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ABSTRACT
Hydrofoils on vessels are used to lift a vessel’s hull above
the water surface to reduce drag and increase efficiency
and top speed. By changing the angles of the hydrofoils,
more or less lift can be created. Controlling the different
foil angles makes it possible to regulate the height and
stability of the ship. However, these control systems can
not always adapt to a new situation when the environment
changes or when it is placed in a new environment, lead-
ing to a malfunctioning system. This research investigates
the approach of a control system based on reinforcement
learning. This is done by implementing Deep Q-Learning
on a simulation of a hydrofoil boat. For this, different
configurations have been tested and compared against a
PID controller. These configuration differ in actions sets,
reward functions and number of simultaneous agents. Ex-
amination of plots, as well as the standard deviation of
the roll and pitch angles of the vessel, showed that using
a dedicated agent per foil with a small action set with a
reward based on height, the performance is comparable
to a PID controller and considered stable. Other experi-
ments with larger actions sets, one agent controlling two
foils simultaneously or rewarding by roll angle showed that
the system was in those cases not able to perform its task
properly.
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1. INTRODUCTION
In maritime industries, hydrofoils are used more and more
to reduce the amount of drag while sailing a vessel and
subsequently to increase the maximum speed [5]. Hydro-
foils are shaped like an airplane wing and mounted at the
bottom side of a vessel. Due to their shape, the water
flows with a different speed at the top and bottom side of
the foil [6]. This causes a difference in pressure and thus
an upward force is realized. The angle of attack, the an-
gle under which the foil moves trough the water relative
to the horizontal, has impact on the amount of lift. The
upward force lifts the hull out of the water, which reduces
the amount of drag.
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There are different types of hydrofoils, of which one are
fully submerged hydrofoils. This type of foils do not sta-
bilize the vessel inherently like some other foil types do.
An active control system has to take care of this stabiliza-
tion task.

One application of hydrofoils is in solar boat racing, where
teams build a solar powered vessel and race against each
other1, of which Solar Boat Twente2 is one of the teams.
These boats are relatively small and light. The boat of So-
lar Boat Twente (see Figure 1) has three fully-submerged
hydrofoils, of which one is placed at the stern of the vessel.
The other two are placed amidships, one at port side and
one starboard side.

By making the angle of attack adjustable by means of an
electromechanical system, the upward force can be regu-
lated wile sailing. When a boat is equipped with three
hydrofoils like the vessel of Solar Boat Twente, the sta-
bility of the ship can be controlled by changing the angle
of attack of each hydrofoil. Both the rotation around the
longitudinal axis (roll) and rotation around the lateral axis
(pitch) can be controlled by creating more or less lift at
a specific foil. A digital control system can be set up to
adjust angles of attack based on sensor inputs like height
measurements (height above the water surface) and gy-
roscopic forces. A proportional–integral–derivative (PID)
controller is a possible control system to execute this task
[3].

In dynamic environments or in new environments, such as
changing wave heights, wavelengths, wind speed, or sailing
speed, not all controllers are capable of keeping the system
work correctly in the new situation. One solution can be
to change parameters of the system to work in the new
situation. This is however a difficult and time consuming
task. As an alternative solution, this research proposes
the use of reinforcement learning to control the angles of
attack of hydrofoils. Because reinforcement learning learns
from the feedback it gets from its environment [11], it may
be capable of adapting to the changed characteristics of
the environment.

1.1 Research question
This research investigates the basic application of rein-
forcement learning on controlling hydrofoils in a static en-
vironment, as a first step towards the goal of adapting in
dynamic environments. The main research question is:

• RQ1: How can reinforcement learning be used to
keep a boat equipped with hydrofoils lifted and sta-
ble above the waterline?

1https://solarsportone.org
2https://solarboattwente.nl
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To answer this main research question, the following sub-
questions are defined:

• RQ1.1: What reward can be constructed to succeed
in training a model?

• RQ1.2: How stable is the vessel when the reinforce-
ment learning algorithm is used to control the hy-
drofoils?

These subquestions are answered by implementing several
reward functions on a simulation. The movements of the
simulated vessel are tracked and analyzed. This informa-
tion is used to evaluate the performance in terms of height
control and stability.

In next section, related work on hydrofoils and their con-
trol systems are reviewed. In section 3 the creation of the
a simulation and the use of reinforcement learning is de-
scribed. After this, the experimental setup to analyze the
performance and the results of these experiments are given
in section 4. Lastly, the paper is concluded in section 5.

2. RELATED WORK
In this section, some literature related to the topic is dis-
cussed. Research has been done in the past about hydro-
foils [8] and their control systems [3, 5, 7].

Research about the hydrodynamics of hydrofoils, such as
Ni et al., 2021 [8] describing the performance of a hydro-
foil for different angles of attack, add to the general under-
standing of the way hydrofoils work and the hydrodynamic
parameters.

The research of Bai and Kim [3] shows a comparison be-
tween three possible algorithms tested on a fully-submerged
hydrofoil vessel: proportional– integral–derivative (PID),
linear quadratic regulator (LQR) and sliding mode con-
trols. They found the PID controller, which is considered
least complex to implement, was most sensitive to large
waves, but nevertheless had a ”good overall performance”.
Sliding mode control was found to be the best, given ac-
curate measurements of wave disturbances.

Recently, the research of Bencatel et al., 2021 [4] was pub-
lished which describes a foiling control system for cata-
maran sailboats competing in the America’s Cup. The
paper shows the application of hydrofoil control systems,
although the rules of the America’s Cup do not allow au-
tomatic controlling systems during the race. The system
is used to train sailors.

No research has been found specifically focused on con-
trolling hydrofoils with machine learning or reinforcement
learning particularly. Some recent research on machine
learning combined with hydrofoils is restricted to analyt-
ics of the mechanical characteristics and hydrodynamics
of the foils, but not on controlling the angle of attack.

Porter and Khaki-Sedigh [9] showed in 1988 that tunable
and adaptive digital set-point tracking PID controllers can
be used in changing environments, which can be seen as
another solution for the problem described in section 1.
This research included 10% noise which may not be rep-
resentative for real-world changing environments such as
going from a small lake without any waves to a big lake
with short waves or to a sea with large wavelengths.

3. APPROACH
This section describes the simulation of a hydrofoil vessel
and the training setup of a reinforcement learning system.

Figure 1. A picture of the vessel ”Echo” of Solar Boat
Twente, having 3 hydrofoils attached underneath. Photo
by Solar Boat Twente.

Table 1. List of geometric values used during the creation
of the simulation

Length 600 cm
Width 160 cm
Mass (including driver) 170 kg
Strut height 120 cm
Smallest foil angle 0 °
Largest foil angle 7 °
Surface area port and starboard foil 450 cm2

Surface area stern foil 600 cm2

Distance between center and port and
starboard foil 70 cm
Distance between center and stern foil 300 cm

3.1 Simulation
A simulation of a hydrofoil-equipped vessel was created of
which most characteristics are based on the boat of Solar
Boat Twente (Figure 1). The simulation has three fully
submerged hydrofoils, each foil can be adjusted separately.
The current height of all three struts is kept in memory
and changed based on calculations which include the angle
of attack α. The geometric values can be found in Table
1. A constant speed of 7 m/s for all calculations is as-
sumed. The update frequency is 5Hz, thus every step of
the simulation simulates 200 ms.

3.1.1 Lift
The lift created by a foil [1] can be calculated using

FL =
1

2
CL × ρ× v2 ×A

where

CL = lift coefficient,
ρ = density of the medium [kg/m3],
v = velocity through the medium [m/s],
A = surface area of the foil [m3].

In this simulation, the medium taken is seawater and thus
ρ = 1025kg/m3 [2].

CL is a coefficient which depends on the exact shape of
the hydrofoil and the angle of attack. For this simula-
tion, a NACA0012 shape was chosen, which is one of the
many possible shapes a foil can have. To compose the cor-
rect lift coefficients, a list has been created using the pro-
gram XFOIL3. This program can generate lift coefficients,
among other things, given a specific foil shape, angle of at-
tack, Reynolds number and Mach number. The latter two
have been taken as a constant (see Table 2). A list of CL

values has been composed for α ∈ {0.0, 0.1, ..., 6.9, 7.0}.
The mass of the vessel with n number of foils is assumed
to be evenly distributed over all hydrofoils. On each foil,
we have a downward force due to gravity of 1

n
m × 9.81.

3https://web.mit.edu/drela/Public/web/xfoil/
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Table 2. Parameters used in XFOIL to construct a list of
CL values.

Reynolds number 3.4e−3
Mach number 395,000
Foil shape type NACA0012

The netto force Fnetto is then defined as the difference of
upward force FL and downward force by

Fnetto = FL −
m× 9.81

n

where

FL = lift [N],
m = total mass of the vessel [kg],
n = number of foils attached to the vessel.

Since s = 1
2
at2 (integral of the product of acceleration and

time) and a = F/m (Newton’s Second Law), we can write
the change in height (effectively a distance) at each foil
position as

∆h =
1

2

Fnetto

(m
n

)
t2

where

Fnetto = netto force [N],
m = total mass of the vessel [kg],
n = number of foils attached to the vessel,
t = time step, for how long the current angle of

attach is kept [s].

At all foil positions, the current height above the water
of the vessel at that point is kept in the memory of the
simulation. These can never be negative, as the buoyancy
of the boat is such large that it cannot go under water due
to any downward force of the foils. The foils are mounted
using struts of which the length is 120 cm, thus this is the
maximum height above the water.

3.1.2 Orientation
To evaluate the current orientation of the vessel, roll (ro-
tation around the longitudinal axis) and pitch (rotation
around the lateral axis) are calculated using trigonome-
try. Roll is determined by

φroll = tan(
1
2
(hstarboard + hport)

d1
)

where

hstarboard = current height of hydrofoil at starboard
[cm],

hport = current height of hydrofoil at port [cm],
d1 = transverse distance from center of gravity

to port and starboard hydrofoils [cm].

In the simulation, d1 = 70 cm. Pitch is calculated with

φpitch = tan(
1
2
( 1
2
(hstarboard + hport)− hstern)

d2
)

where

hstarboard = current height of hydrofoil at starboard
[cm],

hport = current height of hydrofoil at port [cm],
hstern = current height of hydrofoil at stern [cm],
d2 = longitudinal distance from center of

gravity to stern hydrofoil [cm].

Here, d2 = 300 cm.

3.1.3 Noise
In a real-world scenario, height measurements using sen-
sors are not perfect. To simulate this, a random integer
i ∈ {−3, ..., 3} (cm) is added where a height measurement
is taken place. However, the real heights (without noise)
is used for all computations inside the simulation, for in-
stance the calculation of φroll and φpitch.

3.1.4 Available values
The simulation outputs a state which consist of the fol-
lowing values:

• hport (includes noise)

• hstarboard (includes noise)

• hstern (includes noise)

• φroll

• φpitch

• αport

• αstarboard

• αstern

• haverage (does not include noise)

• haverage,noisy (includes noise)

3.1.5 Differences with real-world
The simulation is a simplified situation of a real-world en-
vironment, based on theoretical formulas. The simulation
only includes some arbitrary measurement noise (see sec-
tion 3.1.3) but does not include for instance wind, waves,
mass of inertia and drag.

3.2 Reinforcement Learning
Reinforcement Learning works by collecting experiences
and receiving rewards. Starting at a particular situation
s, every action a the system takes will result in a new
situation s′, for which it receives a reward r. Every tuple
(s, a, s′, r) is saved into the replay memory.

The Deep Q-Learning algorithm is chosen to determine
the best action to take. No other reinforcement learning
algorithms has been evaluated in this research.

Deep Q-Learning [10] works with continuous states and a
discrete set of actions. However, the choice of an angle
of attack (α) between a minimum and maximum angle, is
continuous. As the mechanical properties of hydrofoils do
only allow for a certain significance, the continuous range
can already been made discrete by allowing a maximum
of one decimal. Thus {0.0, 0.1, ..., 6.9, 7.0}. Another me-
chanical constraint leads to an even smaller action set:
within a time frame of 200 ms, α can be altered by a max-
imum of 2.0°. Because of this, the largest possible action
set is {−2.0,−1.9, ...,+1.9,+2.0}. This last set defines the
change in angle of attack, not the absolute angle of attack.

Deep Q-Learning makes use of a neural network. In this
setup, three linear layers has been set, each with a size of
256 neurons.

The replay memory is used to store all experiences. At
each learning step, a random batch of 128 samples is taken
from the memory, which are used to update the network.
The network is trained using the Adam optimizer (with
a learning rate of 0.003) and mean square error as a loss
function.

Every instance of the algorithm we call an agent. One
or multiple agents can be used in parallel, although they
don’t work together. Each agent keeps track of it’s own
replay memory. The content of the states in the replay
memory is dependend on the experiment.
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The epsilon-greedy strategy uses a value ε that determines
the probability to choose a random action from the action
set, rather than choosing the best action according to the
outcome of the neural network. This way, the algorithm
will explore new situations. The value is decreased every
learning step. For this research, an starting value of ε = 1
is used, decreasing with 3.3e−5, until a minimum of ε =
0.2 has been reached.

4. EXPERIMENTS
This section describes the experiments executed on the
simulation and their results. The goal of the experiments
is to validate the performance of the trained models cre-
ated while training. During the experiments, it is the goal
to lift the vessel out of the water and keep it stable. The
goal height is set to 50 cm. The closer φroll and φpitch

approach zero and the lower the standard deviation, the
more stable the vessel is.

4.1 Experimental setup
In the experiments, each training runs 50,000 steps, sim-
ulating 167 minutes. After every step, the network is up-
dated as described in section 3.2. After every 50 steps,
the simulation is reset, thus all angles of attack are set
to zero, as well as the height at each foil. This is done
to let the system discover different situations, also when
it came to a stable situation without any major distur-
bances. Different training setups are tried. There are four
different properties that have varying values in the exper-
iments, these are: reward function, number of agents and
action set foil angle range. Table 3 shows each parameter
for all experiments. These are explained in more detail in
respectively sections 4.1.1, 4.1.2 and 4.1.3.

4.1.1 Reward functions
Different reward functions have been defined, with a slight
difference. In the formula

r =


h, if h < 25

25− (h− 80), if h > 80

100 + −4
100

(h− 50)2 + −5
1000

(h− 50), otherwise

(1)
the reward is based on h solely. h is the height at the
foil the agent is controlling. For instance for the agent
controlling the stern foil, h = hstern. As 0 ≤ h ≤ 120, the
range of this function is −15 ≤ r ≤ 100. This function
gives a maximum value when h = 50.

A second possible reward is based on both both height (h)
and roll angle (φroll), defined as

r =


h, if h < 30

25− (h− 80), if h > 70

125− 10×min(5, |φroll|) otherwise

(2)

The function has a range of −15 ≤ r ≤ 125, reaching its
maximum when 30 ≤ h ≤ 70 cm and φroll = 0. This
means that to receive a maximum reward, the agent is
free to let the boat sail between 30 cm and 70 cm, as long
as the roll angle is close to 0.

The third reward function is

r =


h, if h < 25

25− (h− 80), if h > 80

100 + −4
100

(h− 50)2 + −5
1000

(h− 50) + p, otherwise

(3)
with p = 30− 10×min(3, |φroll|).
The idea is that the height is always affecting the score,
just like Formula 1, however when 30 ≤ h ≤ 70 the score

is increased by a score based on the roll angle. The value
is maximized when h = 50 cm and φroll = 0.

4.1.2 Agents
Experiments with two or three agents are conducted. In
the cases where three agents are used, the agent’s action
affects the angle of attack of one specific foil. When two
agents are used, one agent is used to control the stern foil,
and the other is used to control both the port foil as well
as the starboard foil. As a consequence, the number of
actions for this agent grows to n2, where n is the number
of actions per foil. The number of agents and action set
per foil for each experiment are specified in Table 3.

The state s is dependent on the amount of agents, which
foil(s) the agent controls and which reward is used. s is a
subset of the values mentioned in section 3.1.4. It includes
the heights of the foil(s) it controls, the angles of the foil(s)
it controls and, if included in the reward function, the roll
angle of the vessel.

4.1.3 Action set and foil angle range
As stated in section 3.2, there’s already a limited amount
of actions possible. However, in the experiments different
subsets of the action set and foil angle range are tried. In
some experiments, the size of the action set is smaller, such
that fewer explorations are needed to build up a neural
network.

4.1.4 PID control
As a PID control system is often used and has a ”good
overall performance” [3], an experiment using a PID con-
troller was conducted with the simulation. The exper-
iments A to E can not only be compared against each
other, but also against the PID experiment. For the port
foil and starboard foil, Kp = 0.15, Ki = 0.1 and Kd = 0.06
are used. For the stern foil, Kp = 0.25, Ki = 0.1 and
Kd = 0.06. These values have been found to be best by
trial and error with different values. To be able to compare
the performance against the other experiments, this PID
controller is also restricted to change α by a maximum of
2.0 to one decimal place.

4.2 Results
After training, the performance is evaluated using a run of
300 steps. This simulates 60 seconds of sailing. ε is set to
0, to prevent the system from taking random actions. At
every step, haverage, φroll and φpitch are logged. Note that
these do not include noise as described in section 3.1.3, as
to evaluate the actual height, roll and pitch values of the
vessel, and not distorted values.

The results of all experiments can be found in Table 4.
A graph is available for each experiment. In all graphs,
the green line represents the average height of the ves-
sel haverage without noise. The red and pink line show
respectively φroll and φpitch.

4.2.1 PID control
The PID controller, shown in Figure 2, is able to keep the
height on an average of 50 cm, which is equal to the goal
height. Besides, the maximum roll angle is only 1.6° with
standard deviation of 0.4°. It needs quite some steps (41)
to reach a height of 40 cm, which corresponds to 8.2 s.

4.2.2 Experiment A
In experiment A, three agents are trained with a large
angle range and an action set that allows the agent to
control foils per 0.5°. The reward is only based on the
height of each foil. The performance is shown in Figure 3.
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Table 3. Properties of experiments A to E. The experiments differ in number of agents, action set, foil range and reward
function.

Name Number of agents Action set Foil angle range Reward function
Experiment A 3 {−1.0,−0.5, ..., 0.5, 1.0} {0.0, ..., 7.0} Formula 1
Experiment B 3 {−1.0,−0.9, ..., 0.9, 1.0} {0.0, ..., 7.0} Formula 1
Experiment C 3 {−0.2,−0.1, 0, 0.1, 0.2} {2.5, ..., 5.5} Formula 1
Experiment D 2 {−0.2,−0.1, 0, 0.1, 0.2} {2.5, ..., 5.5} Formula 1 and Formula 2
Experiment E 3 {−0.2,−0.1, 0, 0.1, 0.2} {2.5, ..., 5.5} Formula 1 and Formula 3

Table 4. Results of the experiments A to E, and the PID control.
Experiment A B C D E PID
Maximum |φroll| (°) 6.2 16.8 1.6 66.2 25.7 1.6
Mean |φroll| (°) 2.5 6.2 0.4 61.3 10.0 0.5
Standard deviation |φroll| (°) 1.5 4.6 0.3 15.9 6.9 0.4
Steps to reach h = 40 cm 5 6 13 14 13 41
Minimum height4 (cm) 43 44 42 34 45 41
Average height4 (cm) 50 53 51 45 62 50
Maximum height4 (cm) 58 63 56 51 72 57
Standard deviation height4 (cm) 2.2 3.5 2.3 2.7 4.6 2.6

Figure 2. Performance with a PID controller used as a
reference to compare experiments A to E against.

Figure 3. Experiment A, trained three agents with
a reward function based on height, and action set
{−1.0,−0.5, ..., 0.5, 1.0}

Although the height is comparable with the height of the
PID controller, the roll angle has a maximum of 6.2°and
a standard deviation of 1.5°. The peak corresponds to a
difference in height between the port side and starboard
side of 15 cm.

4.2.3 Experiment B
Experiment B has a larger action set compared to experi-
ment A, allowing a more precise control in the same range.
It uses three agents with a reward based on height only.
The result can be seen in Figure 4. Although the average
height is close to the target height of 50 cm, it can be seen
in from the graph and the standard deviation (4.6°) that
it fluctuates more compared to the height in experiment

Figure 4. Experiment B, trained three agents with
a reward function based on height, and action set
{−1.0,−0.9, ..., 0.9, 1.0}

A.

4.2.4 Experiment C
In experiment C a smaller action set compared to experi-
ment A and B has been used. Furthermore, the minimum
and maximum foil angles have been restricted, meaning
less options to set the angle to. In this experiment three
agents are trained with a reward based on height only.
The result is given in Figure 5. The height is kept close to
50 cm, with a standard deviation of 2.3 cm. It takes more
steps to reach a height of 40 cm compared to experiment
A and B, however, resulting in a roll angle with a maxi-
mum of 1.6°. This roll angle is equal to the PID controller,
meaning this experiment matches the performance of the
PID controller.

4.2.5 Experiment D
As an experiment to control the foil based on the roll an-
gle, as this is an important metric in the performance, ex-
periment D has been introduced. In this experiment only
two agents are trained. One agent is controlling both port
and starboard foil. The reward for this agent is based on
both height and roll (Formula 2). The other agent is con-
trolling the stern foil only, with a reward based on height
only. The result is shown in Figure 6. Immediately after
the run has started, the roll angle drops to -66.2°, which
means the port side raise to its maximum value of 120
cm, whereas the starboard side kept at 0 cm. The agents

4Measured after h = 40 has been reached once.
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Figure 5. Experiment C, trained three agents with
a reward function based on height, and action set
{−0.2,−0.1, ..., 0.1, 0.2}

Figure 6. Experiment D, trained two agents with a re-
ward function based on height and roll, and action set
{−1.0,−0.9, ..., 0.9, 1.0}

seemed to over fit on the reward function, such that it
would receive a constant reward by raising one side to it’s
maximum value and the other to the minimum value. Af-
ter repeating the experiment 4 times, the result did not
change significantly.

4.2.6 Experiment E
The last experiment conducted is an experiment where
again the reward for the agents at port and starboard side
are based on height and roll. This time three agents are
trained. Figure 7 shows the performance of this experi-
ment. Compared to experiment D, which also included
roll angle in the reward function, performance is better
due to the fact that both foil at port and starboard side
rise to an average height of around 60 cm. Heights are fluc-
tuating between 45 cm and 72 cm. The roll angle peaks
to 25.7°, which means a difference of 59 cm between port
and starboard. As it can be seen that the roll angle peaks
to positive and negative values, both foils are constantly
overcorrecting their current heights.

5. CONCLUSION & FURTHER
RESEARCH

In this paper, different setups to use reinforcement learn-
ing to control hydrofoils are proposed. Using Deep Q-
Learning and different reward functions, action sets and
number of agents, we trained multiple setups and con-
ducted experiments. Evaluating the performance of each
setup with a run simulating 60 seconds, we conclude that
the performance of a PID controller can be approached
when using three agents, a small action set and a re-
ward function based on height (experiment C). When us-
ing a larger action set or controlling multiple foils with one
agent, the vessel can not be considered stable. The exper-
iments using a reward function including the roll angle of

Figure 7. Experiment E, trained three agents with a re-
ward function based on height and roll, and action set
{−1.0,−0.9, ..., 0.9, 1.0}

the boat, were not considered stable as well.

In this research, only the Deep Q-Learning algorithm was
used. Further research could be done on using other rein-
forcement learning algorithms or other reward functions.
This might increase performance when controlling multi-
ple foils with one agent. As controlling multiple foils with
one agent might allow for controlling based on roll angle
rather than height only, chances are that it is better ca-
pable of adapting to environments with waves, hence a
larger chance to succeed in solving the problem described
in section 1.

The simulation used for this research is a simplified rep-
resentation, which may bias the performance. Further re-
search could be performed using a simulation where more
real-world properties are represented or waves are simu-
lated, such to train agents on waves. As waves do have im-
pact on the measures heights, a system trained on height
measurements and not on roll angle, like in experiment C
which had the best performance out of the experiments
conducted in this research, we expect this will impact the
stability as well. This can be validated by a research using
a simulation including waves.

Lastly, the experiments done in this research could be per-
formed on a real-world vessel. This way, the outcomes of
the experiments of this research can be validated and the
real-world usage of the approach suggested can be ana-
lyzed in more detail. This may make clear potential short-
comings of this research and the setups of the experiments.
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