several cases

• Case 3.1: a(q3, s) = a(q, s)− 2

• Case 3.2: a(q3, s) = a(q, s) + 2

• Case 3.3: a(q3, s) = a(q, s)− 1

• Case 3.4: a(q3, s) = a(q, s) + 1

• Case 3.5: a(q3, s) = a(q, s).

17

Algorithm 7 Function swapTest (Permutation Mastermind)

Input: Query q with number of hits as, entries qi, qj , qk, secret code s
partial solution p
Output: Partial solution p

procedure swapTest(q, as, qi, qj , qk, s, p)
q2 := swap(q, qi, qj)
a2s := a(q2, s)
if a2s = as − 2 then

pi := qi, pj := qj
if a2s = as + 2 then

pi := q2i , pj := q2j
if a2s = as − 1 then ▷ Either qi or qj is a hit

Case 3 test
if a2s = as − 1 then ▷ Either q2i or q2j is a hit

Case 4 test
if a2s = as then

Do nothing
return p

Algorithm 8 Case 3 test (a2s = as − 1)

q3 := swap(q, qi, qk)
a3s := a(q3, s)
if a3s = a− 2 then

pi := qi, pk := qk
if a3s = as + 2 then

pi := q3i , pj := q3j , pk := q3k
if a3s = as − 1 then ▷ Either qi or both qj and qk are hits

Case 3.3 test
if a3s = as + 1 then ▷ qj and either q3i or q3k are hits

q4 := swap(q3, qj , qk)
a4s := a(q4, s)
if a4s = a3s − 2 then

pj := q3j , pk := q3k
if a4s = a3s − 1 then

pi := q3i , pj := q3j
if a3s = as then

pj := qj
return p

18

Once again, case 3.3 and 3.4 require further testing with a fourth query q4.
For case 3.3, we could even end up in a case requiring a fifth query q5. The
details on this can be found in Algorithm 9.

For case 4, we apply the same procedure as for case 3, except we have q2

instead of q.

Algorithm 9 Case 3.3 test (a3s = as − 1)

if as = 1 then
pi := qi

else
q4 := swap(q, qj , qk)
a4s := a(q4, s)
if a4s = as − 2 then

pj := q3j , pk := q3k
if a4s = as + 2 then

pi := q3i , pj := q3j , pk := q3k
if a4s = as + 1 then ▷ qi and either q4j or q4k are hits

q5 := swap(q4, q4i , q
4
j)

a5s := a(q5, s)
if a5s = a4s − 2 then

pj := q4i , pk := q4j
if a5s = a4s − 1 then

pj := q4i , pk := q4k
if a4s = as then

pi := qi
return p

B Swap search algorithm for AYTO variant

For the AYTO variant, the swap search algorithm requires some slight adjust-
ments to incorporate the truth booth. Since the truth booth is available before
each matching ceremony, we introduce a Boolean truthBooth, which is true
when we still have the truth booth available.

The nextQuery procedure alternately checks the first entry of the uniden-
tified subset in the truth booth and tests for hits in the matching ceremony. We
should note that, after using the truth booth, we do not test the same query for
hits but immediately cycle to the next one. We found this method to be slightly
more efficient than using the same query for the truth booth and matching cere-
mony. Presumably, this is because, if the truth booth does not return a hit, the
remaining entries that can be hits is reduced by one. Since we eventually either
find a query with unidentified hits or find a new hit with the truth booth, we do
not have to worry about queries remaining unchecked and the loop continuing
forever.

19

For the swapSearch procedure, we either use the truth booth to check the
next entry in the unidentified subset, or we use it in the swapTest

Algorithm 10 Swap Search Algorithm (AYTO Variant)

Input: Secret code s
Output: Solution p

q := (1, 2, ..., n)
p := (0, 0, ..., 0) ▷ A sequence of n zeros
truthBooth := true
while p contains 0 do

while a(q, s, p) = 0 do
nextQuery ▷ Find query with unidentified hits

while a(q, s, p) > 0 do
swapSearch ▷ Find unidentified hits in query

return p

Algorithm 11 Function nextQuery (AYTO Variant)

Input: Query q, secret code s, Boolean truthBooth, partial solution p
Output: New query q with number of hits as, Boolean truthBooth

procedure nextQuery(q, s, truthBooth, p)
qp := u(q, p)
as := a(q, s)
ap := a(q, p)
while as = ap do ▷ a(q, s, p) = 0

q := next(q, qp)
qp := u(q, p)
if truthBooth then

j := index(q, qp1
) ▷ Retrieves the index of qp1

in q
if b(j, qp1

) = 1 then
pj := qp1

qp := u(q, p)
truthBooth := false

else
as := a(q, s)
truthBooth := true

return q, as, truthBooth

20

Algorithm 12 Function swapSearch (AYTO Variant)

Input: Query q with number of hits as, secret code s, boolean truthBooth
partial solution p
Output: Partial solution p, Boolean truthBooth

procedure swapSearch(q, as, s, truthBooth, p)
qp := u(q, p)
ap := a(q, p)
while as > ap & i ≤ |qp| − 1 do

if truthBooth then
j := index(q, qpi

)
if b(j, qpi

) = 1 then
pj := qpi

truthBooth := false
i := i+ 1

else
swapTest(q, qpi

, qpi+1
)

ap := a(q, p)
i := i+ 2

if as > ap then ▷ A hit at the end of q
j := index(q, qpi)
pj := qpi

return p, truthBooth

C Inference table

In Section 5.2, we presented the swap search algorithm with inference table. We
will discuss the changes in the nextQuery and swapSearch, compared to the
algorithm without inference table.

First, we introduce a new subset of qpT
= uT (q, p, T), with only the entries

of the unidentified subset qp that could still be a hit by T . We define

uT (q, p, T) = {qi | pi = 0 and Ti,qi = 1}. (8)

The procedure nextQuery now only applies to truth booth to entries in
qpT

, to avoid checking entries that we know cannot be a hit. In addition, if we
find a(q, s, p) = 0, we update in T that none of the entries in qp are hits.

The swapSearch is now limited to qpT
. In addition, whenever it uses the

truth booth and does not identify a hit, we change the corresponding entry of
T to zero.

During the swapTest, we have several cases where T can be updated. For
example if we find a(q′, s) = a(q, s), we know the pair of entries we are testing
cannot be hits in either q or q′. Hence all four corresponding entries of T can
be set to zero. A complete overview off the adjusted swapTest, can be found
in Algorithm 15

21

Algorithm 13 Function nextQuery (Inference Table)

Input: Query q, secret code s, Boolean truthBooth, inference table T
Output: New query q with number of hits as, Boolean truthBooth
partial solution p, inference table T

procedure nextQuery(q, s)
qp := u(q, p)
as := a(q, s)
ap := a(q, p)
while as = ap do ▷ a(q, s, p) = 0

q := next(q, qp)
qp := u(q, p)
if truthBooth then

qpT
:= uT (q, p)

j := index(q, qpT1
) ▷ Retrieves index of qpT1

in q
if b(j, qj) = 1 then

pj := qj
qp := u(q, p)

else
Tj,qj = 0

truthBooth := false
else

as := a(q, s)
if as = ap then ▷ No entry of qp is a hit

for all entries in qp do
k := index(q, qpi

)
j := qpi

Tk,j = 0
truthBooth := true

p, T = checkTable
return q, as, truthBooth, p, T

22

Algorithm 14 Function swapSearch (Inference Table)

Input: Query q with number of hits as, secret code s, boolean truthBooth
inference table T
Output: Partial solution p, Boolean truthBooth, inference table T

procedure swapSearch(q, as, s)
qpT

:= uT (q, p) ▷ Only check entries possible by T
ap := a(q, p)
while as > ap & i ≤ qpT

− 1 do
if truthBooth then

j := index(q, qpTi
)

if b(j, qj) = 1 then
pj := qj

else
Tj,qj = 0

truthBooth := false
i := i+ 1

else
swapTest(q, qpi

, qpi+1
)

ap := a(q, p)
i := i+ 2

if as > ap then ▷ A hit at the end of q
j := index(q, qpi

)
pj := qpi

return p, truthBooth

23

Algorithm 15 Function swapTest (Inference Table)

Input: Query q with number of hits as, entries qi and qj , secret code s,
inference table T
Output: Partial solution p, Boolean truthBooth, inference table T

procedure swapTest(q, as, qi, qj , qk, s)
q′ := swap(q, qi, qj)
a′s := a(q2, s)
if a′s = as − 2 then

pi := qi, pj := qj ,
T
truthBooth := true ▷ The truth booth is available again

if a′s = as + 2 then
pi := q′i, pj := q′j ,
truthBooth := true

if a′s = as − 1 then ▷ Either qi or qj is a hit
if b(i, qi) = 1 then

pi := qi
Tj,qj := 0

else
pj := qj
Ti,qi := 0

truthBooth := false ▷ We have used the truth booth
if a′s = as − 1 then ▷ Either q′i or q′j is a hit

if b(i, q′i) = 1 then
pi := q′i
Tj,q′j

:= 0
else

pj := q′j
Ti,q′i

:= 0
truthBooth := false

if a′s = as then ▷ No hits were found
Ti,qi := 0, Ti,q′i

:= 0, Tj,qj := 0, Tj,q′j
:= 0

truthBooth := true
return p, truthBooth, T

24

