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1. Introduction

When technological systems in for example the field of computer science or electrical
engineering grow large it can become difficult to ensure that the behaviour of the system is
correct. Especially if the system is not yet created and all that is available is documentation
and design of the system. You can write many tests and try out every test case you can
think of, but it is difficult to know for sure that a certain requirement of the system always
holds. This is where model checking can help out.

In model checking you take an existing system and recreate its behaviour in a formal
model. These models can have different forms. In this research we focus on automata.
These are directed graphs where the vertices represent different states of the system
and the edges represent transitions between these states which can be seen as actions.
Due to the formal nature of the models, they can be simulated. Additionally, model
checking tools provide property checking languages in which it is possible to write specific
requirements that describe behaviour of the system. The model checking tool can then
take that requirement and formally prove that the requirement is satisfied or give a counter
example which proves that the requirement is not satisfied.

Examples of model checking tools are mCRL2 [12] and UPPAAL [19]. Both tools have
their own way of specifying their models, but both modelling languages describe automata.
While mCRL2 specifies models using process algebra in a textual form, UPPAAL has a
graphical model editor in which you can create vertices and connect them via edges. To
give an example application, mCRL2 and UPPAAL were used to help verify a pacemaker
developed by Vitatron. This was done in the research of Wiggelinkhuizen et al. [32]. A
pacemaker is a device that helps people who have a heart rate disorder called arrhythmia.
It is surgically connected to the heart so it can send stimuli via pulses to help maintain
an adequate heart rate. Because a pacemaker has to adapt to all possible heart rates
and different cases of arrhythmia, the firmware consists of a complex combination of
collaborating processes. Due to the fact that the device influences a vital organ of a
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persons body it is crucial that its behaviour is correct. Therefore, it is incredibly useful if
the behaviour of the pacemaker can be formally proven correct.

Another example of systems where the correct functioning of those systems is crucial
for the safety of people are systems in railway engineering. In these include systems
such as railway junctions and level crossings. The Dutch railway company ProRail and
Germany’s DB Netze are working together with the University of Twente and the Eindhoven
University of Technology on the verification of an upcoming standard for railway signalling
equipment interfaces [23]. This project is called FormaSig [11]. The standard is developed
by the EU-level organisation EULYNX [9] that consists of the collaboration between 13
Infrastructure Managers. They created a dialect of SysML which we call EULYNX in the
rest of the paper. This semi formal modelling language is used to specify the standard.
To help with verifying these models the contributors of FormaSig proposed to create a
translation [3] to the formal model checking tool mCRL2.

While the translation from EULYNX to mCRL2 is still currently in development, the de-
velopers found that the simulation trace explorer of mCRL2 is difficult to work with when
applied to the models of EULYNX. It is mainly hard to trace back model elements to
their corresponding EULYNX components when looking at the state history of a counter
example to a requirement.

UPPAAL, on the other hand, provides a graphical simulation trace explorer, which
gives a clear overview of the state of the model at every point in the history of the trace.
Therefore, we found that an additional translation to UPPAAL could be useful. Additionally,
the accessible property checking language of UPPAAL is beneficial for the project, so
possibly railway engineers can specify and verify their own requirements in the future.
Next to that we can potentially use the time system in UPPAAL for implementing the
timed elements of EULYNX. These elements are not yet specifically implemented in the
translation to mCRL2. Finally, an additional translation can also help verify the correctness
of the other translation. However, this is not included in the scope of this project.

In this paper we create and evaluate a translation to facilitate the use of UPPAAL in
the verification of models part of the EULYNX standard. First, we introduce EULYNX,
UPPAAL, and mCRL2 to provide some background information. Here we also make a
comparison between UPPAAL and mCRL2 to see what UPPAAL can provide that mCRL2
does not offer. Next in this research we determine which interpretation of SysML and
EULYNX we should adhere to. Here we look at what fits best with respect to the goals for
the translation, the interpretation used in the mCRL2 translation, and UPPAAL as target
modelling language. Next, we create the translation, while taking inspiration from existing
work on similar translations to UPPAAL. After that, we evaluate the translation in terms
of correctness, usability, and performance. The correctness of the translation is tested
by validating the behaviour of small test EULYNX models using UPPAAL requirements.
These small models each cover a small feature of the EULYNX framework, and together
they cover EULYNX as a whole. We test the usability of the output models by applying it to
an existing EULYNX specification. Here we aim to check a variety of different requirements
to determine what is possible to validate using the output models of the translation in
UPPAAL. We do not intend to fully prove that the EULYNX model under test is correct.
Lastly, we evaluate the performance of the output models in UPPAAL, and propose some
ways in which the translation can be improved.

We found that an interpretation of SysML using cycles to synchronise the whole model is
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the best option for our translation, as it enables the centralisation of the orchestration of
the processes. This allows us to manage the processes that model the state machines
with additional manager processes, which keeps the main processes more clear and
readable as they do not contain a lot of synchronisation logic. The decision to use
direct memory sharing for the communication between state machines followed from this,
because the publication of port values to other state machines is part of the cycle. This can
be implemented in UPPAAL by copying values from source variables to target variables,
hence the direct memory sharing.

Next we created our own translation, using the existing input DSL of the mCRL2
translation as a base for the translation. We could also reuse some preprocessing steps
that they created to eliminate for example overlapping internal block diagram definitions.
We took inspiration from existing translations of UML and SysML state machines to
UPPAAL, but we could not completely use existing work as the features of EULYNX differ
from those of SysML and the interpretations of SysML state machines themselves are not
the same everywhere.

In the validation of the translation we found it to be correct with the exception of a
few elements that have been implemented in a simplified way that enables the translation
to still be useful. While this is not a formal proof we are still confident in the correctness of
the translation, but a formal proof is a useful addition that could be looked into in future
work.

In terms of performance we found that it is not yet possible to check complete models
that are part of the upcoming standards developed by EULYNX, because of performance
issues. However, we are able to check some requirements on isolated components
of these models. The expressiveness that the UPPAAL requirement language gives in
combination with the output models of the translation is found to be sufficient for the
verification of basic requirements on the models of EULYNX. To improve the performance
and therefore increase the usefulness of the translation we propose three enhancements
that can be implemented in future work. These improvements focus on how the state
space of the output model can be reduced such that UPPAAL is better able to verify the
requirements of the model.

All in all the translation proved to be useful from our usability study, and it was found to be
correct with confidence. However, there is still room for improvement in the performance
of the output model. Additionally, a formal correctness proof can help with validating the
translation with stronger confidence.





2. Research questions

In order to gain additional insights in the models of EULYNX next to those that mCRL2
presents, we will also use UPPAAL to verify these models. To be able to do that reliably
and frequently, we need to create an automatic translation tool which translates models
from the EULYNX standard to the modelling language used by UPPAAL. From this goal
we derive the following main research question:

How can we create a jEULYNX to UPPAAL translation which can be used on models of
railway signalling equipment interfaces?

To help evaluate the outcome of the main research question we try to answer the following
sub questions:

a) Which interpretations of EULYNX fit the goals of the translation to UPPAAL best,
with regard to the usability, model complexity, and time constraints?

Next, we create the translation, after which we try to answer the following questions.

b) Is the translation to UPPAAL correct?
c) How well can the output models be used to verify model requirements?
d) How well can the input models of the translation scale in size and complexity such

that UPPAAL is still able to check them?

2.1 Clarification

With these extra questions we guide the research further by understanding how we can
create a suitable translation for UPPAAL, and evaluating the quality of the translation.
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a) Which interpretations of EULYNX fit the goals of the translation to UPPAAL best, with
regard to the usability, model complexity, and time constraints?

Here we look at different interpretations of EULYNX and the functionalities of UPPAAL.
Translations of other UML state machine dialects to UPPAAL will also be evaluated for this
purpose. We compare the benefits and possible drawbacks of the different interpretations,
along with how it can be implemented in UPPAAL. Because the model simplicity is an
important factor, we also look at how the different interpretations could effect the complexity
of the output model. This is important because it makes the models and therefore the
simulation traces easier to read. In short, the criteria for a good interpretation are that
the intended model behaviour is achieved, and that the output models are easy to read.
These points are discussed in the first part of Chapter 5.

b) Is the translation to UPPAAL correct?

The correctness of the translation is important, because the purpose of the translation is
to test the behaviour of models. If the behaviour of a model is incorrectly translated, the
translation loses its credibility. A formal proof would give a more complete indication of
correctness, but this was too large of a task to also do in this project. Therefore we try
to achieve some level of certainty by testing the different components in many scenarios.
These test cases are developed after evaluating existing SysML specifications. Each
scenario covers different edge cases of a specific EULYNX element in a model. This
model is then verified with a number of properties that check for the correct behaviour or
in some cases exclude incorrect behaviour. The application and results of this process
can be found in in Chapter 6.

c) How well can the UPPAAL requirement language be used in combination with the output
models to verify model requirements?

With question c) we want to evaluate the usability of the output models by composing a list
of different types of model requirements and checking if we can verify them using UPPAAL.
With this this we want to test to what extent it satisfies the needs of railway engineers. This
is important to know because it indicates if it can be used in practise. As case study we
use components of the Point model [28], because it provides a realistic scenario for us to
test on. We determine which properties and types of properties we want to check, and if
and how they can be specified in UPPAAL. This process is discussed in Chapter 7.

d) How well can the input models of the translation scale in size and complexity such that
UPPAAL is still able to check them?

In answering question d) we want to find out how fast the state space of the output model
expands beyond UPPAAL’s exploring capabilities. This can be done by increasingly taking
more components of a large example model like the Point model [28]. To get a more fine
grained result we can create simple example models that can easily be expanded to create
a larger state space. Producer consumer models could be used for this purpose. As a
measure for how difficult the model is to check, we take the execution time for checking a
certain property. This question is partly discussed in Chapter 7 and Section 10.1.



3. Related work

There exist some papers already out there that propose a translation from certain types
of UML state machines to the model checking tool UPPAAL. Huang et al. propose an
MDE-based translation algorithm that generates an UPPAAL model from a MARTE model
[15]. MARTE models are SysML models with a few extensions like time and probability.
In the paper they apply their translation to a Railway-Control System as a case study. In
their approach they first createded a meta-model for MARTE state machine diagrams and
created a meta-model for UPPAAL models. These meta-models can be seen as the input
and output types of the translation. This general approach could also be useful in the
creation of our translation. An important difference between MARTE models and EULYNX
models is that the state machines in MARTE communicate via global variables and use
events only in the form of named triggers, while in EULYNX they communicate via port
connections and events can also be triggered from expressions evaluating to true.

Muniz et al. created the tool TANGRAM (Tool for Analysis of Diagrams) which can
translate UML diagrams to UPPAAL models [26]. The main design of the tool revolves
around the CORBA Component Model. This model adds extra functionality to UML that
takes care of managing components during their execution time. The tool is demonstrated
on a small case study used in train control systems. While they also do not use boolean
expression based events, their centralised event system in the UPPAAL model can be
partially applied in our translation. Instead of boolean expression based events, they have
events that are defined solely with a label. These events can be seen as external events
triggered by the environment of the model, and are handled as such.

In the research of Knapp and Merz [18], they create a tool called HUGO which mainly
generates code from UML state machines. As an extra functionality it can also export to
UPPAAL. In this export feature it flattens the whole model into a single process. This was
done because their focus is on maximising performance rather than model readability.

There are also some papers which cover other facets of UML. For example in the research
of Cui et al. [7] they propose a translation from UML timing diagrams to UPPAAL, and
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apply it to a small coffee machine example.

The paper ‘Verifying Liveness in Supervised Systems Using UPPAAL and mCRL2’ [24] by
Markovski and Reniers uses the tool Supremica to translate their source model to both
UPPAAL and mCRL2. The source models are not close to UML. The model that they use
models a supervisory controller. With the generated models they compare the two tools,
and give a translation of requirements written in the specification language of UPPAAL to
the one of mCRL2. They find that UPPAAL fits better as target for their translation than
mCRL2. The reason for this is the way UPPAAL deals with state information opposed to
mCRL2. In UPPAAL you can easily access state variables in both the modelling language
and the property checking language. In mCRL2 you have to put the state information on
events in order to be able to work with it.

UPPAAL has been applied to many case studies. We list a few of the case studies
mentioned in the source paper of UPPAAL by Larsen et al as examples. [19]. Many of
these case studies take a look at some form of protocols, since these can contain time
critical elements.

The Audio/Video Protocol developed by Bang and Olufsen has been studied using
UPPAAL. This protocol is used to allow multiple audio/video devices to communicate with
each other over a single bus by sending messages. In this case [14] they found an error in
the protocol, and proposed a solution to fix this problem.

A Collision Avoidance Protocol implemented on an Ethernet like framework was also
studied using UPPAAL [16]. The protocol aims to prevent collisions of messages while
minimising the delay of the messages. Using UPPAAL they were able to prove that the
protocol completely prevents collisions and that the minimum message delay has been
reached.

Another case study is the Gear-Box Controller made by the company Mecel AB
for modern cars [22]. It waits for signals given by the surrounding system that request a
gear change. The controller then makes the gear change. UPPAAL was used to prove 46
properties that were derived from the design requirements of the system. All properties
were satisfied.

As relevant previous work part of this project we consider the two published papers
regarding the verification of models from the EULYNX standard in mCRL2. The first paper
by Luttik [23] discusses a proof of concept of the translation to mCRL2 in the form of a
case study on the Point [28] model of the EULYNX standard. The model is translated
manually, and the usability is evaluated by deriving nine safety requirements and verifying
them in with mCRL2.

Continuing this research, Bouwman et al. propose an automatic translation to
mCRL2 in a following paper [3]. They find that mCRL2 provides the right functionality to
model the behaviour of SysML state machines in an elegant way. Which means that they
could model the behaviour of SysML state machines without a lot of extra boiler plate
model code.



4. Background

In this chapter we introduce and provide a basic understanding of the relevant tools
and specifications of this research. First we discuss the features and semantics of the
modelling language used in the EULYNX standard. Then, we describe the tools UPPAAL
and mCRL2. After that we evaluate the differences between the two tools, and establish
the points where they complement each other. Lastly, we look at how we could translate

4.1 EULYNX

EULYNX [9] is a modelling language made for designing and specifying systems in
railway engineering. Development of this standard started in 2014, initialised by railway
infrastructure managers of 6 European countries. It is a visual standard to create graphical
models. These models contain for example use-case diagrams, sequence diagrams,
object relationship diagrams, and state machine diagrams. Because EULYNX is used to
design and specify systems in a graphical way, it is not possible to formally verify them
with existing tools. Therefore we want to translate these models to models that can be
read and verified by formal model checking tools.

The parts of EULYNX that are relevant to this project are the state machines, and how
they can be combined to form complex multi process systems. The state machines are
built with basic components like vertices and transitions between those vertices. These
are extended with features such as guards and effects. To help describe the modelling
features of EULYNX we take a look at an example. This same example will also be used
in the description of the other modelling tools. The example models 4 Vikings that are on
one side of a bridge. The goal is to all get on the other side of the bridge, but they can
only cross the bridge while holding a torch. There is only one torch available and it can be
held by a maximum of two vikings. Lastly, every viking has its own maximum speed at
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Figure 4.1: EULYNX Viking IBD

which they can cross the bridge.

We first take a look at the general definition of the Viking diagram. It is shown in Figure 4.1.
The Viking diagram has three variables of which the torch_time is an input variable,
and the other two are output variables. This represents the data flow between the different
state machines. The torch_time is the amount of time the viking is allowed to hold the
torch for at the moment. The location variable lets other block diagrams know on which
side of the bridge the viking is at the moment, and the request_torch variable makes
sure other processes know if the viking wants the torch or not.

Now for the internal logic of the viking, we look at the state machine specification. This
is shown in Figure 4.2. The viking starts in the NEAR_SIDE state. The first line of the
contents of this state represents the code that is executed on entry of the state. This sets
its output variables to their initial values. On the next two lines the internal behaviour of
the state is described. When the torch_time equals zero, it makes a non-deterministic
choice between setting the request_torch variable to true or false. The transition
between the NEAR_SIDE state and the MOVING_TO_FAR_SIDE state has a guard that
checks if the torch time is more than zero. When this is the case it can take that transition.
The next transition contains a timeout event. It first needs to wait for the amount of time
it takes to cross the bridge, as specified with after(torch_time). The same but the
other way around happens to get from the FAR_SIDE state to the NEAR_SIDE state.

The block diagram definition of the torch state machine is shown in Figure 4.3. It has
as properties the torch_location, torch_time, and requestCount. The property
torch_location keeps track of on which side of the bridge the torch is. torch_time is
zero if no viking is holding the torch or the maximum speed of the vikings that are currently
holding the torch. Lastly, requestCount keeps track of how many vikings currently want
the torch. The internal helper functions the Torch uses in its state machine are listed below
the properties. The definition for these can be found in Appendix A. The input and output
variables are listed below the list of internal operations. For each viking the torch IBD has
as input variable the location of the viking and if they request the torch or not. As output
variables it has for each viking the amount of time for which they are allowed to hold the
torch.

The composition of all the IBDs are shown in Figure 4.4. This shows the dependencies
between the different processes, and the general flow of data.

The full state machine of the torch process is shown in Figure 4.5. The transition between
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Figure 4.2: Viking state machine in EULYNX

CHOOSING and WAITING has both a guard, and an effect. The guard checks for how
many vikings on the same side as the torch currently request the torch. The needed
amount if the torch is on the near side is two, and one for the other side. It is limited to
these amounts, because traveling with only one person from the near side to the far side
does not help with solving the problem of getting all the vikings to the other side. The
same holds for traveling with two vikings from the far side to the near side. When the guard
evaluates to true, it can take the transition, and the effect will set the torch time output
variables for each viking that is currently allowed to have the torch. After that it waits until
all the vikings have moved. The diamond like state represents a choice vertex. When all
the vikings are on the far side, it transitions to the SUCCESS state, and otherwise it goes
back to the CHOOSING state and the whole process is repeated.

The programming language used in the guards, effects, and internal operations is the
ASAL language [2]. ASAL stands for Atego Structured Action Language. It contains only
basic statement types:

• Assignment
• Return
• Operation calls
• If statements
• Multi statements

The expression types contain two interesting types. The PulsedIn and PulsedOut types
are equivalent to the boolean expression, but indicate a different physical signal type. In
EULYNX they mean that once a value is published as a pulse, it can only be consumed/read
once.
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v2_torch_time: Integer

v2_requests_torch: Boolean

v2_location: String

v1_torch_time: Integer

v1_requests_torch: Boolean

v1_location: String

v4_torch_time: Integer

v4_requests_torch: Boolean

v4_location: String

v3_torch_time: Integer

v3_requests_torch: Boolean

v3_location: String

«Operation» init()
«Operation» setTorchTime()
«Operation» getRequestCount(): Integer
«Operation» allVikingsMoved(): Boolean
«Operation» isDone(): Boolean
«Operation» moveTorch()

«Property» torch_location: String
«Property» torch_time: Integer
«Property» requestCount: Integer

«block»
Torch

Torch IBD

Figure 4.3: EULYNX Torch IBD

Figure 4.4: Vikings and Torch IBD composition in EULYNX



4.2 UPPAAL 23

Figure 4.5: Vikings and Torch IBD composition in EULYNX

4.2 UPPAAL

UPPAAL [19] is a model checker which allows the verification of complex systems. It
supports non-deterministic timed state machines which can consist of multiple separate
processes. These can communicate through variables and channels. In order to check
properties of its models UPPAAL has its own specification language. The two main design
criteria of the model checker are efficiency and ease of use. To achieve efficiency, UPPAAL
implements several optimisation techniques. The detailed debug functionalities show their
commitment to usability. All these points are discussed in further detail in the following
sections.

4.2.1 Input language

When creating a model manually, the graphical user interface of UPPAAL gives better
at-a-glance information than the textual model representation. The models are shown as
directed graphs, and you can edit the graphs directly.

To demonstrate this we take a look at the same example used in Section 4.1. The code
for this example was already present in the UPPAAL installation folder, and it is used in
this section. In Figure 4.6 the two process templates of the system are shown. It models
vikings that can only cross a bridge to the safe side while holding the torch. The torch can
only be held by two vikings at the same time, and there are four instances of the viking
process, each with its own delay (how long it takes to cross the bridge).

The processes communicate with each other through the channels take and release.
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(a) Torch (b) Viking

Figure 4.6: UPPAAL model view of the bridge example

These channels and the variable L are declared in the global scope. A light blue take!
synchronisation label triggers an action with the light blue take? label. These edges
can only be taken together. The green edge labels are guards, so that edge can only be
taken if the guard evaluates to true. The dark blue labels are assign statements that are
executed when the edge is taken.

The location of the torch is tracked with the global variable L, so that in the viking model a
guard can ascertain if a viking is in the same place as the torch, and only take the torch if
that is the case. The value of L is changed once the torch is released by the last viking
holding the torch. So if a viking wants to travel to the other side and back again, they
have to take the torch, release it, and then take it again. This is also visible in the way the
process of the viking loops.

To model the different speeds at which the vikings cross the bridge a clock is used. The
variable y is a clock which is declared (not visible in Figure 4.6) in the scope of a viking.
Once a viking takes the torch, the clock is set to zero. The viking can then only release the
torch after the clock reaches a value greater or equal than the delay property of the viking.

4.2.2 Input files

UPPAAL supports three file formats [8] as input:

• XML
• XTA
• TA

Models created using the graphical user interface of UPPAAL are stored in the XML format.
This format supports all the features of UPPAAL 4.0, including the graphical positioning of
model elements. The XTA file format is a more readable format if you want to model in
a textual way. This format does not include the graphical positioning of model elements,
but they can be added with a UGI [10] file. The TA format is the older version of the XTA
format. It does not support some newer features like process templates.

As an example we show the bridge example in XTA file format [31] in Listing 4.1.

Listing 4.1: Bridge example in ‘XTA’ file format.
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1 chan take, release;
2 int [0,1] L;
3

4 process Viking(const int delay) {
5 clock y;
6 state S0, safe, S1, unsafe;
7 init unsafe;
8 trans
9 S0 -> safe {

10 guard y >= delay;
11 sync release!;
12 },
13 safe -> S1 {
14 guard L == 1;
15 sync take!;
16 assign y = 0;
17 },
18 S1 -> unsafe {
19 guard y >= delay;
20 sync release!;
21 },
22 unsafe -> S0 {
23 guard L == 0;
24 sync take!;
25 assign y = 0;
26 };
27 }
28

29 process Torch() {
30 state one, S0, free, two;
31 urgent S0;
32 init free;
33 trans
34 free -> S0 {
35 sync take?;
36 },
37 S0 -> one { },
38 S0 -> two {
39 sync take?;
40 },
41 one -> free {
42 sync release?;
43 assign L = 1 - L;
44 },
45 two -> one {
46 sync release?;
47 };
48 }
49

50 const int fastest = 5;
51 const int fast = 10;
52 const int slow = 20;
53 const int slowest = 25;
54

55 Viking1 = Viking(fastest);
56 Viking2 = Viking(fast);
57 Viking3 = Viking(slow);
58 Viking4 = Viking(slowest);
59

60 system Viking1, Viking2, Viking3, Viking4, Torch;
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The XML file format has the same structure as the XTA format. All the model elements
are declared in scopes denoted by curly brackets. This means that a variable declared in
a certain scope can be accessed by elements that are descendants of this scope, while
elements in parent scopes cannot access these variables. For example the channels take
and release, the location variable L, the delay constants, and the model composition
are declared in the global scope. Inside the process declarations it is possible to declare
process independent variables like in this case the clock variable y. Next to that the states
are listed, the init state is defined, and the transitions are specified. The transition labels
are declared within the scope of the transitions.

When editing an XTA file in the graphical user interface of UPPAAL it automatically creates
a ‘.ugi’ file. An example file is shown in Listing 4.2. It uses the same names as in the XTA
file and provides x and y coordinates for each element.

Listing 4.2: Example ‘UGI’ file for the bridge XTA file.
1

2 process Viking graphinfo {
3 location S0 (195,76);
4 locationName S0(-10,-30);
5 location safe (-17,76);
6 locationName safe(-10,-30);
7 location S1 (-17,229);
8 locationName S1(-10,-30);
9 location unsafe (195,229);

10 locationName unsafe(-10,-30);
11 guard S0 safe 1 (-30,-42);
12 sync S0 safe 1 (-30,-27);
13 guard safe S1 1 (9,-31);
14 sync safe S1 1 (9,-16);
15 assign safe S1 1 (9,-1);
16 guard S1 unsafe 1 (-30,0);
17 sync S1 unsafe 1 (-30,15);
18 guard unsafe S0 1 (9,-31);
19 sync unsafe S0 1 (9,-16);
20 assign unsafe S0 1 (9,-1);
21 }
22

23 process Torch graphinfo {
24 location one (76,195);
25 locationName one(-8,9);
26 location S0 (76,51);
27 locationName S0(-10,-30);
28 location free (-51,127);
29 locationName free(-10,-30);
30 location two (212,127);
31 locationName two(-10,-30);
32 sync free S0 1 (-29,-30);
33 sync S0 two 1 (-8,-30);
34 sync one free 1 (-46,0);
35 assign one free 1 (-42,19);
36 sync two one 1 (-17,0);
37 }

Because requirement specification is also not supported in the XTA file format, UPPAAL
saves the queries to a ‘.q’ file. An example of this is shown in Listing 4.3.

Listing 4.3: Example query file for the bridge XTA file.
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1 //This file was generated from (Academic) UPPAAL 4.1.24 (rev. 29
A3ECA4E5FB0808), November 2019

2

3 /*
4 The system does not contain deadlocks.
5 */
6 A[] not deadlock
7

8 /*
9 There exists a path which results in all vikings being on the safe side

10 */
11 E<> Viking1.safe and Viking2.safe and Viking3.safe and Viking4.safe

4.2.3 Requirement language

To be able to formally express properties of models created in UPPAAL, it provides a
custom property checking language. The language is similar to the commonly used CTL
language, but it does not support nested path formulas, which limits the expressiveness.
This does make the language easier to understand. The path formulas it does support are:

• Possibly: E<> p

Evaluates to true if there exists a path where in some state p holds.

CTL formula: EF p

• Invariantly: A[] p

Evaluates to true if p holds for all reachable states.

CTL formula: AG p

• Potentially always: E[] p

Evaluates to true if there exists a path which results in an infinite loop of in which p
always holds.

CTL formula: EG p

• Eventually: A<> p

Evaluates to true if all possible paths eventually reach a state in which p holds.

CTL formula: AF p

• Leads to: p -> q

Evaluates to true if for every state in which p holds all paths starting from that state
eventually reach a state in which q holds.

CTL formula: AG p => AF q

Next to that, UPPAAL also offers some syntax for querying statistical properties of the
model. This includes constructs that give the probability of a certain state expression
evaluating to true, compare probabilities to a specified bound, the comparison of two
probabilities, and value estimation.
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Both the path formulas and the statistical formulas make use of state expressions.With
these it is possible to query anything in the state. They are basic formulas, also called
predicates, that cannot have side effects. This could be the value of a clock, a global
variable, or even properties defined in the scopes of locations. Common operators like
+, ==, and && can be used here. In addition to that, UPPAAL provides some helper
functions like forall, exists, sum, and deadlock. Especially deadlock is a very
strong expression which can be used only in the requirement language. It specifies a state
in which all processes do not have any transitions they can take, and therefore are stuck
in the current location. The other helper functions can also be used in the programming
language of UPPAAL, so they can appear in the guard and update labels.

As an example we can specify a requirement for the viking example. If we wanted to know
if there exists a path where all the vikings end up on the safe side of the bridge we would
write the following:

‘E<> Viking1.safe and Viking2.safe and Viking3.safe and Viking4.safe’

The E<> bit is the ‘Potentially’ operator, and it evaluates to true if the formula after it holds
in a state in at least one of the possible paths. With Viking1.safe we specify that
‘Viking1’ is in the safe state.

4.2.4 Diagnostics

To demonstrate the diagnostics of UPPAAL, we tell it to check the requirement described
above. As additional option we specify that UPPAAL should look for the shortest trace,
satisfying this requirement. The resulting trace is shown partly in Figure 4.7 as it is too big
to fit entirely in one screen.

In the top right window we see the model instances of the system and in which location
each process is at the moment. To the left of that all the local and global variables are
shown. And in the top left corner we see which transitions can be taken at this point, and
they can even be selected and taken. Below that window in the bottom left corner, we see
the simulation trace. A graphical representation of the trace is shown in the bottom right
window.

4.2.5 Verification algorithm

In its core the verification algorithm of UPPAAL is a reachability algorithm, which looks
for states in which the given constraints evaluate to true. At the same time, the algorithm
tracks how such states can be reached. In their implementation they make use of symbolic
states. This pairs states with the given requirements which hold in that state. UPPAAL
gains much performance by preprocessing the model using the following techniques.

Most of the computation time is spent doing checks on the symbolic states and comparing
them with each other. Because of this, the overall performance can be greatly improved by
optimising these operations. Data structures which support such operations in an efficient
way are Difference Bounded Matrices. They were implemented with some alterations [20],
which resulted in a big performance boost.
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Figure 4.7: Trace view of the vikings example.
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Next to that, UPPAAL does some static analysis on the symbolic states to check if some
are redundant and therefore can be removed. This reduction of the symbolic state space
will also make the algorithm more efficient.

On a final note, UPPAAL caches the generated symbolic state space so it can be reused
to check other properties, if more than one requirement has been given to evaluate.

4.3 mCRL2

To determine the benefit of an additional translation to UPPAAL next to the one of mCRL2
we also take a closer look at the tool mCRL2 [13] and see where the two tools complement
each other. This section therefore contains a short description [12] of the tool. It is a newer
version of the tool µCRL, which was designed to be minimal. With mCRL2 it is possible to
analyse abstract models of concurrent processes that can communicate with each other.
It utilizes process algebra to describe its input models. These models can be tested with
properties specified in the language of the modal mu-calculus.

4.3.1 Input language

The input models of mCRL2 are specified in a textual way. The definition of the system is
split up into separate sections of the file, where each section starts with a specific keyword.
In its simplest form the model definition contains three sections:

• The definition of all the actions possible by the system. This section is prefixed by
the keyword act.

• The definition of the processes of the system. This section is prefixed by the keyword
proc.

• The definition of the initial state or the initialization of the system. This section is
prefixed by the keyword init.

The actions section contains a simple list of all the action labels of the system. In the
process section, the processes are described using process algebra. A simple simple
example would be X = a . b . X. This process would accept an a action, then a b
action, and then it would repeat itself again recursively.

An extra feature mCRL2 supports is that the action labels and process declarations
can take parameters, for which constraints can be written to express more complicated
systems.

To further get an understanding of the modelling language, we take a look at how the viking
example, discussed in Section 4.1, can be modelled in mCRL2. This model is used as an
example in the online tutorial for the tool [30]. The model is shown in listing Listing 4.4.

Listing 4.4: Vikings example in mCRL2.
1 % Specification for the rope bridge problem
2 % Written by Bas Ploeger, June 2008.
3

4 sort Position = struct start | finish;
5
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6 act forward_viking,
7 forward_torch,
8 forward_referee,
9 forward: Int # Int;

10

11 back_viking,
12 back_torch,
13 back_referee,
14 back: Int;
15

16 report: Int;
17

18 % Models the torch which can move to the other side of the bridge
19 proc Torch(pos:Position) =
20 (pos == start) ->
21 sum s,s’:Int . forward_torch(s,s’) . Torch(finish)
22 <>
23 sum s:Int . back_torch(s) . Torch(start);
24

25

26 % Models an viking who can move to the other side of the bridge with
27 % its designated speed
28 proc Viking(speed:Int, pos:Position) =
29 (pos == start) ->
30 ( sum s:Int .
31 (s > speed) -> forward_viking(speed,s) . Viking(speed,finish)
32 <> forward_viking(s,speed) . Viking(speed,finish)
33 )
34 <>
35 back_viking(speed) . Viking(speed,start);
36

37

38 % Models the referee who counts the number of minutes passed and the
39 % number of vikings that have reached the far side of the bridge
40 proc Referee(minutes:Int, num_finished:Int) =
41 sum s,s’:Int . forward_referee(s,s’)
42 . Referee(minutes + max(s,s’), num_finished + 2)
43 +
44 (num_finished < 4) ->
45 sum s:Int . back_referee(s)
46 . Referee(minutes + s, num_finished - 1)
47 <>
48 report(minutes) . Referee(minutes, num_finished);
49

50

51 init allow( { forward, back, report },
52 comm( { forward_viking | forward_viking |
53 forward_torch | forward_referee -> forward,
54 back_viking | back_torch | back_referee -> back },
55 Viking(1,start) || Viking(2,start) ||
56 Viking(5,start) || Viking(10,start) ||
57 Torch(start) || Referee(0,0)
58 ));

On line 4 the datatype Position is defined. It can be seen as some kind of enumeration,
which can have the value start or finish. These resemble the two positions the vikings
and the torch can have, relative to the bridge. Next, the possible actions are defined. Each
entity has a forward and backward action with the same parameter types. Both parameters
contain the time an viking who is holding the torch needs in order to cross the bridge. The
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first one is always the one that takes the longest time. This is achieved with a constraint
written in the Viking process. The backward motions however only have one argument,
as it does not benefit the vikings to travel back with two people.

The definition of the Torch process on line 19 is very straightforward. It can do a forward
motion or a backward motion depending on its current location.

The Viking process is a little more complicated. It takes two arguments, its speed (minutes
it takes to cross the bridge), and its current position. Depending on its position it can do a
forward motion. On line 31 it checks if its speed is greater than s, which is a free variable
that represents the speed of the other viking crossing the bridge together with this viking.

Lastly the Referee process is defined to keep track of the time that has passed, and to see
if all the vikings have crossed the bridge. It takes as arguments the number of minutes that
have passed, and the total number of vikings on the right side of the bridge. It can record
a forward and backward motion of the torch, and if all the vikings are on the right side of
the bridge it will take the report action with as parameter the number of minutes that have
passed. On line 46 it is visible how the referee keeps track of the time and the number of
vikings on the right side by recursively calling itself and incrementing its parameters.

On line 51 it starts the definition of the system composition by stating that only the actions
forward, back, and report are allowed. The forward and back actions are defined
in the first part of the comm block. It specifies that for example the forward action consists
of two forward_viking actions, a forward_torch action, and a forward_referee
action occurring simultaneously. In the second part of the comm it specifies that the system
consists of four viking processes, a torch process, and a referee process running in parallel.
Within the definition the initial parameters of the individual processes are also given.

4.3.2 Requirement language

As requirement language, mCRL2 supports the modal mu-calculus [4] with their own
syntax [25]. It is split up into State formulas, Regular formulas, and Action formulas.

With the action formulas you can specify action labels used in a process of the model, or
data expressions. Data expressions can access state variables and may contain common
arithmetic operators. These formulas are extended with useful functions like forall and
exists to help with specifying a state condition.

The regular formulas wrap around the action formulas to combine Action formulas or
quantify them. It contains 4 operators:

• formula + formula specifies a choice between the two formulas.
• formula . formula specifies a concatenation of the two formulas.
• formula * repeats the formula zero or more times.
• formula + repeats the formula one or more times.

The regular formulas are used inside the State formulas. The State formulas we are mainly
interested in are the ones related to the modal mu-calculus:

• mu StateVar . StateForm maps to the mu-calculus formula: µX .φ
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Figure 4.8: Model view of the vending machine example in mCRL2

• nu StateVar . StateForm maps to the mu-calculus formula: νX .φ
• [ RegForm ] StateForm maps to the mu-calculus formula: [[a]]φ
• < RegForm > StateForm maps to the mu-calculus formula: 〈a〉φ

StateVar contains a declaration of a state variable, StateForm is recursively a State formula
again, and RegForm is a Regular formula containing Action formulas.

4.3.3 Diagnostics

As a simple example we take the vending machine [1] from the mCRL2 website. The
model description and the mCRL2 modeling interface are shown in Figure 4.8.

Here we can see the separate model sections act, proc, and init as described before.
The User process can only do the action ins10 (which means insert 10 currency inside
the vending machine), and after that an action optA (which means select the apple in the
vending machine). Next, the user can repeat those actions in the same order. The vending
machine’s actions are ‘accept 10 currency’, and then put/give an apple. These ac-
tions can also be repeated infinitely in that order. In the innit section, the ins10|acc10
-> coin, optA|putA -> ready part means that the actions ins10 and acc10 syn-
chronize and emit a coin action. The same for the optA and putA actions respectively.
The User || Mach part specifies that the two processes User and Mach run in parallel.

In Figure 4.9 an example diagnostic trace is shown for the property [ true* . ready
. !coin ] false, which means that after every ready action a coin action takes
place.
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Figure 4.9: Diagnostic trace view of a requirement of the vending machine example.
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Aspect UPPAAL mCRL2

GUI • Graphical representation is
possible.
• Easy at a glance information.

• Only graphical snapshots
can be generated of the
model.
• The model cannot be edited

in a graphical way.

Textual • The structure of the model
uses scopes.
• Contains a C like language

for update actions, guards,
and invariants on locations
and edges.
• Language describes the

structure of state machines.

• Data is scoped, but function-
s/processes are not.
• Language uses process alge-

bra to specify processes.

Table 4.1: Moddeling in UPPAAL compared to mCRL2

4.4 UPPAAL compared to mCRL2

To further support the choice of using UPPAAL to verify EULYNX models in addition to
mCRL2 we need to take a look at the advantages and disadvantages of UPPAAL compared
to mCRL2. In the paper ‘Verifying liveness in supervised systems using UPPAAL and
mCRL2’, Markovski and Reniers [24] compare the two tools by applying both to a case
study. Their findings are used as well as my findings in the comparison below. The aspects
of the two tools can each be separated into three, the modelling language, the requirement
language, and the diagnostics.

4.4.1 Modelling language

In UPPAAL you can create models in two ways, with a textual representation of the
model, or through a graphical user interface. Here the models are created in an object
oriented way. mCRL2 only supports textual representations of models. These models are
described in a more formal way, focusing on the specifying the behaviour of a system and
its processes.

4.4.2 Requirement language

UPPAAL provides its own requirement language. The formulas that can be created with
this language is a subset of CTL. mCRL2 contains a syntax with which it is possible to
create modal mu calculus formulas that can be used for checking the model.
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Aspect UPPAAL mCRL2

Path expressions • Is a subset of CTL.
• Nested path expressions are

not possible.
• Limited expressiveness.
• Easier to understand.

• Supports the modal mu-
calculus.
• Superior expressiveness.

State expressions • State based expressions.
• Full access to all the vari-

ables of the state.

• Action based expressions.
• Not possible to access state

variables directly.

Table 4.2: Requirement specification in UPPAAL compared to mCRL2

Aspect UPPAAL mCRL2

Traces • Can give a trace as a counter
example or a witness.
• Can walk through the trace.
• Shows the whole state at ev-

ery step.

• Gives traces only as counter
examples, no witnesses.
• Can walk through the trace.
• State of individual compo-

nents are difficult to untangle.
• Provides multiple tools to

make traces easier to read.

Table 4.3: Diagnostics in UPPAAL compared to mCRL2

4.4.3 Diagnostics

Both tools have the ability to check the specified requirements in a graphical user interface,
and give counterexamples when a property is not satisfied. The information UPPAAL
gives, however, is a little more accessible.



5. Translation

In this chapter we discuss the structure and design of the EULYNX to UPPAAL translator.
First we go into the EULYNX interpretations that are suitable for this research and core
design decisions of the translator, followed by the general structure of the generated model.
After that we zoom in on the different steps the translator takes and how the different
components in EULYNX are translated. This is followed by a general overview of how the
fundamental elements of EULYNX models are translated.

5.1 Possible EULYNX interpretations

Because the semantics of UML, SysML, and EULYNX are not exactly defined and some
behaviour is ambiguous, there are multiple interpretations of the modelling language. Next
to the goal of creating a translation that produces as similar behaviour as possible to the
mCRL2 translation, we also look at which interpretations fit best with UPPAAL as target
language. There are two main points where we have to decide which path we should take,
because these lay the foundation of the semantics of parallel state machines. Other minor
interpretation choices follow from these decisions. The first is how multiple state machines
should interleave, and the second is how alterations in the memory are shared between
the different state machines.

5.1.1 State machine interleavings

How the different parts of the model run together lays the foundation for how the rest of the
model needs to be implemented. UPPAAL gives the different processes the possibility to
do a step (take a transition) at any time, given that there are no time constraints or channel
synchronisations. All these steps of the different processes are done sequentially. It is
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possible that one process takes many steps, while the other stays in its current state, again
given there are no time constraints or channel synchronisations. This is also a possible
interpretation of EULYNX.

The other interpretation we consider for this subject is where the model runs on cycles
[29], and that in each cycle all the state machines do one step. This prevents that in
some traces one state machine is being blocked whiled the other is constantly activated.
It also has the added benefit of a reduced state space, because there are less state
machine interleavings possible. While the individual steps still occur sequentially, each
state machine has done one step before the cycle repeats. This makes it also possible
to implement in UPPAAL. To orchestrate the processes to take one step each cycle,
a separate process is required that manages the cycles of the model and triggers the
different processes to take a step.

5.1.2 Memory sharing

State machines in EULYNX are connected to each other via ports and flows. These can
also be seen as properties where a change in value is reflected on the connected ports.
The other state machine can then read the new value of this property. How these variable
alterations are handled can be done in several different ways. The current translation to
mCRL2 uses queues for this. Each alteration is put in a queue and handled separately by
the receiving state machines. UPPAAL does not offer queues as a specific functionality,
however they can be implemented using arrays and a bit of additional code for the different
operations.

A different interpretation is the variant with direct memory sharing. In this variant the
state machines operate on shared variables, so the change is visible to the other state
machine immediately. Implementing this in UPPAAL is fairly straightforward as UPPAAL
provides a global scope in which shared variables can be declared. Another variation of
this interpretation is where there are two variables declared for every port connection, the
input and the output side. With this it is possible to publish all changes at the same time,
by creating an atomic operation that writes the values of all the source sides of the flows
to the variables corresponding to the target sides of the flows.

5.1.3 Decisions

When looking at the first option for possible state machine interleavings, the main drawback
we see is the bigger state space compared to the more strictly organised cycle variation.
However, a benefit of this interpretation is that the model requires less orchestration, as
the different components can act on their own. We also see that the first option regarding
memory sharing in the model could increase the state space of the model, as every
change in the memory needs to pass through a queue which adds more states in between.
It also requires extra code in UPPAAL to manage the queues as they are not available as a
standard feature. Direct memory sharing with a publication phase requires little additional
code, and it does not increase the state space by adding extra steps. This interpretation
on memory sharing also works well with the cycle approach to model orchestration. The
publication of the port values to the other state machines can become a step in the
execution cycle of the model. Therefore we choose to combine the cycle interpretation for
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the state machine interleavings, with the direct memory sharing interpretation. These fit
the UPPAAL modelling language the best, along with our goals for the translation.

5.2 General design

We define the order of the model execution steps with a clock cycle. This approach is
similar to the one described in [29]. Here all the state machines and their sub-regions are
synchronised by following the steps below.

• State machines finish one step
• Publish port values
• Update event queue
• Pop first event from queue

First, the state machines have to do one step, and finish their run-to-completion until they
are in the next state. With ‘run-to-completion’ we mean the steps a state machine has
to take to transition from one state to the next state. These steps need to be completed
before the next cycle can begin, hence the term ‘run-to-completion’. This means that all
the exit, update, and entry behaviour that should be triggered by taking that transition has
been executed. Here it is important that all state machines take a transition or internal
behaviour step if their is one enabled. It is not allowed that one state machine does not do
anything while it can do something.

Then when all the state machines are stable, the port values are published. This is
done by taking the values of the output side of the port and assigning those values to the
input sides of the ports.

Next, the event queues of all the state machines are updated based on the newly
updated variables.

After that, the event managers will start taking from their queue. When a queue is
empty the cycle starts again with the first step. Otherwise, the first item of the queue is
popped and is triggered so the state machine and its children can react to it. If there is
no state machine which can handle this event, this event is discarded and another one is
taken from the queue until either the queue is empty or one of the state machines could
take care of an event. When all the event managers are done with updating and popping
from the queue, the cycle goes back to the first step. Note, that some state machines
already started with executing the behaviour triggered by an event. These will finish their
run-to-completion and will not take an additional step this cycle.

To realise the synchronisation of state machines in this way we chose to create a separate
process for each state machine to manage the event queue of that state machine. This
removes additional complexity from the main state machine’s process, which would have
made it more difficult to read. Next to that, in order to force processes to do a step, the
orchestrator process is introduced. This process will keep track of where in the cycle the
model is, and signal the state machines to take a step if they are able to.
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5.2.1 Existing solutions

Before we designed our own translator, a few papers on similar translators have been
taken into consideration. Though inspiration was taken from these papers, we could not
reuse those translations, as their interpretations of the state machine semantics tend
to differ and the EULYNX dialect adds more features then are available in SysML state
machines.

In the paper by Muniz et al [26]. they use additional processes to manage events in the
model. These processes are called middelware automata. They created an automata for
putting events in the queue, and one for taking events from the queue and dispatching
them. Their event system uses priorities, so the event queue is priority based. This does
not match with our interpretation of EULYNX events, but we do use the idea of the event
queue being managed by separate processes. Additionally we combine the queue update
process and event dispatching process into one process. The complete explanation on
how we implemented them is in Section 5.3.2.

A single event queue manager process is also used by Knapp et al. in their paper on
translating UML state machines to UPPAAL [18]. Their event queue is also not priority
based, but in their implementation they do not use model execution cycles. The event
manager process can dispatch events and add events to the queue at any time. Another
translation strategy they use is flattening the whole model to a single UPPAAL process.
The active state configuration of a state machine with multiple sub-regions is encoded in
a single UPPAAL state. From there are all the transitions calculated which are possible
for that specific state configuration. While this results in an output model which is barely
readable, it does prevent the possible extra overhead of synchronising between multiple
UPPAAL processes. Because of our goal that we want to keep our output model as simple
and readable as possible we choose to not flatten the model in this way, but instead
create a separate UPPAAL process for each state machine and sub-region. This is further
explained in Section 5.3.1. Another interesting note they make is how they clean the
unused part of the event queue array. This prevents similar model states being classified
as different, because UPPAAL takes the whole array into account when comparing different
states. If you do not reset the unused part of the array, there could be data in the rest of
the array that is different in some traces while it is not being used anymore.

5.3 Structure

In this section we will discuss the structure of the generated model. In order to automatically
translate a EULYNX system to an equivalent model in UPPAAL, we chose to create a
framework around the state machines. This moves certain model management duties to
dedicated processes, which keeps the state machine processes more readable. These
extra components were briefly discussed in the previous section, and are explained in
further detail here.
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Figure 5.1: Model architecture

5.3.1 State machines as processes

The general model architecture on a global level is shown in Figure 5.1. Each state
machine is represented as its own process in UPPAAL. A EULYNX state machine can
have many properties in the form of ports and variables. These properties cannot be
stored as local variables of a process, because those cannot be accessed by other
processes. This is necessary for example for the data transmission between ports of
different state machines. Therefore those are stored in the global scope of the model.
This does come with the downside of the model being less readable, but we mitigate
this effect by organising the variables in a separate struct per state machine. This also
fixes the possible naming duplicates between two state machines. All the operations of
each state machine are translated to UPPAAL functions which are declared in the global
scope. The reason for this is that we represent composite states and sub-regions of a
state machine as separate processes in UPPAAL, and these process also need access to
those functions, so they could not be declared in a process.

Composite states and regions

Composite states in EULYNX add the possibility for parallel behaviour. To support this
in the generated model we chose to create a new process for each region. It is also
possible that a region itself contains a composite state with sub-regions. To distinguish
the processes from each other, the name of the process is prefixed with the name of the
parent process. Each state machine process, its region processes, and event manager
process will only access the variables in the state machines struct.

All processes created from a region or sub-region start in a waiting location. When the
parent process of one of those processes enters the corresponding composite state, they
activate their sub-processes by way of a channel synchronisation. A simple example of a
state machine with a single sub-region is shown in Figure 5.2. The state machine is called
"STM", and it has a composite state called "C1". This composite state has itself an exit
transition to S6 which if taken should stop the sub-region from running. Next to that the
region has two transitions which terminate the region and cause the parent state machine
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Figure 5.2: Simple composite state example

Figure 5.3: Simple composite state example in UPPAAL

to go to either state "S4" or state "S5".

The simplified translation of the example to UPPAAL is shown in Fig. 5.3. This consists of
two processes, one called "STM" and one called "STM_C1_1". The latter represents the
single sub-region of STM. For this example the states of STM are translated one to one.
Some edges have two channel synchronisations written on them. These can be seen as
two sequential transitions with a committed state between them, as it is not possible in
UPPAAL to have two channel synchronisations on a single transition.

The child process starts in the waiting state marked "X". Here it stays until it receives on
the start_STM_C1 broadcast channel. The states S2 and S3 are translated normally,
but both get an extra transition to the waiting location X with the a receive synchronisation
on the broadcast channel stop_STM_C1. This allows the parent process to stop the
child process at any time. For instance if the parent process takes the transition to S6.
Lastly, the two transitions between S3->S4, and S3->S5 cross the border of the region.
Therefore they are translated in the child process as transitions back to the waiting state
with a sending action on a non-broadcast channel. This signals the parent process to go
to the state the child process would have gone to outside its region.
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5.3.2 Event managers

As EULYNX state machines make use of event queues to handle changes in their data,
we need to keep track of these queues in some way. This is done with a separate event
manager process for each state machine. Because the sub-regions work with the same
event queue, we only create one per state machine as is shown in Figure 5.1. The thing
we need to keep in mind when dealing with sub-regions is that the regions at a lower depth
in terms of nesting depth have priority when handling events. So if an activated state in a
sub-region is able to handle the event, and the activated state in their parent is also able
to handle the event, the event will be handled by the state in the sub-region.

An example of how a generated event manager process could look like in UPPAAL is
shown in Figure 5.4. Here we consider a state machine stm. It has a max nesting depth
of 1, so it has sub-regions, but those do not have sub-sub-regions. It has two events:

0) y == 2
1) x == 2

An event manager has several helper variables. One is the queue_index variable. This
holds a pointer to where the next queue element can be stored. So if the queue is
empty, it will read 0, and if the queue contains 2 elements it will read 2. To keep track of
when the expression of an event becomes true, the event managers have an array called
event_state in which the evaluation of the expression in the previous cycle is stored.

The event manager starts in the NEUTRAL state. It waits for the orchestrator process to
send on the event_check channel. Then it checks for every event expression if the
current value is different than the one in the previous clock cycle. If an expression has
become true, it will add it to the queue. We chose to create transitions for each event
individually instead of putting all checks in a function on one transition. Otherwise the
order in which events are being put in the queue would have been deterministic. Once the
event_state array has been fully updated, it can either go back to the initial state if the
queue is empty, or to the TRIGGERING state if the queue is not empty.

How events are handled is as follows. If the active state of a state machine process is
waiting for an event it is listening on one of the <stm_name>_handle_event_<depth>
channels. The depth part of the channel name signifies how deeply nested the state
machine is at that point. The most deeply nested states in the state machine have priority
over those of their parents when it comes to handling events, so therefore the event
manager first signals on the broadcast channel with the highest depth number. Transitions
that receive on a handle_event channel have a guard that checks if the event ID at the
start of the queue is the one they are waiting for. If this is not the case, that process will do
nothing. If the current event is the one the process is waiting for, it will take that transition
and set their event_handled variable on true. From that variable the event manager
can determine if the event has been handled by a state machine. If it is handled it will pop
it from the queue and return to the NEUTRAL state, otherwise it will try again on a lesser
depth in the state machine. If the event has been triggered on all the levels of the state
machine and could not be handled by a single one, that event is popped from the queue,
and the same process starts with the next event in the queue. Unless the queue is empty.
In that case the event manager goes back to the NEUTRAL state.
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Figure 5.4: Event manager example

In a previous implementation of event managers, we implemented the priority of the
different state machine depth levels with UPPAAL’s channel priority system. Each state
machine depth event channel had a priority in the order of most deep first. With this
UPPAAL handled the order of execution for us. However, during testing we found out that
UPPAAL limits the property checking language when the model contains channel priorities.
In this case the operators A<>, E[], and -> cannot be used. The deadlock predicate
is also excluded. Therefore we opted for the aforementioned approach without channel
priorities.

The overall coordination of the different processes is displayed in Figure 5.5. Here we
consider a model with two blocks, but we focus on only block A. A state with a red
colouration is considered a committed state. All the processes start in a neutral state. It
is possible that a state machine process can take a transition and start handling all the
behaviour related to that. The orchestrator process waits until all the other processes
are in a stable state. This includes state machine processes, event managers, and the
environment process. When this is the case the orchestrator process can send the event
check signal. When this transition fires, all the port values are published so all the state
machines have each others updated values. The event check signal will trigger the event
managers to start updating the event queue, and later on pop elements from the queue if
there are any. This can make a state machine begin a step, which could be for example
taking a transition and executing all the entry and exit behaviour connected to it. Next, the
orchestrator process will wait for all the event handlers to be in a neutral state. Then, it will
send a signal on the broadcast channel do_step. This will trigger all the state machines
to do a step if they are able to and have not already done so in this cycle. And then the
cycle repeats.
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Figure 5.5: State machine orchestration
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Figure 5.6: Environment process

5.3.3 Environment

To simulate the environment, we created an extra process. An example of one is shown
in Figure 5.6. The functionality of the environment process is simple. It only changes
the input end of environment ports in a non-deterministic way. Creating a location with
a self-loop for every possible change to the environment leads to unnecessarily many
possible executions. To decrease the complexity and unnecessary behaviour we limited
the environment process by letting it change each port at most once every cycle. This is
what the port_changed boolean array is for. This array is reset to all false at the end
every cycle on the transition back to the neutral state.

Next, we also saw that very big environment processes could fill the window with possible
transitions of the manual simulation screen in UPPAAL with a lot of options. For big models
there could easily be a hundred extra possible transitions. To keep this window more clear,
we added an extra state with an empty transition, so instead of always seeing one hundred
extra options, you at first see only one extra option. When you do want to change the
environment, you take that extra transition, and all the extra options become available.

5.3.4 Orchestrator

To keep the behaviour of the state machines in a cycle and force them to do a step each
cycle we created an orchestrator process. An example is shown in Figure 5.7. This model
contains one state machine called bridge, and that state machine contains a composite
state called OPENING with a single region. As described in the sequence diagram of
Section 5.3.2, the orchestrator process checks when the model execution cycle can go
to the next step. First it waits for all the processes to be in a stable state. When that is
the case it can send the event_check signal and publish all the port values so the event
managers can update their queues and send their events to the state machines. When all
the event managers are done, the orchestrator process sends a do_step signal to make
the state machines that did not take a transition this cycle and can, do so.
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Figure 5.7: Orchestrator process

5.3.5 Data management

As stated before, all the properties of a state machine need to be located in the global
scope so other processes can also access those variables. These variables are organised
in a struct per state machine. An example is shown in Listing 5.1. The name of the struct
uses the state machine name (IBD name) and is prefixed with str_.

Listing 5.1: Example state machine struct
1 struct {
2 bool Is_Open;
3 bool Button_Pressed;
4 int Counter;
5 } str_bridge = { false, false, 0 };

The basic programming language used in EULYNX specifications is ASAL. This is in terms
of functionality very similar to UPPAAL, so the translation is very straight forward. However,
there are a few additional steps required. In terms of data types EULYNX has the same
types except for string and pulse types.

Strings can be used in EULYNX, but are not supported in UPPAAL. However, strings in
EULYNX can be considered as constants. There are no operations done on strings, so
give each different string an ID and treat them as integers in UPPAAL. Here we assume
that the source model does not contain any type mixing, so regular integers and string ID
integers are kept separate.

The type ’pulse’ is a special boolean type that can be used in EULYNX which can only
be read once after it has been set to true. After it is read it is set back to false. In our
translation we reset the pulse variables to false after one cycle. Because of this, the event
managers had to change a little. If a pulse port is set to true, reset back to false at the end
of the cycle, and set to true in the next cycle, it should be able to trigger an event in both
cycles. However the event managers check the difference between cycles. So from the
event managers’ perspective it stayed true for two cycles. We solved this by resetting the
event_state array for all events that contain pulse variables to false after each cycle.

Publishing the port values at the end of the cycle is done with a single generated function.



48 Chapter 5. Translation

For every flow in the model it copies the value of the output port variable of the flow to
the input port variable. If the port is of type pulse, it also sets the output port variable to
false, so the input port is automatically set to false at the end of the next cycle if the
pulse port is not set to true again. An example publish_port_values() function is
shown in Listing 5.2.

Listing 5.2: Example publish port values function
1 void publish_port_values() {
2 str_light.Is_Open = str_bridge.Is_Open;
3 str_bridge.Button_Pressed = env.bridge.Button_Pressed;
4 env.bridge.Button_Pressed = false;
5 }

In the declaration of functions in UPPAAL, the order matters and recursion is not allowed.
Specifically, a function needs to be declared before it is used in UPPAAL. The operations in
jEULYNX are not ordered in such a way that takes care of this. Therefore we implemented
a simple algorithm that orders the functions based on dependency (Topological sort, depth
first search [6]).

5.4 Translation steps

As a starting point we use the existing DSL called jEULYNX [3] to specify models of the
EULYNX. We also reuse some preprocessing steps that remove things like overlapping
blocks. We translate the resulting model to an intermediate model of UPPAAL that we
created in Java. This is a common model driven engineering [17] practise where first
the meta models (a model that describes the structure of a model) of the source and
target models are created, and the translation is built by mapping elements of the source
meta-model to the target meta-model. This allowed us to work on the printing of the model
file separately from the actual translation, and prevented us from overcomplicating the
translation by doing multiple things at the same time. The translation part can be split up
in a few major steps. These are shown in the sequence diagram of Figure 5.8.

In the first step we create the global declarations. This is done by looping over all the
blocks in the model, creating an UPPAAL struct for each, and putting all the variables of
the block in that struct. Additionally, the operations of that block are also translated. For
this we created an AST walker, which recursively traverses the ASAL AST and converts it
to the UPPAAL equivalent for which we also created a model in Java.

Next we loop again over all the blocks of the model and translate each one to an UPPAAL
process (in some cases multiple processes). This is done with a state machine visitor
that functions like a recursive state exploration algorithm. It traverses the state machine,
starting at the initial state, and builds the UPPAAL process bottom up. The entry locations
of the states that have already been visited are saved and reused. When a composite state
is encountered, the visitor creates a new visitor for each region of the composite state and
lets them explore. All the created processes and other things like created synchronisation
channels are returned to the caller. After a state machine is translated, its corresponding
event manager is also created.

Lastly, the orchestrator process and the environment process are created.
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Figure 5.8: Translator sequence diagram
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5.5 Translation of basic elements

In this section we describe how the basic components of EULYNX are translated to
UPPAAL. Specifically the simple state, composite state, transitions with and without events,
and internal behaviour with and without event are discussed. These components are
explained in further detail with the help of translation templates. These are figures in which
a specific part of the target UPPAAL model is shown. In these figures the same colour
coding is used as in the UPPAAL tool. Green is used for the guards of a transition, blue for
update behaviour, and teal for channel synchronisations.

5.5.1 Simple state

The translation template of a simple state in UPPAAL is shown in Figure 5.11. This is a
translation pattern which is reused for each simple state. The simple state in EULYNX
is a state which can have entry, exit, and internal behaviour. Any transition to a simple
state first lands in the Entry point location. This is a committed location that has a single
transition to a waiting location (labelled with a "-"). The entry behaviour of the simple state
is put on the transition from the Entry point to the waiting state. In the same transition the
process’s is_stable variable is set to true, because the run-to-completion of this state
machine is done. Once the model can move on to the next step in the execution cycle, the
event_check channel is signalled and the process moves from the waiting location to
the Main location of the state. The waiting location and the Main are not committed, so in
a later stage time constraints can possibly be implemented. All the outgoing transitions of
the EULYNX state have as source location the Main location. Also the internal behaviour
starts from here.

5.5.2 Transition

A transition of a simple EULYNX state to another state in the same region is translated to
a single UPPAAL transition. The translation template for this component is also shown in
Figure 5.11. This transition has as source the Main location of the EULYNX state and as
target the Entry location of the successor state. A condition on the EULYNX transition is
directly translated to UPPAAL code and put as a guard on the UPPAAL transition. Exit
behaviour of the previous state and the transition effect can also directly be translated
to UPPAAL code and added to the update behaviour of the transition. Note that the
transition effect code is added after the exit behaviour code, in order to conform to SysML
specification. Additionally the is_stable variable of the process is set to false, since
the process has started a run-to-completion. Because the transitions shown in Figure 5.11
are not triggered by an event, they are triggered by orchestrator process via the do_step
channel.

The translation template for a transition with an event is shown in Figure 5.9. The update
statements of the transition and the condition are translated in the same way, but a check
if the event of the transition is in the first position of the event queue is added to the
guard. The event id is a number generated during the translation to identify each different
event in a state machine. The other thing that is different from a regular transition is that
synchronisation label. On this transition it waits for a handle_event synchronisation,
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which is signalled by an event manager process. Together with the guard it makes sure
that this transition is only taken when the correct event occurs.

5.5.3 Internal behaviour

As internal behaviour can be seen as a self loop where the state machine does not exit the
current active state. Therefore no exit or entry behaviour is executed, and the transition
only carries a condition, transition effect, and possibly an event. The translation template
for internal behaviour without an event is shown in Figure 5.11 as the transition from the
Main state to the waiting state marked with a dash. Note that it does not update the
is_stable variable as the process is in a stable state in both the source and target
location. The template for internal behaviour with an event is shown in Figure 5.10. Like
the the transition in the previous section, the only changes are the addition to the guard,
and synchronisation on handle_event instead of do_step.

5.5.4 Composite state

The translation template for a composite state is shown in Figure 5.12. The structure
of this state in UPPAAL is very similar to that of a simple state. The first difference is
the added start_regions synchronisation on the edge from the Entry location to the
waiting location. This sends a broadcast signal to all the UPPAAL processes that represent
the regions of this composite state. Next, it waits just like in the simple state for the
orchestrator process to send the event_check signal so it can transition to the Main
location. Internal behaviour is done in the same way as for a simple state.

Where the template starts to differ a lot from the simple state translation template is in the
outgoing transitions. Here we need to make sure that the regions are stopped correctly
and that the exit behaviour is executed in the correct order. The transition shown at the
top right of Figure 5.12 is an example of a transition with an event from the composite
state to a different state. The first part takes care of listening for the correct event, and
the other regular transition elements including the condition and update behaviour. This
UPPAAL transition goes to a committed location where it waits until the processes of the
regions are in a stable state, otherwise they cannot be stopped. Once this is true, the
process transitions to another waiting location while it signals the regions to stop via the
stop_region channel. Then it waits until all the regions have successfully terminated
and it takes the transition to the Entry location of the successor state. This last transition
contains the exit behaviour of the composite state. In this way the exit behaviour of the
states in the regions is executed before the exit behaviour of the parent state.

The transition shown in the bottom right of the same figure is an example of a transition
that is triggered by a EULYNX transition that has as source state a transition inside a
composite state region and as target a state outside that region. This should terminate the
region process and move the active state of the parent process from the composite state
to the target state. Instead of waiting for a do_step or handle_event synchronisation,
the process waits for a goto_state synchronisation. In the actual output model this
channel has a more detailed name, including which process should go to which state. The
UPPAAL transition with this synchronisation is also copied to the waiting location before
the Main location, because the process should be able to synchronise on this channel
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while is_stable is set to true. In earlier iterations of the translation this extra transition
was not added, which resulted in a deadlock when the composite state took an internal
behaviour transition and the region transitioned to an external state. This was detected
with the validation described in Chapter 6.

Figure 5.9: Transition with event translation to UPPAAL

Figure 5.10: Internal behaviour with event translation to UPPAAL
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5.6 Element naming

In this section we describe the naming of different elements in the output model of the
translation. We look at elements that will be referenced in the UPPAAL properties.

One of the main elements that will be referenced are the properties and ports of the
different EULYNX state machines. As described in Section 5.3.5, all the properties and
ports have a corresponding variable declared in the struct of that state machine. These
variables can be referenced by writing str_<stmName>.<portName/propName>. Di-
rectly referencing the output side of ports to the environment is also possible by writing
env.<stmName>.<portName>.

The state machines and their regions are translated to processes as described in Sec-
tion 5.3.1. The main process of the state machine is called the exact same as the name it
is given in the jEULYNX framework. Sub-processes created from regions of composite
states are named <parentProcName>___<stateName>_<regionNumber>. The re-
gion number is an index starting at zero and incremented by one for each region. Because
composite state regions themselves can also contain composite states, the name of the
parent process is used instead of the state machine name. For example if we have a state
machine called ‘stm’ which has a composite state called ‘A’ and the first region of that
composite state has a composite state called ‘B’, the process name of the first region of
state ‘B’ would be called stm___A_0___B_0.

The main UPPAAL location for each EULYNX state is named <name>_<type>. The
type of the state is added for easier debugging. A couple of example location names
are CONNECTING_Composite and ERROR_Simple. In an UPPAAL requirement you can
refer to a location of a process with <procName>.<locationName>, so that could look
like stm.A_Composite.

Each state machine can also have functions which in EULYNX are called operations. These
are directly translated to UPPAAL code, and can be referenced by writing <stmName>___
<operationName>() with optional function arguments.

This naming scheme was used to provide predictable variable names and give a better
overview of the model in debugging. However it is possible that names can clash in very
specific scenarios, that reserved words of UPPAAL are used, or that the names clash with
the boilerplate code created added in the translation. To prevent this, a future version
of the translator could implement a more elaborate naming scheme, where for example
every element of the model gets a generated unique ID, or that every name is checked
for reserved words or duplicates and gets a post-fix if it is the case. However, in most
cases the current naming scheme does not give problems, especially with the naming
conventions of EULYNX.





6. Validation

In this chapter we validate the correctness of the translation. This is done by creating
small models that each use a specific functionality of EULYNX. We keep the example
models small, but also cover all the use cases of each functionality. These models are
then put under test by a number of properties that test for the correct behaviour or exclude
incorrect behaviour. The properties are tested using the verify tool in UPPAAL.

6.1 Test suite coverage

We first create a list of features and test scenarios that we want to cover. These are listed
in Table 6.1, along with where they are tested. The features are written as requirements,
and can get very specific to cover as much edge cases as possible of every feature.

There are some desired features that have not yet been implemented completely. However
these are included in the requirement list. In the current version of the translator, initial
vertices act as simple states, while they should be treated ad pseudo states. That is why
the requirements 13, 14, and 20 are not applicable to the current version, but they should
be validated when this feature is added in a future version.

6.2 Test cases

To test if the translation produces an output model with the correct behaviour we create
small example models that each focus on a separate feature of EULYNX. For the differ-
ent models we describe the functionality which is under test, how the model uses this
functionality, how we test this with UPPAAL properties, and the results.
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Nr. Requirement Tested Section

1. Transition conditions work correctly in basic scenarios 3 6.2.1
2. Transition effects are executed correctly in basic scenarios 3 6.2.2
3. Events: A "when" event is correctly dispatched in simple

situations
3 6.2.3

4. Events: A "when" event is only triggered and handled once 3 6.2.3
5. Events: A "when" event interrupts composite states (with-

/without multiple regions)
3 6.2.7

6. Events: A "when" event does not interrupt a composite state
when the same event is handled by a nested state

3 6.2.4

7. Events: "after" events are correctly dispatched in simple
situations

3 6.2.5

8. Events: "after" events do not have to trigger 3 6.2.5
9. Events: "after" events can interrupt composite states (with-

/without multiple regions)
3 6.2.5

10. Entry behaviour is correctly executed in basic scenarios 3 6.2.6
11. Exit behaviour is correctly executed in basic scenarios 3 6.2.6
12. Junction vertices work in basic scenarios 3 6.2.8
13. Junction vertices work when used as successor of an initial

vertex in a composite state with one region
n/a

14. Junction vertices work when used as successor of initial
vertices in a composite state with multiple regions

n/a

15. Nested states exit in the correct order when they are inter-
rupted by an event

3 6.2.7

16. Nested states exit in the correct order when a transition
crosses the border of a region

3 6.2.7

17. Do behaviour is executed correctly in basic scenarios 3 6.2.8
18. Orthogonal regions act independently 3 6.2.7
19. Orthogonal regions act simultaneously when triggered by

the same event
3 6.2.4

20. Effects after initial vertices are executed correctly n/a

Table 6.1: Traceability matrix of feature validation
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Figure 6.1: Test model for guards

How the different model elements are referenced in UPPAAL properties for the output
model of the translation can be found in Section 5.6. This helps with getting a better
understanding of the requirement we use to verify the behaviour in the various test cases.

6.2.1 Transition Guards

A guard on a transition is a simple boolean expression. It can contain a whole formula
consisting of variable references, function calls, and operators. For this purpose we only
use the boolean literals TRUE and FALSE. When the guard on a transition evaluates to
TRUE, the transition is enabled, and can be taken. If the guard evaluates to FALSE, the
transition cannot be taken. A transition without a guard is also enabled.

To test this we created a model where some transitions have either a guard with the boolean
literal TRUE or FALSE on them. The model is shown in Figure 6.1. Both transitions with
and without events are used. All the transitions that have a guard with the boolean literal
FALSE have as target state the ERROR state. All the other states should be reachable.
For completion we also include a transition without a guard. This transition should also
be enabled. To generate events we use a pulse port to the environment we called
Button_Pressed.

The output UPPAAL model of this example can be found in Appendix B. This gives an
idea of what the generated models look like. The graphic positioning of the locations,
transitions, and labels is done by hand, but the model content is generated using the
translation.

The behaviour of the output model is verified with the properties listed below. To test that
the guards properly enable and disable transitions, we check for the reachability of all the
states.

• A[] !stm.ERROR_Simple
• E<> stm.END1_Simple
• E<> stm.END2_Simple
• E<> stm.END3_Simple
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Figure 6.2: Results of guard test model properties

The first property describes that for all possible traces, the location ERROR_Simple is not
activated in any state. Which should evaluate to true, because all the transitions to that
state are always not enabled. The rest of the properties describe that there exists a trace
where there is a state in which the specified location is enabled. These should all evaluate
to true, because all of those states are reachable.

Testing these properties resulting in all of them passing. As an example, the property
checking window containing these queries with their results is shown in Figure 6.2.

6.2.2 Transition Effects

A transition can also have an effect. This is a bit of code that is executed when the
transition is taken. This occurs after the exit behaviour of the source vertex and before the
entry behaviour of the target vertex. The bit of code can be any possible piece of ASAL
code.

For simplicity we only use assign statements in the example model. The model is shown
in Figure 6.3. The model starts in state A where it has 3 different transitions it can take.
They all mutate the property X in a different way such that the behaviour is distinguishable
in the verifier. From state END3 the model can take another transition that increments the
variable X untill it reaches 20. This cap at 20 is added, so the model checker does not
encounter an integer overflow error.

The properties we used to verify the behaviour of the model are shown below. First
we establish that the property X starts at 0. Next we check that the different states are
reachable. And finally we check if the transition effects were properly executed.

• A[] stm.A_Simple imply str_stm.X == 0
• E<> stm.END1_Simple
• E<> stm.END2_Simple
• E<> stm.END3_Simple
• A[] stm.END1_Simple imply str_stm.X == 2
• A[] stm.END2_Simple imply str_stm.X == 4
• A[] stm.END3_Simple imply str_stm.X >= 6
• A[] stm.END3_Simple imply str_stm.X <= 20
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Figure 6.3: Test model for transition effects

• (stm.END3_Simple && str_stm.X == 6) -->
(stm.END3_Simple && str_stm.X == 7)

6.2.3 Trigger events

Events allow for the possibility to wait for a certain condition, and immediately act upon it if
the condition is satisfied. When an event occurs it is put into the queue, and once it is at
the front it can be consumed, but only once. After that the condition must evaluate to false,
and then true to trigger the event again.

The small model we created to test events is shown in Figure 6.4. We use a port to the
environment called Button_Pressed and some internal behaviour in state A to trigger
events. All states except for the ERROR state should be reachable. The transition from A to
ERROR waits for FALSE to become TRUE, which will never happen. The transition between
END2 and ERROR waits for the same event as the transition between A and END2. This
should never occur because X is only altered in state A and once the active state is END2,
the event has already been consumed.

The properties we created to verify the behaviour of the model in UPPAAL are listed below.

• A[] !stm.ERROR_Simple
• E<> stm.END1_Simple
• E<> stm.END2_Simple
• (stm.A_Simple && str_stm.Button_Pressed && str_stm.X == 0)
--> stm.END1_Simple

• (stm.A_Simple && !str_stm.Button_Pressed && str_stm.X == 3)
--> stm.END2_Simple

• (stm.A_Simple && !str_stm.Button_Pressed && str_stm.X == 3
&& stm_event_handler.CHECKING) --> stm.END2_Simple

• E<> (stm.A_Simple && !str_stm.Button_Pressed
&& str_stm.X == 3 && stm_event_handler.CHECKING)

• A[] stm.END2_Simple imply str_stm.X == 3
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Figure 6.4: Test model for events

The first three properties specify that the correct states can be reached, and the ERROR
state cannot be reached. Then we specify for each event scenario that eventually the
correct successor state is reached. The first property that specifies behaviour that should
result in the transition to the END2 state ended up not being satisfied acording to UP-
PAAL. After some debugging we found that the environment was able to set the port
Button_Pressed to TRUE after the internal behaviour of A was triggered. This can result
in the event of Button_Pressed being handled first. This is not incorrect behaviour
because both events were triggered in the same cycle. Therefore it is possible that those
two events are not always handled in the same order in this case. To work around this
case we specified another requirement below that one. In this requirement we add to the
left hand side that the event manager is in the CHECKING state. This ensures that the
previous cycle has finished, so the environment cannot alter the state anymore before all
the current events have been managed.

6.2.4 Hierarchical event dispatching

Another property of events is that they can be handled at different nesting depths of the
state machine, and depending on the hierarchical structure of the state machine. The
active state configuration of a state machine can be seen as a tree where the root node
is the current active state of the state machine. If that state is a composite state, it has
children which correspond to the active states in those regions. Those states can also be
composite states. The leaves of the tree are simple states. When an event is dispatched it
is first presented to the leaf nodes. If those cannot handle the event, the event is passed
up the tree until it is either handled, or the root of the tree is reached. An example of a
complex scenario is shown in Figure 6.5. The active state configuration contains four
composite states C1 to C4 and four simple states S1 to S4. If an event is dispatched, the
simple states in the active state configuration first get the opportunity to handle it. In this
example state S1 and S2 were not able to handle it (and are coloured red), but S4 and
S2 could and did (these are coloured green). The event is not dispatched to C4 or C3,
because they have at least one descendent which has already handled the event. The
event is passed on to C2, because its only descendent did not handle the event.
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Figure 6.5: Example active state configuration tree

Figure 6.6: Test model for handling events at different levels

In Figure 6.6 we specify a model that tests the case where the composite state can handle
event, but its nested states can also handle the event. Therefore the ERROR state can
never be reached. We added the guard X == 5 to that transition to make sure that the
transition can only be enabled once the active state of the region is either B or C.

The behaviour of the model is verified using the following requirements:

• A[] !stm.ERROR_Simple
• E<> stm___A_0.B_Simple
• E<> stm___A_0.C_Simple
• A[] (stm.A_Composite imply !stm___A_0.COMP_WAIT)
• A[] (stm___A_0.B_Simple || stm___A_0.C_Simple)
imply str_stm.X == 5

• (stm___A_0.B_Simple && str_stm.Button_Pressed)
--> stm___A_0.C_Simple

• (stm___A_0.C_Simple && str_stm.Button_Pressed)
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Figure 6.7: Test model for handling events at the same level

--> stm___A_0.B_Simple

First we test for the reachability of the states in the composite state region, and test that the
ERROR state cannot be reached. Next we make sure that the region is properly activated,
and that X is set to 5 when the region has as active state B or C. Finally we test that the
port Button_Pressed being true always results in B transitioning to C or C transitioning
to B.

To also test that two sibling states in the active state configuration tree are able to both
handle the event, we created another example model. This model is shown in Figure 6.7.

This model uses the event of X being set to 5. This event should always be handled by
both regions, because they exit their initial state in the same cycle. Therefore, the event
cannot be handled by the composite state, because it is already handled by the active
states in its regions.

This behaviour is verified with the following UPPAAL requirements:

• A[] !stm.ERROR_Simple
• E<> stm___A_0.C_Simple
• E<> stm___A_1.B_Simple
• A[] stm___A_1.B_Simple imply str_stm.X == 5
• A<> (stm___A_0.END2_Simple && stm___A_1.END1_Simple)
• A[] stm___A_1.B_Simple == stm___A_0.C_Simple
• A[] (stm___A_0.END2_Simple == stm___A_1.END1_Simple)

If the model behaves correctly it should always end up in the state configuration <A,
END1, END2>. This is checked with the fifth property. The rest of the properties check
supporting intermediate behaviour.



6.2 Test cases 65

Figure 6.8: Test model for handling events in separate regions at different levels

As a more complex example, we created the model shown in Figure 6.8. This model
contains a composite state where one of it regions also contains a composite state. Once
the model has reached the state configuration where A, B, C, and D are all active the event
X == 5 is dispatched. This event should be handled by both state B and state D, which
results in the state configuration <A, END1, END2>.

This behaviour is validated with the following UPPAAL requirements:

• E<> stm___A_0.B_Simple
• E<> stm___A_1.C_Composite
• E<> stm___A_1___C_0.D_Simple
• E<> stm___A_0.END1_Simple
• E<> stm___A_1.END2_Simple
• A[] stm___A_1___C_0.D_Simple imply str_stm.X == 5
• A<> (stm___A_0.END1_Simple && stm___A_1.END2_Simple)
• A[] stm___A_0.B_Simple == stm___A_1.C_Composite
• A[] (stm___A_0.END1_Simple == stm___A_1.END2_Simple)

In checking these requirements, we find that the model cannot reach state END1. From
looking at the counter examples given by UPPAAL we conclude that the events are only
thrown at the deepest level of the tree. When a state on that level can handle the event, the
event manager does not continue on other levels. While the current behaviour is incorrect,
this implementation is sufficient for this research because this use case does not occur in
the models that are used in this research. However, this should be implemented correctly
in a later stage to complete the feature support of EULYNX.
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Figure 6.9: Test model for after events in a simple scenario

Figure 6.10: Test model for after events with a composite state

6.2.5 After events

After events are events that can be put on transitions and internal behaviour. They trigger
after a specified amount of time. In the existing translation to mCRL2, these events are
handled as non-deterministic decisions to either stay in the state or take the transition.
This simple implementation is sufficient for their research because in the EULYNX models,
the specific amount of time does not matter. Therefore, we also aimed for this simple
implementation with the possibility of further developing this feature in a later stage of the
project.

The first model that gives an example use case of an after event is shown in Figure 6.9.

This model should be able to reach the END1 state, but it is also allowed to stay in the A
for multiple cycles. This behaviour is tested with the following requirements:

• E<> stm.A_Simple
• E<> stm.END1_Simple
• E[] !stm.END1_Simple

These requirements simply test for the reachability of all the states, and for the possibility
that the END1 state is not reached. This ensures that the behaviour of the state machine
possibly leaving state A is present in the example model.

To also test that an after event can interrupt a composite state we created the model
shown in Figure 6.10.
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Figure 6.11: Test model for entry behaviour

The behaviour of the model shown in Figure 6.10 is verified with the following UPPAAL
requirements:

• E<> stm.A_Composite
• E<> stm___A_0.B_Simple
• E<> stm.END1_Simple
• E[] !stm.END1_Simple
• A[] stm.END1_Simple imply stm___A_0.COMP_WAIT

6.2.6 Entry and exit behaviour

As the names specify, the entry and exit behaviour of a state is code that is executed either
on entry of a state or on exit of a state. There are some tricky orderings when it comes
to the exit behaviour nested states with composite states, but this is handled in the next
section.

First we will look at the entry behaviour. The test model for this is shown in Figure 6.11.
We want to test that the code is always executed before entering the state. In order to do
this we modify the property X on entry of most states. Because the variable is altered in
no other place, we can check whether it is always true that for example X == 12 in the
END2 state.

We test for this behaviour with the following UPPAAL properties:

• E<> stm.B_Simple
• E<> stm.END1_Simple
• E<> stm.END2_Simple
• A[] stm.B_Simple imply str_stm.X == 6
• A[] stm.END1_Simple imply str_stm.X == 3
• A[] stm.END2_Simple imply str_stm.X == 12
• stm.B_Simple --> stm.END2_Simple
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Figure 6.12: Test model for exit behaviour

In the first three properties we check for the reachability of the states. Then, we check if
when they are in the state, the correct entry behaviour has executed. Lastly, we verify if
state END2 was also reachable from state B. It is important that we check that the same
happens in END2 if we enter it from A or B.

For testing the exit behaviour we created a model in a similar way. The test model is
shown in Figure 6.12. Here we can test for example that in all the successor states of
A, the property X == 3 should hold. Another one is that X == 12 should never be true,
because it is not possible to leave state END3.

The UPPAAL properties we used to test for this behaviour are:

• E<> stm.B_Simple
• E<> stm.END1_Simple
• E<> stm.END2_Simple
• E<> stm.END3_Simple
• A[] stm.A_Simple imply str_stm.X == 0
• A[] stm.B_Simple imply str_stm.X == 3
• A[] stm.END1_Simple imply str_stm.X == 3
• A[] stm.END2_Simple imply str_stm.X == 3
• A[] stm.END3_Simple imply str_stm.X == 6
• A[] str_stm.X != 12

Lastly we test if the entry behaviour, transition effect, and exit behaviour is executed in the
correct order. We test this with the model shown in Figure 6.13. A few simple calculations
are used that give a different result if their order is changed. The calculations are:

a) x := (x+2)∗2
b) x := (x+3)∗3
c) x := (x+5)∗5

The different outcomes when the order is mixed up is displayed in Table 6.2. When the
calculations are done in the correct order (first a, then b, and finally c) the result is 130.
This result is different from all other permutations of the calculation order, therefore we
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Figure 6.13: Test model for the order of exit behaviour, entry behaviour, and transition
effects

Permutation Result
a -> b -> c 130
a -> c -> b 144
b -> a -> c 135
b -> c -> a 144
c -> b -> a 172
c -> a -> b 171

Table 6.2: Results of the different calculation order permutations.

can detect if the different lines of code are executed in the correct order.

In order to check this we need only three properties:

• E<> stm.B_Simple
• A[] stm.A_Simple imply str_stm.X == 0
• A[] stm.B_Simple imply str_stm.X == 130

6.2.7 Composite states

Composite states give the possibility for concurrent behaviour in a single state machine.
This gives many possible interleavings, which result into a lot of edge cases. In this section
we separate them and put them under test with a couple of example models. The things
we want to test are the initialisation of the regions when a composite state is entered,
the termination of the regions when a composite state is exited, and the transition to a
different state from the composite state. We test these on two example models. One has
two regions, and the other has only one region. In the latter we also nest composite states
and test the order of the exit behaviour of those nested states.

The first example model is shown in Figure 6.14. Here we model a bridge that is only
opened when the two barrier poles are closed. It starts in the CLOSED state and transitions
to the CLOSING_POLES composite state when the Open_Pressed event occurs. Then
the two regions are initialised. It can only transition to the OPEN state when both regions
have reached their final state. While the state machine is in the CLOSING_POLES state, it
can transition at any time to the CLOSED state if the Cancel_Pressed event is triggered.
This should terminate the sub regions.

The behaviour of the model is tested with the following UPPAAL properties:
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Figure 6.14: Test model for composite state behaviour with two regions
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• E<> bridge.OPEN_Simple
• A[] bridge.OPEN_Simple imply (bridge___CLOSING_POLES_0
.COMP_WAIT && bridge___CLOSING_POLES_1.COMP_WAIT)

• A[] bridge.CLOSED_Simple imply (bridge___CLOSING_POLES_0
.COMP_WAIT && bridge___CLOSING_POLES_1.COMP_WAIT)

• E<> (bridge.CLOSING_POLES_Composite
&& !bridge___CLOSING_POLES_0.COMP_WAIT
&& !bridge___CLOSING_POLES_1.COMP_WAIT
&& str_bridge.Cancel_Pressed)

• (bridge.CLOSING_POLES_Composite
&& !bridge___CLOSING_POLES_0.COMP_WAIT
&& !bridge___CLOSING_POLES_1.COMP_WAIT
&& str_bridge.Cancel_Pressed)
--> (bridge.CLOSED_Simple
&& bridge___CLOSING_POLES_0.COMP_WAIT
&& bridge___CLOSING_POLES_1.COMP_WAIT)

• (bridge.CLOSED_Simple && str_bridge.Open_Pressed)
--> (bridge.CLOSING_POLES_Composite
&& bridge___CLOSING_POLES_0.Initial1_Initial
&& bridge___CLOSING_POLES_1.Initial2_Initial)

In the first property we check if the OPEN state is reachable. The second property verifies
that when the OPEN state is reached, the UPPAAL processes of the regions are in their
waiting state. This means that sub regions have been properly terminated when entering
the OPEN state. The same is checked for the CLOSED state in the third property. Next
we want to verify that the regions are terminated when the Cancel_Pressed event is
triggered. In order to do that we first check if there is a reachable model state where the
regions are activated and the pulse property Cancel_Pressed is set to true. This is done
with the fourth property in the list. The following property checks that when this is true,
eventually the model will end up in a state where the current active state is the CLOSED
state and the regions have been terminated. In the last property we verify that the regions
are always properly activated when the composite state is entered. Specifically it checks
that when the model is in the CLOSED state and the Open_Pressed event is triggered, it
eventually reaches a state where the UPPAAL processes of both regions have transitioned
from the waiting state to their initial states.

The model shown in Figure 6.15 contains two nested composite states. Once the state
machine has entered the composite state B it can go any time to state END1 if the
Button_Pressed event is triggered. The state END2 is reached from state D. Both
these transitions should always terminate the regions. In the termination process of the
composite states, the exit behaviour of the innermost state should be executed first, then
the exit behaviour of the parent, and lastly the exit behaviour of the topmost state. We use
the same calculations as previously used in this section, of which the possible results can
be found in Table 6.2. The desired behaviour is tested with the following properties:

• E<> stm.END1_Simple
• E<> stm.END2_Simple
• A[] stm.A_Simple imply (stm___B_0.COMP_WAIT
&& stm___B_0___C_0.COMP_WAIT)

• (stm.B_Composite && str_stm.Button_Pressed) -->
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Figure 6.15: Test model for composite state behaviour with one region including nested
regions
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Figure 6.16: Test model for junction vertices

(stm.END1_Simple && stm___B_0.COMP_WAIT
&& stm___B_0___C_0.COMP_WAIT)

• A[] stm.END1_Simple imply
(str_stm.X == 130 || str_stm.X == 70 || str_stm.X == 25)

• A[] stm.END2_Simple imply str_stm.X == 130
• A[] stm.END2_Simple imply (stm___B_0.COMP_WAIT
&& stm___B_0___C_0.COMP_WAIT)

First we check for the reachability of the end states. Then, we check if the regions are in
their waiting states when the state machine is still in state A. The fourth property checks
if the state machine always reaches state END1 where all the sub regions have been
terminated if the Button_Pressed event is triggered while state B is the active state.
There are a few different state configurations possible when B is the active state of the
state machine. It could be that the region of B is still in its initial state, or that it has reached
C and the region of C is still in its initial state, or that it has reached C and its regions
active state is D. Only the exit behaviour of the active states is executed, so there are
three possible values for X in state END1. These are checked in the fifth property. In state
END2 there is only one possible value for X. This is verified with the sixth property. The
last property checks that when END2 is reached, all the regions have been terminated.

6.2.8 Junction vertices

Junction vertices are used to concatenate transitions. These transitions can be seen as
a single transition. All the guards along the transitions need to evaluate to true, and the
transition effects are executed in order.

The model that tests this functionality of EULYNX is shown in Figure 6.16. It starts in state
A where it has as internal behaviour two actions. It can either increment the variable X by
one, or it can set the variable Switch to true.

The UPPAAL properties that test for the correct behaviour in this example model are listed
below.
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• E<> stm.END1_Simple
• E<> stm.END2_Simple
• A[] (stm.END1_Simple imply str_stm.X < 10)
• A[] (stm.END2_Simple imply str_stm.X >= 10)
• A<> stm.END1_Simple || stm.END2_Simple
• stm.A_Simple && str_stm.X < 10 && str_stm.Switch
--> stm.END1_Simple

• stm.A_Simple && str_stm.X >= 10 && str_stm.Switch
--> stm.END2_Simple

We first check for the reachability of the end states. After that we see if the variable X has
the correct value in both end states. The state machine should eventually end up in one of
the two end states, because the state machine is forced to take a step each cycle. This
results in it taking internal behaviour steps until it sets the variable Switch to true. Lastly
we explicitly define which scenarios should lead to which end states.



7. Usability

In this chapter we evaluate how well we are able to do model checking on the output
UPPAAL models of the translation. In doing so we answer research question c). Because
the translation is intended for models of components in railway systems, we will be using
the Point model [28] as case study. Starting with small subcomponents of this model, and
adding more connected parts later on.

For every submodel that we want to validate we first create a list of requirements we want
to check. After that, we see if these requirements can be written as UPPAAL properties,
and write them if it is possible. Finally, we check the result of these properties and evaluate
if they give the expected outcome.

7.1 Point overview

The Point model represents the controlling system of a railway junction. A diagram showing
the context of the Point subsystem can be found in Figure 7.1. It communicates with a
subsystem called ’Electronic Interlocking’. This is where the model gets its instructions
from, and which it needs to report to. The ’Point Machine’ moves the switch blades in the
railway junction the system is controlling. It reads the current state of the system and gives
it instructions.

The complete model contains many blocks, including standard reusable EULYNX blocks.
For simplicity, we only look at the SP, FP, and P3 components. An overview of the basic
structure of how these components are connected is shown in Figure 7.2. Both SP and
FP function as a two way proxy, forwarding commands to the P3 component, and sending
updates back. The instructions are either that the junction should move to the left, or that
the junction should move to the right. The P3 block is the most complex out of the three.
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Figure 7.1: The technical context diagram (Eu.P.950) of Point [28]

Figure 7.2: Simplified structure of main Point model components

It reads and keeps track of the current status of the junction, and sends the appropriate
instructions to the junction based on the given commands. These two tasks are divided
over two separate regions.

More detailed diagrams describing the structure of the Point model are included in Ap-
pendix C. This also includes the state machine specifications of the SP, FP, and P3
components.

7.2 Requirement specification

In creating the list of requirements we try to think of things a railway engineer would want
to verify in their system. It is difficult to ask a railway engineer for this, because they
are generally not used to this kind of verification, and it would require more time than is
available for this project. We therefore collaborated with FormaSig researchers who have
had discussions with railway engineers about this topic.

In verifying the behaviour of EULYNX blocks, the one thing that is focused most upon is
that the block gives the correct output values given certain input values. How the block
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ID Requirement Sub-model

R1
When SP detects a new position, this position is reported to the
EIL.

SP

R2
When port D21 of SP reads "ESTABLISHED", SP goes to the
PDI_CONNECTION_ESTABLISHED state.

SP

R3
When port D21 of SP reads something other than
"ESTABLISHED", SP transitions to the RECEIVING_STATUS_
REPORT state.

SP

R4
When port D21 of SP reads "ESTABLISHED", SP can forward
a move command.

SP

R5
SP should only send a new position command to FP if that
command was given by the EIL.

SP

R6
When FP detects a new position, this is forwarded to the EIL. SP+FP

R7
When a new position is commanded by the EIL, this position is
forwarded to P3

SP+FP

R8
If the Point machine status is "LEFT" and P3 receives a com-
mand to go right, it is possible that P3 will instruct the Point
machine to go right.

P3

R9
If the Point machine status is "LEFT" and P3 receives a com-
mand to go right, P3 will instruct the Point machine to go right
if no problems occur.

P3

R10
If redrive is enabled, the Point machine reads "LEFT", and is
no longer "LEFT", P3 should instruct to go left.

P3

R11
The DT20 port of P3 can only have the values "LEFT",
"RIGHT", "NO_END_POSITION", or "TRAILED".

P3

R12
When DT20 reads "LEFT" or "RIGHT", D6 should read
"END_POSITION"

P3

Table 7.1: Requirements for the Point model

implements this is not necessarily important. As long as the observable behaviour is
correct, the model can be considered correct. By all means, this is not the only use for
EULYNX model specification, but it is the only thing we will focus on in this chapter. This
way of testing is similar to black-box testing.

In some cases it is not possible to derive a certain state of the block from its output. In
those cases we will reference the state machines state names directly in the requirements
if it is necessary.

The list of requirements we created is shown in Table 7.1. For each requirement is also
specified what sub-model of Point is needed in order to check this requirement. These
components can then be isolated such that UPPAAL does not have to simulate the whole
model in order to check these requirements.

A more detailed description of R1 is shown in Table 7.2. The in-depth descriptions of the
other requirements can be found in Appendix D in Tables 12.2 to 12.12.
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ID R1
Requirement When SP detects a new position, this position is reported to the EIL.
Clarification One of the functions of SP is that it should forward new positions

received from FP to the Electronic Interlocking system. That a new
position is made available by FP can be detected from the pulse port
T2_Msg_Point_Position. The actual position can be read from
the port DT2_Point_Position. This value should be written to
SP’s output port DT20_Point_Position. This port is connected to
the EIL.

Table 7.2: Detailed description of R1

Most requirements have the form of, when ‘this’ holds, ‘that’ should hold in the future. The
requirements R1, R2, R3, R6, and R7 have this form. R4 and R8 add variety by specifying
the possibility of something happening as a result of something else instead of it definitely
happening. It is useful to add variety to the set of requirements, because this can give us
more insights in different types of requirements that are possible to verify and types that
are not. R5 turns the logic around by specifying ‘this’ can only happen if ‘that’ happened
before. R9 has also the structure of if ‘this’, then eventually ’that’, but it adds that ‘that’ is
only guaranteed if another thing does not happen. R10 specifies that a sequence of two
events should lead to another state. Lastly, R11 and R12 specify a simple global invariant.

7.3 UPPAAL property specification

The translated UPPAAL requirements are shown in Table 7.3 for as far as they were
possible to translate. Additional notes and remarks can be found in Appendix D. In this
section we will discuss a few special cases among these requirements in further detail
and cover how they represent the original requirement, or why they were not translatable.

Looking at the first requirement R1, we have a clear causal property where if SP receives
a position report, it should correctly forward this report to the EIL. For this, we can utilise
the ‘eventually’ operator of the UPPAAL requirement language. In A --> B, if A occurs,
then in any case B should eventually occur. In our model that could be the next cycle, or
even multiple cycles. Focussing on the fact that the forwarded position should always be
the same as the received position, we find that we cannot express this in a single UPPAAL
requirement. For that you would need a free variable that could be used in the requirement
to signify an unknown value, but constant in the requirement. For example: var_x == X
-> var_y == X. As a workaround we simply duplicate the requirement for every possible
position that can be reported.

In R4 we specify that SP should be able to forward a move command if a certain status
port is set to "ESTABLISHED" (4 in the translation). To express this in an UPPAAL
requirement we can use the ‘eventually’ operator again, and specify in the left hand side a
state where the status port is set to "ESTABLISHED" and that it is currently receiving a
move command. The right hand side should specify the state in which SP is forwarding
the move command. To accurately cover that this holds for every message, we also need
to repeat this requirement for every possible message.
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ID UPPAAL requirement

R1 (str_sp.T2_Msg_Point_Position && str_sp.DT2_Point_Position == <X>)

--> (str_sp.T20_Point_Position && str_sp.DT20_Point_Position ==

<X>)

R2 (str_sp.D21_S_SCI_EfeS_Gen_SR_State == 4) -->

sp.PDI_CONNECTION_ESTABLISHED_Simple

R3 (str_sp.D21_S_SCI_EfeS_Gen_SR_State != 4) -->

sp.RECEIVING_STATUS_REPORT_Composite

R4 (str_sp.D21_S_SCI_EfeS_Gen_SR_State == 4 && str_sp.T10_Move_Point

&& str_sp.DT10_Move_Point == <X>) --> (str_fp.T1_Cd_Move_Point &&

str_fp.DT1_Move_Point_Target == <X>)

R5 7

R6 (str_fp.T20_Point_Position && str_fp.DT20_Point_Position == 2) -->

(str_sp.T20_Point_Position && str_sp.DT20_Point_Position == 2)

R7 (str_sp.T10_Move_Point && str_sp.DT10_Move_Point== <X>) -->

(str_fp.T10_Move && str_fp.DT10_Move_Target == <X>)

R8 A[] ((p3___cOp2_All_Left() && str_p3.T1_Move &&

str_p3.DT1_Move_Target == 9) imply E<> str_p3.D11_Move_Right) *
R9 7

R10 (p3___cOp9_Redrive_Enabled && str_p3.Mem_Current_Point_Position ==

3 && !p3___cOp4_All_Left) --> str_p3.D10_Move_Left

R11 A[] str_p3.DT20_Point_Position == 3 || str_p3.DT20_Point_Position

== 9 || str_p3.DT20_Point_Position == 0 ||

str_p3.DT20_Point_Position == 8

R12 A[] (str_p3.DT20_Point_Position == 3 || str_p3.DT20_Point_Position

== 9) == (str_p3.D6_Detection_State == 13)

Table 7.3: UPPAAL version of the requirements for the Point model
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We found that R5 is not possible to translate into an UPPAAL requirement. It is mainly not
possible to specify that a certain state did not occur in the past. Another approach is to
specify the possibility of the erroneous behaviour and take the negation of that property.
In that case we would want to specify that there is a trace where no message has been
received (i.e. port T10_Move_Point is FALSE the whole time), and at some point it sends
a message to FP (by setting port T1_Cd_Move_Point to TRUE). This can be specified in
CTL by writing !E (!str_sp.T10_Move_Point U str_sp.T1_Cd_Move_Point).
UPPAAL does not have an operator that provides the same semantics as the ‘until’
operator of CTL.

For R8 we are able to specify a property that is theoretically correct, however it cannot
be checked with UPPAAL because it contains nested path expressions which are not
supported in the current version of UPPAAL. We needed to specify that when a certain
property was true, there always existed a path from that in which a different property
eventually became true. This is theoretically described with the formula A[] this
imply (E<> that). This is slightly different from the ‘eventually’ operator (-->) of
UPPAAL, which specifies that something will always eventually happen, given a certain
previous state. That operator can be written as A[] this imply (A<> that).

R9 is the last requirement we could not find an UPPAAL translation for. The main difficulty
lies in specifying that property ‘b’ always will become true, given property ‘a’ is true on
the path before that. Even in CTL is this hard to write as a requirement. The property E
a U b is too loose, because it only says that there exists a path where ‘a’ leads to ‘b’;
and the property A a U b is too restrictive, because it specifies that ‘a’ holds on all paths
until ‘b’ holds. This leaves us with AG message_received imply (E no_problems
U command_given) as the closest approximation.

The requirements R11 and R12 are easily translated, as they are simple invariants. The
operator A[] in the UPPAAL requirement language can be used here. What we do
need to keep in mind is that the invariant does not have to hold when the EULYNX state
machine is ‘between states’. If for example one variable is altered in the exit behaviour
of a state and the other variable is altered in the entry behaviour of the next state, then
it could be that in our UPPAAL model there is a ‘between’ state in which this property
does not hold. This can be dealt with by specifying that the requirement should hold
in states where all the processes are in a stable state. This can be written as A[]
all_processes_are_stable() imply requirement.

The rest of the requirements were translated without issues. With only three requirements
that could not completely be translated, we believe that the output model and the tool
UPPAAL provide enough features to specify simple to moderately complex requirements
for a EULYNX model. For slightly more advanced requirements like R5, R8, and R9, the
UPPAAL requirement language is a bit too limited.

7.4 Results

In this section we will go over the verification results of the requirements using UPPAAL.
We compare the outcome with the result we expected beforehand, and evaluate the
feedback UPPAAL gives with regard to counter examples. The requirements are tested in
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UPPAAL on a PC with an Intel i7-4710MQ processor, 16 GB RAM, and running Ubuntu
18.04.5 LTS.

It was found that the output models generate a very large state space. Verifying some
properties in the SP model take almost five minutes. Three properties of the P3 model
cannot be checked at all, because after five minutes UPPAAL gives an ‘Out of memory’
error.

A few measures have been applied to decrease the state space. A big factor which can
cause a big state space increase is the event queue size. The SP model has 6 different
event types, which if the queue size is three can give a factor 120 (6 ∗ 5 ∗ 4) increase
in state space. It was necessary to decrease the queue size to one, in order to be
able to check all properties of SP. Next to that we set UPPAAL’s state space reduction
to ‘aggressive’, selected ‘Compact Data Structure’ for state representation, and tried
both the smallest and largest hash table size. However, these settings did not give a
enough improvement in performance to be able to check more properties. We give
more possibilities to improve performance in Section 10.1. These improvements could
significantly increase the performance, but they cost too much time to implement to include
in the scope of this project.

R1: When SP detects a new position, this position is reported to the EIL

For the first requirement of the SP component, we expected it to evaluate to false.
This should be the case, because there is a state in which SP does not react to a
received message report. This is when the active state of the SP component is the
RECEIVING_STATUS_REPORT composite state, and the active state of its region is the
simple state STATUS_REPORTED.

Checking the requirement using the verify tool of UPPAAL resulted in the property being
‘not satisfied’. When we add the diagnostic trace option we get a counter example which
proofs that the model does not satisfy the property.

To show what kind of feedback UPPAAL provides, we created a simplified version of
the graphical simulation trace view of UPPAAL for this requirement. It can be found in
Figure 7.3. This figure uses the style of the simulator tool in UPPAAL. We simplified this
trace by removing some ‘between’ states, to make it easier to read. Each UPPAAL process
has a vertical ‘lifeline’ on which the state history is depicted. The figure is read from top
to bottom. When one process has a new location and the others do not have a location
on that same horizontal line, they are still in the same location as specified earlier in the
figure.

The first thing that happens in the model is that SP moves from its initial state to the
RECEIVING_STATUS_REPORT state, which is triggered by the orchestrator process.
Upon entering this state it signals the process of its region to start, so it moves from
its waiting state to the initial state of that region. Next, the environment process sets port
T2_Msg_Point_Position to TRUE, and port DT2_Point_Position to 2 (which is the
translation for "LEFT"). After that, the orchestrator process signals the event manager to
check for new events. The event manager sees the change in T2_Msg_Point_Position
and puts the corresponding event in the queue. Directly after that, it pops it from the
queue and dispatches the event by sending a broadcast signal. However, because SP is
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Figure 7.3: Simplified simulation trace of the counter example given by UPPAAL for R1
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in RECEIVING_STATUS_REPORT and its region is still in Initial1 there is no process
that can handle the event. Therefore, the event is discarded. Next, the orchestrator
process makes the region process move from its initial state to REPORT_STATUS. Finally
the orchestrator process goes through one last cycle before UPPAAL detects that it has
reached the same state as before this cycle. This is detected as a loop, and therefore it is
possible that the right hand side of the requirement is never satisfied. UPPAAL marks this
loop by colouring the repeated locations red.

R2: When port D21 of SP reads "ESTABLISHED", SP goes to the
PDI_CONNECTION_ESTABLISHED state

We expect a similar result from this requirement as from R1. When the state machine
has as active state configuration <RECEIVING_STATUS_REPORT, REPORT_STATUS> it
is not able to handle the event. This is also the case if any of the initial states are active.

When we check the requirement using UPPAAL, we find that our expected result was
correct. The counter example given by UPPAAL shows the case where the event cannot
be handled while the region of RECEIVING_STATUS_REPORT is in its initial state.

The simulation trace looks similar to the trace described in the previous section. First
the model transitions to the <RECEIVING_STATUS_REPORT, REPORT_STATUS> state
configuration, then the environment variables are changed, then the event queue is
updated, followed by the event being discarded, and finally the model completes one more
cycle while nothing has changed. The last cycle is detected by UPPAAL as an infinite loop,
which results in the requirement not being satisfied.

R3: When port D21 of SP reads something other than "ESTABLISHED", SP transitions to
the RECEIVING_STATUS_REPORT state.

For this requirement we expect that it is satisfied when we check it using UPPAAL. The right
hand side of the requirement specifies that RECEIVING_STATUS_REPORT is the active
state of SP. The left hand side specifies an event that should result in the model transitioning
to RECEIVING_STATUS_REPORT. Because the SP component has only two states (three
including the initial state), it is easy to derive what will happen in both states when the event
is triggered. RECEIVING_STATUS_REPORT will stay the active state, unless the opposite
of the event specified in the requirement occurs. PDI_CONNECTION_ESTABLISHED will
transition to RECEIVING_STATUS_REPORT if the event occurs. Therefore the requirement
should be satisfied.

Checking the requirement in UPPAAL resulted in the property not being satisfied. The
counter example that UPPAAL produced showed a situation where multiple events were
triggered, and that the event queue was filled with other events. This resulted in the
event that was relevant for this requirement being discarded. Therefore it is not guaran-
teed that setting the port D21_S_SCI_EfeS_Gen_SR_State to something other than
"ESTABLISHED" will eventually result in the RECEIVING_STATUS_REPORT being an
active state.

This result is not useful for us, because it only confirms a known shortcoming of the
translation. To combat this we can strengthen the requirement by specifying that when the
event corresponding to D21_S_SCI_EfeS_Gen_SR_State != "ESTABLISHED" is at
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the head of the queue, the model should eventually reach RECEIVING_STATUS_REPORT.
This is written as:

(sp_event_queue_peek() == 3) -->
sp.RECEIVING_STATUS_REPORT_Composite

This requirement is more specific, because the left hand side now specifies only the
moment that port D21 becomes something else than "ESTABLISHED" instead of it being
something else than "ESTABLISHED". For example this requirement does not cover
the case where D21 != "ESTABLISHED" becomes true, SP transitions to the state
RECEIVING_STATUS_REPORT, and after that SP transitions to a different state while D21
!= "ESTABLISHED" is still true. If from that last state RECEIVING_STATUS_REPORT is
not reachable, R3 is not satisfied, but the requirement above would be satisfied in that
case.

The result of verifying this property in UPPAAL is that it is satisfied. To make sure that the
event can be triggered in both states we also check the following two properties:

E<> (sp.RECEIVING_STATUS_REPORT_Composite &&
sp_event_queue_peek() == 3)

E<> (sp.PDI_CONNECTION_ESTABLISHED_Simple &&
sp_event_queue_peek() == 3)

Both properties are found to be satisfied. The second property also gives an informative
trace. A simplified version of this trace is included in Figure 7.4 to help demonstrate the
simulation trace feature of UPPAAL. The complete unedited simulation trace is added in
Appendix E.

In this simulation trace is visible how the whole model goes through four cycles. First, SP
moves to its composite state and its region is activated. Next, the new cycle starts, so the
event manager is triggered. However, no relevant events are dispatched. Next, the envi-
ronment sets port T2 to TRUE, which is followed by the region transitioning from its initial
state to the REPORT_STATUS state. Thereafter, the event manager is triggered to check
for events, sees that T2 is set to TRUE, and dispatches the corresponding event. This
triggers the transition from REPORT_STATUS to STATUS_REPORTED. Next, the environ-
ment sets port D21 to "ESTABLISHED", which triggers an event in the next cycle which in
turn triggers the transition from the composite state to PDI_CONNECTION_ESTABLISHED.
This puts the region process in its waiting state. Just before the final cycle starts, the
environment sets D21 to "CLOSED". This results in the event labelled with ID 3 being
added to the queue. This is the point where the state expression of the requirement
evaluates to true, so the simulation trace ends here.

Summary

The complete summary of all the requirement results is shown in Table 7.4. The remaining
requirements, that were not already discussed in detail in the previous subsections, were
all either not satisfied or UPPAAL encountered an out of memory error. The refined version
of R3 is also included in this table as R3’.
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Figure 7.4: Simplified simulation trace for additional UPPAAL requirement
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ID Expected Actual ID Expected Actual

R1 z z R7 z z
R2 z z R8 n/a n/a
R3 z z R9 n/a n/a
R3’ z z R10 z error
R4 z z R11 z error
R5 n/a n/a R12 z error
R6 z z

Table 7.4: UPPAAL result summary of the requirements for the Point model.

The requirements R1, R2, R4, R6, and R7 are all not satisfied. The last three return
similar counter examples to the requirements R1-R3. Just like with those requirements,
the events cannot be handled in all possible state configurations. The counter examples
are also as clear, readable, and informative as the counter examples that were discussed
in the previous subsections.

The requirements R10-R12 could not be checked, because UPPAAL encountered an
out of memory error while checking the requirement. This means that UPPAAL ran
out of resources before it could completely check the whole model. This is due to the
large state space of the model. A reason for why the other properties were possible to
check is that UPPAAL does not always have to go through the whole state space if it
finds a counter example, because at that point the requirement is disproved. That is if
the requirements specifies something that should hold for all traces. If the requirement
specifies that something holds for at least a single trace, then disproving it will require the
exploration of the whole state space.



8. Discussion

In this chapter we will go over the results of the research, to what extent they answer
the research questions, and what the challenges were. First we discuss each supporting
research question one by one, followed by the main research question. After that we give
some recommendations for future work based on the results of this research.

8.1 Sub research questions

8.1.1 a) Which interpretations of EULYNX fit the goals of the translation to UPPAAL best?

The different interpretations of EULYNX that should be taken into account were discussed
in Section 5.1. We found that there were three facets of EULYNX for which we had to
decide on a certain interpretation.

Regarding model complexity and usability, the cycle based synchronisation was the best
choice, because this allowed us to keep the logic of the different state machines separate
by managing them with additional processes. Having the state machines communicate
with each other directly through shared memory was a decision that followed naturally,
because the publishing of port values to other state machines is a simple operation that
only has to read the values from the output port variables and write them to the input port
variables. This keeps the UPPAAL processes which are generated from EULYNX state
machines clear and readable, by adding a minimal amount of extra logic that is needed
to manage the model. However, the generated UPPAAL models are not formatted, and
put all the states in a cluttered grid. It takes some manual effort to position the model
elements such that it is readable.

With respect to time constraints, we did not include this in the scope of the current project.
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It was kept in mind while creating the translation, but it might still be hard to implement
this with the current cycle interpretation. The timed elements of EULYNX are also not fully
included in the current interpretation of the translation to mCRL2, which put our focus on
completing the translation of the other features of EULYNX.

8.1.2 b) Is the translation to UPPAAL correct?

The correctness of the translation is discussed in Chapter 6. We tested the different
features of EULYNX with small and simple example models. Each model made use
of a specific feature or combination of features, and its behaviour was verified with
properties using the UPPAAL verifier tool. Apart from the simple way events are dispatched
(Sect. 6.2.4) and the fact that initial states are treated as simple states instead of pseudo
states, we are fairly confident that the translation is correct. The two aforementioned
defects were discovered during the validation process, and were found to have not enough
impact to be added to the scope of the current project.

While our testing strategy covers the translation systematically, it is always difficult to fully
verify the complete translation. There are more combinations of features and edge cases
possible. In order to be able to say with strong confidence that the translation is correct, a
formal correctness proof should be created. This did not fit in the scope of this project, but
it is a thing that could be done in the future.

8.1.3 c) How well can the output models be used to verify model requirements?

This research question is discussed in Chapter 7. There we first created a list of re-
quirements that are valuable to check on the EULYNX model Point. Next, we evaluated
how we could specify those requirements as UPPAAL properties. For those that were
translatable, we created UPPAAL properties that could be checked on the output models
of the translation. Finally, we tested those requirements by running them in UPPAAL.

We composed a list of twelve requirements. It was a challenge to compose a list with
enough variety to evaluate the model checking capabilities of the translation combined
with UPPAAL as thorough as possible. We solved this issue by building the list in col-
laboration with one of the developers of the translation from EULYNX to mCRL2 [3] who
has had discussions with railway engineers about this topic. It might be useful to also
collaborate with actual railway engineers to get different insights, but for this project the
current approach was sufficient, because the translation is still in its prototype phase and
accurately evaluating the ease of use by railway engineers was not part of the main goal
of this project. The different requirements focus on separate types of requirements with
respect to structure. These cover the basic requirement types a railway engineer would
use. It is easy to think of more complex requirements by layering or combining multiple
types, but for this research the fundamental requirements are enough. This list gives us
enough variety to determine if the translation can be of some use in validating models of
the EULYNX standard.

From these twelve requirements we were able to translate nine to UPPAAL properties. The
most complex three added an extra layer to their requirement that could not be expressed
in UPPAAL. This was the case because the requirement language of UPPAAL is too
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limited. It would have been useful if these requirements were also possible to verify in
UPPAAL, but based on the other nine requirements that were possible to translate we can
say that UPPAAL (combined with the output model of the translation) gives us enough
expressiveness to do basic model checking. Especially the A ‘leads to’ B requirements are
useful, because EULYNX components are mainly input-output focused. In those cases
it is interesting for a railway engineer to be able to specify how a components outputs
should react to certain inputs. Regarding the requirements that could not be translated, it
might be possible to check them if the requirement is taken into account in the translation
and they are partly encoded in the output model. However, this is out of the scope of this
project.

Testing the nine translated requirements on their corresponding UPPAAL models resulted
in six requirements evaluating to true and three requirements encountering an error during
the verification. That most of the requirements would not be satisfied was as expected. The
counter examples given by UPPAAL were useful, as they demonstrated clear scenarios
where the requirement did not hold. The behaviour was also as we could have predicted
looking at the effective semantics of EULYNX state machines. The requirements that were
supposed to be false are important to have, because they produced counter examples
which gave insight in how useful the feedback is that UPPAAL gives in combination with
the output models.

For one requirement we found that the reason it was not satisfied was due to the
fact that events were discarded because the finite event queue was full in some cases.
To still be able to check this requirement, we rewrote it to only look at the cases where
the event did end up in the queue. This requirement did evaluate to true in the UPPAAL
verifier. This can become a problem when multiple components are involved, because
then there are multiple points where events can be discarded. To work around this, it is
possible to split requirements that specify a reaction through multiple components (like SP
and FP forwarding a message) into two separate requirements. For example "SP and FP
forward a message from P3 to the EIL." can be split up into "FP forwards a message from
P3 to SP" and "SP forwards a message from FP to the EIL".

The three remaining requirements could not be checked, because UPPAAL encoun-
tered an ‘out-of-memory’ error before it could finish the verification process. This was due
to the large state space of the models under test. To be able to check these requirements
on those models we need to improve the performance of the output models by minimising
the state space. The fact that these requirements could not be verified is not a big problem
in this part of the research. It would have been useful to have more counter examples to
evaluate if they turned out to be false, but that we could translate and execute them in
UPPAAL is also a positive result.

Next to the case study on the Point model we can also take the verification process of the
translation using small example EULYNX models in Chapter 6 into account. We were able
to test the behaviour of the different EULYNX elements sufficiently.

All in all we can say that the output models and UPPAAL provide enough capabilities to do
basic model checking of EULYNX models. However, the UPPAAL requirement language is
not expressive enough for more advanced requirements.
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8.1.4 d) How well can the input models of the translation scale in size and complexity
such that UPPAAL is still able to check them?

The limitations of the output models generated by the translation in terms of performance
were encountered during usability testing in Chapter 7. Here we found that we could not
completely model check P3 and the combination of SP and FP. To be able to check all
the specified requirements on SP we had to limit the event queue size to one. While it
is still useful that we are able to model check individual components of the Point model,
the performance of the output models in UPPAAL is not sufficient enough to model check
the Point system. While this proves that the translation is not ready to validate complete
models of the EULYNX specification, we do believe the performance is sufficient given the
prototype status of the translation.

Because we already encountered performance issues while testing for usability, we did
not perform specific scalability tests. Instead we put our focus on finding ways in which we
could improve the performance of the model.

8.2 Translation improvements

The main issue we encountered while testing that is limiting the use of this translation is
performance. Therefore we also looked at how we could increase the performance of the
output models. We found three ways in which we could improve translation. These are
discussed in more detail in Section 10.1.

The first improvement removes unnecessary ‘between’ locations and combines the se-
quential steps surrounding that location into a single step. This reduces the state space,
and also the number of locations which increases the readability of the output model.
This improvement can be safely implemented without changing the model behaviour with
respect to the semantics of EULYNX state machines.

The second improvement synchronises the behaviour of separate state machines more
strictly such that their run-to-completions happen in sequential order without interleaving.
This does not effect the model readability, but only decreases the number of possible model
states. Because of the separation of the memory between state machines this change
does not affect the behaviour of the model with respect to the semantics of EULYNX state
machines. This was not implemented from the start because it was not a must-have and it
requires more code to orchestrate the processes more strictly.

The last improvement focuses on how model checkers search through the state space for
specific model requirements. In this improvement we propose a change that drastically
limits the strength of the ‘leads to’ operator in the requirement language of UPPAAL, but in
return it could improve the performance of UPPAAL when checking simple requirements
that only specify behaviour that should happen within one cycle. Therefore, it is intended
as an optional feature that can be turned off while checking other requirements.

On a final note, there are two EULYNX elements that do not work as they should, but are
implemented in a simplified form. These elements are the initial states and the hierarchical
dispatching of events. For this research it was sufficient to implement them in this simple
form, but these should be implemented correctly in order to consider the translation
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complete.

8.3 Main research question

How can we create a jEULYNX to UPPAAL translation which can be used on models of
railway signalling equipment interfaces?

With the help of the sub questions a) to d) we can conclude that the translation described
in Chapter 5 is a good translation that can be used to model check railway signalling
equipment interfaces. Most of the modelling possibilities of EULYNX are shown to be
correctly translated. UPPAAL provides useful insights in the model by providing detailed
traces and a robust requirement language. The output models of the translation are built
in such a way that these features of UPPAAL can be utilised. However, the performance of
the output models generated by the translation is a limitation. This can be improved by
implementing the changes discussed in the upcoming Section 10.1.

8.4 General remarks

A point that also needs to be addressed is the extent to which we managed to take
advantage of UPPAAL-specific features, such as time and probability. While we achieved
to create a translation that is able to generate UPPAAL models from EULYNX diagrams
and get useful insights in those models using UPPAAL, we are not using UPPAAL to its full
potential. UPPAAL excels in creating elegant timed automatons and providing insights in
those models like variable values over time, average values, and probabilities. Out of those
model evaluation features, we only use the path and state expressions of the requirement
language. Regarding the model specification, we eventually created a framework with
boilerplate model elements to recreate the EULYNX model behaviour in UPPAAL. This
was more than anticipated at the start of the project. However, this might be necessary
to get EULYNX state machine behaviour in any general model checker, because their
behaviour is very domain specific. This makes UPPAAL less suited as target language for
the translator. Nonetheless, the graphical model view, accessible requirement specification
language, and simulation trace tool are still a great benefit for model checking EULYNX
state machines in UPPAAL.





9. Conclusion

In this research we successfully created a translation from EULYNX state machines mod-
elling the behaviour of railway signalling equipment interfaces to the modelling language
of UPPAAL. It provides additional aid in model checking these systems because UPPAAL
uses different model checking techniques and is more accessible than mCRL2. The main
research question that guided this research is:

How can we create a jEULYNX to UPPAAL translation which can be used on models of
railway signalling equipment interfaces?

Our success in answering this question is supported by the following conclusions that are
drawn from this research. In order to create a translation from EULYNX to UPPAAL the
following things are required.

Because the target model of the translation is in a formally defined domain, a clear
interpretation of the source model needs to be chosen in order to translate from an
informal domain. For this research the best choice was to synchronise the state machines
with an execution loop and have them communicate with direct memory sharing. Changes
in the memory are handled via an event queue per state machine. This interpretation
worked well with model synchronisation and memory sharing features of UPPAAL.

Next, the translation needs translation patterns that create a framework in the target model
in order to facilitate certain features that are not directly available in the target modelling
language. In our translation to UPPAAL this included for example the orchestrator process
and the event manager processes. This provided the right features and it kept the
state machine processes simple and close to the original structure of the EULYNX state
machines, which satisfies our goal that the target model should be easy to read.

To ensure the quality of the translation, it is necessary to validate it both in terms of
correctness and usability. In this research the translation was tested by translating example
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models and verifying their behaviour with properties in UPPAAL. This systematic approach
gave us strong confidence in saying that the translation is correct, even though it is not
able to completely proof the absence of errors.

The technique that fit our research the best to validate the usability of the translation
was evaluating the checkability of a set of requirements on models part of the EULYNX
standard. The set of requirements was created with the needs of railway engineers in
mind. This provided enough evidence that the translation can be used successfully by
railway engineers. However, there are some intricate but realistic requirements that could
not be translated.

As part of the usability of the translation, performance is also an important factor as it
determines the scale of the models that can be verified using the translation. We found
that the performance of the translation can be improved by decreasing the number of
intermediate locations and synchronising the processes more strictly. This is discussed
in further detail in Chapter 10. While the translation is not yet suitable for large scale
models, we are confident that it can be improved for larger input models by implementing
the proposed alterations.

To conclude we can say we succeeded in creating a useful translation that helps with the
verification of railway signalling equipment interfaces in the EULYNX standard. As part of
the research we tested it for correctness and usability, which gave a positive result. We did
find some problems in the usability as a result of state space explosion. To help increase
the usability we proposed some improvements on the translation in its current state.



10. Future work

As first recommendation for future work we have three performance improvements. These
are further detailed in Section 10.1. To extend the usability of the translation it is important
that the performance of the output models are improved such that the translation can be
used for larger models.

To get stronger confidence in the correctness of the translation it is also possible to try to
prove the translation correct with a formal proof. In this way each facet of the translation
can be directly traced to a direct relation between EULYNX model elements and UPPAAL
model elements. This is a difficult task as the semantics of EULYNX state machines have
no formal definition. However, the modelling language of UPPAAL does have a formal
definition.

There are two known shortcomings of the translation in terms of coverage of EULYNX
elements. For a more complete translation the hierarchical event dispatching and initial
states need to be properly implemented. The current state of implementation is sufficient
in simple cases.

Finally it is interesting to look at implementing the timed elements of EULYNX using the
clocks of UPPAAL. This enables the use of additional model checking features in UPPAAL
such as calculating the average time it takes until a certain state is reached, and therefore
make the translation more valuable. However it does also require work on the modelling
side, because the models of the EULYNX standard contain very little time information.

10.1 Performance improvements

In this section we propose three improvements on the translation that could increase the
performance of the output model. These improvements could not yet be implemented
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Figure 10.1: Removal of a committed location with a single incoming edge

because they did not fit in the scope of this project. As shown in Chapter 7, not all the
requirements of the components and component combinations of the Point model could be
checked because the state space of these output models are too large. The improvements
in this chapter can help towards the checkability of these components in UPPAAL.

10.1.1 Static location reduction

At some points in the translation we add extra ‘between’ locations which are not always
necessary. This can occur for example at the point where the entry behaviour of a EULYNX
state is placed. In specific cases the extra location can be removed and its incoming and
outgoing transition can be combined into one. When this is not performed, the model
generates more unnecessary states during the simulation. These states are unnecessary
because in EULYNX we are only interested in the model states where the state machines
are done with their run-to-completion of travelling between states. Removing a single
‘between’ state might seem like a minor performance improvement, but depending on the
update statements on both transitions and the possible interleavings with other processes
the removal could greatly impact the state space of the output model. Additionally it also
increases the readability of the output model by removing extra locations. This makes it
easier to link UPPAAL elements back to EULYNX elements and the vise versa.

It is difficult for the translator to determine if the behaviour of the next transition can be
added to the previous transition. Implementing this could increase the complexity of the
translator code. Therefore we propose a post-processing step that searches through the
output model and removes between locations by combining the incoming and outgoing
transitions of those locations.

The first example in which we can simplify the model by removing a between state is
shown in Figure 10.1. In this example the committed location in the middle has a single
incoming and a single outgoing edge. The outgoing edge can contain zero or more update
statements, while the incoming edge can contain zero or more guards, update statements,
and channel synchronisations (both sending and receiving). It is important that whether
or not the outgoing edge is enabled is dependent on the behaviour of the incoming edge.
This is not the case in this example, because the outgoing edge has no guards and no
channel synchronisations. Therefore, the two transitions can be combined into the single
transition shown on the right side of the figure. It is important that the update statements of
the outgoing edge are placed after those of the incoming edge to preserve the execution
order of these statements.

The same principle can be applied to a scenario where the committed location has
multiple incoming edges. This example is shown in Figure 10.2. If the outgoing edge of
the committed location has only update behaviour, then the committed location can be
eliminated completely by connecting the incoming edges to the successor location and
adding the update behaviour to those edges.
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Figure 10.2: Removal of a committed location with multiple incoming edges

Finally, there are some more complex cases where the committed location can be removed.
When both the incoming and outgoing edges have guards and update statements we
need to check for concurrency conflicts. We can assume that the transition conditions
specified in EULYNX are already atomic and are only placed on outgoing transitions
of non-committed locations, so we only need to take into account the conditions and
update behaviour that are added during the translation to help synchronise the processes.
These are references to the variables ..._is_stable and ..._is_stopped, and the
function call all_processes_are_stable(). When only the incoming edge or only
the outgoing edge contain some of these expressions, then the two transitions can be
combined into a single transition. This scenario can also be applied to the situation where
the outgoing edge has a channel synchronisation. It can be combined with the incoming
edge if the incoming edge does not contain one of the aforementioned expressions.

The post-processing step can use these scenario descriptions to find committed locations
and refactor the model in order to remove them. This step can then be repeated until it
does not change the model anymore.

10.1.2 Process synchronisation

When multiple processes run in parallel their different interleaving possibilities can result in
an increase in size of the state space. Our translation creates a separate process for each
state machine and region in the EULYNX model. Every EULYNX cycle, the output model
orchestrates every process to do one step. This step can for a single process contain
multiple ‘between’ states where the process handles different tasks sequentially that are
part of this run-to-completion. In the current version of the translation, all the processes are
triggered simultaneously to start a run-to-completion and how these processes interleave
until they are all done is non-deterministic. For some processes it does not matter how
they interleave, so we can try to run them sequentially to eliminate some interleaving
possibilities.

Processes that are created from different EULYNX state machines operate on separate
parts of the memory. They only access their own struct, which contains the input ports,
output ports, and properties of that state machine. At the end of each cycle the values of
the ports are published to the other state machines connected to those. Therefore it does
not matter in what order the processes of the state machines do their run-to-completion
of a cycle. The sub-processes of a state machine do operate on the same memory
as the main process of a state machine, so their interleaving behaviour should remain
non-deterministic.
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Figure 10.3: Revised orchestrator process for improved process synchronisation

To execute the run-to-completions of different state machines separately, we need to
change the orchestrator process. Instead of having all processes listen on the general
do_step and event_check channels, they should listen on state machine specific
channels like <stmName>_do_step and <stmName>_event_check.

An example of how the orchestrator would look with two state machines called SP and FP
is shown in Figure 10.3. It starts in the leftmost location where it waits for all the processes
to be in a stable state. This is always the case at the start of the simulation of a model
generated with the current version of the translation. Therefore, it takes the first transition
which sends a broadcast signal to all the processes of SP to take a step if they are able
to. Then, it waits until all the processes are in a stable state again, and it does the same
for FP. When FP has also finished its run-to-completion the orchestrator transitions to the
location at the top of the figure. This publishes the values of the ports to the other state
machines, and simultaneously signals the event manager of SP to check for events and
dispatch them if there are any. When all processes are in a stable state again, it also
triggers the event manager of FP to do the same, which brings the orchestrator to the
location it started in.

10.1.3 Separating cycles

During the verification of the requirements for the Point model in UPPAAL we thought of a
different way in which we could make the output model easier to verify for UPPAAL. Specif-
ically for the requirements that use the ‘leads to’ operator (-->). Lets take as example a
requirement in the form of A --> B. During the verification if UPPAAL encounters a state
in which A holds, then it has to explore all the possible traces starting from that state to
see if B will eventually hold in all of those traces. Because in the current version of the
translation the model is in a committed state at all times, the depth of this trace tree can
become very large if UPPAAL does not encounter a loop early in the trace.

It could be that for some requirements you are only interested in the direct response of
the model to a certain input, meaning for example that a component is presented with a
certain input and that it should give a specific output right after a single cycle. If this is the
case UPPAAL could stop the search right after a single cycle.

This would remove the possibility of checking other requirements that use the ‘leads to’
operator specifying behaviour that should happen after more than one cycle. Therefore,
this should be implemented as a feature that can be toggled on and off.

To realise this, the model should be in a non-committed state between cycles. Because
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Figure 10.4: Revised orchestrator process for simple ‘leads to’ requirements

the output model does not currently use time constraints, UPPAAL will detect this state
as a state in which it can stay indefinitely as it is not triggered to leave that state. All the
main locations of EULYNX states are already non-committed as well as the initial states
of the event managers. The only non-committed state that needs to be added is one
before triggering the event managers in the orchestrator process. The altered orchestrator
process is shown in Figure 10.4.

An UPPAAL requirement specifying behaviour of one cycle would have the following form:

A && orchestrator.GOING --> B
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A EULYNX functions of Torch

Listing 12.1: The helper functions of the Torch IBD in EULYNX.
1 init() {
2 torch_location := "NEAR";
3 v1_torch_time := 0;
4 v2_torch_time := 0;
5 v3_torch_time := 0;
6 v4_torch_time := 0;
7 }
8 setTorchTime() {
9 torch_time := 0;

10 if v1_requests_torch and v1_location == torch_location then torch_time :=
max(torch_time, 1); end if

11 if v2_requests_torch and v2_location == torch_location then torch_time :=
max(torch_time, 2); end if

12 if v3_requests_torch and v3_location == torch_location then torch_time :=
max(torch_time, 5); end if

13 if v4_requests_torch and v4_location == torch_location then torch_time :=
max(torch_time, 10); end if

14 if v1_requests_torch and v1_location == torch_location then v1_torch_time
:= torch_time; end if

15 if v2_requests_torch and v2_location == torch_location then v2_torch_time
:= torch_time; end if

16 if v3_requests_torch and v3_location == torch_location then v3_torch_time
:= torch_time; end if

17 if v4_requests_torch and v4_location == torch_location then v4_torch_time
:= torch_time; end if

18 }
19 getRequestCount(): Integer {
20 requestCount := 0;
21 if v1_requests_torch and v1_location == torch_location then requestCount

:= requestCount + 1; end if
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22 if v2_requests_torch and v2_location == torch_location then requestCount
:= requestCount + 1; end if

23 if v3_requests_torch and v3_location == torch_location then requestCount
:= requestCount + 1; end if

24 if v4_requests_torch and v4_location == torch_location then requestCount
:= requestCount + 1; end if

25 return requestCount;
26 }
27 allVikingsMoved(): Boolean {
28 if v1_torch_time > 0 and v1_requests_torch then return FALSE; end if
29 if v2_torch_time > 0 and v2_requests_torch then return FALSE; end if
30 if v3_torch_time > 0 and v3_requests_torch then return FALSE; end if
31 if v4_torch_time > 0 and v4_requests_torch then return FALSE; end if
32 return TRUE;
33 }
34 isDone(): Boolean {
35 return v1_location == "FAR" and v2_location == "FAR" and v3_location == "

FAR" and v4_location == "FAR";
36 }
37 moveTorch() {
38 v1_torch_time := 0;
39 v2_torch_time := 0;
40 v3_torch_time := 0;
41 v4_torch_time := 0;
42 if torch_location == "NEAR" then
43 torch_location := "FAR";
44 else
45 torch_location := "NEAR";
46 end if
47 }

B Output UPPAAL model for the guard test example
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ibd SCI-P PDI SR - Logical Architecture [SCI-P PDI IBD 1]

«block»

SCI-P PDI SR

: F_SCI_EfeS_Sec_SR

D50_PDI_Connection_State T6_Start_Status_Report

T9_Status_Report_Completed

: S_SCI_EfeS_Prim_SR

D50_PDI_Connection_State

: S_SCI_P_SR

D21_S_SCI_EfeS_Gen_SR_State

DT10_Move_Point

DT1_Move_Point_Target

DT20_Point_Position

DT2_Point_Position

T10_Move_Point T1_Cd_Move_Point

T20_Point_Position

T2_Msg_Point_Position

T30_Timeout

T3_Msg_Timeout

SAP_SubS_EIL SAP_SubS_P

: F_SCI_P_SR

DT20_Point_Position

DT2_Point_Position

DT1_Move_Point_Target

DT10_Move_Target

D21_F_SCI_EfeS_Gen_SR_State

T40_Send_Status_Report

T11_Stop_Operation

T10_Move

T2_Msg_Point_Position

T3_Msg_Timeout

T23_Sending_Status_Report_Completed

T20_Point_Position

T30_Report_Timeout

T1_Cd_Move_Point

T18_Start_Status_Report

Figure 12.2: Logical architecture of the SP and FP component (Eu.P.3286) in Point [28]

C State machine diagrams of the Point model

The following diagrams are direct copies from the Point model document [28], which can
be found in the published documents of EULYNX [27]. These documents are licensed
under the EU Public License [5].

How the SP (S_SCI_P_SR) and FP (F_SCI_P_SR) blocks are connected is shown in
Figure 12.2. The SP component is the large block on the left, and the FP component is
the large block on the right. The connection between the FP and P3 (F_P3_SR) blocks is
shown in Figure 12.3. Here, FP is the large block on the left, and P3 is the large block on
the right.
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ibd Subsystem - Point SR - Logical Architecture [SubS P IBD 2]

«block»

SubS P SR

: F_SCI_P_SR

DT20_Point_Position

DT2_Point_Position

DT1_Move_Point_Target

DT10_Move_Target

D21_F_SCI_EfeS_Gen_SR_State

T40_Send_Status_Report

T11_Stop_Operation

T10_Move

T2_Msg_Point_Position

T3_Msg_Timeout

T23_Sending_Status_Report_Completed

T20_Point_Position

T30_Report_Timeout

T1_Cd_Move_Point

T18_Start_Status_Report

: F_P3_SR

T20_Point_Position

T5_Info_End_Position_Arrived

T7_Information_Out_Of_Sequence

T6_Information_Trailed_Point

T4_Information_No_End_Position

D38_Con_008500

D37_Con_008400

D36_Con_008300

D35_Con_008200

D34_Con_008000

D33_Con_007900

D32_Con_007600

D30_Con_007000

D11_Move_Right

D10_Move_Left

D5_Drive_State

D6_Detection_State

D22_PM2_Position

D21_PM1_Position

DT20_Point_Position

DT1_Move_Target

T2_Stop_Operation

T1_Move

T30_Report_Timeout

D25_Redrive

D4_Con_tmax_Point_Operation

D20_F_EST_EfeS_Gen_SR_State

T40_Report_Status

D13_PM2_Activation

SCI_P

: F_SCI_EfeS_Sec_SR

T6_Start_Status_Report

T9_Status_Report_Completed

D50_PDI_Connection_State

: F_EST_EfeS_SR

D51_EST_EfeS_State

P3

Figure 12.3: Logical architecture of the FP and P3 component (Eu.P.3296) in Point [28]
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Initial0

PDI_CONNECTION_ESTABLISHED
when( T10_Move_Point )/
DT1_Move_Point_Target := DT10_Move_Point;
T1_Cd_Move_Point := TRUE;
when( T2_Msg_Point_Position )/DT20_Point_Position := DT2_Point_Position;
T20_Point_Position := TRUE;

when( T3_Msg_Timeout )/T30_Timeout := TRUE;

REPORT_STATUS

STATUS_REPORTED

Initial1

RECEIVING_STATUS_REPORT

S_SCI_P_SR - Behaviour [SCI_P STD 1]

/cOp1_ init();

when( D21_S _SCI_E feS_Gen_SR_S tate <> "ESTABLISHED" ) /

when( T2_Msg_Point_Position )/
DT20_Point_Position := DT2_Point_Position;
T20_Point_Position := TRUE;
Mem_Point_Position := DT2_Point_Position;

when( D21_S_SCI_EfeS_Gen_SR_State =
"ESTABLISHED" )[
Mem_Point_Position <> DT2_Point_Position]/
Mem_Point_Position := DT2_Point_Position;
DT20_Point_Position := DT2_Point_Position;
T20_Point_Position := TRUE;

when( D21_S _S CI_E feS_Gen_S R_S tate = "CLOSED" ) /

when( D21_S_SCI_EfeS_Gen_SR_State =
"ESTABLISHED" )[
Mem_Point_Position = DT2
_Point_Position]/

/

Figure 12.4: State machine diagram of the SP component (Eu.P.4729) in Point [28]
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Initial0

PDI_CONNECTION_ESTABLISHED
when( T1_Cd_Move_Point )/DT10_Move_Target := DT1_Move_Point_Target;
T10_Move := TRUE;

when( T20_Point_Position )/DT2_Point_Position := DT20_Point_Position;
T2_Msg_Point_Position := TRUE;

when( T30_Report_Timeout )/T3_Msg_Timeout := TRUE;

WATING

REPORT_STATUS

STATUS_REPORTED

Initial1

ESTABLISHING_PDI_CONNECTION

F_SCI_P_SR - Behaviour [SCI_P STD 2]

/cOp1_ init();

when( D21_F_S CI_E feS _Gen_SR_S tate <> "ESTABLISHED" ) /

when( T18_Start_Status_Report )/
T40_Send_Status_Report := TRUE;

when( T20_Point_Position )/
DT2_Point_Position := DT20_Point_Position;
T2_Msg_Point_Position := TRUE;
Mem_Point_Position := DT20_Point_Position;
T23_Sending_Status_Report_Completed := TRUE;

when( D21_F_SCI_EfeS_Gen_SR_State =
"ESTABLISHED" )[
Mem_Point_Position <> DT20_Point_Position]/
Mem_Point_Position := DT20_Point_Position;
DT2_Point_Position := DT20_Point_Position;
T2_Msg_Point_Position := TRUE;

/

when( D21_F_S CI_E feS_Gen_SR_S tate = "CLOSED" ) /

when( D21_F_SCI_EfeS_Gen_SR_State =
"ESTABLISHED" )[
Mem_Point_Position = DT20
_Point_Position]/

Figure 12.5: State machine diagram of the FP component (Eu.P.4693) in Point [28]
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Initial0

OPERATING

DETECTION

J unction0

ALL_LEFT

Entry/DT20_Point_Position := "LEFT";
T20_Point_Position := TRUE;
Mem_Current_Point_Position := "LEFT";
T5_Info_End_Position_Arrived := TRUE;
D6_Detection_State := "END_POSITION";

Exit/T5_Info_End_P osition_Arrived := FALSE;

when( T40_Report_Status )/
DT20_Point_Position := "LEFT";
T20_Point_Position := TRUE;

ALL_RIGHT

Entry/DT20_Point_Position := "RIGHT";
T20_Point_Position := TRUE;
Mem_Current_Point_Position := "RIGHT";
T5_Info_End_Position_Arrived := TRUE;
D6_Detection_State := "END_POSITION";

Exit/T5_Info_End_Position_Arrived := FALSE;

when( T40_Report_Status )/
DT20_Point_Position := "RIGHT";
T20_Point_Position := TRUE;

NO_END_POSITION

Entry/DT20_Point_Position := "NO_END_POSITION";
T20_Point_Position := TRUE;
Mem_Current_Point_Position := "NO_END_POSITION";
T4_Information_No_End_Position := TRUE;
D6_Detection_State := "NO_END_POSITION";

Exit/T4_Information_No_End_Position := FALSE;

when( T40_Report_Status )/
DT20_Point_Position := "NO_END_POSITION";
T20_Point_Position := TRUE;

TRAILED

Entry/DT20_Point_Position := "TRAILED";
T20_Point_Position := TRUE;
Mem_Current_Point_Position := "TRAILED";
T6_Information_Trailed_Point := TRUE;
D6_Detection_State := "TRAILED";

Exit/T6_Information_Trailed_Point := TRUE;

when( T40_Report_Status )/DT20_Point_Position := "TRAILED";
T20_Point_Position := TRUE;

Initial1

WAITING_FOR_INITIALISING

DRIVE

STOPPED
Entry/D25_Redrive := FALSE;
D5_Drive_State := "STOPPED";

Initial2

J unction2J unction1

MOVING_LEFT
Entry/D10_Move_Left := TRUE;
D5_Drive_State := "MOVING";
Mem_last_Target_Requested := "LEFT";

Exit/D10_Move_Left := FALSE;

MOVING_RIGHT
Entry/D11_Move_Right := TRUE;
D5_Drive_State := "MOVING";
Mem_last_Target_Requested = "RIGHT";

Exit/D11_Move_Right := FALSE;

F_P_SR - Behaviour [SCI_P STD 1]

when( T1_Move )
[DT1_Move_Target
= "RIGHT"] /

when( T1_Move ) [DT1_Move_Target = "RIGHT"] /

[DT1_Move_Target <>
Mem_Current_P oint_P osition]/

when( T1_Move )[DT1_Move_Target = "LEFT"] /

[DT1_Move_Target <>
Mem_Current_P oint_P osition]/

when( cOp10_Redrive_Right )[cOp9_Redrive_E nabled] /D25_Redrive := TRUE;
when( cOp11_Redrive_Left )[cOp9_Redrive_E nabled] /D25_Redrive := TRUE;

/

when( cOp2_A ll_Left ) /

after( D4_Con_tmax_P oint_Operation ) /cOp12_Timeout();

[DT1_Move_Target =
Mem_Current_Point_Position]/T20
_Point_Position := "TRUE";

when( cOp3_No_E nd_P os ition ) /

when( cOp3
_No_End_P
osition ) /

when( cOp5_Trailed )[cOp7
_Is_Trailable]/

when( cOp4
_All_Right ) /

when( cOp4_A ll_R ight ) /

when( cOp3
_No_End_P
osition ) /

when( cOp5_Trailed )
[cOp7_Is_Trailable]/

when( cOp4_A ll_R ight ) /

when( cOp2
_All_Left ) /

when( cOp2_A ll_Left ) /

when( cOp2_A ll_Left ) /

[cOp3_No_E nd_P os ition] /

[cOp5_Trailed and cOp7_Is_Trailable] /

[cO p2_A ll_Left] /
[cOp4_A ll_R ight] /

when( T1_Move )
[DT1_Move_Target
= "LEFT"] /

[DT1_Move_Target =
Mem_Current_Point_Position]/T20
_Point_Position := "TRUE";

when( cOp4_A ll_R ight ) /

after( D4_Con_tmax_P oint_Operation ) /cOp12_Timeout();

/cOp1_ Init();

[cOp13_Not_ Initialised] / [cOp13_Not_ Initialised] /

when( D20
_F_EST_EfeS_Gen_SR_St
ate =
"INITIALISING" )/

/

[D20_F_EST_E feS_Gen_SR_State
= "INITIALISING"] /

when( cOp13_Not_ Initialised ) / when( cOp13_Not_ Initialised ) /

when( cOp13_Not_ Initialised ) /

when( cOp13_Not_ Initialised ) /

Figure 12.6: State machine diagram of the P3 component (Eu.P.4588) in Point [28]
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D Detailed Point requirement descriptions

The the detailed requirement descriptions of the requirements discussed in Section 7.2
are listed in this appendix. As described in Section 5.3.5, the strings are labelled with a
unique number ID in the translation. These ID’s are clarified in the note of the tables.

ID R1
Requirement When SP detects a new position, this position is reported to the EIL.
Clarification One of the functions of SP is that it should forward new positions

received from FP to the Electronic Interlocking system. That a new
position is made available by FP can be detected from the pulse port
T2_Msg_Point_Position. The actual position can be read from
the port DT2_Point_Position. This value should be written to
SP’s output port DT20_Point_Position. This port is connected
to the EIL.

UPPAAL Spec.
(str_sp.T2_Msg_Point_Position &&

str_sp.DT2_Point_Position == 2) -->
(str_sp.T20_Point_Position &&
str_sp.DT20_Point_Position == 2)

Expected res. Not satisfied. Because there are states in which SP does not listen
for a new position report.

Note The string "LEFT" is translated to 2. This specification only covers
forwarding of the message "LEFT". To cover other cases, it needs
to be duplicated while changing the string constant ID.

Table 12.1: Detailed description of R1
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ID R2
Sub-model SP
Requirement When port D21 of SP reads "ESTABLISHED", SP goes to the

PDI_CONNECTION_ESTABLISHED state.
Clarification SP should only forward commands from the EIL to FP when

the Prim component (S_SCI_EfeS_Prim_SR) gives the sta-
tus "ESTABLISHED". SP can read this on its input port
D21_S_SCI_EfeS_Gen_SR_State. Once this is the case, SP should
move to the PDI_CONNECTION_ESTABLISHED. This is the only
state in which SP can forward commands from the EIL to FP. There-
fore we specify in the requirement that SP should go to this state if
port D21 reads "ESTABLISHED".

UPPAAL Spec.
(str_sp.D21_S_SCI_EfeS_Gen_SR_State == 4) -->

sp.PDI_CONNECTION_ESTABLISHED_Simple

Expected res. Not satisfied. Because there are states in which SP does not listen
for a change to "ESTABLISHED" in D21.

Note The string "ESTABLISHED" is translated to 4.

Table 12.2: Detailed description of R2

ID R3
Sub-model SP
Requirement When port D21 of SP reads something other than "ESTABLISHED",

SP transitions to the RECEIVING_STATUS_REPORT state.
Clarification The reasoning behind this requirement is similar to the one shown

in Table 12.2. The only difference is that SP should move to
the RECEIVING_STATUS_REPORT state, because this is the state
where it cannot forward a command from the EIL. It should first
reestablish the connection.

UPPAAL Spec.
(str_sp.D21_S_SCI_EfeS_Gen_SR_State != 4) -->

sp.RECEIVING_STATUS_REPORT_Composite

Expected res. Satisfied.
Note The string "ESTABLISHED" is translated to 4.

Table 12.3: Detailed description of R3
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ID R4
Sub-model SP
Requirement When port D21 of SP reads "ESTABLISHED", SP can forward a

move command.
Clarification This is in theory the same requirement as described in Table 12.2,

but instead of referencing a state name we specifically express that
it should be able to forward a command.

UPPAAL Spec.
(str_sp.D21_S_SCI_EfeS_Gen_SR_State == 4 &&

str_sp.T10_Move_Point &&
str_sp.DT10_Move_Point == 2) -->
(str_sp.T1_Cd_Move_Point &&
str_sp.DT1_Move_Point_Target == 2)

(str_sp.D21_S_SCI_EfeS_Gen_SR_State == 4 &&
str_sp.T10_Move_Point &&
str_sp.DT10_Move_Point == 5) -->
(str_sp.T1_Cd_Move_Point &&
str_sp.DT1_Move_Point_Target == 5)

Expected res. Not satisfied. Because there are states in which SP does not listen
for a change to "ESTABLISHED" in D21.

Note The string "ESTABLISHED" is translated to 4, "LEFT" to 2, and
"RIGHT" to 5. Two UPPAAL requirements are created to cover both
a left and right command.

Table 12.4: Detailed description of R4
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ID R5
Sub-model SP
Requirement SP should only send a new position command to FP if that command

was given by the EIL.
Clarification This is a safety property specifying that SP should not send a

command to FP when the EIL has not sent the signal for a new
command. SP uses pulse port T1_Cd_Move_Point to signal FP
that it can read a new move command on its port connected to
DT1_Move_Point_Target. On port T10_Move_Point SP listens for
a new command given by the EIL. So, we say that SP should not
send a pulse to T1_Cd_Move_Point if it did not receive a pulse on
T10_Move_Point.

UPPAAL Spec. Not possible
Note In the requirement language it is not possible to look back once an

event has occurred. A different way to specify that this instance
cannot occur would be with the following CTL property:

!E (!str_sp.T10_Move_Point U
str_sp.T1_Cd_Move_Point)

However the UPPAAL requirement language is too limited to specify
this.

Table 12.5: Detailed description of R5

ID R6
Sub-model SP+FP
Requirement When FP detects a new position, this is forwarded to the EIL.
Clarification This requirement is similar to R1, but now we take both SP

and FP into account. When FP receives a new position from
P3, FP forwards it to SP, and SP forwards it to the EIL. We
can monitor incoming position reports on port T20_Point_Position
and DT20_Point_Position of FP. The position reports sent to
the EIL are detected by monitoring port T20_Point_Position and
DT20_Point_Position of SP.

UPPAAL Spec.
(str_fp.T20_Point_Position &&

str_fp.DT20_Point_Position == 2) -->
(str_sp.T20_Point_Position &&
str_sp.DT20_Point_Position == 2)

Expected res. Not satisfied. Because there are states in which SP or FP do not
listen for a new position report.

Note The string "LEFT" is translated to 2. This specification needs to be
repeated for each Point position to cover the whole requirement.

Table 12.6: Detailed description of R6
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ID R7
Sub-model SP+FP
Requirement When a new position is commanded by the EIL, this position is

forwarded to P3
Clarification This one is similar to R5, but here we take SP and FP into account.

When SP receives a command from the EIL, it should forward it to
FP, which in turn should forward it to P3. SP receives commands
from the EIL on port T10_Move_Point and DT10_Move_Point. FP
forwards a command to P3 by publishing it on port T10_Move and
DT10_Move_Target.

UPPAAL Spec.
(str_sp.T10_Move_Point && str_sp.DT10_Move_Point

== 2) --> (str_fp.T10_Move && str_fp.
DT10_Move_Target == 2)

Expected res. Not satisfied. Because there are states in which they do not listen
for a move command.

Note The string "LEFT" is translated to 2, and "RIGHT" to 6. This
specification should be repeated for the ‘right’ command to cover
the whole requirement.

Table 12.7: Detailed description of R7
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ID R8
Sub-model P3
Requirement If the Point machine status is "LEFT" and P3 receives a command

to go right, it is possible that P3 will instruct the Point machine to go
right.

Clarification P3 can read the current status of the Point machine (or Point ma-
chines, if multiple are supported) from port D21_PM1_Position,
D22_PM2_Position D13_PM2_Activation. P3 has an ASAL opera-
tion called cOp2_All_Left which takes care of reading out the ports
and the logic of dealing with possibly multiple Point machines. The
command to move sent by FP to P3 is received on port T1_Move
and DT1_Move_Target. To send a command to go right, P3 sets
writes true to its port D11_Move_Right. Combining this informa-
tion, we can check that if cOp2_All_Left evaluates to true, and
T1_Move and DT1_Move_Target signal a move command to the
right, eventually D11_Move_Right should be true.

UPPAAL Spec.
A[] ((p3___cOp2_All_Left() && str_p3.T1_Move

&& str_p3.DT1_Move_Target == 9) imply
E<> str_p3.D11_Move_Right)

Note The string "RIGHT" is translated to 9. In theory this specification
covers the requirement, however UPPAAL does not support nested
path expressions, so it will not run.

Table 12.8: Detailed description of R8

ID R9
Sub-model P3
Requirement If the Point machine status is "LEFT" and P3 receives a command

to go right, P3 will instruct the Point machine to go right if no prob-
lems occur.

Clarification This requirement extends R8 with the exclusion of problematic
behaviour. When a train drives through the junction in a certain
way it can move the junction to the other side. This state is called
trailed. It could be that the junction is already moved to the correct
position. In that case P3 should not send a move command to the
Point machine. We can check if the Point machine is trailed with the
operations cOp5_Trailed and cOp7_Is_Trailable.

UPPAAL Spec. Not possible
Note In the UPPAAL requirement language it is not possible to specify that

‘this’ results in ‘that’ given a certain invariant. Due to the nature of
the CTL language it is not even possible to specify this requirement
in that language.

Table 12.9: Detailed description of R9
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ID R10
Sub-model P3
Requirement If redrive is enabled, the Point machine reads "LEFT", and is no

longer "LEFT", P3 should instruct to go left.
Clarification With this requirement we specify that P3 should correct the Point

machine if it moves to the wrong side without a command. This
could happen when the Point machine is trailed. So if previ-
ously cOp2_All_Left was true, but now cOp2_All_Left is false while
cOp9_Redrive_Enabled is true and T1_Move has not changed, the
port D10_Move_Left should be set to true.

UPPAAL Spec.
(p3___cOp9_Redrive_Enabled &&

str_p3.Mem_Current_Point_Position == 3 &&
!p3___cOp4_All_Left) --> str_p3.

D10_Move_Left

Expected res. Satisfied.
Note The string "LEFT" is translated to 3. As it is not possible to specify

that event ‘A’ followed by event ‘B’ should always result in event ‘C’,
we use one of the memory properties/variables of the P3 component.
In this way we can detect that the Point machine is ‘no longer left’.

Table 12.10: Detailed description of R10

ID R11
Sub-model P3
Requirement The DT20 port of P3 can only have the values "LEFT", "RIGHT",

"NO_END_POSITION", "TRAILED", or "" (uninitialised).
Clarification This is a simple safety property that the port DT20_Point_Position

can only have the specified values.
UPPAAL Spec.

A[] str_p3.DT20_Point_Position == 3 ||
str_p3.DT20_Point_Position == 9 ||
str_p3.DT20_Point_Position == 0 ||
str_p3.DT20_Point_Position == 8 ||
str_p3.DT20_Point_Position == 2

Expected res. Satisfied.
Note The string "LEFT" is translated to 3, "RIGHT" to 9,

"NO_END_POSITION" to 0, and "TRAILED" to 8.

Table 12.11: Detailed description of R11
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ID R12
Sub-model P3
Requirement When DT20 reads "LEFT" or "RIGHT", D6 should read

"END_POSITION" and vise versa.
Clarification This is another simple safety property. It specifies a correlation of

two output ports of P3. When port DT20_Point_Position is set to
"LEFT" or "RIGHT", the port D6_Detection_State should be set to
"END_POSITION", and the other way around. This is an invariant
that should always be true.

UPPAAL Spec.
A[] (str_p3.DT20_Point_Position == 3 ||

str_p3.DT20_Point_Position == 9)
== (str_p3.D6_Detection_State == 13)

Expected res. Satisfied.
Note The string "LEFT" is translated to 3, "RIGHT" to 9, and

"END_POSITION" to 13.

Table 12.12: Detailed description of R12
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E Example simulation trace of SP in UPPAAL

The diagnostic trace shown in Figure 12.7 is the result of verifying the following requirement
in UPPAAL (with the ‘shortest trace’ option selected):

E<> (sp.PDI_CONNECTION_ESTABLISHED_Simple &&
sp_event_queue_peek() == 3)
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Figure 12.7: Example simulation trace of SP in UPPAAL
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