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ABSTRACT 

Modern deep learning techniques are very suitable for point 

cloud segmentation of catenary arches of railway systems. The 

downside of deep learning models is that they have a low 

explainability. In this paper we explore the explainability of a 

PointNet++ model that is used for segmenting point clouds of 

catenary arches. The exploring of explainability is done by 

creating a pipeline for adapting, segmenting and visualizing the 

point clouds. By adapting the point clouds the robustness of the 

model is also tested. From this research it follows that the 

PointNet++ model mainly relies on the location of the objects in 

order to segment them. Changing the shape of an object does not 

have a significant impact on the performance of the model.  
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1. INTRODUCTION 
About 11% of the people in the Netherlands rely on the efficient 

railway infrastructure the country has to offer [1]. To keep the 

trains arriving on time, renovation, construction and repairs of 

this railway infrastructure must happen regularly. The inspection 

of the catenary arches is part of the maintenance and is very time 

consuming.  Railway infrastructure company Strukton wants to 

automize the detection of the different objects of these catenary 

arches to efficiently inventorize which catenary arch components 

are used where. To find out if this automatization is possible 

Strukton employed a research group to see if they can create a 

3D CAD model of the railway environment using point cloud 

segmentation and deep learning. 

The railway environment is scanned and stored as a point cloud 

using LiDaR. Deep learning models are used for semantic 

segmentation of the catenary arches in this point cloud. A 

modified PointNet++ model has shown good results. However, 

as with every deep learning model, it is unknown how the model 

precisely does the segmentation. In this research the so called 

‘black box’ of the deep learning model will be opened to explain 

how the model works and to see how robust the model is. We 

also provide architecture and implementation of a pipeline for 

creating such visualizations.  

In section 2 the relevant background of this research is covered. 

Followed by the related work in section 3. In section 4 the 

problem statement is defined, containing the research questions 

that will be answered in this paper. The methodology used to 

answer these questions is covered in section 5. The results can be 

found in section 6. 

 

2. BACKGROUND 
To better understand the research, definitions for the used terms 

and tools are given. First the definition and application fields of 

point clouds is given. Then semantic segmentation is explained, 

followed by the open source software Open3D-ML. Lastly, 

explainability of deep learning is elaborated on.  

2.1 Point Clouds & LiDaR 
The railway environment has been captured in a 3D 

representation using 3D LiDaR (Laser Imaging Detection and 

Ranging). LiDaR uses a fast-rotating laser to determine the range 

of objects 360° around the laser.  It measures the time of flight 

for the light of the laser to reflect on an object and calculates the 

distance to the object using the measured time. The objects are 

represented in large amount of points, each having an X, Y and 

Z coordinate. The collection of these points is called a Point 

Cloud. The use of LiDaR to create Point Clouds for semantic 

segmentation has been proven successful in various fields such 

as the segmentation of tree crowns [2] and vegetable crops [7]. 

Furthermore, LiDaR is widely used in the automotive industry 

for autonomous driving [8]. 

2.2 Semantic Segmentation  
The goal of semantic segmentation in a 2D environment is to 

classify each pixel belonging to a particular label. Image 

segmentation is applied in various fields, ranging from medical 

[13] to military [18].  

Semantic segmentation of point clouds is very similar to 

semantic segmentation of images. The only difference is that it is 

in 3D instead of 2D. Instead of each pixel getting classified, each 

point is classified. Semantic segmentation of point clouds is 

widely used in automotive to classify objects [4]. 

Several techniques exist to perform the semantic segmentation 

[3]. One of the first techniques used for image segmentation was 

split-and-merge. This technique mainly relies on hardcodes rules 

and is very outdated for this application (for details see [6]). In 

recent years the focus has shifted towards deep learning. One of 

the deep learning methods used for semantic segmentation on 

point sets is PointNet [11]. An example of Point Cloud 

Segmentation of a catenary arch using PointNet can be found in 

Figure 1, this picture is taken from [9]. This deep learning model 

was later further developed into PointNet++, which uses a 

hierarchical neural network that applies PointNet recursively 

[12].  
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One of the limits of these deep learning models is their low 

explainability. The model receives an input set, it does a lot of 

calculations in the so called “black box”, and then returns the 

output. Increasing the explainability will make this black box 

more transparent [5].  

2.3 Open3D-ML 
Open3D-ML is a modern library that can be used for 3D machine 

learning tasks. It can be used to visualize labeled point clouds 

and it is built on the Open3D core library [10]. An example of a 

3D representation of a crossroad can be found in Figure 2. In this 

figure the road is labeled in purple, trees and other vegetation in 

green and buildings in blue.  

 

 

2.4 Explainability  
In this section we will look at the definition of explainability, its 

importance and available techniques to explore explainability.  

2.4.1 Definition and Importance 
To be able to make a deep learning model more explainable, we 

first need to define what explainability means. More specifically, 

what is the difference between explainability and 

interpretability? Interpretability is the degree to which a human 

can understand the cause of a decision [15]. For a model with a 

high interpretability it is easier for humans to understand the 

decisions than for a model with low interpretability. 

Explainability is the extent to which the internal mechanics of a 

model can be explained in human terms.  

When a model has a high explainability, the trust in this model 

will increase [14]. Furthermore, when a model has a high 

explainability, its performance can increase. If you know why 

decisions were made, you can tweak the model to increase its 

performance.  

2.4.2 Available techniques  
Before listing the available techniques to improve model 

explainability, we first explain the types of techniques available. 

First of all, the technique can be global or local. Global 

techniques look at the whole model and local techniques study a 

small portion of the network [15]. The second distinction that can 

be made between the techniques is model-specific versus model-

agnostic. A model specific technique is specifically made for one 

model and cannot be used on other models. A model-agnostic 

technique can be used for multiple models.  

In this research the focus will be on a model-specific and local 

technique.  

 

3. RELATED WORK  
As mentioned before, the railway environment has been captured 

using LiDaR and stored in a point cloud. A PointNet++ model 

was trained to segment and label the point cloud. One of these 

labeled arches visualized using the Open3D-ML library can be 

seen in Figure 3. This work and the results are all covered in [16].  

 

The accuracy of the model is quite high, as it has a mIoU (mean 

Intersection over Union) of 0.86. However, the explainability of 

the model is not discussed. Furthermore, the robustness of the 

model is not tested. In this paper we analyze the effect of a 

permutation to the shape and location of an object in the arch to 

the performance of the model.  

 

4. PROBLEM STATEMENT 
Since the model has a low explainability, the trust in the model 

might not be that high. Exploring the explainability of the model 

will help us understand how the model works. To explore the 

explainability some research questions were formulated.  

4.1 Research Questions 
This paper aims to answer the following research question: 

RQ: How to visualize point clouds to leverage them for model 

explainability and model robustness? 

The following sub-questions are used to answer the main 

research question: 

SRQ1: How to create an end-to-end pipeline to adapt, segment 

and visualize point clouds? 

SRQ2: Does de model rely on the (relative) location of objects 

for the semantic segmentation? 

SRQ3: Does the model rely on the shape of the objects for the 

semantic segmentation? 

___________________________________________________________ 
 

1 source: http://www.open3d.org/docs/release/open3d_ml.html 

 

Figure 1 Example of Point Cloud Segmentation by using 

PointNet 

Figure 2 Example Open3D-ML 1 

Figure 3 Labeled Arch Open3D-ML 



5. METHODOLOGY 
This section describes the steps that have been taken to answer 

the research questions. 

5.1 Flowchart of Pipeline 
This section explains the pipeline that has been created to adapt, 

segment and visualize the point clouds. For this research only the 

point cloud of one catenary arch is used. This is used as the input 

of the pipeline. A flowchart of the pipeline can be found in Figure 

4. The details of each step are discussed later in sections 5.2, 5.3, 

5.4 and 6.  

 

5.2 Visualization using Open3D-ML 
To visualize the segmented point clouds the open source library 

Open3D-ML is used. Since the visualization of multiple point 

clouds at the same time is quite resource intensive, the Open3D-

ML library was installed on the Jupyter Notebook environment 

of the University of Twente, which has more than enough 

computing power for this task. 

5.3 Adapting Point Clouds 
A point cloud of a catenary arch that has been used for training 

and testing the deep learning model was adapted in several ways 

to find out if the performance of the model decreased by doing 

so. The arch used is displayed in Figure 5. By altering the arch 

and then letting the trained deep learning model segment the 

arch, the robustness of the model can be tested. Furthermore, if 

the performance decreases after modifying aspects of the arch it 

can be assumed that the deep learning model relies on those 

aspects during the segmentation. This will help us understand 

how the model works, thus increasing its explainability. 

 

The two objects that have been adapted to test the robustness of 

the model are the second pole from the left and the third insulator 

from the left. To be able to add the adjustments in the point cloud, 

it first had to be normalized such that the front view would be 

seeing the x-y-plane. This was done in the point cloud editing 

software called CloudCompare2. The result of this 

transformation can be seen in Figure 6. 

 

 

The normalized point cloud was saved to a .csv file and is now 

easy to process using Python scripts. To find out what aspects of 

the point cloud have influence on the performance of the model 

several different kinds of transformations were done. The 

location of the insulator was changed, the shape of the insulator 

was changed and different amounts of holes were added in the 

pole.  

5.3.1 Changing Insulator Shape 
To find out if the model relies on the shape of the different 

objects in the point cloud in order to segment them, one of the 

insulators was replaced by a cylinder.  

In order to achieve this a Python script was written. In this Python 

script, the points forming the original insulator were removed. To 

find out which points formed the original insulator 

CloudCompare was used. This software has an option that allows 

you to select points in the point cloud and save the coordinates to 

a .csv file, as shown in Figure 7. By selecting six points, each 

with either the minimum or maximum value of the x-, y- or z-

coordinate, the boundaries of the insulator were found.  

A for loop was used to remove the points with coordinates 

between these minimum and maximum x-, y-, and z-coordinates. 

 

Using the same option in CloudCompare two points were chosen 

in between which the cylinder should be placed. First of all the 

formula for the coordinates for the line between these points was 

created. The equation used to find the x-, y- and z-coordinates of 

the points that form the line between point 1 [𝑥1, 𝑦1, 𝑧1] and point 

___________________________________________________________ 
 

2 https://www.danielgm.net/cc/ 

 

Figure 4 Flowchart of the Pipeline 

Figure 5 Original Point Cloud in CloudCompare 

Figure 6 x-y-view of Normalized Point Cloud in 

CloudCompare 

Figure 7 CloudCompare Point Selection 



2 [𝑥2, 𝑦2, 𝑧2] can be found in Equation 1. In this equation 𝑑 gives 

the distance between point 1 and the new point. 

Equation 1 

𝑥, 𝑦, 𝑧 →  (𝑥2 − 𝑥1) ⋅ 𝑑 +  𝑥1, (𝑦2 −  𝑦1) ⋅ 𝑑 + 𝑦1,
(𝑧2 −  𝑧1) ⋅ 𝑑 + 𝑧1 

This equation was used to create 100 equally spaced points 

between point 1 and point 2. Around each of these points a circle 

in the y-z-plane was made using the formula in Equation 2. This 

equation was used to transform the cartesian coordinates to 

cylindrical coordinates. In this equation the letter 𝑛 determines 

the amount of points for each circle. The value of 𝑛 was 50. The 

letter 𝑖 increments from 0 to 𝑛. The letter 𝑟 determines the radius 

of the circle. Multiple radiuses were used to see if the size of the 

cylinder had impact on the performance of the model. 

Equation 2 

[𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐]  → [𝑥, 𝑦 + cos (
360

𝑛
⋅ 𝑖) ⋅ 𝑟, 𝑧 + sin (

360

𝑛
⋅ 𝑖) ⋅ 𝑟 

The points that form the circles were added to the point cloud and 

the points that form the centerline were not added. The newly 

added cylinder consisted of 5000 points, which is much more 

than the original insulator consisted of, namely 217 points. 

Therefor points of the new cylinder were randomly removed until 

it had the same amount of points as the original insulator.  

The label belonging to the insulator was added to the cylinder to 

be able to compare the true label with the predicted label later.  

The original and replaced insulator can be seen in Figure 8 and 

Figure 9. 

 

 

 

5.3.2 Changing Insulator Location 
To find out if the model relies on the location of the objects in 

the point cloud in order to segment them, one of the insulators 

was moved in various directions with various distances. 

To move an insulator another Python script was written. Two 

points from the point cloud were selected using CloudCompare, 

one point in the middle of the insulator to be moved [𝑥1, 𝑦1, 𝑧1], 
and one randomly in the point cloud [𝑥2, 𝑦2, 𝑧2]. These two 

points form a line on which the insulator is moved. 

Changing the location of the insulator was done as follows: A for 

loop loops through all the points of the normalized point cloud 

and checks for each point if their coordinates are in the 

boundaries that were defined earlier. If this is the case it means 

that the point is part of the insulator that has to be moved. The 

points forming the insulator get a linear transformation with the 

formula from Equation 1. In this equation the letter 𝑑 determines 

the distance that the insulator is moved. Several point clouds 

were created, each with another distance. 

Besides several distances, multiple directions were also used to 

move the insulator. This was done by selecting a new point 2 

[𝑥2, 𝑦2, 𝑧2]. The moved insulator kept the original label to later 

compare it to the predicted label. A picture showing the moved 

insulator can be found in Figure 10. 

 

5.3.3 Changing Pole Shape 
To find out if the model relies on the shape of the pole to classify 

it, different amounts of holes were added in one of the poles. Yet 

another Python script was created to achieve this. Again two 

points were selected using CloudCompare, one at the bottom of 

the pole (point 1 [𝑥1, 𝑦1, 𝑧1]) and one at the top of the pole (point 

2 [𝑥2, 𝑦2, 𝑧2]).  

A list containing the coordinates that define n squares on the line 

from point 1 to point 2 was made. For each square the following 

values were stored:  

𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥 

By looping through all the points from the normalized point 

cloud and checking if their coordinates are between the extremes 

of any of the squares a new point cloud was created. Several point 

clouds with holes in one of the poles were made, ranging from 5 

holes up to 80 holes. In the pole with 80 holes the holes are 

connected to each other resulting in a gap all along the pole. 

Both a normal pole and a pole containing holes is shown in 

Figure 11. 

Figure 8 Original Insulator 

Figure 9 Replaced Insulator 

Figure 10 Moved Insulator 



 

5.4 Semantic Segmentation of new Point 

Clouds 
Now that the new point clouds with alternations have been 

created, they can be segmented using the trained deep learning 

model (PointNet++) that was also used on the original point 

clouds [16].  

The segmentation was done by using the UT-JupyterLab 

environment which has enough computing power to perform the 

segmenting in a short amount of time [17].  

By visualizing the segmented point clouds with Open3D-ML and 

comparing them with the original point cloud we can see if the 

model performs equally well or not. The adapted objects in the 

new point clouds should have gotten the same label as in the 

original point cloud. If this is not the case, we can conclude that 

the model relies on the adapted parameter to do the segmentation. 

For example, if the point cloud where the insulator was moved 

does not receive the correct labels, we can conclude that the 

PointNet++ model relies on the location of the insulator with 

respect to the other components in order to segment it. 

To get a measurable performance of the model, a confusion 

matrix was created for each adapted point cloud. The confusion 

matrix clearly shows for each object which label it should have 

gotten and which label it has received. The confusion matrix of 

the original point cloud can be found in Figure 12. As you can 

see in the matrix, 90% of the insulators were predicted as 

insulators. The mIoU corresponding to this matrix is 0.86. The 

mIoU is also calculated for all the matrices of the adapted point 

clouds to compare the performance with the original point cloud. 

 

6. RESULTS 
The results are divided into the three adaptations that have been 

made. In section 6.1 we discuss the results of the point clouds in 

which the insulator was replaced by a cylinder. In section 6.2 we 

discuss the results of the point clouds in which the insulator was 

moved and in section 6.3 we discuss the results of the point 

clouds in which holes were added in one of the poles. 

6.1 Changed shape of insulator 
We will first look at the results of segmented the point cloud in 

which an insulator was replaced with a cylinder with a small 

radius. The point cloud with the true labels can be seen in Figure 

13 and the point cloud with the predicted labels can be seen in 

Figure 14. 

  

The model labeled most of the cylinder as an insulator. The part 

that is connected to the pole has been labeled as a pole, this  

probably happened because the normal insulator is not directly 

connected to the pole so the cylinder was made a bit too long.  

In Figure 15 and Figure 16 the results with two slightly larger 

cylinders are shown. The same behavior as with the small 

cylinders is observed. 

  

Lastly, we take a look at the cylinder with a large diameter. The 

results can be seen in Figure 17 and Figure 18. Once again the 

model performed the same as before.  

  

Since the model segmented the point cloud just as good as it did 

with the original point cloud there is no difference in the 

confusion matrix with respect to the original confusion matrix in 

Figure 12. The mIoU of each of the adapted point clouds varied 

Figure 11 Left: Pole with 18 holes. Right: Normal Pole 

Figure 12 Confusion Matrix Original Point Cloud 

Figure 13 Small Cylinder 

True 

Figure 14 Small Cylinder 

Predicted 

Figure 15 Medium Cylinder 

True 
Figure 16 Medium Cylinder 

Predicted 

Figure 17 Large Cylinder 

True 

Figure 18 Large Cylinder 

Pred 



between 0.85 and 0.86, which is very similar to the mIoU of the 

original point cloud (0.86). 

6.2 Moved location of insulator 

6.2.1 Visualization  
Let us first look at the prediction versus the true labels of a point 

cloud where the insulator was only moved a small amount. The 

cloud with the true labels can be found in Figure 19 and the cloud 

with the predicted labels can be found in Figure 20.  

  

As you can see the model labeled the insulator correctly. This is 

to be expected since the insulator was only moved a small 

amount.  

In Figure 21 and Figure 22 we can see how the model segmented 

the point cloud when the insulator was moved a little bit further.  

  

The model struggled a lot more when segmenting this insulator. 

The red points are points that are unlabeled. It still managed to 

label some of the insulator correctly, but it failed in labeling the 

entire connecting rod between the insulator and the contact wire. 

Now we will have a look how the model performs when the 

insulator is moved  even further. The point cloud with the true 

labels can be found in Figure 23 and the point cloud with the 

predicted labels can be found in Figure 24. 

  

As you can see, the model gave barely any of the points a correct 

label. The red points in Figure 24 were unlabeled, meaning that 

the model was unable to label them. The white points were 

labeled as the connection rod that connects the insulator with the 

contact wire.  

The model performed worse as the insulator was moved a larger 

distance from its original place. When the insulator was only 

move slightly it still performed well. The direction in which the 

insulator was moved did not matter, as you can see in Figure 25, 

where two point clouds with the predicted labels are displayed as 

one.  

 

6.2.2 Confusion Matrices 
When looking at the visualizations of the segmented point clouds 

we can see that the model struggles when the insulator is moved 

a large distance. This can also be seen in the corresponding 

confusion matrices.  

 

The confusion matrix corresponding to the point cloud visualized 

in Figure 24 can be seen in Figure 26. As you can see, where in 

the original point cloud 90% of the insulators were labeled 

correctly, now only 70% of the insulators were labeled correctly. 

Since only one insulator was moved, the others were still labeled 

correctly. 10% was segmented as “unlabeled” and 20% was 

segmented as “steady arm”. The moving of the insulator did not 

have impact on the segmenting of the other objects in the point 

cloud. This can be confirmed when looking at the mIoU, which 

was 0.84. This is only 0.02 lower than the mIoU of the original 

point cloud.  

The mIoU of all the segmented point clouds where the insulator 

was moved ranged from 0.86, where the insulator was moved 

only slightly to 0.84, where the insulator was moved a larger 

distance.  

6.3 Adding Holes in Pole 
The results of the segmentation of the point cloud with 8 holes in 

one of the poles can be seen in Figure 27. The result of the point 

cloud in which 80 holes were added in one of the poles can be 

seen in Figure 28. The model had no problem segmenting the 

point clouds in which holes were added in the poles. The number 

of holes made no difference, the model correctly segmented all 

the adapted poles.  

Figure 19 Small Movement 

True Labels 

Figure 20 Small Movement 

Predicted Labels 

Figure 21 Medium 

Movement True 
Figure 22 Medium Movement 

Predicted 

Figure 23 Large Movement 

True 

Figure 24 Large Movement 

Predicted 

Figure 25 Two Moved insulators 

Figure 26 Confusion Matrix Large Movement 



 

Since the model segmented the objects correctly the confusion 

matrices did not change with respect to the original confusion 

matrix from Figure 12. This is confirmed by the mIoU of each of 

the adapted point clouds, which all had a value of 0.86, just like 

the original point cloud. 

 

7. CONCLUSION 
When comparing the visualizations of the adapted and original 

segmented point clouds we can see that the model relies on the 

(relative) location of the object in order to segment them. The 

model was not able to correctly label the insulators that had been 

moved a large distance from their original location, regardless of 

the direction. However, the model did perform well when the 

insulators were only moved a small distance. The mIoU of the 

point clouds in which the insulator was moved a large distance 

dropped from 0.86 to 0.84. This means that moving one insulator 

has no effect on the segmenting accuracy of the other objects in 

the point cloud.   

Furthermore, we can see that changing the shape of the insulator 

into a cylinder has no effect on the performance of the model. 

This means that the model does not rely solely on the shape of 

the object in order to segment it.  

Adding holes in one of the poles also has no effect on the 

performance of the model. The mIoU remained the same. 

All in all, the model seems to be quite robust. A lot of changes 

did not have effect on the performance of the model. The model 

does perform worse when the objects are moved. But in a 

catenary arch the object will always be around the same area.  

 

8. LIMITATIONS AND FUTURE WORK 
The shape of the insulator was only changed into a perfect 

cylinder so it cannot be concluded that the model does not take 

the shape of the object into account when segmenting the point 

clouds. It would be interesting to see how the model performs 

when completely different shapes are used.  

It would also be interesting to see how the model performs when 

the objects are rotated with respect to each other. Would the 

model still be able to segment the insulators correctly if they were 

rotated 90 degrees around the z-axis?  

In this research only one object was adapted each time. The 

model could behave differently when for example all the 

insulators were moved. 
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