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ABSTRACT 
GPGPU-based parallelisation has gained popularity due to its 
capability of efficiently handling compute-intensive tasks. The 
prerequisite is that the tasks being performed must be 
parallelisable using clever data structures and proper 
synchronisation. Parallelisation on graphics processing units 
(GPUs) has found applications in machine learning, computer 
vision, and statistical analysis. Within statistical analysis, one 
such compute-intensive task is the model checking of 
parametric Markov chains.  This research proposes a 
parallelised approach to the evaluation phase of parametric 
model checking of Markov chains. 
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1. INTRODUCTION 
When dealing with statistical analysis, GPUs have been found 
to be much faster than single thread applications. The multitude 
of cores on GPUs allow for simultaneous computation of 
hundreds of inputs, producing speedups ranging from 100 to 
1000 times [15]. Parametric models are a family of probability 
distributions with a finite number of parameters such that each 
instantiation of the parameters produces a non-parametric 
stochastic model [6]. When utilising parametric models with 
interval values, the result can be guaranteed to be within a 
specific bound based on the instantiation of the parameters. 
Parametric model checking (PMC) is a highly parallelisable 
task, as the model is representable as a large rational function 
[5]. The entire parameter space – or combination of parameter 
ranges – can be evaluated concurrently using general-purpose 
GPU (GPGPU)  parallelisation and one can quickly find every 
combination of parameter instantiations which fulfils a given 
property or result bound.   
The analysis and optimisation of parametric Markov models has 
received much attention during recent years [5]. However, the 
evaluation of the parameter space for complex parametric 
models is still a slow process. CUDA (Compute Unified Device 
Architecture) is a GPGPU-based parallelisation framework 
produced by NVIDIA. This framework is specifically designed 
for Nvidia GPUs to perform compute intensive portions of 
programs on thousands of GPU cores in parallel. CUDA’s 
organisation of threads fits well with interval arithmetic, as the 
kernel is organised into blocks of threads. During 
implementation of the parallel evaluator, it was found that 

utilising CUDA’s thread indexing method is a highly efficient 
way to evaluate interval parameters. However, simply using the 
inbuilt indexing method of CUDA limits the number of 
parameters to one to three parameters. 
This research aims to improve the speed of the evaluation phase 
of PMC using this parallelisation framework by evaluating the 
entire parameter space in a maximally concurrent manner. The 
following research questions will be considered in this paper. 

• How much of a speed-up is provided by using 
GPGPU parallelisation in model checking of 
(discrete-time) parametric Interval Markov Chains? 

• What are the optimal kernel dimensions for model 
checking parametric Markov Chains? 

The research performed is an extension of the work done by 
Gainer et al. [2018] and their optimised construction of 
parametric Markov Chains. The goal is to implement a CUDA 
version for the evaluation phase of parametric model checking 
based on their programmatic tool for model checking. The 
results of the parallelised program are then compared against a 
single-threaded version of the same instructions representing 
the parametric model. What this research does not intend to do 
is optimise or change the parametric model produced in any 
way, but rather to parallelise the evaluation of it in an optimal 
manner.  
Following sections will provide background regarding related 
work and preliminary information about parametric models, 
CUDA, and interval arithmetic. Following that will be a 
discussion about the transformation of the single-threaded 
program into a parallelised version and how the CUDA 
program was optimised. Lastly, the parallel version is compared 
against the single-threaded approach in model checking of the 
entire parameter space and the results and conclusions are 
addressed. 

2. RELATED WORK 
As mentioned previously, this research aims to continue the 
work done in the paper by Gainer et al. [2018]. In their paper, 
the parametric model is represented as a finite automaton, 
which is then utilised to construct a representation of a rational 
function. The output is a Directed Acyclic Graph (DAG) 
structure for function evaluation, with the function being 
represented in the form of an arithmetic circuit. This approach 
already provided a significant speed-up in comparison to other 
modern parametric model checkers [5].The ePMC tool created 
by Gainer et al. will be extended by transforming the generated 
list of instructions into equivalent CUDA instructions and 
comparing against their interval implementation written in C 
using a single-threaded approach for evaluation. 
Parametric Interval Markov Chains (pIMCs) are a type of 
parametric model which provide various benefits. Research into 
pIMCs has been done by Bart et al. [2017], showing that the 
combination of parametric Markov Chains (pMCs) and interval 
Markov Chains (IMCs) is strictly more expressive than the 
other two individually. That is, anything that can be expressed 
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by a pMC and IMC, can be expressed by pIMCs, while the 
opposite does not hold [2]. Their work provides validation for 
the expressiveness and usefulness of pIMCs. 
CUDA programming has found use in the implementation of 
Markov Chain Monte Carlo simulations and statistical analysis 
using mixture modelling approaches [15]. Although the results 
of the former showcase speedups from 100 to 1000 times faster 
on certain highly structured Bayesian models, Suchard et al. 
[2010] note that the time investment necessary in developing 
new programming skills has been a barrier in the adoption of 
GPGPU parallelisation techniques  within the statistics 
community. During the literature review it was found that there 
is a scarcity of research into parallelisation of parametric model 
checking. Therefore, this paper aims to provide further proof of 
the usefulness of parallelisation in statistical analysis. 

3. PRELIMINARIES 
3.1 Non-Parametric & Parametric Models 
Non-parametric models are a type of statistical model where 
each transition has a real valued probability attached. 
Parametric models are a generalised version of this, where the 
transitions are modelled as a function that are dependent on the 
parameters. Knuth’s dice [10] is a famous example of Markov 
Chains where the model emulates the throw of a 6-sided dice 
using a coin. Figure 1 displays the throwing of the dice 
emulated using a fair (left) or biased coin (right), or a non-
parametric and parametric model respectively.  

 
Figure 1. Non-parametric and  parametric Knuth’s Dice. [5] 
Markov Chains (MC) are stochastic models characterised by the 
property that the future states of the process are independent of 
the past states. They have been applied in for example 
communications, automatic control, signal processing, and 
economics [3]. Although this can be modelled as a non-
parametric model, Junges et al. [2021] state that utilising a 
parametric Markov Chain allows for a realistic representation of 
the system state by coupling transitions, therefore inducing 
global restrictions on the possible probability distributions. 
Parametric Interval Markov Chains are an extension of this, 
where the parameters are represented as interval values, 
providing benefits to expressiveness and accuracy of the models 
representativeness. Evaluation of the model also produces an 
interval, with a guarantee that the result is within this interval’s 
bounds. This can then be utilised to compare against lower and 
upper bounds restrictions that one is interested in. The starting 
point for this research was a list of interval arithmetic 
instructions written in C, which represents the rational 
functional that describes the parametric model. 

3.2 CUDA Programs 
CUDA programs are generally written in C or C++, with the 
functions executed on the GPU being called kernels. Threads in 
CUDA are organised in blocks, namely recognised as thread 
blocks, which all reside on the same processor core and share 
the same memory resources. The blocks are further organised 
into one-dimensional, two-dimensional, or three-dimensional 
grids of thread blocks. The blockIdx - a built-in variable - is 

used to identify each block within the grid, while the dimension 
of the thread block is accessible through the blockDim variable. 
Both values are accessible within the kernel and these thread 
blocks are independent, meaning one can execute them in any 
order - in parallel or in series - thus allowing for code that 
scales with the number of cores of the GPU [11]. 
Features supported by CUDA are dependent on the compute 
capability of the hardware the program is compiled and ran on. 
Additionally, NVIDIA GPUs are organised as an array of 
Streaming Multiprocessors (SMs). These multiprocessors 
create, manage, schedule, and execute threads in groups of 32 
parallel threads called warps. The maximum number of warps 
per SM – or the maximum instruction throughput - is dependent 
on the compute capability of the GPU and limited by various 
hardware related maximum properties such as the number of 
blocks per SM, warps per block, and warps per SM [11]. 
When CUDA programs invoke a kernel from host code – or 
CPU code - the thread blocks are distributed to multiprocessors 
with available execution capacity. Thus, the parallelisability of 
a CUDA program is additionally dependent on this hardware 
limitation, as it dictates factors such as maximum thread block 
size, maximum shared memory per block, and maximum 
registers utilisable per thread and thread block [11]. 

3.3 Interval Arithmetic 
Interval arithmetic is a mathematical technique used to solve 
uncertainty problems which cannot be efficiently solved using 
floating-point arithmetic. As floating point numbers contain a 
limited number of bits, scientific computations can contain 
minor accumulative errors due to certain values not being 
possible to be represented using floating-point numbers [4]. In 
interval arithmetic, instead of representing a value as a single 
number, each value is represented as a range of possibilities 
containing a real value x in it. This allows for additional 
flexibility and consideration for errors during computation of 
long lists of arithmetic instructions.  
The rational functions produced by the ePMC tool are 
constructed using the arithmetic operations of addition, additive 
inverse, multiplication, and multiplicative inverse [5]. These 
operations can all be performed using interval arithmetic, but 
with slight modifications. The operations used in parametric 
models are defined below in Figure 2. 

 
Figure 2. Interval arithmetic operations. 

4. INTERVAL ARITHMETIC IN CUDA 
Threads in CUDA are identifiable based on the previously 
mentioned indexing method. It provides a natural way to 
perform computation on data structures organised as a vector, 
matrix, or volume [11]. For model checking pIMCs, this allows 
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for a natural indexing method for evaluation of models with one 
to three parameters. It was found to be uncommon for 
parametric models to contain more than three parameters, thus 
by organising the parameter space in one of these data 
structures, it is possible to naturally integrate the model 
checking with CUDA parallelisation. To determine the initial 
parameter instantiation, the thread identifier formula in Figure 
3 can be utilised in combination with the step size desired for 
the intervals. 

 
Figure 3. Thread identifier formula and bounds formulas. 

When launching a kernel, the values for a maximum of three 
dimensions can be defined for both threads and blocks. The 
example in Figure 4 represents a parametric model checking of 
a pIMC with two parameters, with the kernel being organised 
using 2x2 blocks and 3x3 threads per block. Each box in the 
grid represents a thread and contains its block thread index 
within. The parameter space is naturally split between the 
thread blocks, represented by the coloured regions, and indexed 
by the values to the left and below the grid. The thread indices 
within the blocks determines the final component for which 
interval a particular thread works on.  

 
Figure 4. Thread block organisation in CUDA. 

If one were to use a step size of 0.2, one would only require five 
threads in both the x- and y-axis, but this is not possible with 
the current number of thread blocks. Thus, when launching 
threads for a kernel, one may find that there is a surplus of 
threads, which would return immediately instead of performing 
the computations, but still cause a certain overhead due to the 
creation and destruction of these threads. Additionally, when 
deciding a thread block size, it is common to utilise a size 
which is a multiple of warp size to maximise concurrency [11]. 

Translation of the resulting thread identifier into a specified 
interval is trivial. The thread identifier and step size determine 
the lower bound of the parametric interval, and the step size in 
combination with the lower bound is used to find the upper 
bound. Additionally, as C and C++ use row-major order – or 
lexicographical access order - for the indexing of arrays [14], 
one can utilise the  thread identifiers to determine the memory 
location where the result must be stored in a flattened array 

using the formulas found in Figure 5 and the formula for ida 
from Figure 3. 

 
Figure 5. Array index formula for 1, 2, or 3 parameters. 

5. CUDA OPTIMISATIONS 
CUDA programs can be optimised from a runtime and memory 
perspective by spreading the work evenly between the threads. 
This can be achieved by affecting the dimensionality of the 
kernel and its thread blocks. By purely trying to maximise the 
number of threads in each block, CUDA might not compile the 
program at all due to memory limitations  enforced on each 
thread block. Thus, it is common practice for kernels to be 
launched with 256 threads per block, instead of the maximal 
1024 [11]. The following sections will describe the optimisation 
efforts performed during this research, considering the compute 
capability of 6.1 of the GPU that experiments were performed 
on. 

5.1 Kernel Dimensions 
Regardless of compute capability, each block in CUDA can 
contain a maximum of 1024 threads. For a parametric model 
with two parameters, this equates to a thread block with a 
dimension of 32x32 threads per block. However, due to the 
large number of instructions performed during the evaluation of 
complex models, the kernel may have issues with launching due 
to memory limitations imposed on the thread blocks. Each 
thread block may utilise a maximum of 48KB shared memory, 
and each multiprocessor may utilise a maximum of 96KB of 
shared memory [11].  
Lowering the number of threads per block and increasing the 
total number of blocks in the grid allowed for the spreading of 
shared memory more evenly throughout the multiprocessors, 
such that the kernel can launch and perform the parallelisation 
of the problem. For this research, the maximal block dimension 
possible for launching the kernel for each experiment was used 
to provide more consistent results between different parametric 
models. 

5.2 Occupancy 
Multiprocessor occupancy for CUDA programs refers to the 
ratio of concurrent warps versus the maximum number of warps 
supported on a multiprocessor of the GPU [11]. This value, 
represented by a percentage, is used to determine how many 
threads are active compared to how many threads could be 
active concurrently. For this research, the most major 
bottleneck for maximising occupancy was the register usage of 
the program. As the number of lines of code produced by the 
ePMC tool was found to range from a few thousand to over a 
million, most programs compiled with default options utilised 
128 registers per thread.  
NVIDIA has created a program called Nsight Compute [12], 
which can be utilised to simulate different kernel launches for 
calculating occupancy for specific hardware. For the GPU used 
in the experiments, occupancy could be maximised by having 
each thread utilise 32 registers on the device when using a 
kernel with 256 threads per block. The experiments section 
compares performance of CUDA programs compiled with both 
128 and 32 registers, prioritising a balance between register and 
instruction optimization and occupancy respectively. 
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5.3 Grid-Stride Loops 
Choosing which part of the problem each thread works on is 
another important consideration from the perspective of thread 
safety and memory usage. Grid-stride loops can be utilised to 
reduce the number of threads needed for computation. This 
technique makes each thread work on multiple inputs instead of 
a single interval. The benefit of this is the minimisation of the 
overhead for creating and destroying threads by spawning 
enough threads to saturate all cores of the GPU and perform all 
calculations for the specific problem using this maximal 
number of concurrent threads [7]. This research performed 
initial testing using grid-stride loops but found the results to be 
inconclusive. Thus, the experiments section does not contain 
the results of these tests, and the utilisation of this technique is 
left for future work. 

5.4 Shared Memory 
As memory in the GPU is a limited resource, the choice was 
made to calculate the intervals in-line within the kernel instead 
of storing each parameter combination before executing the 
kernel. Memory shared between the CPU and GPU was only 
reserved for storing the lower and upper bound results and then 
used to compare the results of the CPU and GPU 
implementations. As each thread can calculate its own index for 
storing the results of disjoint interval instantiations, there was 
no concern for thread safety when accessing these shared 
arrays. 

6. EXPERIMENTS 
Results of the parallelised CUDA program will now be 
compared against a single-threaded C++ implementation. Two 
parametric models from the PRISM benchmark suite were used 
for the experiments. They were conducted on a laptop with an 
Intel Core i7-10750H processor at 2.6GHz, an NVIDIA Quadro 
P620 graphics card, and a total of 16GB of RAM for the host, 
running on Ubuntu 20.04. 
Each experiment compares the CUDA programs run-time for 
model checking the entire parameter space against a single 
threaded approach for evaluating the same. The programs were 
generated using the extended version of the ePMC tool by 
Gainer et al. [2018] and are compiled in a single CUDA 
program. For each combination of constants in the models, the 
CUDA program was ran using a step size of 0.001, block 
dimension of 63x63, and 16x16 threads per block. The tables 
also display information from the ePMC tool related to the size 
of the arithmetic circuit, which directly affects the number of 
instructions performed in both the CPU and GPU programs. 
Additionally, both CUDA programs for the parametric models 
were  compiled using 128 (GPU128) and 32 (GPU32) registers 
per thread. The latter was the highest possible register amount 
for the GPU to achieve 100% occupancy, while with a balanced 
optimisation level the compiler allocated 128 registers per 
thread, but only achieved 25% occupancy. In summary, the 
trade-off was four times the number of registers for four times 
higher occupancy. Regardless of execution on CPU or GPU, the 
result of the evaluation in each experiment was equal, not 
including edge cases involving results produced from models 
where division by 0 occurred. Results between the three 
approaches are compared in the tables in each subsection.  

6.1 Bounded Retransmission Protocol 
The bounded retransmission protocol (BRP) [8] is a variant of 
the alternating bit protocol. It divides a file into N chunks with 
each chunk allowed at most MAX retransmissions. The file is 
transmitted over two lossy channels K and L which send data 
and acknowledgements, respectively. The model is 

parametrised by pK and pL, which represents the reliability of 
each channel. Table 1 shows the performance statistics, 
measured in seconds, for the CPU and GPU execution times of 
each test case. The number of nodes in the DAG produced by 
the ePMC tool is displayed in the third column, which directly 
influences the number of instructions to be executed on both the 
CPU and GPU. The increase in performance is measured in the 
last column as a ratio of CPU and GPU128 execution times. 

Table 1. Performance statistics for BRP. 
N MAX Nodes CPU GPU128 GPU32 Incr. 
64 4 15,367 105.67 0.76 0.75 137x 
64 5 18,117 107.67 0.76 0.77 141x 
256 4 61,639 418.75 2.82 2.84 148x 
256 5 72,645 418.32 2.85 2.85 146x 
512 4 123,335 839.76 5.57 5.61 150x 
512 5 145,349 836.15 5.61 5.60 149x 
The CUDA program was on average approximately 145 times 
faster than the single-threaded approach. The speedup was 
extremely consistent throughout each test and the  run-time 
grew linearly in relation to N. In this experiment, the register 
limited kernel performed equally well in comparison to the 
higher register - but lower occupancy - kernel. 

6.2 Crowds Protocol 
The crowds protocol [13] models anonymity for Web browsing 
using M dishonest users who route their communications 
randomly through R different path reformulates within a group 
of N users. It is  parametrised by B = M / (M + N), the ratio of 
dishonest users compared to the total crowd size, and P, the 
probability of a member of the crowd sending a package to a 
randomly selected receiver. Table 2 shows the performance 
statistics, measured in seconds, for the CPU and GPU execution 
times of each test case. 

Table 2. Performance statistics for crowds protocol. 
N R Nodes CPU GPU128 GPU32 Incr. 
5 3 3,495 3.96 0.08 0.07 38x 
5 5 24,859 70.90 0.48 0.76 145x 
5 7 105,359 254.76 1.81 3.22 140x 
10 3 29,005 14.73 0.17 0.17 81x 
10 5 465,928 346.91 2.36 6.03 146x 
10 7 4,042,917 -C- -C- -C- -C- 
15 3 114,066 26.01 0.25 0.24 104x 
15 5 3,265,023 -C- -C- -C- -C- 
15 7 -M- -M- -M- -M- -M- 

20 3 314,925 37.30 0.32 0.31 117x 
20 5 14,113,266 -C- -C- -C- -C- 
20 7 -M- -M- -M- -M- -M- 

From the results of the crowds protocol experiments, it was 
found that the compilation and execution time increased 
exponentially depending on R, the amount of path reformulates. 
Cells marked as M denote memory limitations encountered 
during the ePMC function generation phase, while cells marked 
as C denote the compiler not managing to finish within a ten 
minute limit. 
At best, the speed up was similar to the bounded retransmission 
protocol, and at worst the speedup was only a factor of 30 faster 
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in comparison to the single threaded approach. The average  
performance increase was approximately 110 times when 
comparing the CUDA program to the single-threaded evaluator. 
The register limited CUDA program performed noticeably 
worse in this experiment, most likely due to the high number of 
nodes in the DAG produced by the ePMC tool, and therefore a 
much longer kernel program.  

7. CONCLUSIONS 
In this paper a parallelised approach for the evaluation of 
parametric model checking of Markov Chains was implemented 
using CUDA. While instruction sets representing rational 
functions of stochastic models were extremely long, the kernels 
generated using this methodology could handle the evaluation 
of these parametric models and generated equal results 
compared to CPU implementations.  
Parallelisation of the evaluation proved to be immensely faster 
than a purely single-threaded approach. Most test cases showed 
that parallelising evaluation can produce speedups of up to 140 
times faster compared to sequential evaluation. Parametric 
model checking was found to fit naturally with the indexing 
methodology of CUDA and the value of parallelisation of 
parametric model checking was clear from the results of the 
experiments. 
Several kernel dimensions were tested during the 
implementation of the evaluator. It was found that 16x16 
threads per block was the maximal possible symmetric thread 
block to evaluate all experiments. The number of blocks in the 
grid was then evaluated based on this thread block size and the 
number of intervals requested for each parameter. Further 
optimisation of the kernel was left for future work due to time 
limitations. 
In the future, this work could be expanded to utilise dynamic 
parallelisation for the minimisation of interval evaluation based 
on upper or lower bounds required for the result of the 
evaluation. Dynamic parallelisation is a technique in which 
child grids are launched within a parent grid based on specific 
conditions, namely result bounds in this case [1]. Additionally, 
the automatic generation of the CUDA program could be 
extended to split the extremely long kernels into multiple 
smaller kernels for the interest of compilation time and thus 
allowing for lower register usage to maximise occupancy. 
Following the compiler optimisations, optimal grid dimensions 
could be re-evaluated based on the naturally lower register and 
shared memory usage per kernel. Finally, the generated 
instruction set could be analysed and repeating instructions 
could be split into their own functions to maximise code reuse. 
As this parallelised approach was an extension of the previously 
created ePMC tool, any optimisations made in it such as 
improved reuse of repeating functions within the rational 
function representing the parametric model would be reflected 
in the compilation and execution times of this approach. 
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