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ABSTRACT

Adversarial attacks have gained considerable attention in
recent years due to increasing real-world, safety-critical
applications of Deep Neural Networks. The vulnerabil-
ity against such attacks spans multiple domains and thus
exhibits security concerns, mainly because they are chal-
lenging to detect, and an understanding of their existence
is lacking. Consequently, the research community has pro-
posed many defense strategies to inherently induce robust-
ness properties through domain-specific design or training
mechanisms.

This paper concentrates on defending against adversarial
attacks within the image classification domain, where so-
called adversarial examples are constructed by carefully
crafting (imperceptible) perturbations on an image such
that a classifier produces erroneous predictions with high
confidence. More Specifically, we quantitatively analyze
an approach that builds upon a biologically-inspired com-
ponent called the push-pull layer that increases robustness
against naturally distorted/corrupted images. We com-
bine the said component with adversarial training to in-
vestigate its robustness-efficacy against various adversarial
attacks and threat models. The findings in this experi-
mental study indicate that the approach allows the com-
ponent to translate its properties to adversarial examples
and, with further research, may prove itself as a general-
purpose defense tool.
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1 Introduction

The adversarial susceptibility of deep neural networks re-
tains growing relevance as deep learning [1] progressively
penetrates security-sensitive environments. Furthermore,
the increasing intricacies and stakes of the newly entered
domains incentivize adversaries to target such critical sys-
tems. Therefore, building intrinsic robustness or defense
mechanisms into deep learning techniques becomes a cru-
cial research and engineering goal. Pertinent domains
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include self-driving cars [2, 3], computer-aided diagnosis
(CAD) [4], malware detection [5], and many more [6, 7,

The threat against adversaries is not unique to DNNs.
It has long been a study of conventional machine learn-
ing (ML), where the classes of attack targeted features
or the ML models’ training process (data poisoning) [9].
However, deep learning usually considers so-called adver-
sarial examples [10, 11, 12] during test time, where the
attacker carefully modifies the raw input space. Further-
more, adversarial examples exhibit cross-model general-
ization properties. That is, an attacker can generate an
attack on one model and transfer it to another (possi-
bly with different architecture or training set) [11, 13],
demonstrating the imminent threat and need for robust-
ness in real-world applications. Researchers primarily in-
vestigated these attacks within the context of image classi-
fications. However, they are proven to exist in but not lim-
ited to semantic segmentation, object detection, and natu-
ral language processing [8, 7, 6]. Despite much-attempted
work directed at understanding the cause of their exis-
tence and characteristics [12, 14], the research community
appears to lack joint agreement.

Despite the lack of consensus, many defense strategies
were proposed on existing knowledge to construct mod-
els resistant to adversarial attacks. These defenses often
take on the form of either data augmentation [15, 16],
modifications to networks [17], or prepending a network
to the target. Yet, the inclusion of adversarial exam-
ples within the optimization process (adversarial train-
ing) remains the most effective among all strategies; how-
ever, some findings suggest it is not the optimal solution
[18]. Nevertheless, in this experimental study, we com-
bine adversarial training with a biologically-inspired layer
for Convolutional Neural Networks (CNNs) by Strisciuglio
et al. [19] as an approach to adversarial robustness. The
proposed layer emulates a form of response inhibition that
allows an improved extraction of semantic information and
demonstrated a robustness-increase of the classification
rate on corrupted images by, for instance, fog, blur, or
illumination. Given these properties, we hypothesize that
by exposing the push-pull layer to an adversary, the in-
creased selectivity of input and robustness against (natu-
ral) perturbations translates to adversarial examples. We
demonstrate in this experimental study that the properties
translate to adversarial examples and that, with further
research, the push-pull layer is a prospect for a general-
purpose defense.

We organize the remainder of this paper as follows. First,



section 2 briefly discusses previous work on adversarial
training. Then, section 3 introduces the push-pull layer
and relevant concepts such as robust training and threat
models that constitute the framework of this experimen-
tal study. Section 4 describes the experimental setup, at-
tacks, configurations, metrics to evaluate robustness, and
the results. In section 5, we discuss deficiencies and fur-
ther improvements on the approach. Finally, we conclude
this paper in section 6.

2 Related Work

The first notion of adversarial training introduced Szegedy
et al. [11], wherein the authors trained a classifier with a
mixture of clean and adversarial examples in an alternat-
ing fashion. However, the technique did not exhibit im-
provements beyond standard regularization methods ap-
plied to DNNs [12], partly due to the limited exploration
and the computational cost of generating adversarial ex-
amples using L-BFGS. Goodfellow et al. [12] reduced the
computational barrier by proposing the fast gradient sign
method (FGSM) that exploits the local linearity of DNNs
and backpropagation. Nonetheless, in spite of robustness
improvements, training with single-step attacks turned out
to be vulnerable against iterative attacks. In [20], Tramér
et al. argue that the poor performance of single-step at-
tacks within the min-max formulation [21, 22] is due to
sharp curvate in the loss surface (called degenerate global
minimum). The consequence of this curvature is that the
model learns to generate weak attacks instead of optimiz-
ing robustness against first-order attacks. Therefore in
the same paper, they propose a new algorithmic approach
called Ensemble Adversarial Training that disassociates
the adversary from the optimization objective by training
with adversarial examples generated on other pre-trained
models.

3 Preliminaries

To adequately evaluate the defense’s performance and pro-
vide context on the conditions it may claim guarantees and
results upon, we first discuss constituent parts of a threat
model. Then, following the threat model, a brief (formal)
description of robust training is given and reasons for it to
be the framework of choice. Lastly, we present the push-
pull layer subject of this experimental analysis.

3.1 Threat Model

A threat model determines the conditions under which an
adversary operates. One usually considers three charac-
teristics: Knowledge, Capabilities, and Goals.

3.1.1 Knowledge

White-Box. In a white-box attack, the adversary is as-
sumed to have complete knowledge and an unconstrained
set of resources. So, the adversary can generate attacks
while considering the architecture, (hyper-)parameters, the
dataset, and the underlying defense of the model. On that
basis, the attack can adaptively generate adversarial ex-
amples and (theoretically) consume as much computation
needed to fool the classifier directly. Ideally, a defense
wants to reach robustness against such adversaries because
it implies increased robustness against black-box attacks.

Black-Box. The black-box attack scenario assumes a much
more restrictive adversary in terms of knowledge and in-
teractivity with the target than its white-box counterpart.
Essentially, a black-box attacker has two mechanisms at its

disposal to generate adversarial examples. The first mech-
anism exploits the transferability phenomena (transfer-
based), where an adversary trains a surrogate model that
emulates the target then generates adversarial examples
on the surrogate for transfer to the target. The second is
a query-feedback mechanism, where the attacker contin-
uously crafts the adversarial example (without surrogate)
while considering the query score (score-based) or deci-
sion (decision-based). As a result, black-box attacks are
strictly weaker than their white-box counterpart and are,
for these reasons, considered more practical and closer to
real-world applications.

3.1.2 Capabilities

To concretely determine the capabilities of defense and
categorize under which conditions and against which at-
tacks it may provide resistance, we need to impose further
restrictions on the adversary. The following presents re-
strictions imposed for the sake of this experimental study.

Fach adversary generates its adversarial examples using a
predefined set of perturbation magnitudes € and individ-
ually applies it to each benign image.' Furthermore, the
perturbation magnitude cannot arbitrarily be applied to
the benign input and is subject to an optimization objec-
tive and a distance metric.

Perturbation Objective. The optimization objective sets
out the conditions under which a perturbation is consid-
ered successful. For the case of optimized perturbation, the
objective is to find an adversarial example that sucessfully
fools the classifier while the perturbation magnitude € is
minimal. For the constrained optimization technique, the
objective is to maximize the loss, given adversarial input,
while the applied perturbation does not exceed ¢ under
the given distance metric.

Perturbation Distance Metric. The intuition behind the
distance metric is to define a measure that quantifies the
severity of modification applied to an image; the smaller
the value, the less perceptible the change. Frequently, the
{p-norm is used and here we will consider the f2- and £o-
norm?, where

e /5 computes the euclidean distance between the ad-
versarial and benign example.

e /4 implies that each pixel’s peturbation does not
exceed e.

3.1.3 Goals

An adversary may have varying incentives to attack a sys-
tem, including but not limited to compromising integrity
or availability. In the context of image classification, we
consider only the goal of subverting the integrity of a
classifier, excluding a possible dependence another system
could have on classification results.

Untargeted. Here, an attacker intends to have a classi-
fier misclassify the perturbed image. Therefore, the class
a model assigns the image to is irrelevant, presuming it
is not the actual class. The adversary may either mini-
mize the chance of the original class or take from a pool

!There exist also universal perturbations that are image-
agnostic [23].

2Another commonly used metric is £o which counts the
number of pixels changed. We do not consider this metric
here.
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Figure 1: A structural depiction of the push-pull layer.
Source: [19]

of generated adversarial examples one with the smallest
perturbation.

Targeted. The objective remains to lead the classifier into
misclassifying the adversarial example. However, the ad-
versary attempts to perturb the image into a specific tar-
get class by maximizing its probability.

3.2 Robust Training Framework

To provide a paradigm that guarantees robustness in a
principled manner, Madry et al. (2017) [22] embedded
the adversary into the empirical risk minimization (ERM)
framework, formulated as follows:

mgin E(x,y)~]1)) |:5EHB}?E}§6) Lce (07 T+ 67 y) )
where (z,y) ~ D represents the training data drawn from
distribution D, B(z,€) is the permitted perturbation set
defined as B = {z+0 € R™|||d]|, < €} and Lc is the cross-
entropy loss. Therefore, we want to minimize the empiri-
cal risk (of loss) with respect to the worst-case adversarial
input. Since its intractable to solve the optimization, in
practice, we train a model solely on adversarial examples
generated by a strong adversary [21] that (approximately)
maximizes the inner optimization and use stochastic gra-
dient descent (SGD) to minimize the outer optimization.
Madry et al. (2017) demonstrated (theoretically and ex-
perimentally) the tractability of the optimization using
a new strong, and iterative attack called projected gra-
dient descent (PGD) and how models become more ro-
bust against a range of adversarial attacks depending on
first-order information. They dubbed the procedure PGD-
AT and is (still) considered the state-of-the-art approach
for inducing robustness into DNNs against white-box and
black-box attacks [20, 15]. However, a negative aspect of
their procedure is the incurring prohibitive cost that in-
creases training time by a factor of (k + 1), where k is the
number of iterations. Furthermore, the above formulation
does not provide any guarantees for zero-day attacks.

3.3 Push-Pull Layer

The inspiration for the so-called push-pull layer comes
from early (simple) cells in the primary visual cortex ex-
hibiting simultaneous excitation and suppression of dis-
tinct neural receptive fields (RFs). Sensory neurons re-
sponding to such cells integrate excitatory and inhibitory
RF's into a response referred to as push-pull inhibition.
The combined effect of this response property is the in-

creased selectivity of visual stimuli despite corruption. Strisci-

Table 1: Depicts the attack methods employed for
robustness evaluation. Each entry corresponds to the
attack’s limitations within the threat model it is

considered.

Attack ‘ Knowledge ‘ Goals ‘ Capabilities ‘ Metric ‘
FGSM [12] | white & transfer | untargeted | constrained Lo
PGD [22] white & transfer | untargeted | constrained U
C&W [25] white & transfer | untargeted | optimized lo
DeepFool [26] white untargeted | optimized Lo
SPSA [27] score untargeted | contrained Lo
NES [2¢] score untargeted | constrained Lo

uglio et al. [19] modeled this phenomena as follows:
P(I)=0(k*I)— a®(—kn=1), (1)

where © is a ReLU (activation) function, o a weighting
factor for the inhibition strength for the response map of
the pull component, and 1 h is an upsampling operator
with scalar h > 1 (See Figure 1). In other words, the
response of the push-pull layer is a linear combination of
the rectified responses of the push (excitatory RF) and the
pull kernel (inhibitory RF).

4 Experiments

This section extensively evaluates the robustness of the
push-pull layer and robust training combination using the
benchmark dataset CIFAR-10 [24] in both white-box and
black-box settings. We start by alluding to the experi-
mental setup with its implementation details, introduce
the evaluation metrics, and finally present and discuss the
observed results.

4.1 Experimental Setup

Environment. To conduct the experiments, we have im-
plemented the adversarial training procedure from scratch
using Python and Pytorch [29]. We took the implemen-
tation details of the push-pull layer and its integration
into ResNet [30] from Strisciuglio et al.®> Furthermore,
for all white-box attacks, we utilize Foolbox [31], which is
a (deep learning) framework-agnostic library of the most
common attacks. For the transfer-based and score-based
black-box attacks, we use Foolbox and the benchmark-
ing library ARES* (Adversarial Robustness Evaluation for
Safety) by Dong et al [32]. Lastly, the experiments have
been exclusively executed on shared, cloud-hosted GPUs
due to the prohibitive computational complexity of ad-
versarial training. The platforms provided a Jetson AGX
Xavier interface, a Tesla P100, or a Tesla T4. We will
publish all of the associated code soon.

Attacks. We employ in total six attack methods under
various threat models. These are FGSM, PGD, and C&W
for white-box and transfer-based black-box attacks; Deep-
Fool, which only operates with white-box knowledge. The
remaining are SPSA and NES as an interactive black-box
attack, where both are score-based. Since we do not dis-
cuss attacks in detail, table 1 lists all attacks, summarizes
the threat model they operate in (in this study), and ref-
erences each attack’s originating paper. For more context
and a broader view of attacks in general, consider [8, 7,

]. Lastly, relevant configuration details of each attack are

3https://github.com/nicstrisc/
Push-Pull-CNN-layer
“https://github.com/thu-ml/ares
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Table 2: Robustness accuracy (%) of all ResNet models against untargeted white-box attacks.

Adversarial Adversarial-PP
Network  Benign PGD7 PGDig PGD2y FGSM C&W | Benign PGD; PGDigy PGD2 FGSM C&W
ResNet-20  86.38  80.01 76.63 64.67 11.10 83.95 | 85.83  79.17 75.78 63.52 18.44  83.36
ResNet-32  85.82 79.61 76.42 64.94 20.76  83.66 | 85.42 79.18 76.09 64.79 19.81 83.25
ResNet-44  86.71 80.37  77.30 66.03 21.15 84.36 | 85.30  79.13 76.24 65.65 21.58  83.07
ResNet-56  87.41 81.35 78.32 67.69 19.44 8547 | 85.51 79.37 76.42 66.41 22.09 83.34

Table 3: Robustness acurracy (%) of untargeted transfer-based black-box attacks using ResNet-56 as a source.

Adversarial

Adversarial-PP

PGD2o

CW3)

FGSM

PGDyo

CW3)

FGSM

N ResNet-20  ResNet-56  ResNet-20  ResNet-56  ResNet-20  ResNet-56  ResNet-20  ResNet-56  ResNet-20  ResNet-56  ResNet-20  ResNet-56
ource

No Push-Pull 85.24 86.86 86.32 87.37 79.53
Push-Pull 85.35 86.72 86.36 87.39 78.59
Adversarial 82.30 83.44 86.12 86.74 50.49
Adversarial-PP 82.20 83.68 86.17 87.25 50.56

78.97 85.24 85.09 85.78 85.44 79.42 80.02
77.54 85.17 84.82 85.78 85.44 78.32 78.92
51.15 81.80 81.55 85.60 85.28 50.44 52.59
51.66 81.94 81.38 85.55 85.25 51.35 51.93

given in the results section 4.3.

4.2 Evaluation Metrics

Here we are solely interested in the capacity of a classi-
fier to resist attacks aiming at compromising its integrity
and the settings under which an adversary increasingly de-
ceives and degrades the performance of a network. Thus,
to capture the adversarial robustness and general efficacy
of defense against various attack configurations, we em-
ploy robustness curves as proposed in the benchmarking
framework by Dong et al. [32]. These enable us to evalu-
ate the overall robustness of the defense, compared to just
using pointwise accuracy and one perturbation budget, by
exposing the defense to multiple, different attacks with in-
creasing perturbation strength. Furthermore, these curves
provide the ability to investigate performance-related con-
ditions under which an attack becomes effective and per-
form sanity checks valuable for excluding misleading de-
fense properties [33, 32]. Consequently, we define the met-
rics as follows. Let C'(x) =y be a classifier where x € R"
and y € R™. Furthermore, let Ac, be an adversary that
generates adversarial examples x®® = A, ,(x) for input x
using a perturbation magnitude e and the ¢,-norm.

Then, the overall performance of a classifier at test time
is measured as follows:

1
N’L

M=

Acc(x, y) = 1(C(Acp(xi)) = i),

1

where {x;,7:}1*, is the test set and 1(-) is the indicator
function - characterizing the general accuracy of the clas-
sifier.

However, the accuracy of a classifier alone does not fully
disclose its ability to resist attacks since we do not distin-
guish between successful adversarial examples and images
that would have been misclassified in their benign form.
So, to determine the capability of an adversary in gener-
ating attacks, we compute and consider the attack success
rate:
A _ 1 3 1(C = C(A
sT(x,¥) = 37 DIUCH) = i A C(Acp(x2)) # i),

i=1

where M = YNV C(x;) = .

We use the above metrics to construct accuracy (attack
success rate) vs. perturbation magnitude curves to estab-
lish the overarching robustness and conditions under which
an adversary substantially breaks the resistance.

4.3 Results

This section initially presents a set of experiments to pro-
vide a baseline between adversarially trained networks with
and without the push-pull layer. Following that, we ana-
lyze more closely the defense-efficacy of the push-pull layer
with fixed hyperparameters against a range of attack con-
figurations and perturbation magnitudes, both in white-
box and black-box settings (see Section 3.1 & 4.1). Lastly,
we investigate whether learning the inhibition strength «
improves input selectivity by fine-tuning it against an ad-
versary.

4.3.1 Baseline Evaluation

Here we evaluate the robustness of an adversarially trained
model with a push-pull layer (Adversarial-PP) against its
counterpart (Adversarial), which does not include the layer,
in a white-box and transfer-based black-box setting.

Training settings. We adversarially train a ResNet-20,
ResNet-32, ResNet-44, and ResNet-56 with and without a
push-pull layer using ¢,-bounded PGD with random start
and 7 iterations, a perturbation magnitude € = 8/255, and
a relative stepsize of ¢/4. Furthermore, all of the networks
are optimized against the PGD7 adversary using SGD
with a Nesterov momentum of 0.9, weight decay 1 x 1074,
and an initial learning rate of 0.1, which is divided by 10
at the 80-th and 120-th epoch. All of the networks have
been trained for approximately 160 epochs with a batch
size of 128. We set the inhibition strength o = 1 and the
scaling factor h = 2 of the upsampling operator regarding
the push-pull layer (see Equation 1).

White-box Robustness. We evaluate the robustness of all
ResNet models against three types of standard attacks:
FGSM, PGD (7, 10, and 20 iterations), and C&W (40
iterations, zero confidence, and a step size of 0.01). Fur-
thermore, all attacks have complete access to the model, as
described in Section 3.1.1, and are restricted by the same
perturbation magnitude e. Additionally, we summarize
the white-box robustness of all models in Table 2, where
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Figure 2: The accuracy (attack success rate) vs. perturbation magnitude of the ResNet-20-PP model against untargeted
white-box and black-box attacks.
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Figure 3: The accuracy (attack success rate) vs. perturbation magnitude of the ResNet-56-PP model against untargeted
white-box and black-box attacks.

”Benign” refers to the accuracy of unperturbed examples.

We observe that our combined approach, within this con-
text, neither fundamentally improves robustness nor de-
grades it. There is a minor performance drop of accu-
racy on benign examples that further decreased with the
increase of the model capacity. However, this is mainly
confined to the benign accuracy, whereas robustness accu-
racy mostly improved with increasing capacity, as is ex-
pected [22]. Fluctuation may result from both FGSM and
PGD starting with a random perturbation. Nevertheless,
our interpretation of the accuracy drop in benign images
is that correlation between benign and adversarial exam-
ples is harder to establish, with fixed o and h, due to the
perturbation being small, distinct, and equally treated by
the inhibitory effect. Therefore, the weight space learns
a different representation that might map to a darker im-
age. Furthermore, there is a negligible performance dif-
ference between the two approaches regarding the C&W
attack, although the standard approach has a slight edge
over ours. However, we obtain peculiar results regarding
the defense against attacks generated by the FGSM ad-
versary. Our approach achieves considerably low robust-
ness accuracies compared to stronger, iterative attacks.
The initial intuition is that the push-pull layer somehow
produces "obfuscated gradients” [34]. These are unusable
gradients leading to inferior attacks caused either by shat-
tered gradients, vanishing/exploding gradients, or stochas-
tic gradients (not applicable). However, we can rule ob-
fuscation out for two reasons: (1) models trained with the
standard approach exhibit the same, even worse behavior,
(2) iterative white-box attacks have a higher success rate
(lower robustness) than transfer-based black-box attacks
(by comparing Table 2 and Table 3). Consequently, the
poor performance must result from properties in the sur-
face of loss caused by ResNet architectures.

Black-box Robustness. Here, adversarial examples for the
transfer-based block-box attacks are crafted on a surro-
gate model that is a ResNet-56. We utilize four different
variants of the model, where:

1. It is trained only on benign examples without a push-
pull layer.

2. Exactly like the first but with a push-pull layer.

3. Adversarially trained without push-pull layer (Ad-
versarial).

4. Like the third but with a push-pull layer (Adversarial-
PP).

Furthermore, we utilize the same attacks as in the white-
box setting, except we only use the strongest PGD. Addi-
tionally, the C&W attack generates adversarial examples
with a confidence of 50 for better transferability [25]. The
black-box robustness of both defense models is reported
in Table 3.

We can observe an increase in robustness against iterative
attacks by comparing the black-box results with those ob-
tained in the white-box setting. Therefore, as mentioned
above, the accuracy improvement against PGD and C&W
further suggests that obfuscated gradients do not cause
robustness. However, we conduct an additional check us-
ing gradient-free, score-based algorithms to support this
argument further. We employed multiple SPSA and NES
runs, where we iterated by 100 iterations until 1000 and
then continued with 1000 steps per round until 5000. A
considerable robustness drop occurred after reaching an
iteration count in the thousands. Therefore, concluding
that robustness does not result from masking gradient in-
formation. We also report an increased resistance against
adversarial examples generated by the FGSM adversary.
Our approach yields better results than the counterpart
except when generated from a standard ResNet-56 with
ResNet-20 as a target. Nonetheless, the unreasonable ef-
fectiveness of FGSM is rather peculiar and needs further
investigation. Regardless, the standard PGD-AT method
achieves slightly higher robustness in most source and tar-
get combinations.

4.3.2  Push-Pull Efficacy With Higher Perturbation
Magnitudes

Here we investigate the robustness-efficacy of our proposed
method against various adversaries with increasing pertur-
bation magnitudes, which is a continuation of subsection
4.3.1. We restrict the architectures solely to ResNet-20
(Figure 2) and ResNet-56 (Figure 3), given the negligent
performance differences among all models (see Table 2).
We denote ResNet models, acting as a source, without a
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Figure 4: The accuracy (attack success rate) vs. perturbation magnitude of the ResNet-20-PP model with trained
against untargeted white-box and black-box attacks.
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Figure 5: The accuracy (attack success rate) vs. perturbation magnitude of the ResNet-56-PP model with trained «
against untargeted white-box and black-box attacks.

push-pull layer as A and if they are adversarially trained
with B, for the robustness curves in the transfer-based
black-box attacks. Furthermore, we append a P to indi-
cate that a model contains a push-pull layer as its first
layer.

White-box Robustness. The relative robustness of our pro-
posed method is the highest against perturbations based
on constrained optimizations. We hypothesize that this
property is due to the ability of the push-pull layer to
smoothen the decision boundaries, thereby making it in-
creasingly harder to find effective, minimal perturbations.
To exclude sub-optimal and non-converging attack param-
eters, we further doubled the number of iterations (and
confidence to 80 for C&W) and observed an increase in the
attack success rate. However, the observations remain the
same as in Figure 2 & Figure 3 - that is, relatively high ro-
bustness across the perturbation magnitudes, where Deep-
Fool is the most effective. More interesting is the phe-
nomenon, within the context of the C&W attack, that
the robustness increases as the confidence increases (albeit
minimal), and only the number of iterations determine the
effectiveness. Furthermore, if we consider PGD, we can
observe that the strongest (with 20 iterations) drives the
robustness to 0 and the success rate to 100%. This is to
be expected as the adversarial examples become increas-
ingly incomprehensible and, by definition, should increase
the success rate [33]. The fact that it does converge to
zero further suggests that robustness is not the product
of masking gradient information. Lastly, we still observe
the unreasonable effectiveness of FGSM for unknown rea-
sons that have not been further explored within this study.

Black-box Robustness. The setup here is equivalent to the
procedure in subsection 4.3.1. That is, we employ indepen-
dently trained surrogate models based on the ResNet-56
architecture and transfer generated adversarial examples
to ResNet-20 (Figure 2 and ResNet-56 (Figure 3) models
adversarially trained with a push-pull layer.

We make similar findings as in the white-box setting: the
defense is most robust against constrained-based optimiza-
tions. However, the roles have reversed in that adversarial
examples generated with high confidence transfer better

Table 4: Benign accuracy of ResNet models adversarially
trained with the inhibition strength « as a trainable

parameter.
ResNet-20 | ResNet-32 | ResNet-44 | ResNet-56
Accuracy 84.93 86.31 85.46 85.94

when generated on adversarially trained models (both B
and BP) compared to the models trained only on benign
examples. Furthermore, higher perturbations degrade the
accuracy and increase the attack success rate, but, except
for adversarial examples generated by FGSM, all the at-
tacks have a success rate of well under 60%. Consequently,
the attacks remain inferior to their white-box counterpart.

4.3.3  Fine-Tuning Inhibition Strength

The strength of the push-pull layer as a general-purpose
defense is its ability to extract features of interest despite
corruption while introducing only a negligible computa-
tional overhead [19]. It is a consequence of deriving the in-
hibitory response (pull) from the excitation (push) where
only the push kernel inhabits trainable parameters. How-
ever, its implementation incorporates the pull response
during back-propagation and, consequently, encodes a rep-
resentation conducive to selectivity. The models investi-
gated so far in subsections 4.3.1 and 4.3.2 employed only
fixed hyperparameters: a fixed inhibition strength o and
a fixed scaling factor h. We hypothesized that this in-
flexibility might result, for instance, in an increasing diffi-
culty to extract a correlation between benign and adver-
sarial examples. Therefore, here, we intuitively investigate
whether training the inhibition strength o against an ad-
versary fine-tunes the inhibition response to improve ac-
curacy on benign examples and robustness in general.

Training settings. The settings around the training pro-
cess are equivalent to the settings in subsection 4.3.1. The
only difference is that « is a trainable parameter. Fur-
thermore, we trained a ResNet-20, ResNet-32, ResNet-44,
and a ResNet-56 for 160 epochs with a batch size of 128.
However, we only present the smallest and biggest archi-
tecture here due to minor performance differences among
the models.



Benign Accuracy. By comparing Tables 2 and 4, we can ob-
serve that models with « as a trainable parameter slightly
improve accuracy over those with the inhibition strength
fixed, except for the ResNet-20 model. However, they still
do not reach the accuracy levels of the adversarial coun-
terpart that trained without a push-pull layer. It begs the
question of why that is. We think of two reasons: (1) fluc-
tuations arise from random perturbations in the PG D7
adversary, (2) inhibition may change the representation of
the remaining weight space during training, for which we
do not account. We further discuss (1) and (2) in Sec-
tion 5. Nevertheless, we can interpret the improvement
of the benign accuracy as given in Table 4 by inspecting
the trained inhibitions strengths. We observed that the
«a parameters of all models are very close to zero, which
matches the small magnitude of the perturbations. There-
fore, training a model with a push-pull layer and the in-
hibition strength as a trainable parameter improves input
signal selectivity.

White-box Robustness. A notable observation when com-
paring Figures 4 and 5 with Figures 2 and 3 is that models
with trained inhibition strength perform slightly better on
smaller perturbations against all PGD attacks. This re-
sult is to be expected since « is calibrated towards the
adversary that generated the attack during training. How-
ever, this fine-tuning comes at the cost of generalization as
models trained with fixed inhibition exhibit more robust-
ness on higher perturbations. In contrast, we do not ob-
serve a loss of generality for higher € budgets in optimized
perturbations. On the one hand, the difference between
the ResNet-20 models is minimal, whereas the model with
fixed inhibition has slightly higher robustness. On the
other hand, the Resnet-56 model with trained inhibition
strength has a slight edge over the fixed one. Regardless,
the result agrees with the smoothness property that the
push-pull layer induces into the decision boundaries (see
subsection 4.3.2). Lastly, FGSM remains considerably ef-
fective. However, gradient obfuscation is ruled out for the
same reason as discussed in subsection 4.3.1.

Black-box Robustness. For the transfer-based black-box
attacks, we differentiate between the source models with
the same notation introduced in subsection 4.3.2. Further-
more, we employ the same surrogate models to generate
adversarial examples.

Opposite to the findings in the white-box scenario, we re-
port an increase in robustness (compared to Figures 2 & 3)
against PGD attacks across all perturbation magnitudes
(Figures 4 & 5). In the case of FGSM, we observe fluc-
tuating results regarding the ResNet-20 models, whereas
the ResNet-56 with trained inhibition strength exhibits a
slight improvement over perturbations up to € = 0.1 (com-
pared to the model with fixed a). For the C&W attack, we
have that the ResNet-20 model performs negligibly worse
than the model trained with fixed inhibition. In contrast,
the ResNet-56 model is more resistant to transfer-based
black-box attacks than its fixed counterpart. Overall, we
interpret the behavior of the smaller model as a result of
the randomness involved during training since it acts sim-
ilarly in the white-box setting.

5 Discussion & Future Work

We demonstrated that the approach successfully translates
robustness enhancing properties of the push-pull layer [19]
to adversarial examples. However, we have made several

discoveries that need further investigation to improve and
consolidate this procedure as an effective method for ro-
bustness against adversarial attacks. The most notable
and peculiar result is the effectiveness of FGSM against
our proposed method, despite its robustness against itera-
tive attacks. We repeatedly demonstrated that the efficacy
is not a result (see subsections 4.3.1 and 4.3.3) of obfus-
cated gradients by referring to the inferiority of black-box
attacks. Nevertheless, its cause or origin must be deter-
mined as robustness against single-step attacks is funda-
mental in this context [33, 22]. Furthermore, we have re-
ported a slightly worse result than the standard approach
regarding the accuracy of benign examples. We hypoth-
esized that two reasons potentially cause this. First, we
employ a PGD attack with a random start during training
and, thus, may cause the fluctuation in robustness proper-
ties. Unfortunately, we do not seed the randomization in
the attacks during training. Therefore, to investigate this
hypothesis, either a model (with and without push-pull) is
adversarially trained using PGD without a random start
or seeding the attack to ensure consistency. The second
hypothesis revolves around the push-pull layer itself and
its impact on the remaining weight space of the CNN. A
possible first attempt to investigate it is by learning the
inhibition strength alpha (as in subsection 4.3.3) but freez-
ing the rest of the weights. Following that, the remaining
weight space is trained on benign examples while the push-
pull layer is frozen.

Picking up on the last suggestion for investigating the im-
pact of the push-pull layer on the remaining weight space
during training, we can extrapolate this idea to improve
potentially the input selectivity of our approach. In sub-
section 4.3.1, we argued that the small accuracy drop in
benign examples was the inflexibility of the push-pull layer
(with fixed hyperparameters) to consider the small pertur-
bations. Consequently, we trained the inhibition strength
a and reported an increased input selectivity (see subsec-
tion 4.3.3 and Table 4) and an improvement of robustness
against perturbations within the trained ¢«-ball under the
white-box setting. However, the gain came at the cost of
generalizability to higher perturbations against white-box
attacks. Therefore, given that within this context we have
for each kernel W; an inhibition strength «; in the push-
pull layer, we can adversarially train each with the same
adversary but different perturbation magnitudes, or train
each parameter against a different attacker altogether from
either the same or other pre-trained models. The Ensem-
ble Training Algorithm [20] inspires the latter and could be
further used to increase robustness against transfer-based
black-box attacks.

An exciting observation not explicitly mentioned in the
experimental study is the fast convergence rate of models
with a push-pull layer during adversarial training. Com-
pared to the standard approach, models with a push-pull
layer always converged and at least two times faster than
their counterparts (others did not converge at all within
160 epochs). Therefore, the regularization properties may
prove useful in reducing the prohibitive complexity of ad-
versarial training by combining it with, for instance, early
stopping or integrating the model into other techniques
improving the complexity [35, 36]. Consequently, adver-
sarial training becomes a more practical and accessible
approach for adversarial robustness. However, to capture
its ability to improve convergence, it should be compared
against regular regularization techniques (e.g., dropout),
whether it holds for different architectures, more complex



images (e.g., Imagenet), or when other data augmentation
techniques are applied.

6 Conclusion

We performed an extensive experimental study investi-
gating the defense properties of an approach combining a
biologically-inspired component called the push-pull layer
with the adversarial training framework. The intuition
for the method comes from the ability of the layer to ex-
tract features of interest despite distortion/corruption by
exhibiting a form of response inhibition and extending it
to adversarial examples. We demonstrated that this effect
translates to adversarial examples by exposing it to mul-
tiple (untargeted) attacks with varying perturbation mag-
nitudes under white-box and black-box settings. First,
we established that the approach yields well-generalizing
results comparable to the standard benchmark PGD-AT
approach with fixed hyperparameters, especially against
increasing perturbations. Then, by learning the param-
eter regulating the inhibition, we further found that the
push-pull layer performs an increasing selectivity of input
signals improving robustness against perturbations within
the bounds of the perturbation magnitude, albeit at the
cost of resistance against higher perturbations in white-
box attacks. However, more investigation is required to
uncover more of its properties and find explanations for
the results discussed in this experimental study. Never-
theless, the push-pull layer exhibits properties that make
it a promising avenue as a general-purpose defense.
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