
1

Detect people on a device that fits in the palm of
your hands

Luuk Willems
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

l.j.t.willems@student.utwente.nl

ABSTRACT
This paper is about comparing different object detection models

on a Raspberry Pi Zero 2 W using the TensorFlow Lite software.

The models are filtered to only give the output of when it detects

a person in the frame. Using different scenarios like walking into

the room with a closed door, walking into the room with an open

door, the object detection models got tested in different events.

Each scenario was done once in light conditions and once in dark

conditions to see if there is any difference in the models. All of

the models that were chosen were models provider by

TensorFlow themselves that were all trained with the COCO

2017 data set.

Keywords
Embedded Machine Learning, Raspberry Pi, CNN, TensorFlow

lite.

1. INTRODUCTION
Embedded devices are getting used more and more in everyday

life, for example for health monitoring, internet of things, home

automation, military surveillance, and more [1].

Lately, there is a new trend where machine learning is merged

with these embedded devices for an array of applications such as

computer vision [2], translation and processing of languages [3],

speech recognition [4], and more. Because of this new type of

focus for machine learning with embedded devices, there has

been a new theme called “Embedded Machine Learning” where

machine learning models get to run in resource-constrained

environments like a smartwatch [5]. This theme is where the

focus of the research will be.

The main problem with Embedded Machine Learning is that the

devices used, do not have a lot of resources and so everything has

to run very efficiently. To solve this problem in recent years there

has been a lot of research on both the algorithm and hardware

levels. For both deep learning and classical machine learning

algorithms, optimization techniques are being explored like

pruning, quantization, reduced precision, hardware acceleration,

and more to try to make them run as efficiently as possible on

embedded devices [6] [7].

For my research, I will look into CNNs (Convolutional Neural

Networks). CNN's are neural networks that are useful for

computer vision or object recognition applications [8]. In a CNN

the key features in an image get extracted and converted into a

complex representation. This is done by using the pooling layer,

and subsequently, the fully-connected layers to classify the

image and identify the image appropriately. The architecture of

the CNN is mainly made up of convolution layers, followed by a

few fully connected layers. Convolution layers that perform

kernel function, like vector-matrix-multiplications, make CNN's

very computation-intensive, but less memory-hungry because of

the few fully-connected layers. This makes it that optimizations

for CNNs are more computer-centric directions for example by

using hardware acceleration, quantization, processor technology,

tiling and data reuse, reduced precision, etc [9].

The research is about comparing different models for person

detection to each other and seeing what the difference is between

them in terms of speed and accuracy. To make the

implementation easier I will be using models that are supported

by TensorFlow lite. The results will show how different models

compare to each other in different scenarios and which one is the

best choice for the intended purpose.

1.1. Research question
The research is done to find out of object detection works on a

Raspberry Pi Zero 2 W and how usable it is. For this reason, there

are two research questions.

▪ RQ1: Are TensorFlow lite models for object detection

usable on a Raspberry Pi Zero 2 W?

When it is clear that this is possible it becomes important, what

the difference is between the models. This is the reason for the

second research question.

▪ RQ2: How well do different TensorFlow lite models

for object detection perform on a Raspberry Pi Zero 2?

2. Review of literature
Person detection
Person detection solutions have been studied a lot in literature

and were originally made using handcrafted features, combined

with machine learning to be able to generate an abstract

representation of the person [10] [11]. These approaches had

promising results but are not that suited for challenging

conditions. For example with illumination changes or dynamic

backgrounds, there can be a high rate of false-positive detections.

CNN's for detecting people in images offer potentially a more

robust solution [12] [13] [14]. They quickly pushed the

traditional approaches to the background by automatically

selecting the most discriminate feature set from a very large set

of training data. For this, there are two approaches in literature.

Multi-stage approaches work by having separate networks that

first generate region proposals and after that classify the objects

inside the proposal [15] [16] [17].

Another multi-stage approach that is promising and more recent

is Trident-Net, which works by having a build-in scale-specific

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

36thTwente Student Conference on IT, Febr. 4nd, 2022, Enschede, The

Netherlands. Copyright 2022, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

2

feature map [18]. The other approach is single-shot. The single-

shot approaches work by solving the detection task through

classifying and proposing bounding boxes in a single feed-

forward step through the network [13] [14] [12]. Because single-

stage approaches usually have a faster and more compact

architecture they are often preferred for lightweight embedded

hardware solutions.

Embedded hardware optimization
The transition to using person detection on embedded devices has

gained a lot of traction in recent years and is an active research

topic. An approach that is used commonly on embedded

platforms is using more compact models like Tiny-YOLOv3

[19]. These compacter models can run with decent speeds on

embedded hardware like a Raspberry Pi, they do often lose some

percentage in accuracy compared to their full-size counterparts.

There also exist other approaches like Fast YOLO [20],

ShuffleNet [21], or ShuffleNet V2 [22] they optimize the

architecture by looking at the platform characteristics, address

efficient memory access, and the indirect computation

complexity. Recently there have also been some algorithms that

use optimized filter solutions to improve the performance on

embedded devices, like depth-wise separable convulsions by

MobileNets [23] and inverted residuals by MobileNetV2 [24].

3. Methodology
The research was done by measuring the speed and accuracy of

the different models on a Raspberry Pi Zero 2 W. The results will

provide results for quantitative research. For the research, I used

models that are supported by TensorFlow lite. TensorFlow Lite

is an open-source deep learning framework that helps developers

to run TensorFlow models on IoT and embedded devices such as

a Raspberry Pi.

The data was collected by first running the program with the

efficientdet_lite0 model. This model was chosen because it is the

default model that is provided by TensorFlow in the example

program. The program was adapted to make sure that when

started it would wait 5 seconds before starting to capture the

webcam. This was done to make sure position could be taken at

the right place without being detected yet. When the program

started capturing it would save all the pictures it took in a separate

folder to be used later for the other models. The program would

keep going until it collected 15 pictures in total. While the

program ran it would collect the time it took to detect everything

on the image. This time would only be the time of the detection

and not the rest of the program because this is negligible

compared to the detection time. When it detected a person it

would save this information with the accuracy to an excel file and

also save the picture with the bounding boxes to be able to see

later what it detected and to see if it is not a false positive.

In the research, only one person was present in the frame and a

controlled environment. The results can be different with

multiple people in the frame or with real-life effects, like ambient

conditions.

To test the other models the pictures collected by the first model

were used to make sure all other models have the same pictures

to run detection on. This does affect the fps that each model has

because each model takes a different amount of time between

pictures to run the detection. For this reason, some of the models

will be less sufficient for running on a live feed and are more

appropriate for other goals, where the pictures do not have to be

scanned in real-time but afterwards.

The used equipment:

▪ Raspberry Pi Zero 2 W

▪ Logitech C310 webcam

▪ Micro SD card 16 GB

 Figure 1: Setup

4. Results

The scenarios that were tested. All scenarios were tested in light

conditions and dark conditions. The scenarios were all chosen

because they were easy to do and easy to replicate if needed.

Because all of the times of the models are almost the same there

is only one table provided with these results to reduce redundant

information.

Table 1: Time each model took

3

Backwards
In this scenario, I would walk backwards into the room towards

the desk where the webcam was positioned.

Figure 2: Walking backwards into the room.

Table 2: Backwards in dark conditions

Table 3: Backwards in light conditions

From the results, it becomes clear that the ssd_mobilenet_v1

model most often registers a person. However, a lot of these are

false-positives. Efficientdet_lite4 seems to have the highest

accuracy in this scenario, however, in the dark, the

efficientdet_lite3 model seems to detect the most and with the

best accuracy. These detections are also all true-positives. That

might be surprising because the efficientdet_lite4 model is built

for higher accuracy but with taking more time. Looking at the

light conditions it is also visible that the efficientdet_lite0 model

has quite a small difference in accuracy while being a lot faster

than the efficientdet_lite3 and efficientdet_lite4 models.

Door closed
In this scenario, I would open the door and walk towards the

desk.

Figure 3: Walking into the room with door first closed

Table 4: Door closed in dark conditions

Table 5: Door closed in light conditions

In this scenario, the efficientdet_lite3 and efficientdet_lite4

model are very close in accuracy in light conditions while

efficientdet_lite3 again seems to be giving the best performance

in dark conditions. Ssd_mobilenet_v2 detects a lot more but

often these are false-positives. Ssd_mobilenet_v2 also detect

multiple people in the same frame when only one is present. This

happens in both light and dark conditions and is something the

efficientdet_lite models seem to handle a lot better.

4

Door open
This scenario is almost the same as the one with the door closed,

but in this scenario, the door is already open.

Figure 4: Walking into the room with the door open

Table 6: Door open in dark conditions

Table 7: Door open in light conditions

The results from this scenario in dark conditions give less of a

clear winner in terms of accuracy. It seems that in each frame

another model seems to perform better. In light conditions, the

results look more like the results of the other scenarios.

Ssd_mobilenet_v2 also here detects multiple people in the same

frames when only one is present. The efficientdet_lite0 model

seems to have trouble with the first part of this scenario and

scores a low accuracy compared to the other efficientdet_lite

models, from frame 10 it is performing almost the same.

Pickup
In this scenario, I will walk into the frame to a table pick

something up and walk out of frame again.

Figure 5: Picking up something from the table

Table 8: Picking up something in dark conditions

Table 9: Picking up something in light conditions

From the results, it can be concluded that this scenario was very

hard in dark conditions and not even all models were able to

detect something. It does show how the efficientdet_lite models

should compare to each other in terms of accuracy. The

ssd_mobilenet_v2 model does detect a person in a frame where

no other model does and even though it is low accuracy it is a

true-positive. In light conditions, it is noticeable that

efficientdet_lite1 detects more than the other efficientdet_lite

models however all those low accuracy detections are false-

positives like the ssd_mobilenet_v2 model also has. Here the

efficientdet_lite3 model seems to be performing best

5

Run
In this scenario, I would run into the room.

Figure 6: Running into the room

Table 10: Running into the room in dark conditions

Table 11: Running into the room in light conditions

The dark conditions of this scenario show that the

efficientdet_lite3 model was able to achieve the highest accuracy

while efficientdet_lite3x had 2 false-positives. Ssd_mobilnet_v2

detected in the frames where there was a person that there were

multiple persons while there were not. Also detected it a person

in most frames while there was none present. The light conditions

show the same for the ssd_mobilenet_v2 but without the multiple

detections in the same frame. Here efficientdet_lite4 has the

highest accuracy with efficientdet_lite3 being very close.

Table
In this scenario, I would walk into the room and go sit down at

the table.

Figure 7: Walking into the room and sitting down

Table 12: Sitting down at the table in dark conditions

Table 13: Sitting down at the table in light conditions

What is curious about this scenario is that in the dark all the

detections that were done where false-positives were often the

whole frame would be detected as a person according to the

borders. This can be because the lighting in this scenario might

have just been a bit too low compared to the others. In light

conditions, the results are as can be expected with

efficientdet_lite3 and efficientdet_lite4 performing the best. In

this scenario, ssd_mobilenet_v2 detects multiple persons in the

same frame when there is only one.

6

Walk away
In this scenario, I would walk away from the webcam out of the

room.

Figure 8: Walking out of room

Table 14: Walking out of room in dark conditions

Table 15: Walking out of room in light conditions

The efficientdet_lite1 scenario seems to perform well in this

scenario by being able to detect a person sooner than

efficientdet_lite3 and with higher accuracy than the

efficientdet_lite4 model. The efficientdet_lite3x model detects

even sooner but those are all false-positives. Ssd_mobilenet_v2

is performing again like expected by having a lot of false-

positives and detecting multiple people in the frame when there

is only one or sometimes even when there is none. In light

conditions, efficientdet_lite4 seems to be performing the best

overall here too has ssd_mobilenet_v2 a lot of false positives.

5. Conclusion
Looking at the results from the research it shows that for speed

the ssd_mobilenet_v1 model seems to be the fastest and seems to

be detecting the most, however, a lot of these results are false-

positives, this can of course be accounted for my only using the

results with high accuracy, but you will also have to account for

the often detection of multiple objects when there is only one. So

for applications where speed is very important, like a live feed

for higher fps ssd_mobilenet_v1 seems to be a good choice, but

will require tuning and more checking.

For applications where higher accuracy is requested and almost

no false-positives, the efficientdet_lite3 and efficientdet_lite4

models seem to get high accuracy in almost all scenarios.

Looking at the speed of those three and the difference in accuracy

between them efficientdet_lite3 seems to be the best choice,

because of the big time advantage compared to the other two.

If the purpose of the application is to use a live webcam feed with

getting instant results, so no afterwards computing, speed is the

most important. This is because with a high speed you will be

able to achieve a higher fps. If we have a low fps there is a

possibility that important events get missed between two frames.

As mentioned before ssd_mobilnet_v1 is a good choice for this

because of the high speed, but because of the number of false

positives it gets, efficientdet_lite0 seems to be a good balance

between having a good speed and almost no false positives in

testing.

The dark conditions often produce results similar to the light

conditions. For this reason, this does not have to be taken into

account when choosing. In some of the scenarios, only a couple

of the models got a result while others got nothing. In these

scenarios, it shows that the efficientdet_lite3, efficientdet_lite3x,

and efficientdet_lite4 models did get a true positive while the

ssd_mobilenet_v1 did get some true-positive results but with a

lot of false positives with around the same accuracy. For this

reason, the efficientdet_lite model seems to be the better choice.

Overall it can be concluded that all of the models worked well on

a Raspberry Pi Zero 2 W depending on the purpose is of your

application. It gives a good overview of how far technology has

come with how such a small device can be used for so many

applications.

6. REFERENCES

[1] W. Wolf, High-Performance Embedded Computing:

Architectures, Applications, and Methodologies, San

Francisco, CA: Morgan Kaupmann Publishers, 2007.

[2] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual

Learning for Image Recognition,” Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, NV, USA, 2016.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.

Kavukcuoglu and P. Kuksa, “Natural Language

Processing (Almost) from Scratch,” Journal of Machine

Learning Research , Princeton, NJ, 2011.

[4] W. Chan, N. Jaitly, Q. Le and O. Vinyals, “Listen, attend

and spell: A neural network for large vocabulary

conversational speech recognition,” IEEE, Shanghai,

China, 2016.

7

[5] J. Dean, “The Deep Learning Revolution and Its

Implications for Computer Architecture and Chip Design,”

IEEE, San Francisco, CA, USA, 2020.

[6] D. Kim, J. Ahn and S. Yoo, “A novel zero

weight/activation-aware hardware architecture of

convolutional neural network,” IEEE, Lausanne,

Switzerland, 2017.

[7] Y. Deng, “Deep learning on mobile devices: a review,”

Proceedings Volume 10993, Mobile Multimedia/Image

Processing, Security, and Applications 2019, Baltimore,

Maryland, United States, 2019.

[8] K. O'Shea and R. Nash, “An Introduction to Convolutional

Neural Networks,” Lancaster University, Lancashire;

Aberystwyth University, 2015.

[9] T. S. Ajani, A. L. Imoize and A. A. Atayero, “An

Overview of Machine Learning within Embedded and

Mobile Devices–Optimizations and Applications,” MDPI,

Lagos State, Nigeria; Bochum, Germany; Ogun State,

Nigeria, 2021.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients

for human detection,” IEEE, San Diego, CA, USA, 2005.

[11] P. Viola and M. Jones, “Rapid object detection using a

boosted cascade of simple features,” IEEE, Kauai, HI,

USA, 2001.

[12] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster,

Stronger,” IEEE, Honolulu, HI, USA, 2017.

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu and A. C. Berg, “SSD: Single Shot MultiBox

Detector,” ECCV, Amsterdam, The Netherlands, 2016.

[14] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You

Only Look Once: Unified, Real-Time Object Detection,”

IEEE, Las Vegas, NV, USA, 2016.

[15] R. Girshick, “Fast R-CNN,” IEEE, Santiago, Chile, 2015.

[16] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich

Feature Hierarchies for Accurate Object Detection and

Semantic Segmentation,” IEEE, Columbus, OH, USA,

2014.

[17] K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-

CNN,” IEEE, Venice, Italy, 2017.

[18] Y. Li, Y. Chen, N. Wang and Z.-X. Zhang, “Scale-Aware

Trident Networks for Object Detection,” IEEE, Seoul,

Korea (South), 2019.

[19] R. Gopal, S. Kuinthodu, M. Balamurugan and M. Atique,

“Tiny Object Detection:Comparative Study using Single

Stage CNN Object Detectors,” IEEE, Bangalore, India,

2019.

[20] M. J. Shafiee, B. Chywl, F. Li and A. Wong, “Fast YOLO:

A Fast You Only Look Once System for Real-time

Embedded Object Detection in Video,” arXiv, ON,

Canada, 2017.

[21] X. Zhang, X. Zhou, M. Lin and J. Sun, “ShuffleNet: An

Extremely Efficient Convolutional Neural Network for

Mobile Devices,” IEEE, Salt Lake City, UT, USA, 2018.

[22] N. Ma, X. Zhang, H.-T. Zheng and J. Sun, “ShuffleNet V2:

Practical Guidelines for Efficient CNN Architecture

Design,” ECCV, Munich, Germany, 2018.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.

Wang, T. Weyand, M. Andreetto and H. Adam,

“MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications,” 2017.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C.

Chen, “MobileNetV2: Inverted Residuals and Linear

Bottlenecks,” IEEE, Salt Lake City, UT, USA, 2018.

