
Exploring Explainability and Robustness of Point Cloud
Segmentation Deep Learning Model by Visualization

Floris Verburg
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

f.m.verburg@student.utwente.nl

ABSTRACT

Modern deep learning techniques are very suitable for point

cloud segmentation of catenary arches of railway systems. The

downside of deep learning models is that they have a low

explainability. In this paper we explore the explainability of a

PointNet++ model that is used for segmenting point clouds of

catenary arches. The exploring of explainability is done by

creating a pipeline for adapting, segmenting and visualizing the

point clouds. By adapting the point clouds the robustness of the

model is also tested. From this research it follows that the

PointNet++ model mainly relies on the location of the objects in

order to segment them. Changing the shape of an object does not

have a significant impact on the performance of the model.

Keywords

Point Cloud Segmentation, Deep Learning, Visualization,

Open3d, Explainability, Robustness

1. INTRODUCTION
About 11% of the people in the Netherlands rely on the efficient

railway infrastructure the country has to offer [1]. To keep the

trains arriving on time, renovation, construction and repairs of

this railway infrastructure must happen regularly. The inspection

of the catenary arches is part of the maintenance and is very time

consuming. Railway infrastructure company Strukton wants to

automize the detection of the different objects of these catenary

arches to efficiently inventorize which catenary arch components

are used where. To find out if this automatization is possible

Strukton employed a research group to see if they can create a

3D CAD model of the railway environment using point cloud

segmentation and deep learning.

The railway environment is scanned and stored as a point cloud

using LiDaR. Deep learning models are used for semantic

segmentation of the catenary arches in this point cloud. A

modified PointNet++ model has shown good results. However,

as with every deep learning model, it is unknown how the model

precisely does the segmentation. In this research the so called

‘black box’ of the deep learning model will be opened to explain

how the model works and to see how robust the model is. We

also provide architecture and implementation of a pipeline for

creating such visualizations.

In section 2 the relevant background of this research is covered.

Followed by the related work in section 3. In section 4 the

problem statement is defined, containing the research questions

that will be answered in this paper. The methodology used to

answer these questions is covered in section 5. The results can be

found in section 6.

2. BACKGROUND
To better understand the research, definitions for the used terms

and tools are given. First the definition and application fields of

point clouds is given. Then semantic segmentation is explained,

followed by the open source software Open3D-ML. Lastly,

explainability of deep learning is elaborated on.

2.1 Point Clouds & LiDaR
The railway environment has been captured in a 3D

representation using 3D LiDaR (Laser Imaging Detection and

Ranging). LiDaR uses a fast-rotating laser to determine the range

of objects 360° around the laser. It measures the time of flight

for the light of the laser to reflect on an object and calculates the

distance to the object using the measured time. The objects are

represented in large amount of points, each having an X, Y and

Z coordinate. The collection of these points is called a Point

Cloud. The use of LiDaR to create Point Clouds for semantic

segmentation has been proven successful in various fields such

as the segmentation of tree crowns [2] and vegetable crops [7].

Furthermore, LiDaR is widely used in the automotive industry

for autonomous driving [8].

2.2 Semantic Segmentation
The goal of semantic segmentation in a 2D environment is to

classify each pixel belonging to a particular label. Image

segmentation is applied in various fields, ranging from medical

[13] to military [18].

Semantic segmentation of point clouds is very similar to

semantic segmentation of images. The only difference is that it is

in 3D instead of 2D. Instead of each pixel getting classified, each

point is classified. Semantic segmentation of point clouds is

widely used in automotive to classify objects [4].

Several techniques exist to perform the semantic segmentation

[3]. One of the first techniques used for image segmentation was

split-and-merge. This technique mainly relies on hardcodes rules

and is very outdated for this application (for details see [6]). In

recent years the focus has shifted towards deep learning. One of

the deep learning methods used for semantic segmentation on

point sets is PointNet [11]. An example of Point Cloud

Segmentation of a catenary arch using PointNet can be found in

Figure 1, this picture is taken from [9]. This deep learning model

was later further developed into PointNet++, which uses a

hierarchical neural network that applies PointNet recursively

[12].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
36thTwente Student Conference on IT, Febr. 4nd, 2022, Enschede, The

Netherlands. Copyright 2022, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

One of the limits of these deep learning models is their low

explainability. The model receives an input set, it does a lot of

calculations in the so called “black box”, and then returns the

output. Increasing the explainability will make this black box

more transparent [5].

2.3 Open3D-ML
Open3D-ML is a modern library that can be used for 3D machine

learning tasks. It can be used to visualize labeled point clouds

and it is built on the Open3D core library [10]. An example of a

3D representation of a crossroad can be found in Figure 2. In this

figure the road is labeled in purple, trees and other vegetation in

green and buildings in blue.

2.4 Explainability
In this section we will look at the definition of explainability, its

importance and available techniques to explore explainability.

2.4.1 Definition and Importance
To be able to make a deep learning model more explainable, we

first need to define what explainability means. More specifically,

what is the difference between explainability and

interpretability? Interpretability is the degree to which a human

can understand the cause of a decision [15]. For a model with a

high interpretability it is easier for humans to understand the

decisions than for a model with low interpretability.

Explainability is the extent to which the internal mechanics of a

model can be explained in human terms.

When a model has a high explainability, the trust in this model

will increase [14]. Furthermore, when a model has a high

explainability, its performance can increase. If you know why

decisions were made, you can tweak the model to increase its

performance.

2.4.2 Available techniques
Before listing the available techniques to improve model

explainability, we first explain the types of techniques available.

First of all, the technique can be global or local. Global

techniques look at the whole model and local techniques study a

small portion of the network [15]. The second distinction that can

be made between the techniques is model-specific versus model-

agnostic. A model specific technique is specifically made for one

model and cannot be used on other models. A model-agnostic

technique can be used for multiple models.

In this research the focus will be on a model-specific and local

technique.

3. RELATED WORK
As mentioned before, the railway environment has been captured

using LiDaR and stored in a point cloud. A PointNet++ model

was trained to segment and label the point cloud. One of these

labeled arches visualized using the Open3D-ML library can be

seen in Figure 3. This work and the results are all covered in [16].

The accuracy of the model is quite high, as it has a mIoU (mean

Intersection over Union) of 0.86. However, the explainability of

the model is not discussed. Furthermore, the robustness of the

model is not tested. In this paper we analyze the effect of a

permutation to the shape and location of an object in the arch to

the performance of the model.

4. PROBLEM STATEMENT
Since the model has a low explainability, the trust in the model

might not be that high. Exploring the explainability of the model

will help us understand how the model works. To explore the

explainability some research questions were formulated.

4.1 Research Questions
This paper aims to answer the following research question:

RQ: How to visualize point clouds to leverage them for model

explainability and model robustness?

The following sub-questions are used to answer the main

research question:

SRQ1: How to create an end-to-end pipeline to adapt, segment

and visualize point clouds?

SRQ2: Does de model rely on the (relative) location of objects

for the semantic segmentation?

SRQ3: Does the model rely on the shape of the objects for the

semantic segmentation?

1 source: http://www.open3d.org/docs/release/open3d_ml.html

Figure 1 Example of Point Cloud Segmentation by using

PointNet

Figure 2 Example Open3D-ML 1

Figure 3 Labeled Arch Open3D-ML

5. METHODOLOGY
This section describes the steps that have been taken to answer

the research questions.

5.1 Flowchart of Pipeline
This section explains the pipeline that has been created to adapt,

segment and visualize the point clouds. For this research only the

point cloud of one catenary arch is used. This is used as the input

of the pipeline. A flowchart of the pipeline can be found in Figure

4. The details of each step are discussed later in sections 5.2, 5.3,

5.4 and 6.

5.2 Visualization using Open3D-ML
To visualize the segmented point clouds the open source library

Open3D-ML is used. Since the visualization of multiple point

clouds at the same time is quite resource intensive, the Open3D-

ML library was installed on the Jupyter Notebook environment

of the University of Twente, which has more than enough

computing power for this task.

5.3 Adapting Point Clouds
A point cloud of a catenary arch that has been used for training

and testing the deep learning model was adapted in several ways

to find out if the performance of the model decreased by doing

so. The arch used is displayed in Figure 5. By altering the arch

and then letting the trained deep learning model segment the

arch, the robustness of the model can be tested. Furthermore, if

the performance decreases after modifying aspects of the arch it

can be assumed that the deep learning model relies on those

aspects during the segmentation. This will help us understand

how the model works, thus increasing its explainability.

The two objects that have been adapted to test the robustness of

the model are the second pole from the left and the third insulator

from the left. To be able to add the adjustments in the point cloud,

it first had to be normalized such that the front view would be

seeing the x-y-plane. This was done in the point cloud editing

software called CloudCompare2. The result of this

transformation can be seen in Figure 6.

The normalized point cloud was saved to a .csv file and is now

easy to process using Python scripts. To find out what aspects of

the point cloud have influence on the performance of the model

several different kinds of transformations were done. The

location of the insulator was changed, the shape of the insulator

was changed and different amounts of holes were added in the

pole.

5.3.1 Changing Insulator Shape
To find out if the model relies on the shape of the different

objects in the point cloud in order to segment them, one of the

insulators was replaced by a cylinder.

In order to achieve this a Python script was written. In this Python

script, the points forming the original insulator were removed. To

find out which points formed the original insulator

CloudCompare was used. This software has an option that allows

you to select points in the point cloud and save the coordinates to

a .csv file, as shown in Figure 7. By selecting six points, each

with either the minimum or maximum value of the x-, y- or z-

coordinate, the boundaries of the insulator were found.

A for loop was used to remove the points with coordinates

between these minimum and maximum x-, y-, and z-coordinates.

Using the same option in CloudCompare two points were chosen

in between which the cylinder should be placed. First of all the

formula for the coordinates for the line between these points was

created. The equation used to find the x-, y- and z-coordinates of

the points that form the line between point 1 [𝑥1, 𝑦1, 𝑧1] and point

2 https://www.danielgm.net/cc/

Figure 4 Flowchart of the Pipeline

Figure 5 Original Point Cloud in CloudCompare

Figure 6 x-y-view of Normalized Point Cloud in

CloudCompare

Figure 7 CloudCompare Point Selection

2 [𝑥2, 𝑦2, 𝑧2] can be found in Equation 1. In this equation 𝑑 gives

the distance between point 1 and the new point.

Equation 1

𝑥, 𝑦, 𝑧 → (𝑥2 − 𝑥1) ⋅ 𝑑 + 𝑥1, (𝑦2 − 𝑦1) ⋅ 𝑑 + 𝑦1,
(𝑧2 − 𝑧1) ⋅ 𝑑 + 𝑧1

This equation was used to create 100 equally spaced points

between point 1 and point 2. Around each of these points a circle

in the y-z-plane was made using the formula in Equation 2. This

equation was used to transform the cartesian coordinates to

cylindrical coordinates. In this equation the letter 𝑛 determines

the amount of points for each circle. The value of 𝑛 was 50. The

letter 𝑖 increments from 0 to 𝑛. The letter 𝑟 determines the radius

of the circle. Multiple radiuses were used to see if the size of the

cylinder had impact on the performance of the model.

Equation 2

[𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐] → [𝑥, 𝑦 + cos (
360

𝑛
⋅ 𝑖) ⋅ 𝑟, 𝑧 + sin (

360

𝑛
⋅ 𝑖) ⋅ 𝑟

The points that form the circles were added to the point cloud and

the points that form the centerline were not added. The newly

added cylinder consisted of 5000 points, which is much more

than the original insulator consisted of, namely 217 points.

Therefor points of the new cylinder were randomly removed until

it had the same amount of points as the original insulator.

The label belonging to the insulator was added to the cylinder to

be able to compare the true label with the predicted label later.

The original and replaced insulator can be seen in Figure 8 and

Figure 9.

5.3.2 Changing Insulator Location
To find out if the model relies on the location of the objects in

the point cloud in order to segment them, one of the insulators

was moved in various directions with various distances.

To move an insulator another Python script was written. Two

points from the point cloud were selected using CloudCompare,

one point in the middle of the insulator to be moved [𝑥1, 𝑦1, 𝑧1],
and one randomly in the point cloud [𝑥2, 𝑦2, 𝑧2]. These two

points form a line on which the insulator is moved.

Changing the location of the insulator was done as follows: A for

loop loops through all the points of the normalized point cloud

and checks for each point if their coordinates are in the

boundaries that were defined earlier. If this is the case it means

that the point is part of the insulator that has to be moved. The

points forming the insulator get a linear transformation with the

formula from Equation 1. In this equation the letter 𝑑 determines

the distance that the insulator is moved. Several point clouds

were created, each with another distance.

Besides several distances, multiple directions were also used to

move the insulator. This was done by selecting a new point 2

[𝑥2, 𝑦2, 𝑧2]. The moved insulator kept the original label to later

compare it to the predicted label. A picture showing the moved

insulator can be found in Figure 10.

5.3.3 Changing Pole Shape
To find out if the model relies on the shape of the pole to classify

it, different amounts of holes were added in one of the poles. Yet

another Python script was created to achieve this. Again two

points were selected using CloudCompare, one at the bottom of

the pole (point 1 [𝑥1, 𝑦1, 𝑧1]) and one at the top of the pole (point

2 [𝑥2, 𝑦2, 𝑧2]).

A list containing the coordinates that define n squares on the line

from point 1 to point 2 was made. For each square the following

values were stored:

𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥

By looping through all the points from the normalized point

cloud and checking if their coordinates are between the extremes

of any of the squares a new point cloud was created. Several point

clouds with holes in one of the poles were made, ranging from 5

holes up to 80 holes. In the pole with 80 holes the holes are

connected to each other resulting in a gap all along the pole.

Both a normal pole and a pole containing holes is shown in

Figure 11.

Figure 8 Original Insulator

Figure 9 Replaced Insulator

Figure 10 Moved Insulator

5.4 Semantic Segmentation of new Point

Clouds
Now that the new point clouds with alternations have been

created, they can be segmented using the trained deep learning

model (PointNet++) that was also used on the original point

clouds [16].

The segmentation was done by using the UT-JupyterLab

environment which has enough computing power to perform the

segmenting in a short amount of time [17].

By visualizing the segmented point clouds with Open3D-ML and

comparing them with the original point cloud we can see if the

model performs equally well or not. The adapted objects in the

new point clouds should have gotten the same label as in the

original point cloud. If this is not the case, we can conclude that

the model relies on the adapted parameter to do the segmentation.

For example, if the point cloud where the insulator was moved

does not receive the correct labels, we can conclude that the

PointNet++ model relies on the location of the insulator with

respect to the other components in order to segment it.

To get a measurable performance of the model, a confusion

matrix was created for each adapted point cloud. The confusion

matrix clearly shows for each object which label it should have

gotten and which label it has received. The confusion matrix of

the original point cloud can be found in Figure 12. As you can

see in the matrix, 90% of the insulators were predicted as

insulators. The mIoU corresponding to this matrix is 0.86. The

mIoU is also calculated for all the matrices of the adapted point

clouds to compare the performance with the original point cloud.

6. RESULTS
The results are divided into the three adaptations that have been

made. In section 6.1 we discuss the results of the point clouds in

which the insulator was replaced by a cylinder. In section 6.2 we

discuss the results of the point clouds in which the insulator was

moved and in section 6.3 we discuss the results of the point

clouds in which holes were added in one of the poles.

6.1 Changed shape of insulator
We will first look at the results of segmented the point cloud in

which an insulator was replaced with a cylinder with a small

radius. The point cloud with the true labels can be seen in Figure

13 and the point cloud with the predicted labels can be seen in

Figure 14.

The model labeled most of the cylinder as an insulator. The part

that is connected to the pole has been labeled as a pole, this

probably happened because the normal insulator is not directly

connected to the pole so the cylinder was made a bit too long.

In Figure 15 and Figure 16 the results with two slightly larger

cylinders are shown. The same behavior as with the small

cylinders is observed.

Lastly, we take a look at the cylinder with a large diameter. The

results can be seen in Figure 17 and Figure 18. Once again the

model performed the same as before.

Since the model segmented the point cloud just as good as it did

with the original point cloud there is no difference in the

confusion matrix with respect to the original confusion matrix in

Figure 12. The mIoU of each of the adapted point clouds varied

Figure 11 Left: Pole with 18 holes. Right: Normal Pole

Figure 12 Confusion Matrix Original Point Cloud

Figure 13 Small Cylinder

True

Figure 14 Small Cylinder

Predicted

Figure 15 Medium Cylinder

True
Figure 16 Medium Cylinder

Predicted

Figure 17 Large Cylinder

True

Figure 18 Large Cylinder

Pred

between 0.85 and 0.86, which is very similar to the mIoU of the

original point cloud (0.86).

6.2 Moved location of insulator

6.2.1 Visualization
Let us first look at the prediction versus the true labels of a point

cloud where the insulator was only moved a small amount. The

cloud with the true labels can be found in Figure 19 and the cloud

with the predicted labels can be found in Figure 20.

As you can see the model labeled the insulator correctly. This is

to be expected since the insulator was only moved a small

amount.

In Figure 21 and Figure 22 we can see how the model segmented

the point cloud when the insulator was moved a little bit further.

The model struggled a lot more when segmenting this insulator.

The red points are points that are unlabeled. It still managed to

label some of the insulator correctly, but it failed in labeling the

entire connecting rod between the insulator and the contact wire.

Now we will have a look how the model performs when the

insulator is moved even further. The point cloud with the true

labels can be found in Figure 23 and the point cloud with the

predicted labels can be found in Figure 24.

As you can see, the model gave barely any of the points a correct

label. The red points in Figure 24 were unlabeled, meaning that

the model was unable to label them. The white points were

labeled as the connection rod that connects the insulator with the

contact wire.

The model performed worse as the insulator was moved a larger

distance from its original place. When the insulator was only

move slightly it still performed well. The direction in which the

insulator was moved did not matter, as you can see in Figure 25,

where two point clouds with the predicted labels are displayed as

one.

6.2.2 Confusion Matrices
When looking at the visualizations of the segmented point clouds

we can see that the model struggles when the insulator is moved

a large distance. This can also be seen in the corresponding

confusion matrices.

The confusion matrix corresponding to the point cloud visualized

in Figure 24 can be seen in Figure 26. As you can see, where in

the original point cloud 90% of the insulators were labeled

correctly, now only 70% of the insulators were labeled correctly.

Since only one insulator was moved, the others were still labeled

correctly. 10% was segmented as “unlabeled” and 20% was

segmented as “steady arm”. The moving of the insulator did not

have impact on the segmenting of the other objects in the point

cloud. This can be confirmed when looking at the mIoU, which

was 0.84. This is only 0.02 lower than the mIoU of the original

point cloud.

The mIoU of all the segmented point clouds where the insulator

was moved ranged from 0.86, where the insulator was moved

only slightly to 0.84, where the insulator was moved a larger

distance.

6.3 Adding Holes in Pole
The results of the segmentation of the point cloud with 8 holes in

one of the poles can be seen in Figure 27. The result of the point

cloud in which 80 holes were added in one of the poles can be

seen in Figure 28. The model had no problem segmenting the

point clouds in which holes were added in the poles. The number

of holes made no difference, the model correctly segmented all

the adapted poles.

Figure 19 Small Movement

True Labels

Figure 20 Small Movement

Predicted Labels

Figure 21 Medium

Movement True
Figure 22 Medium Movement

Predicted

Figure 23 Large Movement

True

Figure 24 Large Movement

Predicted

Figure 25 Two Moved insulators

Figure 26 Confusion Matrix Large Movement

Since the model segmented the objects correctly the confusion

matrices did not change with respect to the original confusion

matrix from Figure 12. This is confirmed by the mIoU of each of

the adapted point clouds, which all had a value of 0.86, just like

the original point cloud.

7. CONCLUSION
When comparing the visualizations of the adapted and original

segmented point clouds we can see that the model relies on the

(relative) location of the object in order to segment them. The

model was not able to correctly label the insulators that had been

moved a large distance from their original location, regardless of

the direction. However, the model did perform well when the

insulators were only moved a small distance. The mIoU of the

point clouds in which the insulator was moved a large distance

dropped from 0.86 to 0.84. This means that moving one insulator

has no effect on the segmenting accuracy of the other objects in

the point cloud.

Furthermore, we can see that changing the shape of the insulator

into a cylinder has no effect on the performance of the model.

This means that the model does not rely solely on the shape of

the object in order to segment it.

Adding holes in one of the poles also has no effect on the

performance of the model. The mIoU remained the same.

All in all, the model seems to be quite robust. A lot of changes

did not have effect on the performance of the model. The model

does perform worse when the objects are moved. But in a

catenary arch the object will always be around the same area.

8. LIMITATIONS AND FUTURE WORK
The shape of the insulator was only changed into a perfect

cylinder so it cannot be concluded that the model does not take

the shape of the object into account when segmenting the point

clouds. It would be interesting to see how the model performs

when completely different shapes are used.

It would also be interesting to see how the model performs when

the objects are rotated with respect to each other. Would the

model still be able to segment the insulators correctly if they were

rotated 90 degrees around the z-axis?

In this research only one object was adapted each time. The

model could behave differently when for example all the

insulators were moved.

9. ACKNOWLEDGEMENTS

I would like to thank Faizan Ahmed for all the guidance, help and

supervision during this research. Furthermore, I would like to

thank Bram Ton and Jeroen Linssen for their guidance, feedback

and weekly meetings.

10. REFERENCES
[1] Centraal Bureau voor de Statistiek. 2021. Hoeveel wordt er

met het openbaar vervoer gereisd? Centraal Bureau voor

de Statistiek https://www.cbs.nl/nl-nl/visualisaties/verkeer-

en-vervoer/personen/openbaar-vervoer. [Accessed 21 1

2022].

[2] Chen, X., Jiang, K., Zhu, Y., Wang, X., & Yun, T. 2021

Individual tree crown segmentation directly from uav-

borne lidar data using the pointnet of deep learning.

Forests.

[3] Feng, D., Haase-Schutz, C., Rosenbaum, L., Hertlein, H.,

Glaser, C., Timm, F., Wiesbeck, W., Dietmayer, K. 2021.

Deep multi-modal object detection and semantic

segmentation for autonomous driving: Datasets, methods,

and challenges. IEEE Transactions on Intelligent

Transportation Systems, 22(3), 1341-1360.

[4] Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., & Li, D.

2018. Object classification using CNN-based fusion of

vision and LIDAR in autonomous vehicle environment.

IEEE Transactions on Industrial Informatics.

[5] Guo, W. 2020. Explainable artificial intelligence for 6G:

Improving trust between human and machine. IEEE

Communications Magazine, 58(6), 39-45.

[6] Haralick, R. M. & Shapiro, L. G. 1985. Image

segmentation techniques. Computer Vision, Graphics, &

Image Processing

[7] Jayakumari, R., Nidamanuri, R. R., & Ramiya, A. M.

2021. Object-level classification of vegetable crops in 3D

LiDAR point cloud using deep learning convolutional

neural networks. Precision Agriculture, 22, 1617-1633.

[8] Li, Y. & Ibanez-Guzman, J. 2020. Lidar for autonomous

driving: The principles, challenges, and trends for

automotive lidar and perception systems. IEEE Signal

Processing Magazine, 37(4), 50-61.

[9] Lin, S., Xu, C., Chen, L., Li, S., & Tu, X. 2020. LiDAR

point cloud recognition of overhead catenary system with

deep learning. Sensors (Switzerland), 20(8), 2212.

[10] Open3D. 2021. Open3D-ML.

http://www.open3d.org/docs/release/open3d_ml.html.

[Accessed 23 1 2022].

Figure 27 Pole with 8 Holes

Figure 28 Pole with 80 Holes

http://www.open3d.org/docs/release/open3d_ml.html

[11] Qi, C. R., Su, H. , Mo, K. & Guibas, L., 2016. PointNet:

Deep Learning on Point Sets for 3D Classification and

Segmentation. CoRR, 2, 19.

[12] Qi, C. , Yo, L. , Su, H. & Guibas, L. , 2017. PointNet++:

Deep Hierarchical Feature Learning on Point Sets in a

Metric Space. CoRR, 1, 14.

[13] Shen, D., Wu, G., & Suk, H., 2017. Deep learning in

medical image analysis. Annu Rev Biomed Eng. 19, 221-

248.

[14] Shin, D. 2021. The effects of explainability and causability

on perception, trust, and acceptance: Implications for

explainable AI. International Journal of Human-Computer

Studies, 146

[15] Stewart, M. 2020. Guide to Interpretable Machine

Learning. Towards Data Science,

https://towardsdatascience.com/guide-to-interpretable-

machine-learning-d40e8a64b6cf [Accessed 12 1 2022]

[16] Ton, B. . Ahmed, F. & Linssen, J, 2022. Semantic

segmentation of railway catenary arches. ISPRS Journal of

Photogrammetry and Remote Sensing (Preprint).

[17] University of Twente. 2021. Jupyter wiki

https://jupyter.wiki.utwente.nl/. [Accessed 23 1 2022].

[18] Xu, Y., Zhu, M., Li, S., Feng, H., Ma, S., & Che, J., 2018.

End-to-end airport detection in remote sensing images

combining cascade region proposal networks and multi-

threshold detection networks. Remote Sensing, 10(10),

1516.

https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf
https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf

