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Management summary

Screening insurance claims for errors or fraud is an important aspect of the work of insurance companies. It is
important for these companies that they detect wrong insurance claims and correct them in order to prevent
overpaying. Rather than fully inspect each claim, usually insurance companies make a preselection with a
yearly target rate, where they investigate a certain percentage of all claims further, commonly around 30%.
This can be done through multiple means, for example inspecting all claims above a predetermined value or,
what Posthuma Partners proposes, is, by using regression methods, assigning all claim amounts a conditional
quantile and investigating every claim with an assigned quantile above a threshold. The current models have
inherent assumptions about the distribution of claim amounts, which affects how the models assign quantiles.
One of the models used is ordinary least squares regression. This model has two important assumptions that
do not always hold true: homoskedasticity and normally distributed errors. These assumptions contribute to
inconsistent quantile assignment, which results in an inconsistent preselection process. In the past, Posthuma
Partners has developed a model that is able to work with log-linear variance, a form of heteroskedasticity:
LMVAR. However, the model still assumes that the errors follow a normal distribution. It is common that
using these methods, in order to achieve the target ratio during the year the number of preselected quantiles
needs to be increased or decreased. This causes operational problems, since it is unclear how much work needs
to be done.

In order to reduce these problems, a different type of regression is analysed in this research: Quantile regres-
sion. Rather than first estimating the mean, assuming the error is normally distributed and then calculating
the quantile from that distribution, quantile regression directly estimates the conditional quantile, removing the
need for the normality assumption. This leads to the main research question:

How can quantile regression be used to improve conditional quantile assignment for insurance claim amounts?

In order to see how well quantile regression really performs, first a synthetic dataset was created, where the
number of observations, the number of features, and the distribution of the dependent variable, or claim amount,
are all changed. The design of this dataset was such that it resembles a real dataset in number of observations,
number of features, and distribution of the dependent variable. On this dataset, quantile regression is tested
to see how well it is able to correctly identify the true relation between the features and the claim amount and
the true conditional quantiles. Rather than created a single quantile regression model for only one quantile, it
is important for Posthuma Partners that the entire distribution is known. For this reason, a set of 39 quantile
regression models is used in this phase, where each model estimates one quantile (0.025%, 0.05%, . . . , 0.975%).
From the combination of these models, almost the entire distribution is known. Using this information, the R2

is calculated in order to be able to compare it to the traditional regression models and the quantile distribution
is checked for uniformity using the Kolmogorov–Smirnov test (KS test).

The results of this initial testing on the synthetic dataset show that quantile regression is both able to
assign the conditional quantiles accurately and uniformly under certain conditions. The minimum number of
observations at which the model performs adequately seems to be 10,000, which most of the available datasets
surpass. Another condition is that if the claim amounts follow a distribution with non-linear variance, this
greatly impacts the performance as well. If it is the case that the non-linearity is too impactful, the quantile
regression models are merely able to estimate if the claim amount is higher or lower than the median.

After the initial testing, further research begins on a real dataset of car insurance claims. Firstly, this dataset
is analysed. The number of observations, the distribution of the claim amount and other important aspects are
explained. After that, the features and what they represent are discovered. Some observations needed cleaning,
for example the car brand was not capitalised, or there was data missing.

The next step is to create three models: a OLS-regression model, an LVMAR model, and a combined quantile
regression model. These models are trained on a subset of all insurance claims available in the dataset. The goal
is to be able to compare the performance of these three models and see if quantile regression is a viable option.
The models are compared mainly in three ways, the first of which is how well the β coefficients are estimated
and how these are impacted by a feature selection method. OLS-regression and quantile regression both use
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LASSO as a feature selection method, and LVMAR uses stepAIC with backward-forward selection. The second
comparison is the R2 and some additional extensions on the R2 to better represent overfitting. Thirdly, the
conditional quantile distribution is analysed and compared. This is done using the Kolmogorov-Smirnov test.

The results show that the in general the models perform about equally with respect to the R2. The OLS-
regression model performed the best with an R2 of 0.5, followed by the combined quantile regression model
with an R2 of 0.486, and finally the LMVAR with an R2 of 0.470. The feature selection methods did remove
many features from the model, without impacting the R2 significantly for both the OLS-regression model and
for the LMVAR model. However, the quantile regression model performed much worse, with an R2 of 0.255. It
is likely that this bad performance is due to the fact that the quantile regression model is a combined model,
and that the feature selection model is distorting it.

The distribution assigned quantiles is supposed to be uniform. However, both the OLS-regression and the
LMVAR models were not able to do this uniformly. The results from the KS test show that for both distributions,
the null-hypothesis of uniformity can reasonably be discarded, where LMVAR was only marginally better than
the OLS model. The quantile regression model was able to pass the KS test, with a P -value of 0.3095. This
means that it can reasonably be assumed that the assigned conditional quantiles from the quantile regression
model follow a uniform distribution.

The conclusion of this research is that quantile regression is applicable on datasets that are similar to
the datasets that are available to Posthuma partners. The distribution of the assigned quantiles that quantile
regression provides is very consistent, which might reduce variability in workload during the year. Since quantile
regression performs worse on the datasets with non-linear variance, it is advisable to test with the LMVAR model
as well. The minimum number of observations is around 10000.

Based on the analysis of the available data, there are a number of improvements. The input of the dataset
can be constraint more, such that data is more standardised. This would result in a more usable dataset with
more information. This applies for example very well to the car brand feature. A feature that would likely be
worth adding is a season related feature. Currently, this is not used, since the data is only available for one
year in the past. By analysing data over a longer timespan, seasonal effects can be measured as well. Another
improvement would be to update the models that are used more frequently. The current model performance
was not very well, likely due to the effects of COVID-19 on the car insurance industry. However, these effects
can be reduced by updating the models monthly, rather than yearly.

The quantile regression model need more research as well. The feature selection method LASSO performed
very poorly, which needs to be investigated further. Furthermore, there are more applications of quantile
regression that can be used as well: quantile neural networks, quantile decision trees, and random forests that
use quantile regression. These models can also predict conditional quantiles, with possibly better performance
than just a regression model. Another advancement in quantile regression is Additive Smoothing. This type of
model can be researched further as well.
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Chapter 1

Introduction

This research is performed at Posthuma Partners. Posthuma Partners is an actuarial consulting firm and
software developer for insurance companies located in Gouda. Their customers are some of the largest insurance
companies worldwide, like Achmea, Aegon and Allianz. They operate mainly in Northern Europe and Southeast
Asia. This research aims to provide Posthuma Partners an additional method of data analysis and modelling.

In this chapter the research will be outlined. In section 1.1 the core activities of Posthuma Partners will be
explained and which of these activities will be the focus of this thesis. After this the scientific context of this
research will be given in chapter 2. Thirdly, the main problem statement will be described in chapter 1.6. From
this problem statement, the research objective will be crafted and stated in chapter 1.7. This objective will be
used to set out the research questions in chapter 1.8.

1.1 Posthuma Partners’ core activities

The three main products and services Posthuma Partners provide are the following [16]:

• Integral financial modelling;

• Consultancy - Data analysis;

• Claims Management Filter (CMF).

The integral financial modelling is focused on providing the customer with stochastic modelling of their
insurance portfolios and a strategic road map substantiated with quantitative metrics. The data analysis
consultancy, which Posthuma Partners provides, gives the customers the opportunity to present the actuarial
problems they face. Posthuma Partners is able to fulfil many roles, such as actuary, data analyst, and certifier of
the portfolio. They can advise on pricing of products and can validate models and results. The third service is
the implementation of the CMF. The CMF is a data analysis tool that can be used to aid in handling insurance
claims. An insurance claim, or claim for short, is a formal request by an insured party to the insurance agency
for (financial) compensation. An example of a claim would be if the car of an insurance policyholder is damaged
in an accident. They can report the costs to repair the damage to their insurer, who will then, if the claim is
deemed legitimate by the company, reimburse the customer. The claim contains information about the incident
plus the requested claim amount. It is the job of the insurance company to verify the claims, such that they
know the claim is valid, and the customer is entitled to the compensation. Then they can deny or validate the
claim. The insurance company can have many thousands or even millions of customers, so the number of claims
can be very high. For each of the claims, the insurer has to have experts inspect the claims who have to decide
the likelihood that the claim is legitimate and that the claim amount is reasonable. The CMF can automate a
large part of the verification of claims and make a preselection for further investigation. The company claims
that the ratio of paid out claims is 2% to 20% lower with the product plus a reduction of claims handling costs
of 20% to 50%.[17]

1.2 The Claims Management Filter

The CMF aids in claim verification in two parts: automation of the handling of claims and by providing expert
advice for insurance claims, which can be one of three things:

• Green light: Routine claim processing

• Yellow light: further investigation via a phone call
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• Red light: further investigation via an on-site expert

The ratio of claims that are flagged depends on the preference of the insurance company. In Europe, it
usually is around 70% or more of the claims get green lights. Between 10% and 30% of the claims get a yellow
light and around 10% get red lights. However, in Asian regions, this statistical method is not used at all,
since the customers of Posthuma Partners prefer to further investigate all claims. In figure 1.1 the process is
visualized.

Figure 1.1: Flow chart for the statistical process of the CMF

Rather than randomly checking a portion of the claims, the CMF analysis bases the advice on three param-
eters. The first is a rule-based analysis of the incoming insurance claims. An example of this would be: ’The
individual issuing the claim needs to be insured for the damage they report.’ Rules can also be more aimed
at checking the validity of the claim itself. Such as in the case of car paint damage, whether the colour of the
paint is one that occurs on that type of car (there may be no red Ford Fiesta’s, for example). The rules are
determined by the insurer and implemented into the tool in cooperation with Posthuma Partners. Based on the
outcomes of these rules, a score is granted between 0 and 1. Overall, this score should be uniformly distributed
among all claims.

The second mean is a statistical method to make a preselection of the claims that should be further inves-
tigated. Currently, the norm for the method of choosing the claims to investigate is taking a slightly arbitrary
monetary value above which all claims must be checked, for example 2000 euro. Of course, not all expensive
claims are unreasonable and not all non-expensive claims are reasonable. For example, if two expensive cars
collide, the claim amount will be high. In other words: the claim does not deserve to be flagged as unreasonable
simply because it is high. The other way around works as well. If a certain procedure that normally can be done
for a very low price, it should be alarming to receive a claim for such a procedure with a high claim amount.
For this reason, CMF also provides a statistical analysis of the claims. Using regression models, the claims are
given scores based on their likelihood.

The third parameter is based on the number of claims that have been further investigated and how many
claims there are expected to be made. As mentioned before, insurance companies want a certain percentage
of claims to be checked per year. It is undesirable that there are too few claims checked, but also too many.
One of the main customers of Posthuma Partners is a expert agency in car insurance, which has multiple
insurance companies as their customers. The contract between these insurers and the expert agency is that a
predetermined percentage of the claims has to be checked per year, with monetary fines if the number of checked
claims is too low. If the expert agency checks too many claims, the costs of checking those redundant claims
are wasted. The agency is therefore incentivized, to aim at the exact right ratio of checked claims. Periodically,
for example monthly, the agency calculates the current ratio and makes a prediction in how many claims are
yet to come. Based on these data, the flag rates are calculated. At the start of the year, the flag rate is set at



the predetermined flag rate. If at some point during the year, the ratio of flagged claims is too low, the future
flag rate, Ff , will be set above the predetermined flag rate Fp, such that with the expected influx of claims the
total flag ratio over the entire year should result to the predetermined flag rate. If the ratio of flagged claims is
too high, the opposite occurs.

Ff =
Fp(Nh +Nf )−Nhf

Nf
(1.1)

Where Ff is the future flag rate and Fp is the predetermined flag rate. Nh, Nf , and Nhf are respectively the
number of historical claims, (expected) future claims and the flagged historical claims. This results in a system
where during the year, the strictness of the system changes, based on the performance of the model. Figure 1.2
shows the stacked area chart of the flag rates per month for all the expert agencies claims of September 2020
till August 2021. Green is of course for green flags, yellow for yellow and red for red. This is calculated on a
dataset of twelve months, starting at September. The contracts between the expert agency and its customers
are yearly from January to December. While this is a rather short time frame, it is visible that at the end of the
calendar year the flag rate dropped. This is because the expert agency has flagged too many claims during the
year and to compensate the future flag rate is lowered. The expert agency prefers a more stable flagrate, since
this creates a more predictable workflow for the company and the likelihood of a claim being investigated is less
dependent on the timestamp of the claim. Since this flagrate is partly determined by the statistical model, this
will be investigated.

Figure 1.2: The flag rate over time

1.3 Likelihood of claims

The statistical model is designed to assign scores to claims based on their likelihood. This is done by using
historical claims to calculate a likely distribution of costs conditional on the claim itself. Based on this conditional
distribution, the claim can be given a score based on the conditional quantile the claimed costs in. A quantile
is defined as follows:

Definition 1.3.1. (Quantile) Let Y be a real valued random variable with the cumulative distribution function
(CDF) FY (y) = P (Y ≤ y). For all 0 ≤ τ ≤ 1, the τ -quantile of Y is given by:

QY (τ) = F−1Y (y) = inf{y : FY (y) ≥ τ} (1.2)



The value of Y associated with a quantile τ will be referred to as the quantile conjugate in this thesis. For
the case of a claim, the quantile conjugate would be the claimed costs. Following the definition of quantiles,
the frequency of the quantile conjugate values is distributed uniformly between 0 and 1. This characteristic
also means that the quantile function is monotonically increasing as the quantile conjugate increases. This is
unaffected by transformation of the quantile conjugate, as long as the transformation does not change the order
of the values.

As an example of quantiles, take the distribution of a standard normal distribution In this case the quantiles
0.05, 0.5, and 0.95 can be represented as follows:

Figure 1.3: The sample quantiles 0.05, 0.5, and 0.95 shown on the density plots for a standard normal distribution

1.4 Linear regression

The conditional quantile of a claim can be calculated by different means. The easiest one is by taking the
unconditional quantile: The ratio of values that are lower versus the total number of values. This approach
leaves room for improvement. As was mentioned in the previous section, not all insurance claims are alike. Some
damages are inherently more costly than others. For this reason, a conditional quantile is used [15]. Conditional
quantiles are commonly calculated via linear regression. The idea of linear regression is to model a linear
relationship between the response variable, also known as the dependent variable, and various explanatory, or
independent, variables. In this paper, the word for explanatory variables used will be ’features’. The quantitative
values of the features are represented by the following vector: XT = (X1, X2, ..., XP ), where P represents the
number of features. The model uses a number of observations, n. Each observation is in this paper an insurance
claim, where the dependent variable is the claimed cost. The features are details about the claim, for example
which type of car is damaged or the location of the damage.

The relationship is estimated using a linear model, so it can be written as follows:

Y = β0 +

P∑
p=1

βpXp + ε (1.3)

Y = (Y1, ..., YN ) is the response variable in this case, with all N elements being a separate observation or
claim. β0 is the base value the model takes. If the values of all other features are 0, the estimated amount
would be this β0. The other β’s represent weights of the values of the features. By taking the dot product of
these β’s and the feature values, a prediction can be made with some uncertainty ε.

To improve the readability of the function, it is common to add a X0 = 1 to X. With this and creating a
vector βT = (β0, β1, ..., βN ), formula 1.3 can be written as:

Y = XTβ + ε (1.4)

While linear regression assumes linear relationships between the features and the response variable, it is
possible to use a transformation of the features or the response variable to find different kinds of relations, such
as logarithmic, exponential, or quadratic.

The β’s are estimated using a loss function. The goal is to pick β’s such that the loss function has a minimal
outcome. Depending on the loss function, the model could regress to the mean, median, or a predetermined
quantile. The loss functions are respectively the mean squared deviation (MSE), mean absolute deviation
(MAE), and the quantile check function. The most common regression, Ordinary Least Squares regression
(OLS regression), is a regression on the mean, meaning that the estimation is assumed to be the average, or
mean, of the full distribution of possible values. Thus, the loss function to minimize is the MSE:

MSE =
1

N

N∑
n=1

(Yn −XT
n β)2 (1.5)

Minimizing this cost function finds the optimal β’s under the condition that the errors are homoskedastic.



Definition 1.4.1. (Homoskedasticity) Let εi be the error of the i’th observation, with E(εi) = 0. Under
Homoskedasticity the following is true for all i:

E(ε2i ) = σ2 (1.6)

By adding another assumption, the assumption of normally distributed errors, Y can be described as a
stochastic variable Yi ∼ N(XT

i β, σ
2). Here σ2 is the variance of the error. With these two assumptions, the

conditional quantile τ of a claim amount can be calculated with the following formula, where Yτ is the value of
the P (Y ≤ Yτ ) = τ :

Yτ = XTβ + σφ(τ) (1.7)

In formula 1.7, the φ(τ) is the standard normal cumulative distribution (CDF) value of quantile τ . To
extract the quantile, the inverse of this distribution is used.

1.4.1 Linear regression with log-linear variance

The assumption of homoskedasticity does not always hold. In the case of insurance claims, it is entirely possible
that the variance of claim amounts is different for different sizes of claims amounts. This is also what Posthuma
Partners had noticed, and for this reason they use a different model for some datasets: the LMVAR model.
This model is still linear in the expectation value. However, it assumes heteroskedasticity, the opposite of
homoskedasticity, in a log-linear form. This means that it is assumed that there is an extra set β’s and X’s

such that log(σ) = Xσβσ. This changes the stochastic variable Y to Yi ∼ N(XT
i β, e

2XTσ βσ ). Calculating the
quantile of such a variable can be done with the following function:

Yτ = XT
µ βµ + eX

T
σ βσφ(τ) (1.8)

Both regression methods can assign quantiles to claims, by estimating a mean and variance for each claim.
Using these parameters, the quantile that represents the claim amount is calculated for that specific normal
distribution.

1.5 Quantile regression

In this thesis, a different method of regression is applied. One that does not rely on the Gaussian distribution
of the errors. The method is quantile regression. Quantile regression is a form of linear regression, but rather
than first estimating the mean and variance of an observation, it directly estimates a linear relation between a
quantile and its quantile conjugate. Quantile regression was first introduced by Koenker et al in 1978[4]. In the
paper, it is shown how generalizing the loss function for median regression (the MAE), can be used to create
quantile regression. This function is called the check function. It allows for quantile regression by letting the
user pick a quantile τ and perform linear regression on that quantile, by penalizing positive errors with a factor
τ and negative errors with a factor −(1− τ). In the case of the median τ would be 0.5. The check function can
be formulated as:

ρτ (ε) =

{
τε for ε > 0

−(1− τ)ε otherwise
(1.9)

This paper laid the foundation of quantile regression. Since then there have been many additions, like feature
selection, cross-validation and others.[11]

1.6 Main problem statement

As mentioned before, Posthuma Partners scores insurance claims partly based on the perceived quantile they
are in. While Posthuma Partners have good models for many of the datasets they analyse, there are some
hurdles in assigning claims the correct quantiles. In appendix A, an overview of datasets on which Posthuma
Partner says their model underperforms according to their standards is given. They judge the performance of
their models on a broad range of criteria. The most important among these are the R2, quantile distribution,
p-values of KS-tests, mean absolute errors, and an analysis of significant features.

However, for the datasets in appendix A only two measures are given: distribution of quantiles and the R2.
The dataset ”Company E Total Costs*” scores poorly on both these criteria and will therefore be the initial
focus of this thesis. The first criterion is the distribution of quantiles. In figure 1.4 the distribution of quantiles
is shown in a histogram with 10 bins. By definition, quantiles should all have a similar frequency. When
the histogram is compared to the average frequency, it is clear that this distribution does not seem uniformly
distributed.

Another metric that is shown in the table is the R2. This metric is the fraction of the total variance that
can be described by the model.



Figure 1.4: A histogram of the frequency that the quantiles occur with 10 bins and an added line that shows
the average frequency

Definition 1.6.1. (R2)

• Let SSres be the sum of squares of the residuals of the model

• Let SStot be the sum of squares of the difference of values to the sample mean

• R2 = 1 - SSres
SStot

The model used for the dataset in this case had an R2 of 0.49. This means that about half of the variance
is still unexplained. Some available datasets had a R2 value of less than 0.49, but in combination with the bad
quantile distribution, this dataset was deemed a good starting point for this research.

The problem statement is essentially that the models that are currently used, do not perform as desired on
some datasets.

1.7 Research objective

The initial problem statement is that the statistical models do not assign uniformly distributed and accurate
quantiles to insurance claims on some datasets. This can present itself in a worse quantile distribution or a lower
R2. The idea is that the normality assumption underlying both the OLS regression and the LMVAR regression
models might be false and that rather than relying on these assumptions it may be better to go straight to
quantile regression. The objective of this research is to explore the possibilities of quantile regression and design
a model on a dataset that does a better job at assigning quantiles to claims.

1.8 Research questions

The main research question of this thesis is as follows:



How can quantile regression be used to improve conditional quantile assignment for insurance claim amounts?

In order to complete this research systematically, this main research question will be split up into multiple
sub questions. The first sub questions are about the possibilities of quantile regression. These are mostly
technical and are about improving the performance of the model.

1. How does quantile regression work?

2. How can variable selection be implemented in a quantile regression model?

3. How can quantile regression be used to model the mean and variance of a distribution?

4. How can performance of such a model be measured?

After a good technical foundation is created, the data will be explored and the rest of the research will be
set up. This starts with exploring quantile regression in a simulated environment.

5. Which parameters of a dataset influence the performance of quantile regression?

6. How do these parameters impact the ability of quantile regression to accurately estimate the correct beta
coefficients?

7. How do these parameters impact the ability of quantile regression to accurately estimate the theoretical
quantile of the dependent variable?

8. How effective are these quantile estimates to calculate the conditional mean and variance?

9. How do these parameters impact the calculation times?

With the knowledge gained from testing in the simulated environment, the modelling on the real dataset
can begin.

10. What are the properties of the dataset?

11. How do the current model perform on this dataset?

12. How does quantile regression perform on this dataset?

With the results of the performance of quantile regression on the real dataset, it is time to compare the
results of quantile regression with that of the old models. With this comparison, an evaluation of the viability
of quantile regression can be made.

13. Is quantile regression a viable alternative to the current models?

With this last question answered, the main research question can be answered. The goal is to show how
quantile regression can best be implemented.



Chapter 2

Quantile regression

In the introduction, quantile regression and the quantile check function were shortly discussed. In this chapter,
the basis of what quantile regression is and how it can effectively be used to model quantiles will be laid out.
Furthermore, we will also describe how feature selection can be done with quantile regression.

2.1 Quantile regression

Quantile regression as mentioned before uses the quantile check function to estimate quantiles of data points
of response variable. It does not require assumptions of the distribution of the error, since it directly models
individual quantiles by solving an optimization problem. The data is used to attempt to find optimal β’s
that can predict the quantile τ of the range of possible outcomes for an observation. To do this the following
optimization is established by Koenker [4]:

min
β∈R

(
∑

t∈{t:yt≥xtβ}

τ |yt − xtβ|+
∑

t∈{t:yt<xtβ}

(1− τ)|yt − xtβ|) (2.1)

With the check function in formula 1.9 the general formula 2.1 can be simplified to the following:

min
β∈R

(

n∑
t=1

ρτ (yt − xβ)) (2.2)

In this formula τ is the given quantile. At the median, or τ = 0.5, this optimization is equal to optimizing
the MAE. For other quantiles, the weights are asymmetric relative to the chosen quantile. The positive errors
are given a weighting of τ and the negative errors are given a weighting of −(1− τ). Since negative and positive
errors are penalized differently in such way, the β’s create a linear model that represents the τ ’th quantile for
each observation. This means that in 100τ% of cases the actual quantile conjugate is below the predicted value.

2.1.1 Finding the optimal β’s with linear programming

The question now becomes: How does the optimization of the β work? As mentioned before, there are a
number of cost functions that can be minimized for different results. In his book, Quantile Regression (2005),
Koenker shows a intuitive visualization, shown in figure 2.1. There are graphs that show the optimization view
of the sample mean, median, and quantile τ . Finding the minimal value is usually a matter of setting the
derivative of the formula to 0. With OLS regression or mean regression, this leads to the following formula:
β∗ = (XTX)−1XTY . This makes finding the optimal β’s a matter of calculus. The problem with quantile
regression is that, as can be seen in the graph, there is no derivative at the minimal point, since at that point
there is no gradient.

For this reason, there needs to be a different approach on has to follow. The original approach described by
Koenker, et al. [4] was to use linear programming, since this optimization is a combination of linear functions
and restrictions. Linear programming problems are usually formulated in the following manner:

min cT z (2.3)

Subject to:

bi = aTi z, i = 1, ...,m, (2.4)

z ∈ Rn+ (2.5)
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Figure 2.1: Optimization view of different cost functions

In quantile regression finding the optimal β’s is done using the following formula:

β̂ := arg min
β∈RK

N∑
i=1

ρτ (yi − xTi β) (2.6)

Here β̂ is the vector with length K of estimated optimal β’s that minimize the formula. K is the number of
features and N is the number of observations. This can be rewritten into the following linear program:

min[τi′ε+ + (1− τ)i′ε−] (2.7)

Which is subject to:

Y = X(β+ − β−) + ε+ − ε−

βτ ∈ R
ε+, ε− ∈ R, ε+, ε− ≥ 0

Here i′ is a K vector of ones, with K being the number of features used in the model. Let ε+ be max {0, ε}
and ε− be max {0,−ε}. The same holds for β+ and β−

In order to rewrite this formula into the standard form, a few changes are made. First off, ’b’ will be defined
as Y. Secondly, the constraint will be rewritten as:

b = [X,−X, IN ,−IN ]


β+

β−

ε+

ε−

 (2.8)

When [X,−X, IN ,−IN ] is defined as AT = (aT1 , ..., a
T
N ) and zT = [β+β−ε+ε−], the constraint is rewritten

to b = AT z. This would make cT := [0, τ1N , (1− τ)1N ] with 0 being a 2K × 1 matrix of 0’s. This would make
the minimization problem:

min(cT z) = min(0β+ − 0β− + τi′ε+ + (1− τ)i′ε−) (2.9)



subject to:

b = AT z

These types of linear program can be solved with simplex methods based on the median regression algorithms
of Barrodale and Roberts[3]. This method is practical for datasets with up to a couple of thousand observations.
This is due to computation times increasing rapidly.

For larger datasets, the Frisch-Newton algorithm is developed[7] to solve the linear programming problem.
The algorithm uses interior point methods. According to the paper, the compututional speed is competitive
with L2-algorithms. L2 refers to least-squares estimation models, in contrast to L1 which refers to absolute
error models. In chapter 4 and 5 the effect of these methods on calculation times is further investigated.

2.1.2 Penalized linear quantile regression

An important aspect of statistical modelling is feature selection. In this step, a methodology is chosen with
which the most predictive features are chosen for the model. This can be done via different ways. However,
the goal remains the same: decrease variability by increasing bias. A model with too few features can lose
predictive value and exhibit a bias, but a model with too many features can be overfitted and thus exhibit a
large variance. This can be done in different ways, one strategy is to alter the minimization problem to include
a penalty for increasing the magnitude of the beta’s. In order to reduce the number of features, the general
formula from 2.2 can be adjusted as follows:

min
β∈RK

(ρτ (Y −XTβ) + λJ(β)) (2.10)

In this formula λ is the regularization parameter and J(β) is the penalizing function. For the penalizing
function J there are multiple options. In the paper ’Variable selection in quantile regression’ [11] Yichao Wu
and Yufeng Liu propose two methods of feature selection: Smoothly Clipper Absolute Deviation (SCAD) and
Adaptive Least Absolute Shrinkage and Selection Operator (Adaptive LASSO) [8]. These two are proposed in
this paper since these penalizers have a rate of convergence equal to

√
s/n, s is the number of features with a

non-zero impact. This convergence rate is also known as the oracle convergence rate [14]. However, one of the
issues of ALASSO is computation time, since it depends on multiple λ estimations. Belloni and Chernozhukov
[14] developed a default value for λ. This method of lambda estimation is very quick in comparison to both the
Adaptive and the SCAD methods, while remaining close to the oracle requirements of convergence.

LASSO

Regular LASSO, also called l1 regularization, is a method penalizing the regression by adding the absolute
values of the β’s. This results in the following formula:

min
β∈RK

(ρτ (Y −XTβ) + λ

p∑
j=1

|βj |) (2.11)

LASSO has the nice property that the minimization problem remains a linear programming problem. Only the
following alteration to the minimization problem needs to be made: cT is changed to [λ,−λ, τ1N , (1 − τ)1N ].
The method remains Frisch-Newton. The choice for the λ is explained in the paper by Belloni and Chernozhukov
[14]. The λ calculation is a formula based on the quantile, the standard deviation of the independent variables
and the values of those variables.

StepAIC

A different method of feature selection is stepAIC. The idea of this method is to calculate the Akaike Information
Criterion (AIC) which is a measurement describing the prediction error with relation to the number of features.
A low AIC is generally better than a high AIC. Removing irrelevant features will decrease the AIC, while adding
relevant features will also improve the score. This is exactly what the stepAIC method entails. Systematically,
features will be added and removed to decrease the AIC. This functionality is available for the LMVAR model,
however for quantile regression the LASSO method will be used. This is because the stepAIC function depends
on a quick recalculation of the model, which is not the case for quantile regression.



Chapter 3

Performance measurement

As mentioned in the introduction, there are two important aspects of the models that are used: The ability to
accurately estimate the distribution of the claim amounts and the ability to uniformly distribute quantiles over
claims.

3.1 Conditional distribution estimation

The most common measure to assess the performance of regression models is the R2 1.6.1. Comparing the
performance of quantile regression with OLS-regression or LMVAR is not directly possible with the R2. To
circumvent this, the different conditional quantile predictions can be analysed together as a conditional distri-
bution, with a conditional mean. This conditional mean can then be used to calculate the R2.

3.1.1 Conditional mean estimation for a univariate stochast

The mean of this distribution will be extracted from the conditional distribution. This will firstly be done for
a univariate stochast. The mean for a continuous univariate stochastic variable with probability density fY is
defined like this:

µ =

∫ y=∞

y=−∞
yfY (y)dy (3.1)

The goal is to create a function for µ dependent on the quantile regression models for each τ . Therefore,
we want to transform this integral over y to an integral over τ , where τ is a quantile (0 ≤ τ ≤ 1) and y(τ) its
quantile conjugate. We assume that y(τ) is a differentiable function with ∂y

∂τ ≥ 0. This transformation is done
by substituting for τ in formula 3.1, which results in:

µ =

∫ τ=1

τ=0

y(τ)fY (y(τ))
∂y

∂τ
dτ (3.2)

Let fτ be the PDF of τ . By the definition of quantiles, these are distributed uniformly between 0 and 1,
with a constant density within this range of 1. Since the PDF of the quantiles is one to one related with the
PDF of the quantile conjugates, these PDFs are as follows:

fτ (τ) = fY (y(τ))
∂y

∂τ
= 1, for 0 ≤ τ ≤ 1 (3.3)

Using this, the formula of µ can be simplified to:

µ =

∫ τ=1

τ=0

y(τ)dτ (3.4)

Using quantile regression, a set of β’s is obtained that can be used to model the quantile conjugates for each
observation using the formula:

y(τ) = XτβQR(τ), (3.5)

With X ∈ RP the P -dimensional feature vector. Implementing this into formula 3.4 results in this:

µ =

∫ 1

0

XτβQR(τ)dτ (3.6)
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In this formula XT is a constant, so it can be placed outside the integral. Since all quantiles have the same
likelihood and are evenly spread over the range from 0 to 1, the mean is the mean of beta estimates of each
quantile regression model. This is a substitute of the integral and simplifies formula 3.6 into:

µ = XTβQR(τ) (3.7)

3.1.2 Multivariate stochast

The above analysis can be extended to multivariate stochasts relatively simple. In the case Y ∈ Rn, where n
would be the number of observations, the means µ ∈ Rn are given by:

µ =

µ1

...
µn

 (3.8)

For each observation i from 1 to n the following is true:

µi =

∫ ∞
−∞

yifY (Y )dy1, · · · dyn

=

∫ ∞
−∞

yifi(y)dy

(3.9)

Here yi is the i’th element of Y and fi is the marginal distribution of fY for yi. Following the same arguments
as for the univariate stochast, the elements of the vector µ can be written as follows:

µi = xTi βQR (3.10)

Here xi ∈ RP is the vector of feature values of yi. The full vector µ can then be calculated by the following:

µ =

x
T
1
...
xTn

βQR = XβQR (3.11)

What this means for this research is that if quantile regression can find sufficiently accurate quantile re-
gression models, the regression on the mean can be estimated using those quantile models. Using this mean
regression model, the R2 of the combination of the quantile regression models can be calculated.

3.1.3 Conditional variance beta

Conditional variances can be calculated similarly as with the mean. Taking the population variance of the
different quantile beta’s of a feature results in a variance beta. However, it is important to note that these can
not be summed up for a conditional variance. This is because of the covariance between the different features.
The variance beta’s do however give an indication of the effect the feature has on the skedasticity of the claim
amount.

3.2 Uniformity of quantile distribution

In order to test the uniformity of the quantile distribution the Kolmogorov-Smirnov Test (KS Test) [1] will be
used. With this test, it is possible to calculate the likelihood that a sample is drawn from a certain population.
The quantiles should be drawn from a uniform population. A low p-value (<= 0.05) from the KS test means
that H0 can reasonably be discarded. In that case, it is unlikely that the sample is taken from the uniform
distribution. The original KS method is computationally heavy, however in the paper Evaluating Kolmogorov’s
Distribution[9] a fast method is proposed to calculate the p-value with high precision. This method is also
available in R.

3.3 Flagging claims

The third aspect of the models’ performance is the quantile assignment to claims. If a claim has a certain
quantile, the claim is flagged. The rate at which claims are flagged is called the flag rate. In order to compare
the performance of different models, the flag rates need to be compared.



3.3.1 Flag rates

The goal of this research is to set up a new model, namely the quantile regression model. It is important to
quantify how well the new model and the LMVAR are able to flag similar claims. Flagging claims creates a
binary outcome, where the model either flags a claim, or does not. The models can be viewed as observers
who individually and independently observe the data and categorize the observations. In the paper, Cohen and
Jacob[2] proposed the metric “Cohen Kappa” or just “Kappa”.

Definition 3.3.1. (Kappa or κ)

κ =
Probability-corrected observed agreement

Probability-corrected potential agreement
(3.12)

The Kappa is a probability corrected form of measuring agreement between observers. The value is between
-1 and 1, where 0 is no probability corrected agreement and 1 is full agreement. To give insight in how κ is
calculated, view the following confusion matrix of two categories. In each cell of table 3.1 a letter represents
the relative frequency of the combination of the outcomes of the two models. Since these values are relative
frequencies, they are between 0 and 1.

Model 1
True False Total

Model 2 True A B (A+B)
False C D (C+D)
Total (A+C) (B+D) 1

Table 3.1: Confusion matrix example

The probability corrected agreements can be calculated by first calculating the probability of random agree-
ment. This is done by the following formula:

Probability of random agreement = (A+B)× (A+ C) + (C +D)× (B +D) (3.13)

With this probability, the observed agreement and potential agreement can be corrected. This is done in
the case of observed agreement by subtracting the probability of random agreement. The probability corrected
potential agreement is calculated by equation 3.15.

Probability-corrected observed agreement = A+D − Probability of random agreement (3.14)

Probability-corrected potential agreement = 1− Probability of random agreement (3.15)

With these two values, κ can be calculated by dividing them. It follows from the formula’s that if only B
and C are 0, thus a complete agreement, the κ is 1. If only A and D are 0, the κ is between -1 and 0, depending
on the probability of random agreement.



Chapter 4

Model Design for testing on synthetic
data

After the literature research, the performance of quantile regression will be tested. This will be done using the
following steps. Firstly, the performance of quantile regression will be tested in a synthetic environment. This
way the impact of certain aspects can be analysed. To do this multiple datasets are created via a number of
parameters. These are described in section 4.1.1. The performance will be quantified via a handful of measures
that are explained in section 4.1.2. How the datasets are created is explained in section 4.1. The second step
is to test quantile regression in a real life setting. With the knowledge of how quantile regression performs in
different scenarios, it will be used on real data. This comprises on first translating the data that is available
into one that can be used for regression and has all the important factors and features. Next is setting up the
parameters along the models will be compared. After it is clear how the models will be compared, the models
will be set up using the knowledge gathered in the literature review. The results will be discussed in the next
chapter.

4.1 Synthetic datasets

In order to look at the performance of quantile regression, first it will be tested on a dataset of which the
true parameters are known. This way, the impact of changing these parameters will be evaluated. Before the
datasets are created, the metrics that will be used to measure the performance of the model will be set up.
After that, the parameters will be discussed.

4.1.1 Parameters of the synthetic datasets

As mentioned above, there are multiple parameters that will be tuned to see the effect on the performance. The
parameters are:

• Number of observations [103, 103.5, 104, 104.5, 105]

• Number of Boolean features [0 - 100]

• Number of numeric features [0 - 100]

• Beta’s of the features for mean and variance [(-4 - +4); (-1 - +1)]

• Distribution of the dependent variable [standard linear model, LMVAR]

By changing these parameters, the goal is to find out in which circumstances quantile regression performs
adequately. The ranges of the parameters are representative of the datasets that are available to Posthuma
Partners. The dataset that is the focus of this dataset consists of around 104.5 observations. The number of
features is around 500 in the dataset. The beta’s of the features when a LMVAR model is trained on the dataset
range from -1.5 to +7 for the mu beta’s and from -0.8 to +0.5 for the sigma beta’s. How these parameters are
tuned is explained in the following paragraphs.

The dataset will first be split into a training set of 80% of the observations and a test set of 20% of the
observations.
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Number of observations

By increasing the number of observations, the model has more data points that can be used to estimate the
’true’ regression lines. This results in a more accurate model. The drawback of more observations is that the
calculation time increases quickly for quantile regression. This is because, rather than with OLS regression, the
method of calculating the beta’s is a matter of linear programming. The set of number of observations will be
created by taking increasing powers of 10, starting with 103, up to 105, with steps of 0.5. This set of options
is chosen since the goal is to see changes relative to the number of observations. The difference between 1,000
and 10,000, is just as interesting as between 100,000 and 1,000,000.

First, the datasets with differing number of observations will be tested. After that, one number will be
chosen based on the performance and calculation time. The quantile regression models will be created using
the Quantreg package in R.

Number of Boolean and numeric features

As can be found in the description of the original dataset, there are three categories of features: Numeric,
Boolean, and categorical. Categorical features are usually split up into dummy variables, for each category,
one. These dummy variables have the value ’TRUE’, if the observation is in that category, and ’FALSE’ if it is
not. Therefore, it can be said that a categorical feature is a set of Boolean features. This leaves just numeric
and Boolean. It is important to find out if quantile regression is accurately able to utilise both data types.
The synthetic dataset will therefore be created with a large number of Boolean features and a large number of
numeric features. The Boolean features will be randomly assigned 1’s and 0’s with equal probability.

The numerical can have more values. The distribution can be many shapes, however for this testing envi-
ronment, the numerical features will all have a standard normal distribution. This means that the mean is 0
and the standard deviation is 1.

In order to see the effect of the features, different number of Boolean and numeric features will be tested.
When testing the effect of stepAIC, a number of independent variables is added as well, with a beta of 0. The
goal is to see how increasing the complexity of the dataset will affect the performance and calculation time.

Distribution of the dependent variable and beta generation

In the real world a model merely attempts to imitate reality, however by generating the dependent variable
using known models the performance of quantile regression can be accurately measured. The discussed models,
OLS regression and the LMVAR model, assume normality in the dependent variable. This means that using the
features as described in the previous paragraph and a list of beta’s, a distribution for the dependent variable
can be created.

In order to generate values according to the OLS regression method, there needs to be a beta value for each
of the features and a standard deviation for the whole dataset. Using this, n dependent variable values can be
generated using the normal distribution: Nn(Xβµ, σ

2I), where I is the identity matrix with n rows. For all
features, a βµ is generated using a uniform distribution between -4 and +4. This way there is a wide range of
both positive and negative beta’s. The sigma is set to an arbitrary number. In this case, 2. Of course, there
is also an intercept βintercept. This is set to an arbitrary 2 as well. Since the dependent variable is normally
distributed with a constant variance and the relation between the features, the relation between the quantiles of
the distribution and the feature values should be linear as well. This is a result from the formula 1.7. In a simple
example with one dependent variable Y and one feature X a number of conditional quantiles are visualized in
figure 4.1. These quantiles are 0.9, 0.7, 0.5, 0.3, 0.1. As can be seen in the figure, the quantiles are parallel.
This means that the beta for X is equal for all quantiles. The only difference is the intercept. The goal of this
synthetic dataset is to find out if quantile regression is able to accurately find the beta’s associated with the
features and the intercepts when the dataset is generated based on a linear model.

The next method of generating the dependent variable will be based on the LMVAR model. The procedure
will be similar as described above. However, the variance will be log-linear. This model needs two beta inputs
for the features: βµ and βσ. The second value is necessary since the variance is dependent on the features as
well. The βσ values are taken randomly from a uniform distribution between -1 and +1. The distribution of the
dependent variable is thus: N(Xβµ, e

2Xβσ ). Here e2Xβσ is a vector where each element is the exponent of the
first row of X. It is important to note that it is not required that the X-matrix does not have to be identical
for µ and σ. However, for the testing purposes both matrices were taken as equal.

Because the variance is increasing exponentially, the relation between the quantiles is no longer linear. How
quantiles are calculated in a LMVAR model is described in formula 1.8. This creates a problem for quantile
regression, since it assumes that quantiles are linear. An example of a simple dataset with only one feature is
shown in figure 4.2. The quantiles do behave quite linearly at low X-values. Also the quantiles will behave more
linearly when the βσ is close to 0. At βσ = 0 the variance of the model for that particular feature will always
be 1, making it homoskedastic. The expectation is that quantile regression will perform worse on the lmvar



Figure 4.1: true conditional quantiles in an
example of OLS regression

Figure 4.2: true conditional quantiles in an
example of LMVAR with βσ = 0.5

dataset than on the OLS regression dataset. However, as long as the βσ’s are close to zero enough, quantile
regression will find reasonable results, since the relationship will be close to linear.

Unexplained variance

In all models, there is unexplained variance. This aspect will be chosen such that the ratio of the explained
variance and unexplained variance is in line with the datasets that are available. This ratio is the best R2 the
model can theoretically find and will be set to around 0.67. This results in the unexplained variance being set
at 4.

4.1.2 Performance measurement on synthetic datasets

Before the synthetic datasets are created and tested upon, the methods of performance measurement are es-
tablished. These metrics are aimed at answering the following questions depending on the parameters of the
dataset:

• How accurate are the beta’s with relation to the theoretical values?

• How accurate are the mean beta and variance beta estimates based on these beta estimates?

• How well are the quantiles assigned to the claims?

• What are the calculation times?

In order to answer these questions, a quantitative measure is created for each question. These measures are
obtained from literature as described in chapter 2.

Model performance

In the previous section, it is discussed how the dependent variable is generated. Using this knowledge, the
model is compared to the generation process. The goal of this paragraph is to set up a method of quantifying
the deviations.

Another measure to estimate how well the models estimate the generation process is to measure how close
the beta estimates are, to the true beta’s. As mentioned in section 4.1.1, the quantiles are known and can be
estimated by quantile regression. It is interesting to see how the different parameters affect this performance.

The expected outcome for the linear model is that by increasing the number of observations and decreasing
the complexity of the dataset, the estimated feature beta’s will converge to the true values used to generate the
dataset. The intercept beta depends on tau and the error distribution. Since the error distribution is known, the
intercept beta can be calculated for each tau using the following formula: βintercept(τ) = φ−1(τ)×σ+βintercept.
The true intercept and sigma values are known. These calculations are not possible with the LMVAR input
model, since the quantiles are not linear. How well the estimated beta’s fit the true beta’s is quantified by
calculating the MSE between the true and model beta’s.



Quantile estimation

As mentioned before, the dependent variable is generated using random values taken from random variables
with known parameters. Using this knowledge, the true quantiles for each observation is known.

By performing quantile regression multiple times on a range of different quantiles, a set of quantile conjugates
for each observation is given. The next step is to compare the actual value of the dependent variable with these
quantile conjugates and interpolate between the two closest values. The location of this interpolation is the
estimated quantile.

The metric proposed here has the goal to quantify the discrepancy between the true quantiles and the
estimated quantiles. For each observation, the true quantile value is subtracted from the estimated value. This
just leaves the error. To see if there is a bias, the mean is taken from all errors. If this significantly deviates
from zero, there is a bias in the model. Another measure is the standard deviation, also known as the root mean
squared error (RMSE). This measures the spread of the errors. The reason that the RMSE is chosen, over the
MAE, is to penalize variance. With MAE, all errors are given the same weighting, whereas with the RMSE the
gives higher weighting to larger errors [13].

Since the practical application of quantile regression for this report is to identify claims in relatively high
quantiles, it is important to see if the quantile estimation works well in those situations as well. Therefore, the
observations are split into 20 bins based on the true quantiles. For each bin the measures mean and standard
deviation are calculated again for the errors.

Mean and variance estimation

In the previous chapter, it was discussed how the mean and variance of a distribution can be calculated using
quantiles. Since it is important to see if quantile regression can accurately describe the original data generation
process, this will be done on the synthetic datasets as well. For each parameter change, the average difference
between the µ̂ and the µ form of the generation formula will be calculated. Also, the difference between the
standard deviation with the true standard deviation will be calculated. The reason for taking the square root
is that the variance is a quadratic unit.

Calculation times

Quantile regression models are estimated using linear programming. This is a lot more time-consuming than
using other types of regression. Seeing the impact of changing the different parameters on the calculation times
is an important measure, since it gives an indication of the viability of the method. All calculations are done
using the same computer and the same programming language, R. While it is true that calculation times depend
on many factors, such as hardware, the relationship between the parameters and the calculation times can still
give useful information.



Chapter 5

Results on synthetic data

In this chapter, the results of the research on quantile regression on a synthetic dataset will be discussed. The
chapter will follow the same structure as chapter 4. For each parameter, the results of each metric is explained.
Using these results, the setup of the modelling on the real dataset is fine-tuned. The effect of each parameter
will be investigated in four aspects, as discussed in chapter 4:

• How accurate are the beta’s with relation to the theoretical values?

• How accurate are the mean beta and variance beta estimates based on these beta estimates?

• How well are the quantiles assigned to the claims?

• What are the calculation times?

5.1 Number of observations

The first parameters was the number of observations. For these parameters a dataset is generated using 10
Boolean features and 10 numerical features, β’s are randomly picked from -4 to +4, and a dependent variable
based on a simple linear model with a standard deviation of 2. The number of observations are the following
values: [103, 103.5, 104, 104.5, 105]. For each number of observations, 39 quantile regression models are run, for
the quantiles 2.5%, 5%, ..., 97.5%.

Error in beta estimation

As mentioned in chapter 2, the beta’s of a linear model can in theory be precisely approached with quantile
regression with enough observations. Since the β’s are known, the models β’s can be compared to the true
value. As an example, this is shown in figure 5.1b for feature 1, which was arbitrarily chosen. This figure shows
how well the beta is estimated over the quantiles for several sample sizes. The black line is the true value from
the generation process. The red line is the estimation for the smallest sample size: 1,000. It performs less
predictably than the other sample sizes, mainly at the very high or very low quantiles. It is clear with this
example that increasing the sample size drastically improves the beta estimation.

The intercept beta coefficient can be estimated, but rather than with the other feature beta’s, these are not
equal over the quantiles. This is because with the data generation method used, there is an inherent random
error, namely a normally distributed error with µ = 2 and σ = 2. This means that it is expected that the
intercept beta estimates follow the CDF of a normal distribution. In figure 5.1a, the estimates are shown.
These seem to follow the CDF of the described normal distribution, which is an indication that the method
works.

To give a more general overview of the relation between the error in beta estimation and the sample size,
the MSE is plotted for all features combined. In figure 5.2 this relationship is shown. As in the previous
example, the sample size of 1000 shows bad results, mainly in the outer quantiles, 0.025 and 0.975, however the
performance increases quickly and flattens out after 31,622 observations.

Moment generation through quantile regression

With the quantile regression models calculated, it is tested to see if it is possible to reformulate the original
distribution. As described in chapter 3, it is possible to translate these β’s into mean beta’s and variance beta’s.
As each feature has different beta values for each quantile, these are averaged to give a beta estimation for the
mean. This estimation should be close to the feature beta used to generate the dataset.
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(a) Intercept beta coefficient estimation (b) Beta estimation for a single feature

Figure 5.1: Beta coefficient estimation for the intercept and for one variable

Figure 5.2: Mean square error of beta estimation for multiple quantiles

In figure 5.3a the relation between the mean beta estimation and the sample size is shown with on the x-axis
the sample size and on the y-axis the average error in estimation over 10 features. The results conform with
the hypothesis that quantile regression is able to find the statistical measures mean and variance.

Using these measures, it is possible to calculate the errors as if the beta’s estimated are used in a OLS model.
This gives two opportunities: calculate the original standard deviation of the error and calculate the R2. The
results are shown in table 5.1. What is also shown in this table is the optimal R2. This value is calculated by
using the input beta’s to obtain the true errors. The estimated R2’s are very close to the optimal values and
the standard deviation of the errors are very close to the value 2, which was used to generate the data.

Quantile estimation

The next testing to be done with relation to the number of observations is to see the impact on estimating the
quantiles. Using this, a comparison can be made between the two values for each observation. If the quantile
regression models are not sufficiently well tuned, the quantile estimates will be deviate more from the true
quantiles. To give an impression the quantiles are plotted in figure 5.4a and 5.4b for two different sample sizes:
10000 and 100000. A red line depicts the line y = x, the case where the estimate is equal to the actual quantile.

The graphs indicate an improvement when increasing the number of observations. There are three points
to notice: The scedasticity is not equal over the quantiles, and at both ends the estimates cut off at 2.5% and
97.5%. The second point is because these are the outermost quantiles estimated through quantile regression.
The point about the scedasticity is more difficult. It appears that the quantile regression approach is better at
estimating quantiles at the outer ends, than in the middle region. The root mean squared error is taking at 39
sequential intervals to show the change over quantiles. This is plotted in figure 5.5. This is likely due to the
fact that quantile estimates have less room for error at the outer quantiles, since the error can only be one way.
The third point is that due to the interpolation, there will always be some distortion.



(a) Mean beta estimation (b) Variance beta estimation

Figure 5.3: The relation between sample size and beta estimation for mean and variance

(a) 10000 observations (b) 100000 observations

Figure 5.4: Quantile estimates versus theoretical estimates

Calculation times

In the fifth column of table 5.1 the calculation time of quantile regression is shown for different sample sizes.
This is visualized in a graph in figure 5.6. The calculation time is of course heavily dependent on the system the
script is run. However, the relationship between these two factors is of importance. It seems that the calculation
times increase more than linearly. This is important to note, since the models used in this example are all quite
simple and there has not been any cross validation implemented.

5.2 Features

The initial results from testing quantile regression show that the method can be used to estimate the quantiles
of a quite simple dataset. The next step is to see how well it performs when the number of features is increased
and the complexity of the features is increased as well.

In order to see the effect of these parameters, new datasets will be created with the following characteristics:
The number of observations will be set at 10,000. The previous testing showed that this sample size gives
reasonable results for the simple dataset used. The number of features will be change between the following
sets:

• Boolean 10, 20, 50, 100 features

• Numeric 10, 20, 50, 100 features

• An equal mix of both types 10, 20, 50, 100 features

An important part of regression is the ability to ignore features that do not contribute to the model. For
this reason, a test will be conducted with 4 added features that have a beta of 0. This means that the feature is



Figure 5.5: RMSE over quantiles for different sample
sizes Figure 5.6: Plot of sample size vs calculation times

Table 5.1: The impact of sample size on important performance metrics

Sample size Error standard deviation Estimated R2 Optimal R2 Calculation time (s)
1,000 2.084 0.657 0.664 0.08
3,162 2.032 0.670 0.671 0.30

10,000 1.991 0.674 0.675 0.97
31,622 1.997 0.674 0.674 3.61

100,000 1.999 0.675 0.675 14.29

irrelevant for the dependent variable. The goal is to check whether quantile regression accurately finds a beta
value of 0 for this feature.

Impact of features on beta estimation

The results of these three tests are shown in figure 5.7a. The dataset with Boolean features is apparently
significantly more difficult to model using quantile regression than the numeric dataset. The mixed dataset is of
course in the middle. The Boolean dataset shows a drop in error as the number of features is increased, however
the total error in quantile estimation is increased due to the number of features increasing as well. Quantile
regression was however able to give the irrelevant features a beta value of 0 for all datasets.

It is important to note that while the MSE per feature stays relatively the same, the total MSE of quantile
estimation does increase. This is because there are more features that have errors, and these errors are combined
into the errors of the quantile estimates.

(a) Number of features vs MSE of beta estimates (b) Number of features vs MSE of quantile estimates

Figure 5.7: The relation between features and model performance



Impact of features on the calculation times

As was found out in the previous section, quantile regression is computationally heavy for relatively simple
models. Increasing the number of features increases calculation times as well. The results are shown in figure
5.8. There does not seem to be a significant difference between the type of features, however the number of
feature does significantly affect the calculation time.

Figure 5.8: The impact of the number of features on the calculation time

5.3 Type of dependent variable generation method

As mentioned before, there are different ways the values for the dependent variable can be generated. In the
previous tests, only the simple linear model was used. In this section, a different method is used as well: a
linear model with log-linear variance. This model is generated the same way as the linear model, however each
feature gets an additional beta for the variance as well.

Quantile estimation

When applying the same techniques used in the previous sections, the quantiles that are obtained from quantile
regression are compared to the ones that are used in the generation process. The other parameters of the dataset
are: 10,000 observations, 20 Boolean, and 20 numeric features.

The MSE of the beta’s of the mean is 0.00346, which is similar to the result on the linear model. However,
depending on the sigma beta’s the results vary for quantile estimation varies from good to very bad. Since the
variance is log-linear, the effects of the sigma beta’s changes rapidly as the value becomes higher. The results
of quantile estimation can be seen in the following graphs:

(a) beta sigma range small (b) beta sigma range medium (c) beta sigma range large

Figure 5.9: The relation between features and model performance

These figures differ much, because as mentioned in the previous chapter, quantile regression tries to fit a
linear model on an exponential quantile distribution. The closer the exponential component is to 0, the more
linearly the quantile behaves. Comparing the quantile estimations on LMVAR distributed data in figure 5.9 to
the quantile estimations on the homoskedastic dataset of figure 5.4 the spread is a lot broader. The effect is
most prominent at the higher quantiles. in figure 5.9c this is visible. Here quantile regression is still able to
determine whether a claim is above or below the median, however that is about it. In figure 5.9b, the effect is
less noticeable, however in the quantiles below the median there is a bias to attribute higher quantiles and in
the higher quantile a bias to attribute lower quantiles. In practice the more common beta sigma range is the
medium version (−0.25 to 0.25).



In conclusion quantile regression performs better on the linear dataset. The reason for this is that the
conditional quantiles are not linear in the LMVAR dataset, which causes errors when this effect is too prominent.
However, if the sigma’s responsible for the conditional variance are low enough, the quantile regression can still
find reasonable results.



Chapter 6

Preliminary analysis of available data

Now that the model that will be applied is analyzed, quantile regression will be used on a real dataset. Firstly,
an in-depth analysis of the dataset will be given in this chapter.

As mentioned before, Posthuma Partners does statistical analysis of insurance claims. Most of the types
of claims that they handle are car insurance. This is also the case in the dataset that will be analyzed in this
research. The dataset shows how the claim initially entered the system and how it was ultimately handled.
These two are not always the same, since before the claim is paid out, it might be investigated. If there is data
missing about the damage, this can later be added. There are three subsets of the data: input, reparation, and
main. The data has been gathered from September 2020 till August 2021. In this time more than 35000 claims
were handled via the CMF. The company uses the CMF to guide them in choosing which claims to investigate
further by giving the company a list of the claims that are, according to the models, in most need of verification.
It does this by giving each claim a rating of 1, 2, or 3, which correspond to the green, yellow and red categories
as discussed in chapter 1.

6.1 Datasets

The most important dataset is the main dataset. This is an aggregate of all important data about the claims.
There are two versions of this set: First and Last. The distinction here is how the claim was initially entered
into the system and how it was finally handled. There are two identifiers for the claims: Case number and Log
ID. The case number is constant for the claim during the entire process, while the Log ID is given to the claim
when it is entered into the system. Whenever the claim is re-entered, due to an update to the claim, it gets
a new Log ID. In order to compare the claim from the First and Last subset, the case number will be used.
The only claims that are investigated in this research are those that are in both datasets. This leaves a total of
37,453 claims with 45 columns. Of these 45 columns, there are 25 columns generated by internal models that
predict the costs, which leaves 20 columns with claim data. Since the Last dataset contains the most complete
claims, this dataset will be used to train the models. Ultimately, the models will be tested on the First dataset
as well, to see which models will flag which claims.

There are two other datasets available, each with a First and a Last version, just like the main dataset.
These are the input dataset and the reparation dataset. These datasets contain more information about the
claims. Each claim consists of multiple actions and repairs done to the vehicle. These separate events have their
own row in these datasets. The input dataset is about mutation to the claim. These occur when a detail of the
claim needs to be changed. This can be price related or something different. The reparation dataset is about
which repair methods were used for the claim and how many times. The datasets are linked by the column
’First Log ID’. This is the Log ID the claim received when it was first entered into the system, so the Log ID
in the dataset main First.

6.2 Features

The datasets have much information, not all of which is relevant to this research. In this section, a short list
of the features that will be used further is discussed. First, the features that relate directly to the vehicle in
question are discussed. Then the cause of damage and the associated repairs. Thirdly, the insurance related
features are discussed, and finally, the final costs are discussed and compared to the results of the current
model. Based on these results combined with the rule based system discussed in the previous chapter, the CMF
produces an advice which will also be discussed.
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6.2.1 Car related features

The car related features are the brand and model of the car, the fuel type, the type of car, and some numerical
values related to the age of the car. In this subsection, these will be further explained.

Car brand

The brand of a car is used as a feature. Originally, there are 72 car brands in the main dataset. However, this
can be brought back a bit by removing capital letters and correcting spelling mistakes. This leaves just 54 car
brands. In order to reduce complexity of the dataset, the brands that occur fewer than 100 times in the dataset
are replaced by the word “Other”. This is the case for 425 claims. After this, 27 categories remain, including
“Other”. The most common car brand is Volkswagen with 4561 claims, equal to 12.9% of all claims. The least
frequent car brand is Alfa Romeo, with just 111 claims, or around 0.3% of all claims.

Fuel type

Different cars can have different fuel types. In the original dataset, there are 10 types. Two of which are
“#EMPTY” and “Space”. The claims with these categories are removed. There are three fuel types that occur
fewer times than 100 and are thus replaced by “Other” as well. This leaves 6 levels of the feature fuel type
denoted by the codes: B, D, E, J, Z, and Other.

Object type

The object type is a numeric code that describes the type of vehicle. The most common ones are 1: a passenger
car, and 14: a van. In the original dataset there are 10 types, however the vast majority is the passenger car
and the van. The other categories are replaced by “Other”, since they occur fewer than 100 times. Figure 6.1
shows the boxplot of different types of vehicle. It is clear that the code 1 has the most outliers to higher claim
amounts, while the “other” category is more spread out with fewer outliers.

Mileage and age

How old a car is in years and how many kilometers a car has driven are two features as well. Both are numeric,
however since there are many cars with an age of zero, there is an extra feature added named Age0. This is
“TRUE” if the age of the car is 0 years, and “FALSE” if it is not.

The range for mileage is 999,999 kilometers. There are 4 cases where the mileage is exactly this number.
There are multiple possible explanations, among which that the program does not allow for larger numbers.
Car age has a range of 68 years. However, the number of cars older than 20 years is about 0.1% of all claims.

Figure 6.1: Box plot of the relation between type of
vehicle and total costs

Figure 6.2: Box plot of the relation between cause of
accident code and total costs

6.2.2 Accident related features

The next features are accident related. This includes the cause of accident, where the car was damaged (seize
point), and the angle of impact.



Cause of accident

The cause of accident is represented by a code. In the initial dataset, there are 31 different codes. One of those
is “#EMPTY”, which means that it is missing data and thus are those rows removed. There are a lot of codes
that are very rare (fewer than 100). These are grouped under “Other”. Figure 6.2 shows the box plots of the
different causes of the accident. Some have a relatively small range, while others have large outliers.

seize point

The seize point is the point where the vehicle is damaged. In the dataset, this noted by a code which represents
that point of damage. In the original dataset, there are 12 codes presented. Except for one, these codes are a
string of 5 numbers. The exception is the value “-2000000000”. This is supposedly a way of signaling from the
person that enters the data to the system that it does not fall in one of the categories. For this reason, claims
with this value are removed. One of the codes only occurs 7 times in the entire dataset. This one is replaced
by “Other” as well. This leaves 11 levels for this categorical feature.

Angle of impact

There are 14 different angles of impact codes in the dataset. One of those is -2000000000, meaning missing data.
These 290 rows are removed from the dataset. The other levels of this feature are reasonably evenly divided.
The most infrequent (code 20013) occurs 468 times and the most frequent (code 20012) occurs 6449 times.

Month of claim

Originally, there are two columns describing the timestamp: StartTime and report date. These two provide the
same date, which is converted into the Month column. The original columns are removed. The month the claim
is entered into the system is used as a predictor of claimed costs. It is conceivable that in the winter, there
are different types of car damages than during the summer. Using the months as a predictor can resolve some
issues around quantile distribution during the year. If it is true that the claim distribution changes throughout
the year, the quantiles will be distributed more evenly through the year by taking the timing into account as
well.

6.2.3 Repair related features

There are five repair related features. These features give information about the type of repair that was needed,
how long this took, and how intensive the repairs were. Finally, a rating for the repair shop is included as well.

Repair shop

In the original dataset, there are two columns describing the repair shop: Repair shop code and repair shop
name. The code column is removed. The repair shop name is used as a feature. In the original dataset there
are 1078 repair shops. one of which is the code “#NOTUSED#”. This is a code that means the information is
missing. There are 148 of such claims, which are removed.

type of repair

Not every car damage is the same, and thus not every method of repair is the same as well. In this dataset, the
types of repairs done to the vehicle are represented with a two-letter code. In six cases, it is represented by the
code “#EMPTY”. These claims are filtered out of the dataset. In total, there are 12 different types of repair
codes. However, most claims fall under just two category codes. The combined frequency of the others is fewer
than 100. The others are replaced by “Other”.

Repair time

The repair time is how long the repair takes in days. This is a numeric value between 0 and 46. There are 5643
cases of the repair taking 0 days. It is assumed that repairs that take 0 days, are different from the others and
thus there is a feature added which is TRUE if the repair takes 0 days and FALSE otherwise.

Figure 6.3 shows that the frequency drops quickly after 5 days, where the combined frequency is just 820.
After 10 days there are just 51 instances. The relation between repair time and costs was investigated by firstly
create dummy variables for each day. This beta coefficients implied a linear relation between the cost and
number of days.



Figure 6.3: histogram of repair time Figure 6.4: histogram of number of rows

Number of rows

As discussed in section 6.1 ’Datasets’, a claim can have more rows if the repair was complex or if it was mutated
many times. The range is between 1 and 17 rows. The minimum is 1, since there is always at least one repair
needed. The most frequent number of rows that occurs is 5, after that the frequency falls slowly. Figure 6.4
shows the histogram of the number of rows per claim. This relation is similarly to the repair time assumed to
be linearly.

6.2.4 Insurance related features

As mentioned before, the company from which this dataset is, provides their expertise as a service to multiple
insurance companies. The next three features are relevant to the insurance for which the company provides its
service.

Insurer

In total, there are 42 different insurers in the original dataset represented by numeric codes. There are two
large customers with 11022 and 18170 claims, 17 medium-sized customers with between 104 and 1137 claims,
and 23 customers with less than 100 claims. The last group is grouped under “Other”.

Segment

The insurance claims can be divided into multiple segments, based on the type of insurance. In the original
dataset, there are 17, with 12 segments occurring at least 100 times. The less frequently occurring segments
are represented by the category “Other”.

6.2.5 Costs

The most important aspect of an insurance claim is the claimed cost. In the dataset, the total claimed cost is
in the feature ’Total’. The costs are further divided into ’Labour wages’, ’Paint costs’, ’parts cost’. These three
subcategories do not always sum up to the total costs, meaning there are more subcategories. However, those
are not available data. The subcategories of the costs are not directly used to monitor the claims, rather they
are used as support when further investigation is necessary.

The total claim costs are distributed along a seemingly log-normal distribution. This is graphed in figure
6.5. There are a couple of notable spikes in the distribution, the most significant at 115 euro and 80 euro which
occurred respectively 148 and 85 times. The claims with these prices are all from claims claimed by the same
car repair shop with very similar details. It is suspected that these claims follow certain price agreements. For
this reason claims that have a total claim amount that occurs at least 15 times, is disregarded. Claims that
have a predetermined price should not be included in this statistical model. Those claims should be analyzed
with the rule-based approach of the CMF. In total there are 299 such claims removed.

6.2.6 Remaining dataset

The dataset that remains consists of 35388 claims and 17 independent variables and 4 dependent variables
(costs).



Figure 6.5: Histogram of the logarithm of the total
claim costs

Figure 6.6: histogram of the assigned quantiles of the
total cost of claims

6.3 Current model performance

Based on previous years, an internal model was created using LMVAR to calculate quantiles for the claim
amounts using data from 2019. The mean estimates and quantile estimates are given for all the claims. These
quantiles are calculated for all the separate cost (sub)categories. The results are disappointing, since it per-
forms poorly in two important measures: Quantile distribution and R2. The quantiles assigned to the total
claim amounts are shown in figure 1.4. As mentioned before, the quantiles should, by definition, be distributed
uniformly between 0 and 1. Applying the KS-test discussed in 3.2 to compare the conditional quantile distri-
bution with a uniform distribution, the p-value is less than 2.2 ∗ 10−16. This means that the null-hypothesis of
uniformity can reasonably be discarded. As an example, if the company would investigate claims based on the
70th percentile, it would investigate just 21% of the claims.

The other parameter is the R2. This R2 is calculated using the formula 1.6.1. This results in an R2 of 0.04
for the untransformed values and −0.18 for the logarithm of the costs. This value is skewed much due to the
corona pandemic and the fact that it was trained on a separate dataset. Historically, the models achieve an R2

of around 0.49. This means that the model both not very good at distributing quantiles and bad at reducing
the variance of the claim costs. It is therefore important to design a new model for the costs.



Chapter 7

Model Design for real data

Now that an overview is given of the real dataset and how the model performs, it is time to describe the
model design. The goal is to compare three types of regression models: OLS-regression, LMVAR, and Quantile
regression. All models will be trained on a subset of the dataset consisting of 80% of the claims and tested on
the remainder.

7.1 Regression models design

In this section, the creation of the regression models is explained. Firstly, OLS regression, then LMVAR, and
finally the quantile regression method. For each model the used packages are discussed and the methods to
improve the models are mentioned as well. All three models use initially the same dataset, which is explained
in the previous chapter.

7.1.1 OLS regression

The OLS regression model is created using the standard ’lm’ function in R. The model attempts to predict the
conditional expected total claim amount using all the features discussed. Based on this model the Beursch-
Pagan test will be applied [5]. This test is meant to measure the null hypothesis of homoskedasticity by creating
a linear model on the standardized squared errors of the model. Koenker has created a robust variant in 1981
[6] which is a linear moodel on just the square of the errors. This method works better in non-gaussian errors.
If the conclusion of this method is that the linear model is heteroskedastic, that means that it is possible that
either LMVAR or quantile regression might work better.

Based on the predictions for the expected claim amount, µ, and the assumption that the error is normally
distributed with a constant variance, σ2, the quantiles, q, can be calculated using the quantile function in
formula 7.1. φ−1(q) refers to the standard normal distribution, with µ = 0 and σ = 1.

F−1(q) = µ+ σφ−1(q) (7.1)

In order to reduce overfitting potential, both LASSO and stepAIC will be used and the differences will
be compared. The LASSO method will be done using the glmnet package in R. Firstly, using 10-fold cross
validation the optimal λ will be chosen, with which the LASSO regression will be done.

7.1.2 LMVAR

LMVAR uses model matrices as input for both µ estimation and for σ estimation as shown in 1.4.1. The
dataframe that was established in the previous chapter is transformed into a model matrix and inputed in the
LMVAR model using the LMVAR package in R. Using the models beta’s for the mean prediction can be created
for each claim. Adding the assumption of normality of errors and the beta’s for σ, the conditional quantile, q,
can be calculated for each claim as well using the formula 7.1.

In order to reduce overfitting potential, the LMVAR package has included a forward-backward feature
selection method. This method attempts to reduce a goodness-of-fit value by alternately removing and inserting
features. The goodness-of-fit value used is the AIC[10]. The features are selected for both the µ and the σ.

7.1.3 Quantile regression

The quantile regression model was discussed in chapter 4 and 5. Again, the dataset as described in the previous
chapter is used as input for quantile regression. The package used is quantreg in R. However, unlike the

29



previous two models, instead of creating one model for the mean, there are 99 models creating each regression
to a different sequential quantile (0.01, 0.02, . . . , 0.99). This creates a beta estimate for each of the quantile for
each feature: a (p+ 1)× τ -matrix, where p+ 1 is the number of features (including the intercept) and τ is the
number of quantiles modelled. Each model has its own prediction for each claim. Due to the fact that all the
models are linear and non-parallel, it occurs that predictions are not monotonously increasing. To solve this,
the predictions are sorted, swapping the values between models. In total, there are 11,598 cases in the training
set of where the conditional quantile conjugate predictions are not monotonically increasing. This is around
41% of the cases. Figure 7.1a shows that each quantile, except 0.01 and 0.99, are swapped roughly the same
amount. These two outermost quantiles of course can only swap one way, which about halves the swaps. Figure
7.1b shows that around 59% of the observations do not require swaps, 16% of observations two predictions are
swapped and around 25% require more than two swaps. Naturally, no observation has one swap. In order to
calculate the assigned quantiles, the true value is linearly interpolated between the closest two predictions.

(a) Frequency of swapping per quantile (b) Proportion of observations with x amount of swaps

Figure 7.1: The swaps that occurred when sorting the conditional quantile conjugate predictions

As is shown in 3.1, the beta’s from each model can be averaged per feature to calculate the ”mean” beta.
Using these mean beta’s, a mean prediction can be made, similarly to the OLS or LMVAR models. Taking the
variance of the beta’s per feature gives an indication of the variance that is caused by each feature.

Of course, quantile regression can suffer from overfitting as well. In the previous chapter 2 the option for
feature selection was discussed. For each quantile a model is fitted on, the LASSO method will be applied.
Using these feature selected models, the previous steps will be repeated.

7.2 Performance comparison methods

Based on the use case of the model, a number of performance comparisons will be designed. In chapter 3 a
number of useful tools were described to compare the performance of different models in this case. In this
section, the separate comparisons will be described one-by-one.

7.2.1 Feature influence comparison

There are two influences a feature can have: on the expected value and on the skedasticity of the prediction.
The OLS-regression model assumes homoskedasticity, meaning the effect of the features is 0 on the variance.
The LMVAR assumes log-linear variance. Using the quantile regression approach, the variance effects can be
estimated. These effects are assumed to be linear.

The goal of this section is to compare which features are deemed influential for which models and in what
way. The three models will also be compared to their ’feature-selected’ models.

7.2.2 R2 with variants

In total, there are 7 models, each with their ownR2. However, because theR2 rewards overfitting, two alternative
R2s are inspected as well: adjusted R2 (R2

adj) and out-of-sample R2 (R2
oos). As a recap, the definition of the

R2 can be found in 1.6.1. The formula for the R2
adj can be found in 7.2.1. N is the number of observations used



for the model and p is the number of features used. The R2
adj is always lower than the regular R2, since the

fraction (N−1)
N−p−1 is at most 1. The R2

adj punishes the model for using features that do not improve the model
enough.

Definition 7.2.1. R2
adj

• R2
adj = 1− (1−R2) (N−1)

N−p−1

In order to see how the model perform on out-of-sample data, or the test set, the R2
oos is used. The R2

oos is
calculated like formula 7.2.2

Definition 7.2.2. (R2
oos)

• Let SSres be the sum of squares of the residuals of the model on the test set

• Let SStot be the sum of squares of the difference of values to the sample mean of the train set

• R2 = 1 - SSres/ntest
SStot/ntrain

The goal of comparing the results of the models on these measures is to see how well the models decrease
uncertainty.

7.2.3 Quantile distribution

Consistently assigning quantiles to claims uniformly is very important, as discussed in the introduction. To
see how well the quantiles are assigned on a test set, the KS test will be used to the range from 0 to 1. The
assigned quantiles will be compared to a uniform distribution and if the p-value is below 0.05 the null-hypothesis
of uniformity is discarded. The test statistic of the KS test is based on the maximum difference between the
empirical CDF and the test CDF. Since the quantile regression method is based on discrete quantile estimation,
the quantiles in the tail are rounded towards the closest quantile. This will likely create large bumps at the
end of both sides of the histogram. It is, however, for this use case not relevant whether the claim falls in the
99.9’th percentile or the 99.8’th. For this reason, the KS-test will also be applied to the claims in the range of
0.01 to 0.99. This is the range between quantiles that were estimated.

7.2.4 Flag rates and Kappa

The previous two performance measures were mostly aimed at describing the performance of the models on
the ”Last” dataset. In other words, how the claims are at the end of the process. However, claims enter the
system differently in some cases. It is interesting to see which claims are flagged in the ”First” dataset. Since
the models are trained on a training subset of the ”Last” dataset, the testing on the ”First” dataset will be
done on those claims that are in the test subset. In chapter 3 the flag rates and Kappa were explored. At which
quantile the claims are flagged, is dependent on the preference for each insurance company. However, for this
testing, all claims will be flagged at 60% and 80%. Since the outcome of the models are now discrete values,
the Kappa’s can be calculated to see how much the different models agree.



Chapter 8

Results on real data

In the previous chapter, the outline of the modelling on real data was laid out. The regression models are all
set up and in this chapter the results are analysed.

8.1 Model results

In this section, the estimated impact of the features is analysed. There are three types of models: OLS regression,
LMVAR, and quantile regression. For each, there is a regular approach and a feature selection approach.

8.1.1 OLS regression

A simple regression model was used on a training subset of the dataset in order to make prediction for the
total costs. The training set was 80% of the observations of the dataset. The residual standard error is
0.5498 with 28097 degrees of freedom. The log-likelihood of the model is −23127.84. Since this model assumes
homoskedasticity, this residual standard error is assumed to be constant. In order to test this assumption, the
Beursch-Pagan test is applied. This resulted in a p-value of less than 2.2 ∗ 10−16, which allows the 0-hypotheses
of homoskedasticity to reasonably be discarded. This means that it is likely that this type of regression is not
optimal for this dataset.

For this model, a LASSO version was designed as well, to reduce overfitting potential. This was done using
the glmnet-package [12]. Firstly, an optimal λ was chosen via cross-validation. The results are shown in figure
8.1. On the x-axis the logarithm of the λ is presented and on the y-axis the resulting MSE of the model. The
numbers above the graph represent the number of non-zero beta coefficients.

Figure 8.1: CV plot of the lambda’s Figure 8.2: OLS LASSO beta values

Features and feature selection

As described in chapter 7, there are two versions of the OLS regression model: regular and LASSO. Figure 8.2
shows the density plots of the beta values for the features, except for the intercept, of both the regular OLS
regression model in blue and the LASSO version in red. The most notable difference is the small surface of
OLS regression at around −1.2. The features of these β’s are the seize points. Where the model without a
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L1 regularization deems this aspect to be quite important, their effect is greatly reduced by LASSO. Only one
seize point remained a magnitude of above 0.1, with 0.32. This seizepoint also has the largest magnitude in the
regular model with 1.62. In total there are 26 features whose beta coefficients were completely reduced to 0.
Among these were mostly seizepoints, insurance companies and repairshops. A full list of the beta coefficients
per model is included in the appendix.

8.1.2 LMVAR

Similar to the OLS regression, an LMVAR model was trained on the same subset of training data as the previous
model. The log-likelihood of the original model is -20138.33, which is higher than that of the OLS regression
model. Combined with the degrees of freedom of the LMVAR model, the AIC is 41128.65. In order to decrease
this value, the forward-backward stepAIC was applied. This reduced the AIC to 40900.86, by removing 76 beta
coefficients for the µ value and 89 beta coefficients for the σ estimation. There are 35 features removed from
both the σ and the µ estimation.

Figure 8.3: LMVAR mu beta values Figure 8.4: LMVAR sigma beta values

Features and feature selection

Figure 8.3 shows the density distribution of the coefficients for the µ beta’s of both the regular LMVAR model
and of the forward-backward stepAIC model (LMVAR.fwbw). The removed coefficients are given the value 0.
As expected, the density is much higher at 0 for the model LMVAR.fwbw than for the other model. Most of
the feautres removed were already close to 0, where the largest magnitude is less than 0.1. Just like with the
OLS regression model, the features relating to the seizepoint all large negative coefficient. However, unlike the
LASSO, the stepIAC function has not reduced the effect of these features to the model.

The density of the coefficients of the βσ’s are shown in figure 8.4. As mentioned in the previous section,
there are 89 features removed from the σ estimation. On the left side of the distribution, there is a group of
values that have a negative coefficient. These are the ’Cause of accident’ categories, ranging from −0.75 to
−0.38. These coefficients imply that these value reduce the spread of the total costs the most relative to the
category ”Other”. The list of removed features for the σ estimation includes mostly: Seize points (4), months
(6), car brands (18), insurance companies (7), repair shops (46) and accident angle (4).

8.1.3 Quantile regression

The quantile regression model is slightly different from other models. The model consists of a combination of
99 models, each for a different quantile from the set (0.01, 0.02, ..., 0.98, 0.99). Because of this, it is possible for
features to affect the total costs differently at different quantiles. The intercept beta coefficients are visualized
in figure 8.5. The intercept values do not seem to follow a normal distribution, like in figure 5.1a, for both the
original model and for the LASSO model. This implies that the unexplained part of the errors does not follow
a normal distribution, meaning that the underlying assumption of normality of OLS regression and LMVAR
likely does not hold. The black dotted line is the OLS regression estimate. Figure 8.6 shows the beta coefficients
for the feature ’Cause of accident 1’. The original model trends downward more than the LASSO model.



Figure 8.5: Intercept beta coefficient over quantiles Figure 8.6: ’Cause of accident 1’ beta coefficient

In order to be able to compare the results between OLS regression, LMVAR, and quantile regression, the
quantile regression β’s are translated to µ and βσ2 ’s using the methods described in section 3.1. The results
are plotted in density graphs in figure 8.7 and 8.8. Just as with the previous models, there is a noticeable area
for the µ at around -1.2. These reflect the seize points. Just as with the previous models, the average effect of
these values is reduced. However, this is not the case for each quantile.

LASSO has shifted most beta coefficients to the right, which explains why the intercept beta coefficients
from figure 5.1a is lower for that model.

The variance within the beta coefficients for a feature, imply an effect on the variance of the predicted
outcomes. Figure 8.8 shows the variance for the features. The largest variances are reduced by LASSO, except
for three causes (number 8, 312, and 4).

Figure 8.7: Density plot for the µ of the beta coeffi-
cients

Figure 8.8: Density plot for the variance of the beta
coefficients

Since the quantiles conjugate predictions for each claim form a CDF, the PDF can be calculated by taking
the slope between each quantile conjugate. This is visualized in figures 8.9 and 8.10. The red line in figure 8.9 is
the normal CDF with the mean of the predictions as µ and the standard deviation of the predictions as σ. The
predictions follow the normal distribution very closely. This implies that a normal distribution might fit better.
Using the density at the correct value, the log-likelihood of this model can be calculated as well by summing
the natural logarithm values of all densities. The log-likelihood for this model is -27890. This is significantly
lower than that of the LMVAR and OLS regression.



Figure 8.9: Cumulative Distribution Function of one
observation

Figure 8.10: Probability Density Function of one ob-
servation

8.2 Variance reduction

The goal of regression models is to make predictions of the dependent variable. The true value will often
be somewhat different from the prediction. A model that has less variance in this error is better. One key
measurement for this is the R2. As discussed in chapter 7, there will be, on top of the original R2, two
additional types of R2 measured. These will be calculated for all six previously discussed models (3 regular
and 3 with feature selection). For the quantile regression models, the R2’s will be calculated based on the βµ
coefficients.

Table 8.1: Performance of the models measured in R2

R2 R2
adj R2

oos

OLS regression 0.500 0.496 0.495
OLS with LASSO 0.500 0.496 0.495
LMVAR 0.470 0.453 0.482
LMVAR with fwbw stepAIC 0.469 0.467 0.482
Mean of QR 0.486 0.482 0.491
Mean of QR with LASSO 0.255 0.250 0.232

The R2’s and variants are calculated per model and shown in table 8.1. The results of OLS regression and
OLS with LASSO are very close. This is likely due to the fact that the LASSO has only removed 21 features,
about 10% of the total amount. These models performed the best on these parameters. Testing on the testing
set, the R2

oos is still close to the original R2 value, so it does not seem to overfit too much.
The LMVAR model performs slightly worse, with an R2 of 0.470 and an R2

adj of 0.453. The adjusted R2 is

calculated with just the µ coefficients. The out-of-sample R2 is oddly enough slightly higher than the regular
R2. This is due to chance. The LMVAR with fwbw stepAIC, has a similar R2 of 0.469. Since the feature
selection removed 76 µ coefficients, the adjusted R2 is higher. The out-of-sample R2 is equal to the original
one.

The quantile regression R2 was the R2 calculated on the mean predictions of the set of quantile regression
models. The R2 was in between the OLS regression and the LMVAR model. R2

adj and R2
oos show similar

results as for the previous models. The LASSO quantile regression models perform very bad. The r squared
is just 0.255. The other two variants are also very low. This indicates that the model has not improved, even
drastically worsened. It is likely that the methodology of taking the mean of the β coefficients can no longer be
applied when LASSO was used. LASSO apparently reduces the continuity between the models.



8.3 Quantile estimation

In this section, the performance of how uniformly the quantiles are distributed between 0 and 1 is discussed per
model. The quantiles are assigned to the test set. This means that the model was not trained on these data
points. For each model, a histogram is crafted to showcase the frequency of assigned quantiles in the test set.
Each histogram has 100 bins, so each bin represents 1 percentile, or 0.01. Every histogram also has a horizontal
red line, representing the uniform distribution the assigned quantiles should follow. This is equal to the average
of 70.78 observations.

The first models to be inspected are the OLS regression model and the OLS regression with LASSO. By
visual inspection of figure 8.11 it becomes clear that both models do not uniformly distribute the quantiles across
the observations. The middle part of the quantile range get too many observations. Another noticeable point is
that many claims are assigned quantiles of less than 0.01. Apparently, there is a skewness in the claims that is
not addressed by these models. The KS-test for the regular OLS regression results is a p-value of 9.326× 10−15

and for the LASSO variant 1.077×10−14, so for both model the null-hypothesis of uniformity can be discarded.

(a) OLS regression (b) OLS LASSO regression

Figure 8.11: Histograms of the assigned quantiles for the OLS regression models

Next, the LMVAR models are analysed. Figure 8.12 shows that the claims seem to be more uniformly
distributed than with the previous model. However, the large quantity of claims getting an assigned quantile of
less than 0.01 is still present, which can be seen by the large up tick in the first percentile. The KS-test provide
a p-value of 1.721×10−08 for the original model and 3.98×10−08 for the stepAIC model. These scores are higher
than with the previous model, which indicates that the model does perform somewhat better in this aspect.
However, the p-values are still much too low, and thus the null-hypothesis for uniformity will be discarded for
these models as well.

(a) LMVAR (b) LMVAR with fwbw stepAIC

Figure 8.12: Histograms of the assigned quantiles for the OLS regression models



The next model to analyse is the quantile regression model. The LASSO variant is discarded, since it
performed too badly on the previous parameter: predictive ability. At first glance at figure 8.13 it is clear that
the model distributes quantiles much more evenly than the previous models. There is no region of quantiles
that seem to have more observations assigned to them, and the large bump at the first percentile is gone as
well. This conclusion is underlined by the KS-test which gives for the range between 0 and 1 a p-value of 0.3095,
which is means that based on this data, the null-hypothesis of uniformity still stands. Since quantile regression
is limited by the number of models that are created, the KS-test will also be done for the range of 0.01 and
0.99, which is between the smallest and largest quantiles that are modelled. This results in a p-value of 0.4162,
which is even a larger value.

Figure 8.13: Histogram of assigned quantile of quan-
tile regression

Figure 8.14: Empirical distributions of the different
models

A different way of visualizing the previously discussed results is by plotting the empirical CDFs of the
models. This is done in figure 8.14. The black dotted line shows the optimal, uniform CDF. This is a straight
diagonal line from zero to one. The red and blue lines are the OLS regression and LMVAR models, respectively.
On top of the black dotted line, there is the green line representing the quantile regression results, which is
clearly the closest imitator of the uniform distribution.

8.4 Flag rates and kappa’s

Now that the basic performance of the three models is compared to the final dataset, it is time to look at which
claims the models would have flagged when they first entered the system. For this, the dataset ”First” is used.
This dataset is transformed similarly as the dataset used to train the models. After that, the claims with dossier
numbers that are not in the dataset used for training are selected. For this section only the original models are
tested: OLS, LMVAR and quantile regression. However, these will also be compared to the average flag rate,
which is 15% for a red flag.

The OLS regression model and the LMVAR model have a Cohen kappa of 0.706. OLS with the quantile
regression model have a Cohen kappa of 0.441, and finally the kappa between quantile regression and LMVAR
is 0.85. These values are to be expected. The low kappa between quantile regression and OLS regression can
be explained by the bad quantile distribution of the OLS regression model. The LMVAR model was in between
the other two models, so its kappa’s is with both other models relatively high.

Both the OLS regression model and LMVAR model flagged too few observations: respectively 12.3% and
13.5%. The quantile regression model flagged 15.4%, which is slightly higher than expected, but close enough.
In total, about 9.4% of all claims are flagged by all three models, 4.7% by 2 models and 3.4% by only one model.

The goal of this research was partly to find out if quantile regression could provide a more predictable
quantile assignment process. figure 1.2 shows an inconsistent flagging process. Chapter 1 explains how the flags
are assigned, but in part this is based on the quantile assigned to the claims. Figure 8.15 shows the different
flag rates over time for the different models. The range of flag rates for quantile regression stays between 0.144
and 0.165 (0.21), while the ranges of LMVAR and OLS are larger with respectively 0.125 to 0.15 (0.25) and
from 0.11 to 0.135 (0.25).



Figure 8.15: Flag rates over time for the three models at quantile 0.85

8.5 Overall results

Overall, each model performed well on different measures. The OLS regression had the best R2 values, but
the worst quantile distribution. The LMVAR had the best log-likelihood, but the worst R2 values. Finally,
the quantile regression models had the best quantile distribution, but the worst log-likelihood. However, the
difference in R2 values was limited. The value for the worst R2, except for the LASSO quantile regression,
was 0.46 and the highest 0.50. The difference in log-likelihood is less important, since the R2 values are close.
The only measure where differences are large is the degree of uniformity among quantiles. Without losing too
much predictive ability, the quantile regression model is able to uniformly distribute quantiles. Due to this, the
conclusion is that quantile regression performs the best overall.



Chapter 9

Conclusions and recommendations

In this research the possibilities for quantile regression were explored in the context of insurance claim modelling.
First the context of the research was investigated. The important qualities of a model for this application were
quantified. These are the ability to assign quantiles to insurance claims accurately and uniformly. Next, an
understanding of the models workings was established and a framework of performance measurements was
established. These measurements were designed to be in line with the use-case. After that the model was tested
in a controlled environment where the parameters were known and could be changed to measure the effect on
performance. After the results of this testing was in, a real dataset was analyzed and processed. This dataset
was used to apply OLS regression, LMVAR, and a set of quantile regression models. By using the performance
measurements established in the framework, the performance was compared based on predictive abilities and
consistency of quantile assignment.

9.1 Conclusions

From the first research on synthetic data, it became clear that the datasets that are available to Posthuma
Partners contain the necessary amount of observations for quantile regression to work. While the sheer amount
of modelling to be done, can be draining on computing power, with adequate processors, this can be overcome.

On the real dataset, the three models that were compared performed differently on different measures. The
most important aspects the models were measured are: feature importance, predictive ability, and consistent
quantile assignment. By using the knowledge gained in the performance measurement chapter, the mean β
coefficients and the variance β coefficients were estimated. These allowed quick insight in which features had
impact on both the mean total value, but also the skedasticity. The model gave comparable answers to both
the OLS regression model as well as the LMVAR model.

While the quantile regression model did not exceed the other models in reducing unexplained variance, the
performance was comparable. The model got quite close to the R2 of the other models, without overfitting on
the data, as was concluded based on the R2

oos. The R2
adj for the model based on the means of the quantile β

coefficients. It did however, become apparent that the LASSO methodology did not appropriately address the
feature selection. The R2 of the model created with LASSO quantile regression was very low. There needs to
be further research into how LASSO can be successfully integrated into this type of methodology.

The final measure of performance was the quantile distribution. Clearly, quantile regression was the best
model to do this. The quantiles were very uniformly distributed. This allows for easier and more consistent
flagging of claims.

9.2 Recommendations

Overall the recommendation of this research based on the conclusions is to incorporate the methodology of this
research around quantile regression into the models of Posthuma Partners. Quantile regression was shown to
be close in performance around reducing unexplained variance, good at identifying important features, both for
the mean estimation and for the variance, and good at uniformly assigning quantiles to observations. From this
research a number of recommendations are proposed. These are split into two parts: Data analysis and quantile
regression. The data analysis recommendations consist of ways the data collection and analysis can be improved,
while the quantile regression recommendations consists about ways the quantile regression methodology can be
applied, fine-tuned, and which other routes can be taken using quantile regression.
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Data analysis recommendations

1. It is recommended to be more strict in the way data is imputed into the system. The most clear example
is the car brand feature that is used. This feature needed a lot of work to make consistent by removing
the effect of capital letters and repairing type errors. By only allowing a predetermined list of car brands,
this feature is more usable. It seems that this is already applied to the feature ’car repair shop’.

2. Adding a time-related feature, like the included ’Month’ feature can help smooth the quantile distribution
over the year. In the current model that was designed in this research, the month feature did not have a
large impact on the performance, due to the data only being available for one year. It is therefor necessary
that data for multiple years is analyzed to detect seasonal patterns.

3. The final R2 was not improved by the model. While the number of observations was plenty, the features
apparently do not explain the costs well enough. It is recommended that it is investigated which features
should be included as well in order to improve the predictive ability of the model.

4. Corona has had a large impact on all aspects of society and through that shown that it is important
to keep the models that are used updated. Rather than yearly updated models it is recommended to
continuously update the models with new data. With this trends in the data can be captured earlier.

Quantile regression recommendations

1. Applying quantile regression can help reduce fluctuations in workload by more uniformly assigning quan-
tiles. The recommendation is thus that this method can be considered.

2. Testing on the synthetic datasets gave insights in how well the model performed. However, there are more
parameters than can be altered. The most important ones are the distribution of the error and the feature
creation.

3. Further research needs to be done into feature selection methods. This research did not result in a model
with feature selection that gave satisfactory values.

4. An important advancement in quantile regression is the application of additive smoothing. This method
is important to look into further.

5. There are many more applications of quantile regressions, such as quantile neural networks, quantile
decision trees and random forests with quantile regression.

9.3 Discussion

This research was conducted with the aim of providing an analysis of possible application to the quantile
assignment process in screening insurance claims. Firstly, the use case of the model was analyzed. It became
clear that the problem could be split into two subproblems: How does quantile regression work in a synthetic
environment in which the parameters are known, and how can quantile regression be applied to a real dataset.
The problem description phase of the research was a lot about choosing on which aspect to focus. Ultimately
the choice was made to keep the research technical and focus on the quantile regression model. However, a
different approach that was shortly investigated was to create a financial model to see how different models could
reclaim the highest amount of money from incorrect claims. This approach was relatively quickly abandoned,
since such a model would be very biased towards the model used in the creation of the dataset. Also from the
data that was available about differences between how the claim first entered the system and finally was paid
out, there was no relation found between the differences and claim amount and the flag that was assigned.

On the synthetic dataset a lot of testing was conducted which helped in the design of the model on the
real dataset and gave an indication of how well the models would perform. However, the number of parameters
which were tested upon was limited. An important factor that was not measured is the effect of the unexplained
error (ε). This was static in the testing and set to have normal distribution with µ = 0 and σ = 2. The value
was chosen such that the combined R2 of the dataset was similar to real datasets that were available (∼ 0.68).
For further research it would be interesting to see this effect. Another parameter that was not investigated was
the distribution of the features. The Boolean features has a 50/50 chance of being 0 or 1, and the numeric
features were distributed according to a standard normal distribution. In real datasets this is not likely. The
Boolean features in the real dataset used, were heavily skewed, where the likelihood of a 1 occurring could be
as low as 1 in 300. The same holds true for the numeric features. Testing on a dataset that more accurately
resembles real datasets is necessary to find out more about the ability of quantile regression to perform on the
described performance indicators under different circumstances.



Overall, the design of and testing on the synthetic dataset gave good insight in what the quantile regression
model was capable of and whether it was applicable in the real scenario. However, as mentioned before, there
are more parameters to be analyzed.

The analysis of the real dataset and the application of quantile regression on which it was applied did
not result in an improved performance in the R2 or log-likelihood. In these two measures, the other models
(OLS regression and LMVAR) outperformed the combined quantile regression models slightly. The quantile
assignment did improve, the quantiles were much more evenly spread over the range between 0 and 1. This
makes the quantile assignment process more predictable and can help reduce operational costs. The flagging
rates can see a possible improvement in consistency by using the proposed method.
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Appendix A

List of available datasets

Dataset Number of R2 Distribution of Remarks
observations quantiles

Company A Total Paid Amount 20,370 0.56 reasonable LMVAR with upper bound
Company A Total Labour Costs 20,664 0.06 reasonable LMVAR
Company A Total Parts Costs 11,812 0.37 reasonable LMVAR
Company B Total Paid Amount 12,015 0.82 good LMVAR with upper bound
Company B Market Value 12,477 0.77 good LMVAR
Company B Total Paid Amount 137 0.91 poor LMVAR
Company B Windscreen Price 8,277 0.76 reasonable LMVAR
Company C WS Total Paid Amount 11,400 0.73 good LMVAR with upper bound
Company C WS Windscreen Price 8,600 0.83 poor LMVAR with upper bound
Company D Total Costs 30,932 0.86 reasonable LMVAR
Company D Labour Units 30,769 0.48 reasonable Gamma with log-link
Company D Paint Cost 28,484 0.65 reasonable LMVAR
Company D Part Cost 23,534 0.82 poor LMVAR
Company E Total Costs* 34,777 0.49 poor LMVAR (not in production)
Company E Paint Costs 32,646 0.42 good LMVAR (not in production)
Company E Parts Costs 25,599 0.49 poor Gamma with log-link
Company F 18,234 0.26 reasonable LMVAR with upper bound
Company G Total Costs non-glass 10,378 0.84 poor LMVAR
Company G Total Costs glass 3,332 0.92 good LMVAR
Company G Labour Units 12,411 0.65 reasonable / good LMVAR
Company H Paint Units 9,084 0.61 poor LMVAR
Company H Costs Paint* 9,149 0.62 poor LMVAR
Company H Costs Parts 12,344 0.58 reasonable LMVAR
Company H Total Costs non-glass 62,219 0.50 reasonable LMVAR
Company H Total Costs glass 24,459 0.43 reasonable ‘Combined’ model
Company H Labour Units 70,842 0.45 reasonable LMVAR
Company H Paint Units 58,367 0.53 reasonable / poor LMVAR (not on log)

with lower bound
Company H Costs Parts 77,567 0.56 poor ‘Combined model’
Company I Total Costs 65,886 0.71 poor LMVAR
Company I Costs Parts 67,122 0.74 poor LMVAR
Company I Costs Paint 59,765 0.57 poor LMVAR
Company I Labour Units 64,522 0.50 reasonable LMVAR
Company I Paint Units 59,080 0.55 poor LMVAR

43



Appendix B

List of features

Feature Description Values
vehicle brand The name of the vehicle brand 27 levels
Age0 Is the vehicle age 0 years Boolean
Age The age of the vehicle in years 0-68 years
Repair time Repair time in days 0-46 days
Repair time0 Is repair time 0 Boolean
Month In which month was the case entered into the system 12 levels
Seizepoint Point at which the vehicle got damaged 11 levels
Fuel type Which fuel type the vehicle uses 6 levels
Object type What kind of vehicle was damaged 3 levels
Cause of accident A numeric code to categorize the damage cause 16 levels
Segment A numeric code to categorize the segment of the owner of the vehicle 12 levels
Repair shop name The name of the repair shop that provided the service 93 levels
Type of repair Alpha-numeric code describing the type of repair conducted 5 levels
Mileage Number of kilometers the car had driven up to the moment of damage 0-999999 km
Angle of impact A numeric code describing which angle the car got damaged 13 levels
Insurer A numeric code describing the insurer 19 levels
Number of rows The number of rows that are included in the case file

44



Appendix C

Code for synthetic datasets

This appendix contains the code that was written in order to do the testing on synthetic datasets, as described
in chapter 4.1.

C.1 Creating the synthetic dataset

The first code creates a large synthetic dataset that has plenty of rows and columns, such that the testing can
be done without having to create more. The dataset is saved to the file ’df x’ and only has the values for the
independent variables. The dependent variables are generated later on.

#c r e a t e a dataframe f o r X
n row <− 10ˆ6
df x <− as . data . frame (matrix (nrow = n row , ncol = 1))

#boolean f e a t u r e s
n boolean <− 100
boolean col <− c ( 1 : n boolean )
df x [ , boolean col ] <− 1

#numeric f e a t u r e s
n num start <− n boolean
n num <− 100
numeric col <− c (n num start : (n num start + n num) )
df x [ , numeric col ] <− 1

#name c o l
colnames ( df x ) <− c ( paste0 ( rep ( ”b ” , n boolean ) ,

seq (1 , n boolean ) ) , #boolean v a r i a b l e s
paste0 ( rep ( ”num ” , n num) ,

seq (1 , n num) ) ) #numeric v a r i a b l e s

# f i l l dataframe with v a l u e s
set . seed ( 1 0 0 ) ; for ( i in boolean col ) {df x [ , i ] <− rbinom(n row , 1 , 0 . 5 ) }

set . seed ( 1 0 0 ) ; for ( i in numeric col ) {df x [ , i ] <− rnorm(n row , 0 , 1) } ; rm( i )

save ( df x , f i l e = ” df x . RData” ) #save f i l e in order to save time

C.2 Quantile regression on subsets of the synthetic dataset

The next R file is the file called ’qr with quantreg.R’. This file first creates dependent variable values for all

#packages
l i b r a r y ( t i d y v e r s e )
l i b r a r y ( quantreg )
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#Check performance o f q u a n t i l e r e g r e s s i o n f o r
#s y n t h e t i c da ta s e t s with d i f f e r e n t sample s i z e s
load (” d f x . RData”)

ntau <− 39
tau s t ep <− 1 / ( ntau + 1)
tau seq <− seq ( from = tau step , to = 1 − tau step , by = tau s t ep )

c o l s u b s e t <− c ( 1 : 1 0 )
d f x <− as . matrix ( d f x [ , c o l s u b s e t ] )

#s e t beta ’ s f o r lm
n num <− sum( startsWith ( colnames ( d f x ) , ” b ”) )
n boolean <− sum( startsWith ( colnames ( d f x ) , ”num ”))
s e t . seed ( 1 0 0 ) ; lm beta <− r u n i f ( ( n num + n boolean ) , −4, 4)
l m b e t a i n t e r c e p t <− 2
lm sigma <− 2

#c a l c u l a t e y va lue s
d f y <− matrix ( nrow = nrow ( d f x ) ) %>%

as . data . frame ( ) %>%
mutate ( lm = rnorm (n = nrow ( d f x ) ,

mean = df x %∗% lm beta + lm beta in t e r c ep t ,
sd = lm sigma ) ) %>%

mutate ( lm q = pnorm( lm ,
mean = df x %∗% lm beta + lm beta in t e r c ep t ,
sd = lm sigma ) ) %>%

s e l e c t (−V1)

#c r e a t e dataframe
df <− cbind ( y = df y$ lm , d f x ) %>%

as . data . frame ( )

#sample s i z e s to measure
s e t samp l e s <− as . i n t e g e r (10ˆ seq (3 , 5 , 0 . 5 ) )

s e t d f <− l app ly ( se t samples , FUN = func t i on ( x )
sample ( nrow ( df ) , s i z e = x ) )

s e t t r a i n <− l app ly ( s e t d f , FUN = func t i on ( x )
sample (x , s i z e = f l o o r ( 0 . 8 ∗ l ength ( x ) ) ) )

s e t t e s t <− mapply (FUN = func t i on ( d f s e t , t r a i n s e t )
d f s e t [ ! ( d f s e t %in% t r a i n s e t ) ] , s e t d f , s e t t r a i n )

#quantreg models
qr <− l app ly ( s e t t r a i n , FUN = func t i on ( t r a i n )

rq ( y ˜ . , data = df , subset = tra in ,
method = ” fn ” , tau = tau seq ) )

#p r e d i c t the models on the corre spond ing t e s t s e t s
q r p r e d i c t <− mapply (FUN = func t i on ( model , t e s t s e t )

p r e d i c t ( model ,
newdata = df [ t e s t s e t , ] ) ,

qr , s e t t e s t )

#s o r t the pred i c t , such that the q u a n t i l e con jugate s
#are monotonica l ly i n c r e a s i n g
q r p r e d i c t s o r t e d <−

l app ly ( q r p r e d i c t ,
FUN = func t i on ( x )



as . data . frame ( t ( apply ( t ( x ) , 2 , s o r t ) ) ) ) %>%
lapp ly (FUN = func t i on ( x ) ‘ colnames<−‘(x , tau seq ) )

#Linear i n t e r p o l a t e the r e a l y va lue s f o r each qr model
q r l i n i n t <− mapply (FUN = func t i on ( d f s e t , t e s t s e t , s o r t e d s e t )

sapply ( s eq a l ong ( t e s t s e t ) , FUN = func t i on ( obs )
approx ( x = s o r t e d s e t [ obs , ] ,

xout = df$y [ t e s t s e t [ [ obs ] ] ] ,
y = tau seq , t i e s = ”mean” ,
y l e f t = j i t t e r ( t au s t ep / 2) ,
y r i gh t = j i t t e r (1 − t au s t ep / 2) ) $y ) ,

s e t d f , s e t t e s t , q r p r e d i c t s o r t e d )

###############################################################################
#p l o t s

#q u a n t i l e e s t imat i on
p l o t i <− 5
p lo t ( x = df y$ lm q [ s e t t e s t [ [ p l o t i ] ] ] ,

y = q r l i n i n t [ [ p l o t i ] ] ,
x lab = ” ac tua l q u a n t i l e s ” ,
ylab = ” as s i gned q u a n t i l e s ”)

segments ( x0 = 0 , y0 = 0 ,
x1 = 1 , y1 = 1 ,
c o l = ” red ”)

#p l o t s about beta
be ta d f <− l app ly ( qr , FUN = func t i on ( x ) as . data . frame (

cbind ( t ( c o e f ( x ) ) , ‘ tau ‘ = tau seq ) ) ) %>%
bind rows ( . id = ”sample s i z e ”) %>%
mutate ( ‘ sample s i z e ‘ = as . numeric ( ‘ sample s i z e ‘ ) ) %>%
mutate ( ‘ sample s i z e ‘ = sapply ( ‘ sample s i z e ‘ ,

FUN = func t i on ( x ) s e t samp l e s [ x ] ) ) %>%
mutate ( ‘ sample s i z e ‘ = as . f a c t o r ( ‘ sample s i z e ‘ ) ) %>%
‘ row . names<−‘(NULL) %>%
gather ( key = ” f e a t u r e ” , va lue = ” beta c o e f f i c i e n t ” , −‘ sample s i z e ‘ , −tau ) %>%
mutate ( ‘ t rue beta c o e f f i c i e n t ‘ = #add the t rue beta c o e f f i c i e n t s

rep ( c ( lm be ta in t e r c ep t , lm beta ) ,
each = length ( s e t samp l e s ) ∗ l ength ( tau seq ) ) ) %>%

mutate ( ‘ e r r o r in beta est imat ion ‘ = abs ( ‘ t rue beta c o e f f i c i e n t ‘ −
‘ beta c o e f f i c i e n t ‘ ) )

#i n t e r c e p t beta c o e f f i c i e n t e s t imat ion over q u a n t i l e s and sample s i z e
ggp lot ( subset ( beta df , f e a t u r e == ”( I n t e r c e p t ) ” ) ,

aes ( x = tau ,
y = ‘ beta c o e f f i c i e n t ‘ ,
c o l ou r = ‘ sample s i z e ‘ ) ) +

geom l ine ( ) + geom point ( ) +
geom abl ine ( i n t e r c e p t = lm beta in t e r c ep t ,

s l ope = 0) +
theme bw ( )

#p lo t the beta e s t imate s f o r one f e a t u r e over q u a n t i l e s and sample s i z e
ggp lot ( subset ( beta df , f e a t u r e == ” b 1 ”) ,

aes ( x = tau ,
y = ‘ beta c o e f f i c i e n t ‘ ,
c o l ou r = ‘ sample s i z e ‘ ) ) +

geom l ine ( ) + geom point ( ) +
geom abl ine ( i n t e r c e p t = lm beta [ 1 ] ,

s l ope = 0) +
theme bw ( )



#####################################################
#MSE of beta p l o t
p l o t t e d q u a n t i l e s <− tau seq [ c (1 , 10 , 20 , 30 , 3 9 ) ]

b e ta d f %>%
subset ( f e a t u r e != ”( I n t e r c e p t )” ) %>%
subset ( tau %in% p l o t t e d q u a n t i l e s ) %>%
mutate ( tau = as . f a c t o r ( tau ) ) %>%
group by ( ‘ sample s i z e ‘ ,

tau ) %>%
summarise (MSE = mean ( ‘ e r r o r in beta est imat ion ‘ ˆ 2 ) ) %>%
ggplot ( aes ( x = ‘ sample s i z e ‘ ,

y = MSE,
group = tau ,
c o l o r = tau ) ) +

geom l ine ( ) + geom point ( ) +
theme bw ( )

rm( p l o t t e d q u a n t i l e s )

#moving RMSE p l o t s
b ins <− seq ( 0 . 2 , 0 . 8 , 0 . 2 )
moving measure df <− mapply (FUN = func t i on ( ass igned , ac tua l )

sapply ( bins , FUN = func t i on ( t )
sum(

( ( a s s i gned − df y$ lm q [ ac tua l ] ) [ which ( df y$ lm q [ ac tua l ] < t &
df y$ lm q [ ac tua l ] > t − min ( b ins ) ) ]

) ˆ 2) ˆ 0 . 5 ) ,
q r l i n i n t , s e t t e s t ) %>%

as . data . frame ( ) %>%
‘ colnames<−‘( s e t samp l e s ) %>%
mutate (” q u a n t i l e ” = bins ) %>%
gather ( key = ”sample s i z e ” , va lue = ”Moving RMSE” , −q u a n t i l e ) %>%
mutate ( ‘ sample s i z e ‘ = as . numeric ( ‘ sample s i z e ‘ ) ) %>%
mutate ( ‘ sample s i z e ‘ = as . f a c t o r ( ‘ sample s i z e ‘ ) )

moving measure df %>%
ggplot ( aes ( x = quant i l e ,

y = ‘ Moving RMSE‘ ,
co l ou r = ‘ sample s i z e ‘ ) ) +

geom l ine ( ) + geom point ( ) +
theme bw ( )

#Error in moment gene ra t i on through f e a t u r e s p l o t s
f ea ture moments e r ror <− be ta d f %>%

f i l t e r ( f e a t u r e != ”( I n t e r c e p t )” ) %>%
group by ( ‘ sample s i z e ‘ ) %>%
summarise ( means = mean ( ‘ e r r o r in beta est imat ion ‘ ) ,

vars = mean ( ‘ e r r o r in beta est imat ion ‘ ˆ 2 ) − means ˆ2) %>%
mutate ( ‘ sample s i z e ‘ = as . cha rac t e r ( ‘ sample s i z e ‘ ) ) %>%
mutate ( ‘ sample s i z e ‘ = as . numeric ( ‘ sample s i z e ‘ ) )

ggp lot ( f eature moments error , aes ( x = ‘ sample s i z e ‘ , y = means ) ) +
geom l ine ( ) +
theme bw ( ) + ylab (” Average e r r o r o f mean beta e s t imat i on ”)

ggp lot ( f eature moments error , aes ( x = ‘ sample s i z e ‘ , y = vars ) ) +
geom l ine ( ) +
theme bw ( ) + ylab (” Average e r r o r o f var i ance beta e s t imat i on ”)



rm( feature moments e r ror )

#The e r r o r sigma
feature means <− be ta d f %>%

group by ( f ea ture , ‘ sample s i z e ‘ ) %>%
summarise (mean = mean ( ‘ beta c o e f f i c i e n t ‘ ) ) %>%
mutate ( f e a t u r e = as . f a c t o r ( f e a t u r e ) ) %>%
mutate ( f e a t u r e = f c t r e l e v e l ( f ea ture , c (” ( I n t e r c e p t )” ,

” b 1 ” ,
” b 2 ” ,
” b 3 ” ,
” b 4 ” ,
” b 5 ” ,
” b 6 ” ,
” b 7 ” ,
” b 8 ” ,
” b 9 ” ,
” b 10 ” ) ) ) %>%

arrange ( f e a t u r e ) #b 10 was placed i n c o r r e c t l y

s i g m a l s t <− sapply ( se t samples , FUN = func t i on ( samples )
mean ( ( df y$ lm [ 1 : samples ] −

cbind (” ( I n t e r c e p t )” = 1 , d f x [ 1 : samples , c o l s u b s e t ] ) %∗%
feature means$mean [ feature means$ ‘ sample s i z e ‘ == samples ] ) ˆ 2) ˆ 0 .5

)

s i g m a l s t
rm( s i g m a l s t )

#R squared c a l c u l a t i o n o f the mean es t imat ion
SS re s <− sapply ( se t samples , FUN = func t i on ( samples )

sum ( ( df y$ lm [ 1 : samples ] −
cbind (” ( I n t e r c e p t )” = 1 , d f x [ 1 : samples , c o l s u b s e t ] ) %∗%
feature means$mean [ feature means$ ‘ sample s i z e ‘ == samples ] ) ˆ 2 ) )

SS tot <− sapply ( se t samples , FUN = func t i on ( samples )
sum ( ( df y$ lm [ 1 : samples ] − mean( df y$ lm [ 1 : samples ] ) ) ˆ 2 ) )

R squared <− mapply ( func t i on ( s s r e s , s s t o t ) 1 − s s r e s / s s t o t ,
SS res , SS tot )

#c a l c u l a t e the t h e o r e t i c a l R squared
SS re s . theor <− sapply ( se t samples , FUN = func t i on ( samples )

sum ( ( df y$ lm [ 1 : samples ] −
cbind (” ( I n t e r c e p t )” = 1 , d f x [ 1 : samples , c o l s u b s e t ] ) %∗%
c ( lm be ta in t e r c ep t , lm beta [ c o l s u b s e t ] ) ) ˆ 2 ) )

R squared . theor <− mapply ( func t i on ( s s r e s , s s t o t )
1 − s s r e s / s s t o t ,
SS re s . theor , SS tot )

R squared
R squared . theor

rm( SS res , SS re s . theor , SS tot , R squared , R squared . theor )

#record c a l c u l a t i o n t imes f o r each t r a i n s e t (˜80% of t o t a l sample s i z e )
c a l c t i m e s <− sapply ( s e t t r a i n , FUN = func t i on ( t r a i n )

system . time ( rq ( y ˜ . , data = df , subset = tra in ,
method = ” fn ” , tau = tau seq ) ) )

c a l c t i m e s %>%
‘ colnames<−‘( s e t samp l e s ) %>%
data . frame ( ) %>%



f i l t e r ( row . names ( c a l c t i m e s ) == ” e lapsed ”) %>%
gather ( key = ”sample s i z e ” ,

va lue = ” c a l c u l a t i o n time ”)

rm( c a l c t i m e s )

C.3 Quantile regression on different features and number of features

In the next section, the code is shown that created the graphs from section 5.2.

#packages
l i b r a r y ( t i d y v e r s e )
l i b r a r y ( quantreg )

#t e s t i n g on synth data with d i f f e r e n t f e a t u r e s
load (” d f x . RData”)

ntau <− 39
tau s t ep <− 1 / ( ntau + 1)
tau seq <− seq ( from = tau step , to = 1 − tau step , by = tau s t ep )

c o l s u b s e t s <− l i s t ( c ( 1 : 1 0 ) , c ( 1 : 2 0 ) , c ( 1 : 5 0 ) , c ( 1 : 1 0 0 ) ,
c ( 10 1 : 1 1 0 ) , c ( 1 0 1 : 1 2 0 ) , c ( 1 0 1 : 1 5 0 ) , c ( 1 0 1 : 2 0 0 ) ,
c ( 1 : 5 , 101 : 105 ) , c ( 1 : 1 0 , 101 : 110 ) ,
c ( 1 : 2 5 , 101 :125 ) , c ( 1 : 5 0 , 101 : 150 ) )

s a m p l e s i z e <− 10000

d f x <− as . matrix ( d f x [ 1 : sample s i z e , ] )

#s e t beta ’ s f o r lm
n num <− sum( startsWith ( colnames ( d f x ) , ” b ”) )
n boolean <− sum( startsWith ( colnames ( d f x ) , ”num ”))
s e t . seed ( 1 0 ) ; lm beta <− r u n i f ( ( n num + n boolean ) , −4, 4)
l m b e t a i n t e r c e p t <− 2
lm sigma <− 2

#c a l c u l a t e the y ’ s
df y m <− l app ly ( c o l s u b s e t s , FUN = func t i on ( c )

cbind (1 , d f x [ , c ] ) %∗% c ( lm be ta in t e r c ep t , lm beta [ c ] ) )

d f y <− l app ly ( df y m , FUN = func t i on (m)
rnorm (m, mean = m, sd = lm sigma ) )

d f y q <− mapply (FUN = func t i on (q , m)
pnorm(q , mean = m, sd = lm sigma ) ,
df y , df y m , SIMPLIFY = F)

#c r e a t e t r a i n and t e s t s e t s
t r a i n <− sample ( sample s i z e , f l o o r ( 0 . 8 ∗ s a m p l e s i z e ) )
t e s t <− s e q l e n ( s a m p l e s i z e )[− t r a i n ]

#c r e a t e df ’ s
s e t d f <− mapply (FUN = func t i on ( co l s , y )

as . data . frame ( cbind ( y = y , d f x [ , c o l s ] ) ) ,
c o l s u b s e t s , d f y )

#quantreg models
qr <− l app ly ( s e t d f , FUN = func t i on ( df )

rq ( y ˜ . , data = df , subset = tra in ,
method = ” fn ” , tau = tau seq ) )



#p r e d i c t the models on the corre spond ing t e s t s e t s
q r p r e d i c t <− mapply (FUN = func t i on ( model , d f )

p r e d i c t ( model ,
newdata = df [ t e s t , ] ) ,

qr , s e t d f ,
SIMPLIFY = F)

#s o r t the pred i c t , such that the q u a n t i l e con jugate s
#are monotonica l ly i n c r e a s i n g
q r p r e d i c t s o r t e d <−

l app ly ( q r p r e d i c t ,
FUN = func t i on ( x )

as . matrix ( t ( apply ( t ( x ) , 2 , s o r t ) ) ) ) %>%
lapp ly (FUN = func t i on ( x ) ‘ colnames<−‘(x , tau seq ) )

#Linear i n t e r p o l a t e the r e a l y va lue s f o r each qr model
q r l i n i n t <− mapply (FUN = func t i on ( y s e t s , s o r t e d s e t )

l app ly ( s eq a l ong ( t e s t ) , FUN = func t i on ( obs )
approx ( x = s o r t e d s e t [ obs , ] ,

xout = y s e t s [ [ t e s t [ obs ] ] ] ,
y = tau seq , t i e s = ”mean” ,
y l e f t = j i t t e r ( d e l t a t a u / 2) ,
y r i gh t = j i t t e r (1 − d e l t a t a u / 2) ) $y ) ,

df y , q r p r e d i c t s o r t e d ,
SIMPLIFY = F)

###############################################################################
#p l o t s

#record c a l c u l a t i o n t imes f o r each t r a i n s e t (˜80% of t o t a l sample s i z e )
c a l c t i m e s <− sapply ( s e t d f , FUN = func t i on ( df )

system . time ( rq ( y ˜ . , data = df , subset = tra in ,
method = ” fn ” , tau = tau seq ) ) )

c a l c t i m e s %>%
data . frame ( ) %>%
f i l t e r ( row . names ( c a l c t i m e s ) == ” e lapsed ”) %>%
gather ( key = ” c o l subset ” ,

va lue = ” c a l c u l a t i o n time ”) %>%
mutate (” number o f f e a t u r e s ” = c (10 , 20 , 50 , 100 ,

10 , 20 , 50 , 100 ,
10 , 20 , 50 , 100)) %>%

mutate (” type o f v a r i a b l e s ” = f a c t o r ( c (” boolean ” , ” boolean ” ,
” boolean ” , ” boolean ” ,
”numeric ” , ”numeric ” ,
”numeric ” , ”numeric ” ,
”mix ” , ”mix ” ,
”mix ” , ”mix ” ) ) ) %>%

group by ( ‘ type o f v a r i a b l e s ‘ ) %>%
ggplot ( aes ( x = ‘ number o f f e a tu r e s ‘ , y = ‘ c a l c u l a t i o n time ‘ ) ) +
geom l ine ( aes ( c o l o r = ‘ type o f v a r i a b l e s ‘ ) ) +
theme bw ( ) + ylab (” c a l c u l a t i o n time ( s )” )

rm( c a l c t i m e s )

#Plot the number o f f e a t u r e s vs the MSE of the beta e s t imate s
#grouped by type o f v a r i a b l e s
be ta d f <− sapply ( qr , c o e f )
mapply (FUN = func t i on ( beta , c )

mean ( ( beta [ −1 , ] − lm beta [ c ] ) ˆ 2) ,
beta df , c o l s u b s e t s ) %>%



as . data . frame ( ) %>%
‘ colnames<−‘(”MSE of beta e s t imate s ”) %>%
mutate (” type o f v a r i a b l e s ” = f a c t o r ( c (” boolean ” , ” boolean ” ,

” boolean ” , ” boolean ” ,
”numeric ” , ”numeric ” ,
”numeric ” , ”numeric ” ,
”mix ” , ”mix ” ,
”mix ” , ”mix ” ) ) ) %>%

mutate (” number o f f e a t u r e s ” = c (10 , 20 , 50 , 100 ,
10 , 20 , 50 , 100 ,
10 , 20 , 50 , 100)) %>%

ggplot ( aes ( x = ‘ number o f f e a tu r e s ‘ , y = ‘MSE o f beta est imates ‘ ) ) +
geom l ine ( aes ( co l our = ‘ type o f v a r i a b l e s ‘ ) ) +
theme bw ( )

#Plot the number o f f e a t u r e s vs the MSE of the q u a n t i l e e s t imate s
#grouped by type o f v a r i a b l e s
mapply (FUN = func t i on ( as q , th q )

mean ( ( u n l i s t ( as q ) − th q [ t e s t ] ) ˆ 2) ,
q r l i n i n t , d f y q ) %>%
as . data . frame ( ) %>%
‘ colnames<−‘(”MSE of q u a n t i l e e s t imate s ”) %>%
mutate (” type o f v a r i a b l e s ” = f a c t o r ( c (” boolean ” , ” boolean ” ,

” boolean ” , ” boolean ” ,
”numeric ” , ”numeric ” ,
”numeric ” , ”numeric ” ,
”mix ” , ”mix ” ,
”mix ” , ”mix ” ) ) ) %>%

mutate (” number o f f e a t u r e s ” = c (10 , 20 , 50 , 100 ,
10 , 20 , 50 , 100 ,
10 , 20 , 50 , 100)) %>%

ggplot ( aes ( x = ‘ number o f f e a tu r e s ‘ , y = ‘MSE o f q u a n t i l e es t imates ‘ ) ) +
geom l ine ( aes ( co l our = ‘ type o f v a r i a b l e s ‘ ) ) +
theme bw ( )

C.4 Quantile regression on a synthetic dataset based on LMVAR

In the next section, the code is shown that created the graphs from section 4.1.1.

#packages
l i b r a r y ( t i d y v e r s e )
l i b r a r y ( quantreg )

#Test ing d i f f e r e n t models
load (” d f x . RData”)

#d e f i n e f e a t u r e s
c o l s u b s e t <− c ( 1 : 2 0 , 101 :120)
s a m p l e s i z e <− 10000

df x mode l s <− as . matrix ( d f x [ 1 : sample s i z e , c o l s u b s e t ] )
rm( d f x )

#betas
mu intercept <− 2
s i g m a i n t e r c e p t <− 0 .2 #only used by lmvar

s e t . seed ( 1 0 0 ) ; mu beta <− r u n i f ( l ength ( c o l s u b s e t ) , −4, 4)

s igma range <− c ( −0.1 , 0 . 1 )



s e t . seed ( 1 0 0 ) ; s igma beta <− r u n i f ( l ength ( c o l s u b s e t ) ,
s igma range [ 1 ] , s igma range [ 2 ] )

#d e f i n e y va lue s
d f y <− as . data . frame ( matrix ( nrow = s a m p l e s i z e ) ) %>%

mutate ( lmvar = rnorm (n = sample s i z e ,
mean = df x mode l s %∗% mu beta + mu intercept ,
sd = exp ( d f x mode l s %∗% sigma beta +

s i g m a i n t e r c e p t ) ) ) %>%
mutate ( lmvar q = pnorm( lmvar ,

mean = df x mode l s %∗% mu beta + mu intercept ,
sd = exp ( d f x mode l s %∗% sigma beta ) ) ) %>%

s e l e c t (−V1)

#c r e a t e t r a i n and t e s t s e t
s e t . seed ( 1 0 0 ) ; t r a i n <− sample . i n t (n = sample s i z e ,

s i z e = f l o o r ( . 8 ∗ s a m p l e s i z e ) ,
r e p l a c e = F)

t e s t <− s e q l e n ( s a m p l e s i z e )[− t r a i n ]

#determine q u a n t i l e g r id
tau <− l i s t ( )
tau$n <− 39
tau$ s tep <− 1 / ( tau$n + 1)
tau$seq <− seq ( from = tau$step ,

to = 1 − tau$step ,
by = tau$ s tep )

#c r e a t e dataframe f o r qr and run qr
df <− as . data . frame ( cbind ( y = df y$ lmvar , d f x mode l s ) )
qr <− quantreg : : rq ( y ˜ . , data = df , subset = tra in ,

tau = tau$seq , method = ” fn ”)
#make p r e d i c t i o n s and make monotonica l ly i n c r e a s i n g
qr$pred <− p r e d i c t ( qr , newdata = df [ t e s t , ] )
q r$pred so r t ed <− as . matrix ( t ( apply ( t ( qr$pred ) , 2 , s o r t ) ) ) %>%

‘ dimnames<−‘( l i s t ( s eq a l ong ( t e s t ) , tau$seq ) )

#Linea r l y i n t e r p o l a t e t rue va lue s in the l i s t o f p r e d i c t i o n s
LI q <− sapply ( s eq a l ong ( t e s t ) ,

FUN = func t i on ( x ) approx ( x = qr$pred so r t ed [ x , ] ,
xout = df$y [ t e s t [ x ] ] ,
y = tau$seq , t i e s = ”mean” ,
y l e f t = j i t t e r ( tau$ s tep / 2) ,
y r i gh t = j i t t e r (1 − tau$ s tep / 2) ) $y )

#make p lo t
{ p lo t ( x = df y$ lmvar q [ t e s t ] , y = LI q ,

main = paste0 (” sigma range : [ ” ,
s igma range [ 1 ] , ” : ” , s igma range [ 2 ] , ” ] ” ) ,

x lab = ” Theo r e t i c a l q u a n t i l e ” ,
ylab = ” Estimated q u a n t i l e ”)

segments ( x0 = 0 , y0 = 0 ,
x1 = 1 , y1 = 1 ,
c o l = ” red ”)

}



Appendix D

Code for synthetic datasets

This appendix contains the code that was written in order to create the dataset that was used in chapter 6 to
chapter 8.

D.1 Cleaning the original dataset

In this section, the original datasets were taken and analysed to create a dataframe on which quantile regression
was applied.

source ( ”Load data f i l e s .R” )

#L i b r a r i e s
l ibrary ( t i d y v e r s e )

#c r e a t e a f u n c t i o n t h a t changes a l l f a c t o r s in a column
#with a lower f requency than the lower l i m i t (100) to ” Other ”
create Other <− function ( old l i s t , lower l i m i t = 100) {

new l i s t <− replace ( old l i s t ,
old l i s t %in%

sort (unique ( old l i s t ) ) [ table ( old l i s t ) < lower l i m i t ] ,
”Other” )

return (new l i s t )
}

#p i c k r e l e v a n t f e a t u r e s
d e s i r e d col <− c (4 , 5 , 7 , 9 : 10 , 12 , 14 , 16 , 17 , 24 ,

34 : 37 , 40 , 19 :23 , 24 : 28 , 29 :32 , 45 , 3 , 1)

df <− Last %>%
s e l e c t ( a l l o f ( d e s i r e d col ) ) %>%
f i l t e r ( d o s s i e r n r %in% F i r s t$d o s s i e r n r ) %>%

#only c la ims from which the f i n a l r e s u l t i s known
f i l t e r ( log id %in% Invoergegevens Last$LaatsteLogIDNR ) %>%
f i l t e r ( ! t o t a a l %in%

as . numeric ( levels ( as . factor ( t o t a a l ) ) [ table ( t o t a a l ) >= 1 5 ] ) ) %>%
#shou ld be cont inuous

f i l t e r ( ! e x p e r t i s e a d v i e s == ”0” ) %>% #shou ld have an e x p e r t a d v i c e

#remove c la ims wi th miss ing data
f i l t e r ( ! brandsto f %in% c ( ”#EMPTY#” , ” Spat i e ” ) ) %>% #Brandstof
f i l t e r ( ! Aangrijppunt %in% c ( ” −2000000000” ) ) %>% #a a n g r i j p p u n t
f i l t e r ( ! s t o o t r i c h t i n g %in% c ( ” −2000000000” ) ) %>% #s t o o t r i c h t i n g
f i l t e r ( ! reparateurnaam == ”#NOTUSED#” ) %>% #reparateurnaam
f i l t e r ( ! Repduur == ” −2000000001” ) %>% #Repduur
f i l t e r ( ! segment == ”40999” ) %>% #segment
f i l t e r ( ! oorzaak == ”#EMPTY#” ) %>% #oorzaak

54



#improve f e a t u r e s
mutate (NaamMerk = toupper (NaamMerk) ) %>%
mutate (NaamMerk = replace (NaamMerk , NaamMerk %in%

c ( ”POLSTAR” , ”POLESTAR 2” ) , ”POLESTAR” ) ) %>%
mutate (NaamMerk = replace (NaamMerk , NaamMerk %in%

c ( ”MERCEDES−BENZ CARS” ) , ”MERCEDES−BENZ” ) ) %>%
mutate (NaamMerk = replace (NaamMerk , NaamMerk %in%

c ( ”SSANGYOUNG” ) , ”SSANG YONG” ) ) %>%
mutate (NaamMerk = replace (NaamMerk , NaamMerk %in%

c ( ”MG” , ”MG. ” ) , ”M G” ) ) %>%

mutate (Merk Model = paste (NaamMerk , ModelCode , sep = ” ” ) ) %>%

#L e e f t i j d
mutate ( L e e f t i j d = replace ( L e e f t i j d , L e e f t i j d == ”2020” , ”1” ) ) %>%
mutate ( L e e f t i j d = replace ( L e e f t i j d , L e e f t i j d == ”2021” , ”0” ) ) %>%

mutate ( L e e f t i j d 0 = L e e f t i j d == ”0” ) %>% #L e e f t i j d 0

mutate (Month = months ( StartTime ) ) %>% #Month
mutate ( Repduur0 = Repduur == ”0” ) %>% #Repduur0

############################################
#Place Merk Model a t the c o r r e c t spot , and remove ModelCode
s e l e c t (NaamMerk , L e e f t i j d 0 , L e e f t i j d , Repduur0 , Repduur , Month ,

everyth ing ( ) ,
−dos s i e rn r , do s s i e rn r , −Merk Model , Merk Model ,
−ModelCode , −log id ) %>% #remove c o m p l e t e l y

#put in c o r r e c t data t y p e s
#c o r r e c t data t y p e s and r e p l a c e uncommon f a c t o r s wi th ” Other ” .
#Also r e l e v e l ” Other” as the f i r s t l e v e l
mutate ( a c r o s s ( everyth ing ( ) , as . character ) ) %>%
mutate ( a c r o s s ( c ( do s s i e rn r , L e e f t i j d , Repduur ,

Kilometerstand , AantalRegels , L e e f t i j d ,
t o t a a l : p e r c e n t i e l o n d e r d e l e n ) ,

as . numeric ) ) %>%
mutate ( a c r o s s ( StartTime , as . Date ) ) %>%
mutate ( a c r o s s ( where ( i s . character ) , create Other ) ) %>%
mutate ( a c r o s s ( where ( i s . character ) , as . factor ) ) %>%

#r e l e v e l such t h a t ”Other ” i s the f i r s t l e v e l
mutate ( a c r o s s ( where ( function ( x ) ”Other” %in% levels ( x ) ) ,

function ( x ) relevel (x , r e f = ”Other” ) ) ) %>%
d r o p l e v e l s ( )

#########################################################

rm( F i r s t , Last ,
Invoergegevens F i r s t , Invoergegevens Last ,
Reparat ie F i r s t , Reparat ie Last ,
create Other , d e s i r e d col )

D.2 Code for applying quantile regression on the dataset

This code is used to generate the values and plot shown in chapter ??.

source (” Model dataset c r e a t i o n .R”)

#l i b r a r i e s



l i b r a r y ( quantreg )
l i b r a r y (moments )

###############################################################
#Quant i le r e g r e s s i o n
#determine q u a n t i l e g r id
tau <− l i s t ( )
tau$n <− 99
tau$ s tep <− 1 / ( tau$n + 1)
tau$seq <− seq ( from = tau$step ,

to = 1 − tau$step ,
by = tau$ s tep )

#run rq model
qr <− quantreg : : rq ( t o t a a l ˜ . , tau = tau$seq ,

data = model dataset , subset = tra in ,
method = ” fn ”)

#make p r e d i c t i o n s and s o r t them
qr$pred <− p r e d i c t ( qr , newdata = model dataset )
q r$pred so r t ed <− as . matrix ( t ( apply ( t ( qr$pred ) , 2 , s o r t ) ) ) %>%

‘ dimnames<−‘( l i s t ( s e q l e n ( nrow ( mode l dataset ) ) ,
tau$seq ) )

#analyze unsorted p r e d i c t i o n s
#how many p r e d i c t i o n s are not monotonica l ly i n c r e a s i n g ?
sum( apply ( qr$pred [ t ra in , ] , 1 , i s . unsorted ) )

#check which q u a n t i l e s have the most swaps
a l l u n s o r t e d <− apply ( qr$pred [ t ra in , ] , 1 , FUN =

func t i on ( x ) names ( which ( ! ( x == s o r t ( x ) ) ) ) )

p l o t ( t a b l e ( u n l i s t ( a l l u n s o r t e d ) ) ,
main = ”Frequency o f swapping per q u a n t i l e ” ,
ylab = ”Frequency o f swapping ” ,
xlab = ” Quant i le ” , xaxt = ”n”)

a x i s (1 , at = c (1 ,
c e i l i n g ( tau$n / 4) ,
c e i l i n g ( tau$n / 2) ,
c e i l i n g (3 ∗ tau$n / 4) ,
tau$n ) ,

l a b e l s = tau$seq [ c (1 ,
c e i l i n g ( tau$n / 4) ,
c e i l i n g ( tau$n / 2) ,
c e i l i n g (3 ∗ tau$n / 4) ,
tau$n ) ] )

l e n g t h o f u n s o r t e d <− l app ly ( a l l u n s o r t e d , l ength ) %>%
as . data . frame ( ) %>%
t ( )

p l o t ( t a b l e ( l e n g t h o f u n s o r t e d ) / nrow ( l e n g t h o f u n s o r t e d ) ,
ylab = ” Proport ion ” ,
xlab = ”Amount o f swaps ” ,
main = ” Proport ion o f ob s e rva t i on s with x amount o f swaps ”)

rm( a l l u n s o r t e d ,
l e n g t h o f u n s o r t e d )

####################################################################
#est imate q u a n t i l e s and log−l i k e l i h o o d



LI q <− sapply ( s e q l e n ( nrow ( mode l dataset ) ) ,
FUN = func t i on ( x ) approx ( x = qr$pred so r t ed [ x , ] ,

xout = mode l da ta s e t$ to taa l [ x ] ,
y = tau$seq , t i e s = ”mean” ,
y l e f t = j i t t e r ( tau$ s tep / 2) ,
y r i gh t = 1 − j i t t e r ( tau$ s tep / 2) ) $y )

#histogram of a s s i gned q u a n t i l e s
h i s t ( LI q [ t e s t ] , breaks = tau$n ,

main = NULL,
xlab = paste (” Assigned q u a n t i l e ” ) )

a b l i n e (h = length ( t e s t ) / 100 , c o l = ” red ”)

#to c a l c u l a t e the log l i k e l i h o o d o f the qr models
q r$pred so r t ed . d e r i v a t i v e <− as . data . frame (

sapply (1 : ( nco l ( q r$pred so r t ed ) − 1) ,
FUN = func t i on ( c o l )

sapply ( s e q l e n ( nrow ( qr$pred so r t ed ) ) ,
FUN = func t i on ( row )

tau$ s tep /
( q r$pred so r t ed [ row , ( c o l + 1 ) ] −

qr$pred so r t ed [ row , c o l ] ) ) ) ) %>%
‘ colnames<−‘( tau$seq [ −1] − tau$ s tep / 2)

L I den s i t y <− sapply ( s e q l e n ( nrow ( qr$pred ) ) ,
FUN = func t i on ( x )

approx ( x = u n l i s t ( q r$pred so r t ed . d e r i v a t i v e [ x , ] ) ,
xout = LI q [ x ] ,
y = tau$seq [ −1] − tau$ s tep / 2 ,
r u l e = 2 , t i e s = ”mean”) $y )

l o g l i k e l i h o o d o f r q s m o d e l <− sum( log ( L I den s i t y [ t r a i n ] ) )

rm( l o g l i k e l i h o o d o f r q s m o d e l ,
L I den s i t y )

#CDF and PDF p l o t s
obs <− 8

p d f o f o b s <− cbind ( x = qr$pred so r t ed [ obs , −1] ,
y = t ( q r$pred so r t ed . d e r i v a t i v e [ obs , ] ) ) %>%

as . data . frame ( ) %>%
‘ colnames<−‘(c (” Quant i le conjugate ” , ” Density ” ) ) %>%
ggplot ( aes ( x = ‘ Quant i le conjugate ‘ , y = Density ) ) +
geom point ( ) +
geom smooth ( ) +
ylim (0 , 2) +
theme bw ( )

c d f o f o b s <− as . data . frame ( cbind ( x = qr$pred so r t ed [ obs , ] , y = tau$seq ) ) %>%
‘ colnames<−‘(c (” Quant i le conjugate ” , ”P(X<x ) ” ) ) %>%
ggplot ( aes ( x = ‘ Quant i le conjugate ‘ , y = ‘P(X<x ) ‘ ) ) +
geom point ( ) +
theme bw ( ) +
s t a t f u n c t i o n ( fun = pnorm ,

args = l i s t (mean( q r$pred so r t ed [ obs , ] ) ,
sd ( q r$pred so r t ed [ obs , ] ) ) ,

c o l = ” red ”)
rm( pd f o f ob s ,

c d f o f o b s ,
obs )



###############################################################################
#c o n d i t i o n a l moments
#var from Stat s package i s sample var , but we need populat ion var
pop var <− f unc t i on ( x ) mean( x ˆ 2) − mean( x ) ˆ 2

cond moments <− as . data . frame ( cbind ( c o e f f i c i e n t s =
rownames ( q r $ c o e f f i c i e n t s ) ) ) %>%

mutate ( means = apply ( q r $ c o e f f i c i e n t s , 1 , mean ) ) %>%
mutate ( vars = apply ( q r $ c o e f f i c i e n t s , 1 , pop var ) )

#R squared c a l c u l a t i o n based on the mean e s t imat i on s
qr$pred mean <− apply ( model . matrix ( t o t a a l ˜ . , mode l dataset ) , 1 ,

f unc t i on ( x ) x %∗% cond moments$means )
qr$pred mean res i <− mode l da ta s e t$ to taa l − qr$pred mean

#R squared
SS re s <− mean ( ( mode l da ta s e t$ to taa l [ t r a i n ] − qr$pred mean [ t r a i n ] ) ˆ 2)
S S r e s o o s <− mean ( ( mode l da ta s e t$ to taa l [ t e s t ] −

qr$pred mean [ t e s t ] ) ˆ 2)
SS tot <− var ( mode l da ta s e t$ to taa l [ t r a i n ] )

qr R2 <− l i s t ( )
qr R2$R2 <− 1 − SS re s / SS tot
qr R2$R2 adj <− 1 − (1 − qr R2$R2 ) ∗

( l ength ( t r a i n ) − 1) /
( l ength ( t r a i n ) − ( l ength ( cond moments$means ) − 1) − 1)

qr R2$R2 oos <− 1 − S S r e s o o s / SS tot

rm( SS res ,
SS re s oos ,
SS tot )

###############################################################################
#TESTING FEATURE SELECTION METHODS
qr LASSO <− quantreg : : rq ( t o t a a l ˜ . , data = model dataset ,

tau = tau$seq ,
method = ” l a s s o ”)

cond moments .LASSO <− cbind ( c o e f f i c i e n t s =
rownames ( qr LASSO$coe f f i c i ent s ) ) %>%

as . data . frame ( ) %>%
mutate ( means = apply ( qr LASSO$coe f f i c i ents , 1 , mean ) ) %>%
mutate ( vars = apply ( qr LASSO$coe f f i c i ents , 1 , pop var ) )

#R squared c a l c u l a t i o n based on the mean e s t imat i on s
pred qr LASSO mean <− apply ( model . matrix ( t o t a a l ˜ . , mode l dataset ) , 1 ,

f unc t i on ( x ) x %∗% cond moments . LASSO$means)
pred qr LASSO mean . r e s i d u a l s <− mode l da ta s e t$ to taa l − pred qr LASSO mean

#R squared LASSO
SS res <− mean ( ( pred qr LASSO mean . r e s i d u a l s [ t r a i n ] ) ˆ 2 )
S S r e s o o s <− mean ( ( mode l da ta s e t$ to taa l [ t e s t ] −

pred qr LASSO mean [ t e s t ] ) ˆ 2 )
SS tot <− var ( mode l da ta s e t$ to taa l [ t r a i n ] )

qr LASSO R2 <− l i s t ( )
qr LASSO R2$R2 <− 1 − SS re s / SS tot
qr LASSO R2$R2 adj <− 1 − (1 − qr LASSO R2$R2 ) ∗ ( l ength ( t r a i n ) − 1) /

( l ength ( t r a i n ) − ( l ength ( cond moments . LASSO$means) − 1) − 1)



qr LASSO R2$R2 oos <− 1 − S S r e s o o s / SS tot

rm( SS res ,
SS re s oos ,
SS tot )

#beta c o e f f i c i e n t dens i ty p l o t s
cbind ( qr = cond moments$means [ −1] ,

qr LASSO = cond moments . LASSO$means [ −1]) %>%
as . data . frame ( ) %>%
gather ( key = ”model ” , va lue = ” beta c o e f f i c i e n t ”) %>%
ggplot ( aes ( ‘ beta c o e f f i c i e n t ‘ , f i l l = model ) ) +
geom density ( alpha = 0 . 5 ) + theme bw ( )

cbind ( qr = cond moments$vars [ −1] ,
qr LASSO = cond moments . LASSO$vars [ −1]) %>%

as . data . frame ( ) %>%
gather ( key = ”model ” , va lue = ” beta c o e f f i c i e n t ”) %>%
ggplot ( aes ( ‘ beta c o e f f i c i e n t ‘ , f i l l = model ) ) +
geom density ( alpha = 0 . 5 ) + theme bw ( )

#beta c o e f f i c i e n t p l o t over q u a n t i l e s
f <− 60

rbind ( q r $ c o e f f i c i e n t s [ f , ] , q r LASSO$coe f f i c i ent s [ f , ] ) %>%
t ( ) %>%
as . data . frame ( ) %>%
‘ colnames<−‘(c (” qr ” , ”qr LASSO ”)) %>%
mutate ( q u a n t i l e = tau$seq ) %>%
gather ( key = ”model ” , va lue = ” beta c o e f f i c i e n t ” , −q u a n t i l e ) %>%
ggplot ( aes ( x = quant i l e , y = ‘ beta c o e f f i c i e n t ‘ ) ) +
geom l ine ( aes ( c o l o r = model ) ) +
geom hl ine ( y i n t e r c e p t = l m $ c o e f f i c i e n t s [ f ] , l i n e t y p e = ”dashed ”) +
theme bw ( )

rm( f )

#KS t e s t i n g
ks . t e s t ( LI q , pun i f )
ks . t e s t ( LI q [ which ( LI q > 2 ∗ tau$ s tep & LI q < 1 − 2 ∗ tau$ s tep ) ] ,

puni f , 2 ∗ tau$step , 1 − 2 ∗ tau$ s tep )

#remove va lues
rm( cond moments ,

cond moments .LASSO,
LI q , tau ,
pop var ,
t e s t , t ra in ,
model dataset , mode l dataset . matrix , df ,
pred qr LASSO mean , pred qr LASSO mean . r e s i d u a l s )

#Fina l p l o t
{ p lo t ( ecd f ( lm$pred$q [ t e s t ] ) , c o l = ” red ” ,

xlim = c (0 , 1 ) ,
main = NULL)

p lo t ( ecd f (LMVAR$pred$q) , c o l = ” blue ” , add = T)
p lo t ( ecd f ( LI q [ t e s t ] ) , c o l = ” green ” , add = T)
p lo t ( puni f , c o l = ” black ” , l t y = 2 , add = T)
legend ( legend = c (”OLS r e g r e s s i o n ” , ”LMVAR” , ”QR” , ”True ”) ,

c o l = c (” red ” , ” blue ” , ” green ” , ” black ”) ,
l t y = c (1 , 1 , 1 , 2 ) ,



x = ” t o p l e f t ”)
}

D.3 Code for OLS regression

This code produces the graphs and values for the OLS regression model.

#load the same datase t as with the other models
source (” Model dataset c r e a t i o n .R”)

#run lm
lm <− lm( t o t a a l ˜ . , data = model dataset , subset = t r a i n )
lm$pred <− p r e d i c t ( lm , newdata = model dataset ) %>%

as . data . frame ( ) %>%
‘ colnames<−‘(c (”mu”) ) %>%
mutate ( q = pnorm( mode l datase t$ to taa l , #c a l c u l a t e q u a n t i l e s

mean = mu,
sd = sigma ( lm ) ) ) %>%

mutate ( r e s = mu − mode l da ta s e t$ to taa l )

l i b r a r y ( glmnet )
l m l a s s o c v <− cv . glmnet ( y = mode l da ta s e t$ to taa l [ t r a i n ] ,

x = model dataset . matrix [ t ra in , ] )
l m l a s s o <− glmnet ( y = mode l da ta s e t$ to taa l [ t r a i n ] ,

x = model dataset . matrix [ t ra in , ] ,
lambda = lm lasso cv$ lambda . min )

l og ( lm lasso cv$ lambda . min )
p l o t ( l m l a s s o c v )

rm( l m l a s s o c v )

#LASSO p r e d i c t i o n s with q u a n t i l e s
lm la s so$pred <− p r e d i c t . glmnet ( lm las so ,

newx = model dataset . matrix ) %>%
as . data . frame ( ) %>%
‘ colnames<−‘(c (”mu”) ) %>%
mutate ( q = pnorm( mode l datase t$ to taa l ,

mean = mu,
sd = sigma ( l m l a s s o ) ) ) %>%

mutate ( r e s = mu − mode l da ta s e t$ to taa l )

########################################################
#c o e f f i c i e n t t a b l e
lm coe f <− merge ( as . data . frame ( as . matrix ( c o e f ( l m l a s s o ) ) ) ,

as . data . frame ( l m $ c o e f f i c i e n t s ) ,
by = 0 , a l l = T) %>%

r e p l a c e ( i s . na ( . ) , 0) %>%
‘ colnames<−‘(c (” Feature ” , ”LASSO” , ”OLS”) ) %>%
mutate (” d i f f e r e n c e ” = abs (OLS − LASSO) )

#Density p l o t f o r the f e a t u r e beta c o e f f i c i e n t s
lm coe f %>%

f i l t e r ( Feature != ”( I n t e r c e p t )” ) %>%
s e l e c t (LASSO, OLS) %>%
gather ( key = ”Model ” , va lue = ”Beta value ”) %>%
ggplot ( aes ( x = ‘ Beta value ‘ , f i l l = Model ) ) +
geom density ( alpha = 0 . 5 ) +
theme bw ( )



rm( lm coe f )

################################################
#c a l c u l a t e R2
SS tot <− var ( mode l da ta s e t$ to taa l [ t r a i n ] )

lm R2 <− l i s t ( )
lm R2$R2 <− summary( lm) $r . squared
lm R2$R2 adj <− summary( lm) $adj . r . squared
lm R2$R2 oos <− 1 − mean( lm$pred$res [ t e s t ] ˆ 2) / SS tot

#redo f o r LASSO
lm lasso R2 <− l i s t ( )
lm lasso R2$R2 <− lm las so$dev . r a t i o
lm lasso R2$R2 adj <− 1 − (1 − lm lasso R2$R2 ) ∗

( lm las so$nobs − 1) / ( lm las so$nobs − l m l a s s o$d f − 1)
lm lasso R2$R2 oos <− 1 − mean( lm la s s o$pr ed$ r e s [ t e s t ] ˆ 2) / SS tot

rm( SS tot )

#p lo t histogram of q u a n t i l e d i s t r i b u t i o n
h i s t ( lm$pred$q [ t e s t ] , breaks = 100 ,

main = NULL,
xlab = paste (” Assigned q u a n t i l e ” ) )

a b l i n e (h = length ( t e s t ) / 100 , c o l = ” red ”)

h i s t ( lm la s so pred$q [ t e s t ] , breaks = 100 ,
main = NULL,
xlab = paste (” Assigned q u a n t i l e ” ) )

a b l i n e (h = length ( t e s t ) / 100 , c o l = ” red ”)

ks . t e s t ( lm$pred$q , pun i f )
ks . t e s t ( lm las so pred$q , pun i f )

D.4 Code for LMVAR models

The code produces the graphs and values for the LMVAR models.

#load the same datase t as with the other models
source (” Model dataset c r e a t i o n .R”)

#run LMVAR model
l i b r a r y ( lmvar )

LMVAR <− lmvar : : lmvar ( y = mode l da ta s e t$ to taa l [ t r a i n ] ,
X mu = model dataset . matrix [ t ra in , ] ,
X sigma = model dataset . matrix [ t ra in , ] ,
intercept mu = T, i n t e r c e p t s i g m a = T)

LMVAR$pred <− p r e d i c t (LMVAR,
X mu = model dataset . matrix ,
X sigma = model dataset . matrix ) %>%

as . data . frame ( ) %>%
mutate ( q = pnorm( mode l datase t$ to taa l ,

mu,
sigma ) ) %>%

mutate ( r e s = mode l da ta s e t$ to taa l − mu)

#f e a t u r e s e l e c t i o n
LMVAR fwbw <− fwbw(LMVAR, AIC)



LMVAR fwbw$pred <− p r e d i c t ( LMVAR fwbw$object ,
X mu = model dataset . matrix ,
X sigma = model dataset . matrix ) %>%

as . data . frame ( ) %>%
mutate ( q = pnorm( mode l datase t$ to taa l ,

mu,
sigma ) ) %>%

mutate ( r e s = mode l da ta s e t$ to taa l − mu)

#COEFFICIENT PLOTS
#Mu c o e f f i c i e n t dens i ty p l o t
LMVAR coef mu <− merge ( as . data . frame ( LMVAR$coefficients mu ) ,

as . data . frame ( LMVAR fwbw$object$coefficients mu ) ,
by = 0 , a l l = T) %>%

‘ colnames<−‘(c (” Feature ” , ”LMVAR” , ”LMVAR fwbw”)) %>%
r e p l a c e n a ( l i s t ( ‘LMVAR fwbw‘ = 0) )

LMVAR coef mu %>%
f i l t e r ( Feature != ”( I n t e r c e p t )” ) %>%
s e l e c t (LMVAR fwbw, LMVAR) %>%
gather ( key = ”Model ” , va lue = ”Mu beta value ”) %>%
ggplot ( aes ( x = ‘Mu beta value ‘ , f i l l = Model ) ) +
geom density ( alpha = 0 . 5 ) +
theme bw ( )

rm(LMVAR coef mu)

#sigma c o e f f i c i e n t dens i ty p l o t
LMVAR coef sigma <− merge ( as . data . frame ( LMVAR$coeff ic ients sigma ) ,

as . data . frame ( LMVAR fwbw$object$coef f ic ients s igma ) ,
by = 0 , a l l = T) %>%

‘ colnames<−‘(c (” Feature ” , ”LMVAR” , ”LMVAR fwbw”)) %>%
r e p l a c e n a ( l i s t ( ‘LMVAR fwbw‘ = 0) )

LMVAR coef sigma %>%
f i l t e r ( Feature != ”( I n t e r c e p t )” ) %>%
s e l e c t (LMVAR fwbw, LMVAR) %>%
gather ( key = ”Model ” , va lue = ”Sigma beta value ”) %>%
ggplot ( aes ( x = ‘ Sigma beta value ‘ , f i l l = Model ) ) +
geom density ( alpha = 0 . 5 ) +
theme bw ( )

rm( LMVAR coef sigma )

#p lo t histogram of q u a n t i l e s
h i s t (LMVAR$pred$q [ t e s t ] , breaks = 100 ,

main = NULL,
xlab = paste (” Assigned q u a n t i l e ” ) )

a b l i n e (h = length ( t e s t ) / 100 , c o l = ” red ”)

h i s t (LMVAR fwbw$pred$q [ t e s t ] , breaks = 100 ,
main = NULL,
xlab = paste (” Assigned q u a n t i l e ” ) )

a b l i n e (h = length ( t e s t ) / 100 , c o l = ” red ”)

ks . t e s t (LMVAR$pred$q [ t e s t ] , pun i f )
ks . t e s t (LMVAR fwbw$pred$q [ t e s t ] , pun i f )

#R squareds
r s q u a r e d a d j <− f unc t i on (R2 , n , k ) {



re turn (1 − (1 − R2) ∗ (n − 1) / (n − k − 1) )
}

LMVAR R2 <− l i s t ( )
LMVAR R2$R2 <− p p u t i l s : : r squared (LMVAR)
LMVAR R2$R2 adj <− r s q u a r e d a d j (LMVAR R2$R2,

l ength ( t r a i n ) ,
l ength ( LMVAR$coefficients mu ) )

LMVAR R2$R2 oos <− 1 −
mean(LMVAR$pred$res [ t e s t ] ˆ 2) /
var ( mode l da ta s e t$ to taa l [ t r a i n ] )

LMVAR fwbw R2 <− l i s t ( )
LMVAR fwbw R2$R2 <− p p u t i l s : : r squared ( LMVAR fwbw$object )
LMVAR fwbw R2$R2 adj <−

r s q u a r e d a d j (LMVAR fwbw R2$R2 ,
l ength ( t r a i n ) ,
l ength ( LMVAR fwbw$object$coeff icients mu ) − 1)

LMVAR fwbw R2$R2 oos <− 1 −
mean( LMVAR fwbw$pred$res [ t e s t ] ˆ 2) /
var ( mode l da ta s e t$ to taa l [ t r a i n ] )

rm( r s q u a r e d a d j )


