
1

Speeding Up Parametric Model Checking Using GPGPU
Computation

Marcel Erkko
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

m.a.erkko@student.utwente.nl

ABSTRACT
GPGPU-based parallelisation has gained popularity due to its
capability of efficiently handling compute-intensive tasks. The
prerequisite is that the tasks being performed must be
parallelisable using clever data structures and proper
synchronisation. Parallelisation on graphics processing units
(GPUs) has found applications in machine learning, computer
vision, and statistical analysis. Within statistical analysis, one
such compute-intensive task is the model checking of
parametric Markov chains. This research proposes a
parallelised approach to the evaluation phase of parametric
model checking of Markov chains.

Keywords
Markov chain, parametric model checking, GPGPU, CUDA,
interval arithmetic

1. INTRODUCTION
When dealing with statistical analysis, GPUs have been found
to be much faster than single thread applications. The multitude
of cores on GPUs allow for simultaneous computation of
hundreds of inputs, producing speedups ranging from 100 to
1000 times [15]. Parametric models are a family of probability
distributions with a finite number of parameters such that each
instantiation of the parameters produces a non-parametric
stochastic model [6]. When utilising parametric models with
interval values, the result can be guaranteed to be within a
specific bound based on the instantiation of the parameters.
Parametric model checking (PMC) is a highly parallelisable
task, as the model is representable as a large rational function
[5]. The entire parameter space – or combination of parameter
ranges – can be evaluated concurrently using general-purpose
GPU (GPGPU) parallelisation and one can quickly find every
combination of parameter instantiations which fulfils a given
property or result bound.
The analysis and optimisation of parametric Markov models has
received much attention during recent years [5]. However, the
evaluation of the parameter space for complex parametric
models is still a slow process. CUDA (Compute Unified Device
Architecture) is a GPGPU-based parallelisation framework
produced by NVIDIA. This framework is specifically designed
for Nvidia GPUs to perform compute intensive portions of
programs on thousands of GPU cores in parallel. CUDA’s
organisation of threads fits well with interval arithmetic, as the
kernel is organised into blocks of threads. During
implementation of the parallel evaluator, it was found that

utilising CUDA’s thread indexing method is a highly efficient
way to evaluate interval parameters. However, simply using the
inbuilt indexing method of CUDA limits the number of
parameters to one to three parameters.
This research aims to improve the speed of the evaluation phase
of PMC using this parallelisation framework by evaluating the
entire parameter space in a maximally concurrent manner. The
following research questions will be considered in this paper.

• How much of a speed-up is provided by using
GPGPU parallelisation in model checking of
(discrete-time) parametric Interval Markov Chains?

• What are the optimal kernel dimensions for model
checking parametric Markov Chains?

The research performed is an extension of the work done by
Gainer et al. [2018] and their optimised construction of
parametric Markov Chains. The goal is to implement a CUDA
version for the evaluation phase of parametric model checking
based on their programmatic tool for model checking. The
results of the parallelised program are then compared against a
single-threaded version of the same instructions representing
the parametric model. What this research does not intend to do
is optimise or change the parametric model produced in any
way, but rather to parallelise the evaluation of it in an optimal
manner.
Following sections will provide background regarding related
work and preliminary information about parametric models,
CUDA, and interval arithmetic. Following that will be a
discussion about the transformation of the single-threaded
program into a parallelised version and how the CUDA
program was optimised. Lastly, the parallel version is compared
against the single-threaded approach in model checking of the
entire parameter space and the results and conclusions are
addressed.

2. RELATED WORK
As mentioned previously, this research aims to continue the
work done in the paper by Gainer et al. [2018]. In their paper,
the parametric model is represented as a finite automaton,
which is then utilised to construct a representation of a rational
function. The output is a Directed Acyclic Graph (DAG)
structure for function evaluation, with the function being
represented in the form of an arithmetic circuit. This approach
already provided a significant speed-up in comparison to other
modern parametric model checkers [5].The ePMC tool created
by Gainer et al. will be extended by transforming the generated
list of instructions into equivalent CUDA instructions and
comparing against their interval implementation written in C
using a single-threaded approach for evaluation.
Parametric Interval Markov Chains (pIMCs) are a type of
parametric model which provide various benefits. Research into
pIMCs has been done by Bart et al. [2017], showing that the
combination of parametric Markov Chains (pMCs) and interval
Markov Chains (IMCs) is strictly more expressive than the
other two individually. That is, anything that can be expressed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
36th Twente Student Conference on IT, Febr. 4th, 2022, Enschede, The
Netherlands. Copyright 2022, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

2

by a pMC and IMC, can be expressed by pIMCs, while the
opposite does not hold [2]. Their work provides validation for
the expressiveness and usefulness of pIMCs.
CUDA programming has found use in the implementation of
Markov Chain Monte Carlo simulations and statistical analysis
using mixture modelling approaches [15]. Although the results
of the former showcase speedups from 100 to 1000 times faster
on certain highly structured Bayesian models, Suchard et al.
[2010] note that the time investment necessary in developing
new programming skills has been a barrier in the adoption of
GPGPU parallelisation techniques within the statistics
community. During the literature review it was found that there
is a scarcity of research into parallelisation of parametric model
checking. Therefore, this paper aims to provide further proof of
the usefulness of parallelisation in statistical analysis.

3. PRELIMINARIES
3.1 Non-Parametric & Parametric Models
Non-parametric models are a type of statistical model where
each transition has a real valued probability attached.
Parametric models are a generalised version of this, where the
transitions are modelled as a function that are dependent on the
parameters. Knuth’s dice [10] is a famous example of Markov
Chains where the model emulates the throw of a 6-sided dice
using a coin. Figure 1 displays the throwing of the dice
emulated using a fair (left) or biased coin (right), or a non-
parametric and parametric model respectively.

Figure 1. Non-parametric and parametric Knuth’s Dice. [5]
Markov Chains (MC) are stochastic models characterised by the
property that the future states of the process are independent of
the past states. They have been applied in for example
communications, automatic control, signal processing, and
economics [3]. Although this can be modelled as a non-
parametric model, Junges et al. [2021] state that utilising a
parametric Markov Chain allows for a realistic representation of
the system state by coupling transitions, therefore inducing
global restrictions on the possible probability distributions.
Parametric Interval Markov Chains are an extension of this,
where the parameters are represented as interval values,
providing benefits to expressiveness and accuracy of the models
representativeness. Evaluation of the model also produces an
interval, with a guarantee that the result is within this interval’s
bounds. This can then be utilised to compare against lower and
upper bounds restrictions that one is interested in. The starting
point for this research was a list of interval arithmetic
instructions written in C, which represents the rational
functional that describes the parametric model.

3.2 CUDA Programs
CUDA programs are generally written in C or C++, with the
functions executed on the GPU being called kernels. Threads in
CUDA are organised in blocks, namely recognised as thread
blocks, which all reside on the same processor core and share
the same memory resources. The blocks are further organised
into one-dimensional, two-dimensional, or three-dimensional
grids of thread blocks. The blockIdx - a built-in variable - is

used to identify each block within the grid, while the dimension
of the thread block is accessible through the blockDim variable.
Both values are accessible within the kernel and these thread
blocks are independent, meaning one can execute them in any
order - in parallel or in series - thus allowing for code that
scales with the number of cores of the GPU [11].
Features supported by CUDA are dependent on the compute
capability of the hardware the program is compiled and ran on.
Additionally, NVIDIA GPUs are organised as an array of
Streaming Multiprocessors (SMs). These multiprocessors
create, manage, schedule, and execute threads in groups of 32
parallel threads called warps. The maximum number of warps
per SM – or the maximum instruction throughput - is dependent
on the compute capability of the GPU and limited by various
hardware related maximum properties such as the number of
blocks per SM, warps per block, and warps per SM [11].
When CUDA programs invoke a kernel from host code – or
CPU code - the thread blocks are distributed to multiprocessors
with available execution capacity. Thus, the parallelisability of
a CUDA program is additionally dependent on this hardware
limitation, as it dictates factors such as maximum thread block
size, maximum shared memory per block, and maximum
registers utilisable per thread and thread block [11].

3.3 Interval Arithmetic
Interval arithmetic is a mathematical technique used to solve
uncertainty problems which cannot be efficiently solved using
floating-point arithmetic. As floating point numbers contain a
limited number of bits, scientific computations can contain
minor accumulative errors due to certain values not being
possible to be represented using floating-point numbers [4]. In
interval arithmetic, instead of representing a value as a single
number, each value is represented as a range of possibilities
containing a real value x in it. This allows for additional
flexibility and consideration for errors during computation of
long lists of arithmetic instructions.
The rational functions produced by the ePMC tool are
constructed using the arithmetic operations of addition, additive
inverse, multiplication, and multiplicative inverse [5]. These
operations can all be performed using interval arithmetic, but
with slight modifications. The operations used in parametric
models are defined below in Figure 2.

Figure 2. Interval arithmetic operations.

4. INTERVAL ARITHMETIC IN CUDA
Threads in CUDA are identifiable based on the previously
mentioned indexing method. It provides a natural way to
perform computation on data structures organised as a vector,
matrix, or volume [11]. For model checking pIMCs, this allows

3

for a natural indexing method for evaluation of models with one
to three parameters. It was found to be uncommon for
parametric models to contain more than three parameters, thus
by organising the parameter space in one of these data
structures, it is possible to naturally integrate the model
checking with CUDA parallelisation. To determine the initial
parameter instantiation, the thread identifier formula in Figure
3 can be utilised in combination with the step size desired for
the intervals.

Figure 3. Thread identifier formula and bounds formulas.

When launching a kernel, the values for a maximum of three
dimensions can be defined for both threads and blocks. The
example in Figure 4 represents a parametric model checking of
a pIMC with two parameters, with the kernel being organised
using 2x2 blocks and 3x3 threads per block. Each box in the
grid represents a thread and contains its block thread index
within. The parameter space is naturally split between the
thread blocks, represented by the coloured regions, and indexed
by the values to the left and below the grid. The thread indices
within the blocks determines the final component for which
interval a particular thread works on.

Figure 4. Thread block organisation in CUDA.

If one were to use a step size of 0.2, one would only require five
threads in both the x- and y-axis, but this is not possible with
the current number of thread blocks. Thus, when launching
threads for a kernel, one may find that there is a surplus of
threads, which would return immediately instead of performing
the computations, but still cause a certain overhead due to the
creation and destruction of these threads. Additionally, when
deciding a thread block size, it is common to utilise a size
which is a multiple of warp size to maximise concurrency [11].

Translation of the resulting thread identifier into a specified
interval is trivial. The thread identifier and step size determine
the lower bound of the parametric interval, and the step size in
combination with the lower bound is used to find the upper
bound. Additionally, as C and C++ use row-major order – or
lexicographical access order - for the indexing of arrays [14],
one can utilise the thread identifiers to determine the memory
location where the result must be stored in a flattened array

using the formulas found in Figure 5 and the formula for ida
from Figure 3.

Figure 5. Array index formula for 1, 2, or 3 parameters.

5. CUDA OPTIMISATIONS
CUDA programs can be optimised from a runtime and memory
perspective by spreading the work evenly between the threads.
This can be achieved by affecting the dimensionality of the
kernel and its thread blocks. By purely trying to maximise the
number of threads in each block, CUDA might not compile the
program at all due to memory limitations enforced on each
thread block. Thus, it is common practice for kernels to be
launched with 256 threads per block, instead of the maximal
1024 [11]. The following sections will describe the optimisation
efforts performed during this research, considering the compute
capability of 6.1 of the GPU that experiments were performed
on.

5.1 Kernel Dimensions
Regardless of compute capability, each block in CUDA can
contain a maximum of 1024 threads. For a parametric model
with two parameters, this equates to a thread block with a
dimension of 32x32 threads per block. However, due to the
large number of instructions performed during the evaluation of
complex models, the kernel may have issues with launching due
to memory limitations imposed on the thread blocks. Each
thread block may utilise a maximum of 48KB shared memory,
and each multiprocessor may utilise a maximum of 96KB of
shared memory [11].
Lowering the number of threads per block and increasing the
total number of blocks in the grid allowed for the spreading of
shared memory more evenly throughout the multiprocessors,
such that the kernel can launch and perform the parallelisation
of the problem. For this research, the maximal block dimension
possible for launching the kernel for each experiment was used
to provide more consistent results between different parametric
models.

5.2 Occupancy
Multiprocessor occupancy for CUDA programs refers to the
ratio of concurrent warps versus the maximum number of warps
supported on a multiprocessor of the GPU [11]. This value,
represented by a percentage, is used to determine how many
threads are active compared to how many threads could be
active concurrently. For this research, the most major
bottleneck for maximising occupancy was the register usage of
the program. As the number of lines of code produced by the
ePMC tool was found to range from a few thousand to over a
million, most programs compiled with default options utilised
128 registers per thread.
NVIDIA has created a program called Nsight Compute [12],
which can be utilised to simulate different kernel launches for
calculating occupancy for specific hardware. For the GPU used
in the experiments, occupancy could be maximised by having
each thread utilise 32 registers on the device when using a
kernel with 256 threads per block. The experiments section
compares performance of CUDA programs compiled with both
128 and 32 registers, prioritising a balance between register and
instruction optimization and occupancy respectively.

4

5.3 Grid-Stride Loops
Choosing which part of the problem each thread works on is
another important consideration from the perspective of thread
safety and memory usage. Grid-stride loops can be utilised to
reduce the number of threads needed for computation. This
technique makes each thread work on multiple inputs instead of
a single interval. The benefit of this is the minimisation of the
overhead for creating and destroying threads by spawning
enough threads to saturate all cores of the GPU and perform all
calculations for the specific problem using this maximal
number of concurrent threads [7]. This research performed
initial testing using grid-stride loops but found the results to be
inconclusive. Thus, the experiments section does not contain
the results of these tests, and the utilisation of this technique is
left for future work.

5.4 Shared Memory
As memory in the GPU is a limited resource, the choice was
made to calculate the intervals in-line within the kernel instead
of storing each parameter combination before executing the
kernel. Memory shared between the CPU and GPU was only
reserved for storing the lower and upper bound results and then
used to compare the results of the CPU and GPU
implementations. As each thread can calculate its own index for
storing the results of disjoint interval instantiations, there was
no concern for thread safety when accessing these shared
arrays.

6. EXPERIMENTS
Results of the parallelised CUDA program will now be
compared against a single-threaded C++ implementation. Two
parametric models from the PRISM benchmark suite were used
for the experiments. They were conducted on a laptop with an
Intel Core i7-10750H processor at 2.6GHz, an NVIDIA Quadro
P620 graphics card, and a total of 16GB of RAM for the host,
running on Ubuntu 20.04.
Each experiment compares the CUDA programs run-time for
model checking the entire parameter space against a single
threaded approach for evaluating the same. The programs were
generated using the extended version of the ePMC tool by
Gainer et al. [2018] and are compiled in a single CUDA
program. For each combination of constants in the models, the
CUDA program was ran using a step size of 0.001, block
dimension of 63x63, and 16x16 threads per block. The tables
also display information from the ePMC tool related to the size
of the arithmetic circuit, which directly affects the number of
instructions performed in both the CPU and GPU programs.
Additionally, both CUDA programs for the parametric models
were compiled using 128 (GPU128) and 32 (GPU32) registers
per thread. The latter was the highest possible register amount
for the GPU to achieve 100% occupancy, while with a balanced
optimisation level the compiler allocated 128 registers per
thread, but only achieved 25% occupancy. In summary, the
trade-off was four times the number of registers for four times
higher occupancy. Regardless of execution on CPU or GPU, the
result of the evaluation in each experiment was equal, not
including edge cases involving results produced from models
where division by 0 occurred. Results between the three
approaches are compared in the tables in each subsection.

6.1 Bounded Retransmission Protocol
The bounded retransmission protocol (BRP) [8] is a variant of
the alternating bit protocol. It divides a file into N chunks with
each chunk allowed at most MAX retransmissions. The file is
transmitted over two lossy channels K and L which send data
and acknowledgements, respectively. The model is

parametrised by pK and pL, which represents the reliability of
each channel. Table 1 shows the performance statistics,
measured in seconds, for the CPU and GPU execution times of
each test case. The number of nodes in the DAG produced by
the ePMC tool is displayed in the third column, which directly
influences the number of instructions to be executed on both the
CPU and GPU. The increase in performance is measured in the
last column as a ratio of CPU and GPU128 execution times.

Table 1. Performance statistics for BRP.
N MAX Nodes CPU GPU128 GPU32 Incr.
64 4 15,367 105.67 0.76 0.75 137x
64 5 18,117 107.67 0.76 0.77 141x
256 4 61,639 418.75 2.82 2.84 148x
256 5 72,645 418.32 2.85 2.85 146x
512 4 123,335 839.76 5.57 5.61 150x
512 5 145,349 836.15 5.61 5.60 149x
The CUDA program was on average approximately 145 times
faster than the single-threaded approach. The speedup was
extremely consistent throughout each test and the run-time
grew linearly in relation to N. In this experiment, the register
limited kernel performed equally well in comparison to the
higher register - but lower occupancy - kernel.

6.2 Crowds Protocol
The crowds protocol [13] models anonymity for Web browsing
using M dishonest users who route their communications
randomly through R different path reformulates within a group
of N users. It is parametrised by B = M / (M + N), the ratio of
dishonest users compared to the total crowd size, and P, the
probability of a member of the crowd sending a package to a
randomly selected receiver. Table 2 shows the performance
statistics, measured in seconds, for the CPU and GPU execution
times of each test case.

Table 2. Performance statistics for crowds protocol.
N R Nodes CPU GPU128 GPU32 Incr.
5 3 3,495 3.96 0.08 0.07 38x
5 5 24,859 70.90 0.48 0.76 145x
5 7 105,359 254.76 1.81 3.22 140x
10 3 29,005 14.73 0.17 0.17 81x
10 5 465,928 346.91 2.36 6.03 146x
10 7 4,042,917 -C- -C- -C- -C-
15 3 114,066 26.01 0.25 0.24 104x
15 5 3,265,023 -C- -C- -C- -C-
15 7 -M- -M- -M- -M- -M-

20 3 314,925 37.30 0.32 0.31 117x
20 5 14,113,266 -C- -C- -C- -C-
20 7 -M- -M- -M- -M- -M-

From the results of the crowds protocol experiments, it was
found that the compilation and execution time increased
exponentially depending on R, the amount of path reformulates.
Cells marked as M denote memory limitations encountered
during the ePMC function generation phase, while cells marked
as C denote the compiler not managing to finish within a ten
minute limit.
At best, the speed up was similar to the bounded retransmission
protocol, and at worst the speedup was only a factor of 30 faster

5

in comparison to the single threaded approach. The average
performance increase was approximately 110 times when
comparing the CUDA program to the single-threaded evaluator.
The register limited CUDA program performed noticeably
worse in this experiment, most likely due to the high number of
nodes in the DAG produced by the ePMC tool, and therefore a
much longer kernel program.

7. CONCLUSIONS
In this paper a parallelised approach for the evaluation of
parametric model checking of Markov Chains was implemented
using CUDA. While instruction sets representing rational
functions of stochastic models were extremely long, the kernels
generated using this methodology could handle the evaluation
of these parametric models and generated equal results
compared to CPU implementations.
Parallelisation of the evaluation proved to be immensely faster
than a purely single-threaded approach. Most test cases showed
that parallelising evaluation can produce speedups of up to 140
times faster compared to sequential evaluation. Parametric
model checking was found to fit naturally with the indexing
methodology of CUDA and the value of parallelisation of
parametric model checking was clear from the results of the
experiments.
Several kernel dimensions were tested during the
implementation of the evaluator. It was found that 16x16
threads per block was the maximal possible symmetric thread
block to evaluate all experiments. The number of blocks in the
grid was then evaluated based on this thread block size and the
number of intervals requested for each parameter. Further
optimisation of the kernel was left for future work due to time
limitations.
In the future, this work could be expanded to utilise dynamic
parallelisation for the minimisation of interval evaluation based
on upper or lower bounds required for the result of the
evaluation. Dynamic parallelisation is a technique in which
child grids are launched within a parent grid based on specific
conditions, namely result bounds in this case [1]. Additionally,
the automatic generation of the CUDA program could be
extended to split the extremely long kernels into multiple
smaller kernels for the interest of compilation time and thus
allowing for lower register usage to maximise occupancy.
Following the compiler optimisations, optimal grid dimensions
could be re-evaluated based on the naturally lower register and
shared memory usage per kernel. Finally, the generated
instruction set could be analysed and repeating instructions
could be split into their own functions to maximise code reuse.
As this parallelised approach was an extension of the previously
created ePMC tool, any optimisations made in it such as
improved reuse of repeating functions within the rational
function representing the parametric model would be reflected
in the compilation and execution times of this approach.

8. ACKNOWLEDGMENTS
I would like to thank my supervisor Moritz Hahn for his
constant support and the authors of PRISM for their work on
parametric models.

9. REFERENCES
[1] Andy Adinets, 2014. Adaptive Parallel Computation with

CUDA Dynamic Parallelism. Retrieved from
https://developer.nvidia.com/blog/introduction-cuda-
dynamic-parallelism/.

[2] Anicet Bart, Benoit Delahaye, Didier Lime, Eric Monfroy,
Charlotte Truchet. 2017. Reachability in Parametric
Interval Markov Chains Using
Constraints. arXiv:1706.00270. Retrieved from
https://arxiv.org/abs/1706.00270.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. 2008.
Introduction to Probability (2nd ed.). Athena Scientific,
Belmont, Massachusetts.

[4] Hend Dawood. 2011. Theories of Interval Arithmetic:
Mathematical Foundations and Applications (1st. ed.).
LAP LAMBERT Academic Publishing, Saarbrücken,
Germany.

[5] Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. 2018.
Accelerated Model Checking of Parametric Markov
Chains. arXiv:1805.05672. Retrieved from
https://arxiv.org/abs/1805.05672.

[6] Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. 2011.
Synthesis for PCTL in Parametric Markov Decision
Processes. In Lecture Notes in Computer Science, 6617,
April 18-20, 2011, Pasadena California. Spring, Berlin,
Heidelberg, 146–161. https://doi.org/10.1007/978-3-642-
20398-5_12.

[7] Mark Harris, 2013. CUDA Pro Tip: Write Flexible Kernels
with Grid-Stride Loops. Retrieved from
https://developer.nvidia.com/blog/cuda-pro-tip-write-
flexible-kernels-grid-stride-loops/.

[8] L. Helmink, M. Sellink and F. Vaandrager. 1994. Proof-
checking a data link protocol. In Proceedings of the
international workshop on Types for proofs and programs
(TYPES ’93), Springer-Verlag, Berlin, Heidelberg, 127-
165.

[9] Sebastian Junges, Joost-Piete Katoen, Guillermo A. Pérez,
and Tobias Winkler. 2021. The complexity of reachability
in parametric Markov decision processes. Journal of
Computer and System Sciences, 119, (Aug. 2021), 183–

210. DOI: https://doi.org/10.1016/j.jcss.2021.02.006.
[10] D. Knuth and A. Yao. 1976. The complexity of

nonuniform random number generation. In Algorithms and
Complexity: New Directions and Recent Results,
Academic Press, Inc., USA.

[11] NVIDIA. 2022. CUDA C++ Programming Guide.
Retrieved from https://docs.nvidia.com/cuda/cuda-c-
programming-guide/.

[12] NVIDIA. 2022. NVIDIA Nsight Compute. Retrieved from
https://developer.nvidia.com/nsight-compute.

[13] Michael K. Reiter and Aviel D. Rubin. 1998. Crowds:
Anonymity for web transactions. ACM Transactions on
Information and System Security 1, 1 (Nov. 1998), 66-92.
DOI: https://doi.org/10.1145/290163.290168.

[14] Peter S. Pacheco and Matthew Malensek. 2011. An
Introduction to Parallel Programming (1st ed.), Morgan
Kaufmann Publishers Inc., San Francisco, CA.

[15] Marc A. Suchard, Quangli Wang, Cliburn Chan, Jacob
Frelinger, Andrew Cron, and Mike West. 2010.
Understanding GPU Programming for Statistical
Computation: Studies in Massively Parallel Massive
Mixtures. Journal of computational and graphical
statistics: a joint publication of American Statistical
Association, Institute of Mathematical Statistics, Interface
Foundation of North America, 19, 2, 419–438. DOI:
https://doi.org/10.1198/jcgs.2010.10016.

