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ABSTRACT 
This paper is about comparing different object detection models 

on a Raspberry Pi Zero 2 W using the TensorFlow Lite software. 

The models are filtered to only give the output of when it detects 

a person in the frame. Using different scenarios like walking into 

the room with a closed door, walking into the room with an open 

door, the object detection models got tested in different events. 

Each scenario was done once in light conditions and once in dark 

conditions to see if there is any difference in the models. All of 

the models that were chosen were models provider by 

TensorFlow themselves that were all trained with the COCO 

2017 data set. 
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1. INTRODUCTION 
Embedded devices are getting used more and more in everyday 

life, for example for health monitoring, internet of things, home 

automation, military surveillance, and more [1]. 

Lately, there is a new trend where machine learning is merged 

with these embedded devices for an array of applications such as 

computer vision [2], translation and processing of languages [3], 

speech recognition [4], and more. Because of this new type of 

focus for machine learning with embedded devices, there has 

been a new theme called “Embedded Machine Learning” where 

machine learning models get to run in resource-constrained 

environments like a smartwatch [5]. This theme is where the 

focus of the research will be.  

The main problem with Embedded Machine Learning is that the 

devices used, do not have a lot of resources and so everything has 

to run very efficiently. To solve this problem in recent years there 

has been a lot of research on both the algorithm and hardware 

levels. For both deep learning and classical machine learning 

algorithms, optimization techniques are being explored like 

pruning, quantization, reduced precision, hardware acceleration, 

and more to try to make them run as efficiently as possible on 

embedded devices [6] [7].  

For my research, I will look into CNNs (Convolutional Neural 

Networks). CNN's are neural networks that are useful for 

computer vision or object recognition applications [8]. In a CNN 

the key features in an image get extracted and converted into a 

complex representation. This is done by using the pooling layer, 

and subsequently, the fully-connected layers to classify the  

 

image and identify the image appropriately. The architecture of 

the CNN is mainly made up of convolution layers, followed by a 

few fully connected layers. Convolution layers that perform 

kernel function, like vector-matrix-multiplications, make CNN's 

very computation-intensive, but less memory-hungry because of 

the few fully-connected layers. This makes it that optimizations 

for CNNs are more computer-centric directions for example by 

using hardware acceleration, quantization, processor technology, 

tiling and data reuse, reduced precision, etc [9].   

 

The research is about comparing different models for person 

detection to each other and seeing what the difference is between 

them in terms of speed and accuracy. To make the 

implementation easier I will be using models that are supported  

by TensorFlow lite. The results will show how different models 

compare to each other in different scenarios and which one is the 

best choice for the intended purpose. 

 

1.1. Research question 
The research is done to find out of object detection works on a 

Raspberry Pi Zero 2 W and how usable it is. For this reason, there 

are two research questions. 

▪ RQ1: Are TensorFlow lite models for object detection 

usable on a Raspberry Pi Zero 2 W? 

When it is clear that this is possible it becomes important, what 

the difference is between the models. This is the reason for the 

second research question. 

▪ RQ2: How well do different TensorFlow lite models 

for object detection perform on a Raspberry Pi Zero 2? 

 

2. Review of literature 
Person detection 
Person detection solutions have been studied a lot in literature 

and were originally made using handcrafted features, combined 

with machine learning to be able to generate an abstract 

representation of the person [10] [11]. These approaches had 

promising results but are not that suited for challenging 

conditions. For example with illumination changes or dynamic 

backgrounds, there can be a high rate of false-positive detections.  

CNN's for detecting people in images offer potentially a more 

robust solution [12] [13] [14]. They quickly pushed the 

traditional approaches to the background by automatically 

selecting the most discriminate feature set from a very large set 

of training data. For this, there are two approaches in literature. 

Multi-stage approaches work by having separate networks that 

first generate region proposals and after that classify the objects 

inside the proposal [15] [16] [17].  

Another multi-stage approach that is promising and more recent 

is Trident-Net, which works by having a build-in scale-specific 
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feature map [18]. The other approach is single-shot. The single-

shot approaches work by solving the detection task through 

classifying and proposing bounding boxes in a single feed-

forward step through the network [13] [14] [12]. Because single-

stage approaches usually have a faster and more compact 

architecture they are often preferred for lightweight embedded 

hardware solutions.  

Embedded hardware optimization 
The transition to using person detection on embedded devices has 

gained a lot of traction in recent years and is an active research 

topic. An approach that is used commonly on embedded 

platforms is using more compact models like Tiny-YOLOv3 

[19]. These compacter models can run with decent speeds on 

embedded hardware like a Raspberry Pi, they do often lose some 

percentage in accuracy compared to their full-size counterparts.  

There also exist other approaches like Fast YOLO [20], 

ShuffleNet [21], or ShuffleNet V2 [22] they optimize the 

architecture by looking at the platform characteristics, address 

efficient memory access, and the indirect computation 

complexity. Recently there have also been some algorithms that 

use optimized filter solutions to improve the performance on 

embedded devices, like depth-wise separable convulsions by 

MobileNets [23] and inverted residuals by MobileNetV2 [24]. 

 

3. Methodology 
The research was done by measuring the speed and accuracy of 

the different models on a Raspberry Pi Zero 2 W. The results will 

provide results for quantitative research. For the research, I used 

models that are supported by TensorFlow lite. TensorFlow Lite 

is an open-source deep learning framework that helps developers 

to run TensorFlow models on IoT and embedded devices such as 

a Raspberry Pi. 

The data was collected by first running the program with the 

efficientdet_lite0 model. This model was chosen because it is the 

default model that is provided by TensorFlow in the example 

program. The program was adapted to make sure that when 

started it would wait 5 seconds before starting to capture the 

webcam. This was done to make sure position could be taken at 

the right place without being detected yet. When the program 

started capturing it would save all the pictures it took in a separate 

folder to be used later for the other models. The program would 

keep going until it collected 15 pictures in total. While the 

program ran it would collect the time it took to detect everything 

on the image. This time would only be the time of the detection 

and not the rest of the program because this is negligible 

compared to the detection time. When it detected a person it 

would save this information with the accuracy to an excel file and 

also save the picture with the bounding boxes to be able to see 

later what it detected and to see if it is not a false positive. 

In the research, only one person was present in the frame and a 

controlled environment. The results can be different with 

multiple people in the frame or with real-life effects, like ambient 

conditions. 

To test the other models the pictures collected by the first model 

were used to make sure all other models have the same pictures 

to run detection on. This does affect the fps that each model has 

because each model takes a different amount of time between 

pictures to run the detection. For this reason, some of the models 

will be less sufficient for running on a live feed and are more 

appropriate for other goals, where the pictures do not have to be 

scanned in real-time but afterwards. 

 

 

The used equipment: 

▪ Raspberry Pi Zero 2 W 

▪ Logitech C310 webcam 

▪ Micro SD card 16 GB 

     

     Figure 1: Setup 

 

 

4. Results 
 

The scenarios that were tested. All scenarios were tested in light 

conditions and dark conditions. The scenarios were all chosen 

because they were easy to do and easy to replicate if needed. 

Because all of the times of the models are almost the same there 

is only one table provided with these results to reduce redundant 

information. 

 

Table 1: Time each model took 
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Backwards 
In this scenario, I would walk backwards into the room towards 

the desk where the webcam was positioned. 

 

Figure 2: Walking backwards into the room. 

Table 2: Backwards in dark conditions 

 
 

Table 3: Backwards in light conditions 

 

From the results, it becomes clear that the ssd_mobilenet_v1 

model most often registers a person. However, a lot of these are 

false-positives. Efficientdet_lite4 seems to have the highest 

accuracy in this scenario, however, in the dark, the 

efficientdet_lite3 model seems to detect the most and with the 

best accuracy. These detections are also all true-positives. That 

might be surprising because the efficientdet_lite4 model is built 

for higher accuracy but with taking more time. Looking at the 

light conditions it is also visible that the efficientdet_lite0 model 

has quite a small difference in accuracy while being a lot faster 

than the efficientdet_lite3 and efficientdet_lite4 models. 

 

 

 

Door closed 
In this scenario, I would open the door and walk towards the 

desk.  

 

Figure 3: Walking into the room with door first closed 

Table 4: Door closed in dark conditions 

 
 

Table 5: Door closed in light conditions 

 

 

In this scenario, the efficientdet_lite3 and efficientdet_lite4 

model are very close in accuracy in light conditions while 

efficientdet_lite3 again seems to be giving the best performance 

in dark conditions. Ssd_mobilenet_v2 detects a lot more but 

often these are false-positives. Ssd_mobilenet_v2 also detect 

multiple people in the same frame when only one is present. This 

happens in both light and dark conditions and is something the 

efficientdet_lite models seem to handle a lot better. 
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Door open 
This scenario is almost the same as the one with the door closed, 

but in this scenario, the door is already open. 

 

Figure 4: Walking into the room with the door open 

Table 6: Door open in dark conditions 

 

 

Table 7: Door open in light conditions 

 

 

The results from this scenario in dark conditions give less of a 

clear winner in terms of accuracy. It seems that in each frame 

another model seems to perform better. In light conditions, the 

results look more like the results of the other scenarios. 

Ssd_mobilenet_v2 also here detects multiple people in the same 

frames when only one is present. The efficientdet_lite0 model 

seems to have trouble with the first part of this scenario and 

scores a low accuracy compared to the other efficientdet_lite 

models, from frame 10 it is performing almost the same. 

 

Pickup 
In this scenario, I will walk into the frame to a table pick 

something up and walk out of frame again. 

 

Figure 5: Picking up something from the table 

Table 8: Picking up something in dark conditions 

 

 

Table 9: Picking up something in light conditions 

 

 

From the results, it can be concluded that this scenario was very 

hard in dark conditions and not even all models were able to 

detect something. It does show how the efficientdet_lite models 

should compare to each other in terms of accuracy. The 

ssd_mobilenet_v2 model does detect a person in a frame where 

no other model does and even though it is low accuracy it is a 

true-positive. In light conditions, it is noticeable that 

efficientdet_lite1 detects more than the other efficientdet_lite 

models however all those low accuracy detections are false-

positives like the ssd_mobilenet_v2 model also has. Here the 

efficientdet_lite3 model seems to be performing best 
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Run 
In this scenario, I would run into the room. 

 

Figure 6: Running into the room 

Table 10: Running into the room in dark conditions 

 

 

Table 11: Running into the room in light conditions 

 

 

The dark conditions of this scenario show that the 

efficientdet_lite3 model was able to achieve the highest accuracy 

while efficientdet_lite3x had 2 false-positives. Ssd_mobilnet_v2 

detected in the frames where there was a person that there were 

multiple persons while there were not. Also detected it a person 

in most frames while there was none present. The light conditions 

show the same for the ssd_mobilenet_v2 but without the multiple 

detections in the same frame. Here efficientdet_lite4 has the 

highest accuracy with efficientdet_lite3 being very close. 

 

Table 
In this scenario, I would walk into the room and go sit down at 

the table. 

 

Figure 7: Walking into the room and sitting down 

Table 12: Sitting down at the table in dark conditions 

 

 

Table 13: Sitting down at the table in light conditions 

 

 

What is curious about this scenario is that in the dark all the 

detections that were done where false-positives were often the 

whole frame would be detected as a person according to the 

borders. This can be because the lighting in this scenario might 

have just been a bit too low compared to the others. In light 

conditions, the results are as can be expected with 

efficientdet_lite3 and efficientdet_lite4 performing the best. In 

this scenario, ssd_mobilenet_v2 detects multiple persons in the 

same frame when there is only one. 
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Walk away 
In this scenario, I would walk away from the webcam out of the 

room. 

 

Figure 8: Walking out of room 

Table 14: Walking out of room in dark conditions 

 

 

Table 15: Walking out of room in light conditions 

 
 

The efficientdet_lite1 scenario seems to perform well in this 

scenario by being able to detect a person sooner than 

efficientdet_lite3 and with higher accuracy than the 

efficientdet_lite4 model. The efficientdet_lite3x model detects 

even sooner but those are all false-positives. Ssd_mobilenet_v2 

is performing again like expected by having a lot of false-

positives and detecting multiple people in the frame when there 

is only one or sometimes even when there is none. In light 

conditions, efficientdet_lite4 seems to be performing the best 

overall here too has ssd_mobilenet_v2 a lot of false positives. 

5. Conclusion 
Looking at the results from the research it shows that for speed 

the ssd_mobilenet_v1 model seems to be the fastest and seems to 

be detecting the most, however, a lot of these results are false-

positives, this can of course be accounted for my only using the 

results with high accuracy, but you will also have to account for 

the often detection of multiple objects when there is only one. So 

for applications where speed is very important, like a live feed 

for higher fps ssd_mobilenet_v1 seems to be a good choice, but 

will require tuning and more checking.  

For applications where higher accuracy is requested and almost 

no false-positives, the efficientdet_lite3 and efficientdet_lite4 

models seem to get high accuracy in almost all scenarios. 

Looking at the speed of those three and the difference in accuracy 

between them efficientdet_lite3 seems to be the best choice, 

because of the big time advantage compared to the other two. 

If the purpose of the application is to use a live webcam feed with 

getting instant results, so no afterwards computing, speed is the 

most important. This is because with a high speed you will be 

able to achieve a higher fps. If we have a low fps there is a 

possibility that important events get missed between two frames. 

As mentioned before ssd_mobilnet_v1 is a good choice for this 

because of the high speed, but because of the number of false 

positives it gets, efficientdet_lite0 seems to be a good balance 

between having a good speed and almost no false positives in 

testing.  

The dark conditions often produce results similar to the light 

conditions. For this reason, this does not have to be taken into 

account when choosing. In some of the scenarios, only a couple 

of the models got a result while others got nothing. In these 

scenarios, it shows that the efficientdet_lite3, efficientdet_lite3x, 

and efficientdet_lite4 models did get a true positive while the 

ssd_mobilenet_v1 did get some true-positive results but with a 

lot of false positives with around the same accuracy. For this 

reason, the efficientdet_lite model seems to be the better choice. 

Overall it can be concluded that all of the models worked well on 

a Raspberry Pi Zero 2 W depending on the purpose is of your 

application. It gives a good overview of how far technology has 

come with how such a small device can be used for so many 

applications.  
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