
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Recognition and Exploitation of
Single-Machine Scheduling

Subproblems in Mixed
Integer Programs

Reinout Lambertus Henricus Wijfjes
M.Sc. Thesis
January 2022

Supervisors:
prof. dr. M. J. Uetz

dr. M. Walter

Graduation committee:
prof. dr. M. J. Uetz

dr. M. Walter
dr. J. C. W. van Ommeren

dr. H. Hang

Discrete Mathematics and
Mathematical Programming

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Abstract

To speed up the branch-and-bound algorithm that is used to solve mixed integer
programs, modern solvers exploit general and problem specific cutting planes.
As it is unknown whether the application of the class of scheduling cutting
planes is beneficial, we investigate the employment of the subclass of single
machine scheduling cutting planes that are valid for the formulation using big-
M constraints with natural date variables. To be able to identify single machine
scheduling subproblems within mixed integer programs, a new exponential time
recognition algorithm, performing well in practice, is developed and presented
here. Experiments to investigate the exploitation of single machine scheduling
subproblems indicate that in a small number of cases the use of scheduling
cutting planes indeed reduce the solving time and in a few more cases there is
potential to decrease the solving time by integrating the cutting planes into the
branch-and-cut algorithm.

2

Preface

In front of you lies the master thesis Recognition and Exploitation of Single-
Machine Scheduling Subproblems in Mixed Integer Programs, that marks the
end of year of work on my final project for the master Applied Mathematics
at the University of Twente. As this thesis was written during the COVID19-
pandemic, the process that lead to this thesis can be described as a bumpy road.
More often than not I had to work in my student room and this has not always
been easy. Therefore, I want to take the opportunity to thank everyone who
helped and supported me.

First of all, I want to thank my supervisors dr. Matthias Walter and prof.
dr. Marc Uetz. Thank you for guidance, input and feedback. Maybe even more
important, thank you for the energy I got from our meetings. Many times I
came into one of our meetings feeling like my progress was not optimal, but
your understanding when I struggled, your kind words, enthusiasm and positive
feedback always lifted my spirits to continue working on my final project. Fur-
thermore, I want to thank the other members of my graduation committee, dr.
Jan-Kees van Ommeren en dr. Hanyuan Hang.

Additionally, I want to thank everybody with whom I had the pleasure to
study together, online or on campus. An honorable mention is for my fellow
members of the EEMCS Graduation Support Group. Our weekly meetings on
Monday helped me keeping an overview of my progress and motivated me to
keep on moving forward with my thesis. Another special mention is for Rolf,
whose offer to provide feedback on this thesis I gladly accepted. Moreover, I
want to thank my roommates at Huize Frits is Dood and my fellow members of
D.B.V. DIOK, who where there when I needed relaxation.

Finally, I want to thank my family and friends, on who I always can resort
whenever I want.

3

Contents

1 Introduction 5
1.1 The Mixed Integer Programming model 5
1.2 Techniques for solving Mixed Integer Programs 5
1.3 Research Question and Approach 7
1.4 Outline . 7

2 MIP models for single machine scheduling 8
2.1 Natural date variables . 8
2.2 Time-indexed variables . 9
2.3 Linear ordering variables . 10
2.4 Assignment and positional date variables 11
2.5 Comparison and choice of model 11

3 Recognizing a single machine scheduling subproblem 13
3.1 Reformulating the single machine scheduling problem 13
3.2 Constraint graphs . 14
3.3 An algorithm to recognize single machine scheduling subproblems 16
3.4 Validation of the recognition algorithm 24
3.5 Complexity of the recognition algorithm 26

4 Scheduling cuts 27
4.1 Release date cuts . 27
4.2 Precedence cuts . 30

5 Computational Study 32
5.1 Recognition algorithm . 32

5.1.1 Implementation details . 32
5.1.2 Results . 34
5.1.3 Analysis . 37

5.2 Exploitation of single machine scheduling subproblems 40
5.2.1 Method . 40
5.2.2 Results . 41
5.2.3 Analysis . 43

6 Discussion 47

References 51

A Results of the test of recognition algorithm 54

B Results of additional experiments on exploitation 63

4

1 Introduction

1.1 The Mixed Integer Programming model

How should a farmer allocate his available resources (e.g. machinery, land,
seeds, fertilizer) to maximize his total food production? What is the design
of a telecommunication network that guarantees phone range in the whole of
the Netherlands against minimal costs? How should buses and bus drivers be
assigned to different routes such that the public transport timetable is met? An
answer to these kind of questions can be found using a powerful modelling tool
from the world of mathematics: mixed integer linear programming (MIP).

In a MIP model, the modeller sets a linear objective function that needs
to be optimized. The variables are subject to a set of m linear constraints.
Besides that, some of the variables are restricted to be binary, while other
variables can take any integer or any real value. This is captured in the index
sets B ⊆ I ⊆ R, where B contains indices of binary variables, I contains indices
of integer variables and R = {1, . . . , r} contains all variable indices. These index
sets are given and form the input of the problem, together with the objective
function and constraint set. This can be summarized in the following general
form of a MIP:

min cTx (1a)

s.t. Ax ≥ b, (1b)

xi ∈ {0, 1}, ∀i ∈ B, (1c)

xi ∈ Z, ∀i ∈ I \B, (1d)

xi ∈ R, ∀i ∈ R \ I, (1e)

with matrix A ∈ Rm×r, vectors b ∈ Rm and c ∈ Rr. Furthermore, Q is the
index set of the constraints.

1.2 Techniques for solving Mixed Integer Programs

Modern MIP solvers use a lot of methods and tricks to solve models as quickly as
possible. The foundation of solver software is formed by the branch-and-bound
(B&B) algorithm, which is described here first.

The B&B method, as introduced by Land and Doig in 1960 [1], solves the
optimization problem by starting with dropping the integrality constraints (1c)
and (1d). Then, the set of feasible solutions of the obtained LP is called the
linear programming (LP) relaxation. This LP relaxation contains all feasible
solutions of the original MIP, but can be solved to optimality relatively easy,
for example by the simplex algorithm. The found optimal solution is checked
for integer feasibility: do the variables that in the original model should take an
integer value, indeed take an integer value in this optimal solution? If so, the
optimal solution of the original problem is found. If not, the objective value of
the optimal solution is set to be the dual bound. In that case, also an integer

5

variable xi, taking non-integral value x∗i in the optimal solution, is chosen to
branch on. Branching happens by creating new MIP models. As an example, it
is possible to create two new models. The first model is a copy of the original
model with the additional constraint xi ≤ bx∗i c, while the second model is a
copy of the original with the additional constraint xi ≥ dx∗i e. The new models
are marked as open, while the solved model is marked as closed. The term
branching comes from the fact that the the original model can be viewed as the
root node of a tree, while the new models are the branches/leafs of the tree.

After this initialization, the algorithm continues in a loop. In one iteration
of this loop, the algorithm selects one of the open nodes of the B&B-tree. Once
again, the LP relaxation of the MIP corresponding to the node is solved to
optimality. A few things then can happen. First, the found solution could be
an integer feasible solution. If the objective value is better than the objective
value of the then best-known solution, the incumbent and the primal bound are
updated accordingly. Here, the incumbent is the best-known feasible solution
and the primal bound is the objective value of the incumbent. After the update,
the node is marked as closed, but this also happens when the feasible solution
does not yield an improvement. When the found solution is not integer feasible,
branching takes place, creating new open nodes and closing the current node.
Finally, the constraints that are added to the MIP in a previous branching step
may have caused infeasibility of the MIP instance corresponding to a node in
the B&B-tree. In that case, the current node is closed without branching. The
algorithm terminates when all nodes are closed or when the primal and dual
bound have the same value.

To speed up the B&B algorithm, MIP solvers use all kinds of tricks. One
of those tricks is preprocessing: before operating the B&B algorithm, solvers
could for example try to simplify constraints, remove redundant constraints or
reduce the number of variables or constraints by substitution. Furthermore,
MIP solvers use heuristics to find feasible solutions of the MIP, that hope-
fully help improving the incumbent and primal bound. Both preprocessing and
heuristics will not be discussed here in further detail. Some other influences
on the performance of the B&B algorithm are the algorithm that decide which
open node is processed next or the rule on how to perform branching.

Another trick of MIP solvers to prove faster that the solution is optimal is
the use of cutting planes. To explain the concept of cutting planes (or cuts),
suppose the B&B algorithm has found an optimal solution for the LP relaxation
of some MIP instance. Suppose furthermore that this solution is not integer
feasible. Then a cutting plane is an inequality that is valid for all integer
feasible solutions, but invalid for the optimal solution of the LP relaxation.
If such an inequality can be found, it can be added to the MIP, after which the
LP relaxation of the MIP can be solved again. This process could be repeated
multiple times in every node of the B&B tree and is known as the separation
problem. A drawback of repeating this method often without finding the optimal
solution, is that it gets harder to solve the LP relaxation because of the growing
number of constraints. Therefore, MIP solvers will spend a limited amount of
time looking for cutting planes per node of the B&B-tree. MIP solvers use many

6

different types of cuts, for example Chvátal-Gomory cuts, lift-and-project cuts,
cover cuts and clique cuts [2], [3].

Besides these general cuts, MIP solvers can also use problem specific cut-
ting planes for (sub)problems that are present in MIPs, such as the travelling
salesman problem (TSP). Dantzig, Fulkerson and Johnson [4] showed that the
TSP structure could be used to help solving MIPs faster. This shows that the
exploitation of subproblems of a MIP is a useful trick to improve the solving
time of MIPs. When the use of general and problem specific cutting planes is
integrated in the B&B-algorithm, the algorithm is called branch-and-cut.

1.3 Research Question and Approach

A type of cutting planes for which it is not known whether exploitation de-
creases the solving time of a MIP are the scheduling cuts. The class of schedul-
ing problems (and the corresponding cutting planes) consists of many differ-
ent problems, such as single machine scheduling, parallel machine scheduling
and job-shop problems. Because of time constraints and as the single machine
scheduling problem is the simplest problem in this class, in this thesis only the
single machine scheduling problem and the corresponding cutting planes will be
considered. This leads to the following research question.

Research Question. Can the presence of single machine scheduling subprob-
lems in mixed integer programs be exploited to reduce the solving time of mixed
integer programs?

To be able to answer this research question, first various single machine
scheduling MIP model are compared with each other. This comparison is used
to pick one of the models to perform further research on. After this choice, the
next step is to develop and test an algorithm that can recognize a single machine
scheduling subproblem (SMSSP) in any MIP instance. This is necessary to be
able to compute cutting planes that might help speeding up the B&B algorithm.
As many valid inequalities for single machine scheduling are known, a selection of
valid inequalities is chosen that will serve as cutting planes. Finally, experiments
are performed to find out whether the selected single machine scheduling cuts
help reducing the solving time of MIP instances in which a SMSSP is present.

1.4 Outline

In Section 2, the different single machine scheduling models are introduced and
discussed, after which one of the models is chosen for further research. After
this, an algorithm to recognize SMSSPs is presented in Section 3. Subsequently,
the selection of cutting planes is presented in Section 4.

In Section 5, the results of the test of the recognition algorithm are given
and analyzed. Also in this Section, the method and results of the experiments
to discover whether the cutting planes help reducing the solving time of MIPs
are provided together with its analysis. Finally, the recognition algorithm and
the experiments on the solving time are discussed in Section 6.

7

2 MIP models for single machine scheduling

As described in the introduction, the goal of this research is to recognize a
SMSSP in a MIP model and then exploit the presence of this subproblem to
solve the MIP model faster. Therefore, it is necessary to know how such a
problem is formulated as MIP model. In this section, several MIP models for
single machine scheduling are introduced. Then, the formulations are compared
with each other, after which is chosen which of those models will be used for
recognition and exploitation.

Before the formulations can be given, it should first be clear which problem
is modelled. In this study, the focus lies on the problem where n jobs need
to be processed by one machine/server and the processing of the jobs should
not be interrupted, i.e. preemption is not allowed. For every job j ∈ J :=
{1, 2, . . . , n}, the possible parameters and variables are given in Table 1. Possible
parameters are the processing time pj , release date rj , due date dj and weight
wj , while possible variables are the completion time variables Cj and starting
time variables Sj .

Table 1: Possible parameters and variables for every job j ∈ J .
Name Type Description

pj Parameter Time required to process job j
rj Parameter Earliest possible moment to start processing job j
dj Parameter Latest possible moment to complete processing job j
wj Parameter Represents the importance of job j
Cj Variable Moment of completing the processing of job j
Sj Variable Moment of starting the processing of job j

For the purpose of formulating different single machine scheduling MIP mod-
els, it is assumed that rj = 0, dj = ∞ holds true for all jobs j ∈ J . Although
not of relevance, but for the sake of completeness, in the following formulations
it is assumed that the objective is to minimize the sum of weighted comple-
tion times, i.e. minimize

∑n
j=1 wjCj . To meet this objective, solving a MIP

model would not be the most efficient method, as Smith has shown that the
weighted shortest processing time algorithm solves this problem to optimality
in O(n log n) time [5].

2.1 Natural date variables

The first single machine scheduling MIP model considered here is the variant
with completion time variables Cj and binary ordering variables yjk. The binary
variable yjk equals 1 if job j is scheduled before job k and 0 otherwise. The
MIP that minimizes the total weighted completion time can be represented as

8

below:

min

n∑
j=1

wjCj (2a)

s.t. Cj + pk ≤ Ck + T (1− yjk), ∀j, k ∈ J : j 6= k, (2b)

Ck + pj ≤ Cj + Tyjk, ∀j, k ∈ J : j 6= k, (2c)

Cj ≥ pj , ∀j ∈ J, (2d)

yjk ∈ {0, 1}, ∀j, k ∈ J : j 6= k, (2e)

Cj ∈ R≥0, ∀j ∈ J, (2f)

with T ≥
∑n
j=1 pj .

In this model, constraint sets (2b) and (2c) are big-M constraints and guar-
antee that no pair of jobs can overlap, i.e. when job j is processed these con-
straints ensure that job k can not be processed at the same time. Constraint set
(2d) implies that the completion time variables takes a value that is at least the
processing time, while constraint sets (2e) and (2f) define the ordering variables
and completion time variables, respectively.

Another variant of a model using natural date variables is to use starting time
variables Sj instead of completion time variables Cj . In that case, constraint
set (2d) is left out, Cj , Ck are replaced by Sj , Sk in constraint sets (2b), (2c)
and (2f) and in constraint sets (2b and (2c) pk is substituted by pj and vice
versa.

The first work on formulating a scheduling problem using natural date vari-
ables with disjunctive constraints was performed by Balas [6]. This formulation
was later also studied by Queyranne [7] and Queyranne and Wang [8] and is
also referred to as disjunctive constraints formulation or big-M formulation.

2.2 Time-indexed variables

In the model using time-indexed variables, the most important concept is a
planning horizon discretized in a finite number of time periods t = 1, 2, . . . , T ,
with T ≥

∑n
j=1 pj and where time period t starts at time t−1 and ends at time

t. Furthermore, the binary time index variable xjt is introduced. This variable
takes value 1 when the processing of job j starts at time t and otherwise equals 0.
Then, the MIP that uses time-indexed variables to minimize the total weighted

9

completion time can be formulated as follows:

min

n∑
j=1

T−pj+1∑
t=1

wj(t− 1 + pj)xjt (3a)

s.t.

T−pj+1∑
t=1

xjt = 1, ∀j ∈ J, (3b)

n∑
j=1

t∑
s=max(0,t−pj+1)

xjs ≤ 1, ∀t ∈ {1, 2, . . . , T}, (3c)

xjt ∈ {0, 1}, ∀j ∈ J, ∀t ∈ {1, 2, . . . , T}. (3d)

Using the variables of the time-indexed formulation, one can compute the

completion time of job j as Cj =
∑T−pj+1
t=1 (t − 1 + pj)xjt. Then, substituting

this in the objective of the natural dates formulation (2a), the objective of the
time-indexed formulation follows easily. Moreover, constraint set (3b) indicates
that a job can start at only one moment, while constraint set (3c) assures that
at every moment only one job can be processed. Constraint set (3d) specifies
the binary time index variables.

The time-indexed variables formulation is introduced by Sousa and Wolsey
[9]. Also van den Akker et al. [10] and S̆orić [11] contributed in the research on
this model.

2.3 Linear ordering variables

The linear ordering variables formulation uses only one type of variables: binary
ordering variables δjk. This variable takes value 1 when job j is scheduled before
job k and 0 otherwise. Using only these variables, one can model the single
machine scheduling in the following way:

min

n∑
j=1

(
wjpj +

n∑
k=1,k 6=j

wjpkδkj

)
(4a)

s.t. δjk + δkj = 1, ∀j, k ∈ J, j 6= k, (4b)

δjk + δkl + δlj ≤ 2, ∀j, k, l ∈ J, j 6= k 6= l, (4c)

δjk ∈ {0, 1}, ∀j, k ∈ J, j 6= k. (4d)

Using the linear ordering variables, the completion time of job j can be cal-
culated through Cj = pj +

∑n
k=1,k 6=j pkδkj . After substituting this into the ob-

jective of the natural date variables formulation (2a), the objective of the linear
ordering variables formulation (4a) follows after some rewriting. Additionally,
constraint set (4b) imposes the restriction that jobs j and k can be ordered in
only one way. Likewise, constraint set (4c) is the transitivity constraint set that
implies linear ordering between every triplet of jobs, while constraint set (4d)
sets the linear ordering variables.

10

The MIP formulation using linear ordering variables was initially presented
by Dyer and Wolsey [12], while further research was performed by Blazewicz et
al. [13], Nemhauser and Savelsbergh [14] and Chudak and Hochbaum [15].

2.4 Assignment and positional date variables

The idea behind this formulation is to assign the n jobs to n positional variables.
Therefore, the binary assignment variables ujk are defined such that it takes
value 1 when job j is assigned to position k and 0 otherwise. Furthermore,
this model uses completion time variables Cj and positional completion time
variables γk. With these variables, the single machine scheduling problem can
be modelled in the following manner:

minimize

n∑
j=1

wjCj (5a)

subject to

n∑
k=1

ujk = 1, ∀j ∈ J, (5b)

n∑
j=1

ujk = 1, ∀k ∈ J, (5c)

γ1 ≥
n∑
j=1

pjuj1, (5d)

γk ≥ γk−1 +

n∑
j=1

pjujk, ∀k ∈ J \ {1}, (5e)

Cj ≥ γk − T (1− ujk), ∀j, k ∈ J, (5f)

ujk ∈ {0, 1}, ∀j, k ∈ J, (5g)

Cj , γk ∈ R≥0, ∀j, k ∈ J, (5h)

with T ≥
∑n
j=1 pj .

In this formulation, constraint sets (5b) and (5c) ensure that every job is
assigned to exactly one position and that every position gets assigned exactly
one job. Constraint (5d) and constraint set (5e) are necessary to determine the
positional completion time, while constraint set (5f) is essential for finding the
completion times of jobs. Finally, constraint sets (5g) and (5h) define the binary
assignment variables and the (positional) completion time variables.

Lasserre and Queyranne [16] came up with the assignment and positional
dates variables formulation. This model is further explored by Dauzère-Pérès
[17] and Sevaux and Dauzère-Pérès [18].

2.5 Comparison and choice of model

In order to pick a single machine scheduling model for recognition and ex-
ploitation, it is important to know what the computational performance of the

11

different models is. Several computational studies regarding those formulations
have been performed. Already in 2005, Khowala et al. [19] found that for the
objective of minimizing the total weighted tardiness, the LP relaxation of the
formulation using assignment and positional date variables can be solved rela-
tively quickly and therefore offers some promise for new advanced techniques.
However, the formulations using time-indexed variables and linear ordering vari-
ables were preferred, due to the fact that they generally produce tighter bounds.
On the other hand, the LP relaxations of these two formulations are known to
be more difficult to solve. This means that fewer nodes in a B&B-tree can be
explored in the same amount of time. In general, it is known that the formu-
lation with natural date variables does not perform well. This is because of
the presence of disjunctive big-M constraints. It is widely acknowledged that
models containing those constraints often have a rather weak LP relaxation and
solving larger models can be very difficult and time consuming.

Later studies, by Keha et al. [20] and Ying et al. [21], indeed show that
the formulation using assignment and positional date variables outperforms the
other formulations. Therefore, it makes more sense to look into the other for-
mulations to see whether recognition and exploitation could be useful. All of
the remaining formulations have disadvantages concerning the LP relaxation,
but the formulations with time-indexed variables and linear ordering variables
often have tight bounds as opposed to the the formulation with natural date
variables. Loose bounds often means that more steps need to be taken to close
the gap between the primal and dual bound. In this case that would mean
that more nodes need to be explored in a B&B-tree, which clearly implies that
it takes more time to prove that a solution is optimal. From this reasoning, it
follows that it is more likely that progress can be made with the model that uses
natural dates variables. So, performing research on this model offers the highest
chance of formulating a positive answer to the research question. Therefore, the
formulation with natural date variables is the model that will be used in the
process of recognition and exploitation.

12

3 Recognizing a single machine scheduling sub-
problem

After the choice for the natural dates formulation, the next step is to find an
algorithm that can recognize a SMSSP that uses the natural dates formulation.
Before the algorithm can be given, first it is convenient to see what the algorithm
gets as input. Accordingly, the constraints of the natural date formulation are
reformulated into general form constraints, such that constraints are in a form
as found in an arbitrary MIP model. Subsequently, the constraint graphs are
defined, after which the algorithm is given. Finally, it will be shown that the
algorithm indeed recognizes a SMSSP and what the complexity of the algorithm
is.

3.1 Reformulating the single machine scheduling problem

Before the single machine scheduling problem is reformulated, it is useful to
briefly repeat the general MIP model and the natural dates formulation of the
single machine scheduling problem here first. For more detailed information
about these formulations, see Sections 1.1 and 2.1.

The general MIP model uses variables x and is given below:

min cTx (1a)

s.t. Ax ≥ b, (1b)

xi ∈ {0, 1}, ∀i ∈ B, (1c)

xi ∈ Z, ∀i ∈ I \B, (1d)

xi ∈ R, ∀i ∈ R \ I, (1e)

with B containing the indices of binary variables, I containing indices of integer
variables, R containing all variable indices, matrix A ∈ Rm×r, vectors b ∈ Rm
and c ∈ Rr. Furthermore, Q is the index set of the constraints.

The natural dates formulation of the single machine scheduling problem uses
completion time variables Cj and binary ordering variables yjk. This model
looks as following:

min

n∑
j=1

wjCj (2a)

s.t. Cj + pk ≤ Ck + T (1− yjk), ∀j, k ∈ J : j 6= k, (2b)

Ck + pj ≤ Cj + Tyjk, ∀j, k ∈ J : j 6= k, (2c)

Cj ≥ pj , ∀j ∈ J, (2d)

yjk ∈ {0, 1}, ∀j, k ∈ J : j 6= k, (2e)

Cj ∈ R≥0, ∀j ∈ J, (2f)

with T ≥
∑n
j=1 pj .

13

In theory, this is a complete model, but the modelling theory does not al-
ways match practice. Within this model, some variations are possible. Before
an algorithm can be given, these variations need to be known, such that an
algorithm can adapt to these varieties. Many (subtle) diversities are possible,
but only the important ones are discussed here.

First, it is possible to model a scheduling problem with only constraints of
type (2b) or (2c). Using only constraints of type (2c), the constraints relating
the completion times of jobs j and k looks as following:

Cj + pk ≤ Ck + Tykj

Ck + pj ≤ Cj + Tyjk.

To guarantee that jobs j and k do not overlap, it is necessary that at least one
of the two constraints becomes a tight constraint, meaning that the big-M part
of the constraint must be set to zero. Therefore, it is needed that the binary
variables in the constraints are related through a complementarity constraint:

yjk + ykj = 1. (6)

Furthermore, it may be that some precedence constraints are present in the
scheduling problem, meaning that job j is forced to be scheduled before job k.
In a constraint, that looks as follows:

Ck − Cj ≥ pk. (7)

Now that the possible variants of constraints are known, it is time for the
next step. As in the input MIP the variables are not labeled with Cj and yjk,
but only with xi, it is helpful to reformulate the constraints in the way that they
can be found in an input MIP. Below, a brief overview of how the constraints
(2b), (2c), (6) and (7) look in the input is given:

(2b) : xi − xj − Txk ≥ b` with i, j ∈ R \B, k ∈ B, b` < 0, ` ∈ Q (8a)

(2c) : xi − xj + Txk ≥ b` with i, j ∈ R \B, k ∈ B, b` ≥ 0, ` ∈ Q (8b)

(7) : xi − xj ≥ b` with i, j ∈ R \B, b` ≥ 0, ` ∈ Q (8c)

(6) : xi + xj = 1 with i, j ∈ B (8d)

Note that the constraints might be multiplied with a constant c ∈ R \ {0}.
Based on these sets, some useful notation for the next section is introduced.

Every constraint of one of the above types can uniquely be represented by its
type and indices. For example, a constraint of type (8a) with binary variables
with indices i, j and non-binary variable index k and constraint index ` can be
represented as (8a)ijk`.

3.2 Constraint graphs

As the input of the algorithm is known, the focus can be shifted to the algorithm.
An important concept that will be used in the algorithm is that of constraint

14

graphs. Within the scheduling literature, this is not a new phenomenon, as
precedence relations in a scheduling problem have a natural transformation into
directed graphs. However, for the goal of the algorithm, a graph for only the
precedence relations is not enough. Hence, the concept of a constraint graph
for regular big-M constraints is also presented here.

First, the constraint graph based on precedence relations is defined. This
Precedence Digraph Dp has all non-binary variables indices as nodes and has
exactly those arcs (i, j) for which for some ` a constraint (8c)ji` is present in
the input MIP. Every arc in the graph is labeled with two things: as weight the
arc gets the value of pj in the constraint and the second label is the index of
the constraint. Summarized in a definition, this looks as follows:

Definition 3.1 (Precedence Digraph). The Precedence Digraph Dp = (Vp, Ap)
is defined by the following sets:

Vp := R \B (9a)

Ap := {(i, j)|∃` : constraint (8c)ji` is present in input MIP} (9b)

Every arc (i, j) has the following attributes:

wij := b` `ij := `.

The second constraint graph is the constraint graph for the regular (non-
precedence) relations between pairs of jobs. This Regular Digraph Dr has all
non-binary variable indices as nodes and has exactly those arcs (i, j) for which
for some k, ` a constraint (8a)jik` or (8b)jik` is present in the input MIP. Also
in this graph, every arc is labeled with the value of the processing time and
the constraint index. As a third label, every arc gets the index of the binary
variable that is present in the constraint. Formally, that looks like this:

Definition 3.2 (Regular Digraph). The Regular Digraph Dr = (Vr, Ar) is
defined by the following sets:

Vr := R \B (10a)

Ar := A(0) ∪A(1) (10b)

A(0) := {(i, j)|∃k, ` : constraint (8a)jik` is present in input MIP} (10c)

A(1) := {(i, j)|∃k, ` : constraint (8b)jik` is present in input MIP} (10d)

The attributes of every arc (i, j) are the following:

wij :=

{
T + b` if (i, j) ∈ A(0)

b` if (i, j) ∈ A(1)
yij := k `ij := `.

Note in both definitions that the processing time pj , as label referred to as
wij , is not clearly present in (8a)-(8c). However, pj can be calculated by relating
b` in those equations to their counterparts: the right-hand sides of (2b), (2c)
and (7).

15

Example 3.1. Suppose that a modeller has created a MIP that contains the
following constraints:

x1 − x2 − 13x3 ≥ −10 (11a)

x2 − x4 + 13x5 ≥ 4 (11b)

x4 − x1 + 13x6 ≥ 6. (11c)

Furthermore, suppose that R\B = {1, 2, 4} and B = {3, 5, 6}. These constraints
then result in the Regular Digraph as given in Figure 1. Constraint (11a) is the

Figure 1: Regular Digraph resulting from constraints (11a)-(11c)

constraint that resulted in the arc (2, 1). As 1, 2 ∈ R \B, 3 ∈ B, the coefficients
of the non-binary variables are each other’s additive inverse and the coefficient
of the binary variable and the right-hand side are negative, constraint (11a)
can be represented as (8a)1,2,3,1, meaning that (2, 1) ∈ A(0). From here, the
attributes of (2, 1) follow easily: as (2, 1) ∈ A(0), w2,1 = T + b` = 13 − 10 = 3.
Furthermore, y2,1 = k = 3 and `2,1 = ` = 1. In similar fashion, one can find
that the arcs (1, 4) and (4, 2) are part of this Regular Digraph and the attributes
of those arcs.

3.3 An algorithm to recognize single machine scheduling
subproblems

Now that the constraint graphs are defined, the following step is to look at
what the minimal output of the algorithm should be. As more than one SMSSP
might be present in any MIP instance, the following list of output requirements
applies to every returned SMSSP:

1. The set J of nodes that together form a SMSSP. Notice that J ⊂ R.

2. The map p : J → R≥0. In this map the processing times are saved: the x
variable with index j has as processing time the value pj .

16

Algorithm 1 Find SMSSPs in MIPs (general)

1: input MIP M
2: Compute the constraint graphs Dr and Dp from M .
3: Compute transitive closure of the fixed constraint graph Dp to obtain all

implied precedence relations.
4: Check for every pair of nodes in the regular constraint graph Dr whether

the binary variables in the constraints that the edges represent are properly
related and if that is not the case, remove the arcs. The binary variables
of constraints of the same type ((i, j), (j, i) ∈ A(0) or (i, j), (j, i) ∈ A(1))
are properly related if they are forced to take complementary values. The
binary variables of constraints of different types are properly related if they
are forced to take equal value. Also remove arcs if there are no arcs present
in both directions.

5: Merge the modified constraint graphs Dr and Dp, turn it into an undirected
graph and find all maximal cliques in this graph. Set L = ∅.

6: For every maximal clique of size at least 2, compute (J, p, g), where J is
the set of nodes, p the map for the processing times and g the map for the
binary variables. Add (J, p, g) to L.

7: return L

3. A map g : {(i, j)|i, j ∈ J, i 6= j} → B ∪ {≺,�,=,¬}. Through this
map one can find which x variables are the binary variables that relate
completion time variables: the x variable with the index b ∈ B that has the
argument (i, j) models whether job i is scheduled before job j. However,
some binaries might not be present. Therefore, the additional objects are
used to store which type(s) of constraint(s) are present that do not need a
binary variable. If (i, j) is mapped to ≺, job i is required to be scheduled
before job j. If (i, j) is mapped to �, job i is forced to be scheduled after
job j. If (i, j) is mapped to =, job i and j are forced to take equal value. If
(i, j) is mapped to ¬, the variable that models whether job i is scheduled
before job j is not present, but its complement, the variable that models
whether job j is scheduled before job i, is present.

In some cases of scheduling problems, also release and due dates are present.
When that occurs, the algorithm should return this information. This data
could turn out to be helpful, as it poses extra restrictions on the SMSSP, which
could be exploited to solve the MIP model faster. For the sake of presenting and
explaining the algorithm in the simplest way possible, this output requirement
is dropped.

In this section, the algorithm is presented twice. Algorithm 1 introduces a
high-level description of the algorithm, while Algorithm 2 displays the algorithm
in pseudocode. The idea behind the algorithm is to represent the SMSSP as a
graph. The jobs form the set of nodes, while a scheduling relation between any
pair of jobs, guaranteeing that the jobs can not overlap, is represented by an arc.
Then, any clique in such a graph represents a SMSSP. As any submaximal clique

17

Algorithm 2 Find SMSSPs in MIPs (detailed)

1: Input Some MIP M
2: Compute Dr and Dp from M .
3: Compute transitive closure of Dp; for computed arcs: `ij = implied and
wij = max

path (xi,...,xj)
wik + · · ·+ wlj .

4: for (i, j) ∈ A(s), (j, i) ∈ A(t) for s, t ∈ {0, 1} do
5: if s = t, @ (8d)yij ,yji then
6: Ar ← Ar \ {(i, j), (j, i)}
7: end if
8: if s 6= t, yij 6= yji then
9: Ar ← Ar \ {(i, j), (j, i)}

10: end if
11: end for
12: for (i, j) ∈ Ar, (j, i) /∈ Ar do
13: Ar ← Ar \ {(i, j)}
14: end for
15: Dc ← Dr ∪Dp

16: Find list C of all maximal cliques in undirected version of Dc.
17: procedure FindInformation(J)
18: for j ∈ J do
19: if {wij : (i, j) ∈ Dc, i ∈ J} 6= ∅ then
20: pj ← min

(i,j)∈Dc,i∈J
wij

21: else
22: pj ← max{0, lower bound of xj}
23: end if
24: for i ∈ J, i 6= j do

25: gji ←

≺ if (j, i) ∈ Ap, (i, j) /∈ Ap
� if (i, j) ∈ Ap, (j, i) /∈ Ap
= if (i, j), (j, i) ∈ Ap
yji if (j, i) ∈ A(0), (i, j), (j, i) /∈ Ap
yij if (i, j) ∈ A(1), (i, j), (j, i) /∈ Ap
¬ otherwise

26: end for
27: end for
28: return (J, p, g)
29: end procedure
30: L← ∅
31: for each set of nodes J ∈ C with |J | ≥ 2 do
32: (J, p, g)← FindInformation(J)
33: L← L ∪ (J, p, g)
34: end for
35: return L

18

forms a subset of the set of jobs of a scheduling problem, the only interesting
cliques are maximal cliques. For the proof that the algorithm indeed finds
SMSSPs, see Section 3.4.

In order to show how the algorithm functions, the following example walks
through the algorithm step by step.

Example 3.2. Suppose that the following constraints are part of some MIP:

x1 − x2 − 15x3 ≥ −12 (12a)

x2 − x1 − 15x4 ≥ −11 (12b)

x3 + x4 = 1 (12c)

x5 − x2 − 15x6 ≥ −9 (12d)

x2 − x5 + 15x6 ≥ 5 (12e)

x5 − x1 + 15x7 ≥ 6 (12f)

x1 − x5 + 15x8 ≥ 3 (12g)

x2 − x9 + 15x10 ≥ 4 (12h)

x9 − x2 + 15x11 ≥ 2 (12i)

x10 + x11 = 1 (12j)

x9 − x5 ≥ 2 (12k)

x1 − x9 ≥ 3 (12l)

x12 − x5 ≥ 6 (12m)

x1 − x12 ≥ 3 (12n)

x2 − x13 − 15x14 ≥ −11 (12o)

x13 − x2 + 15x15 ≥ 7 (12p)

x1 − x13 + 15x16 ≥ 3. (12q)

Suppose additionally that R \B = {1, 2, 5, 9, 12, 13} and
B = {3, 4, 6, 7, 8, 10, 11, 14, 15, 16}.

Then, the first step of the algorithm is to compute the constraint graphs
Dr and Dp. As Example 3.1 shows how constraint graphs can be created from
MIP constraints, the calculation of these graphs is not given here. The resulting
graphs Dp and Dr are given in Figures 2 and 3. Furthermore, the labels of the
arcs in Dr are given in Table 2.

In the next phase, the algorithm computes the transitive closure of Dp. The
transitive closure of a graph is the graph that has an arc from node i to node j
if node j can be reached from node i in the original graph. Considering Figure
2, one can see that all nodes that can be reached from nodes 1, 9 and 12 are
already connected with an arc to those nodes. However, from node 5 all other
nodes can be reached, while there is not an arc (5, 1) present in Dp. Hence, a
new arc (5, 1) is added while computing the transitive closure. According to line
3 of Algorithm 2, w5,1 = max

path (x5,...,x1)
w5,k + · · ·+ wl,1 = max{6 + 3, 2 + 3} = 9

and `5,1 = implied. The resulting transitive closed graph is given in Figure 4.

19

Figure 2: Precedence Digraph Dp resulting from constraints (12a)-(12q), leaving
out the nodes without arcs 2 and 13

Figure 3: Regular Digraph Dr resulting from constraints (12a)-(12q), leaving
out the node without arcs 12. For labels corresponding to the arcs, see Table 2

In the subsequent part of the algorithm, the digraph Dr is checked. For
every pair of nodes, the algorithm checks whether the binary variables, that
are associated with the arcs between a pair of nodes, are forced to take equal
value, are constrained to take complementary value or are not related at all.
Depending on the type of constraints the arcs represent ((8a) and/or (8b)), the
arcs are preserved or removed from the graph.

The first pair of nodes checked in this example is the pair {1, 2}. From Table
2 it can be seen that the binary variables associated with the constraints are the
variables x3 and x4. These variables are related through constraint (12c), from
which it follows that the variables are required to take complementary value. As
indicated in Table 2, the constraints implying the arcs (1, 2) and (2, 1) have the
same type. Since the constraints are in the same class and the binary variables
must take complementary values, the arcs are not removed from the digraph.
Indeed, when examining constraints (12a)-(12c), it can be seen as follows that
the jobs can not overlap:

20

Table 2: Labels of arcs in Dr (see Figure 3).
Constraint Type Arc (i, j) wij yij lij

(12a) (8a) (2,1) 3 3 1
(12b) (8a) (1,2) 4 4 2
(12d) (8a) (2,5) 6 6 4
(12e) (8b) (5,2) 5 6 5
(12f) (8b) (1,5) 6 7 6
(12g) (8b) (5,1) 3 8 7
(12h) (8b) (9,2) 4 10 8
(12i) (8b) (2,9) 2 11 9
(12o) (8a) (13,2) 4 14 15
(12p) (8b) (2,13) 7 15 16
(12q) (8b) (13,1) 3 16 17

Figure 4: Transitive closure of Dp, leaving out the nodes without arcs 2 and 13

Case 1: Suppose x3 takes value 0. By (12c), x4 takes value 1 and constraints
(12a),(12b) reduce to

x1 − x2 ≥ −12

x2 − x1 ≥ 4.

This means that the completion time of job 2 must be at least 4 larger than
the completion time of job 1. Consequently, the jobs can not overlap, assuming
that the processing time of job 2 is not larger than 4.
Case 2: Suppose x3 takes value 1. By (12c), x4 takes value 0 and constraints
(12a),(12b) reduce to

x1 − x2 ≥ 3

x2 − x1 ≥ −11.

This means that the completion time of job 1 must be at least 3 larger than

21

the completion time of job 2. Consequently, the jobs can not overlap, assuming
that the processing time of job 1 is not larger than 3.

From these two cases it then follows that the jobs 1 and 2 can not overlap,
no matter in which order the jobs are processed. Hence, the presence of the arcs
is justified.

Figure 5: Regular Digraph Dr after the arcs are checked, leaving out the node
without arcs 12

In similar fashion all the other pairs of nodes can be checked as well. It goes
too far to walk through all pairs, but two cases are examined in more detail
here.

When studying the pair {1, 5}, one finds from Table 2 that the constraints
corresponding to the arcs are in the same class, while the binary variables x7
and x8 are not connected through any other constraints. This means that these
corresponding constraints do not guarantee that jobs 1 and 5 do not overlap.
For example, both natural date variables can take equal value, while both binary
variables take value 1:

x5 − x1 + 15x7 ≥ 6 x1 − x5 + 15x8 ≥ 3

15 ≥ 6 15 ≥ 3.

This validates that the algorithm removes the arcs between nodes 1 and 5.
As can be seen in Figure 3, the node pair {1, 13} induces only one arc. As

the binary variable x16 in the corresponding constraint is not limited in any
other constraint, it can take any value. Therefore, this single constraint does
not secure that the jobs 1 and 13 do not overlap and so the arc is eliminated
from the digraph.

After the algorithm has also checked all other pairs of nodes, the resulting
directed graph Dr looks like the graph in Figure 5.

In the following phase of the algorithm, the graphs Dr and Dp are merged
into graph Dc. From the undirected version of this graph, as shown in Figure
6, it follows that there are three maximal cliques. The first set of nodes of a
maximal clique is {1, 2, 5, 9}, the second set is {1, 5, 12} and the third set is

22

Figure 6: Undirected version of merged graph Dc. Arcs originating from Dr are
colored black, while arcs established from Dp are colored red

{13}. Then the algorithm is concluded with computing the maps p and g for
the first two maximal cliques only, as the last maximal clique has size 1.

Table 3: Values of the map p for
maximal clique {1, 2, 5, 9}.

j pj

1 3
2 4
5 6
9 2

Table 4: Values of the map g for
maximal clique {1, 2, 5, 9}.

i

gij j
1 2 5 9

1 - 4 � �
2 3 - 6 10
5 ≺ ¬ - ≺
9 ≺ 11 � -

Here, the computation of some values of p and g is given for maximal clique
{1, 2, 5, 9}. The first value that is computed here, is the value for p2. Following
line 20 of Algorithm 2, it must be that p2 = min

(i,2)∈Dc

wi2 = min{w1,2, w5,2, w9,2}.

Filling in the values of the weights of the arcs, leads to p2 = min{4, 5, 4} = 4.
The fact that the processing time differs between constraints, could for example
be explained by sequence-dependent setup times.

The next value shown here, is that of p1. In similar fashion as above, it has
to be that p1 = min

xi6=1∈J
wi1 = min{w2,1, w5,1, w9,1} = min{3, 9, 3} = 3. Here, the

different possible processing times are caused by the implied precedence relation
5→ 1.

Then, also some values of g are calculated here. The computations follow
line 25 of algorithm 2. The first examples are g1,5 and g1,5. As can be seen
from Figure 4, there is a precedence relation 5→ 1 present between those jobs,
meaning that (5, 1) ∈ Ap. This then means that g1,5 = � and g5,1 = ≺.

The values of g2,5 and g5,2 follow again line 25 of algorithm 2. From Figure

23

4 it becomes clear that there is no precedence relation between this pair of jobs,
so from Table 2 it can be seen that arc (2, 5) ∈ A(0), as it follows from a type
(8a) constraint, while (5, 2) ∈ A(1). Therefore, g2,5 = 6 and g5,2 = ¬.

The full set of values of p and g for maximal clique {1, 2, 5, 9} can be found
in Tables 3 and 4. Note that g is not defined for gij with i = j.

Table 5: Values of the map p for
maximal clique {1, 5, 12}.

j pj

1 3
5 0
12 6

Table 6: Values of the map g for
maximal clique {1, 5, 12}.

i

gij j
1 5 12

1 - � �
5 ≺ - ≺
12 ≺ � -

In the other relevant maximal clique {1, 5, 12} an unique situation arises.
This clique contains only precedence relations and no regular scheduling rela-
tions. As there is a job that precedes all other jobs, in this case job 5, there
are no arcs (i, 5) ∈ Dc ∀i ∈ J . Then, it is not possible to compute p5 according
to line 20 of Algorithm 2 and line 22 of Algorithm 2 is the alternative. Since
variable x5 is assumed to be a completion time variable, it should have a lower
bound of at least the processing time of the job plus possibly a release date. As
job 5 is forced to be processed first, it does not matter whether the lower bound
consists of a release date and a processing time or only a processing time and
therefore the lower bound serves as a good source to find the processing time.
As in this example the lower bounds are not explicitly given and for the real
variables are assumed to be −∞, the algorithm takes 0 as processing time. For
the full set of values of p and g for this maximal clique, see Tables 5 and 6.

3.4 Validation of the recognition algorithm

In this section, it is shown that the algorithm as presented in Section 3.3 indeed
finds SMSSPs that are part of the input MIP. This is formalized in the following
theorem:

Theorem 3.1. For each tuple (J, p, g) found by Algorithm 2, the set of x vari-
ables with indices j ∈ J form a set of completion time variables that are part of
a SMSSP of the input MIP.

Proof. To be able to prove this theorem, assume the algorithm has computed
some instance (J, p, g) ∈ L. Furthermore, assume the MIP takes a feasible
solution such that at least one pair of variables {xi, xj} in the input MIP with
i, j ∈ J takes values such that the corresponding jobs overlap. Finally, assume
w.l.o.g. that job j is the job that is processed last. As the jobs overlap, this
means that pj > 0. Then, one can summarize the assumptions with the following
strict inequalities: xj−xi < pj and xj > xi. As Algorithm 2 in line 20 computes

24

pj = min
xk 6=j∈J

wkj , it follows that xj − xi < min
xk 6=j∈J

wkj ≤ wij . Then, there must

be an arc (i, j) and/or (j, i) in (one of) the underlying graphs.
Case 1: (i, j) ∈ Ap, `ij 6= implied.

xj − xi < wij

xj − xi < b`, by definition of the label wij ,

xj − xi < xi − xj , by (8c),

xj < xi,

which is a contradiction to the assumption xj > xi.
Case 2: (i, j) ∈ Ap, `ij = implied.

xj − xi < wij

xj − xi < wik + · · ·+ w`j , by step 3 of Algorithm 2,

xj − xi < b`1 + · · ·+ b`p , by definition of the label wij ,

xj − xi < (xi − xk) + · · ·+ (x` − xj), by (8c),

xj − xi < xi − xj ,
xj < xi,

which is a contradiction to the assumption xj > xi.
Case 3a: (i, j) ∈ A(0), (j, i) ∈ A(1), xk = 1.

xj − xi < wij

xj − xi < T + b`, by definition of the label wij ,

xj − xi < xi − xj , by (8a),

xj < xi,

which is a contradiction to the assumption xj > xi.
Case 3b: (i, j) ∈ A(0), (j, i) ∈ A(1), xk = 0.
For arc (j, i), implying constraint (8b)ijk`, the inequality (8b) reduces to

xi − xj ≥ b` for some b` ≥ 0.

This inequality thus means that xi ≥ xj , which is a contradiction to the as-
sumption xj > xi.

The reasoning in cases 3a and 3b can be applied to the six other cases where
(i, j) and (j, i) are in A(0) or A(1) and binary xk takes value 0 or 1. This
means that all the eight cases lead to a contradiction. That implies that the
assumption, that the MIP takes a feasible solution such that at least one pair of
variables {xi, xj} takes values such that the corresponding jobs overlap, leads
to a contradiction and therefore the assumption can not hold true. This means,
that for any feasible solution to the MIP the set of x variables with indices j ∈ J
form a set of completion time variables that are part of a SMSSP of the input
MIP.

25

3.5 Complexity of the recognition algorithm

To be able to later say something useful about the performance of the algorithm,
it is good to look at the theoretical complexity of the algorithm as defined in
Section 3.3. Therefore, in this section it is shown that the following Proposition
holds true.

Proposition 3.1. The complexity of Algorithm 2 is O(m+ r2 · 3r/3), with m
the number of constraints and r the number of variables in the input MIP.

Proof. The first part of the algorithm is to compute the Regular and Precedence
Digraphs Dr and Dp. Therefore, it is necessary to loop over all the constraints
of a MIP, such that it can be checked for every constraint whether it implies
an arc in one of the constraint graphs. This then can be done in O(m) time,
as any constraint that has more than 3 variables can be discarded as constraint
that implies an arc.

The next step is to calculate the transitive closure of Dp, including a cal-
culation of longest path lengths. As by negating the weights of all the edges
the longest path problem can be converted to a shortest path problem, the
Floyd-Warshall algorithm can be used to compute the transitive closure and
the corresponding data in O(r3) time [22].

In the following phase, the binaries corresponding to the arcs in Dr are
checked. In a straightforward implementation, where a loop over all pairs of
nodes of Dr contains a loop over all constraints of the MIP, this can be done in
O(r2m) time. However, as in the first part of the algorithm all constraints are
already looped over, all constraints of type (8d) can be found already then and
stored in the memory. Therefore a loop over all constraints of the MIP can be
replaced by a simple check, decreasing complexity to O(r2).

The succeeding stage of the algorithm is to find all maximal cliques in the
undirected version of the merged graphs Dp and Dr. The complexity for an
algorithm to solve this problem is O(3r/3) [23]. This complexity is optimal, as
there exist at most 3r/3 maximal cliques in a graph with r vertices.

In the final part of the algorithm, the maps p and g for the processing
times and binary variables are computed. Per clique, this takes O(r2) time for
computing map p, but also for computing map g. As there exist up to 3r/3

maximal cliques in a graph, the total complexity of the final part is O(r2 ·3r/3).
Then, the complexity of the full algorithm is O(m+r3+r2+3r/3+r2 ·3r/3) =

O(m+ r2 · 3r/3).

26

4 Scheduling cuts

As there now is the possibility to recognize a SMSSP in a MIP, the next step
is to exploit this substructure. Exploiting a substructure in a MIP means to
generate and add cuts based on the substructure. Therefore, in this section
some scheduling cuts that can be added to a MIP are introduced.

In scheduling literature, many sets of valid inequalities for the scheduling
polytope can be found. However, not all of these inequalities are suitable as
cutting plane, so some selection criteria are helpful to decide which inequalities
should be made use of:

1. An inequality should contain at least one variable that is present in the
MIP.

2. An inequality should not introduce any new variables.

3. The number of inequalities within one set of inequalities should grow at
most polynomial in terms of the number of jobs in a scheduling problem.

The first criterion is a minimal requirement for an inequality to possibly cut off
some feasible solutions. Without the second demand, the original set of feasible
solutions of a MIP needs modification and the number of feasible solutions most
likely increases instead of decreases by adding such an inequality. This then
slows the solving of MIPs down instead of speeding it up. The final criterion is
not necessary, but is a matter of choice. This choice is made to first see whether
cutting planes that are guaranteed to be generated in polynomial time already
decrease solving time significantly. In a later stage, when it turns out that the
used cutting planes do not decrease solving time largely, this last criterion can
be dropped.

The cutting planes that remained after selection can be sorted in two cate-
gories: cuts that are based on release dates and cuts that are based on precedence
relations.

4.1 Release date cuts

In this section, it is assumed that the jobs are ordered by ascending release date,
i.e. r1 ≤ r2 ≤ · · · ≤ rn.

An important source of valid inequalities for single machine scheduling prob-
lems using natural date variables is the paper by Nemhauser and Savelsbergh
[14]. Most of the valid inequalities presented in this paper are subset-based
inequalities, so the number of inequalities grows exponential in the number of
jobs in the scheduling problem and therefore these inequalities did not meet the
selection criteria. However, two sets of inequalities remain and are discussed
here.

The first set of inequalities is the set of dominance cuts. These inequalities
are defined as follows:

27

Definition 4.1 (Dominance inequalities). The dominance inequalities are de-
fined by the following inequality: ∑

i∈J:ri≤αj

yij ≥ 1 (16)

with αj := min
k∈J:rk+pk≤rj

(rk + pk).

Note here that αj takes the same value for all jobs j, but that αj is not
defined for all jobs j. This means that also the inequality itself is not defined
for all jobs.

Proposition 4.1. Inequality (16) is valid for the single machine scheduling
problem using natural date variables.

Proof. From Definition 4.1 it is known that αj := min
k∈J:rk+pk≤rj

(rk + pk). This

means that αj equals the earliest possible completion time of any job k ∈ j, for
jobs j that have a release date later than this earliest possible completion time.
As then job j is released later than this earliest possible completion time, one is
sure that in an optimal schedule at least one job i with a release date before the
earliest possible completion time is scheduled before job j. From applying this
reasoning to the model with natural date variables, inequality (16) follows.

Furthermore, Nemhauser and Savelsbergh [14] presented a linear program-
ming formulation, showing great similarities with a set of valid inequalities pre-
sented by Dyer and Wolsey [12], which will not be given here. The linear pro-
gramming formulation by Nemhauser and Savelsbergh consists of a set of lower
bounds on starting time variables Sj . However, as the natural dates formulation
(2) is defined with completion time variables, Sj is replaced with Cj−pj . Then,
a set of release date inequalities can be defined.

Definition 4.2 (Release date inequalities). The release date inequalities are
defined by the following set of equations:

Cj ≥ pj + ri +
∑

k<i,k 6=j,rk+pk≤ri

pk(yik + ykj − 1)

+
∑

k<i,k 6=j,rk+pk>ri

[(ri − rk)(yik + ykj − 1) + (rk + pk − ri)ykj] (17a)

+
∑

k≥i,k 6=j

pkykj , 1 ≤ i ≤ j ≤ n,

Cj ≥ pj + rj + (ri − rj)yij +
∑

k<i,k 6=j,rk+pk≤ri

pk(yik + ykj − 1)

+
∑

k<i,k 6=j,rk+pk>ri

[(ri − rk)(yik + ykj − 1) + (rk + pk − ri)ykj] (17b)

+
∑

k≥i,k 6=j

pkykj , 1 ≤ j < i ≤ n.

28

At first glance, these inequalities seem complicated. However, both these
inequalities are strengthened versions of the same set of inequalities:

Cj − pj ≥ riyij +
∑

k<i,k 6=j

pk(yik + ykj − 1) +
∑

k≥i,k 6=j

pkykj , 1 ≤ i, j ≤ n. (18)

Proposition 4.2. Inequalities (18) are valid for the single machine scheduling
problem using natural date variables.

Proof. Every inequality of the form of inequalities (18) forms a lower bound on
the starting time of job j and is related to job i. The lower bound consists
of three parts. Per part it is shown that it is correct to add this to the lower
bound, which is sufficient to show the validity of the inequalities.

The first term of the right-hand side adds the release date of job i to the
lower bound, but only when job i is scheduled before job j. This last addition
validates the presence of this term in the lower bound.

The first sum concerns those jobs k that have a release date that is at most
equal to the release date of job i. For those jobs, the processing time pk is added
to the lower bound only if job k is processed after job i and before job j. It
is necessary to check whether job k is processed after job i, as job k might be
processed before job i is released. Therefore, the addition of this sum to the
lower bound is justified.

The last term of the right-hand side finally adds the processing time of all
jobs k with a release date at least equal to the release date of job i. However, pk
is only added when job k is processed before j, which confirms the legitimacy
of this part of the lower bound.

Note that the bound can become a loose bound in two ways. In the first
sum it happens that −pk is added to the sum when job k is processed after job
j and before job i due to the linearization of yikykj to (yik + ykj − 1). Similarly,
the first part is reduced to 0 when job j is processed before job i. However, in
this case a loose bound is also a valid bound and thus does not cause any real
trouble.

Corollary 4.2.1. Inequalities (17a) and (17b) are valid for the single machine
scheduling problem using natural date variables.

Proof. Here, it is shown that inequalities (17a) and (17b) are valid strengthened
versions of inequalities (18). The corollary thus can be shown to hold true by
showing that the improvements are valid.

The first enhancement concerns the first element of the right-hand side of
(18): riyij . When i ≤ j, meaning ri ≤ rj , ri can not only be added to the lower
bound if job i is scheduled before job j, but also if job j is scheduled before
job i. Thus, when i ≤ j, riyij can be replaced by ri. In the case that i > j,
implying ri ≥ rj , ri indeed can only be added when job i is scheduled before
job j. However, when job j is scheduled before job i, the first element does not
have to be 0, it can actually be rj . Therefore, if i > j, riyij can be substituted
by (ri − rj)yij .

29

The second reinforcement is related to the second term of the right-hand
side of (18):

∑
k<i,k 6=j

pk(yik + ykj − 1). In the case that rk + pk ≤ ri, this term is

already optimal. In the case that rk + pk > ri, this term can be strengthened.
In this instance, the part of job k that must be processed after job i is released,
exactly rk+pk−ri, can already be added when it is given that job k is processed
before job j without requiring that job k is also processed after job i. On the
other hand, the part of job k that could be processed before job i is released,
precisely rk − ri, still also requires that job k is processed after job i. So,∑
k<i,k 6=j

pk(yik + ykj − 1) can be replaced by
∑

k<i,k 6=j,rk+pk≤ri
pk(yik + ykj − 1) +∑

k<i,k 6=j,rk+pk>ri
[(ri − rk)(yik + ykj − 1) + (rk + pk − ri)ykj].

Note that the first improvement is defining the difference between inequal-
ities (17a) and (17b), while the second improvement induces an extra term in
the right-hand side of the inequality.

4.2 Precedence cuts

In his paper on single machine scheduling problems with precedence relations,
Wolsey [24] presents a non-linear inequality for every precedence relation i→ j:

Cj − Ci ≥ pj +
∑

k∈J\{i,j}

pkyikykj .

In brief, this inequality tells that the difference in completion time of jobs i and
j is at least that of the processing time of job j plus the processing time of all
jobs k that are processed in between jobs i and j. However, as the inequality
is non-linear, Wolsey also came up with a linearized version of this inequality,
that leads to the following definition of precedence inequalities.

Definition 4.3 (Precedence inequalities). For every precedence relation i→ j,
the precedence inequality is the following:

Cj−Ci ≥ pj +
∑

k∈S(i)∩P (j)

pk +
∑

k∈S(i)\P (j),k 6=j

pkykj +
∑

k∈P (j)\S(i),k 6=i

pkyik, (19)

with S(i) the index set of jobs succeeding job i and P (j) the index set of jobs
preceding job j.

Proposition 4.3. Inequality (19) is valid for the single machine scheduling
problem using natural date variables.

Proof. As job j is scheduled after job i, it is clear that the completion time
of job j should be larger than the completion time of job i. This justifies the
left-hand side of inequality (19). The right-hand side of the inequality forms
a lower bound on the difference between the completion times Cj and Ci and
consists of four parts. Per part, it is shown that it is valid to add this to the
lower bound, which then implies that the inequality is valid.

30

First, the processing time of job j is added, which is the minimum amount
by which the completion times Cj and Ci should differ and therefore it is logical
to add this to the lower bound.

Next, the processing time of all jobs k, of which it is known that is processed
after job i (as k ∈ S(i)) and before job j (as k ∈ P (j)), can legitimately be
added as well, as job k is processed between jobs i and j.

The third element is to add the processing time of jobs k, of which it is
known that it succeeds job i, but of which it is not known whether it precedes
job j. However, these processing times are only added when it turns out that
job k is indeed processed before job j and hence it is reasonable to add this
element to the lower bound.

Finally, the processing times of jobs k, of which it is known that it precedes
job j, but of which it is not known whether it succeeds job i, are added, but
only when job k indeed succeeds job i. Thus, in similar fashion as the third
element, it is correct to add this to the lower bound.

31

5 Computational Study

As for the SMSSP the recognition algorithm is defined and some possible cuts
are given, the step of exploiting the substructure can be taken. In this section,
first the implementation details and results of a test of the recognition algorithm
are given. Thereafter, the method and results of generating cuts and solving
various (modified) MIP models are provided.

5.1 Recognition algorithm

In this section the implementation details, results and its interpretation are
given only for the test of the recognition algorithm as defined in Section 3.3.
This includes results on the amount of SMSSPs found by the algorithm, on the
size of the subproblems and on the running time of the algorithm. Results on
the exploitation of the SMSSPs are given in Section 5.2.

5.1.1 Implementation details

In order to test the recognition algorithm, it is programmed in Spyder 4.2.5
[25] with Python 3.8 [26]. Then, the recognition algorithm is tested on the
benchmark set of MIPLIB 2017 [27], consisting of 240 MIP instances. This set
of instances is a standard set to test the performance of solving software and
contains a representative set of MIP instances. The benchmark set is tested on
a single core of an Intel Core i7 CPU running at 2.60 GHz with 16 GB RAM.
The time limit for the recognition algorithm to try to find SMSSPs in a single
MIP instance was set to 1 hour. To run the graph algorithms that are used in
the recognition algorithm, the NetworkX-package [28] is used.

The algorithm is not exactly implemented as it is given in Section 3.3 and
as a consequence the theoretical complexity of parts of the algorithm as given
in Section 3.5 is also changed. The first difference lies in the definition of the
constraint graphs Dp and Dr. According to Definitions 3.1 and 3.2, the full
set of indices of non-binary variables forms the set of nodes of the constraint
graphs. However, in the implementation only the indices of variables that are
involved in constraints that imply arcs in one of the graphs form the set of nodes.
Furthermore, according to Definition 3.1, arcs are only implied by inequality
constraints. Nevertheless, a modeller might also fix the difference between two
completion time variables and therefore use equality constraints. Accordingly,
in the implementation, constraints of the following form also imply an arc in
precedence graph Dp:

xi − xj = b` with i, j ∈ R \B, b` ≥ 0, ` ∈ Q.

The next difference is found in the transitive closure. In the implementation
the Floyd-Warshall algorithm is not used, but instead an all pairs variant of
the Bellman-Ford algorithm is executed. Although the theoretical complexity
increases from O(r3) to O(mr2) [29] with m the number of constraints and r the
number of variables in the input MIP, small test runs of both implementations

32

showed that the implementation of the all pairs version of the Bellman-Ford
algorithm performed much better.

Another dissimilarity between the theoretical and practical algorithm con-
cerns the part where the binaries are checked. In the algorithm, only a check
for the presence of complementarity constraint containing both binary variables
or a check that the binary variables are equal takes place. However, much more
complicated binary relations could be present. For example, binary variables
might be forced to take equal value by having complementarity constraints with
a third binary variable. Furthermore, binary variables could be set to 0 or 1,
forcing the variables to take complementary or equal values.

To detect these more complex relations, an undirected auxiliary graph is
created in the same part of the algorithm where the constraint graphs Dp and
Dr are calculated. The nodes of this auxiliary graph is the set of nodes that
represents the binary variables U = {ub|b ∈ B}, together with the set that
represent the complementary binary variables V = {vc|c − r ∈ B} and two
nodes that represent the fixation to 0 and 1 f0, f1. Then, an equality constraint
forcing xi and xj to take equal value induces edges {ui, uj} and {vi+r, vj+r}. A
complementarity constraint of type (8d)ij causes edges {ui, vj+r} and {vi+r, uj}.
A binary variable xi that is forced to take value 0 leads to edges {ui, f0} and
{vi+r, f1}, while binary variable xj that must take value 1 implies edges {uj , f1}
and {vj+r, f0}.

Given this auxiliary graph, the binary check is not a complex process any-
more. To check whether two binary variables xi and xj are constrained to take
complementary values is to check whether there exists a path from node ui to
node vj+r or a path from vi+r to uj in the auxiliary graph. The check whether
two binary variables xi and xj are forced to take equal value has reduced to
checking whether a path from ui to uj exists in the auxiliary graph. As with
a simple breadth-first search all connected components of the auxiliary graph
can be found, the implementation can be run in O(m+ r) time, instead of the
theoretical complexity of O(r2).

The final adjustment in the implementation of the algorithm concerns the
assumption of the algorithm that the non-binary variables in the SMSSP are
completion time variables. However, it is possible as well that a modeller used
starting time variables. Therefore, in the part where maps p and g are computed,
in the implementation it is first decided whether the modeller used completion
or starting time variables. To understand how this decision can be made, it
is good to see how the algorithm processes constraints that use starting time
variables instead of completion time variables. The constraint that models a
precedence relation using completion time variables is given in inequality (7):

Ck − Cj ≥ pk.

The same type of constraint using starting time variables looks as follows:

Sk − Sj ≥ pj .

As the algorithm considers these constraints with starting time variables to be
type (8c)ij constraints, such a constraint will imply an arc (j, k) with weight

33

wjk = pj in the Precedence Digraph, while inequality (7) implies an arc (j, k)
with weight wjk = pk in the same graph.

A similar argument can be made for the starting time variables variants of
the inequalities (2b) and (2c). For all constraints with starting time variables,
it holds true that the weight of the associated arc is the processing time that
belongs to the variable represented by the tail of the arc, instead of the variable
represented by the head of the arc. That means that the formula in Line 20 of
Algorithm 2 should be replaced by

pj ← min
(j,i)∈Dc,i∈J

wji.

Then, the decision whether the model uses completion time or starting time
variables can be made by checking the cardinalities of all the sets {wji : (j, i) ∈
Dc, i ∈ J} and {wij : (i, j) ∈ Dc, i ∈ J}. When the inequality below holds true,
the model is assumed to use completion time variables, while a violation of this
inequality suggests that the model uses starting time variables:∑

j∈J
|{wij : (i, j) ∈ Dc, i ∈ J}| ≤

∑
j∈J
|{wji : (j, i) ∈ Dc, i ∈ J}|.

As the decision for completion or starting time variables can be done in
O(r2) time per maximal clique, this check does not influence the complexity of
the final part of the algorithm.

Given the complexity in parts of the algorithm in the implementation, the
total complexity of the implementation is O(m+mr2+m+r+3r/3+r2 ·3r/3) =
O(mr2 + r2 · 3r/3).

5.1.2 Results

Of course, there are many interesting aspects to this experiment, of which the
detailed results can be found in Appendix A. The first results shown in Figure
7 are the results on the number of SMSSPs found and the size of the largest
subproblem found. In this figure, only the instances in which the algorithm
found at least one SMSSP are represented with a dot. In total, the algorithm
found SMSSP(s) in 69 out of 240 instances. From Figure 7, it can be seen that
the number of SMSSPs found by the algorithm per instance varies from 1 to
approximately 60.000. Moreover, the size of the largest SMSSP is below 5 in
most of the cases, but in some cases it reaches the value of 40. As for small
scheduling problems the cuts most likely do not have any (desired) effect on the
solving time of the MIP, it was decided to apply a filter to the SMSSPs that
were found. First, a SMSSP should consist of at least three jobs. Furthermore,
the maximal processing time or release date of all the jobs in a SMSSP should
be larger than 0 for any cut to be effective. The filtered results are given in
Figure 8.

The first things that stands out in Figure 8, is the large decrease in amount
of instances in which a filtered SMSSP is present: only 9 instances are left over.
This means that from Figure 7 most of the instances have disappeared, which

34

Figure 7: Results of the test of the recognition algorithm on benchmark set of
MIPLIB 2017

happens when all of the subproblems are filtered out. Moreover, some of the
remaining instances have different results. From Figure 7, some dots have moved
to the left and in some cases also down. A move to the left can be explained by
removing only some of the SMSSPs, as a part of the subproblems of an instance
have made the cut. However, when the SMSSP of the largest size is removed by
the filter, the new largest subproblem may have a smaller size, resulting in a dot
moving to the left and down. For the instance at (1, 20) in Figure 8 this is the
case: it must come from the dot (6, 22) or (40, 13449) in Figure 7. In general,
as a result in Figure 8 the number of SMSSPs in one instance is reduced to at
most 3500 and the largest SMSSP in some instance now consists of at most 20
jobs instead of 40.

Another relevant aspect of the algorithm, is the amount of time it takes
to find SMSSPs. This is important, as the recognition algorithm (and cut
generation) should take less time than the time that is gained in solving the
MIP. In order to be able to say something useful about the performance of the
algorithm, the algorithm is divided in five parts, which were individually timed
while running the algorithm:

1. The part where the constraint graphs Dr and Dp are computed. This part
is abbreviated as CG. In practice, this part also includes the time Gurobi
needs to open and read the model.

2. The part where the transitive closure of Precedence Digraph Dp is com-
puted. This part is abbreviated as TC.

35

Figure 8: Filtered results of the test of the recognition algorithm on benchmark
set of MIPLIB 2017. The filter guarantees that the remaining problems have at
least three jobs and at least one processing time or release date larger than 0

3. The part where the binary variables associated with arcs in Regular Di-
graph Dr are checked. This part is abbreviated as CB.

4. The part where constraint graphs are merged and all maximal cliques are
computed in the undirected version of the merged graph. This part is
abbreviated as FC.

5. The part where maps p and g are computed. This part is abbreviated as
CM.

Table 7: Mean and standard deviation of the running time of (parts of) the
recognition algorithm for the instances that terminated within one hour.

Mean
running time

Standard deviation of
the running time

CG 7.06× 103 ms 2.46× 104 ms
TC 37.1 ms 150 ms
CB 2.57 ms 12.0 ms
FC 37.6 ms 154 ms
CM 46.5 ms 238 ms
Total 7.19× 103 ms 2.47× 104 ms

36

During the experiment the algorithm did not meet the time limit of one hour
in 3 of 240 cases. For those three cases, the algorithm always passed the hour
mark in the FC part. The running time results of the 237 instances for which
the algorithm was completed within an hour, are used to calculate the mean
and variance of the running time for every part and for the entire algorithm.
These numbers are given in Table 7.

From Table 7 it can be seen that the algorithm takes on average a little more
than 7 seconds to complete. On average, the CG part of the algorithm takes 7
seconds as well, which makes it highly likely that in most cases the algorithm
spends most of its running time in the CG part. The other parts do on average
not need more than 0.05 seconds each to complete, with the CB part taking the
fewest time on average. Also in terms of standard deviation, the CG part of the
algorithm has the largest value, while the CB part takes the lowest value.

5.1.3 Analysis

The first part to analyse is the running time of the algorithm in practice com-
pared to the theoretical complexity. As mentioned in Section 5.1.1, the imple-
mentation differs somewhat from the algorithm in theory in the parts where the
transitive closure of Dp is computed, where the checks of the binary variables
are executed and where the maps p and g are computed. The first difference
concerns the computation of the transitive closure of Dp. Theoretically some im-
provement is possible by executing the Floyd-Warshall algorithm instead of the
all pairs variant of the Bellman-Ford algorithm. However, some test runs with
both algorithms suggested that the latter algorithm performs better in prac-
tice, so it is unlikely that this theoretical improvement leads to better practical
performance.

Remark 5.1. To compute the transitive closure of Dp, the all pairs variant
of the Bellman-Ford algorithm likely performs better than the Floyd-Warshall
algorithm.

As opposed to a change in the implementation of the transitive closure of
Dp, a simplification of the checks of the binary variables might cause a loss
of information. When the implementation matches the description in Section
3.5, more complex relations of the binary variables will not be detected by the
algorithm and the corresponding arcs will be removed from Dr. It can easily be
checked whether any information is lost by checking the path length as soon as
the relation between the binary variables is confirmed. When the path length is
1, this must be the result of one complementarity or equality constraint. Also
path length 0 is fine, when the same binary variable is used and the binaries
should take equal value. Any longer path lengths are caused by more complex
relations. When only path lengths of 0 and 1 are found for the arcs that are not
removed from Dr, the simplification of the checks is feasible. However, given the
amount of time the algorithm on average spends in the part where the binaries
are checked, a big improvement in terms of running time will not be made by
simplifying the check. On the other hand, the auxiliary graph is computed in

37

the CG part and this calculation could give reason to a significant amount of
the time spent in this part of the algorithm. To be able to decide whether this
check for more complex relations of binary variables is necessary or useful, it is
checked whether (a lot of) complex relations are present in the tested models.

Supplementary data show that the auxiliary graphs contained connected
components of size up to 60,000 nodes and these large components usually con-
tain the node f0 or f1. For the nine models that remained after filtering, the
largest connected component in an auxiliary graph consisted of only 5 nodes.
Further tests showed the largest connected component that was used to guar-
antee that an arc was not removed from the Regular Digraph was made up
of only two nodes. This means that the possible more complicated relations
between binary variables as described in Section 5.1.1 were not detected in a
SMSSP in practice. Based on this result, it can be argued that the construc-
tion of the auxiliary graph and its application to check the binary relations can
be removed from the implementation. Its construction in the CG part of the
algorithm should be replaced by storing all pairs of binary variables that are
complementary and the application in the CB part can be replaced by checking
whether a pair of variables is stored.

Remark 5.2. The use of an auxiliary graph to detect complex binary relations
did not affect the number or size of found SMSSPs and can be removed from the
implementation of the recognition algorithm.

The final difference between the algorithm and the implementation is the
check for completion or starting time variables. This check can be included in
the algorithm without increasing theoretical complexity, but of course, such a
check does add to the running time in practice. Assuming the check is left out
and the assumption of completion time variables is made in the algorithm, then
a model with starting time variables would most likely have smaller processing
times for most of the jobs. Then, exploiting the SMSSP(s) possibly is less
helpful, as the generated cutting planes are probably less tight. However, given
the amount of time the algorithm spends in the CM part, it is not a check that
takes a lot of time in practice and thus is worth executing.

Remark 5.3. The additional check for completion or starting time variables in
the recognition algorithm costs little time, but likely improves the exploitation of
SMSSPs.

A further improvement of the algorithm could be to incorporate the filter,
that is applied in Section 5.1.2, in the algorithm itself. This filter influences
the algorithm in two ways. First, the filter removes all cliques of size 2. This
can be included in the part of the algorithm that finds all maximal cliques.
Secondly, the filter removes the SMSSPs that do not have at least one release
date or processing time larger than 0. As processing times are taken to be the
minimum of weights of the incoming arcs (see Algorithm 2, Line 20), the way to
prevent processing times of 0 is to simply not add arcs to the constraint graphs
Dp and Dr with a weight of 0 or smaller in the first place.

38

This approach has a few consequences, the first being that some nodes rep-
resenting jobs with a relevant release date might be excluded from a SMSSP.
Secondly, the inclusion of the filter in the algorithm might actually cause the al-
gorithm to find more relevant, but smaller SMSSPs. This can be seen as follows.
There might exist a node with all outgoing arcs with weight 0, which implies
that all other nodes/jobs get assigned a processing time of 0. When that node
itself also turns out to have a non-positive processing time, the SMSSP would
be filtered out. However, when the node with outgoing arcs of weight 0 would
not have been included in the SMSSP, the SMSSP may actually turn out to be
a useful subproblem.

Another reason to incorporate the filter in the algorithm is the fact that the
algorithm as given in Section 3.3 allows arcs induced by type (8a)ij constraints
with a negative weight. However, in practice it is of course not possible the have
a job with a negative processing time and therefore it stands to reason to not
allow such arcs. When the filter would be included, indeed those arcs will be
removed.

Additionally, in 3 out of 240 test instances the algorithm needs at least an
hour to find all maximal cliques. Of course, with an exponential theoretical
complexity for this part of the algorithm, it is no surprise that this happens.
However, incorporating the filter decreases the number edges and nodes in the
constraint graphs. As the maximal cliques algorithm runs in exponential time
of the number of nodes, the inclusion of the filter decreases the chances that
this part of the algorithm runs for more than one hour.

Remark 5.4. The filter as described in Section 5.1.2 can be incorporated in
the recognition algorithm. This might lead to fewer and smaller SMSSPs that
are found, but maybe also to SMSSPs that give better results in the exploitation.
Furthermore it excludes negative processing times and might decrease the chance
that the algorithm runs for over an hour.

Furthermore, some additional information about the merged graph in which
the maximal cliques are searched for was available for all instances. The merged
graph of the instances on which the algorithm terminated within an hour con-
sisted of not more than around 200.000 edges for all completed instances. For
two cases that did not terminate within the time frame of an hour, this value
was exceeded easily: the merged graph contained around 2.25 million edges in
one case and around 9.49 million edges in the other case. It is likely that this
amount of edges is (part of) the reason that the algorithm was not brought
to an end within an hour. However, for the third case, the merged graph was
in terms of number of nodes and number of edges smaller than some cases for
which the algorithm ceased within an hour. From this, one may conclude that
not only the size, but also the structure of the graph influences the amount of
time that is necessary to find all maximal cliques.

Remark 5.5. Not only size, but also graph structure influences the running
time of the FC part of the recognition algorithm.

39

To complete the discussion of the results on the recognition algorithm, it
can be said that the algorithm is efficient for the parts that in theory have a
worst-case complexity that is polynomial in terms of the number of constraints
and variables. For the part where the worst-case complexity is exponential,
indeed it can happen that the running time becomes very large, although incor-
porating the filter as described in Section 5.1.2 might decrease the chance that
this happens. As the results show, the implementation of the algorithm mainly
consumes time for reading the model and for constructing the constraint graphs
from the model. It is likely that this part of the algorithm takes less time when
it is implemented in a MIP solver. The first reason is that a MIP solver loops
through all the constraints already to find different kinds of possible cuts. Then,
the additional check for a scheduling constraint could probably be incorporated
efficiently in that part of MIP solving software. Secondly, this expected speed-
up could be explained by the fact that these solvers in general are implemented
in more efficient programming languages than Python, such as C or C++.

Remark 5.6. The running time of the recognition algorithm potentially de-
creases even further when it is incorporated in MIP solver software.

5.2 Exploitation of single machine scheduling subprob-
lems

In this section the implementation details, results and its interpretation are
given for the cut generation and exploitation of SMSSPs. This includes results
on the amount of generated cuts and on solving various models with and without
additional cuts.

5.2.1 Method

After the recognition algorithm has identified SMSSPs in various MIP models,
the next step is to generate cutting planes and add them as constraints to the
models. In this study, it was chosen to try to generate the release date and
precedence cuts for the 9 MIP instances in which SMSSPs were found. These
cutting planes are generated before a model is solved and are added to the model
as constraints, hence creating a new model.

After cutting plane generation, resulting in models with and without addi-
tional constraints, the different models are tested to see whether the updated
models are solved faster. Therefore, besides the original model, a copy with all
generated cutting planes and, if applicable, copies with only one of the different
generated sets of cuts were tested. The models are solved twice using Gurobi
9.1.1 [2] in Spyder 4.2.5 [25] on all six cores of an Intel Core i7 CPU running
at 2.60 GHz with 16 GB RAM. First, the models are solved with the Gurobi
functionalities cuts, heuristics and presolve turned off and with a time limit of
one hour. Secondly, the models are solved with all Gurobi functionalities on
default setting, but again with a time limit of one hour.

40

5.2.2 Results

Table 8: Number of original constraints in the model and generated cutting
planes per type per MIP instance in which at least one SMSSP was found.

Instance Original Dominance Release date Precedence
ic97 potential 1046 0 88 0
neos-3046615-murg 498 9 256 0
neos-3656078-kumeu 17656 0 0 0
neos-3754224-navua 232387 0 240 0
piperout-08 14589 0 4 32
rd-rplusc-21 125899 0 0 0
supportcase40 38192 0 0 0
traininstance2 15603 0 12058 5524
traininstance6 12309 0 719 110

The first result is on the cutting plane generation. In Table 8 the number of
non-trivial cuts per type are given for all instances where a SMSSP was found.
From this table, one can see that actually only for 6 of 9 instances non-trivial
cuts were generated. The set of dominance cuts is the least common to contain
any non-trivial cuts, as only for the neos-3046615-murg instance cuts of this type
are generated. For three instances non-trivial precedence cuts were calculated,
while to six instances release date cuts could be added.

Table 9: Results of solving original and modified models without using Gurobi
functionalities cuts, heuristics and presolve. Numbers with a red background
indicate a larger solving time or a looser bound than the result of the original
model, a green background indicates a smaller solving time or a tighter bound.
Numbers with no background indicate an equal result.

Original Modified
Instance UB LB Time UB LB Time
ic97 potential 3942 3914 3600 3942 3918 3600
neos-3046615-murg 1600 993 3600 1600 1600 < 1
neos-3754224-navua inf 55688 3600 inf 55688 3600
piperout-08 125055 125055 15 125055 125055 49
traininstance2 75430 0 3600 75400 0 3600
traininstance6 28290 11490 3600 28649 6251 3600

The next results are on solving the models. First, in Tables 9 and 10 the
results with Gurobi functionalities cuts, heuristics and presolve switched off are
shown. From Table 9, it can be seen that only the modified instance neos-
3046615-murg and both the original and modified instance piperout-08 were
solved by Gurobi within an hour. When comparing the results between the orig-
inal and the modified model, one can observe that for the cases ic97 potential,
neos-3046615-murg and traininstance2 the gap between the lower and upper

41

Table 10: Results of solving models with single additional set of cutting planes
without using cuts, heuristics and presolve. Numbers with a red background
indicate a larger solving time or a looser bound than the result of the original
model as given in Table 9, a green background indicates a smaller solving time
or a tighter bound. Numbers with no background indicate an equal result.

Dominance cuts Release date cuts Precedence cuts

Instance UB LB Time UB LB Time UB LB Time

neos-3046615-murg 1602 962 3600 1600 1600 < 1 N/A N/A N/A
piperout-08 N/A N/A N/A 125055 125055 26 125055 125055 56
traininstance2 N/A N/A N/A 74760 0 3600 74720 0 3600
traininstance6 N/A N/A N/A 28290 5040 3600 28290 7710 3600

bound is smaller for the modified instance, where for neos-3046615-murg it also
holds true that the solving time is reduced. For the instances neos-3754224-
navua and piperout-08 the gaps are the same, although for the latter instance
the solving time was larger for the modified model. For traininstance6, the gap
between lower and upper bound is larger for the modified model.

From Table 10 it can be seen that models with additional release date cutting
planes have the best results for all the instances compared to other single addi-
tional constraint set models. For the cases neos-3046615-murg, traininstance2
and traininstance6, this follows from the smaller gap between lower and upper
bound, while for the models neos-3046615-murg and piperout-08 the solving
time is smaller for the model with additional release date cuts.

Table 11: Results of solving original and modified model with default settings.
Numbers with a red background indicate a larger solving time than the result
of the original model, a green background indicates a smaller solving time.
Numbers with no background indicate an equal result.

Original Modified
Instance UB LB Time UB LB Time
ic97 potential 3942 3942 861 3942 3942 916
neos-3046615-murg 1600 1600 19 1600 1600 < 1
neos-3754224-navua inf 56224 3600 inf 56224 3600
piperout-08 125055 125055 2 125055 125055 3
traininstance2 71820 71820 112 71820 71820 185
traininstance6 28290 28290 9 28290 28290 6

The following results are the results on solving models with Gurobi func-
tionalities in standard options, but with a time limit of an hour. These results
are given in Tables 11 and 12. In Table 11 it can be seen that Gurobi needs
less time to find the optimal solution of the modified models neos-3046615-murg
and traininstance6, while more time is needed to solve the models ic97 potential,
piperout-08 and traininstance2. For model neos-3754224-navua, the original and
the modified model give the same results.

42

Table 12: Results of solving models with single additional set of cutting planes
with default settings. Numbers with a red background indicate a larger solving
time than the result of the original model as given in Table 11, a green back-
ground indicates a smaller solving time. Numbers with no background indicate
an equal result.

Dominance cuts Release date cuts Precedence cuts

Instance UB LB Time UB LB Time UB LB Time

neos-3046615-murg 1600 1600 17 1600 1600 1 N/A N/A N/A
piperout-08 N/A N/A N/A 125055 125055 6 125055 125055 3
traininstance2 N/A N/A N/A 71820 71820 157 71820 71820 115
traininstance6 N/A N/A N/A 28290 28290 6 28290 28290 8

In Table 12, it is shown that Gurobi solves the model with additional release
date cuts the fastest for the instances neos-3046615-murg and traininstance6,
remarkably the two instances for which the modified models are solved faster
than the original models. For the cases piperout-08 and traininstance2, Gurobi
needs the smallest amount of time for the model with additional precedence
cuts.

5.2.3 Analysis

The first component of the results on the exploitation of SMSSPs to reflect on is
the method. In this study, it was chosen to generate all scheduling cuts before
solving the models. To see whether the additional cuts could make any differ-
ence, the models where solved with and without those additional constraints.
As described in Section 1.2, generating all possible cuts and add those to models
is not how modern MIP solvers use cuts to solve MIP models faster. Instead, in
every node of the B&B-tree a solver might spend a limited amount of time look-
ing for cutting planes and thus will only add a limited number of cutting planes
to the MIP. By choosing which cutting plane to add to the MIP, MIP solvers
try to cut off the optimal solution in the most effective way, without losing too
much time in solving future LP relaxations. By adding all conceivable cutting
planes, it is guaranteed that any positive effect of a cutting plane is achieved,
but this effect might be reduced or even wiped out by losing time on solving
unnecessary complex LP relaxations.

Remark 5.7. The scheduling cuts are not tested in the way current MIP solvers
use cutting planes. When results show that exploiting scheduling cuts is advan-
tageous, it should be tested whether it is maybe even more beneficial to use the
cuts in the manner current MIP solvers would do.

Per Table 9, in the case where Gurobi does not use the functionalities cuts,
heuristics and presolve, the additional constraints show that there is potential
for solving the models ic97 potential, neos-3046615-murg and traininstance2
faster through the use of these cutting planes. However, as the functionalities

43

are activated again, it turns out that the instances ic97 potential and train-
instance2 are actually solved slower, as can be seen in Table 11. However,
for traininstance-6, the modified model is solved slower without functionalities
compared to the original model without functionalities, but faster when the
functionalities are turned on again. All in all, this means that for four of six
models for which cutting planes were generated there might be the possibility
to solve the models faster using the structure of SMSSPs.

Remark 5.8. For four of the tested instances, there is potential to decrease
solving time using scheduling cuts.

To be able to say something about how this potential can be cashed, it
is good to take a better look at the results in Tables 9-12. In the case that
some Gurobi functionalities are turned off, the gain achieved by the modified
models ic97 potential and neos-3046615-murg can (mainly) be explained by
the additional release date cuts, while for traininstance2, both models with an
individual additional set of constraints induce a slightly better upper bound
after one hour than the model that is modified with both additional constraint
sets. For piperout-08 and traininstance6 the loss seems to be caused by both
additional sets of release date cuts and precedence cuts.

In the case that Gurobi functionalities are turned on, the gain achieved by the
modified models neos-3046615-murg and traininstance6 seem to be primarily
caused by the additional release date cuts, while it looks like that the added
dominance and precedence cuts have a smaller effect on solving time. On the
other hand, the delay in solving time for the modified models ic97 potential,
piperout-08 and traininstance2 appear to be caused (mostly) by the release date
cuts, while the extra precedence cuts give the impression of being less influential
on slowing down the process of solving the MIP. Combining these findings with
the results of the case that functionalities are turned off, it appears that the
release date cuts are the most influential as well in speeding up as in slowing
down the process of solving the MIP.

Remark 5.9. The release date cuts seem to have to most effect on the solving
time, in positive sense as well as in negative sense.

To hopefully be able to see how the cuts influence the process of solving
the various MIP models, some additional experiments were performed. For all
models, four experiments were executed: solve the model with a time limit of
only one minute and solve only the root node of the branch-and-bound tree.
Both these experiments are run with and without the Gurobi functionalities
cuts, heuristics and presolve. The results of these experiments are not discussed
in full detail here, but can be found in Appendix B.

From the tables in Appendix B it follows that for the case when the Gurobi
functionalities are turned off, the improvement for ic97 potential and neos-
3046615-murg is gained by having to explore fewer branch-and-bound nodes
to get to the optimal solution. For neos-3046615-murg the root node quality
has also improved as the lower bound is higher. For traininstance2 a difference

44

in solution status can not be observed when only solving the root node or for
one minute, so it is most likely that the improved upper bound after one hour
is due to the fact that fewer branch-and-bound nodes have to be explored. For
the instance piperout-08, the addition of release date cuts decreases the number
of branch-and-bound nodes that need to be explored. However, it also induces
more simplex iterations per branch-and-bound node and it requires more time
per simplex iteration and as a result the time required to solve the model in-
creases. The addition of precedence cuts to this model decreases the amount of
simplex iterations per branch-and-bound node. On the other hand this addition
increases the amount of nodes that need to be explored, causing the model to
need more time to find the optimal solution. For traininstance6 the solution sta-
tus is not different when only solving the root node, but adding cuts does imply
a larger upper bound after one minute of solving. This seems to be caused by
needing more time to execute one simplex iteration, caused by the larger num-
ber of constraints. As the number of simplex iteration per branch-and-bound
node hardly changes, this directly results into being able to explore fewer nodes
in the same amount of time, thus having a larger upper bound after one minute.

In the case that the Gurobi functionalities are turned on, the addition of
release date cuts causes the branch-and-bound algorithm to explore fewer nodes
in order to find the optimal solution for the models neos-3046615-murg and
traininstance6, resulting in a lower solving time. Especially for the model neos-
3046615-murg, this improvement can be seen in root node quality as well, al-
though the root nodes are solved a bit slower. Also adding the dominance cuts
and precedence cuts do not seem to make a big difference for these models. For
traininstance2, the root node quality is improved by adding only release date
cuts, but for the other types of cuts and for the other models, the root node
quality has become worse or the root node is solved slower. The one minute runs
show that the gap between lower and upper bound is improved for the model
ic97 potential by adding release date cuts. This can be seen as a surprise, as
the modified model had a larger overall solving time than the original model.
For piperout-08 and traininstance2, adding one or both constraint sets slows the
solving down or induces a larger gap between lower and upper bound after one
minute. Remarkably, adding both sets of constraints gives better results than
adding single constraint set for the model piperout-08.

Remark 5.10. Most improvements in solving time seem to be the result of
having to explore fewer nodes in the B&B-tree, but in some cases also the root
node quality is improved.

So, in general it can be said that the addition of constraints makes it pos-
sible to solve MIP models faster in some cases. Of the tested cuts, the most
promising type of cuts are the release date cuts. However, simply adding sets
of constraints does not always yield an improvement. For example, for trainin-
stance2 a total of 17582 cutting planes is generated and added to the model,
while the original model contains only 15603 constraints. Also the number of
non-zero coefficients increases from 41531 to 64637. This makes the model more
difficult to solve, so it is not surprising that the solving time for the modified

45

model is increased compared to the solving time of the original model. As it is
likely that a significant part of the additional cutting planes does not positively
influence the solving time of the model, it would be interesting to see how the
solving time would be affected when cutting planes are added to the model in
more clever ways.

One of those more clever ways is to use the separation problem. At some
point in the B&B-tree, an optimal solution with a variable that takes a non-
integral value should be cut off. This can be done by finding a cut that is known
to be true for the integral solution, but not for the found optimal solution. Any
cut that satisfies these conditions can be selected, but preferably a cutting plane
that cuts off an as large as possible part of the feasible region is chosen to be
added to the set of constraints. Of course, single machine scheduling cuts are
not the only possible cuts to select in a separation problem, but they can be
part of the set of possible cuts.

Furthermore, it is possible to find additional criteria that could tell some-
thing more about when to generate cuts and apply them to MIP models. For
example, does the percentage of constraints or variables of the MIP that are part
of the SMSSPs indicate whether exploiting the SMSSPs is profitable? Another
option is to check the amounts of arcs in the constraint graphs. The instance in
which the most progress in terms of solving time was made in models with ad-
ditional constraints, neos-3046615-murg, only has arcs in the Regular Digraph,
while for instances where no progress was made, often only arcs in the Prece-
dence Digraph are present. Therefore, it seems reasonable to only generate and
use cutting planes of single machine scheduling problems where at least some
arcs are present in the Regular Digraph Dr.

Remark 5.11. The cutting planes could be added to the MIP in different ways
than the used method, for example by solving the separation problem. Also the
criterion that the SMSSP should contain non-precedence relations might be of
use. Whether it is possible to base a measure on percentages of constraints or
variables, requires further research.

46

6 Discussion

To be able to draw some conclusions from this research, it is good to take one
more look at the research question:

Research Question. Can the presence of single machine scheduling subprob-
lems in mixed integer programs be exploited to reduce the solving time of mixed
integer programs?

The brief and somewhat oversimplified answer to that question is yes. Using
the developed recognition algorithm, it was clear that exploiting the SMSSP
in the MIP instance neos-3046615-murg reduced the solving time. Also for
the model traininstance6 the model with additional cutting planes the solving
time was decreased. Moreover, some other MIP instances showed the potential
to profit from exploiting the SMSSP. However, for many of the other tested
instances, the addition of the recognition algorithm to solving algorithms would
increase the solving time as it only costs time to conclude that no SMSSP is
present.

Naturally, during the course of the process of model selection, algorithm
design, cut selection, implementation, tests and experiments, many choices and
(partial) results are open for discussion or raise new questions. The most rele-
vant aspects are addressed below.

The first facet of this discussion is the algorithm as presented in Section
3.3. As described in Section 5.1.1, some parts of the algorithm were modified
before it was tested. Most significantly, an auxiliary graph to check (complex)
relations between binary variables of complementary scheduling constraints was
introduced. However, it turned out that no pair of binary variables was related
through more than a single constraint, making the introduction of the auxiliary
graph redundant.

Another important variation to the algorithm is to check whether the non-
binary variables are completion or starting time variables. By checking which
of those two types of variables is present instead of simply assuming one of the
two, the processing times are likely to take larger values in case the assumption
is wrong. This would then imply that the later generated cutting planes are
stronger and therefore could lead to faster solving of MIPs that contain SMSSPs.
Hence, it is beneficial to add this check to implementations of the algorithm.

Recommendation 1. The inclusion of the auxiliary graph in the recognition
algorithm to detect complex binary relations can be left out. The additional check
for completion or starting time variables seems useful and it is recommended to
incorporate this in the algorithm.

Furthermore, in Section 5.1.2 a filter was introduced as it is very likely
that small SMSSPs and SMSSPs with non-positive processing times will not
generate cutting planes that cut off large parts of the solution space. A possible
implementation is to not allow arcs that imply a processing time of 0 in the
constraint graphs and to modify the subalgorithm that finds all maximal cliques.
During the experiments the applied filter removed SMSSPs that contained only

47

two jobs. However, one may wonder what the minimal size is of a SMSSP
that will generate useful cutting planes that help reducing the solving time of
MIPs. In the tested library, the MIP instance neos-3046615-murg contains a
SMSSP of size 16 for which the additional cuts made a big difference, while the
instance traininstance2 also contains SMSSPs of size 16 but the set of additional
cutting planes slows the branch-and-cut procedure down. As the library does
not contain a lot of MIPs with SMSSPs, it is difficult to give a reasoning that
results in a minimal size of a SMSSP. As it is likely that SMSSPs consisting of
three jobs are still too small to have a great impact on the solving time, the
idea of exploiting only SMSSPs of a minimal size is useful.

Recommendation 2. It is suggested to only include arcs that imply a process-
ing time larger than 0 in the constraint graphs. Furthermore, a minimal number
of jobs for SMSSPs is likely a useful addition too, but it requires further research
to decide what this minimal number should be.

A possible extension of the filter is to remove SMSSPs in which only prece-
dence relations exist between the jobs in the subproblem. It seems reasonable
that this kind of SMSSPs does not generate cutting planes that help solving
MIPs a lot faster, as these subproblems do not contain constraints with binary
variables with large coefficients, but only with integer or continuous variables.
The results also show that models with SMSSPs with precedence relations only
are not solved faster and this result justifies the elimination of this type of sub-
problems. This can be implemented in the algorithm by checking graph sizes
after constructing the constraint graphs. Then, the algorithm can be terminated
when there are no edges in the Regular Digraph Dr.

One way wonder as well whether useful cutting planes are generated from
SMSSPs that largely have precedence relations between its jobs. In our ex-
periments, it is in most cases not known which SMSSPs induce useful cutting
planes and which properties those SMSSPs have, due to the design of the ex-
periment. Therefore it can not be said what should be the minimal percentage
of non-precedence relations in a SMSSP.

Recommendation 3. SMSSPs with only precedence relations should be com-
puted by the recognition algorithm. This is possibly also true for SMSSPs with
large percentages of precedence relations, but it requires further research to de-
termine a maximal percentage of precedence relations.

The part of the recognition algorithm where it is most likely to lose more
than one hour, is the part where are all maximal cliques are found. As an
alternative for this part, the maximal cliques algorithm can be replaced by
heuristics that run in polynomial time, but only find the largest maximal clique.
This alternative could work well; it is likely that the most useful cutting planes
are generated from the largest SMSSP as then the largest number of variables
is involved in the cuts. However, it could be that combining cutting planes
generated from different SMSSPs earns even better results, but it is unknown
whether this yields a similar effect in terms of solving time as only exploiting
cutting planes generated from the largest SMSSP.

48

Recommendation 4. It requires further research to find out whether replacing
the all maximal cliques algorithm by a largest maximal clique heuristic achieves
a similar effect.

A final remark about the implementation of the algorithm can be made about
the programming language in which the algorithm is executed. For the type of
task performed in the first part of the algorithm, programming languages like
C or C++ are typically more efficient. By implementing the algorithm in such
a programming language could decrease the running time of the algorithm.

Recommendation 5. It is recommended to implement the algorithm in a pro-
gramming language like C or C++ and perform the same tests to see whether
this reduces the running time of the recognition algorithm.

After running the algorithm, sets of cuts are selected to help solving MIPs
faster. The selection criteria that an inequality should contain at least one
variable that is present in the MIP and should not introduce new variables,
are inescapable. However, the third criterion that limits the amount of cutting
planes per type, might be dropped. Of course, it requires further research to
see whether the cutting plane generation does not take too much time, as in
that case the MIP solving takes more time instead of less time. Some examples
of sets of valid inequalities that grow exponentially in the number of jobs in a
scheduling problem can be found in the paper by Nemhauser and Savelsbergh
[14].

Besides dropping selection criteria, there is another way to generate more
different types of cutting planes. By reversing the time horizon of the scheduling
problem, due date cuts can be derived from release date cuts. Therefore, the
latest due date of any job may be seen as the starting point of the time horizon,
while earlier due dates can be viewed as release dates. Of course, it requires
finite due dates to be able to generate non-trivial cutting planes.

Recommendation 6. It is recommended to seek for due date cuts, possibly
derived from release date cuts, and sets of cuts that grow exponentially in the
number of jobs in a scheduling problem. Additionally, it is suggested to perform
experiments to see whether these cuts can be generated in little time and whether
the cuts can help reducing solving time.

Finally, the results on solving (modified) MIP models show that an im-
provement in solving time by adding single machine scheduling cutting planes
is possible, but not in many cases. As only a few MIP instances in the MIPLIB
benchmark set contained a SMSSP that uses natural date variables, it makes
sense to use larger selections of MIP instances, such as the MIPLIB collection
set. This then helps to generate more significant results.

Recommendation 7. For future research, it is worth considering to perform
tests on larger sets of MIP instances.

One of the problems with the approach used in this thesis, is that the ad-
ditional constraints can also cause an increased solving time. Although further

49

tests with the above suggested algorithm modifications and improved filters
could lead to fewer models for which the solving time is incremented or to a
smaller increase of the solving time, there is possibly also room for improve-
ment in the way in which the generated cutting planes are exploited. Instead
of simply adding all generated cutting planes to the model, the generation of
scheduling cuts can be integrated in the separation problems that are solved
during the process of branch-and-cut.

Recommendation 8. It is recommended to perform experiments where the
scheduling cutting planes are included in the separation problems to see whether
solving time of MIP instances can be decreased even more.

50

References

[1] A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete
Programming Problems,” Econometrica, vol. 28, no. 3, pp. 497–520, Jul.
1960, issn: 00129682. doi: 10.2307/1910129.

[2] Gurobi Optimization LLC, Gurobi Optimizer Reference Manual, 2021.
[Online]. Available: https://www.gurobi.com.

[3] IBM Corporation, IBM ILOG CPLEX Optimization Studio CPLEX User’s
Manual, 2017.

[4] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a Large-Scale
Traveling-Salesman Problem,” Operations Research, vol. 2, no. 4, pp. 393–
410, Nov. 1954, issn: 0096-3984. doi: 10.1287/OPRE.2.4.393. [Online].
Available: https://pubsonline.informs.org/doi/abs/10.1287/opre.
2.4.393.

[5] W. Smith, “Various optimizers for single-stage production,” Naval Re-
search Logistics Quarterly, vol. 3, no. 1-2, pp. 59–66, 1956.

[6] E. Balas, “On the facial structure of scheduling polyhedra,” Mathematical
Programming, no. 24, 1985. doi: 10.1007/BFb0121051.

[7] M. Queyranne, “Structure of a simple scheduling polyhedron,” Mathe-
matical Programming, vol. 58, no. 1-3, Jan. 1993, issn: 0025-5610. doi:
10.1007/BF01581271.

[8] M. Queyranne and Y. Wang, “Single-Machine Scheduling Polyhedra with
Precedence Constraints,” Mathematics of Operations Research, vol. 16,
no. 1, Feb. 1991, issn: 0364-765X. doi: 10.1287/moor.16.1.1.

[9] J. P. Sousa and L. A. Wolsey, “A time indexed formulation of non-
preemptive single machine scheduling problems,” Mathematical Program-
ming, vol. 54, no. 1-3, Feb. 1992, issn: 0025-5610. doi: 10.1007/BF01586059.

[10] J. van den Akker, C. van Hoesel, and M. Savelsbergh, “A polyhedral
approach to single-machine scheduling problems,” Mathematical Program-
ming, vol. 85, no. 3, Aug. 1999, issn: 0025-5610. doi: 10.1007/s10107990047a.

[11] K. Šorić, “A cutting plane algorithm for a single machine scheduling prob-
lem,” European Journal of Operational Research, vol. 127, no. 2, Dec. 2000,
issn: 03772217. doi: 10.1016/S0377-2217(99)00493-2.

[12] M. E. Dyer and L. A. Wolsey, “Formulating the single machine sequencing
problem with release dates as a mixed integer program,” Discrete Applied
Mathematics, vol. 26, no. 2-3, pp. 255–270, Mar. 1990, issn: 0166-218X.
doi: 10.1016/0166-218X(90)90104-K.

[13] J. Blazewicz, M. Dror, and J. Weglarz, “Mathematical programming for-
mulations for machine scheduling: A survey,” European Journal of Opera-
tional Research, vol. 51, no. 3, Apr. 1991, issn: 03772217. doi: 10.1016/
0377-2217(91)90304-E.

51

https://doi.org/10.2307/1910129
https://www.gurobi.com
https://doi.org/10.1287/OPRE.2.4.393
https://pubsonline.informs.org/doi/abs/10.1287/opre.2.4.393
https://pubsonline.informs.org/doi/abs/10.1287/opre.2.4.393
https://doi.org/10.1007/BFb0121051
https://doi.org/10.1007/BF01581271
https://doi.org/10.1287/moor.16.1.1
https://doi.org/10.1007/BF01586059
https://doi.org/10.1007/s10107990047a
https://doi.org/10.1016/S0377-2217(99)00493-2
https://doi.org/10.1016/0166-218X(90)90104-K
https://doi.org/10.1016/0377-2217(91)90304-E
https://doi.org/10.1016/0377-2217(91)90304-E

[14] G. L. Nemhauser and M. W. P. Savelsbergh, “A Cutting Plane Algo-
rithm for the Single Machine Scheduling Problem with Release Times,” in
Combinatorial Optimization: New Frontiers in the Theory and Practice,
M. Akgül, H. Hamacher, and S. Tufecki, Eds., vol. 82, Springer, Berlin,
Heidelberg, 1992, pp. 63–83. doi: 10.1007/978-3-642-77489-8{_}4.

[15] F. A. Chudak and D. S. Hochbaum, “A half-integral linear program-
ming relaxation for scheduling precedence-constrained jobs on a single
machine,” Operations Research Letters, vol. 25, no. 5, Dec. 1999, issn:
01676377. doi: 10.1016/S0167-6377(99)00056-5.

[16] J. B. Lasserre and M. Queyranne, “Generic Scheduling Polyhedra and a
New Mixed-Integer Formulation for Single-Machine Scheduling,” in Pro-
ceedings of the 2nd IPCO (Integer Programming and Combinatorial Op-
timization) conference, E. Balas, G. Cornuéjois, and R. Kannan, Eds.,
Carnegie Mellon University, May 1992, pp. 136–149. [Online]. Available:
http://hdl.handle.net/2078.1/173068.

[17] S. Dauzere-Peres, “An efficient formulation for minimizing the number of
late jobs in single-machine scheduling,” in 1997 IEEE 6th International
Conference on Emerging Technologies and Factory Automation Proceed-
ings, EFTA ’97, IEEE, 1997, pp. 442–445, isbn: 0-7803-4192-9. doi: 10.
1109/ETFA.1997.616311.

[18] M. Sevaux and S. Dauzère-Pérès, “Genetic algorithms to minimize the
weighted number of late jobs on a single machine,” European Journal
of Operational Research, vol. 151, no. 2, Dec. 2003, issn: 03772217. doi:
10.1016/S0377-2217(02)00827-5.

[19] K. Khowala, A. Keha, and J. Fowler, “A comparison of different formu-
lations for the non-preemptive single machine total weighted tardiness
scheduling problem,” in The Second Multidisciplinary International Con-
ference on Scheduling: Theory & Application (MISTA), 2005.

[20] A. B. Keha, K. Khowala, and J. W. Fowler, “Mixed integer program-
ming formulations for single machine scheduling problems,” Computers
& Industrial Engineering, vol. 56, no. 1, pp. 357–367, Feb. 2009, issn:
0360-8352. doi: 10.1016/J.CIE.2008.06.008.

[21] K.-C. Ying, C.-Y. Cheng, S.-W. Lin, and C.-Y. Hung, “Comparative Anal-
ysis of Mixed Integer Programming Formulations for Single-Machine and
Parallel-Machine Scheduling Problems,” IEEE Access, vol. 7, pp. 152 998–
153 011, 2019. doi: 10.1109/ACCESS.2019.2947685.

[22] S. Warshall, “A Theorem on Boolean Matrices,” Journal of the ACM,
vol. 9, no. 1, Jan. 1962, issn: 0004-5411. doi: 10.1145/321105.321107.

[23] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complex-
ity for generating all maximal cliques and computational experiments,”
Theoretical Computer Science, vol. 363, no. 1, pp. 28–42, Oct. 2006, issn:
0304-3975. doi: 10.1016/J.TCS.2006.06.015.

52

https://doi.org/10.1007/978-3-642-77489-8{_}4
https://doi.org/10.1016/S0167-6377(99)00056-5
http://hdl.handle.net/2078.1/173068
https://doi.org/10.1109/ETFA.1997.616311
https://doi.org/10.1109/ETFA.1997.616311
https://doi.org/10.1016/S0377-2217(02)00827-5
https://doi.org/10.1016/J.CIE.2008.06.008
https://doi.org/10.1109/ACCESS.2019.2947685
https://doi.org/10.1145/321105.321107
https://doi.org/10.1016/J.TCS.2006.06.015

[24] L. Wolsey, “Formulating single machine scheduling problems with prece-
dence constraints,” in Economic Decision Making: Games, Econometrics
and Optimisation, J. Gabszewicz, J.-F. Richard, and L. Wolsey, Eds., Am-
sterdam, 1990, pp. 473–484.

[25] P. Raybaut, “Spyder-documentation,” Available online at: pythonhosted.org,
2009.

[26] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009, isbn: 1441412697.

[27] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T.
Berthold, P. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke,
H. D. Mittelmann, D. Ozyurt, T. K. Ralphs, D. Salvagnin, and Y. Shi-
nano, “MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library,” Mathematical Programming Computation, vol. 13,
no. 3, Sep. 2021, issn: 1867-2949. doi: 10.1007/s12532-020-00194-3.

[28] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network struc-
ture, dynamics, and function using NetworkX,” in Proceedings of the 7th
Python in Science Conference (sciPy 2008), G. Varoquaux, T. Vaught,
and J. Millman, Eds., Pasadena, CA USA, Aug. 2008, pp. 11–15.

[29] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, Apr. 1958, issn: 0033-569X. doi: 10.1090/qam/102435.

53

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1090/qam/102435

54

A Results of the test of recognition algorithm

Table 13: Detailed results of the test of the recognition algorithm.

Time Original Filtered
Instance Total CG TC CB FC CM Cliques max Cliques max
30n20b8 < 1 < 1 < 1 < 1 < 1 < 1 60 2 0 -
50v-10 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
academictimetablesmall 3 3 < 1 < 1 < 1 < 1 0 - 0 -
app1-2 7 7 < 1 < 1 < 1 < 1 13300 2 0 -
assign1-5-8 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
atlanta-ip 3 3 < 1 < 1 < 1 < 1 0 - 0 -
b1c1s1 < 1 < 1 < 1 < 1 < 1 < 1 16 2 0 -
bab2 4 4 < 1 < 1 < 1 < 1 0 - 0 -
bab6 5 5 < 1 < 1 < 1 < 1 0 - 0 -
beasleyC3 < 1 < 1 < 1 < 1 < 1 < 1 160 2 0 -
binkar10 1 < 1 < 1 < 1 < 1 < 1 < 1 180 2 0 -
blp-ar98 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
blp-ic98 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
bnatt400 1 1 < 1 < 1 < 1 < 1 0 - 0 -
bnatt500 1 1 < 1 < 1 < 1 < 1 0 - 0 -
bppc4-08 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
brazil3 2 2 < 1 < 1 < 1 < 1 0 - 0 -
buildingenergy 35 33 1 < 1 1 1 59964 3 0 -
cbs-cta 1 1 < 1 < 1 < 1 < 1 0 - 0 -
chromaticindex1024-7 8 8 < 1 < 1 < 1 < 1 0 - 0 -
chromaticindex512-7 4 4 < 1 < 1 < 1 < 1 0 - 0 -
cmflsp50-24-8-8 1 1 < 1 < 1 < 1 < 1 0 - 0 -

55

CMS750 4 > 3600 2 9 < 1 - - - - - -
co-100 2 2 < 1 < 1 < 1 < 1 0 - 0 -
cod105 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
comp07-2idx 3 3 < 1 < 1 < 1 < 1 0 - 0 -
comp21-2idx 2 2 < 1 < 1 < 1 < 1 0 - 0 -
cost266-UUE < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
cryptanalysiskb128n5obj14 12 12 < 1 < 1 < 1 < 1 0 - 0 -
cryptanalysiskb128n5obj16 12 12 < 1 < 1 < 1 < 1 0 - 0 -
csched007 < 1 < 1 < 1 < 1 < 1 < 1 1 3 0 -
csched008 < 1 < 1 < 1 < 1 < 1 < 1 51 11 0 -
cvs16r128-89 1 1 < 1 < 1 < 1 < 1 0 - 0 -
dano3 3 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
dano3 5 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
decomp2 1 1 < 1 < 1 < 1 < 1 0 - 0 -
drayage-100-23 1 1 < 1 < 1 < 1 < 1 0 - 0 -
drayage-25-23 1 1 < 1 < 1 < 1 < 1 0 - 0 -
dws008-01 1 1 < 1 < 1 < 1 < 1 28 2 0 -
eil33-2 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
eilA101-2 1 1 < 1 < 1 < 1 < 1 0 - 0 -
enlight hard < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
ex10 9 9 < 1 < 1 < 1 < 1 0 - 0 -
ex9 5 5 < 1 < 1 < 1 < 1 0 - 0 -
exp-1-500-5-5 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
fast0507 1 1 < 1 < 1 < 1 < 1 0 - 0 -
fastxgemm-n2r6s0t2 1 1 < 1 < 1 < 1 < 1 1224 2 0 -
fhnw-binpack4-4 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
fhnw-binpack4-48 1 1 < 1 < 1 < 1 < 1 0 - 0 -
fiball 1 1 < 1 < 1 < 1 < 1 43 6 0 -

56

gen-ip002 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
gen-ip054 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
germanrr 1 1 < 1 < 1 < 1 < 1 0 - 0 -
gfd-schedulen180f7d50m30k18 > 3600 56 1 < 1 - - - - - -
glass-sc 1 1 < 1 < 1 < 1 < 1 0 - 0 -
glass4 < 1 < 1 < 1 < 1 < 1 < 1 9 2 0 -
gmu-35-40 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
gmu-35-50 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
graph20-20-1rand 1 1 < 1 < 1 < 1 < 1 0 - 0 -
graphdraw-domain < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
h80x6320d 1 1 < 1 < 1 < 1 < 1 0 - 0 -
highschool1-aigio 15 15 < 1 < 1 < 1 < 1 0 - 0 -
hypothyroid-k1 1 1 < 1 < 1 < 1 < 1 0 - 0 -
ic97 potential < 1 < 1 < 1 < 1 < 1 < 1 251 6 3 6
icir97 tension < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
irish-electricity 13 13 < 1 < 1 < 1 < 1 5184 2 0 -
irp < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
istanbul-no-cutoff 3 3 < 1 < 1 < 1 < 1 5 2 0 -
k1mushroom 3 3 < 1 < 1 < 1 < 1 0 - 0 -
lectsched-5-obj 5 5 < 1 < 1 < 1 < 1 29 4 0 -
leo1 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
leo2 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
lotsize < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
mad < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
map10 43 38 1 < 1 1 2 13449 40 0 -
map16715-04 43 39 1 < 1 1 2 13449 40 0 -
markshare2 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
markshare 4 0 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -

57

mas74 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
mas76 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
mc11 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
mcsched < 1 < 1 < 1 < 1 < 1 < 1 2 2 0 -
mik-250-20-75-4 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
milo-v12-6-r2-40-1 1 1 < 1 < 1 < 1 < 1 2 2 0 -
momentum1 5 5 < 1 < 1 < 1 < 1 179 2 0 -
mushroom-best 1 1 < 1 < 1 < 1 < 1 113 2 0 -
mzzv11 1 1 < 1 < 1 < 1 < 1 0 - 0 -
mzzv42z 1 1 < 1 < 1 < 1 < 1 0 - 0 -
n2seq36q 1 1 < 1 < 1 < 1 < 1 0 - 0 -
n3div36 1 1 < 1 < 1 < 1 < 1 0 - 0 -
n5-3 < 1 < 1 < 1 < 1 < 1 < 1 144 2 0 -
n9-3 < 1 < 1 < 1 < 1 < 1 < 1 176 2 0 -
neos-1122047 > 3600 7 57 < 1 - - - - - -
neos-1171448 2 2 < 1 < 1 < 1 < 1 0 - 0 -
neos-1171737 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-1354092 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-1445765 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-1456979 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-1582420 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-2075418-temuka 46 46 < 1 < 1 < 1 < 1 0 - 0 -
neos-2657525-crna < 1 < 1 < 1 < 1 < 1 < 1 57 3 0 -
neos-2746589-doon 4 4 < 1 < 1 < 1 < 1 0 - 0 -
neos-2978193-inde < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-3004026-krka 2 2 < 1 < 1 < 1 < 1 0 - 0 -
neos-3024952-loue 1 < 1 < 1 < 1 < 1 < 1 3075 2 0 -
neos-3046615-murg < 1 < 1 < 1 < 1 < 1 < 1 1 16 1 16

58

neos-3083819-nubu 1 1 < 1 < 1 < 1 < 1 4192 3 0 -
neos-3216931-puriri 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-3381206-awhea < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-3402294-bobin 67 67 < 1 < 1 < 1 < 1 0 - 0 -
neos-3402454-bohle 331 331 < 1 < 1 < 1 < 1 0 - 0 -
neos-3555904-turama 17 17 < 1 < 1 < 1 < 1 0 - 0 -
neos-3627168-kasai < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-3656078-kumeu 2 2 < 1 < 1 < 1 < 1 330 4 7 4
neos-3754224-navua 29 27 1 < 1 < 1 < 1 16380 5 2355 5
neos-3754480-nidda < 1 < 1 < 1 < 1 < 1 < 1 100 2 0 -
neos-3988577-wolgan 5 5 < 1 < 1 < 1 < 1 0 - 0 -
neos-4300652-rahue 9 9 < 1 < 1 < 1 < 1 3458 2 0 -
neos-4338804-snowy < 1 < 1 < 1 < 1 < 1 < 1 21 2 0 -
neos-4387871-tavua 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-4413714-turia 2 2 < 1 < 1 < 1 < 1 0 - 0 -
neos-4532248-waihi 20 20 < 1 < 1 < 1 < 1 0 - 0 -
neos-4647030-tutaki 4 4 < 1 < 1 < 1 < 1 0 - 0 -
neos-4722843-widden 13 13 < 1 < 1 < 1 < 1 2668 2 0 -
neos-4738912-atrato < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-4763324-toguru 13 13 < 1 < 1 < 1 < 1 0 - 0 -
neos-4954672-berkel < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-5049753-cuanza 39 39 < 1 < 1 < 1 < 1 0 - 0 -
neos-5052403-cygnet 8 8 < 1 < 1 < 1 < 1 0 - 0 -
neos-5075914-elvire < 1 < 1 < 1 < 1 < 1 < 1 12 2 0 -
neos-5093327-huahum 8 7 < 1 < 1 < 1 < 1 19068 4 0 -
neos-5104907-jarama 59 58 1 < 1 1 < 1 26208 2 0 -
neos-5107597-kakapo 1 1 < 1 < 1 < 1 < 1 57 6 0 -
neos-5114902-kasavu 113 113 < 1 < 1 < 1 < 1 0 - 0 -

59

neos-5188808-nattai 4 4 < 1 < 1 < 1 < 1 4752 3 0 -
neos-5195221-niemur 5 5 < 1 < 1 < 1 < 1 0 - 0 -
neos-631710 20 20 < 1 < 1 < 1 < 1 0 - 0 -
neos-662469 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-787933 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-827175 2 2 < 1 < 1 < 1 < 1 84 2 0 -
neos-848589 2 2 < 1 < 1 < 1 < 1 0 - 0 -
neos-860300 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-873061 11 11 < 1 < 1 < 1 < 1 801 2 0 -
neos-911970 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-933966 2 2 < 1 < 1 < 1 < 1 0 - 0 -
neos-950242 4 4 < 1 < 1 < 1 < 1 0 - 0 -
neos-957323 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos-960392 1 1 < 1 < 1 < 1 < 1 0 - 0 -
neos17 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos5 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
neos8 6 6 < 1 < 1 < 1 < 1 0 - 0 -
neos859080 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
net12 2 2 < 1 < 1 < 1 < 1 0 - 0 -
netdiversion 15 15 < 1 < 1 < 1 < 1 0 - 0 -
nexp-150-20-8-5 1 1 < 1 < 1 < 1 < 1 0 - 0 -
ns1116954 16 16 < 1 < 1 < 1 < 1 0 - 0 -
ns1208400 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
ns1644855 7 6 < 1 < 1 < 1 < 1 10000 2 0 -
ns1760995 71 71 < 1 < 1 < 1 < 1 132 3 0 -
ns1830653 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
ns1952667 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
nu25-pr12 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -

60

nursesched-medium-hint03 2 2 < 1 < 1 < 1 < 1 0 - 0 -
nursesched-sprint02 1 1 < 1 < 1 < 1 < 1 0 - 0 -
nw04 1 1 < 1 < 1 < 1 < 1 0 - 0 -
opm2-z10-s4 18 18 < 1 < 1 < 1 < 1 0 - 0 -
p200x1188c < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
peg-solitaire-a3 1 1 < 1 < 1 < 1 < 1 0 - 0 -
pg < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
pg5 34 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
physiciansched3-3 31 31 < 1 < 1 < 1 < 1 1332 2 0 -
physiciansched6-2 20 20 < 1 < 1 < 1 < 1 116 2 0 -
piperout-08 2 2 < 1 < 1 < 1 < 1 108 3 68 3
pk1 < 1 < 1 < 1 < 1 < 1 < 1 30 2 0 -
proteindesign121hz512p9 1 1 < 1 < 1 < 1 < 1 0 - 0 -
proteindesign122trx11p8 1 1 < 1 < 1 < 1 < 1 0 - 0 -
qap10 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
radiationm18-12-05 6 5 < 1 < 1 < 1 < 1 3672 4 0 -
radiationm40-10-02 24 22 1 < 1 1 1 15600 4 0 -
rail01 6 6 < 1 < 1 < 1 < 1 0 - 0 -
rail02 13 13 < 1 < 1 < 1 < 1 0 - 0 -
rail507 1 1 < 1 < 1 < 1 < 1 0 - 0 -
ran14x18-disj-8 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
rd-rplusc-21 15 15 < 1 < 1 < 1 < 1 6 22 1 20
reblock115 1 1 < 1 < 1 < 1 < 1 0 - 0 -
rmatr100-p10 1 1 < 1 < 1 < 1 < 1 0 - 0 -
rmatr200-p5 5 5 < 1 < 1 < 1 < 1 0 - 0 -
rocI-4-11 1 1 < 1 < 1 < 1 < 1 4 11 0 -
rocII-5-11 3 3 < 1 < 1 < 1 < 1 6 11 0 -
rococoB10-011000 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -

61

rococoC11-011100 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
roi2alpha3n4 1 1 < 1 < 1 < 1 < 1 0 - 0 -
roi5alpha10n8 3 3 < 1 < 1 < 1 < 1 0 - 0 -
roll3000 < 1 < 1 < 1 < 1 < 1 < 1 1 2 0 -
s100 5 5 < 1 < 1 < 1 < 1 0 - 0 -
s250r10 4 4 < 1 < 1 < 1 < 1 0 - 0 -
satellites2-40 3 3 < 1 < 1 < 1 < 1 20 2 0 -
satellites2-60-fs 2 2 < 1 < 1 < 1 < 1 20 2 0 -
savsched1 37 37 < 1 < 1 < 1 < 1 2 2 0 -
sct2 < 1 < 1 < 1 < 1 < 1 < 1 68 2 0 -
seymour 1 1 < 1 < 1 < 1 < 1 0 - 0 -
seymour1 1 1 < 1 < 1 < 1 < 1 0 - 0 -
sing326 6 6 < 1 < 1 < 1 < 1 0 - 0 -
sing44 7 7 < 1 < 1 < 1 < 1 0 - 0 -
snp-02-004-104 17 15 < 1 < 1 < 1 < 1 21334 2 0 -
sorrell3 19 19 < 1 < 1 < 1 < 1 0 - 0 -
sp150x300d < 1 < 1 < 1 < 1 < 1 < 1 84 2 0 -
sp97ar 1 1 < 1 < 1 < 1 < 1 0 - 0 -
sp98ar 1 1 < 1 < 1 < 1 < 1 0 - 0 -
splice1k1 2 2 < 1 < 1 < 1 < 1 0 - 0 -
square41 16 16 < 1 < 1 < 1 < 1 0 - 0 -
square47 29 29 < 1 < 1 < 1 < 1 0 - 0 -
supportcase10 19 19 < 1 < 1 < 1 < 1 0 - 0 -
supportcase12 25 22 1 < 1 1 1 45226 2 0 -
supportcase18 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
supportcase19 11 11 < 1 < 1 < 1 < 1 0 - 0 -
supportcase22 32 32 < 1 < 1 < 1 < 1 0 - 0 -
supportcase26 < 1 < 1 < 1 < 1 < 1 < 1 1 40 0 -

62

supportcase33 3 3 < 1 < 1 < 1 < 1 0 - 0 -
supportcase40 7 5 < 1 < 1 < 1 1 20020 6 3507 6
supportcase42 3 3 < 1 < 1 < 1 < 1 1 2 0 -
supportcase6 1 1 < 1 < 1 < 1 < 1 0 - 0 -
supportcase7 3 3 < 1 < 1 < 1 < 1 0 - 0 -
swath1 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
swath3 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
tbfp-network 1 1 < 1 < 1 < 1 < 1 0 - 0 -
thor50dday 7 7 < 1 < 1 < 1 < 1 0 - 0 -
timtab1 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
toll-like 1 1 < 1 < 1 < 1 < 1 0 - 0 -
tr12-30 < 1 < 1 < 1 < 1 < 1 < 1 12 2 0 -
traininstance2 2 2 < 1 < 1 < 1 < 1 2709 16 208 16
traininstance6 2 2 < 1 < 1 < 1 < 1 2034 11 33 11
trento1 < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
triptim1 2 2 < 1 < 1 < 1 < 1 13 3 0 -
uccase12 16 15 < 1 < 1 < 1 < 1 4034 7 0 -
uccase9 7 6 < 1 < 1 < 1 < 1 2354 7 0 -
uct-subprob < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -
unitcal 7 6 6 < 1 < 1 < 1 < 1 7716 2 0 -
var-smallemery-m6j6 2 2 < 1 < 1 < 1 < 1 0 - 0 -
wachplan < 1 < 1 < 1 < 1 < 1 < 1 0 - 0 -

63

B Results of additional experiments on exploitation

Table 14: Results for solving models for only one minute with the Gurobi functionalities cuts, heuristics and presolve off. A
model with additional release date cuts is indicate by †, § denotes a model with additional precedence cuts and ∗ represents a
model with additional dominance cuts.
Model Time (s) UB LB Gap

Number of
expl. nodes

Number of
simpl. it.

Simpl. it.
per expl. node

Time per
simpl. it. (µs)

Time per
expl. node (ms)

ic97 potential 60 3950 3887 1.59% 621033 8605329 13.86 6.97 0.097

ic97 potential† 60 3946 3889 1.44% 593090 8652954 14.59 6.93 0.101

neos-3046615-murg 60 1610 686 57.39% 3050805 6483341 2.13 9.25 0.020
neos-3046615-murg∗ 60 1604 651 59.41% 2727952 5869295 2.15 10.22 0.022

neos-3046615-murg† 1.3 1600 1600 0% 6910 82898 12.00 15.68 0.188

neos-3046615-murg∗† 0.94 1600 1600 0% 5773 61429 10.64 15.30 0.163

neos-3754224-navua 60 - - - 0 86168 - 696 -

neos-3754224-navua† 60 - - - 0 130399 - 460 -

piperout-08 6.05 125055 125055 0% 2983 52035 17.44 116 2.028

piperout-08† 18.75 125055 125055 0% 1963 59865 30.50 313 9.552

piperout-08§ 32.39 125055 125055 0% 8630 145652 16.88 222 3.753

piperout-08†§ 32.76 125055 125055 0% 6007 112943 18.80 290 5.454

traininstance2 60 - 0 - 13574 1110042 81.78 54.05 4.420

traininstance2† 60 - 0 - 8727 258112 29.58 232 6.875

traininstance2§ 60 - 0 - 16086 471519 29.31 127 3.730

traininstance2†§ 60 - 0 - 4572 267634 58.54 224 13.123

traininstance6 60 29530 0 100% 16038 371143 23.14 162 3.741

traininstance6† 60 31150 0 100% 14384 351641 24.45 171 4.171

traininstance6§ 60 29610 0 100% 17252 361441 20.95 166 3.478

traininstance6†§ 60 31830 0 100% 15055 297520 19.76 202 3.985

64

Table 15: Results for solving only the root node of the B&B-tree of the models with the Gurobi functionalities cuts, heuristics
and presolve on. A model with additional release date cuts is indicate by †, § denotes a model with additional precedence cuts
and ∗ represents a model with additional dominance cuts.

Model Time (s) UB LB Gap
Number of

simplex iterations
Time per simplex
iteration (ms)

ic97 potential 0.08 - 3868 - 1828 0.044

ic97 potential† 0.08 - 3868 - 1564 0.051

neos-3046615-murg 0,02 - 192 - 309 0.065
neos-3046615-murg∗ 0.02 - 192 - 353 0.057

neos-3046615-murg† 0.04 - 1558 - 201 0.199

neos-3046615-murg∗† 0.05 - 1556 - 206 0.243

neos-3754224-navua 516.88 - 55687 - 231364 2.234

neos-3754224-navua† 546.64 - 55688 - 231913 2.357

piperout-08 2.15 - 124955 - 10828 0.199

piperout-08† 1.40 - 116353 - 8105 0.173

piperout-08§ 1.61 - 124955 - 8751 0.184

piperout-08†§ 1.50 - 124955 - 8982 0.167

traininstance2 0.52 - 0 - 3144 0.165

traininstance2† 1.64 - 0 - 5836 0.281

traininstance2§ 0.65 - 0 - 3209 0.203

traininstance2†§ 0.82 - 0 - 3104 0.264

traininstance6 0.99 - 0 - 3303 0.300

traininstance6† 0.70 - 0 - 3651 0.192

traininstance6§ 0.87 - 0 - 3915 0.222

traininstance6†§ 0.61 - 0 - 2986 0.204

65

Table 16: Results for solving models for only one minute with the Gurobi functionalities cuts, heuristics and presolve on. A
model with additional release date cuts is indicate by †, § denotes a model with additional precedence cuts and ∗ represents a
model with additional dominance cuts.
Model Time (s) UB LB Gap

Number of
expl. nodes

Number of
simpl. it.

Simpl. it.
per expl. node

Time per
simpl. it. (µs)

Time per
expl. node (ms)

ic97 potential 60 3942 3931 0.29% 36458 2078728 57.02 28.86 1.65

ic97 potential† 60 3942 3933 0.24% 36445 1802473 49.46 33.29 1.65

neos-3046615-murg 4.15 1600 1600 0% 15538 229428 14.77 18.09 0.27
neos-3046615-murg∗ 3.26 1600 1600 0% 14112 171358 12.14 19.02 0.23

neos-3046615-murg† 0.49 1600 1600 0% 1 550 550 890.91 490

neos-3046615-murg∗† 0.50 1600 1600 0% 1 614 614 814.33 500

neos-3754224-navua 60 - -3722241826 - 0 0 - - -

neos-3754224-navua† 60 - -3722241826 - 0 0 - - -

piperout-08 1.46 125055 125055 0% 1 6879 6879 212.24 1460

piperout-08† 6.63 125055 125055 0% 1 15400 15400 430.52 6630

piperout-08§ 3.62 125055 125055 0% 1 11999 11999 301.69 3620

piperout-08†§ 3.24 125055 125055 0% 1 10969 10969 295.38 3240

traininstance2 60 71820 69793 2.82% 254971 1848117 7.25 32.47 0.24

traininstance2† 60 71820 69425 3.33% 263029 1740374 6.62 34.48 0.23

traininstance2§ 60 71920 69764 3.00% 183799 1616017 8.79 37.13 0.33

traininstance2†§ 60 72200 68872 4.61% 166411 1387425 8.34 43.25 0.36

traininstance6 3.43 28290 28290 0% 15243 91759 6.02 37.38 0.23

traininstance6† 2.90 28290 28290 0% 11054 67222 6.08 43.14 0.26

traininstance6§ 2.77 28290 28290 0% 15296 78082 5.10 35.48 0.18

traininstance6†§ 2.90 28290 28290 0% 12466 83699 6.71 34.65 0.23

66

Table 17: Results for solving only the root node of the B&B-tree of the models with the Gurobi functionalities cuts, heuristics
and presolve on. A model with additional release date cuts is indicate by †, § denotes a model with additional precedence cuts
and ∗ represents a model with additional dominance cuts.

Model Time (s) UB LB Gap
Number of

simplex iterations
Time per simplex
iteration (ms)

ic97 potential 0.74 4065 3912 3.77% 4725 0.16

ic97 potential† 0.55 4078 3905 4.25% 3893 0.14

neos-3046615-murg 0.16 1639 1554 5.19% 441 0.36
neos-3046615-murg∗ 0.19 1639 1559 4.88% 506 0.38

neos-3046615-murg† 0.55 1600 1600 0% 550 1.00

neos-3046615-murg∗† 0.52 1600 1600 0% 614 0.85

neos-3754224-navua 349.34 - 56045 - 189917 1.84

neos-3754224-navua† 361.21 - 56045 - 189917 1.90

piperout-08 1.46 125055 125055 0% 6879 0.21

piperout-08† 6.53 125055 125055 0% 15400 0.42

piperout-08§ 3.52 125055 125055 0% 11999 0.29

piperout-08†§ 3.22 125055 125055 0% 10969 0.29

traininstance2 0.32 79590 1 100% 722 0.44

traininstance2† 0.39 78510 2610 96.68% 939 0.42

traininstance2§ 0.58 80800 1 100% 2370 0.24

traininstance2†§ 0.51 86860 1 100% 1828 0.28

traininstance6 0.28 30030 1 100% 603 0.46

traininstance6† 0.45 32860 1 100% 1096 0.41

traininstance6§ 0.29 36180 1860 94.86% 397 0.73

traininstance6†§ 0.30 32550 2100 93.55% 380 0.79

	Introduction
	The Mixed Integer Programming model
	Techniques for solving Mixed Integer Programs
	Research Question and Approach
	Outline

	MIP models for single machine scheduling
	Natural date variables
	Time-indexed variables
	Linear ordering variables
	Assignment and positional date variables
	Comparison and choice of model

	Recognizing a single machine scheduling subproblem
	Reformulating the single machine scheduling problem
	Constraint graphs
	An algorithm to recognize single machine scheduling subproblems
	Validation of the recognition algorithm
	Complexity of the recognition algorithm

	Scheduling cuts
	Release date cuts
	Precedence cuts

	Computational Study
	Recognition algorithm
	Implementation details
	Results
	Analysis

	Exploitation of single machine scheduling subproblems
	Method
	Results
	Analysis

	Discussion
	References
	Results of the test of recognition algorithm
	Results of additional experiments on exploitation

