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ABSTRACT
The field of Visual Place Recognition (VPR) is concerned
with finding out where an input/query photo was taken
by retrieving similar geotagged images. Not all queries are
perfect; some may contain corruptions like motion blur,
compression, bit errors, etc. The goal of this research is
to investigate the robustness of current VPR strategies
against such corruptions and give insights into how it can
be improved in future works. We thoroughly evaluated the
robustness by introducing novel metrics. Out of the three
network architectures investigated, ResNeXt-101 32x8d
performs the best. Also, we found that a GeM pooling layer
and Generalized Contrastive Loss function often improve
corruption robustness over traditional methods. We also
give some insights on evaluating long-term corruptions in
VPR.

Keywords
Visual Place Recognition, Robustness, Corruption, CNN

1. INTRODUCTION
In the last decade, research on Visual Place Recognition
(VPR) has progressed tremendously. VPR is a field con-
cerned with (mainly) finding out where a place is, given
an input (or often called a query) image. This can be done
either by classifying the image, or by retrieving similar
images which contain a location in its metadata. The sec-
ond method is generally favoured, since a large amount
of classes would be necessary to properly locate a query
depending on the purpose. An example of how the process
works is illustrated in fig. 1. An example of the usage of
VPR is in robotics, where VPR can be used to identify their
location without traditional techniques and limitations like
GPS. It can be used for indoor navigation or outdoor, in
autonomous cars for example.

Convolutional Neural Networks are a specific kind of neu-
ral network which is widely used in the field of computer
vision, and thus VPR as well, due to its performance
compared to other types of neural networks in this field
[10, 20]. Network architectures like the many variations
of ResNet[6], or AMOSNet & HybridNet[3] have achieved
good results in VPR specifically. Aside from these ar-
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chitectures, alternatives for pooling layers in the network
have also been researched. Novel pooling layers like GeM
pooling[16], NetVLAD[2] and Patch-NetVLAD[5] have all
shown improved performance over traditional average and
max pooling in some cases.

Photos taken by the average person will not always be
perfect. Often, photos can be out of focus or they can be
taken on a whim, leading the photographed subject to be
blurry. Photos are also usually compressed to save storage
space, or to reduce the amount of data that needs to be sent
when an image is transferred. As mentioned before, VPR
is also used in robotics, where the camera is not always
stationary, causing motion blur or zoom blur. This could
lead to the image becoming harder to recognize by a neural
network[7]. An image can also be noisy due to bad lighting
conditions when taken or due to errors in the stored image
itself. The performace of neural networks under common
corruptions has been benchmarked before in Hendrycks
and Dietterich’s work (think of different types of blur and
noise, brightness, etc.), along with the creation of modified
versions of the ImageNet dataset, namely ImageNet-C[7].
Building on this, ImageNet-C[13] was created which fea-
tured more experimental corruptions that are more akin to
filters like hue shift, chromatic abberation, sparkles, etc.

Some research has already been done on query images under
different conditions than the images the models are trained
for, like weather, season, time of day, etc.[1, 8, 14, 15, 18]
This research focuses on the specific problem of corruptions
occurring in query images. These corruptions are different
in the sense that they occur due to a difference in quality
of the query rather than the conditions the query image
was taken in. To the extent of our knowledge, there has
been no previous research on this specific issue in the field
of VPR.

The problem will be further laid out in section 2. Some
related works regarding corruptions in VPR are discussed
in section 3. In section 4 the approach of the research is
explained in detail, with section 4.1 describing the corrup-
tions, the execution of the experiments in section 4.2 and
the evaluation metrics in section 4.3. Then, the results are
laid out in section 5, and the discussion of the results is in
section 6. Finally, we draw some conclusions and possible
future work is discussed in section 7.

2. PROBLEM STATEMENT
In real world cases, not all query images are without prob-
lem. Corruptions like blur, weather conditions, compres-
sion, etc. are hard to account for when training CNNs for
VPR. These types of corruptions can occur due to a vari-
ety of things like bad camera quality, unstable capturing
of the image or due to the way the image is stored as a
file. There has been some research on different weather
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Figure 1. Example of the image selection process usually used in VPR.

conditions however, see section 3. These corruptions are
estimated to occur less in indoor conditions, since it is a
more controlled environment, thus leading to less motion or
no image compression. For this reason we focus exclusively
on outdoor VPR.

To investigate corruptions in VPR we have to answer the
following research qustions:

• What types of corruption are relevant?

• What CNNs should be investigated and how will they
be evaluated?

• How will the chosen CNNs perform with VPR under
queries that have been affected by certain types of
corruptions?

To answer these questions, we will first look at what types
of corruption functions already exist and, if needed, create
new ones. These corruptions will be chosen such that
they are relevant for VPR specifically. Next, existing
CNN models are chosen to be evaluated. Due to a lack of
time in the research process, we were unable to train any
models of our own. Then to evaluate the performance of
these models, two novel metrics are used inspired by the
metrics introduced in Hendrycks and Dietterich’s ImageNet-
C paper[7].

3. RELATED WORK
Touched upon in the introduction, images that were taken
in different conditions such as weather and nighttime could
also be though of as corruptions. There have been various
papers that studied VPR under such conditions. In partic-
ular, Porav et al. developed a way to (reversibly) transform
an image’s conditions like tranforming from day to night,
summer to winter, etc.[15]. Later, Anoosheh et al. created
ToDayGAN, a Gerative Adversarial Network (GAN) to
achieve the same for night-to-day transforming. These
methods were used for the localization of robots. A newer
method for general VPR under low light is Jenicek and
Chum’s normalization method[8] based on U-Net[17] which
significantly helps CNNs in identifying locations.

As mentioned before, Mintun et al. have developed cor-
ruptions that expand upon the corruptions developed by
Hendrycks and Dietterich[7] and have worked these into
datasets called ImageNet-C and CIFAR-10-C[13], based
on the ImageNet[4] and CIFAR-10[9] datasets respectively.
These corruptions are - in contrast to Hendrycks and Diet-
terich’s - not corruptions that would occur naturally, but

serve as a benchmark for neural networks to be able to
generalize to any kind of corruption, wether it be man
made or not.

4. METHODOLOGY
4.1 Corruptions
The corruptions that were used to make ImageNet-C[7]
were created with computer vision in general in mind. A
selection was made to accomodate for corruptions that
could occur in VPR specifically. These corruptions are:
Shot noise, which can naturally occur in photos. Defocus
blur, which occurs when the subject is out of focus. Motion
blur and Zoom blur can occur if a fast moving robot is
taking a photo. Snow, frost and fog are all types of weather
corruptions. Brightness can occur with poor camera quality
on a sunny day. Elastic transform is meant to simulate a
perspective change. JPEG compression appears when an
image is saved in the lossy JPEG format. Rotate occurs
when the camera is tilted to one side. Finally, Crop is used
to investigate how networks would react if a portion of the
image is unavailable. An example of all corruptions used
is shown in fig. 2. Each corruption’s severities were also
adjusted to more accurately portray realistic scenarios. A
visualization of all corruptions and their severities can be
found in appendix A.

In addition to the corruptions listed above, we added two
corruptions of our own that we think will be relevant
to VPR. The first corruption is Rotate. This corruption
simulates a camera being tilted and having some of its view
obstructed. The second is Crop, which crops the image
to a specific ratio depending on the severity to a random
position. The goal of this corruption is to examine how
well the networks still perform when there are less objects
to recognize. These corruptions are also shown in fig. 2
and appendix A.

4.2 Experimental setup
Firstly, ResNet-50 will be used as a basis as we will be
expanding Leyva-Vallina et al.’s work[11], but also due to
its wide usage and overall performance under normal condi-
tions. The chosen pooling methods are Global Average and
GeM[16] pooling. For loss functions, a binary Contrastive
Loss function and Leyva-Vallina et al.’s Generalized Con-
trasive Loss function[11] are chosen. All combinations of
network, pooling layer and loss function are experimented
with for ResNet-50 & ResNet-152. These networks are
variations of the ResNet architecture[6]. The only other
network is evaluated is ResNeXt-101 32x8d[12], which will
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Figure 2. Every type of corruption used in the experiments. See appendix A for all severity levels. Original image taken in
Copenhagen, from the MSLS validation set.

be called ResNeXt afterwards for the sake of brevity. No
other networks are evaluated due to the availability of ex-
isting models, and since the research period only spans 10
weeks there was insufficient time to train our own models.

Since, as described in section 1, most corruptions occur
due to bad photography conditions, we decided to focus
on outdoor VPR. We focused on the Mapillary Street-level
Sequences[19] (MSLS) dataset, which is a vast set of images
from cities around the world. This dataset was chosen
such that the results could be easily compared to existing
results from Leyva-Vallina et al.’s work[11]. The models
are trained on MSLS’s training set and evaluated on both
cities (Copenhagen and San Francisco) in the validation
set. As per Hendrycks and Dietterich’s recommendations,
the models are trained on clean non-corrupted images such
that the results accurately reflect real world robustness.
The images used in the experiments are 640 × 480 pixels.

To apply the corruptions, code from Hendrycks and Di-
etterich’s robustness repository1 was used and under the
Apache-2.0 License as a reference implementation. The
following changes were made to the original code:

• Corruption functions were changed to accomodate for
any size image instead of being restricted to 224×224
pixels.

• Crop and Rotate corruptions were added
• For corruptions that include randomness, a Random-

State object is used and initialised with a seed. This
ensures that for every run of the corrupt function,
the same image is output, while the corruption itself
will be different for every image

1https://github.com/hendrycks/robustness

As outlined before, the existing models from Leyva-Vallina
et al. are used. The experiments were run on a PowerEdge
R730 and an NVIDIA Jetson AGX on ITC’s CRIB platform
2.

4.3 Evaluation metrics
The results will be evaluated per severity of corruption on
a few metrics. Since the models will perform a nearest
neighbour search as the final step of the image retrieval
process, we can evaluate both Top-k Recall or R@k for
short and Top-k mean Average Precision or mAP@k for
short. Top-k Recall is the percentage of queries for which
at least one correct image is chosen from its k nearest
neighbours, while Top-k mean Average Precision is the
average amount of correct neighbours over all k chosen
neighbours. Both of these metrics will be able to display
how well the models perform under these corruptions.

There is a lot of data that we can compile, since each of
the 12 corruptions has 5 different severities, each with their
own results. To represent the data in a meaningful way,
we will create a metric similar to the Corrupt Error rate
introduced in the ImageNet-C paper[7].

To compile the performance of a model’s performance on
a corruption we introduce the Corrupt top-k Recall for
corruption c and pretrained model f (CR@kf

c ).

CR@kf
c =

(
5∑

s=1

R@kf
s,c

)/(
5∑

s=1

R@kResNet50avgCL
s,c

)
The recall at k is summed for each severity and is standard-
ized to a baseline model. In our case we chose ResNet-50,
with average pooling and a binary Contrastive Loss func-

2https://crib.utwente.nl
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Model mCR@1 mCR@5 mCR@10 mCR@20 mCAP@1 mCAP@5 mCAP@10 mCAP@20

ResNet-50 avg CL 100 100 100 100 100 100 100 100
ResNet-50 GeM CL 125 117 114 111 125 130 130 128
ResNet-50 avg GCL 146 135 129 124 146 152 155 154
ResNet-50 GeM GCL 190 158 146 137 190 209 211 209
ResNet-152 avg CL 128 125 122 119 128 132 134 134
ResNet-152 GeM CL 150 135 129 124 150 160 162 162
ResNet-152 avg GCL 190 164 153 143 190 214 220 220
ResNet-152 GeM GCL 214 174 160 147 214 242 247 244
ResNeXt avg CL 163 146 137 130 163 176 177 175
ResNeXt GeM CL 183 157 146 136 183 205 205 202
ResNeXt avg GCL 238 190 171 156 238 274 283 280
ResNeXt GeM GCL 257 197 176 159 257 314 326 324

Table 1. Mean top-k Corrupt Recall and mean top-k Corrupt Average Precision for k’s 1, 5, 10 and 20 in percentages, tested
on the MSLS validation set. All models were trained on the MSLS test set.

Model R@1 mCR@1 Shot Defocus Motion Zoom Snow Frost Fog Bright. Elastic JPEG Rotate Crop

ResNet-50 avg CL 100 100 100 100 100 100 100 100 100 100 100 100 100 100
ResNet-50 GeM CL 116 125 125 120 117 122 151 142 123 122 117 119 122 120
ResNet-50 avg GCL 134 146 137 185 141 147 157 157 146 140 134 144 137 132
ResNet-50 GeM GCL 148 190 192 237 191 185 250 208 178 174 157 182 163 160
ResNet-152 avg CL 120 128 134 138 128 129 145 132 123 118 118 126 127 123
ResNet-152 GeM CL 131 150 157 147 156 150 187 156 146 136 135 152 138 139
ResNet-152 avg GCL 147 190 196 247 202 190 237 201 179 173 158 177 165 160
ResNet-152 GeM GCL 159 214 221 275 228 212 294 224 198 186 174 198 181 175
ResNeXt avg CL 133 163 173 184 162 162 235 168 165 159 134 146 146 120
ResNeXt GeM CL 141 183 185 217 191 180 259 197 179 167 150 162 162 146
ResNeXt avg GCL 163 238 253 334 259 231 330 245 217 208 182 217 191 184
ResNeXt GeM GCL 172 257 278 365 269 248 390 264 231 221 188 236 199 190

Table 2. Clean Recall@1, mean Corrupt Recall@1 and Recall@1 for each corruption type in percentages, tested on the MSLS
validation set. All models were trained on the MSLS test set. Clean Recall@1 is standardized to ResNet-50 avg CL’s clean
Recall@1.

tion. This is done to make it easier to interpret the results.
The different CR@k’s for each corruption can then be av-
eraged to a single mean Corrupt Recall@k (mCR@k) so
summarize a model’s performance such that it can easily
be compared to the non-corrupt Recall@k. Mean Corrupt
top-k Average Precision will also be calculated this way by
replacing R@kf

s,c with mAP@kf
s,c

Aside from this, we also introduce another metric that will
more accurately portray inherent corruption robustness,
rather than robustness through increased accuracy. For
each corruption c and pretrained model f we can calculate
the Relative Corrupt top-k Recall, or Relative CR@k for
short.

Relative CR@kf
c =

5∑
s=1

R@kf
clean −R@kf

s,c

5∑
s=1

R@kbase
clean −R@kbase

s,c

Where again, the baseline model base is ResNet-50 with
average pooling and binary Contrastive Loss.

This metric shows how much the corruption c has degraded
performance of the model, standardized to how the base
model’s performance is degraded by the corruption. Similar
to the previous metrics, we can average Relative CR@kf

c

for each corruption to summarize a model’s robustness
against the corruptions compared to the base model, we
will call this Relative mCR@kf . If a model’s performance
has not degraded significantly compared to the baseline,
its Relative mCR@k will also be low. This means that the
lower Relative mCR@kf is, the more robust model f is.

5. RESULTS
The mean top-k Corrupt Recall and mean top-k Corrupt
Average Precision were evaluated for each model in table 1.
In table 2 all top-1 Corrupt Recall results are shown for each
corruption. As shown before in section 4.3, the Corrupt
Recall values are standardized to the corrupt recall of
ResNet-50 with average pooling and binary Contrastive
Loss. To quickly compare the models’ performance to its
corrupt performance, the leftmost columns contain the
clean top-1 Recall (R@1 ), also standardized, and the mean
top-1 Corrupt Recall (mCR@1 ).

fig. 3 shows each investigated model’s Relative mean top-1
Corrupt Recall compared to its clean top-1 Recall. Again,
both axes have been standardized to demonstrate its rel-
ative performance to the baseline. A full listing of the
Relative mCR@1 is shown in appendix B.

6. DISCUSSION
In this analysis we mostly focus on top-1 (Corrupt) Recall
as the metric to evaluate a network. Also focusing on other
metrics like top-5, top-10 or top-20 Recall or mean Average
Precision would complicate the analysis of the results much
more when comparing performance of specific corruptions.

6.1 Analysis of results
As shown in table 1 and table 2, for each different archi-
tecture, a model with GeM pooling outperforms average
pooling and Generalized Contrastive Loss (GCL) outper-
forms binary Contrastive Loss (CL). This is not just the
case for each mCR@k and mCAP@k but also for each cor-
ruption’s CR@1. Two corruptions stand out and deserve to
be mentioned, namely Defocus blur and Snow. These two
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Figure 3. Relative mean Corrupt Recall@1 for each tested
model. Each point’s shape and fill indicate the variations of
each basic architecture. An empty point means avg pooling,
a filled point means GeM pooling. A circle means binary
CL, a square means Generalized CL.

corruptions proved very challenging for the base network,
resulting in a CR@1 of 16% and 14% respectively while
its mCR@1 is 28% (each baseline CR@1 is listed in ap-
pendix B). The other models are much more robust against
these corruptions, which is the reason why the CR@1s for
these corruptions are so high compared to the rest.

As mentioned in section 4.3 before however, while a high
mCR@1 technically shows robustness against corruptions,
it is possible that this robustness is only through increased
Recall, instead of being inherently robust against corrup-
tions. This is why Relative mean top-1 Corrupt Recall
(Relative mCR@1) is also calculated and can be seen in
fig. 3. This graph shows some interesting insights. Keep in
mind that a lower Relative mCR@1 indicates more robust-
ness. This graph shows mixed results between different
architectures. The robustness of ResNet-50 is worsened
with the inclusion of GeM pooling and GCL separately, but
combined it is improved. This is not the case with ResNet-
152 and ResNeXt however, as each addition improves its
Relative mCR@1. ResNeXt seems to follow a similar pat-
tern to ResNet-152, though the Relative mCR@1 is the
same for both its avg GCL and GeM GCL variants. The
lowest measured Relative mCR@1 is 57% It would also be
interesting to see how architectures other than these three
ResNet variations perform in possible future research.

While we attempted to make the corruptions as realistic
as possible, they are of course only an estimation of the
real world and these digital filters will not match cover
all possible situations. The five different severities of each
corruption are also just an estimation and were determined
by examining a few query images and seeing how they
would be affected by the corruptions, then the severities
were changed accordingly.

6.2 On long-term VPR performance
The previous results results give insight into a model’s
robustness against corruptions, though only against short-
term corruptions specifically. In VPR, a distinction is
usually made between short-term and long-term. With
short-term meaning momentary changes to the scenery
such as the corruptions we covered and long-term meaning
changes over a large period of time such as a building
being under construction/renovated or seasonal differences.
The MSLS dataset used contains seasonal differences and

though images are tagged with their date taken, there is of-
ten enough not much visual difference between images since
the weather was often just cloudy or sunny. How would
the models perform in the situation where, for example,
there is a layer of snow all over the city?

Figure 4. A selection of the winter images generated by
CycleGAN originally from the MSLS validation set, taken
in Copenhagen.

We investiged the possibility of using a Generative Adver-
sarial Network (GAN) to easily generate snowy versions
of the original query images. This proved to be a difficult
problem however. Due to time restrictions, we only focused
on unpaired image generation, such that only one input
image is necessary. The only reliable method we found
was CycleGAN[21], using its summer to winter Yosemite
model. The model’s results are still suboptimal however.
As is indicated in the name, this model was trained on
mountainscapes as opposed to cityscapes which is likely
the reason it performs poorly. A few examples can be
seen in fig. 4. As a small experiment, we transformed the
Copenhagen subset of images from the MSLS vaidation set
with the Yosemite summer2winter model and evaluated its
top-1 recall for the base model and best performing model.
The clean recall of our base model is 44.3%. With winter
images it dropped to 28.1%. The best performing model’s
clean and winter recall are 76.1% and 64.7% respectively.
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This leads to a CR@1 of 230% for the winter corruption
(severities are disregarded for this experiment). These re-
sults are comparable to the CR@1 of ResNeXt GeM GCL
for the other corruptions.

7. CONCLUSIONS AND FUTURE WORK
In this study, we examined some common corruptions that
occur in VPR and evaluated the performance of some
existing models under these corruptions. The chosen cor-
ruptions are mostly based on Hendrycks and Dietterich’s[7]
and two of our own were made. These are corruptions that
commonly occur under different weather, lighting, stability
and other conditions.

We investigated three different ResNet variations, two of
which with combinations of average pooling & GeM pool-
ing and binary Contrastive Loss (CL) & Generalized Con-
trastive Loss (GCL). We found that, in general, each model
with a higher accuracy on uncorrupted images will also
perform better when under corruptions. Each model did
not perform unexpectedly bad compared to the baseline
model. We found that, while also being the most accu-
rate model, ResNeXt with GeM pooling and GCL has
the most inherent robustness against corruptions, with a
Relative mean top-1 Corrupt Recall of 57%. The addition
of GeM and GCL did not seem to have a significant effect
on ResNet-50’s inherent robustness, while for ResNet-152
both improved it. While these results are focused on short-
term VPR, we also discussed the possibilities of evaluating
long-term VPR, specifically seasonal changes.

For future studies, it would be good to include more dif-
ferent network architectures since in this study only three
architectures with different variations were investigated.
We saw that inherent corruption robustness differs largely
with each model so it would be interesting to see how ro-
bust technologies like NetVLAD[2] and HybridNet[3] will
be against these corruptions. As outlined before in sec-
tion 6.2, more in-depth research can be done on long-term
corruptions. For seasonal changes, it would be interesting
to evaluate the same models on a large scale dataset specifi-
cally designed with seasonal changes in mind. Another way
to evaluate this could be a GAN to style transfer existing
images to different season, though this GAN would have
to be designed for dealing with cityscapes, since outdoor
VPR occurs mostly in cities.
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APPENDIX
A. EXAMPLE OF SOME CORRUPTIONS’ SEVERITIES
In fig. 5 we outline some examples of each severity of a few corruptions. There corruptions are from top to bottom: Zoom
blur, Snow, Fog and Crop.

Figure 5. Each of the five severity levels of the corruptions Zoom blur, Snow, Fog and Crop from top to bottom. Severity
levels are 1 to 5 from left to right for each corruption.

B. FULL CORRUPT RECALL RESULTS
As all previous results are standardized to the performance of ResNet-50 avg CL, we have detailed the non-standardized
results in table 3. The Relative top-1 Corrupt Recall for each corruption and the mean is laid out in table 4.

R@1 mCR@1 Shot Defocus Motion Zoom Snow Frost Fog Bright. Elastic JPEG Rotate Crop

44.3 27.5 24.8 16.4 24.7 28.1 13.6 25.7 31.9 31.4 38.2 29.4 34.9 30.9

Table 3. Non-standardized results for ResNet-50 avg CL, all in percentages. Each corruption’s result is the Corrupt Recall@1
for that corruption.

Model Rel. mCR@1 Shot Defocus Motion Zoom Snow Frost Fog Bright. Elastic JPEG Rotate Crop

ResNet-50 avg CL 100 100 100 100 100 100 100 100 100 100 100 100 100
ResNet-50 GeM CL 103 105 114 115 105 101 80 98 103 109 111 93 107
ResNet-50 avg GCL 121 131 105 126 113 124 103 104 121 140 116 124 140
ResNet-50 GeM GCL 89 92 95 94 83 103 65 70 84 91 81 92 119
ResNet-152 avg CL 110 102 109 109 105 108 102 113 124 128 108 93 113
ResNet-152 GeM CL 103 98 121 100 98 106 97 93 117 103 90 105 112
ResNet-152 avg GCL 84 85 88 78 71 107 73 63 84 75 89 82 117
ResNet-152 GeM GCL 80 80 90 72 66 98 68 57 92 62 82 73 121
ResNeXt avg CL 94 82 103 96 83 87 85 50 70 124 107 82 163
ResNeXt GeM CL 82 85 96 79 74 89 64 43 77 87 99 65 130
ResNeXt avg GCL 57 48 62 42 45 88 49 24 53 42 57 56 114
ResNeXt GeM GCL 57 36 58 49 40 74 44 18 51 71 45 71 131

Table 4. Relative mean Corrupt Recall@1 and Recall@1 for each corruption type in percentages, tested on the MSLS
validation set. All models were trained on the MSLS test set.
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