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Abstract

The quantum transport in the sub-gap regime (|E| ≤ |∆0|) in
magnetic-superconducting-topological heterostructures was modelled
using the Bogoliubov-de Gennes equations in combination with the
recurrence relations. Following the prediction by Fu and Kane [1], an
interface between a magnetic- and (s-wave) superconducting topolog-
ical insulator was shown to host chiral Majorana modes in the form
of Andreev bound states. Zero-energy Majorana modes are a fruit-
ful approach to fault-tolerant topological quantum computing [2]. A
novel mechanism to invert the chirality of the Majorana modes in such
systems is proposed. To study the effect of the Andreev bound states
on the electrical transport properties, the multiple Andreev reflection
spectra in a topological Josephson junction consisting of a magnetic
tunnel barrier are computed using the recurrence relations. A rela-
tionship between the location of resonance peaks in the computed
I, V -curves for the topological Josephson junction and the Andreev
bound state energies is established.
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1 Introduction

In this thesis, the physics governing the behaviour of charge carriers in a
system comprising of multiple interfaces between varying types of quantum
materials is investigated. A custom-made tool was developed to predict var-
ious quantum transport parameters such as the conduction through and the
transparency of a composite system of such interfaces. The modelled sys-
tems consist of the interfaces between superconducting, topological, and mag-
netic materials. The constructed tool automates the process of solving the
Bogoliubov-de Gennes equations, which describe the charge carrier’s wave-
functions in each material, and combines them with the (Andreev) scattering
processes occurring at the modelled interfaces to effectively and efficiently
compute quantum transport properties.

The foundation of the presented analysis is inspired by the work of Blon-
der Tinker and Klapwijk [3]. Further knowledge on the physics governing
the transport near interfaces between magnetic and superconducting topo-
logical materials is of great interest considering the prediction by Fu and
Kane [1] on the potential existence of chiral Majorana states in the form of
zero energy Andreev bound state therein. The existence of Majorana states
in solid-state physics has been a topic of discussion for decades as they could
form the building blocks for the quantum bits (qubits) in a so-called topo-
logical quantum computer proposed by Kitaev [2]. An operational quantum
computer would not only reduce the energy consumption of certain types of
computations, but it also allows for the employment of various quantum al-
gorithms proposed to model and study problems in medicine[4], networking,
and finance [5] that are currently unsolvable with conventional supercomput-
ers.

In the coming introduction, we shortly discuss the field of quantum com-
puting and focus on the topological quantum computer. We define the core
concepts in topological quantum computing and give adequate references
to detailed discussion in literature. Next, we dive into the most promising
candidate that could serve as a building block for a topological quantum com-
puter called a Majorana mode. Subsequently, we discuss Majorana modes
and explain how they can emerge in condensed matter systems and focus on
the approach taken in this work. We close the introduction by sketching the
outline of this thesis.
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1.1 Quantum computing

In the past several decades our society has become fully dependent on the
availability, reliability and security of the modern age information technol-
ogy that advances in conventional computing have brought us. Banking,
medicine, academia, the automotive industry, and various leisure activities
all require the usage of a computer in any way shape or form. This increas-
ing demand was and is the driving force behind the technological innovations
in semiconductor-based computer chips that are responsible for faster, bet-
ter and cheaper electronics. This progress went hand in hand with the size
reduction of the computer chips, best captured by Moore’s law [6]. The in-
creasing demand on conventional computers has pushed its building blocks
to their fundamental size limits where quantum mechanical effects halter fur-
ther improvements of the conventional technology putting an expected stop
to Moore’s law [7].

Rather than fighting against the quantum effects emerging at the smallest
length scales, quantum computers embrace these effects by considering pre-
cisely those effects as the foundation of their units of computation. The field
of quantum computing builds on notions from quantum physics to investigate
novel ways to probe computational power in computing science. At its core,
quantum computing relies on the principles of superposition and quantum
entanglement to build and manipulate its units of computation called qubits
(quantum bits). A given quantum system (e.g. qubit) can be in a simultane-
ous superposition of many different states [8]. A conventional computer uses
bits as units of computing that can either be in an on (1) or off state (0), so
a system consisting of a sequence of n bits spans a space of 2n unique binary
configurations. Through the principle of superposition, a qubit can be in a
superposition of linear combinations of any of those unique configurations
at the same time. This vastly enlarges the realm of possible configuration
states. Ordinary computations with qubits in superposition of many states
are not trivial and require adapted algorithms called quantum algorithms.
For an excellent detailed overview of the principles of quantum computing
and quantum information the reader is referred to [8], [9].
Already in the 1980s the idea of quantum computing was suggested by
Yuri Manin [10], Richard Feynman [11], and Paul Benioff[12]. Shor’s 1994
discovery[13] of an efficient quantum algorithm for integer factorization in
polynomial time sparked a further interest in the field of quantum comput-
ers. This is because most current online security systems rely on the public
key cryptosystem called RSA[14], and RSA is built on the inability of con-
ventional computers to factor large prime numbers. Fortunately, a form of
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quantum cryptography [15] is robust against quantum algorithms. The sole
purpose of the field of quantum computing is not to oppose the threat of
breaking modern RSA based encryption it posed itself by countering it with
quantum cryptography. Fully operational quantum computers would, namely
offer a wide range of applications ranging from energy-efficient computing;
and solving complex networking problems [5]; to the biological sciences and
medicine [4].

The first small 2-qubit quantum computer was built as early as 1997, and
in 2001 an operational 5-qubit optical quantum computer successfully found
the prime factors of the number 15 [8]. A demonstration of the state of the
art operational quantum computer is Google’s ‘quantum supremacy’ experi-
ment [16], in which a quantum computer performed a complicated sampling
task on 53 qubits that is claimed to be no longer viable in a reasonable time
on the largest existing conventional supercomputer [8].

The usage of quantum computers is however not widespread. This is due
to the heavy constraints put on a quantum system that is to be used as a
reliable qubit. The most notable requirements were first described by DiVin-
cenzo and Loss [17] and can be summarized as [9]: ” a qubit should be able
to be prepared in, at least, two distinct states (like the ’0’ and ’1’ in bits);
the states are weakly coupled to avoid information losses giving rise to low
decoherence rates on the long time scale; we can switch between the states
using a controlled unitary transformation; and we can perform state-specific
quantum measurements to get a reliable readout ”.

The restrictive criteria imposed on physical systems to be used as qubits
pose practical problems haltering the physical realizations of quantum com-
puters. However, as early as the 1990s in relatively short succession to the
development of the first quantum algorithms, physical systems potentially
hosting entangled states suitable to be used as a qubit were already sug-
gested. The proposed systems came from various fields of physics. These
fields were nanophysics, condensed matter physics, nuclear physics, optics,
and topology. Many of the initially proposed ideas remain a fruitful fields of
study since there is still a great interest in the potential for qubits based on,
for instance quantum dots [18], bulk nuclear magnetic resonance [19], linear
optics [20],[21], and topological materials [22]. In this work we focus on the
former class, i.e. we model the quantum transport in materials that show
potential to be used as building blocks for a so-called topological quantum
computer.
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Topological quantum computation is the pursuit to store and manipulate
quantum information using so-called non-abelian anyons. Anyons are quasi-
particle excitations of a topological phase of matter1 that are neither bosons
(integer spin) nor fermions (half-integer spin) [23]. Given two indistinguish-
able particles in 2D, anyons can be defined [24] as the class of particles that
gain a complex phase different from −1 or 1 upon the clockwise exchange of
the two particles. Recall that by the Pauli exclusion principle [25] the class of
particles whose wavefunction gains a factor -1 (1) are called fermions (bosons)
- these are anti-symmetric (symmetric) under such an exchange. Elementary
computations on a topological quantum computer are done by braiding quasi-
particles and the subsequent measurement of the formed multi-quasiparticle
state [26]. Anyons that satisfy the property that for two elementary braiding
operators the order in which we apply them matters are called non-Abelian
anyons.

Yuri Kitaev showed that in a two-dimensional quantum system unitary
transformations performed by moving the anyonic excitations around each
other gives rise to quantum computations that are fault-tolerant by their
physical nature [2]. Non-abelian anyons are described by a degenerate energy
spectrum giving rise to non-local properties. This non-locality protects them
from errors caused by local perturbations giving rise to the fault tolerance of
a topological quantum computer [23]. Three main classes of systems possi-
bly hosting non-Abelian anyons are fractional quantum Hall states, intrinsic
p−wave superconductors, and topological superconductors in heterostruc-
tures [27]. The most promising and experimentally most tractable candi-
dates to perform topological quantum computations are localised (pairs of)
zero-energy Majorana modes in superconducting heterostructures [22]. We
will consider those in the next section.

1.2 Majorana modes

A Majorana mode in solid-state physics is the emerging quasiparticle exci-
tation that is its own anti-particle. It is named after the Majorana fermion
postulated by Ettore Majorana [28], but does not constitute a fundamental
particle. The fact that a Majorana mode is its own antiparticle means that
by definition it should be charge- and spin-less. Already suggested in 1937,
the Majorana fermion has never been experimentally observed. In the field

1Technical terms such quasiparticle excitations of a topological phase of matter will be
discussed at length in the coming theory chapters.

4



of (theoretical) high energy physics, the particle however continues to pop
up in discussions of the nature of neutrinos and open questions about dark
matter[29]. In condensed matter physics the Majorana ‘particle’ enters the
stage as a state suggested to obey the non-Abelian anyonic statistics required
in topological quantum computing. In this section, we introduce the funda-
mental properties of (chiral) Majorana modes in the context of this work.
The reader is referred to [22], [27], and [30] for a detailed overview of the
physics governing Majorana modes in condensed matter.

In contrast to the Majorana fermion, a Majorana mode is a quasiparticle
excitation, and not a fundamental particle (e.g. protons and electrons). This
means that a Majorana in condensed matter physics emerges as a simultane-
ous combination of excitations of fundamental particles (e.g. electrons and
holes) of a state of matter (e.g. a topological superconductor). We consider
electrons as filled states with an energy E above the Fermi level2 Ef , and
holes as the oppositely charged absence of states with an energy −E below
the Fermi level. To describe Majorana modes in operator language we in-
troduce the electronic field operators c†σ(E) and cσ(E) creating(adding) and
annihilating(removing) an electron with spin σ and energy E from a state.
Here the ‘dagger’ superscript † is the Hermitian conjugate. We also introduce
the creation and annihilation operator associated with a Majorana mode, as
γ†(E) and γ(E). The relation that a Majorana particle is its own antiparticle
then implies γ = γ†.

In a system having particle-hole symmetry, creating a quasiparticle with
energy E or removing one with energy −E are identical operations. Phrased
in operators this reads

γ(E) = γ†(−E), (1.1)

for γ†(E), (γ(E)) creating (annihilating) a particle in a particle-hole symmet-
ric system at energy E relative to the Fermi energy Ef . This means that only
at the Fermi level E = 0, we have γ(0) = γ = γ†. Furthermore this shows
that Majorana modes necessarily occur at E = 0 in particle-hole symmetric
systems.

We will show in the coming theoretical survey in section 2.1 that an
s-wave superconductor obeys particle-hole symmetry and its quasiparticle

2The Fermi level is defined at zero temperature as the energy of the electron in the
highest occupied momentum state. At T = 0 this is equivalent to the energy required
to add an additional electron called the chemical potential. Often the two notions are
(erroneously) used interchangeably at finite temperature.
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Figure 1: Image from [32]: a two dimensional illustration of the pair potentials of s-wave
(left) and p-wave (right) superconductors. For s-wave superconductors, the pair potential
is isotropic, for p-wave superconductors, the pair potential has a strong angle dependence,
∆ = ∆0 cosφ, where φ is the angle made with a horizontal line. Colour coding has been
used to indicate the sign of ∆.

excitations are a superposition of electron and hole excitations. Since elec-
trons and holes have opposite charge, and opposite energies relative to Ef we
have that, c.q. (1.1), zero energy excitations in a superconductor are charge
neutral and equally electron-like (particle) hole-like (anti-particle) [30]. Su-
perconductors therefore provide a natural basis for such chargeless Majorana
modes. Based on that we might naively construct a ‘Majorana’ excitation
in a superconductor as a linear combination of these hole and electron cre-
ation operators, γ† = αc†σ + βc−σ, for α, β ∈ C, such that the total state
is chargeless. However, this form is distinct from its ‘anti-particle’ version,
γ = (γ†)† = β∗c†−σ +α∗cσ because of the opposite spin. This means that in a
pure s-wave superconductor Majorana states can not exist. If we had a spin-
less version of the above system, then we might have zero energy Majorana
modes. Fortunately Read and Green showed in their seminal work [31] that
in the spinless chiral px + ipy superconductors Majorana states emerge when
in contact with a material breaking time reversal symmetry (e.g. a magnet).
The difference between an isotropic s-wave (singlet) superconductor and an
an-isotropic p-wave (triplet) superconductor is illustrated in figure 1. Please
note that we construct linear combinations of p-waves to form e.g. px + ipy-
wave superconductors.

The emergence of Majorana states in spinless p-wave superconductors
sounds promising, but actual materials exhibiting such p-wave superconduc-
tive pairing are still to be found (Sr2RuO4 is a promising candidate [33]).
An analogous system can however be constructed by inducing superconduc-
tivity onto the 2D surface states of a 3D topological insulator (topological
insulators are discussed in section 2.3). As was shown by Fu and Kane [1]
the s-wave superconductivity induces a px + ipy-wave like superconductive
pairing into the 2D edge states. They predicted for a heterostructure of an
s-wave superconductor in contact with a topological insulator and a material
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Figure 2: Top view of a 2D topological insulator, contacted at the edge by two supercon-
ducting electrodes separated by a magnetic tunnel junction. A pair of Majorana fermions
is bound by the superconducting and magnetic gaps. In red we indicate the spatial loca-
tion the Majorana bound states are predicted to be localized. The figure is an adaptation
of [30]

that breaks time-reversal symmetry (e.g. a magnetic active material) the ap-
pearance of Majorana modes in the form of so-called Andreev bound states.
Figure 2 illustrates the Majorana states bound at the interfaces in such a
heterostructure.

An alternative system, proposed by Kitaev [34], is the superconducting
1D quantum wire potentially hosting Majorana’s. In this field, this is the
most probed both theoretically and experimentally. Similar to the work by
Read and Green[31] where Majorana modes were suggested to be pinned at
magnetic active sites (magnetic vortices or an interface to a magnetic ma-
terial) within a p-wave superconductor, the so-called Kitaev chain supports
the appearance of Majorana modes near the ends of a superconducting wire.
Again, this toy-model supposes the existence of a p-wave superconductor,
but it was found that by inducing s-wave superconductivity into a semicon-
ducting nanowire with strong spin-orbit (Rashba) coupling, and placing it
in external magnetic fields [35][36] a system analogous to the Kitaev chain
could be formed [22].

Having considered various systems potentially hosting Majorana modes,
we close this section by summarizing the properties of chiral Majorana’s and
describing possible experiments to detect them. In condensed matter systems
a Majorana mode,

• Is its own antiparticle γ = γ†

• Is a quasiparticle and not a fundamental particle

• Occurs at zero energy (relative to the Fermi level)

7



• Is spinless

• Is chargeless

For all practical purposes in their application in topological quantum com-
puting, they should emerge in a pair of spatially separated localized Majorana
zero modes[27].

In passing, the term chiral Majorana was mentioned. The chirality here
refers to the direction of motion of the Majorana mode along the surface
near which it is located. Consider for instance the edge state in figure 2.
On the 2D surface states in the topological insulator, edge states occur that
are analogous to those in the quantum Hall systems [37]. The emerging
Majorana mode that is pinned at the magnet’s surface, adopts the same di-
rection of motion as the edge state, thus giving it a chirality. The term chiral
Majorana is often used to describe a mode initially at zero energy, obeying
the criteria above, that through some external effect (magnetic orientation,
chemical potential, etc) has gained a finite energy and becomes de-localized.
In that sense, the chiral Majorana mode (CMM) is not strictly a Majorana
zero mode anymore, but by a continuous change of said external parameter,
it can be brought back to the zero energy state. The chirality of the Majo-
rana modes is shown to be a controllable property [38][39] and is important
in proposed experiments for (chiral) Majorana detection [27].

We now list a couple of exemplary signatures of Majorana modes that
could be observed experimentally. We state the most notable Majorana
characteristics that can arise, the reader is referred to the cited works for
more details.

• Josephson current3 effects. The detection of a so-called zero-bias con-
ductance peak occurring at zero bias voltage would be a smoking gun
of zero-energy Majorana modes [27]. Alternatively observing a 4π-
periodic Josephson effect would too [30]. Here the periodicity is with
respect to the superconducting phase difference over the two supercon-
ductors. Moreover, one of the key experimental electrical transport
observables are I, V characteristics, and the presence of Majorana zero
modes is predicted to show up as resonances and steps in the current
at predictable bias voltages [40],[41].

3The Josephson current is the unique current that starts to flow between two super-
conducting current leads that have a so-called superconducting phase difference and are
connected by some form of link (e.g. contact resistance, tunnel barrier). This will be
clarified in section 2.1
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• Tunneling signatures of Majorana modes. Direct detection of Majorana
bound states through tunnelling spectroscopy can be done by observing
a conductance of 2e2/h that without Majorana bound states would be
absent [30].

• Interferometry. Observing discrete conductance oscillations for a vary-
ing applied magnetic flux in a ferromagnetic insulator-3D topological-
superconductor heterostructure would provide clear evidence for chiral
Majorana edge states in the system [27].

• Thermal transport properties. Collective properties of Majorana modes
can be detected in thermal conductance. [30]. Moreover, the inverted
chirality (changing the direction of motion) of CMM would be visible
in transport experiments both in thermal and in electrical conduction
[39].

1.3 Modelling superconducting topological hetereostruc-
tures

We have identified two distinct approaches to Majorana modes in super-
conducting systems. On the one hand, we have the intrinsic px + ipy-wave
superconductors and on the other hand, we have the ’induced’ p-wave su-
perconductors. The latter class is further divided into the superconducting
nanowires, and heterostructures of an s-wave superconductor, a 3D topolog-
ical insulator, and a magnetic active site. These systems can mathemati-
cally be described by using different machinery in different regimes. For in-
stance one can study the assumed intrinsic p-wave superconductors in a dirty
(very diffusive) limit using Green’s functions techniques [42][32]. Similarly,
many efforts are done towards modelling the intrinsic and induced p-wave
superconductivity Kitaev chains using the Bogoliubov-de Gennes equations
as reviewed in [43]. In this thesis, we will model the quantum transport in
the heterostructures consisting of 3D topological insulators, s-wave super-
conductors, and (ferro)magnetic insulators using the Bogoliubov-de Gennes
equations (described in chapter 3).

To illustrate the type of heterostructures considered in this study we
show figure 3. Here we see a 3D topological insulator (TI) with 2D surface
states indicated in grey, on top of which s-wave superconductors (S) and a
ferromagnetic insulator (F) are placed. The superconductors locally induce
superconductivity into the 2D surface states beneath it. In this way, we
form a region that is referred to as an (induced) superconducting topological
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Figure 3: Simplistic schematic of a superconducting topological junction that hosts MAR.
From left to right the system consists of an STI, TI, MTI, TI and STI. The STI and MTI
are formed by the ferromagnetic insulator (F) and s-wave superconductor (S) stacked
vertically on top of the 3D topological insulator (TI), through the proximity effect. The
width of the MTI and the TI segments are indicated. The axis system is illustrated such
that k is in the 2D xy-plane and the magnetic orientation in F is along z.

insulator (STI). Similarly, the magnetization m in the ferromagnetic insula-
tor induces ferromagnetism into the TI region below it forming a so-called
magnetic topological insulator (MTI). We might consider slight variations
or sub-parts of the system in figure 3. In a 3D TI, all charge is (theoreti-
cally) carried by 2D surface states, thus our domain of computation is the
2D region4 on the top side of the TI on which locally superconductivity or
magnetism is induced. This means that we only consider charge carriers
moving in the x, y-plane.

When we consider the superconductors on either end of the system in
figure 3 as current leads, we get a so-called topological Josephson junction.
The term Josephson junction is used to describe a system of superconducting
leads connected by some form of a link, be it a quantum dot, (tunnel) barrier
or interface. In the limit that the distance d between the superconductors
and ferromagnetic insulator goes to zero, we get two interfaces between an
STI and MTI that are claimed [1] to host chiral Majorana modes in the form
of Andreev bound states.

In light of the predicted Majorana modes emerging in topological - su-
perconducting - magnetic heterostructures and their intriguing application

4If we ignore the interference effect from the underlying bulk states on the surface
states, which is observed experimentally [44].
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in topological quantum computing, the academic ground to research them
further is apparent. In literature the quantum transport of systems such
as figure 3 has been studied in the 1D limit in [40][41],[45]; a MTI-TI-STI
sub-system was shown to host controllable chiral Majorana modes [38]; and
an attempt to model multiple Andreev reflections in 2D [46] proved promis-
ing. In this thesis, we hope to further the discussion in [46] by modelling
the quantum transport using the Bogoliubov-de Gennes equations to study
the physics governing the different scattering mechanisms taking place at the
various interfaces in figure 3.

The structure of this thesis is as follows. We first qualitatively introduce
key notions and concepts from superconductivity and topological materials
in chapter 2. Here we introduce the physics governing s-wave superconduc-
tivity and the scattering mechanism occurring at interfaces with a supercon-
ducting material, that is key to this work, called Andreev reflections. The
reason for the interest in s-wave superconductivity, is the proposed [1] equiv-
alence between induced s-wave superconductivity into topological surface
states and p-wave superconductivity. From the concept of Andreev reflec-
tion, we describe multiple Andreev reflections and the formation of Andreev
bound states. Next, we discuss the origin of topological materials and their
place in this work.

After this qualitative introduction, in chapter 3 we introduce and de-
scribe the set of so-called Bogoliubov-de Gennes equations (BdG) used to
make quantitative predictions in this analysis. In short, the BdG equations
are coupled Schrödinger equations describing the wavefunctions in supercon-
ducting materials. We re-derive the BdG equations to accommodate topolog-
ical (spin-orbit coupling) and magnetic (Zeeman term) effects, and write this
into a matrix Schrödinger form, HBdGφ = Eφ. Then we solve for the plane
wave eigenvector solutions to the BdG Hamiltonian in matrix form. We close
this section with a discussion on the (broken) symmetries of the BdG Hamil-
tonian. The derived wavefunction eigensolutions to the BdG Hamiltonian
are used to compute the complex coefficients associated with the reflection
and transmission of plane wave wavefunctions inbound on e.g. an interface
between two materials of varying kinds. The derivation of the wavefunctions
and the computation of the wavefunction amplitudes are all automated us-
ing a custom made tool described in chapter 4. The type of computations
automated by the tool are in essence trivial steps but are prone to error,
repetitive and time-consuming.

In chapter 5 the outcome of the tool is used to model and predict various
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quantum transport properties such as the transmission through a tunnel
barrier, the formation of chiral Majorana modes in the form of Andreev
bound states in a bilayer system, the effect of said Andreev bound state on
the electrical conduction through a system, or the modulation of the DC
current as a function of the applied bias voltage (I(V ) curve) due to multiple
Andreev reflections. By applying the tool to such problems, we first validate
its correctness by re-deriving various results in literature [47], [38] and [41]
before applying it to uncover novel findings such as a new mechanism for
the inversion of chiral Majorana’s and the rich multiple Andreev reflection
spectrum for a 2D topological Josephson junction consisting of a magnetic
tunnel junction. These results are a basis for discussion and further research
(section 6).
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2 Reviewing theoretical concept of supercon-

ductivity and topological insulators

We are interested in the physics governing the behaviour of charge carriers
in a system comprising of (multiple) junctions between magnetic, supercon-
ducting and/or topological and materials. In order to model such systems, we
require knowledge on superconductivity and topology (in the context of con-
densed matter physics). This chapter provides an overview of the theoretical
framework underlying the governing physics. It comprises of a qualitative
introduction to superconductivity and topological materials and acts as an
introduction to the underlying physics we attempt to model in chapter 3. The
computation work in this thesis revolves around the Bogoliubov-de Gennes
equations, which are discussed, derived, and solved in chapter 3.

This chapter is structured as follows, we first qualitatively introduce su-
perconductivity and topological insulators in sections 2.1 and 2.3. In the
former section we briefly sketch the relevant (historic) background before we
focus on the concepts that are key to the further analysis, such as BCS-
theory, which is the most complete theory describing the microscopic origin
of superconductivity. Moreover by explaining BCS-theory we can in a natu-
ral way introduce notions that will become vital later on in this thesis such as
the (quasi)particle excitation spectrum, and Andreev reflections. After this
we delve further into the phenomenon of Andreev reflections in section 2.2
by considering the occurrence of a so-called Andreev bound state in a system
consisting of multiple interfaces. In section 2.3 we introduce the relevant no-
tions of topological mater in the context of condensed matter physics. The
reason for the interest in the combination of topology and these Andreev
bound states is the prediction by Fu and Kane [1] on the emergence of a
zero energy Majorana bound state as an Andreev bound state in certain
topological superconducting junctions.

2.1 Superconductivity

We first give a brief historical introduction to the field of superconductivity
before introducing the superconductivity concepts relevant to this work. The
historical account is mainly based on chapter 1 in [48], and the section on
the relevant concepts is based on chapters 6 and 7 in [48]. This abridged
introduction does not do credit to the rich field of superconductivity neither
from a theoretical perspective nor from an engineering one. The reader is
referred to the mentioned work for an elaborate overview of the subject.

13



Figure 4: Kamerlingh Onnes’ original[50] plot showing the measured resistance (Ω) as a
function of temperature (Kelvin). This observed rapid decrease in electrical resistance
around the critical temperature of 4.2K for mercury lead to the discovery of superconduc-
tivity.

2.1.1 The history of superconductivity

At the beginning of the 20th century the Dutch physicist Heike Kamerlingh
Onnes founded the cryogenics laboratory at the university of Leiden where
the lab would become the first to liquefy Helium. This breakthrough en-
abled the possibility to cool samples down to a few Kelvin. In 1911 whilst
studying the temperature dependency of mercury Kamerlingh Onnes was
the first to observe the hallmark of superconductivity [49]. He discovered
that for a temperature around 4K the electrical resistance of the mercury
suddenly dropped to zero (immeasurable) and even remain there for decreas-
ing temperatures. Kamerlingh Onnes was the first to measure the critical
temperature that marks the transition of a material from a resistive state to
a so-called superconducting state as seen in figure 4. In a superconducting
state a material has the capability to carry an electrical current without gen-
erating resistance, i.e., without requiring an applied voltage.

Kamerlingh Onnes’ findings stood in stark contrast to the leading ideas
and theoretical predictions on the temperature dependency of the resistivity
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Figure 5: Overview of superconducting critical temperatures for a variety of supercon-
ducting materials since the first discovery in 1911. Each color represents a certain class
of materials that was found to be superconducting. For instance, the dark green circles
indicate BCS materials, and the light blue diamonds Cuprates. Image courtesy of [52]

of metals. Soon after the original findings, several other metals were found
to be superconducting below a sufficiently low temperature as well. To il-
lustrate the broad range for the transition temperature we refer to figure 5,
showing the ever higher values of Tc achieved for particular materials starting
from the discovery of superconductivity for mercury in 1911 to the first ever
measurement of (almost) room temperature superconductivity more than a
century later [51].

After the initial discovery of superconductivity, the scientific interest
broadened towards ways, other than heating, that would destroy the super-
conducting state. It was observed that when placed in an external magnetic
field of a critical strength (Hcm) a sample would lose its superconducting
nature. By studying the temperature and magnetic field strength dependen-
cies simultaneously a T,H-phase diagram was constructed for various metals.
In these diagrams adjacent regions where a sample is superconducting and
where it is not were identified. Analogous to the phase transitions known
from thermodynamics, empirical theories were soon drawn up to account for
the T,H diagrams. The two fluid model by the London brothers[53] and the
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Figure 6: The superconducting order parameter |ψ| of a superconductor (S) penetrating
into the normal metal (N) with a length scale of the superconducting coherence length, ξ.
Image courtesy of [55]

Ginzburg-Landau[54] theory, that included quantum mechanics, being the
most successful ones.

Two important notions from Ginzburg Landau theory that will become
important later on in our investigations are the order parameter ψ(r) and
the coherence length ξ. The origin of the order parameter is based on the im-
portant physical insight that Landau and Ginzburg brought forward, namely
the combination of quantum mechanics with the physics of phase transitions
borrowed from thermodynamics. The observational evidence Ginzburg and
Landau aimed to describe was the phase transition between the supercon-
ducting and non-superconducting phase occurring at a critical temperature.
In a combined effort to unite quantum mechanics and the knowledge on phase
transitions, they introduced the order parameter as both the effective quan-
tum mechanical wavefunction of superconducting electrons and the quantity
that undergoes a second order phase transition. A second order phase transi-
tion is accompanied by a gradual change in the order parameter, while there
is a discontinuous change in a system’s symmetries at the transition temper-
ature.

From the order parameter introduced as the wavefunction describing the
superconducting electrons we can define a characteristic length scale called
the coherence length. Let the ψ(x) be the order parameter as a function of
some spacial coordinate x (for simplicity we consider only a single coordinate
here). Consider now a superconducting slab on which we deposit a thin film
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of normal metal at say x0. Close to the interface the normal metal becomes
slightly superconducting, whilst locally suppressing superconductivity on the
superconductor’s side as illustrated in figure 6. This means that in the su-
perconductor near the interface the order parameter is reduced relative to
the bulk inside the superconductor (where we set the order parameter to 1).
Hence here we have that |ψ(x ∼ x0)| < |ψ(x � x0)|. This phenomenon
is referred to as the superconducting proximity effect[48]. The coherence
length is defined as the characteristic length over which the order parame-
ter recovers to 1 when departing from the normal metal interface into the
superconducting material.

2.1.2 BCS theory

In the coming section we will introduce and describe quasiparticle excitations
in a ’regular’ s-wave superconductor using BCS theory, because later on we
will model quantum transport of those quasiparticle excitations in more com-
plex systems using the Bogoliubov-de Gennes equations. Following the dis-
covery of superconductivity, the empirical theories of Landau and Ginzburg
successfully predicted many remarkable properties of superconductors, these
empirical theories do not address the microscopic origin of superconductivity.
Bardeen, Cooper, and Schrieffer (BCS) were collectively the first to describe
the physical mechanism of superconductivity in their microscopic theory [56].
Please note that the BCS theory presented here is a microscopic theory that
correctly predicts many features for the class of so-called BCS superconduc-
tors, indicated by the dark green circles in figure 5. For many of the other
classes of superconductors BCS theory and its proposed phonon induced
electron-electron interaction is insufficient and advanced pairing mechanisms
and corresponding theories need to be constructed.

In the original microscopic theory for superconductivity [56] it was pro-
posed that superconductivity was due to a coupling between electrons medi-
ated by lattice vibrations (phonons in solid state physics language). This idea
was inspired by the isotope effect, i.e., the experimentally observed power law
dependency of the critical temperature on mass of the used isotope of super-
conducting metals. This observation suggested that the atomic lattice might
be an important player in these electron-electron interactions.

The Feynman diagram [57] describing a phonon mediated interaction is
given in figure 7. An electron pair with momenta labels (k1,k2) exchange
momentum, q, through a phonon-mediated interaction, and end up in the
momenta states (k1

′,k2
′). Let ω be the lattice frequency associated with

17



this exchanged momentum q. Then the order of magnitude for the displaced
momentum is set by the natural characteristic frequency of the lattice, i.e.,
the Debye frequency (ωD). This restriction limits the allowed momenta of
electrons undergoing the proposed phonon mediated pairing. Only those
electrons that are an energy ~ωD away from the Fermi level take part in
the attractive pairing. Roughly speaking, in a bulk superconductor, like in
a metal, Pauli’s exclusion principle tells us that electrons can not occupy
the same state, so there is an energy, defined as the Fermi level5 (chemical
potential) describing the (kinetic) energy of the highest occupied electron
state. We can translate the ~ωD restriction in energy for the BCS coupling
to momentum space, and visualize this as a slab of thickness 2∆k around the
Fermi surface. Similar to the Fermi level in energy, we have the Fermi surface
in momentum space. In momentum space, the lowest (kinetic) energy states
occupy to the lowest momenta states, and higher (kinetic) energy states re-
side at higher momenta states, until we arrive at the highest energy state, the
Fermi level, which then sets the limit for the momenta of the outer states on
the surface, called the Fermi surface. The states on the Fermi surface are a
distance kF (Fermi wavevector) away from the origin. In a 2D (3D) electron
gas the Fermi surface is a circle (sphere). The superconducting case shall be
discussed later when we discuss the superconducting ground state in section
2.1.3.

The conservation of momentum during the scattering illustrated in figure
7 restricts the possible momenta in the final state (k1

′,k2
′). Figure 8 shows

the possible allowed areas in k-space for the final state to be located. The
scattering amplitude for this interaction increases as the area of potential
outcomes increases. So observe that this region is maximal as q→ 0, hence
the pairing is the strongest when the wave vectors oppose. This explains the
reason for the pairing of electrons of opposite momenta in the BCS theory.
Such a pair of coupled electrons became known as Cooper pairs. Phrased in
the language of second quantization, Bardeen, Cooper, and Schrieffer showed
that such an interaction, when attractive and stronger than Coulomb repul-
sion, lowers the energy if electrons are coupled. This pairing renders the
Cooper pairs protected from (non-magnetic) scattering events, yielding the
superconducting state. The superconducting state remains for temperatures
below the material specific Tc, because then thermal excitations do not pro-
vide sufficient energy to break the Cooper pairs.

5We consider a material in its superconducting state, which implies a sufficiently low
temperature (few Kelvin), but at absolute zero the Fermi level coincides with the Fermi
energy, so the two notions might both be used in this context.
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Figure 7: A graphical representation of the proposed coupling mechanism in BCS theory,
two electrons (of momenta k1 and k2) interact with each other through the underlying
atomic lattice. The two electrons scatter to two new momenta states (k1

′ and k2
′) by

exchanging a momentum q via a lattice vibration. Formally speaking, this is a so-called
Feynman diagram describing the electron-electron interaction for an incoming electron
with initial momentum k1 emitting a phonon of momentum q that subsequently is ab-
sorbed by another electron with initial momentum k2. This figure is taken from [48].

2.1.3 Superconducting ground state

At absolute zero, the lowest energy configuration (ground state) for a super-
conducting metal is quite different from an electron gas. In fact, contrary to
a for instance an electron gas, the density of states is not a packed Fermi sur-
face with all states inside it occupied and the rest empty, but rather within
a distance ∆k from the Fermi surface there are respectively occupied and
unoccupied electron states. This is indicated in figure 9 and expresses the
phonon-mediated interaction between electrons near the Fermi level. The
existence of occupied states in the ground state above the Fermi level might
sound counter intuitive as these states possess a higher kinetic energy than
they would in say the ground state of an electron gas. This energy gain by
electrons occupying a higher energy state is however compensated by the
negative energy contribution due to the attractive electron pairing potential.
Pairing can only occur if a pair, say (k1,k2), can scatter to a previously empty
state (k′1,k

′
2), this gives rise to the unoccupied states within the Fermi level

in the ground state. The combination of the existence of unoccupied states
within and occupied states outside the Fermi surface, effectively smears out
the Fermi surface. This is similar to what happens for normal metals due to
thermal excitations, but in superconductors this smearing already occurs at
zero temperature.
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Figure 8: A figure describing the allowed areas in k-space for a phonon-mediated interac-
tion. For an initial state (k1,k2), the shaded region indicates the possible available states
to scatter into. This figure is taken from [48]

Bardeen, Cooper, and Schrieffer showed that relative to the ground state
energy, the energy cost due to the addition of a single electron at state k,
Ek, is given by6

Ek =
√
ε2
k + ∆2

0 =

√(
~2k2

2m
− ~2kf

2

2m

)2

+ ∆2
0 ≥ |∆0|, (2.1)

where εk is the kinetic energy for an electron in state k, kF is the Fermi
wavevector, and ∆0 is the superconducting energy gap (for conventional su-
perconductors). The superconducting energy gap is a material property and
has the units of energy. It is a measure for the cost of adding an excitation to
the superconducting ground state. It can be shown [48] that it scales globally
as

∆0 ≈
3.58

2
kbTc, (2.2)

where kb is the Boltzmann constant and Tc is critical temperature.

The spectrum (2.1) shows another signature of superconductivity, namely
that the excitation spectrum shows a gap about the Fermi level. This can
be seen by the fact that if we would like to excite a state from the ground
state, regardless the value of k, we require an energy Ek ≥ ∆0 i.e., no excited
states exist below an energy of ∆0. The separation between the ground state
energy and the excited energy levels is called the energy gap, hence the name
for ∆0. The spectrum shall be discussed at length in section 2.1.4

6See [48] chapter 6 for more details.
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Figure 9: An illustration of the ground state of a conventional superconductor in momen-
tum space. The shaded area within the large circle represents the Fermi surface in 2D and
the solid (empty) dots represent occupied (unoccupied) electron states outside (inside) the
Fermi surface. Even though the occupied electron states outside the surface have higher
kinetic energy, the superconducting pairing potential lowers the overall ground state en-
ergy making such a configuration energetically favorable. The relative distance from the
states to the Fermi surface is exaggerated for illustrative purposes. This figure is taken
from[48].

The superconducting ground state consists of paired charge carriers. In
order to break a pair, we need to create two excitations with their spectrum
described by (2.1). This implies that breaking a Cooper pair would require
the excitation of both constituent electrons beyond the gap, i.e., breaking a
Cooper pair would cost an energy of at least 2∆0. Coming back to the ques-
tion of how the Cooper pairs are protected from undergoing scattering events,
we combine the knowledge on the surprising configuration of the supercon-
ducting BCS ground state and the excitation spectrum. Electrical resistance
is due to the scattering of electrons as they get accelerated by an applied
external electrical field over some distance (voltage). In a superconducting
state, Cooper pairs are formed and breaking them would cost an energy of at
least 2∆0, hence many scattering events are energetically insufficient to break
them. The inability to scatter Cooper pairs gives rise to superconductivity.

2.1.4 Quasiparticle excitation spectrum

The excitation spectrum introduced in the previous section can be phrased
more formally using the notion of quasiparticles. Studying superconductiv-
ity in this setting will prove useful for later analyses, especially when we will
consider scattering events and for instance topology. Until now we consid-
ered the elementary excitations in superconductors as electron states either
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being occupied or empty. In this section we will define the notion of electron-
and hole-like quasiparticles. First we introduce holes by considering a nor-
mal metal, then we generalize this to the more complex superconducting case.

In case of a normal metal the ground state at zero temperature is as
sketched before, all states within the Fermi surface are occupied and all
those outside are empty. Suppose we add an electron to the system. The only
available states are those with momenta, k+ > kf , outside the Fermi surface.
This condition on its momentum yields a positive energy increase, relative
to the Fermi energy, for the total electron system of (~2k+ − ~2kf ) /2m . We
measure the energy relative to the Fermi level, so the excitation will have an
energy equal to this increase and the system a momentum equal to k+. We
can consider this as an electron excitation.

Now suppose the metallic ground state, as described above, but we pre-
pare it with an electron from a state k− < kf removed. The total system lost
k−, so we can see this is an excitation of momentum −k−. This configuration
is not in its lowest energy state, there is some ’extra energy’, namely, an elec-
tron from the Fermi surface at kf can for instance now move to this empty
state at k−. The moved electron has gained an energy of (~2kf − ~2k−) /2m
by doing so. We can therefore consider the initial configuration with a hole
present within the Fermi surface as being excited since it has a greater en-
ergy than the lowest energy configuration of the remaining electrons in the
metal.That is, the restored system where an electron kf went to k− has a
lower energy. Hence the configuration with an electron removed from the
ground state can be considered as an excitation with an energy equal to this
difference and a momentum equal to −k−. Since this excitation behaves as
an ’absent electron’ and has a positive charge we shall refer to it as a hole.

In case of a superconductor the ground state is as illustrated in figure 9
and described in section 2.1.3. Suppose we add an electron with momentum
k to it. Since there are empty available states both above and below the
Fermi level it will occupy one of the vacant states either with k < kf or
k > kf . This will however leave the originally paired state at −k unoccu-
pied. Contrary to a normal metal, an electron-like quasiparticle (excitation)
in a superconductor can either be inside or outside the Fermi surface due
to the nature of the superconducting ground state. Now consider the super-
conducting ground state but with an electron removed from the state −k.
Consequently, the initially paired complementary state at k uncouples. The
uncoupled electron will start to act as a hole with momentum k. As for
the electronlike quasiparticle this hole-like excitation can either be inside or
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outside the Fermi surface. Combing these two results gives us that the el-
ementary excitation of a superconductor for a state k being occupied and
the corresponding state −k being vacant is a combination of electron- and
hole-like behaviour.
.To formalize the concept of quasiparticle excitations we introduce two re-
lated functions of k, vk and uk, which are vital in the formal treatment of
BCS theory. Let vk be the function such that v2

k gives the probability that
the pair state (k,−k) is occupied, and uk such that u2

k denotes the probabil-
ity that it is unoccupied. Since the total probability should be unity, these
functions are related by

u2
k = 1− v2

k. (2.3)

Since a hole-like quasiparticle requires a state k to be initially occupied, the
probability that a quasiparticle acts hole-like is proportional to v2

k. Con-
versely its electron-like behaviour should be proportional to the probability
that the state that k is vacant, i.e., proportional to u2

k. The mixing of
these two notions becomes most apparent as v2

k and u2
k become of similar

size. Moreover, the behavior of the quasiparticle becomes purely hole-like or
electron-like as 2

k or u2
k tends to unity, respectively. It can be shown that in

BCS theory[48]

v2
k =

1

2

(
1− εk

Ek

)
, u2

k =
1

2

(
1 +

εk
Ek

)
. (2.4)

where εk =
(
~2k2 − ~2kf

2
)
/2m and Ek is as in (2.1). We note that as

k → 0 we see that εk → −~2kf
2/2m and Ek → ~2kf

2/2m (since typically
~2kf/2m � ∆0), thus v2

k → 1 and u2
k → 0 . Indeed these excitations deep

inside the Fermi surface, beyond a distance ∆k from the Fermi surface, are
hole-like and thus u2

k dominates over v2
k. Similarly using (2.3) and (2.4) we

can show the limiting behavior for v2
k → 1 for excitations well beyond the

Fermi surface for the electron-like states. Finally, we note for states on the
Fermi surface, k = kf , that v2

k = v2
k = 1/2 and the quasiparticle states are

equally electron- and hole-like.

Figure 10 illustrates the differences between these specified electron-like
and hole-like quasiparticle branches. On the left we see the known metallic
quadratic dispersion, and on the right we include the dispersion relation for
a superconductor in case the coupling term ∆0 is nonzero. Notable features
are the opening of a gap in the dispersion around the Fermi level, taken
at zero energy in this figure, and the transition from an electron-like to a
hole-like behavior for a single branch as seen in the top green curve. We
also indicate the limiting behavior in the electron-like versus hole-like nature
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Figure 10: A figure showing the quadratic dispersion relation for a metal (∆0 = 0) on the
left and the dispersion relation for a superconductor (∆0 > 0) together with the quadratic
dispersion on the right. We consider the projection onto a single k component on the x-
axis, and energy on the vertical axis. A shift of −Ef is taken to place the zero energy point
at the origin, and a nonzero chemical potential µ is assumed. The solid and dashed lines
indicate an electron- and hole-like branch respectively. The superconducting dispersion
relation shown corresponds to (2.1). Note that the relative size of the superconducting
gap is increased to highlight the notable features of the dispersion.

of our quasiparticles either for large or small momenta. A particular point
of interest is around k ≈ ±kf , because here our quasiparticles are equally
electron- and hole-like. This specific phenomenon is one of the key ingredi-
ents why superconductivity might be a fruitful route towards the realization
of Majorana modes. Since Majorana modes are, loosely speaking, defined as
’particles’ that are their own anti-quasi-particles, the specific excitations at
this inversion point where our quasiparticles are equally electron- and hole-
like satisfy one of the agreed requirements listed in section 1.2 that γ = γ†.

Lastly, we consider the propagation direction in real space which is given
by the group velocity of the quasiparticle

vg =
1

~
∇kEk, (2.5)

i.e., gradient of the dispersion relation w.r.t. the momentum k. For electron-
like quasiparticles the group velocity is in the same direction as the k-vector.
Consider for example an electron-like positive energy excitation with a pos-
itive momentum greater than kf , i.e., on the upper right part of the solid
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green line in figure 10. The group velocity, defined as the derivative of the
curve, is in the same direction as the momentum. This holds true for all
electron-like quasiparticles. Contrary, the hole-like quasiparticles propagate
opposite to their momentum. For instance hole-like quasiparticles populating
the upper right part of the dashed green curve have a positive momentum but
move towards the left. This difference is of interest when studying (Andreev)
scattering phenomena next.

2.2 Andreev reflections

Given a superconductor’s (quasiparticle) excitation spectrum in BCS theory
as discussed in section 2.1.4 we can study the phenomenon called Andreev re-
flection and the possible occurrence of a phase-coherent bound state resulting
from the Andreev reflections called an Andreev bound state. The relevance
of Andreev bound states in this thesis is based on the previously mentioned
prediction by Fu and Kane [1] on the possible existence of Majorana state
in the form of an Andreev bound state at the interface between a magnetic
and superconducting topological insulator. We first introduce Andreev re-
flections (AR) by considering a simple interface between a normal metal and
a superconductor. Please note that AR can equally well occur at an interface
in a system consisting of a topological insulator rather than a normal metal.
After the discussion of AR, the formation of Andreev bound states (ABS)
are discussed before explaining multiple Andreev reflections (MAR). These
three phenomena are treated in [48],[58] and [59].

In 1964 the Russian theoretical physicist Alexander F. Andreev[60] was
the first to accurately describe the reflection that occurs at the interface
between a normal metal and a superconductor (NS-interface). In short, an
Andreev reflection is the spin conserved charge transfer of 2e from a nor-
mal metal to a superconductor through the retroflection of an electron (hole)
to a hole (electron). Figure 11 shows Andreev reflection in real space. In
the figure, an incoming spin-up electron from N with an amplitude of 1 is
retroflected (θ → π + θ) as a hole with spin down, and a spin-up electron
is transmitted. The process seems to violate charge conservation, but this
will be addressed shortly. The reflected hole moves anti-parallel to the ini-
tial electron, but a hole’s momentum is opposite to its direction of motion,
so momentum is conserved in AR. Moreover, since a hole is considered as
an absent electron, the reflected spin-down hole describes the same spin as
the initial electrons, i.e., spin is conserved. AR is different from normal re-
flections, where the spin and particle type (thus charge) are conserved, but
momentum is not. In normal reflections, the horizontal momentum gets in-
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verted (θ → π−θ), but the vertical momentum is unchanged. To understand
the reason why AR occurs and its details we first introduce the proximity
effect and describe the NS-interface in more detail.

As described and seen in figure 6 in section 2.1.1, the proximity effect is
the simultaneous suppression of the order parameter in a superconductor(S)
and the increase of it in a normal metal (N) in the vicinity of an N-S inter-
face. In the language of BCS theory, the proximity effect can be explained
by considering the interface between a normal metal (N) and a superconduc-
tor (S) in 2D and the mechanical interface at x0. The Cooper pairs from S
penetrate into N and remain paired for a while, causing the formation of a
thin superconducting layer near x0. As the paired Cooper pairs leak from
S into N, their local density drops on the S side and as a result, the order
parameter drops. This drop is referred to as the proximity effect and occurs
over the characteristic coherence length scale ξ. Along with the drop in the
order parameter, the effect the superconducting energy gap has on the sys-
tem (and hence dispersion) also decreases the further we move from S into
N. Deep inside S, ∆(x � x0) = ∆0, and deep in N, ∆(x � x0) = 0. The
superconducting gap is continuously increased from zero, as x approaches x0,
and reaches ∆0 deep inside S. We can define the NS-interface as the region
in which these transitions of the order parameter and the superconducting
gap occur.

Now we can study the scattering process in more detail by considering the
Andreev reflection in figure 12 step by step in momentum space. Each panel
in figure 12 is a snapshot, in momentum space, of the process. The drawn
curves are the positive energy parts of the dispersion relations displayed in
figure 10. Per panel, we indicate a (quasi)particle, an electron- or hole-like
(quasi)particle is indicated by a filled or empty circle respectively with an
arrow indicating the spin orientation.

An incoming electron with energy E populates a state with positive k and
positive groups velocity. As the electron moves towards the NS interface, the
proximity effect causes the electron to start to experience the effect of the
superconducting gap on its dispersion, effectively transitioning the particle
to a quasiparticle. The quasiparticle gradually becomes more and more hole-
like due to the strengthening effect of the superconducting gap. Moreover,
its group velocity reduces until it becomes zero when the superconducting
energy gap equals the initial energy E at kf . It is at this point that the
quasiparticle moves to the hole-like branch with positive momentum, but
with a negative group velocity, so it starts to move away from the interface
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Figure 11: A figure illustrating, in real space, the Andreev scattering of an incoming spin-
up electron from a normal metal (N) with amplitude 1 travelling under an angle θ to a
spin-down hole with amplitude reh whilst transmitting a spin-up electron with amplitude
tee to a superconductor (S). The solid (empty) circles correspond to electron-like (holes-
like) quasiparticles. The retroflected hole is reflected with an angle of θ + π. The second
spin down electron in the superconducting material is drawn to illustrate the fact that the
incoming electron found itself an appropriate partner to form a Cooper pair with.

in opposite direction. We know however that a positive charge propagating to
the left is equivalent to a negative charge propagating to the right. Hence we
have described the 2e charge transfer from an incoming electron retroflected
by the NS interface as a hole, this process is called the Andreev reflection.
For completeness, we also mention here that at an NS interface also branch-
crossed transmission can occur as described in [3].

When looking critically at the discussion of the Andreev reflection above
one might argue that charge is not conserved in this process, however the so-
called condensate[48] in the superconductor remedies this. The condensate is
the name given to the collection of Cooper pairs in the superconductor. The
superconducting spectrum we considered in the dispersion relation in (2.1)
and correspondingly figure 10 is the spectrum of particles that get excited
from this condensate. This condensate is by no means static, continuously
Cooper pairs are broken and formed again through phonon mediated scatter-
ing. What happens during Andreev reflection is that the incoming spin up
electron with positive momentum transforms to a spin-up hole with positive
momentum as described in figure 12. The interaction with the condensate
can be seen as the initial electron pairing up with a spin down electron with
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(a) (b) (c)

(d) (e) (f)

Figure 12: A figure illustrating, in momentum space, the Andreev scattering of an incoming
electron to a hole. The drawn curves are the positive energy halve of figure 10. The solid
(empty) circles correspond to electron-like (holes-like) quasiparticles. The two indicated
energies are the incoming electron’s energy, E, and the value of the superconducting
gap, ∆(x), as a function of the distance, x, the incoming particle has travelled into the
NS junction. Initially, the electron in the normal metal obeys a metallic dispersion with a
positive group velocity (a). As it moves towards the superconductor it starts to experience
the effect of the superconducting energy gap, and its dispersion becomes that of a, mostly
electron-like, quasiparticle and its group velocity drops (b). This effect strengthens until
the quasiparticle becomes equally electron- and hole-like and its group’s velocity vanishes
(c) and it gets reflected. Now the quasiparticle moves onto a more hole-like branch with a
negative group velocity (d). The hole-like quasiparticle moves (far) away from the interface
and becomes a metallic hole excitation (e). The final panel emphasizes the equivalence
between an excited spin-down hole with positive momentum and a vacant spin up negative
momentum state in the electronic dispersion branch.
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negative momentum in the superconductor to form a Cooper pair, as seen
in figure 11, effectively leaving behind a vacancy in the electron branch in
at the spin-up state with negative momentum. From the entire state’s per-
spective, this vacancy is equivalent to an excited hole with opposite spin and
momentum, i.e. the reflected spin-down hole with positive momentum. This
last equivalence is depicted in the figure 11.f.

2.2.1 Andreev bound state

Suppose we now consider a system consisting of more than one interface of
which at least one is superconducting. At the superconducting interface,
Andreev reflections occur and at the other interface(s) different types of
reflection take place (e.g. normal reflection). Due to these consecutive re-
flections, charge carriers scatter back and forth between the interfaces and
an Andreev bound state can form (ABS). Since a bound state opens up a
resonant channel for charge conduction, an ABS occurring for some certain
energy and parameter range will result in increased conduction at that energy.

To illustrate Andreev bound states (ABS) we consider a system consist-
ing of a slab of 2D normal metal in contact with a ferromagnetic insulator
on the left and a superconductor on the right, as depicted in figure 13. In
the figure, we illustrate the possible reflection and transmission paths in
an F-N-S junction. At the ferromagnetic insulator side normal reflection is
possible (θ → π − θ) for both electrons and holes, and at the normal metal-
superconductor interface AR occurs (θ → π + θ). The possibility for an
incoming particle to undergo normal or Andreev reflection at the N-S inter-
face depends on various parameters such as the superconducting energy gap
and the chemical potential. This means that the system can be engineered
such that AR are more favourable. Upon each reflection, an incoming wave-
function gains a complex phase.

In the FNS system, ABS occurs when we form a phase-coherent ’closed
loop’. We start our loop at for instance the right travelling electron wave-
function, labelled by rFee, inbound on the N-S interface under angle θ. The
right travelling electron undergoes AR, the resulting hole (rSeh) travels in the
negative x-direction towards the F-N interface. At the interface, the hole
normal reflects and moves back towards to N-S interface (rFhh). There, the
hole Andreev reflects to an electron (rShe) moving in the negative x-direction.
To close the loop a final normal reflection brings us back to rFee. The closed-
loop is phase-coherent when the phase gain by the consecutive reflection
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processes is an integer multiple of 2π, when the width is sufficiently small
we can safely ignore the phase gain due to propagation. The idea that phase
coherence gives rise to resonances is similar to the principal giving rise to res-
onant tunnelling in ballistic double barrier normal metal junctions[61], [62].

Given the expressions for the reflection coefficients depicted in figure 13,
then mathematically speaking phase coherence occurs when the sum of the
phase gains associated with each reflection is an integer multiple of 2π, this is
called the Bohr-Sommerfeld quantization [63][64]. We formulate the Andreev
bound state’s phase coherence condition as follows

αrSeh + αrFhh + αrShe + αrFee = 2nπ, n ∈ Z, (2.6)

where αrmij := arg (rmij ) is the phase gain7 under the reflection from a particle
i to a particle j at the interface between a normal metal and a material of
type m.

In the coming section (2.3) topological insulators will be introduced, but
the description of ABS the FNS system described above still hold in a 2D
system consisting of topological insulators. To reiterate, the relevance of the
ABS in these systems is due to the prediction[1] that Majorana states could
emerge in the form of zero energy Andreev bound states, called zero-energy
Majorana bound states (ZEMBS).

2.2.2 Multiple Andreev reflections

Consider a symmetric Josephson junction consisting of two superconduct-
ing leads, one left and one right, connected by some link. In such systems,
multiple Andreev reflections (MAR) can occur. MAR is possible in both a
normal metal and a topological material in contact with a superconductor
on either side. The study of MAR has a rich history in the field of super-
conductivity, see for instance the work by Blonder Tinker and Klapwijk [65],
or [41][58]. To explain the physical origin of MAR we follow [65]. Consider
a normal metal with a constriction with on either side a superconducting
lead attached such that we can apply a voltage V over the superconducting
leads. The middle constriction acts as a tunnel barrier between the two leads.
A schematic illustration is given in figure 14. Here we show the density of
states in the superconductors in (E, k) space as well as some reflected charge

7Note that for z ∈ C, arg (z) = atan2 =(z)
<(z) where atan2 is four-quadrant adaption of

the inverse tangent. This detail is important in numerical implementation, every known
programming language has an implementation of the four-quadrant inverse tangent.
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Figure 13: This figure illustrates the possible types of reflections occurring in a ballistic
2D F-N-S junction between a ferromagnetic insulator (F), normal metal (N), and s-wave
superconductor (S). The solid and dashed lines refer to electron and hole wavefunctions
respectively. The indicated angle θ is defined for electrons positive x-direction respectively.
The (first-order) ABS is indicated by the magenta-coloured reflection coefficients and
wavefunctions in the middle normal metal. At the ferromagnetic insulator side, normal
reflection for both electrons and holes can occur, whereas at the superconductor side both
normal and Andreev reflections are possible.

carriers. The tunnel barrier is omitted in the figure. The narrow line drawn
at E = 0 illustrates a (potential) finite density of states at zero energy, the
superconductors’ continuum levels are an energy of ∆0 away from zero.

Let us now concentrate on an electron injected from the left S into the
normal metal at an energy E when applying a finite bias energy eV . Pass-
ing through the device along with the voltage drop, it gains energy eV from
the applied electric field, and (Andreev) reflects at the NS interface. Upon
Andreev reflection, at the NS interface, it returns as a hole, so the sign of its
charge has switched and the hole gains another eV by retraversing the field.
A similar reflection process will occur at the left SN interface. Then, by it-
eration of this process, Andreev reflection provides a way to gain arbitrarily
large integral multiples of eV from the field.

When two occupied density of states levels align, current can easily flow
through the system and steps in conduction will occur. We shift the energy
scale of the two superconductors with respect to each other by changing the
bias voltage. So by tuning the bias voltage, we can study the location of
energy levels in the system. For instance when we apply a bias of eV = 2∆0,
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(a) eV = 0, Andreev bound state (b) eV 6= 0, Multiple Andreev reflections

Figure 14: Reflections in between two superconductors are shown in E, k space. The
superconductor’s continuum density of states levels are shown. Solid (open) circles repre-
sent electrons (holes). The left image shows the situation for a zero bias voltage applied
over the two superconductors, the right image shows the finite voltage case. When a bias
voltage is applied an electric field is set up, and the charge carriers gain energy when
traversing the field. Image courtesy of Linde Olde Olthof [46].

the the continuum levels align and current can easily flow. MAR actually
opens the potential for the rich structure superimposed on a smooth back-
ground for voltages eV ≤ ∆0. Distinct steps are easily seen in the differential
resistance at integral submultiples of the gap. This phenomenon is referred
to as the sub-gap structure[65].

To illustrate of the effect of MAR on the conduction potential I, V curves
for a topological system without and with a structure at E = 0 are shown in
figures 15.a and b. The left hand figure shows steps in the conduction when.

eV =
2∆0

n
, n ∈ N. (2.7)

Consider an electron from the left superconducting lead undergoing MAR
in a system with an absent DOS at E = 0. When we apply a bias of 2∆0,
the continuum levels align and the electron gains sufficient energy to enter
the right superconductors continuum level. The reason for the integer sub-
multiple modes is that the charge carriers climb in energy, and when the
energy gain after n − 1 Andreev reflections is n × 2∆0/n its energy aligns
with that of the continuum level at the other lead and it can conduct. This
process repeats and we get steps in the conduction as seen in figure 15a
at the biases indicated in (2.7). Since the spectrum corresponds to an ab-
sent structure in the DOS at E = 0 we refer to this MAR spectrum as trivial.
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(a) MAR I, V curve for no structure in the DOS at
E = 0.

(b) MAR I, V curve for a structure in the DOS at
E = 0.

Figure 15: Normalized I, V curves for a system without and with a structure in the DOS
at E = 0. The drawn curves are for various transparencies D of the middle barrier. Image
courtesy of Linde Olde Olthof [46]

When we now do consider a structure in the DOS at E = 0, illustrated
in e.g. 14, an I, V curve shows steps in the conduction for a bias of

eV =
∆0

n
, n ∈ N, (2.8)

as seen in figure 15b. We shall refer to this as a non-trivial MAR spectrum.
The origin of these steps is explained analogously to the steps in figure 15a,
however now we already have a finite DOS at both sides at E = 0. So for
an initial electron in the left superconductor only halve the energy gain as
compared to the previous case is required for the electron’s energy to align
with a nonempty level in the DOS on the other side. The same can be
said for higher-order consecutive AR. Hence the same procedure explained
above now clarifies the resonances at biases of eV/n, for details the reader is
referred to [45]. So by studying the I, V curve of a (symmetric) junction, we
can probe the structure in the DOS at E = 0.
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2.3 Topological insulators

The cornerstone prediction by Fu and Kane [1] on the existence of a chiral
Marjorana mode propagating on the surface of an s-wave induced topolog-
ical insulator at the edge along a magnetic topological insulator required
the materials to be topological. Having discussed superconducting materi-
als, we now introduce the concept of topological insulators (TI). In short
a TI is a material that is intrinsically insulating in the bulk, but conduct-
ing on the surface. So a 3D topological insulator, such as Bi2Se3 or Bi2Te3

[30] or (Bi0.4Sb0.6)2Te3 thin films [66], would be insulating in its core, but
conducting on its outer 2D surface. This is clearly different from either the
properties of a normal metal that is conducting everywhere or a regular in-
sulator that is insulating everywhere. A great layman (for a mathematician
or non condensed matter physicist) introduction to TIs is given in [67], an
extensive review is given in [68], and for an advanced course book the reader
is referred to [69].

In this section we globally explain the origin of the peculiar nature of the
TI’s edge conductance by drawing the analogy to the quantum hall effect, we
give references where more technical details are required. This introduction
is followed by a discussion on the modelling of magnetic and superconducting
magnetic (MTI) and superconducting topological insulators (STI).

2.3.1 TI edge states analogy to QHE

As the name suggests, a topological insulator is mostly insulating, but allows
for some form of conduction related to its topology. The notion of topology
is reserved for a so-called topological invariant, i.e., a property of a geometric
shape that does not change when the shape is stretched or distorted. One
such invariant is the genus g, which is given by the number of holes in the
surface. Shapes with no holes in them (g = 0) are all considered topologically
equivalent, as do the class of shapes with one hole in them (g = 1) [67].
The (over)used example is the topological equivalence between the shape of
doughnut and of a coffee mug, they both contain a single hole and can (in
principle) be continuously deformed into each other without tearing a hole
into the surface. Given a surface S, its genus is defined by the Gauss– Bonnet
theorem,

1

2π

∫
S

KdA = n, (2.9)

34



which says the integral over the curvature κ of an object is quantized. Here
n is an integer related to the genus by n = 2(1 − g). The discrete nature
of the integer g reflects that we can not continuously change (deform) the
genus of a surface since we can not continuously transform integers into each
other. This means that the genus is topologically invariant under continuous
deformations of the surface.

This notion of topology is all nice and well, but what has it to do with
the conduction of charge? Consider now not the shape of a sample in real
space, but consider the shape of its Brillouin zone in momentum space. The
Brillouin zone is a periodic region in a crystal lattice describing all allowable
electronic crystal momenta and is an important concept in the field (elec-
tronic) charge transport[70]. It can be shown [67] that an analogous version
to the Gauss-Bonnet theorem in momentum space can be obtained,

1

2π~2

∫
BZ

Ωd2p = C, (2.10)

where Ω = ∇ × X is the curl of the so-called Berry connection X. C is
the Chern-number. Without going into details, the Berry connection is an
intrinsic material dependent vector field and acts analogous as the magnetic
vector potential [67]. In fact when applying an external electric field E, elec-
trons propagate perpendicular to both E and to Ω. This is exactly what
happens for electrons in an electric and magnetic field. So we can consider
the curvature of the Berry connectivity (Berry curvature for short) to act as
an intrinsic magnetic field.

A more known derived quantity from the Berry connection is called the
Berry phase. It is a geometric phase that does not depend on time and is
given by the integral of the Berry connection along some path P in mo-
mentum space. Consider for example an electron getting accelerated and
decelerated in a lattice such that it traverses a closed path returning back at
its initial location. Even though the initial and final position are identical,
the particle has acquired a complex phase called the Berry phase.

To explain the surface conduction in a TI, we further on the magnetic field
analogy by considering the quantum hall effect (QHE)[37][61]. In the QHE
a sample placed in a sufficiently strong external magnetic field has electronic
states carrying current in one direction localized on one side of the sample,
while those carrying current in the other direction are localized on the other
side of the sample. This separation of the two opposing flows limits counter
flow of charge carriers and back-scattering can not occur [61], giving rise
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Figure 16: The quantum hall effect; the strong magnetic field B enforces electrons into
Landau level with cyclotron motion and become localized in bulk while conducting at
edges. Adapted from [71].

Figure 17: A schematic illustration of the quantum spin hall state as the superposition
of two opposite quantum hall states that originate from applied external magnetic fields
with opposite field directions. The image is taken from [72].

to clean ballistic conduction along the edge. For a sample in a sufficiently
strong external magnetic field the QHE is explained by the electrons being
forced into so-called closed Landau cyclotron orbits in the bulk, but taking
half open skipping orbits electrons at the edge of the sample [72]. In figure
16 these two type of trajectories are shown. The localized closed orbits do
not conduct any charge as they are localized (stationary), but the edge state
do ’creep’ up along the edge and conduct. This gives rise to the insulating
character of the bulk and the conductive behavior of the edge states. In a
TI the Berry curvature is the intrinsic material property that plays the role
of the magnetic field in the QHE giving rise to the conducting edge states.

To bridge the last gap from the conducting QHE edge states analogy to a
TI we need to consider the quantum spin hall effect (QSHE) to account for the
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spin-momentum locking observed in a TI. In short we can consider the QSHE
effect as a superposition of two QHE that arise from strong applied magnetic
fields in two opposite directions acting on opposite spin orientations. The
QSHE effect does not require an external magnetic field, a strong-spin orbit
coupling in the material acts as an intrinsic magnetic field acting in opposite
direction on edge states of opposite spin as illustrated in figure 17 [73]. The
spin enters the equation here because the opposite spin orientations rather
align parallel than the anti-parallel with the magnetic field, and this gives
rise to the two counter-propagating spin orientations.

To answer the question what topological invariant is responsible for the
edge states we consider what happens at the surface of a TI in contact with a
topologically trivial material (i.e. normal insulator). The term surface here
is ambiguous: in a 3D TI, the conducting states are the 2D surface state,
whereas, in a 2D TI, the ’surface’ states are the 1D edge state. A normal in-
sulator has a band gap between its conduction(’empty’) and valence(’filled’)
band, but a topological insulator has inverted band structure due to the spin
orbit coupling [74]. Formally speaking the two materials are described by
different Z2 invariants8, 1 for the TI and 0 for the regular insulator [74]. The
band structure can not be continuously deformed to go from the topologically
trivial material (the insulator) with a band gap to the the inverted band gap
in a TI due to this integer Z2 invariant difference. As we close the band gap
to invert the bands, we need to transform the Z2 invariant integer from 0 to
1, this is not allowed (similar to how we’re topologically not allowed to cut
a hole in a pizza to deform it into a doughnut). The surviving metallic edge
states in a TI are therefore said to be topologically protected. The surface
states are protected by time-reversal symmetry, and are robust against non-
magnetic disorder and perturbations[75].

We close this brief introduction to the origin of the conducting spin-locked
edge states in a TI by showing an effective Hamiltonian for a TI describing
spin orbit coupling,

hTI = vfp · σ − µσ0, (2.11)

where σ = (σx, σy, σz) are the canonical Hermitian unitary Pauli spin ma-
trices [25] and σ0 is the two dimensional identity matrix. The first term
introduces spin orbit coupling (also called Rashba coupling [77]) where vf
is the Fermi velocity and p is the momentum. The second term sets the

8This Z2 invariant can be seen as the number of times the band structure intersects
the Fermi energy mod 2[68]. Thus for a band gapped insulator no bands cross the Fermi
energy, but for a TI, an edge state crosses the Fermi energy
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(a) Energy dispersion of the spin non-
degenerate surface state of a 3D TI forming a 2D
Dirac cone; due to the helical (spin orientation
projection onto the momentum) spin polariza-
tion, back scattering from k to −k is prohibited
The image is taken from [76].

(b) The V-shaped linear dispersion, at ener-
gies above -200 meV, in (Bi0.4Sb0.6)2Te3 ex-
perimentally observed in a certain crystal direc-
tion using angle-resolved photoemission spec-
troscopy [66].

Figure 18: Local linear dispersion relation theory (a) vs experiment (b).

chemical potential, µ. If we solve for the eigenvalues of the TI Hamiltonians
in (2.11) (using plane waves eik·r) we get the well known TI’s (local) linear
dispersion relation.

ETI = −µ± ~vf |k|. (2.12)

The dispersion relations describe two inverted cones in (E,k) space (see figure
18).

2.3.2 Magnetic and superconducting topological insulators

In the coming work we will consider the topological Josephson junctions con-
sisting of a (magnetic) tunnel barrier. The system consists of a 3D TI with
2D surface states on top of which we induce regular s-wave superconduc-
tivity and ferromagnetism as shown in figure 3. In the region below the
superconductor or ferromagnet the 2D surface states in TI become locally
superconducting or ferromagnetic.

To elaborate on the superconducting topological insulator (STI) we con-
sider an s-wave superconductor deposited on the TI’s surface. At the in-
terface, the proximity effect allows Cooper pairs to tunnel into the surface
states. When we discussed Andreev reflections (section 2.2) we introduced
the proximity effect. Mathematically speaking the effect of the induced
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Cooper pairs introduces an attractive superconducting singlet pairing po-
tential V = ∆ψ†↑ψ

†
↓ + h.c. to the Hamiltonian describing a TI (2.11)[1]. Here

∆ = ∆0e
iϕ depends on the superconducting phase ϕ of the superconductor.

Later in chappter 3 when discussing the quantitative aspects in this thesis
we formally introduce the STI’s Hamiltonian and derive and solve the set of
so-called Bogoliubov-de Gennes equations describing the wavefunctions in a
(S)TI.

As mentioned, it is shown by Fu and Kane [1] that for a sufficiently
small superconducting energy gap µ� ∆0 the low energy dispersion relation
(E ∼ ∆0) of a STI resembles that of a spin-less px + ipy superconductor,

ESTI = ±
√

∆2
0 + (µs ± ~vf |k|)2. (2.13)

This resemblance is particularly interesting in light of the observation that
such a p-wave superconductor allows Majorana bound states [31]. We will
show in section 3.2.4 that indeed, if we introduce s-wave superconductivity
into the TI surface states that the resulting STI’s dispersion resembles that
of a spinless px + ipy superconductor. In short, the induced s-wave super-
conductivity opens up a gap of size 2∆0 in the linear TI dispersion relations
(2.12) about the Fermi level. This is similar to the gap that opened up in a
regular s-wave superconductor in figure 10.

Similar to the formation of a STI, we can construct a magnetic topological
insulator by inducing ferromagnetism into the surface states. The TI below
the F becomes a ferromagnetic insulator due to the exchange coupling[38].
We model the MTI by introducing a Zeeman gap due to an induced mag-
netisation m in the TI Hamiltonian (2.11)

hαβ = vfp · σ − µmσ0 + m · σ, (2.14)

the final term is added to study the effects of an induced ferromagnetic effect,
note that m = (mx,my,mz) is the magnetization vector with each mi, for
i = x, y, z having units of energy. In this work we consider the case that
magnetisation only has a component mz along the z-axis. The effect of the
induced magnetism is the opening of a gap mz about the chemical potential
in the MTI µm

EMTI = −µm ±
√
m2
z + ~2k2

yv
2
f , (2.15)

where we have taken the momentum projection onto the ky direction. Again
we will show this formally using the Bogoliubov-de Gennes equations in chap-
ter 3. We note that for a sufficiently large mz, the MTI shows a band gap
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about −µm. Note that this magnetic energy gap is different from the super-
conducting gap that opens about the Fermi level Ef . The band gap creates
a so-called forbidden region. Incoming particles in this range will thus often
reflect from the barrier, but can tunnel through with an exponentially de-
creasing probability. Thus the MTI acts as an insulator because incoming
charges in the energy range of the band gap will scatter from the MTI.

We conclude this section by comparing the energy scales of the relevant
material properties in the three dispersion relations (2.12), (2.13), and (2.15).
We consider the chemical potential µ, the superconducting energy gap ∆0

and the magnetic energy gap mz. The superconducting energy gap’s critical
temperature dependence was given in (2.2). Considering that the critical
temperatures of s-wave superconductors in figure 5 are ∼ 15K we have that
∆0 ∼ 2meV. We should however note that in a STI we induce superconduc-
tivity through the proximity effect, this value drops by roughly a factor 10
due to contact transparency effects. Thus we get that the induced supercon-
ducting gap in a STI is of the order 0.1meV. An extensive survey of MTIs
is given in [78] and shows that a reasonable high estimate of the magnetic
band gap in a MTI is of the order mz ∼ 30meV. Lastly an estimate of the
chemical potential is µ ∼ 100meV. More importantly we can assume that we
can control the chemical potential, by using gating voltages for instance, with
a sensitivity of ∼ 10meV. The proposed exciting Majorana physics [31],[1]
requires µ � ∆ which is indeed possible, and we would like the MTI to be
mostly insulating, i.e. the magnetic energy gap should be larger than the
chemical potential in the MTI: mz > µm. This is in the realm of possibilities
if we tune µm ∼ 10meV and have a mz ∼ 30meV. Finally, we work with
energies in the sub-gap |E| ≤ ∆0

40



3 Re-deriving and solving the Bogoliubov-de

Gennes equations

In this thesis, we model the physics governing the behaviour of charge car-
riers in a system comprising of (multiple) junctions between magnetic, su-
perconducting and/or topological materials using the Bogoliubov-de Gennes
equations. In the rich field of superconductivity, there is however a wide va-
riety of models used to provide theoretical predictions. Each come with their
own set of underlying assumptions and resulting limitations. The choice of
model is therefore dependent on the system-specifics (type of superconduc-
tor, geometry, etc) as well as on a wide range of other parameters such as the
temperature or the impurity of the system (dirty or clean conduction). We
first discuss why the Bogoliubov-de Gennes equations are applicable for the
systems and energies considered in this work by comparing them to alterna-
tive approaches. Then we formally introduce and derive the Bogoliubov-de
Gennes equations and solve them in material-specific cases.

A phenomenological theory already mentioned in section 2.1.1 is the
Ginzburg-Landau theory, with an associated set of equations. Briefly stated
the Ginzburg-Landau equations are a set of equations derived by minimiz-
ing the free energy of a superconducting material placed in a magnetic field
with respect to the order parameter ψ(r). Please see [48] chapter 3 for a
detailed discussion. The coupled set of equations provides a phenomenolog-
ical description of the behaviour of the superconducting charge carriers and
the magnetic field inside a superconducting material. The Ginzburg-Landau
equations can be studied (numerically) to provide insight into the dynamics
of the magnetic fields generated by a superconductor. This is of great im-
portance in, for instance, the realization of super strong magnets. However,
since it is not a microscopic theory, it is not well suited to study the scatter-
ing and behaviour of charge carriers in a superconducting material in contact
with a topological material on the smallest scale.

One class of (microscopic) models is based on the Green’s functions tech-
nique. The interested reader is referred to [79] for an elaborate treatment of
the application of Green’s functions in the context of superconductivity. One
well-known equation in the field of Green’s functions is the so-called Gorkov
equation. It is a partial differential equation giving a detailed description
of quantum transport in a superconductor. The level of physical detail in
this equations comes at a numerical computational cost. Therefore, people
are forced to study the Gorkov equation in limiting cases. For instance, af-
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ter further simplification and in the diffusive (dirty) limit one arrives at the
Usadel equation. The Usadel equation can be solved numerically to get the
dynamics of charge carriers in a diffusive (un)conventional superconductor,
in contact with a normal metal. It however can not be trivially extended to
include topological effects.

Evolved from BCS theory (discussed in section 2.1.2), there is another set
of equations having a microscopic origin, called the Bogoliubov-de Gennes
equations. The equations find their origin in the work by de Gennes [80], and
are based on BCS theory, meaning that the microscopic origin of the charge
carriers responsible for superconductivity, i.e., the Cooper pairs arise from an
attractive pairing interaction. In short, the BdG equations can be viewed as
a coupled set of Schrödinger equations, with much emphasis on the descrip-
tion of superconductivity in terms of electron- and hole-like quasiparticles.
This enables an insightful description of quasiparticle properties down to the
atomic scale. The BdG formalism serves as a complementary approach to
the Ginzburg–Landau theory that is used to describe the spatial variations
of the superconducting order parameter, when it is slowly varying at a larger
length scale [75].

In this work, we consider the conduction through a topological insulator
base material in contact with superconducting and magnetic active materials.
We are interested in the behaviour, on the smallest scale, of the (quasipar-
ticle) charge carriers in a system consisting of multiple interfaces between
materials of varying kinds. Since the edge states in a topological insula-
tor are topologically protected, we are in a clean conduction limit (ballistic).
Moreover, superconductivity is induced into the topological insulator through
the proximity effect by considering a conventional s-wave superconductor on
top of the topological insulator. Conventional superconductivity is confined
to low temperatures. Hence we are dealing with a ballistic low-temperature
regime. A set of equations that, in light of the context of this work, can cap-
ture the essential features of the intricate physics occurring when we combine
superconductivity, magnetism and topology are the BdG equations. In the
coming two subsection we derive (section 3.1) and solve (section 3.2) the
BdG equations in a plane wave basis for the steady-state eigenfunctions.

3.1 Derivation Bogoliubov-de Gennes equations

The BdG equations are, in essence, a coupled set of Schrödinger equations de-
scribing the quasiparticle excitations from the superconducting condensate.
Here, we briefly sketch the outline of the coming derivation. We have 4 un-
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known functions that we represent in a vector, φ = (u↑(r), u↓(r), v↑(r), v↓(r))T ,
the uσ and vσ (σ indicated the spin orientation) one might recognize from
BCS theory. They are governed by the coupled BdG equations. We are
after a Hamiltonian (in matrix form) such that we get a Schrödinger like
equation: ȞBdGφ = Eφ. We consider a suitable Hamiltonian expressed in
the electronic creation and annihilation field operators ψ† and ψ. We apply
a mean field approximation to reduce its complexity to arrive at a reduced
effective Hamiltonian Heff in bi-linear form. Next, we use a so-called Bogoli-
ubov transformation to go from electronic field operators to quasiparticle field
operators γ, γ†, this transformation diagonalizes the bi-linear form Heff . In
this transformation, we write the electronic field operators (ψ, ψ†) as a linear
combination of the Fermionic quasiparticle operators ( γ, γ†), the coefficients
in this expansion are uσ and vσ coefficients. To derive the BdG, we compute
the commutators of the form [ψσ,Heff ], and [γ,Heff ]. By plugging in the
Bogoliubov transformation for the ψs in the commutation relation and equat-
ing this result to the computed commutator [γ,Heff ] we get a coupled set
of equation describing the uσ and vσ. Final, we write this set of equations
in a matrix form using the vector φ containing the unknown coefficients.
The following derivation is an extension of the work by Jian-Xin Zhu [75] by
introducing topology. An alternative derivations can be done using a tight
binding model [81]. For further references on the BdG equations, see [43],
[30].

3.1.1 Hamiltonian

A Hamiltonian describing an attractive pairing potential in second quantiza-
tion language is of the form

H =

∫
drψ†α(r)hαβ(r)ψβ(r)− 1

2

∫ ∫
drdr′Veff (r, r′)ψ†α(r)ψ†β (r′)ψβ (r′)ψα(r),

(3.1)

where the Greek subscripts indicate spin orientation (up, down), and we
use the Einstein summation convention. The first term describes a single
particle (topological) Hamiltonian. We have chosen a positive Veff , such
that the second term constitutes an attractive potential [75]. The second
term describes the pairing that is observed in superconductivity. The relevant
field operators are the electron creation and annihilation operators, ψ†α(r) and
ψα(r) respectively. The field operators obey the following anti-commutation
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relations {
ψα(r), ψ†β (r′)

}
= δ (r− r′) δαβ,

{ψα(r), ψβ (r′)} =
{
ψ†α(r), ψ†β (r′)

}
= 0,

(3.2)

where {A,B} := AB + BA is defined as as the anti-commutator of two
operators A,B, later we will encounter the commutator [A,B] := AB−BA.
We describe the topological effects, c.q. the topological Hamiltonians in
(2.11) by a Dirac-like single particle Hamiltonian with spin orbit coupling
(Rashba effect) [38],

hαβ = vfp · σ − µσ0 + m · σ, (3.3)

where σ = (σx, σy, σz) are the canonical Hermitian unitary Pauli spin matri-
ces and σ0 is the two dimensional identity matrix. The first term introduces
spin orbit coupling, where vf is the Fermi velocity and p is the momen-
tum. The second term sets the chemical potential, µ. The final term is
added to study the consequences of an induced ferromagnetic effect, note that
m = (mx,my,mz) is the magnetization vector with each mi, for i = x, y, z
having units of energy. Please note that here no spatial dependencies are
specified, for instance the chemical potential or the magnetic energy gap are
homogenous in each material, but their value depends on which material we
are considering. For example, in the MTI region mz is finite, but in the TI
or STI mz = 0.

3.1.2 Mean field approximation

The pairing term in the Hamiltonian (3.1) has a four-field operator term. To
reduce the complexity, we can perform a mean-field approximation. Phys-
ically speaking, a mean-field approximation is be valid when the random
(thermal) fluctuations are small relative to a constant background. For s-
wave superconductivity, we ,by definition, require low temperatures such
that we are well below the critical superconducting temperature, where ther-
mal fluctuations are sufficiently small compare to the back ground[75] [82].
Mean-field theories are generally used to reduce a many-body problem to a
two-body or single body problem. The loss of higher-order effects come at
the benefit of reduced algebraic complexity and numerical costs when doing
simulations. We consider a background energy level (mean-field) and focus
on fluctuations from this mean background field, i.e., we write a product of
two field operators as the sum of a mean plus fluctuations

ψ†α(r)ψ†β(r′) =
〈
ψ†α(r), ψ†β(r′)

〉
+ (ψ†α(r)ψ†β(r′)−

〈
ψ†α(r), ψ†β(r′)

〉
),

ψβ(r′)ψα(r) =
〈
ψβ(r′), ψα(r)

〉
+ (ψβ(r′)ψα(r)−

〈
ψβ(r′), ψα(r)

〉
).

(3.4)
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We have not changed anything, we simple added and subtracted a mean〈
ψ†α(r), ψ†β(r′)

〉
, to get fluctuations (ψ†α(r)ψ†β(r′)−

〈
ψ†α(r), ψ†β(r′)

〉
). First we

note that we model s-wave superconductors, so we shall only consider spin
singlet pairing. We now substitute (3.4) in the two particle term in (3.1)
and ignore terms consisting of the product of fluctuations because for low
temperatures these are small compared to the mean field. This gives

− 1

2

∫ ∫
drdr′Veff (r, r′)ψ†α(r)ψ†β (r′)ψβ (r′)ψα(r)

= −1

2

∫ ∫
drdr′Veff (r, r′)

[〈
ψ†α(r), ψ†β(r′)

〉
+ (ψ†α(r)ψ†β(r′)−

〈
ψ†α(r), ψ†β(r′)

〉
)
]

×
[〈
ψβ(r′), ψα(r)

〉
+ (ψβ(r′)ψα(r)−

〈
ψβ(r′), ψα(r)

〉
)
]

≈ −
∫ ∫

drdr′Veff (r, r′)
[
−
〈
ψ†↑(r)ψ†↓(r

′)
〉〈
ψ↓(r

′)ψ↑(r)
〉

+
〈
ψ†↑(r)ψ†↓(r

′)
〉
ψ↓(r

′)ψ↑(r)

+ ψ†↑(r)ψ†↓(r
′)
〈
ψ↓(r

′)ψ↑(r)
〉]

=

∫∫
drdr′

|∆ (r, r′)|2

Veff (r, r′)
+

∫∫
drdr′

[
∆∗ (r, r′)ψ↓(r

′)ψ↑ (r) + ∆ (r, r′)ψ†↑(r)ψ†↓ (r′)
]
,

where the spherical symmetric s-wave pairing potential is given by

∆ (r, r′) = −Veff (r− r′)
〈
ψ↓ (r′)ψ↑(r)

〉
= Veff (r− r′)

〈
ψ↑(r)ψ↓ (r′)

〉
,

∆∗ (r, r′) = −Veff (r− r′)
〈
ψ†↑(r)ψ†↓ (r′)

〉
= Veff (r− r′)

〈
ψ†↓ (r′)ψ†↑(r)

〉
.

(3.5)

After plugging the reduced mean field form of pairing term back into (3.1)
we find the following effective Hamiltonian

Heff =

∫
drψ†α(r)hαβ(r)ψβ(r) +

∫∫
drdr′

[
∆∗ (r, r′)ψ↓(r

′)ψ↑ (r) + ∆ (r, r′)ψ†↑(r)ψ†↓ (r′)
]

+

∫∫
drdr′

|∆ (r, r′)|2

Veff (r, r′)
.

(3.6)
Note that we have reduced the complexity from a term with a product of
four field operators to only a product of two. Through this, the effective
Hamiltonian becomes the sum of bilinear terms [75]. This result tells us that
there is an associated matrix to represent this bilinear form [83]. This ma-
trix might be diagonalizable through an additional transformation. In the
following subsections we will follow this path by first calculating the commu-
tators between Heff and the field operators of the form,

[
ψ↑(r),Heff

]
, to

observe the structure of this matrix. This matrix becomes important when
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we want to find the (quasi)particle wavefunction solutions to the Hamiltonian
as eigensolutions of this matrix.

3.1.3 Commutators

We calculate the commutation relations between the effective Hamiltonian
and the field operators using two results. Let A,B and C be three operators,
then

[A,BC] := ABC −BCA
= ABC +BAC −BAC −BCA
= (ABC +BAC)− (BAC +BCA)

= {A,B}C −B{A,C}.

So we find
[A,BC] = {A,B}C −B{A,C}. (3.7)

This identity will prove useful when we want to change the order of two op-
erators A and BC. Say we know {A,B} and {A,C} then to swap A and BC
we can simply use (3.7).

Let [a, b] be some domain and δ(x) be the Dirac delta function obeying
the defining property∫ b

a

δ (x− x0) dx =

{
1 if x0 ∈ (a, b),

0 if x0 /∈ [a, b],

such that for any test function f(x) continuous at x0 we have∫ b

a

δ (x− x0) f(x)dx =

{
f(x0) if x0 ∈ (a, b),

0 if x0 /∈ [a, b].

Using this, simple integration by parts gives us (vanishing boundary terms
δ(a− x) and δ(b− x))∫ b

a

dδ (x− x0)

dx
f(x)dx =

−
df(x)
dx

∣∣∣
x0

if x0 ∈ (a, b),

0 if x0 /∈ [a, b].
(3.8)

This later result will become useful when we want to compute the commu-
tator between a term consisting of a differential operator e.g. hαβ and a
function ψ(r).
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Observe that the effective Hamiltonian consists of a topology term (hαβ),

a pairing term (Veff ), and a constant term ( |∆(r,r′)|2
Veff

). We write Heff = T + P + C

and immediately note that any operator commutes with a constant term.
Hence, we only need to compute the commutation relation between the field
operators and the T and P terms. Using (3.2) and (3.7) we calculate

[ψα(r̂), P ] =

∫∫
drdr′

[
∆∗ (r, r′) ({ψα(r̂), ψ↓(r

′)}ψ↑(r)− ψ↓(r′){ψα(r̂), ψ↑(r)})

+ ∆ (r, r′)
(
{ψα(r̂), ψ†↑(r)}ψ†↓(r

′)− ψ†↑(r){ψα(r̂), ψ†↓(r
′)}
) ]

=

∫∫
drdr′∆ (r, r′)

(
δα↑δ(r̂− r)ψ†↓(r

′)− ψ†↑(r)δα↓δ(r̂− r′)
)

= δα↑

∫
dr′∆ (r̂, r′)ψ†↓(r

′)− δα↓
∫
dr∆ (r, r̂)ψ†↑(r).

Similarly we find[
ψ†α(r̂), P

]
= δα↓

∫
dr∆∗ (r, r̂)ψ↑(r)− δα↑

∫
dr′∆∗ (r̂, r′)ψ↓(r

′).

Now using (3.2), and (3.7) we calculate [ψα(r̂), T ]:

[ψγ(r̂), T ] =

∫
dr
[
{ψγ(r̂), ψ†α(r)}hαβ(r)ψβ(r)− ψ†α(r){ψγ(r̂), hαβ(r)ψβ(r)}

]
=

∫
drδαγδ(r− r̂)hαβ(r)ψβ(r)

= hγβ(r̂)ψβ(r̂)

= hγ↑(r̂)ψ↑(r̂) + hγ↓(r̂)ψ↓(r̂).

Now also using (3.8) we find[
ψ†γ(r̂), T

]
=

∫
dr
[
{ψ†γ(r̂), ψ†α(r)hαβ(r)}ψβ(r)− ψ†α(r)hαβ(r){ψ†γ(r̂), ψβ(r)}

]
= −

∫
drψ†α(r)hαβ(r)δ(r− r̂)δγβ

= −
∫
drψ†α(r)hαγ(r)δ(r− r̂)

= −h∗γα(r̂)ψ†α(r̂)

= −h∗γ↑(r̂)ψ†↑(r̂)− h∗γ↓(r̂)ψ†↓(r̂).
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It is important to stress here that in the fourth step we used (3.8), effectively
giving a minus sign to the differential part of the single particle Hamiltonian
in (3.3). That is, only those terms in the single particle Hamiltonian that
consist of a differential operator should change sign. Now we validate the
fourth line in the above derivation. The way we can incorporate this sign
change in the equations, depends on the form of hαβ in (3.3). Say we consider
a magnetic field in the z direction and a spin-orbit coupling term, then hαβ
reduces to9

hαβ = −i~vf
(
d

dx
σx +

d

dy
σy

)
− µσ0 +mzσz, (3.9)

in this case we can show that using the conjugate plus transpose for hαβ as
above correctly handles this sign change. We introduce the notation ( ∂

∂x
) to

indicate the sign in front of the differential operators in the single particle
Hamiltonian. After the third line we essentially have a term of the form
hβα(− ∂

∂x
). We show that, using the fact that each Pauli matrix is Hermitian

(σ†i = σi ↔ σ∗i = σTi ), this is equal to

hβα(− ∂

∂x
) =

(
−i~vf

(
(− d

dx
)σx + (− d

dy
)σy

)
− µσ0 +mzσz

)T
= −i~vf

(
− d

dx
σ∗x −

d

dy
σ∗y

)
− µσ∗0 +mzσ

∗
z

=

(
−i~vf

(
d

dx
σx +

d

dy
σy

)
− µσ0 +mzσz

)∗
= h∗αβ(

∂

∂x
).

We have used the fact that both µ and mz are real.

Combining the results for all commutators gives (relabeling r̂→ r)[
ψ↑(r),Heff

]
= h↑↑(r)ψ↑(r) + h↑↓(r)ψ↓(r) +

∫
dr′∆ (r, r′)ψ†↓ (r′),[

ψ↓(r),Heff

]
= h↓↑(r)ψ↑(r) + h↓↓(r)ψ↓(r)−

∫
dr′∆ (r′, r)ψ†↑ (r′),[

ψ†↑(r),Heff

]
= −h∗↑↑(r)ψ†↑(r)− h∗↑↓(r)ψ†↓(r)−

∫
dr′∆∗ (r, r′)ψ↓ (r′),[

ψ†↓(r),Heff

]
= −h∗↓↑(r)ψ†↑(r)− h∗↓↓(r)ψ†↓(r) +

∫
dr′∆∗ (r′, r)ψ↑ (r′).

(3.10)

9The constant term
∫∫

drdr′
|∆(r,r′)|2
Veff (r,r′)

is taken into the chemical potential.
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3.1.4 Bogoliubov transformation

The set of commutators in (3.10) allows us to consider a transformation
that uncovers more structure in the matrix associated with the bilinear form
in (3.6). Following Nikolai Bogoliubov’s 1958 work [84] we introduce the
electron field operator in terms of electron- and hole-like quasiparticles,

ψα(r) =
∑
n

[
unα(r)γn − αv∗nα(r)γ†n

]
, (3.11)

where the spin α = ±1 for spin up or down. γ†n, γn create and annihilate
Fermionic quasiparticles with well defined spin in a superposition of electron
and hole states. Recall that are trying to find an associated matrix M̌ for
the effective Hamiltonian in bi-linear form, such that given the ground state
energy Eg we have

Heff = Eg +ψ†M̌ψ.

For ψ = (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓)
T . Using the Bogoliubov transformation we can find

a diagonalizable matrix[75]

Heff = Eg +
∑
n

Enγ
†
nγn. (3.12)

In fact, any system with Fermion excitations (such as γ, γ†), the total system
energy, Heff , can be written like this [3]. The summation runs over n, posi-
tive energy excited states, so when we consider individual energy excitations
the sum becomes a single term.

A sufficient condition for the Bogoliubov transformation in (3.11) to obey
the electron field operator anticommutation relation in (3.2) is for the quasi-
particle operators to satisfy anticommutation relations{

γn, γ
†
m

}
= δnm,

{γn, γm} =
{
γ†n, γ

†
m

}
= 0.

(3.13)

In order to strictly satisfy the electron operator anticommutators there is an
additional normalization requirement on the unα(r) and vnα(r) coefficients∫

dr
(
|unα(r)|2 + |vnα(r)|2

)
= 1. (3.14)

3.1.5 Bogoliubov-de Gennes equations

Using the Bogoliubov transform in (3.11) we work in a quasiparticle basis
and we can work towards the Bogoliubov-de Gennes equations. The proce-
dure is as follows, we compute the commutators between the quasiparticle
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operators γ†n, γn and the effective Hamiltonian in (3.6). Then we insert the
Bogoliubov transformation (3.11) into the electronic commutators in (3.10)
and compare the resulting equation to the commutator results found for γ†n
and γn.

Now we calculate the commutator between the effective Hamiltonian and
the quasiparticle creation operator:

[
γ†n,Heff

]
=

[
γ†n,
∑
m

Emγ
†
mγm

]
=
∑
m

Emγ
†
nγ
†
mγm −

∑
m

Emγ
†
mγmγ

†
n

=
∑
m

Emγ
†
nγ
†
mγm +

∑
m

(
Emγ

†
mγ
†
nγm − γ†m{γm, γ†n}

)
=
∑
m

Emγ
†
nγ
†
mγm −

∑
m

Em
(
γ†nγ

†
mγm − γm{γ†n, γ†m}+ γ†mδmn

)
= −

∑
m

Emγ
†
mδmn

= −Enγ†n,

and for the annihilation operator we find something similar[
γ†n,Heff

]
= −Enγ†n,

[γn,Heff ] = Enγn.
(3.15)

We substitute the Bogoliubov transformed electron operators in (3.11) into
the previously derived commutators in (3.10) and use the quasiparticle results
in (3.13) and (3.15) to derive the Bogoliubov-de Gennes equations. For the
given Hamiltonian these consist of four equations. First we consider the ψ↑(r)
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case. This gives[
ψ↑(r),Heff

]
=
[∑

n

[
un↑(r)γn − v∗n↑(r)γ†n

]
,Heff

]
=
∑
n

un↑(r)
[
γn,Heff

]
−
∑
n

v∗n↑(r)
[
γ†n,Heff

]
∗
=
∑
n

En
[
un↑(r)γn + v∗n↑(r)γ†n

]
[
ψ↑(r),Heff

]
= h↑↑(r)ψ↑(r) + h↑↓(r)ψ↓(r) +

∫
dr′∆ (r, r′)ψ†↓ (r′)

∗
= h↑↑(r)

∑
n

[
un↑(r)γn − v∗n↑(r)γ†n

]
+ h↑↓(r)

∑
n

[
un↓(r)γn + v∗n↓(r)γ†n

]
+

∫
dr′∆ (r, r′)

∑
n

[
u∗n↓(r

′)γ†n + vn↓(r
′)γn

]
.

By equating the coefficients of each γn term for the marked (∗) lines we find

Enun↑(r) = h↑↑(r)un↑(r) + h↑↓(r)un↓(r) +

∫
dr′∆ (r, r′) vn↓(r

′). (3.16)

We could have equally well collected γ†n-terms, but this would result in the
equivalent equation (overall conjugation and minus sign). A similar compu-
tation for ψ†↑(r) results in[

ψ†↑(r),Heff

]
=
[∑

n

[
u∗n↑(r)γ†n − vn↑(r)γn

]
,Heff

]
=
∑
n

u∗n↑(r)
[
γ†n,Heff

]
−
∑
n

vn↑(r)
[
γn,Heff

]
∗
= −

∑
n

En
[
u∗n↑(r)γ†n + vn↑(r)γn

]
[
ψ†↑(r),Heff

]
= −h∗↑↑(r)ψ†↑(r)− h∗↑↓(r)ψ†↓(r)−

∫
dr′∆∗ (r, r′)ψ↓ (r′)

∗
= −h∗↑↑(r)

∑
n

[
u∗n↑(r)γ†n − vn↑(r)γn

]
− h∗↑↓(r)

∑
n

[
u∗n↓(r)γ†n + vn↓(r)γn

]
−
∫
dr′∆∗ (r, r′)

∑
n

[
un↓(r

′)γn + v∗n↓(r
′)γ†n

]
.
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By comparing terms of equal γn we arrive at

Envn↑(r) = −h∗↑↑(r)vn↑(r) + h∗↑↓(r)vn↓(r) +

∫
dr′∆∗ (r, r′)un↓(r

′). (3.17)

We go through the same procedure for the remaining two spin orientations,
i.e., ψ↓(r) and ψ†↓(r). Then we collect all four equations together and in the
end we find the coupled set of so-called Bogoliubov-de Gennes10 equations:

Enun↑(r) = h↑↑(r)un↑(r) + h↑↓(r)un↓(r) +

∫
dr′∆ (r, r′) vn↓(r

′),

Enun↓(r) = h↓↑(r)un↑(r) + h↓↓(r)un↓(r) +

∫
dr′∆ (r, r′) vn↑(r

′),

Envn↑(r) = −h∗↑↑(r)vn↑(r) + h∗↑↓(r)vn↓(r) +

∫
dr′∆∗ (r, r′)un↓(r

′),

Envn↓(r) = h∗↓↑(r)vn↑(r)− h∗↓↓(r)vn↓(r) +

∫
dr′∆∗ (r, r′)un↑(r

′).

(3.18)

These Bogoliubov-de Gennes equations describe the steady-state behaviour
of a superconducting, magnetic active, topological material. Since no time
derivatives are present the equations describe a steady-state. Moreover,
topology and (induced) magnetism are in the form of hαβ in (3.9) and super-
conductivity enters through ∆(r, r′). The form of hαβ and the presence or
absence of a superconducting energy gap depends on the material we wish to
model using the BdG equations. The space-dependent functions we are after
are the quasiparticle ’weights’ unσ(r) and vnσ(r) for both spin orientations.
Similar to in BCS theory the quasiparticle excitation are fully described by
these weights [3]. We note that we will drop the label n, since we consider
only single energy excitations separately. In principle, one can now use an
algorithm of choice to solve the coupled linear differential equations (3.18).
We will write them into a matrix using a basis (representation) and solve for
the plane-wave eigensolutions.

3.1.6 Bogoliubov-de Gennes equations in matrix form

The set of equations (3.18) can be written into a matrix equation to empha-
size the underlying structure. We let the four quasiparticle weights form a

10This set of equations is named after the Russian mathematical physicist Nikolay Bo-
golyubov(transliterated from Russian to Bogoliubov) for his contribution through the Bo-
goliubov transformation[84], and the French physicist Pierre-Gilles de Gennes for the orig-
inal physical formalism described by this Hamiltonian[75].
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basis (or representation) vector

φ1 (r) =


u↑(r)
u↓(r)
v↑(r)
v↓(r)

 , (3.19)

such that we can write the Bogoliubov-de Gennes equations (3.18) in a
matrix-vector form (for a single excitation, so we drop the n-label)∫

dr′Ȟ1 (r, r′)φ1 (r′) = Eφ1 (r) , (3.20)

with the 4× 4 matrix Ȟ1 (r, r′) given by

Ȟ1 (r, r′) =


h↑↑(r)δ (r− r′) h↑↓(r)δ (r− r′) 0 ∆ (r, r′)
h↓↑(r)δ (r− r′) h↓↓(r)δ (r− r′) ∆ (r′, r) 0
0 ∆∗ (r, r′) −h∗↑↑(r)δ (r− r′) h∗↑↓(r)δ (r− r′)
∆∗ (r′, r) 0 h∗↓↑(r)δ (r− r′) −h∗↓↓(r)δ (r− r′)

 .
(3.21)

Solving this eigenvalue problem is equivalent to solving the full Bogoliubov-
de Gennes equations. This form is also given without proof in [47].

We can further study the structure of (3.21) by explicitly writing it in
block form

Ȟ1 (r, r′) =

[
ĥ ∆̂

∆̂∗ −σzĥ∗σz

]
, (3.22)

where ĥ is the single particle Hamiltonian given in (3.9) (multiplied by
δ(r − r′), and ∆̂ = ∆ (r, r′)σx. Please note that in the current form (3.20)
the integrals make the eigenproblem some what intimating. It simplifies a lot
since for s-wave superconductors the integral over the superconducting gap
gives a constant ∆0e

iϕ term, where ∆0 ∈ R and ϕ being the superconducting
phase. Moreover, the integral over the Dirac-delta distribution also collapses
the integral to a single spatial dependence and in fact, on our domain of
computation, where we assume homogeneous materials, the spatial is not
present anymore.

In the form (3.22) the underlying structure becomes apparent. In ab-
sence of the superconductivity induced pair potential, there is no coupling
between the electron-like and hole-like character of the quasiparticles. The
top-left 2× 2 single-particle Hamiltonian then acts only on the electron-like
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quasiparticles u↑, u↓ and the bottom right 2× 2 block on the hole-like quasi-
particles v↑, v↓. Moreover, as the topology induced spin-orbit coupling terms
are contained within each single-particle Hamiltonian, they only introduce a
coupling between two spin branches, but not a coupling between the electron-
like and hole-like branches. The resulting matrix will be block diagonal. So
in absence of superconductivity, we can utilize this apparent structure and
solve the two 2×2 blocks for electron- and hole-like quasiparticles separately,
reducing the (algebraic) complexity. When there is a finite superconducting
gap present, there is a coupling between the electron- and hole-like quasi-
particle weights. The ∆̂ terms in the upper right or lower left 2 × 2 blocks
to introduce the mixing of u and v terms. In this case, the 4× 4 eigenvalue
problem has to be solved at once, and it can not be split into two separate
2× 2 problems.

The basis (3.19) that was used to cast the set of BdG equations in (3.18)
to the matrix form in (3.21) is not the only feasible choice of basis we could
have made. We shall refer to (3.19) as basis 1, but another basis will be
discussed in section 3.3. The choice of basis will not affect possible derived
physical observables, but it will prove to ease computations and certain in-
terpretations.

3.2 Solutions to the Bogoliubov-de Gennes equations

Given the basis-dependent11 matrix associated with the effective Hamilto-
nian, we now solve for plane wave eigensolutions for different single-particle
Hamiltonians hαβ corresponding to different types of quantum materials.
First, we describe the plane-wave basis choice and introduce the procedure
to solve the associated eigenproblem. In subsection 3.2.1 we consider the
solutions for a topological insulator(TI) in absence of a magnetic field or su-
perconductivity. After that in subsection 3.2.2 we introduce magnetic effects
and consider a magnetic topological insulator (MTI). Finally, we study a su-
perconducting topological insulator (STI) by introducing a nonzero s-wave
superconducting energy gap in subsection 3.2.3. Since each BdG matrix has
multiple eigensolutions, we distinguish each solution using a (set of) label(s).
In the last part of this section (section 3.2.4), we combine and discuss all
dispersion relations for the various materials and clarify these labels.

We consider a plane wave basis to go from real space to momentum

11In this section we work in basis 1. Basis 2 is discussed in section 3.3 and the plane-wave
solutions to the BdG equation in basis 2 are given in the appendix A.
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space. Until now, the discussion of superconductivity relied on the notion of
momentum states, as seen in the introductory sections on superconductivity
in 2.1.2 to 2.2. In chapter 3 however, we derived the Bogoliubov-de Gennes
equations, the corresponding effective Hamiltonian and its associated matrix,
which were all described in real space. To realize the transition from real
space to momentum space we next expand our wave function in a plane
wave basis

φ (r) =


u↑(r)
u↓(r)
v↑(r)
v↓(r)

 =
∑
k

φke
ik·r, (3.23)

where we shift the space dependency to the exponential wave term eik·r, and
we are left with a (constant) coefficients φk. Mathematically speaking this is
equivalent to a Fourier series expansion. A formal mathematical treatment
of Fourier series is given [85] and a discussion in the context of solid-state
physics is given in [70]. We will solve for the eigensolutions of matrices ob-
tained after acting with matrices of the form (3.21) on plane-wave (3.23). The
domain of computation is a two dimensional rectangle consisting of vertical
interfaces between materials that extend infinitely var in the ±y direction,
this creates horizontally isolated slabs of connected materials. The material
properties are assumed to be homogeneous in each isolated material, i.e. per
material the Hamiltonian will be independent of r.

Individual energy solutions are going to be of interest. We fix an energy
E and through the dispersion relations we relate these to a k-state. In the
expansion (3.23), we will therefore consider the coefficient vector12,

φk =


u0↑
u0↓
v0↑
v0↓

 . (3.24)

The full solution (3.23) will be a summation over the individual solutions
for a fixed energy E. By examining the individual energy solutions, we will
gain insight into the specific energies at which certain interesting features,
e.g. resonances, might occur.

Recall that a hole(-like quasiparticle) propagates in the opposite direction.
Here propagation refers to the plane waves moving for a fixed energy governed
by e(ik·r−Et/~), so for the negative energy holes, the momentum is opposite to

12The label E(k) will be clear from context.
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the direction of motion, in the coming we shall omit the Et term. To describe
a hole(-like quasiparticle) traveling in the +k direction, we therefore should
consider e−ik·r in (3.24). Through the use the plane wave expansion, we have
transformed (3.20) to an eigenproblem of the form

h↑↑ h↑↓ 0 ∆
h↓↑ h↓↓ ∆ 0
0 ∆∗ −h∗↑↑ h∗↑↓

∆∗ 0 h∗↓↑ −h∗↓↓




u0↑
u0↓
v0↑
v0↓

 eik·r = E


u0↑
u0↓
v0↑
v0↓

 eik·r. (3.25)

Recall that to get to this matrix form, the integrals in (3.20) and (3.21) all
become trivial as mentioned in the supporting text. In the following sections,
we will solve the Hamiltonian derived (in basis 1) from the Bogoliubov-de
Gennes equations in a plane wave basis for the three mentioned materials, TI,
MTI and STI. Note that here, we will derive the eigenfunctions in the case
of a right moving (quasi)particle. Since a hole’s momentum is opposite to its
propagation direction, we get a minus sign difference between the electron-
and hole-like quasiparticles in the wavevector in the exponential for the plane
wave term in (3.25).

3.2.1 Topological insulator

Consider the eigenproblem (3.25) in two dimensions in absence of magnetic
and superconducting effects. This means ∆(r) = 0 and the magnetic term in
the single particle Hamiltonian (3.9) vanishes. Moreover, we have the two-
dimensional momentum vector with components kx = ke,h cos θ and ky =
ke,h sin θ, where θ denotes the positive angle between the x and y direction
and ke,h = |E±µ|/(~vf ) where the subscript e, h indicates the electron(-like)
or hole(-like) excitations. Here the energy E is the energy of the excitation
relative to the Fermi energy Ef . The eigenproblem reduces to two separate
problems. For the electron block we find(

−µ ~kevfe−iθ
~kevfeiθ −µ

)(
u0↑
u0↓

)
= E

(
u0↑
u0↓

)
. (3.26)

To illustrate the origin of the exponential term we consider the (1,2) entry.
From the single particle Hamiltonian we have −i~vf (σxd/dx + σyd/dy) the
(1,2) entry therein is, −i~vf (d/dx − id/dy). This acts on ei(kxxkyy), giving
~vf (kx − iky) = ~vfke(cos θ − i sin θ) = ~kevfe−iθ. This problem has two
energy eigensolutions with corresponding eigenvectors

ETI
e± = ±~kevf − µ↔ φTIe±(x, y) =

1√
2

(
1
±eiθ

)
eikxx+ikyy. (3.27)
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where ke = |E + µ|/(~vf ). For the hole block we have(
µ −~khvfeiθ

−~khvfe−iθ µ

)(
v0↑
v0↓

)
= E

(
v0↑
v0↓

)
, (3.28)

with eigensolutions,

ETI
h∓ = ∓~khvf + µ↔ φTIh∓(x, y) =

1√
2

(
1
±e−iθ

)
e−ikxx−ikyy, (3.29)

where kh = |E − µ|/(~vf ). The ± in the spinors and energy relations refers
to the sign in front of the k term.

Later on, we will use the electron and hole (plane-)eigensolutions (3.27),
(3.29) to represent wavefunctions. At an interface between two different
materials we will construct a scattering problem by imposing the continuity
of the wavefunctions on either side of the interface. Say we have a TI-MTI
interface at (x, y) = (0, 0) and an electron coming in at an angle θ and energy
E from the TI-side, then to model e.g. normal reflection we equate

φTIe+(θ) + rφTIe+(π − θ) = tφMTI−
e (θ),

where r, t are the complex reflection and transmission coefficient associated
with this reflection. The physical interpretation of all these labels is elabo-
rated upon in section 3.2.4.

3.2.2 Magnetic topological insulator

Now we consider a nonzero magnetization oriented perpendicular to the two
dimensional surface, i.e. m = (0, 0,mz)

T . The effect of the induced fer-
romagnetism on the 2D topological surface states leaves a notable imprint
on the spinors. Correspondingly, the plane wave solutions do not propa-
gate indefinitely in x anymore. For a sufficiently large magnetic energy gap,
the plane waves will become evanescent in the x-direction. To allow for the
possibility of evanescent waves, we now consider solutions proportional to
eiqjx+ikyy, where the label j indicates electrons or holes, and qj is complex.
When qj has an imaginary part, say qj = kx + iκ (for two real numbers
kx and κ), the exponential term becomes evanescent eikxx−κx. In this case,
we obtain a decreasing wave in the positive x-direction. Strictly speaking,
an evanescent wave is always decreasing, but we allow for increasing waves
too. We shall refer to these as increasing evanescent waves to avoid confu-
sion, with the caveat that this is linguistic nonsense. Recall that our domain
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computation is a two-dimensional rectangle consisting of vertical interfaces
between materials that extend sufficiently var in the ±y direction, such that
we can assume translation invariant in y, meaning that ky is conserved. This
creates horizontally isolated slabs of connected materials, so all interesting
physics occurs along the x-direction.

The MTI electron eigenproblem is given by(
mz − µm ~vf (−ike sin (θ)∓ qe)

~vf (ike sin (θ)∓ qe) −mz − µm

)(
u0↑
u0↓

)
= E

(
u0↑
u0↓

)
.

(3.30)
There are two possible signs of ∓qe corresponding to an increasing or de-
creasing evanescent MTI wave. The energy dispersion relations (eigenvalues)
do not depend on this sign, but the spinors do. Taking these signs into con-
sideration, each problem has two energy eigensolutions with corresponding
eigenvectors

EMTI
e± = −µm ±

√
m2
z + ~2k2

ev
2
f sin2 (θ) + ~2q2

ev
2
f

↔ φMTI,±
e (x, y) =

1√
Ae±

(
−i~kevf sin (θ)∓ ~qevf

E −mz + µm

)
e∓iqex+ikyy,

(3.31)

where Ae± is used for normalization and the ± in the spinors corresponds
to the increasing or decreasing evanescent waves. We solve for qe in the
dispersion relation and define

qe =

√
−m2

z − (~vfke sin θ)2 + (E + µm)2

~vf
. (3.32)

When mz is large enough to make qe complex, we can pick the plus (minus)
sign to end up with a decreasing evanescent wave in the positive (negative)
x-direction. Essentially we now have an additional two-fold branch of solu-
tions, one for each sign we choose for qe. The sign choice does not alter the
dispersion relation, but it does change the sign of qe in the spinor and in the
exponential term. So we introduce the notation φMTI,±

e (x, y) where the ±
corresponds to an increasing (decreasing) wave in the positive x-direction.
We have dropped the lowercase ± to distinguish between the two signs in
EMTI
e± because the two corresponding eigenvectors are identical. Please note

that therefore the ± sign in φMTI,±
e (x, y) corresponds to the ∓ sign in front

of qe which we then insert in the spinors in (3.31).
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Similarly when analysing the hole block we find(
−mz + µm ~vf (ikh sin (θ)± qh)

~vf (−ikh sin (θ)± qh) mz + µm

)(
v0↑
v0↓

)
= E

(
v0↑
v0↓

)
.

(3.33)
Recall that the ± sign indicates whether we work with an increasing or
decreasing evanescent wavefunction. This problem has two energy eigenso-
lutions with corresponding eigenvectors

EMTI
h± = µm ±

√
m2
z + ~2k2

hv
2
f sin2 (θ) + ~2q2

hv
2
f

↔ φMTI,±
h (x, y) =

1√
Ah±

(
−i~khvf sin (θ)∓ ~qhvf
−E −mz + µm

)
e∓iqhx−ikyy,

(3.34)

where Ah± is used for normalization and we solve for qh in the dispersion
relation

qh = ±
√
−m2

z − (~vfkh sin θ)2 + (E − µm)2

~vf
. (3.35)

Again the same sign convention for φMTI±
h (x, y) as for the electrons will be

used.

As a limiting case we take mz → 0, then the dispersion relations return
to that of a TI. Moreover, qe,h → ±ke,h| cos θ| = kx (for θ ∈ (−π/2, π/2)),
then upon dividing the MTI spinors by ke,he

±iθ, if we choose the appropriate
sign depending on which branch we would like to compare, we retrieve the
TI spinors.

3.2.3 Superconducting topological insulator

Next we consider a topological insulator in close contact with an s-wave su-
perconductor. Due to the proximity effect superconductivity is induced into
the 2D topological surface states. For a spin singlet s-wave superconductor,
the superconducting energy gap is given by

∆ = ∆0e
iϕ, (3.36)

for a real valued ∆0 and ϕ. The ϕ term is included to model the phase of the
superconductor. As mentioned before, ∆ couples the electron- and hole-like
components in the associated Hamiltonian matrix. For the STI eigenvectors
one needs to solve the entire 4× 4 matrix eigenproblem (3.25). For STI this
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problem reads
−µs ~kvfe−iθs 0 ∆0e

iϕ

~kvfeiθs −µs ∆0e
iϕ 0

0 ∆0e
−iϕ µs −~kvfeiθs

∆0e
−iϕ 0 −~kvfe−iθs µs




u0↑
u0↓
v0↑
v0↓

 = E


u0↑
u0↓
v0↑
v0↓

 .

(3.37)
As frequently mentioned, the momenta considered in the superconducting
regime are in relative distance close to kf . The spread about kf in the dis-
persion figures 10 is grossly exaggerated to illustrate the subtle features. To
ease the discussion in the case of an STI we employ the so-called Andreev
approximation, i.e., in momentum space the relevant processes occur approx-
imately around kf for both electron- and hole-like quasiparticles. Hence to
the lowest order approximation, we describe them both by a single momen-
tum k with 2-norm k. This means that now we take the wavevectors equal in
magnitude for the electron- and hole-like quasiparticle blocks in the matrix.
Moreover, we have introduced θs, which similar to θ in the TI, is the angle
between the x and y momenta. The angle θs depends on the chemical poten-
tial in the STI, µs. The two geometrical angles are related by their chemical
potentials, µs sin θs = µ sin θ.

The above system can be simplified using a unitary transformation. We
denote the matrix in (3.37) by ȞSTI . Consider the unitary matrix

Ǔ1 = diag(U1, U2), (3.38)

where the two unitary matrices U1 and U2 are given by.

U1 =
1√
2

(
−1 e−iθs

eiθs 1

)
, (3.39)

U2 =
1√
2

(
−1 −eiθs
−e−iθs 1

)
. (3.40)

The unitary transformation gives us the eigenproblem

ȞTrans
STI = Ǔ1ȞSTIǓ1 =


−~kvf − µs 0 0 −∆0e

iϕ

0 ~kvf − µs −∆0e
iϕ 0

0 −∆0e
−iϕ −~kvf + µs 0

−∆0e
−iϕ 0 0 ~kvf + µs

 .

(3.41)
All this essentially says is that HTrans

STI and ȞSTI are similar matrices related
by (3.41). It is a general property[86] of similar matrices that if x is an eigen-
vector of (3.41), then Ǔ1x is an eigenvector of the original problem (3.37)
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with the same eigenvalue.

The transformed matrix (3.41) has more zero entries that the original
matrix. In fact, we have decoupled the 4× 4 eigenproblem into two 2 eigen-
problems. This is reflected by the fact that in the transformed form the first
and fourth element in the basis representation (3.19) u0↑ and v0↓ get cou-
pled, similarly for the second and third element. The algebraic complexity
is reduced by this. We find the following four eigenvalues

ESTI
±± = ±

√
∆2

0 + (µs ± ~kvf )2, (3.42)

with corresponding eigenvectors

(−∆0e
iϕ

χ±
, 0, 0, 1)T ,

(0,−∆0e
iϕ

χ±
, 1, 0)T .

(3.43)

The first and second set of ± signs in the subscript indicate the sign of the
energy and momentum respectively. Here we have defined

χ± := E ± χ = E ±
√
E2 −∆2

0. (3.44)

Transforming this back to the original problem we find

ESTI
±+ = ±

√
∆2

0 + (µs − ~kvf )2 ↔ φSTI,±+ (x, y) =
1

2


1
eiθs

χ±
∆0
eiθse−iϕ
χ±
∆0
e−iϕ

 eikxx+ikyye±χx,

ESTI
±− = ±

√
∆2 + (µs + ~kvf )2 ↔ φSTI,±− (x, y) =

1

2


1
−eiθs

−χ∓
∆0
eiθse−iϕ

χ∓
∆0
e−iϕ

 eikxx+ikyye±χx.

(3.45)
The ± sign labels in the eigenvectors superscript correspond to the in-

creasing or decreasing nature of the wave term as function of x. Similar
as in the MTI we have an increasing or decreasing evanescent wave in the
x-direction. So this ±-sign in the superscript corresponds to the sign of the
χ± in the eigenvector and the sign in the e±χx term. The χ term comes from
solving (3.42) for k:

~kvf = ±µs ±
√
E2 −∆2

0 := ±~kxvf ± χ, (3.46)
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where kx = µs cos θ. The subscript labeled sign indicates the k-branch, this
will be elaborated in the next section when we discuss the dispersion relations.

As a sanity check, we take the limit ∆0 → 0. In (3.42) we immediately
see that we retrieve the linear TI dispersion relations. To compare the STI
spinors to the TI spinors we have to consider φSTI,−+ (x, y) and φSTI,+− (x, y).
The reason for this is that they describe an evanescent wave decreasing in
their propagation directions. In the limit ∆0 → 0 we have χ−

∆0
eiϕ → 1. We

retrieve the two-dimensional electron and hole spinors but are now stacked
vertically to form a single four-dimensional spinor. Next, we compare the
dispersion relations in detail.

3.2.4 Dispersion relations

In the previous section, we derived the dispersion relations for a regular
3D topological insulator, one in the presence of a ferromagnetic insulator,
and one close to a conventional superconductor, here we discuss and com-
pare their notable features. Figure 19 shows from left to right the possible
energy branches for a TI, MTI and STI. The solid (dashed) lines indicate
electron-like quasiparticles (hole-like quasiparticles). The branches with the
associated physically propagating (quasi)particle wavefunction are tabulated
in 1. We note that the spinors associated with the negative and positive
energy solutions derived in section 3.2 are identical. The reflection in the
line E = 0 in figure 19 thus leaves the solutions unchanged. This is a mani-
festation of the particle-hole symmetry briefly introduced in the section 1.2.
There we noted that particle-hole symmetry is one of the main symmetries a
condensed matter system should obey to potentially host Majorana modes,
symmetries of the underlying Hamiltonian are discussed in section 3.3.

We first discuss the TI and then consider the MTI and STI dispersion
relations as deviations from the TI. In section 2.3 the global features of a
topological material were discussed, such as its linear dispersion relation and
the Dirac point, which can be seen in the left panel in figure 19. Recall that
the group velocity is defined by vg = 1

~∇kEk. Hence the sign of the slope
(derivate) in figure 19 corresponds to the particle’s travel direction. For the
TI, the four branches we can identify are two electron branches (solid lines)
and two hole (dashed lines) branches. A right travelling electron (hole) trav-
elling would be situated on the right (left) green (orange) solid (dashed)
branch. The corresponding eigenvalue (and related eigenvector) are ETI

e+ and
ETI
h− in (3.45) for the electron and the hole respectively. The difference in the

k-branch subscript sign between the holes and electrons is because for holes
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Figure 19: A figure showing the dispersion relations for a TI, MTI, and STI in the case
ky = 0 with energy on the vertical axis and kx on the horizontal axis. A vertical shift
of −Ef is taken to bring the y-axis to the origin. The solid and dashed lines indicate
an electron- or hole-like branch respectively. The dispersion relations for a topological
insulator are from left to right in absence of external effects, in an external out of plane
magnetic field and near a conventional superconductor. Note the effect of the particle-hole
symmetry under the reflection in E = 0 positive and negative E branches.

their momenta are opposite to their travel direction.

As we introduce ferromagnetic effects, a magnetic energy gap of mz

around the chemical potential is induced in the MTI. For a sufficiently large
mz there is an energy range where no states are allowed to reside. The ab-
sence of states in this energy range means that inbound electrons from a
TI, in e.g. a TI-MTI bilayer, have a finite probability to undergo normal
reflections at the interface. We can identify the same four branches and the
corresponding propagating particles as described in the TI.

The superconducting energy gap, ∆0, also introduces a gap in the disper-
sion relation, but it is essentially different from the magnetic gap. The ∆0

gap forms about the Fermi energy whereas the magnetic gap opened about
the chemical potential. In the low energy limit µs � ∆0, the STI spectra
resemble that of a spinless px + ipy superconductor [1], [43].
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TI MTI STI

Right e(Green solid) φTIe+, (−E, k) φMTI,±
e , (−E, k) φSTI,±+ , (−E, k)

Right h(Orange dashed) φTIh−, (E,−k) φMTI,±
h , (E,−k) φSTI,±− ,(E,−k)

Left e (Green solid) φTIe−, (−E,−k) φMTI,±
e , (−E,−k) φSTI,±− , (−E,−k)

Left h (Orange dashed) φTIh−, (E, k) φMTI,±
h , (−E, k) φSTI,±− ,(E, k)

Table 1: The correspondence between the branches shown in figure 19, and the propaga-
tion direction of electron- and hole-like (quasi) particles. We consider both left (negative
x-direction) and right (positive x-direction) moving electrons and holes. The indicated
(±E,±k) label corresponds to the global sign of both quantities, i.e. as a mean to distin-
guish the four quadrants in the figure.

Also, we see that in both the TI and MTI there is a clear distinction
between electron and hole branches, yet in the STI case this distinction is
lost and we see that in the right panel in figure 19 at an energy of Ef ±∆,
there is a transition from the electron-like to a hole-like quasiparticle branch.
We can therefore only identify the electron- and hole-like branches in the
limiting behaviour (far) away from this transition point. Per energy sign, we
can identify two STI branches, one centred about each sign of ±kf .

A notable difference between the two STI branches is their group velocity,
vg = 1

~
∂E
∂k

. Note that for electron-like excitations the group velocity has the
same sign as kx, but for holes, the group velocity is opposite to the momen-
tum. Considering this, we see in the range of Ef ± ∆, around the energies
where the branch transition occurs, the group velocity is reversed. This gives
rise to Andreev Reflections which we considered in section 2.2. We can iden-
tify an electron (hole) propagating in the positive x direction situated on the
right (left) green solid (orange ashed) branch. The corresponding eigenvector
is φSTI,±+ and φSTI,±− in (3.45) for the electron and the hole respectively.

To summarize, we derived the BdG equations for superconducting mag-
netic topological materials and retrieved a set of equations equivalent to [47].
Furthermore, by solving for the eigensolutions in plane-wave basis to the
BdG equations in matrix form, we found the TI, MTI, and STI dispersion
relations we predicted to find based on literature [66] [78] [1]. In particular,
it was shown that s-wave superconductivity induces a p-wave-like disper-
sion relation in a 3D TI. In the remaining chapters, we will use the derived
wavefunctions to solve scattering problems by imposing the continuity of the
wavefunctions at the interfaces present in the scattering problem.

64



3.3 Time reversal- and particle-hole symmetry

We close the discussion on the BdG equations by studying the symmetries
of the Hamiltonian. The symmetries of Hamiltonians in condensed matter
physics allow for the complete ten-fold classification of the topological invari-
ants [87]. Without going into too much detail here, we focus on the particle-
hole symmetry and time-reversal symmetry because, as stated in the intro-
duction, Read and Green [31] showed that Majorana modes emerge in spinless
p-wave superconductors with broken time-reversal symmetry. Particle-hole
symmetry is required to get symmetric energy states about the Fermi level,
such that as the energy (relative to Ef ) goes to zero, there are states at zero
energy [88].

To facilitate the analysis and to help with the interpretation of the find-
ings we switch to an alternative basis. The BdG equations expressed in basis
1 as shown in (3.19)-(3.21) can be written in a different basis, which we call
basis 2. Mathematically speaking, there is a unitary transformation relating
both bases. Hence the resulting mathematics, and thus observable physics,
should be the same. The benefit of this change of basis is twofold. On the
one hand, the physical interpretation of the quasiparticle charge carriers can
be made explicit, i.e., in this alternative basis the time-reversal symmetry is
made apparent [89]. On the other hand, certain results derived in this sec-
ond basis will become simpler (as will be shown and discussed in the results
chapter later on). In this section, we will first establish the mathematical
relationship between the two bases and then reflect on the interpretation of
the basis in light of the symmetries of the resulting BdG Hamiltonian.

3.3.1 Basis 2

We wrote the BdG equation (3.18) in a matrix-vector form using basis vector
(3.19). Similarly we can use an alternative basis

φ2 (r) =


u↑(r)
u↓(r)
v↓(r)
−v↑(r)

 . (3.47)
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In blue we indicate the difference to basis 1. We shall refer to this as basis
2, and it is related to basis 1 as follows

φ2 = diag [σ̂0, iσ̂y]φ1. (3.48)

Using basis 2, we can write∫
dr′Ȟ2 (r, r′)φ2 (r′) = Eφ2 (r) , (3.49)

with the Hamiltonian in matrix form

Ȟ2 (r, r′) =


h↑↑(r)δ (r− r′) h↑↓(r)δ (r− r′) ∆ (r, r′) 0
h↓↑(r)δ (r− r′) h↓↓(r)δ (r− r′) 0 −∆ (r′, r)
∆∗ (r, r′) 0 −h∗↑↑(r)δ (r− r′) −h∗↓↑(r)δ (r− r′)
0 −∆∗ (r′, r) −h∗↑↓(r)δ (r− r′) −h∗↓↓(r)δ (r− r′)

 .
(3.50)

We observe that if the relation (3.49) holds for the corresponding matrix
(3.50), the alternative formulation is equivalent to the original BdG equations
(3.18). A thorough analysis as done for basis 1 in section 3.1.6 shows that
the matrix Ȟ2 (r, r′) is indeed of the right form, but we can simply verify this
by applying the basis transformation (3.48). Let T1→2 := diag [σ̂0, iσ̂y] be the
invertible change of basis matrix, and consider the Hamiltonian in matrix
form expressed in basis 1 in (3.22). Then, dropping spatial labels, the BdG
Hamiltonian expressed in basis 2 is given by.

Ȟ2 = T1→2Ȟ2T
−1
1→2 =

[
ĥ ∆σz
σz∆

∗ −σxĥ∗σx

]
(3.51)

This is equal to (3.50) if we recall that ĥ is the single-particle Hamiltonian
(3.9) and σx,z are the Pauli spin matrices. The spinors described in basis 2 will
change according to the transformation (3.48). We note that in absence of the
coupling of the electron- and hole-like terms due to a superconducting energy
gap term ∆0 the identity operator in (3.48) acts trivially on the ’electron
(1,1) block’ in (3.51). Thus the resulting TI and MTI electron spinors in
both bases will be the same in absence of superconductivity. However, the
hole spinors and the STI spinors will look different in basis 2, but describe
the equivalent physics. In fact they are related by (3.48). In appendix A we
give these spinors in basis 2.

3.3.2 Symmetries of the Hamiltonian

In the alternative basis (3.47) we can consider the hole operators as time-
reversed electron operators [90]. Time reversal is the process of flipping the
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sign of the time in the governing equations, i.e. t → −t. Physically speak-
ing the time-reversed process of, e.g., an electron reflection at an interface is
simply the same process but with the arrow of time-reversed. All processes
in particle physics were long considered to be symmetric under time reversal,
i.e., the dynamical evolution of a process forward in time is equivalent to the
same process backwards in time. However, the weak interaction was shown to
violate time-reversal symmetry [91]. Magnetic effects, consider for instance
induced ferromagnetism, break time-reversal symmetry, lifting degeneracies
in the system [92].

To make this explicit [87]: ”time reversal symmetry can be expressed in
terms of Ȟ : a system is invariant under time reversal symmetry if and only
if the complex conjugate of the first quantized Hamiltonian Ȟ∗ is equal to
Ȟ up to a unitary rotation U , i.e.”

T : U †T Ȟ
∗UT = +Ȟ. (3.52)

For the case UT = σx ⊗ σx, where ⊗ denotes the tensor product, we have,

T : U †T Ȟ
∗
2UT = −Ȟ2, (3.53)

which means that the Hamiltonian breaks time reversal symmetry (TRS).
Magnetism breaks TRS [91], and we model induced ferromagnetism in the
MTI, it comes as no surprise that the Hamiltonian breaks TRS.

The dispersion relation in section 3.2.4 were shown to be symmetric under
the reflection of the curves in figure 19 in the line E = 0, which is the
manifestation of particle-hole symmetry (PHS). Similar to TRS, [87]: ”a
system is invariant under particle-hole (or:charge-conjugation) symmetry if
and only if the complex conjugate of the Hamiltonian Ȟ∗ = ȞT is equal to
minus Ȟ up to a unitary rotation UC , i.e.”

C : U †CȞ
∗UC = −Ȟ. (3.54)

By using the same unitary matrix UC = UT as in (3.52) we show,

C : U †CȞ
∗
2UC = −Ȟ2, (3.55)

which means that the Hamiltonian obeys PHS. Following the classification
scheme [87], the breaking of TRS and obeying of PHS (with U2

C = +I4×4)
the BdG Hamiltonian falls in the D-symmetry-class.
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Particle hole symmetry can be phrased as the notion that creating a
quasiparticle with energy E or removing one with energy −E are identical
operations. Suppose there is a solution φi with a positive energy solution
Ei then PHS enforces the existence of a solution with energy Ej = −Ei and
corresponding φj for some j with the relation φj = Cφi and φj = φi

† [43].

As an illustration we consider the TI spinors in (3.27) and (3.29). We see
that if we ignore normalization and set ~kevf = ~khvf ≡ k̃ (which is valid
since µ � E) that given the electron dispersion relations ETI

e± = ±k̃ − µ
with corresponding eigenvectors φTIe± = (1,±eiθ)T that we have the par-
ticle(electron) hole symmetric pairs with opposing energies for the holes:
ETI
h± = −(±k̃ − µ) with the eigenvectors φTIh± = (1,±e−iθ)T = CφTIe±. The

same can be shown for the MTI and STI spinors. Thus the BdG Hamilto-
nian indeed has PHS.

The importance of TRS and PHS are paramount in the discussion of
potential Majorana states in a system described by the BdG Hamiltonian.
Since we defined the Majorana operator as the simultaneous creation and an-
nihilation operator of a Majorana state (γ = γ†), PHS restricts the existence
of a Majorana state to be only possible at E = 0 (because E = 0 is, trivially,
the only energy s.t. γ(−E) = γ†(E)). Following the work by Read and
Green [31] the emergence of Majorana modes requires the breaking of TRS.
The fact that the derived BdG Hamiltonian in matrix form simultaneously
obeys PHS but breaks TRS validates the choice to study heterostructures
described by this Hamiltonian. For elaborate discussions on TRS and PHS
in the context of condensed matter physics, the reader is referred to [30], [43],
[69], [87], [88], or [89].
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4 Designing and implementing a symbolic tool

The previous chapter set the complete theoretical stage for the further quan-
titative analysis in this thesis. In this chapter we describe the custom made
tool that, given a superconducting topological junction, automates the vari-
ous steps required to go from the equations (BdG in chapter 3) and processes
(Andreev scattering in section 2.2.1) to the computation of physical quan-
tities. The goal is to be able to compute quantities such as the reflection
coefficient of electronic wavefunctions at an interface or the transmission of
an incoming electron through a complete superconducting topological junc-
tion, consisting of several slabs of varying material, as a function of various
tune-able parameters. These theoretical results could then for instance be
used to obtain a prediction of certain resonance peaks in an I, V (current vs
voltage) curve in an experimental realization of the studied junctions.

The tool consists of three main parts. First we solve for the complex wave-
functions per material under investigation based on the BdG equations. Next
we piece together the various materials at the vertical interfaces by requiring
the continuity of the wavefunctions at each interface. Finally, the resulting
set of equations acquired by imposing continuity are cast into a linear system
and solved for the complex wavefunction amplitudes. These can be consid-
ered as reflection or transmission coefficients as will be detailed momentarily.

Before we describe the working of the tool in detail, we first sketch the
route (section 4.1) from the equations and processes to physical predictions
we have automated using the tool. Here, we discuss the vast amount of
various steps, which individually might be simple, but due to their extensive
length are tedious, prone to error, and time consuming to manually execute if
that is even possible in any manner. Next we elaborate on the tool’s motiva-
tion and the underlying assumptions and resulting limitations in section 4.2.
The tool itself is described in section 4.3. In the last section (4.4) we validate
the tool’s working by comparing intermediate results (e.g. wavefunctions) to
results found in literature or derived by hand. For further validation various
results in literature are re-derived using the tool, moreover in the upcoming
results (chapter 5) the tool is used to derive a number of entirely novel re-
sults.
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Figure 20: Simplistic schematic of a superconducting topological junction. From left to
right the system consists of a MTI, TI and STI. The STI and MTI are formed through
the proximity effect by the ferromagnetic insulator (F) and s-wave superconductor (S)
stacked vertically on top of the 3D topological insulator (TI). The width of the MTI and
the middle TI segment are indicated. The axis system is illustrated such that k is in the
2D xy-plane and the magnetic orientation in F is allong z.
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Figure 21: The schematic representation showing the 2D (x, y) top-view of the topological
insulator ‘set-up’ depicted in figure 20. We focus here on the MTI-TI-STI part of figure
20, in principle there can still be TI slab on the left side of the MTI. This figure illustrates
the possible types of reflections and transmission occurring in a ballistic 2D MTI-TI-STI
junction. The solid and dashed lines refer to electron and hole transport respectively. The
indicated angle θ is defined for electrons relative to the positive x-direction. The Andreev
bound state is indicated by the magenta colored reflection coefficients in the middle TI.
At the MTI side normal reflection for both electrons and holes can occur, whereas at the
STI side both normal and Andreev reflections are possible.
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4.1 Calculation route

All systems we try to model are made up of various quantum materials
bordering vertically in a 2D domain. We model the wavefunctions in each
material separately using the Bogoliubov-de Gennes equations (see chapter
3). We connect the separate wavefunctions by requiring continuity at each
interface. To sketch the kind of computations automated using the tool, we
consider for example the system (figure 20) consisting of a 3D topological
insulator with a ferromagnetic insulator and a superconductor on top of it.
This induces ferromagnetism and s-wave superconductivity in the 2D TI sur-
face states, forming a MTI-TI-STI system. It is obtained by replacing the
left superconducting lead in the Josephson junction 3. The TI part extend-
ing on the left side now acts as a lead. In particular, we are interested in
the formation of Andreev bound states due to charge carriers entering the
middle TI slab, of width d, by tunneling in from the left.

Figure 21 is the top-view of figure 20 showing the scattering processes
occurring in the 2D surface states. The angle θ is defined w.r.t. the positive
x-axis, i.e. tan(θ) = ky

kx
is the ratio of the momentum components. Due to

the Andreev reflection at the TI-STI-interface and the normal reflection at
the MTI-TI-interface an Andreev bound state (see section 2.2.1) can occur.
The computations, manipulations, and steps needed to go from the system,
its constituent materials to possible scattering mechanisms are:

1. For each unique material m in the system we specify the BdG equations
in matrix form (equation (3.20)) and solve them algebraically in plane
wave basis for the eigensolutions {(Em

0 ,φ
m
0 ), (Em

1 ,φ
m
1 ), . . .}. In general

we find algebraic expressions for the wavefunction eigensolutions to a
specified material. In case the materials are an TI, MTI and STI, their
wavefunctions are given in section 3.2 (basis 1) and appendix A (basis
2).

2. Per materialm we categorize the set of eigensolutions {(Em
0 ,φ

m
0 ), (Em

1 ,φ
m
1 ), . . .}

based on the sign of the energy, and group velocity (vg = ∂E/∂k). By
this categorization we can differentiate between left and right prop-
agating particle wavefunctions. The various dispersion relations are
discussed in detail in section 3.2.4.

3. Identify the particles taking part in the reflection and transmission
processes at the various interfaces. That is, consider the incoming par-
ticle undergoing normal reflection and the resulting reflected particle;
and the particles undergoing Andreev reflection or transmission. These
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scattering methods are described in section 2.2. Categorize the parti-
cles based on their particle type (quasi- electron or hole), their travel
direction (identified by an angle), and of course their host material.

4. For each identified particle in step 3 pick the right dispersion branch
corresponding to the categorization in step 2. Then based on this
dispersion branch, use the corresponding eigensolution derived in step 1
to form the complex normalized wavefunctions φmj (x, y) ∼ Amj φ

m
j e

ik·r.
Here, j indicates the correct energy branch. That is we assign each
particle the appropriate wavefunction solution derived in section 3.2.

5. At each interface we impose the proper boundary conditions for the
particles identified in step 3 undertaking some form of reflection or
transmission using the appropriate wavefunctions found in step 4. We
impose the wave functions to be square integrable 13, i.e.∫

|φ(x)|2dx <∞, (4.1)

for arbitrary integration limits. The plane-wave solutions to the BdG
equations are assumed continuous in a homogeneous material. We im-
pose the continuity of the wavefunction at the interfaces. Suppose we
have an interface at x = x0 between an TI and MTI. We consider the
electrons (solid lines) at the left interface in figure 21 and normalize by
the norm of the incoming electron. The electron wavefunction is then
given by

φ(x, y) =

{
tφMTI,+

e (π − θ, x, y) for x < x0,

φTIe,+(π − θ, x, y) + rφTIe,+(θ, x, y) for x > x0,
(4.2)

left and right of the interface. The continuity of φ at the interface
imposes

lim
x→x−0

tφMTI,+
e (π − θ, x, y) = lim

x→x+0
(φTIe,+(π − θ, x, y) + rφTIe,+(θ, x, y)).

(4.3)
By imposing the continuity in this for all interfaces in the system, way
we get a set of equations for the unknown complex coefficients like the

13Since |φ(x0)|2 is the probability of finding the particle at location x0, the interpretation
of this condition is simply that the probability of finding the particle within these integra-
tion limit cannot change abruptly. Physically speaking this condition is the mathematical
statement that the wavefunction describing a physical state does not change abruptly, i.e.
it describes a state that can be prepared with finite energy in finite time [46].
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transmission t and the reflection r. In the coming work we will drop
the limit notation and the (x, y) labels and simply equate the material
specific BdG wavefunctions at the interfaces. Concretely we will write

tφMTI,+
e (π − θ) = φTIe,+(π − θ) + rφTIe,+(θ), (4.4)

evaluated at x = x0. The fact that we would form the wavefunction
piece-wise such as in (4.2) and impose continuity through (4.3) is then
implied, and valid by the continuity of the plane-wave eigensolutions
to BdG equations in each homogeneous material.

We only require the continuity of the φ itself rather than the ’usual’
additional continuity of the derivative of φ. This is because the BdG
equations contain a single differential operator in (3.9) and are thus
first order in space, whereas the Schrödinger equation is second order.

6. The equations in step 5 arising from the continuity of φ (4.3) at each
interface are then combined and written in a matrix vector form. Each
spinor has a complex amplitude and is, in principle, of dimension four.
The equation resulting from imposing continuity of the wavefunction at
the interfaces provide sufficiently many equations (accounting for each
component in the four dimensional spinors) for the unknown complex
wavefunction amplitudes to be determined. We cast the equations into
a linear system Mc = b where c is a vector containing all complex
amplitudes, M contains the φ’s row-wise, and b contains the incoming
particle’s wavefunction.

7. The resulting linear system is then solved algebraically for the complex
wavefunction amplitudes stored in c = (Am1 , A

m
2 , . . . , A

k
1, . . .)

T . We
considered the plane-wave modes for a single fixed energy E. So, the
complex coefficients computed here are also for a fixed energy.

The resulting wave amplitudes (or reflection coefficients) are then used for
further study of the system in a post-processing phase. To make the explicit
connection from the complex amplitudes to reflection and transmission coef-
ficients we point to (4.3). Here the complex amplitudes r, t are interpreted
as the complex pre-factors an incoming electron with energy E relative to
Ef with norm 1 obtains after either normal reflection r and transmission
t. The reflection probability’ is then |r|2. Again these coefficients are for a
fixed energy. So, say we have obtained t(E), then the electron transmission
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probability current one might observe experimentally when applying a volt-
age of eV would be proportional to

∫ eV
0

t(E)t∗(E)dE. To improve one might
include a density of states in the integral, c.q. [3].

The steps are summarized in the algorithm flowchart shown in figure 22.
At various locations in the diagram, relevant sections in the main text are
referenced to indicate a derivation or further explanation of that step or
result.

4.2 Tool motivation & assumptions

The motivation and assumptions underlying the tool should all be considered
in light of this thesis’s physical background, i.e. studying the behaviour of
charge carriers in a system of various junctions between superconducting and
magnetic materials on top of a 3D topological insulator. We now first state
the motivation for the tool before addressing its underlying assumptions and
corresponding limitations.

In principle each of the computations and steps described in the flowchart
(see figure 22) can be done algebraically by hand. Hence we would arrive
at an algebraic expression for e.g. the reflection coefficient for an incoming
electron in a MTI-TI-STI system. The individual steps are simple. However,
as the system’s size grows, the amount of manipulations quickly becomes
infeasible without suitable computational support. In fact, executing these
steps by hand becomes an increasingly lengthy task prone to error. More-
over, the effect of a small correction or change somewhere at the start of the
calculations is difficult to keep track off. Consequently the subset of prob-
lems we can study (algebraically) is limited by their size and complexity as
this is bound by the time and accuracy with which one can execute these
steps by hand. To remedy this, a tool was made to automate the indicated
steps. Initially we build and use the tool to model MTI-TI-STI systems, but
already when we consider STI-TI-MTI-TI-STI Josephson junction, as shown
in figure 3, computations by hand were no-longer possible. The reason for
our interest in the behaviour of such larger systems is evident in light of the
the (chiral) Majorana modes it is predicted to host [1][31].

The limitations of the tool arise from (i) the type of systems we aim to
solve, (ii) the assumption set by using the BdG equations, and (iii) are linked
to the way we piece together the wavefunctions at each interface. The type
of problems we aim to solve dictate a 2D domain with vertical boundaries
spaced in the x-direction. Also, the system is assumed to extend much more
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in the y-direction than the x-direction, such that we may ignore boundary
effects in the y-direction. The tool was constructed with the application to
topological insulators in mind, hence no impurity scattering effects are con-
sidered, this limits this approach to the clean limit (ballistic). The usage of
the BdG equations gives rise to the corresponding assumptions as mentioned
in chapter 3, i.e. sufficiently low temperature.

Final, the assumption that we require the continuity of the wavefunction
at each interface might not capture all subtle physics occurring at the inter-
face. For instance, the proximity effect in the x-direction between two neigh-
bouring materials yields that the superconducting gap ∆(x) is not strictly
a step function. Nevertheless, this approach proves successful in predicting
the most prominent effects. This method was pioneered by Blonder Tinker
and Klapwijk (BTK) [3] already in 1982. The validity of this assumption is
based on the fact that the BTK method is still widespread in the study of
superconductivity ever since, for instance see the recent paper [93].

4.3 How to use the tool

The numbered steps illustrated in the algorithm flow diagram in figure 22
can broadly be categorized in three groups, i.e. elementary computation,
categorization, and construction steps. After identifying each group, we dis-
cuss the way these steps are (partially) automated. In steps 1 and 7 we
solve an eigenvalue problem and a linear system respectively. These steps
can be considered as elementary computations. Depending on the size of the
problem and the complexity of the matrices used, the computations can be
difficult and lengthy, but a (symbolic) solver is suitable to do these tasks.
Steps 2, 3 and 5 can be considered as categorization steps, here the solution
branches, particles and wavefunctions on either side of an interface in the
system are ordered. This categorization of the wavfunctions is based on the
categorization of the solution branches discussed in section 3.2.4. When the
particles, corresponding eigensolutions, and continuity requirements are well
categorized, we automate the process of building the mathematical objects
(wavefunctions or matrices) in the steps 4 and 6. We consider these steps as
construction steps.

The group of elementary computational steps is most trivially automated
by a symbolic solver14. The eigensolutions to the input Hamiltonians in ma-

14In this thesis the computer algebra system SymPy[94] is used.
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Superconducting topological junctioninput:

Material 2 (ch: 2 )Material 1 Material n

BdG eigenproblem (sec: 3.2 )

Eigenvectors (sec: 3.2/A.2 )
dispersion relation (sec: 3.2.4 )

Wavefunction ψ2(x)
(sec: 3.2/A.2 )

Continuity requirements
ψi’s at interfaces

(sec: 4.1 )

Linear system
(sec: 4.1 )

Reflection and transmission
coefficients

Wavefunction amplitudesoutput:

...
BdG (ch: 3 )

plane wave (sec: 3.2 )

pick branch (sec: 3.2.4 )

Scatter processes (sec: 2.2 )

Figure 22: A schematic representing the working of the tool. At each step and block in the
schematic a reference is placed to the corresponding section in the thesis where this step or
block is discussed. The dashed columns left and right indicate that the steps shown in the
middle column are also done in other columns. The input is a superconducting topological
junction consisting of n bordering domains in which we each have a specific (quantum)
material. In each domain, the material specific Bogoliubov-de Gennes equations are solved
in a plane wave basis. From the multiple eigenvector solutions to the eigenproblem form
of the BdG equations the appropriate energy solution branches are picked together with
their corresponding wavefunctions. At each interface the various scattering processes that
can occur are modelled, and then based on the continuity of the wavefunctions a scattering
matrix is build. The scattering matrix is solved for the (complex) wavefunction amplitudes.
These can be considered as reflection and transmission coefficients.
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trix from, such as the ones shown in section 3.2, are readily found. To ease
the interpretation of the resulting normalized eigenvectors, they are further
simplified by substituting the symbol E into the eigenvector in places where
the expression found for E (the eigenvalue) was encountered in the eigen-
vector. These type of simplifications are difficult to automate fully so they
require some form of interaction between the user and the tool if the tool is to
be extended beyond the currently implemented materials. There is always a
limit to what we can (make the computer) do algebraically. When the num-
ber of unknown complex amplitudes grows beyond an order of ∼ 10, closed
form algebraic expressions for the amplitudes are no longer comprehensible
and we can then simply evaluate them numerically and plot the result.

The categorization and building steps mentioned above are automated
but do require some physical understanding of the problem at hand. In
particular, given a completely new type of material and/or different junction,
the tool does not simply compute the reflection coefficient automatically.
The user is expected to implement new forms of reflection or transmission
accordingly, and use the tool as a framework to automate all of the subsequent
work.

4.4 Validation

The proposed automation might sound promising in reducing the risk of com-
putational errors whilst decreasing the temporal burden of all these manual
steps, but it all stands or falls by the validity of its output. To study the
validity of the tool we compare known results from literature to various (in-
termediate) output. In this section we will compare known wavefunction
eigensolutions to the tool’s output. Similarly we will show that using the
tool we re-obtain reflection coefficients known from literature for specific
systems. Finally, we will look forward to some results in this thesis which
highlight that using the tool enables to re-calculate various well-established
findings in literature. This increases the confidence in the results without
actually proving correctness.

4.4.1 Equivalent wavefunctions in literature

The BdG equations derived in this work (section 3.1) combine topological
insulators with superconducting or magnetic materials. As an intermediate
check, we compare the wavefunctions derived using the tool in section 3.2 to
the theoretical work by Jian-Xin Zhu [47]. We show in appendix B that the
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TI, MTI, STI spinors are equivalent up to a spin rotation to the ones derived
by Zhu. The spin orientation is set by the way we couple the spin to the
momentum, i.e. the form of σ in the p · σ term in (3.3) [69]. We work in a
spin basis consisting of eigenstates of the Pauli spin matrix σx. This choice
is somewhat arbitrary, because we can equivalently work in an eigenspace
of σy or in that of the actual intrinsic spin of the system [68]. The explicit
equivalence between the spinors in basis 1 given in section 3.2 to those in
[47] is established in appendix B. This equivalence serves as a validation of
the correctness of the tool’s ability to derive the algebraic eigensolutions to
the BdG equations.

4.4.2 Manual reflection coefficient computation

The steps automated by the tool can in some selected cases be done by hand
to check tool’s results manually. This of course defeats the purpose of the
tool, but it serves as a mean for further validation of the tool. To illustrate
this, we consider the tunneling through a topological barrier in a TI-TI’-TI
system (figure 23). Here the prime for the middle TI indicates a Fermi sur-
face mismatch relative to its neighbours. That is, there is a non-matching
chemical potential at both interfaces, resulting in a incomplete overlap of the
Fermi surfaces in k-space on either side of the barrier. This gives rise to an
imperfect conduction and hence we get an effective barrier. The mismatch
is modelled by a different spatial angle, i.e., we introduce an angle θ′ 6= θ
describing the angle between the x and y component of the momentum in
the middle region. In literature this system is already derived by hand [46].

We first derive the required electron TI wavefunction manually. We con-
sider the single particle Hamiltonian

ĥTI = vfp · σ − µ =

(
−µ −i~vf (∂/∂x− i∂/∂y)

−i~vf (∂/∂x+ i∂/∂y) −µ

)
,

(4.5)
and a wavefunction of the form

φ(x, y) =

(
u0↑
u0↓

)
eikxx+ikyy, (4.6)

to arrive at eigenproblem (3.26)(
−µ ~kevfe−iθ

~kevfeiθ −µ

)(
u0↑
u0↓

)
= E

(
u0↑
u0↓

)
, (4.7)
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Figure 23: A schematic illustration of an incoming electron (hole) from a TI traveling
under an angle θ (−θ) undergoing normal reflection ree (rhh) or transmission tee (thh) for
a double barrier system consisting for three TI’s. The middle TI is held at a different
chemical potential, giving rise to a Fermi surface mismatch relative to the other two TI’s.
The Fermi surface mismatch could result in a nonzero transparency (D := 1− rr∗). The
middle TI is b wide.

with eigenvalues

(E + µ)2 = (~vfke)2 → E± = ±~vfke − µ.

This result reflects the known linear dispersion of a topological insulator. For
E+ we rewrite (4.7), using the definition of ke, to(

−1 e−iθ

eiθ −1

)(
u0↑
u0↓

)
= 0→ u0↑

u0↓
= eiθ

→φTIe+(θ) =
1√
2

(
1
eiθ

)
eikxx+ikyy.

The negative ke-branch would give 1√
2
(1,−eiθ)T .

Now we consider the middle TI-TI’-TI subsystem illustrated in figure 23.
An initial electron from the left TI is inbound on the middle TI’ under an
angle of θ. By imposing continuity of the spinors at each interface (we take
the first interface at x = 0 and hence the second at x = b), we can build a
system corresponding to these two requirements. We get the following two
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continuity requirements

φTIe+(θ) + reeφ
TI
e+(π − θ) = Aeφ

TI
e+(θ′) +Beφ

TI
e+(π − θ′), at (x, y) = (0, 0),

Aeφ
TI
e+(θ′) +Beφ

TI
e+(π − θ′) = teeφ

TI
e+(θ), at (x, y) = (b, 0).

The first equation describes the imposed continuity of an electron incoming
from the left TI under an angle θ undergoing either normal reflection ree
or transmission Ae. The second (Be) term is required here to describe an
electron resulting from the normal reflection at the second interface traveling
towards the first interface again. At the second interface the transmitted
electron Ae in the middle TI′ can either reflect normally Be or transmit, tee,
to the right TI.

The imposed continuity gives us 2 × 2 equations describing the four un-
knowns ree, Ae, Be, and tee. By eliminating Ae and Be we can solve this
system for, in particular, ree. These (trivial) elimination steps are omitted,
but they result in [46]:

ree (θ) =
2eiθ sin (kxeb) (sin θ − sin θ′)

e−ikxeb cos (θ + θ′) + eikxeb cos (θ − θ′)− 2i sin (kxeb)
. (4.8)

Using the tool we find exactly the same reflection coefficient (4.8). More-
over, this expression has been derived before for Klein tunneling in graphene
[62] and in Dirac semimetals [95]. Anyone who has solved such a scattering
problem knows the patience and focus required to avoid small computational
errors, but we have shown that the tool quickly and correctly computes re-
sults such as (4.8). By comparing not only the final reflection coefficient,
but also the to-be solved linear system to the work [46], this example illus-
trates the validity of the tool in all its steps, from finding the wavefunctions,
to piecing them together correctly and then deriving the (correct) reflection
coefficient.

Now that we have some confidence in the validity of the tool, we can
use it to compute reflection and transmission coefficients and post-process
them to (re)derive various results. We briefly mention here a few results
that were re-derived using the tool before we look at some novel results.
In the coming results chapter 5 we employ the tool to compute a result
on the occurrence of chiral Majorana modes in the form of Andreev bound
states in an MTI-TI-STI system by Tanaka [38]. Additionally, the angle
dependent transmission coefficient for a TI-MTI-TI tunnel barrier system is
computed for which the 1D limit agrees with literature [41]. Moreover, a
novel mechanism to invert the chirality of Majorana modes in a MTI-TI-STI
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system is proposed and studied. Finally, the re-derived result by Tanaka
is combined with the two dimensional transmission coefficient to study the
multiple Andreev reflections in a symmetric STI-TI-MTI-TI-STI Josephson
junction. Since the last results are novel, they can not be checked against
literature to validate the working of the tool. We can however investigate the
implication of the tool’s output and check whether the results make physical
sense, e.g., under specific asymptotic conditions.

81



5 Results

The reason to automate the computations using the tool described in chapter
4 was to correctly and efficiently compute the reflection and transmission of
(electronic) wavefunctions in a system consisting of multiple interfaces be-
tween quantum materials of varying kinds. In this chapter, we focus on the
topological Josephson junction consisting of two superconducting leads in-
ducing s-wave superconductivity into the 2D topological surface states in a
2D topological insulator. The two superconducting leads are connected by
a (magnetic) constriction acting as a tunnel barrier. The resulting STI-TI-
MTI-TI-STI system is depicted in figure 3. We will analyse the quantum
transport through the system as a whole, in parts, and its constituent bi-
layers using the tool. In doing so we re-derive results from literature as
limiting cases of the full 2D system that has never been analysed in full de-
tail before.

First we consider the isolated MTI-TI-STI subsystem, top view shown
in figure 20 and 21, obtained by removing the left STI from the Josephson
junction in figure 3. For this system we re-derive a result by Tanaka [38]
in section 5.1. This section can be considered as further validation of the
tool. The coefficients rMTI

ee etc in figure 21 are indicated to show all possible
wavefunctions in the system. The solid and dashed lines indicate electron-
and hole-like quasiparticles. The second TI hosts an Andreev bound state,
and as the width, d→ 0, this system describes an interface between an MTI
and STI in which, as predicted by Fu and Kane[1], zero-energy Majorana
bound states in the form of chiral Majoranas can appear.

The conditions are derived under which this chiral Majorana mode (CMM)
emerge in the form of an ABS, as well as the corresponding energy. Con-
cretely, a phase coherence condition is formulated (section 5.1.4) to predict
the existence of a possible zero-energy structure in the density of states. Re-
call that (zero) energy here, is relative to the Ef . Moreover, using the results
on the CMM we can predict the shift away from zero energy of this structure
as a function of the incidence angle θ and magnetic energy gap mz. After
this in section 5.2, a novel way is demonstrated to manipulate the direction
of motion of the CMM in the system.

After studying the CMM in the form of Andreev bound states in an MTI-
TI-STI system, we use the tool to study the multiple Andreev reflections in
the full topological Josephson junction shown in figure 3. In the figure, a
magnetic tunnel barrier is drawn, but in section 5.3 we consider a ferromag-
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netic insulating or Fermi surface mismatch tunnel barrier. First, we compute
the reflection at- and transmission through both barriers. Based on these cal-
culations and the phase coherence criterion derived in section 5.1.4 we can
predict the existence of certain resonance features in the current that arises
from the found Andreev bound states in the (two) isolated subsystems. Since
the full Josephson junction in figure 3 can be formed by connecting the two
(STI-TI-MTI and MTI-TI-STI) sub-systems by a tunnel barrier, the bound
states15 on either side can open novel conduction channels that would be
visible in a measured or simulated I, V curve.

Next, we compute the DC current through the entire Josephson junction
by solving the so-called recurrence relations. Here we extend the work of
Olde Olthof[46] on what the effect is of the tunnel barrier’s type (magnetic
or a Fermi surface mismatch barrier) on the DC current as a function of the
applied voltage bias (i.e. the simulated I, V curves). We relate the results
derived for the CMM in the form of ABS in the MTI-TI-STI system studied
in section 5.1 to the simulated MAR I, V curves as shown in section 5.3.
Concretely, the voltages for which the peaks occur in the MAR’s I, V curves
can be fitted by the predicted locations based on the phase coherence pre-
dictions in section 5.1.4. That is, the energies at which a CMM is predicted
to exist are related to the voltages at which steps and peaks occur in the
simulated I, V MAR spectra.

5.1 Chiral Majorana modes as Andreev bound states

Following Fu and Kane [1], Tanaka [38] modelled the MTI-TI-STI system
shown in figure 20 and 21, and showed the emergence of chiral Majorana
modes as Andreev bound states occurring in this system. The goal of this
section here is to re-derive the ABS’s dependency on the incoming particle’s
energy and angle, and the magnetic energy gap’s size. We study this by con-
sidering the phase gain associated with the types of reflection possible per
particle at each interface in figure 21. An ABS occurs when the wavefunc-
tions responsible for the bound state add up constructively after successive
(Andreev) reflections, i.e. the phase gains obey (2.6). If we have all rel-
evant phases, we can transform the phase condition to a relation between
the incoming particle’s energy and angle for a fixed mz. Meaning that for a
specified magnetic energy gap and incoming angle, we can predict the energy

15When the two systems hosting bound states are connected by a tunnel barrier the
bound states are no-longer isolated and become delocalized, so in principle, the current
predictions based on these bound states are valid only in the strong barrier (low transmis-
sion) limit.
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at which a CMM in the form of an ABS is likely to occur based on the phase
coherence criterion. We not only re-derive the results by Tanaka, but we also
study the transmission through the system and demonstrate a novel way to
manipulate the CMM.

The MTI-TI-STI system can be broken down into two distinct bilayers, an
MTI-TI, and a TI-STI one. In the coming two subsections we will compute
the relevant reflection coefficients for each bilayer for an incoming electron
and hole. That is, we need to solve four distinct but similarly structured
scattering problems. The tool described in chapter 4 is well equipped to
swiftly and systematically solve these four problems. To model the bilayers
such that pieced together they form the full MTI-TI-STI system we should
be careful in using the appropriate angle under which the charge carriers are
inbound on the interfaces. The angles need to be such that together they
model the full systems that allow an ABS. We therefore, consider a TI-STI
interface with an electron inbound under an angle that we define as θ. The
holes should then be inbound with angle −θ. For the MTI-TI interface, the
angles should be π − θ and π + θ for the electron and hole respectively.

5.1.1 TI-STI bilayer

We now consider a TI-STI bilayer as shown in figure 24. An electron (hole)
inbound under angle θ (−θ) from the TI side undergoes a scattering event
at the TI-STI interface. The four possible channels are, normal reflection,
ree(rhh); Andreev reflection reh(rhe) and corresponding transmission tee(thh);
or Branch crossing transmission teh(the). The calculations are all automated
by the tool, here we still show intermediate results to illustrate the tool’s
working, but in later sections we shall omit these intermediate steps. The
shown eigenfunctions in this section are given in section 3.2, and appendix A
for basis 1 and 2 respectively. Details on further labeling of the spinors can
also be found there.

We set up a system of equations based on the continuity of the spinors at
the interface, which is taken at x = 0, and solve this system for the reflection
and transmission coefficients. For an electron under angle θ from the TI’s
side traveling towards the STI we have the following continuity requirement

φ
TI,(i)
e+ (θ)+r(i)

eeφ
TI,(i)
e+ (π−θ)+r(i)

ehφ
TI,(i)
h− (π+θ) = t(i)eeφ

STI,−(i)
+ (θs)+t

(i)
ehφ

STI,−(i)
− (−θs).

(5.1)
The label (i) refers to the basis we use. The equation describes an incoming
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Figure 24: A schematic illustration of an incoming electron (hole) from a TI traveling
under an angle θ (−θ) undergoing normal reflection ree (rhh), Andreev reflection reh (rhe),
transmission tee (tee), or branch crossed transmission teh (the) for a TI-STI bilayer. We
consider the possibility of a Fermi surface mismatch between the TI and STI by introducing
a different angle θs in the STI.

electron in the TI traveling under an angle θ undergoing either normal reflec-
tion r

(i)
ee or Andreev reflection r

(i)
eh and remaining in the TI or transmitting

into the STI as either an electron-like (t
(i)
ee ) or hole-like (t

(i)
eh) quasiparticle.

For a hole traveling with an angle −θ we arrive at an analogous equation

φ
TI,(i)
h− (−θ)+r(i)

hhφ
TI,(i)
h− (π+θ)+r

(i)
heφ

TI,(i)
e+ (π−θ) = t

(i)
hhφ

STI,−(i)
− (−θs)+t(i)heφ

STI,−(i)
+ (θs).
(5.2)

Per incoming particle type and basis, we can cast this continuity requirement
into a system of equations. The four unknown quantities are the reflection
and transmission coefficients. This single equation is actually a vector equa-
tion consisting of four equations element-wise, i.e. we have four equations
for four unknowns.

Basis 1
For an electron under angle θ inbound on the TI-STI interface, we find the
following system

1√
2

0 −1
2

−1
2

−e−iθ√
2

0 − eiθs

2
e−iθs

2

0 1√
2
−χ−eiθse−iϕ

2∆0

χ+e−iθse−iϕ

2∆0

0 e−iθ√
2

−χ−e−iϕ

2∆0
−χ+e−iϕ

2∆0



r

(1)
ee

r
(1)
eh

t
(1)
ee

t
(1)
eh

 =


1√
2

eiθ√
2

0
0

 . (5.3)
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We solve the four by four linear system for the electron-hole Andreev reflec-
tion coefficient in basis 1

r
(1)
eh =

χ−
∆0

eiθe−iϕg(θ, θs), (5.4)

where we define

g(θ, θs) =
cos(θs − θ) + cos(θs + θ)

χ−
χ+

cos(θs − θ) + cos(θs + θ) + (1− χ−
χ+

)
. (5.5)

This function will pop up in all Andreev reflection coefficients, so that is why
we explicitly mention it here. Moreover in the limit µ = µs → θ = θs where
there is no Fermi surface mismatch between the TI and STI we have

lim
θ→θs

g(θ, θs) = 1. (5.6)

To be precise, this limit also holds for all µ when θ = 0→ θs = 0. The quan-
tities χ± are defined in (3.44), and they essentially describe the relationship
between the incoming particle’s energy and the superconducting energy gap.
In the sub-gap range, i.e. |E| < |∆0|, the χ’s are complex.

For a hole incoming under an angle −θ we find
0 1√

2
−1

2
−1

2

0 −e−iθ√
2

e−iθs

2
− eiθs

2
1√
2

0 χ+e−iθse−iϕ

2∆0
−χ−eiθse−iϕ

2∆0

e−iθ√
2

0 −χ+e−iϕ

2∆0
−χ−e−iϕ

2∆0



r

(1)
hh

r
(1)
he

t
(1)
hh

t
(1)
he

 =


0
0
1√
2

− eiθ√
2

 , (5.7)

with a corresponding hole-electron Andreev reflection coefficient

r
(1)
he = −χ−

∆0

eiθeiϕg(θ, θs). (5.8)

So, we see that in basis 1 the following relation holds

r
(1)
eh = −r(1)

he e
−2iϕ. (5.9)

Basis 2
A completely analogous computation in basis 2 yields the following two An-
dreev reflection coefficients, for an electron incoming under angle θ

r
(2)
eh =

χ−
∆0

e−iϕg(θ, θs), (5.10)
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and for an incoming hole under −θ

r
(2)
he =

χ−
∆0

eiϕg(θ, θs). (5.11)

So we actually see that in basis 2 the two Andreev reflection coefficients
become equal up to a phase difference of 2ϕ

r
(2)
eh = r

(2)
he e

−2iϕ. (5.12)

Moreover, if we use the approximation, µ = µs → θ = θs, we have g(θ, θs) = 1
and the angle dependency drops out. Consequently in basis 2, the Andreev
reflection coefficient are angle independent and equal for electrons and holes
when ϕ = nπ, n ∈ N. This result further highlights the benefit of using basis
2, because if we want to do further calculations in systems with multiple su-
perconducting interfaces, then we can simply use a single Andreev coefficient
for all possible incident particles, when the superconducting phase is set to a
multiple of π. This result will proof useful in the study of multiple Andreev
reflections 5.3. For the results to follow we will therefore adopt basis 2. We
can thus define a single Andreev reflection coefficient in basis 2 (up to a su-
perconducting phase ϕ)

r
(2)
AR =

E −
√
E2 −∆2

0

∆0

→ e−i arccos (E/∆0) when −∆0 < E < ∆0.

(5.13)
The fact that something with a clear physical interpretation such as the

reflection coefficients are shown to be different in a different basis might sound
as if the physics has become basis dependent. However, it should be noted
that one can not observe (read measure) a complex reflection coefficient.
When studying for example a TI-STI bi-layer experimentally, one would look
at for instance the current through the bi-layer. The current for one scales
with the transparency, D, of the barrier. However, D is a real quantity given
by D := 1−rr∗, so if the reflection coefficient only differs by a complex phase
between two bases, the resulting physical observable (D) remains unchanged.
Indeed, the reflection coefficients only differ by by a complex phase between
(5.4) and (5.10) and between (5.8) and (5.11).

5.1.2 MTI-TI bilayer

We now consider a MTI-TI bilayer as shown in figure 25. An electron (hole)
inbound under angle π − θ (π + θ) from the TI side undergoes a scattering
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Figure 25: A schematic illustration of an incoming electron (hole) from a TI traveling
under an angle π − θ (π + θ) undergoing normal reflection rMTI

ee (rMTI
hh ) or transmission

tMTI
ee (tMTI

ee ) for a MTI-TI bilayer.

event at the MTI-TI interface. The two possible channels are, normal re-
flection, rMTI

ee (rMTI
hh ); and the transmission into to the MTI tMTI

ee (tMTI
hh ) to a

wavefunction that is decreasing in the negative x-direction. Similar to the
previous section, we illustrate the tool’s workings by showing intermediate
steps. We show this case too because now there is a magnetic active material
present. This introduces the usage of evanescent wavefunctions. To obey
the physical requirement that the used wavefunctions remain normalisable
on the given domain, we need to have that our MTI wavefunctions decrease
to zero as x→ −∞.

As before we set up a system of equations based on the continuity of
the spinors at the interface, which is taken at zero, and solve this for the
reflection and transmission coefficients. It should now be noted that due
to the absence of superconductivity in this system, there is no coupling be-
tween electron-like and hole-like quasiparticles in the BdG matrix form of
the Hamiltonian and consequently we can describe the system by spinors of
dimension two. Hence the two continuity requirements both consist of two
element-wise equations for two unknowns. Moreover, as seen in section 3.3,
in absence of superconductivity, the wavefunctions for the electrons becomes
the same for both bases. Hence we now need to solve three problems, one
for an incoming electron, and two for an incoming hole (one per basis).

We consider an electron under angle π − θ from the TI’s side traveling
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towards the MTI (in either basis)

φ
TI,(i)
e+ (π − θ) + rMTI,(i)

ee φ
TI,(i)
e+ (θ) = tMTI,(i)

ee φMTI,+,(i)
e (π − θ). (5.14)

Again, the label (i) refers to the basis we use, and the spinors in basis 1
are given in sec 3.2, and for basis 2 we refer to the appendix A. For the
incoming holes, we consider an initial hole traveling in the π + θ direction.
At (x, y) = (0, 0) we have

φ
TI,(i)
h− (π + θ) + r

MTI,(i)
hh φ

TI,(i)
h− (−θ) = t

MTI,(i)
hh φ

MTI,(i),+
h (π + θ). (5.15)

The electron continuity requirement (5.14) gives rise to the follow system of
equations  1√

2

i~kevf sin (θ)+~qevf√
Ae−

e−iθ√
2

−E+mz−µm√
Ae−

[rMTI
ee

tMTI
ee

]
=

[
− 1√

2
eiθ√

2

]
, (5.16)

We solve this system for the electron normal reflection coefficient

rMTI
ee (π − θ) = −E −mz + µm − (ike sin (θ) + qe) ~vfe−iθ

E −mz + µm + (ike sin (θ) + qe) ~vfeiθ
. (5.17)

Basis 1
Next we consider the hole normal reflection coefficients in both bases. First
a hole incoming under angle π + θ in basis 1 gives rise to the follow system
of equations  1√

2
− i~khvf sin (θ)+~qhvf√

Ah−
e−iθ√

2

E+mz−µm√
Ah−

[rMTI,(1)
hh

t
MTI,(1)
hh

]
=

[
1√
2

− eiθ√
2

]
, (5.18)

which we solve for

r
MTI,(1)
hh (π + θ) = −E +mz − µm + (ikh sin (θ)− qh) ~vfe−iθ

E +mz − µm − (ikh sin (θ)− qh) ~vfeiθ
. (5.19)

Basis 2
We go through the analogous set of steps in basis 2. The resulting hole
normal reflection coefficients is given by

r
MTI,(2)
hh (π + θ) = − E −mz − µm − (ikh sin (θ) + qh) ~vfeiθ

E −mz − µm + (ikh sin (θ) + qh) ~vfe−iθ
. (5.20)

We compare the electron to the hole normal reflection coefficients because
this relations will become important in the coming section when we study
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multiple Andreev reflections, we however can not identify a simple relation-
ship between the electron and hole normal reflection coefficients like we could
for the TI-STI interface. We therefore will consider a physically logical lim-
iting case. Namely, bound states occur in the overall MTI-TI-STI system
when the MTI acts sufficiently well as a barrier. That is, the charge carri-
ers moving in the the TI towards the MTI should be reflected much more
than transmitted. The MTI’s reflective behaviour is most pronounced when
the magnetic field strength is large compared to the energy of the incoming
particle (E) and the chemcical potential in the MTI µm. So we now com-
pare (5.17), (5.19), and (5.20) in the large mz � E, µm limit. In this limit,
qe,h → imz, i.e. the mz and qe,h → imz terms become dominant. We find

rMTI
ee (π − θ)→ −ie−iθ,

r
MTI,(1)
hh (π + θ)→ ie−iθ,

r
MTI,(2)
hh (π + θ)→ −ieiθ.

(5.21)

In this limit the reflection coefficients are related by

r
MTI,(1)
hh (π + θ) =

(
rMTI
ee (π − θ)

)∗
e−2iθ, (5.22)

r
MTI,(2)
hh (π + θ) = −

(
rMTI
ee (π − θ)

)∗
. (5.23)

5.1.3 Andreev bound state phase coherence condition

Now that we have computed all reflection coefficients that make up the An-
dreev bound state indicated in magenta in figure 21, we can compute their
phases and study the ABS resonance criterion in (2.6). The procedure is as
follows, for a fixed mz we compute the sum of the phases,

αΣ = α
r
STI,(2)
eh

+ α
r
STI,(2)
he

+ α
r
MTI,(2)
hh

+ α
r
MTI,(2)
ee

,

for θ ∈ (−π/2, π/2). Then we solve for the E value such that αΣ crosses16 a
multiple of 2π. This procedure traces a curve in (θ, E)-space indicating the
location of an Andreev bound state. Figure 26 shows this result for various
values of mz (relative to the chemical potential in the TI). The figure should
be interpret as follows, for a given mz and θ, it shows the energy value for
which a phase coherent Andreev bound state occurs.

16We find these ’zero’ crossing up to some predefined tolerance.

90



2 0 2

1

0

1
E 0

mz
= 0.1

mz
= 0.5

mz
= 1.0

mz
= 2.0

mz
= 10.0

Figure 26: Chiral Majorana mode (CMM) bound state level E as a function of the incident
angle θ. Here, mz = 800∆0, µm = 0, and µ = µs is varied to get the ratios shown in the
legend.

The notable characteristics of the curves in figure 26 can be described as
a function of θ and of mz. For all mz, the bound state occurs at zero energy
in the 1D limit (θ = 0). For small finite angles, the bound state moves away
from zero energy. As the angles increase in absolute value, to almost vertical
incident angles, the bound state saturates to a value of E = ±∆0. For a fixed
mz, the angle-dependent behaviour can globally be explained by examining
the normal and Andreev reflection coefficients. We showed that in basis 2, the
Andreev reflection coefficients were given by (5.13) independent of the angle
and particle type. They only vary with the energy for a fixed ∆0. The nor-
mal reflection coefficients are however angle-dependent, see (5.17) and (5.20).

To explain the angle dependency in detail we first look at the 1D limit
for a sufficiently strong fixed mz, and then we explain the angle-dependent
effects. The normal reflections in basis 2 go to −i, this can be seen by taking
θ = 0 in (5.21). The resulting normal reflection phases will thus be equal and
sum to −π. A phase coherent ABS occurs when the normal and Andreev
reflections give rise to a summed phase of an integer multiple of 2π. This
condition is met when the Andreev reflections contribute a phase of ±π/2
each. i.e. for E = 0 in (5.13) rAR → −i and hence the electron and hole
Andreev reflection together contribute the required −π. So in the 1D limit,
there is an ABS at E = 0.
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To meet the phase coherence criterion for the ABS for varying angles
the alteration in the phase gain due to normal reflections has to be compen-
sated by a phase gain change for the Andreev reflections. As the Andreev
reflections only vary with energy, the bound state moves away from zero
energy. The limiting behaviour E → ±∆0 for vertical incident angles can
be explained similarly. For almost vertical incident angles (θ → ±π/2) the
normal reflection coefficients, (5.21) become real, but the electron and hole
phase gain cancel (because of the opposite sign in front of θ in the exponent).
This means that the Andreev reflection coefficient should give a combined
contribution of an integer multiple of 2π, which happens for rAR ∈ R. This
condition is met only in the limit E → ±∆0.

The angle dependency per drawn curve in figure 26 can be explained by
the above, however, the effect of the strength of the magnetic barrier gives
rise to the differences between the drawn curves. The larger mz, the flatter
the curves are around E = 0. i.e. by increasing mz the ABS stay close to
E = 0 for a larger range of θ. The results found and described here are
identical to those found by Tanaka [38], the methods used to come to them
are however different. Whereas we reasoned based on a phase coherence cri-
terion, Tanaka derives the bound states’ location in (θ, E)-space from poles
in the (angle-dependent) tunnelling conductance.

The difference between the curves as a function of the ratio µ/mz is
best characterised by the observation that for a strong magnetic barrier,
µ/mz � 1, the bound states at E = 0 are robust against angle-dependent
effects, whereas for a weak magnetic barrier, µ/mz � 1, the bound states
depart from E = 0 rapidly for small finite incident angles. Essentially we
now have a mean to predict the energy location of an ABS in the system
given an incidence angle and a (variable) ratio µ/mz. This means that by
tuning chemical potential µ relative to the size of the magnetic energy gap
in the barrier by using some voltage gates, we can change the location of an
Andreev bound state in a predictable way. In figure 27 this idea is formal-
ized. Following the density of state pictures (figure 14) in 2.2.2 we now show
how the potential structure initially at E = 0 starts to shift away to a finite
energy EABS. The size and direction of this shift are now predicted using
the result in figure 26.
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(a) Andreev bound state at E = 0 for θ = 0 (b) Andreev bound state at EABS for θ 6= 0

Figure 27: The density of states illustrated on the superconducting side in a MTI-TI-STI
system hosting an Andreev bound state. Due to the magnetic tunnel barrier we predict
to have a structure in the density of states in the form of an Andreev bound state at zero
energy in the 1D limit (a). Angle dependencies (b) move the ABS away from zero energy.
The size of the energy shift EABS for θ 6= 0 is predicted based on figure 26. In (b) two
peaks are drawn, but the red (blue) one corresponds to positive (negative) incidence angle
θ. Image is an adaptation of [46].

5.1.4 Andreev bound state, a necessary phase condition

We can actually derive a more general condition for the occurrence of an
Andreev bound state in a (ballistic) system consisting of a superconductor
on one side, and some form of (tunnel) barrier on the opposite side where
normal reflections can occur. Using the single Andreev reflection coefficient,
in basis 2, given in (5.13) we can rewrite the phase condition to

−2 arccos

(
E

∆0

)
+ (−ϕ+ ϕ) + α

r
N,(2)
hh

+ α
r
N,(2)
ee

= 2nπ, n ∈ Z.

Where the label N indicates the normal reflection at said general (tunnel)
barrier. We see that the superconducting phase gain by the electron and by

the hole cancel. For E ∈ (−∆0,∆0) we have 2 arccos
(
E
∆0

)
∈ (0, 2π). So

when the two normal reflection phase gains sum to 0, the total phase never
reaches the threshold of 2nπ. This means that no bound state can occur if
the two normal reflection coefficients cancel. So we can phrase a necessary
condition for the occurrence of a bound state as

α
r
N,(2)
hh

+ α
r
N,(2)
ee
6= 0. (5.24)

We now translate this condition on the phase gains to a condition on the
reflection coefficients. As seen in the MTI-TI bi-layer, we can relate the
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electron and hole normal reflections coefficients by conjugation and a general
complex function with unit norm (for example ±1). This result generalizes
to other bi-layers or tunnel barriers, so for some complex unit norm function
F we have

r
N,(2)
hh = F

(
rN,(2)
ee

)∗
. (5.25)

The reason why we compare the conjugated electron reflection coefficient to
the hole reflection coefficients is based on time-reversal symmetry, for details
see [45] and chapter 1 in [96].

Conjugation of a complex number reverses the sign of its complex argu-
ment: z = |z|eiα → z∗ = |z|e−iα, for z ∈ C. So the condition on the phase
gains (5.24) translates to

α
r
N,(2)
hh

+ α
r
N,(2)
ee

= Arg(r
N,(2)
hh ) + Arg(rN,(2)

ee )

= Arg(F (rN,(2)
ee )∗) + Arg(rN,(2)

ee )

= Arg(F )− αree + αree

= Arg(F ) =


2 arctan

(√
<(F )2+=(F )2−<(F )

=(F )

)
if =(F ) 6= 0,

0 if F = 1,

π if F = −1,

undefined if F = 0.

The phase criterion (5.24) tells us that this sum should be non-vanishing,
hence for F = 1 we do not get a bound state. This gives rise to the following
necessary condition for the presence of an ABS on the relationship between
the two reflections coefficients

r
N,(2)
hh 6=

(
rN,(2)
ee

)∗
. (5.26)

Please note that this is a necessary condition for an ABS to exist in the
system i.e. if a system is such that it violates the condition an ABS will not
be present in the system (based on phase coherence). Meeting the condition
(5.26) does not mean that an ABS is necessarily present. Badiane et al.[41]
however found that in a 1D magnetic tunnel barrier, where they assumed
a value of F = −1 based on TRS, a non-trivial MAR I, V spectrum is ex-
pected. Their MAR results showed steps in the conduction at voltages for
integer submultiples of ∆0. This non-trivial spectrum would, c.q. the discus-
sion in section 2.2.2, originate from a bound state at zero energy structure
in the DOS. We shall validate this finding later on by studying said 1D mag-
netic tunnel barrier. This means that for both ’limiting values’ F = ±1 we
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have now formulated an expected relationship between the value of F and
the resulting MAR spectrum and underlying zero-energy structure. So we
now formulate a sharpened prediction based on the value of F :

Given a superconducting topological Josephson junction consisting of
a tunnel barrier we define the ratio of the normal reflection coefficients
at the tunnel barrier by

F :=
rhh
r∗ee

.

Then the modelled multiple Andreev reflection I, V spectrum is pre-
dicted to show steps at voltage biases of

eV =

{
2∆0

n
, if F = 1,

∆0

n
, if F = −1,

for n ∈ N.

Using this prediction we can link the Andreev bound states energies in
the isolated systems making up the Josephson junction (e.g. the STI-TI-MTI
and MTI-TI-STI making up the STI-TI-MTI-TI-STI system) to resonances
in the current for the combined Josephson junction. The limiting behaviour
of the MAR spectra based on F is now formulated concretely, but for inter-
mediate (complex) values a smooth transition between the two is expected.
The power of this result is that by simply computing the ratio of the normal
reflection coefficients in the tunnel barrier, we can predict striking features
of the complete complex Josephson junction hosting multiple Andreev reflec-
tions.

5.1.5 TI-MTI-TI-STI transmission

Another interesting quantity to model is the conduction through a system
that allows Andreev bound states, e.g. a TI-MTI-TI-STI system as shown
in figure 20. As seen in figure 26, the MTI-TI-STI sub-system allows for An-
dreev bound states. A natural question would be in what way these Andreev
bound states would show up in for instance a conduction measurement. Since
we model systems by using steady-state solutions to the BdG equations, tem-
poral effects are not taken into consideration. This means that modelling a
non-equilibrium effect such as conduction is not possible. We can however
compute the transmission of an electronic wavefunction through a full TI-
MTI-TI-STI system. The transmission can be seen as the probability of an
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Figure 28: The schematic representation showing the 2D (x, y) top-view of the topological
insulator ’set-up’ depicted in figure 20. This figure illustrates the possible types of reflec-
tions and transmission occurring in a ballistic 2D TI-MTI-TI-STI junction. The solid and
dashed lines refer to electron and hole wavefunctions respectively. The indicated angle θ
is defined for electrons positive x-direction respectively. The system essentially consists of
two parts, on the left we consider charge carriers tunnelling from the left-most TI through
the magnetic tunnel barrier into the MTI-TI-STI sub-system. In this right sub-system, the
Andreev bound states can occur, as is indicated by the magenta-coloured wavefunctions
in the middle TI.

incident electron propagating through the entire system. We take the trans-
mission as an analogy to the conduction G.

To model the transmission through the system illustrated in figure 28 we
consider the left TI as an electrode from which charge carriers (electrons)
tunnel into to MTI-TI-STI system that hosts ABS. The ’experiment’ we
simulate is the effect of the ABS on the reflection or transmission of an in-
coming electronic wavefunction (indicated by the amplitude 1). We compute
the transmission by imposing the continuity of each wavefunction indicated
in the figure 28 at each relevant interface, solving the associated matrix for
the complex wave amplitudes and then computing the transmission based
on these coefficients. The set of continuity requirements that form the to be
solved linear system and the meaning of the coefficients in figure 28 is given
in appendix C.1.

By charge conservation, we can calculate the transmission at any physical
location (vertical cross-section) in the system, the most convenient place is
just inside the left TI region[65]. With that choice, we start with an elec-
tronic wavefunction of amplitude 1 and we wish to compute the probability
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of its charge passing through the entire system and leaving it at the right
STI. It can either pass through entirely or scatter around in the system
and get reflected back as an electron (negative contribution to the charge
transmission) or as a hole (positive contribution to the charge transmission).
The transmission of charge can thus be modelled solely by two coefficients,
C1, and C2 being the complex amplitudes of the reflected electron and hole
wavefunctions in figure 28 respectively

T = (1− |C1|2 + |C2|2). (5.27)

The route towards finding the complex amplitudes is similar to solving
the two bi-layer problems above, however, we now have three interfaces that
we can not solve separately. For instance, the coefficient C7 in figure 28 would
be present in the continuity requirement at the MTI-TI interface as well as
in the one at the TI-STI interface. This means we arrive at three coupled
linear equations of dimension four. That is, we have twelve equations for 12
unknowns (12a and 12b describe the same wavefunction, but result from a
different process, so they can be described by a single unknown coefficient).
In appendix C.1 we give the specific continuity requirements and the wave-
functions considered. We then solve the 12 × 12 associated matrix for the
unknown coefficients and compute the transmission according to (5.27).

The transmission is solved as a function of the incoming electron’s en-
ergy (E) and angle of incidence (θ), this gives rise to a two-dimensional
heat map with the transmission shown as a colour gradient. The results are
shown in figures 29a through 29d. In each 2D heatmap, the phase coherence
ABS curves are shown in figure 26 are drawn on top of the 2D heatmap
for the same inputs. The charge transmission through the system goes to
2(transmission has no physical units), as is typical for Andreev bound state
conductance [97], at exactly the locations traced out by the phase coherence
criterion curves indicated by the overlaid green lines. The transmission then
gradually drops to 0 away from this curve. When we consider the parameters
precisely such that the ABS occurs, an incoming charge is fully transmitted
and a charge carrier with opposite charge is reflected, giving rise to the trans-
mission of 2. Hence these 2D transmission heatmaps exactly agree with the
predicted locations of the ABS in figure 26.

Experimentally it is not straightforward17 to compute a single angle com-
ponent of the conduction, so when we naively measure the conduction through

17It is most certainly possible to study the angle dependency in a conduction experiment
by e.g. varying the vertical extend (y thickness) of the system.
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our system we would measure an angle averaged conduction. Since we take
the transmission as an analogy to the conduction, we consider the angle
averages transmission given by

T̄ (E) =
1

π

∫ π/2

−π/2
T (θ, E) cos θdθ. (5.28)

Figure 29e shows the angle averaged transmission for the various values of
mz. This result agrees with Tanaka’s observation [38] that ”the resulting
transmission has a zero-bias peak originating from the peak of T at resonance
energies. As seen from figure 26, the slope of the curve around E = 0 becomes
gradual with the decrease of µ/mz. Then, the contribution around E = 0
becomes significant in the integral in (5.28) and the resulting height of the
zero-bias peak is enhanced with the decrease of the magnitude of µ/mz as
shown in figure 29e”.

5.2 Majorana mode chirality inversion

The demonstrated chiral Majorana modes emerging in the form of ABS in
the MTI-STI system shown in figure 26 are sensitive to perturbations of
parameters of the system. Even though these predicted CMM on the inter-
face between an MTI and STI by Fu and Kane[1] are protected by the bulk
gap and its topological property it was demonstrated by Tanaka [38] and
recently by Vela et al. [39] that by changing certain parameters these CMM
can be inverted. That is, the direction of motion of these chiral Majorana
fermions is inverted when altering specific quantities. As pointed out by [39],
”The chirality inversion is a unique signature of chiral Majorana fermions in a
spinful topological superconductor: it does not exist for spinless chiral p-wave
pairing. Moreover, the inversion can be detected in a transport experiment,
both in thermal and in electrical conduction”. This opens up the possibil-
ity for experimental studies of CMMs in topological superconducting devices.

It was shown that by flipping the sign of the magnetic energy gap
mz → −mz in the MTI the CMM propagation directions are inverted [38].
Alternatively [39] demonstrated that a counterflow of supercurrent inverts
the propagation direction of the chiral Majorana fermions. In this work, we
first consider the mirrored version of the MTI-TI-STI system and study the
CMM emerging as Andreev bound states therein. Next we validate [38] by
showing the inversion of the curve in 26 upon flipping the direction of the
magnetization m in the ferromagnet. After that, we demonstrate an alter-
native yet simple procedure to inverse the CMM by tuning the ratio of the
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(a) µ/mz = 10−2 (b) µ/mz = 5× 10−1

(c) µ/mz = 2 (d) µ/mz = 101
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(e) Angle averaged transmission

Figure 29: The four figures (a-d) showing the transmission (as analogy to the conductance
G) of an electron through the system shown in figure 28 for various values ratios of the
chemical potential in the TIs over the strength of the magnetic gap in the MTI (µ/mz).
The curves are drawn for a vanishing chemical potential in the MTI, µm = 0, an equal
chemical potential in the TIs and STI, µs = µ that is a varied relative to mz = 800∆0 to
get the shown ratios, the width of the tunnel barrier is b = ~vf/mz. The ’conductance’

G is normalized by G0 = 2e2

h . The additional green line in each subfigure is the phase
coherence condition curve for equal parameters, i.e. the curves in figure 26. Figure e shows
the angle averaged transmission for various ratios µ

mz
.
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Figure 30: The chiral Majorana mode bound state energies as a function of the angle of
incidence for a MTI-TI-STI system drawn as solid lines and its mirror STI-TI-MTI in
dashed lines. Here, mz = 800∆0, µm = 0, and µ = µs is varied to get the ratios shown in
the legend.

chemical potentials in the TI and MTI: µ
µm

.

In the considered the MTI-TI-STI system, CMM emerge at energies and
angles indicated by the solid lines in figure 30. When we mirror this system
and study an STI-TI-MTI system, we would expect that the bound state en-
ergies do not change, since geometrically speaking this would be equivalent
to a π rotation of the original system. If we apply a π shift to the result in
figure 26 we get the same result. Moreover in basis 2 it was shown that under
the assumption µ = µs (which we take in all the results in this work) that
the Andreev reflection coefficients were angle independent, and it is easily
checked that for θ → θ + π the normal reflections (5.17), (5.20) at the MTI
remain unchanged.

This geometric argument is valid, but we should be careful what angles
we compare in the full Josephson junction. We are trying to model the full
STI-TI-MTI-TI-STI system, where the two separated systems are coupled
by a magnetic tunnel barrier. To implement the coupling correctly we have
to match the angles of the particles tunnelling between the two systems such
that they remain travelling under the same angle. Compare for instance the
incidence angles of the wavefunctions in figure 28 marked by C1 and C8. We
need to do an additional θ → −θ transformation to accommodate the fact
that we now parametrize the entire compound system for a fixed single theta.
Upon the change θ → π − θ we do see the inversion of energies in the ABS
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Figure 31: The chiral Majorana mode bound state energies as a function of the angle of
incidence for a MTI-TI-STI system drawn as solid (dashed) lines for mz > 0 (mz < 0). It
shows chiral Majorana mode inversion under the flip mz → −mz. Here, |mz| = 800∆0,
µm = 0, and µ = µs is varied to get the ratios shown in the legend.

curve.

When we solve the same problem as for the MTI-TI-STI system docu-
mented in section 5.1, but now for an STI-TI-MTI system with a left moving
electron inbound on the STI-TI interface under angle π−θ we get the dashed
curve in figure 30. This means that indeed if we considered the mirrored sys-
tem with the additional requirement that we invert the travel direction of
the bound state, the CMM bound state energies invert too. This result
should not be considered as an inversion of CMM due to some perturbation
of a parameter, because the CMM simply propagate in an opposite direction
θ → π− θ because we have defined them to do so to make a fair comparison
in the compound Josephson junction. This example illustrates the fact that
reversing the propagation direction of the CMM gives rise to the inversion of
the sign of the EABS vs θ curve.

In figure 31 the dashed (solid) curves show the bound state energies in a
MTI-TI-STI system for a negative (positive) value of mz as a function the
incidence angle θ. As we flip the orientation of the magnetisation in the ferro-
magnet we see that the bound state energies change sign, which is equivalent
to the inversion of their propagation direction. That is, upon reversing the
direction of the induced magnetisation we invert the direction of motion of
the CMMs, as was previously found by [38].
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Figure 32: The chiral Majorana mode bound state energies as a function of the angle of
incidence for a MTI-TI-STI system drawn as solid (dashed) lines for µ

µm
> 0 ( µ

µm
< 0).

It shows chiral Majorana mode inversion under the gradual change 1 > µ
µm

> 1. Here,
mz = 4µm = 800∆0 , and we vary µ = µs to get the ratios in the legend.

An alternative method to achieve the observed CMM inversion in an MTI-
TI-STI system proposed here is by tuning the ratio of the chemical potentials
of the TIs and MTI. Figure 32 shows the Andreev bound state energies for
a decreasing ratio µ

µm
. The magnetic energy gap is chosen sufficiently large

( 4µ) to guarantee that the MTI acts reflectively. As the ratio surpasses the
threshold µ

µm
= 1 the chiral Majorana modes get inverted and their propaga-

tion direction is altered. When the ratio is exactly 1 the bound state remains
fixed at zero energy for all incidence angles.

An analogous situation can help to illustrate the reason for the observed
instantaneous chiral inversion as the ratio of the chemical potential surpasses
unity. We can consider the situation µ/µm > 1 (µ/µm < 1) as the reflection
of an incident traveling wave in a material towards a potential drop (barrier).
The former gives no phase gain, whereas the latter has a π phase gain. In
the pedagogical example of a V0 step-function potential for a 1D Schrödinger
equation [25] this instantaneous phase dependence is also observed. This
phenomenon is similar to a travelling wave on a rope meeting either a loose
or fixed boundary condition. A fixed boundary condition reflects the travel-
ling wave, and a loose one does not. The reflection reflected wave gets a π
phase gain.

In the MTI-TI-STI system, we see that at the transition point µ
µm

= 1 a
sudden phase shift is observed. This effect is most notable in the comparison
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Figure 33: Complex argument of the calculated reflection coefficients in a MTI-TI-STI
system as a function of the incidence angle. The curves are drawn for a fixed energy and
we have mz = 4µm = 800∆0 , and we vary µ = µs to get the ratio in (a) or (b). The blue
curve labeled by Σ is the sum of the other four. When the blue line crosses 2nπ, n ∈ N
the reflection coefficients add up phase coherently.

of the complex arguments of the normal reflection coefficients for the ratio µ
µm

being lesser and greater than unity. Figure 33 shows the complex arguments
of the relevant reflection coefficients that make up the bound state. The
Andreev coefficients reh, rhe are indeed equal for all θ and only shift laterally
for changing energies. The normal reflections ree and rhh show a global linear
slope of ±θ, except for the sudden drop or rise near θ → ±π

2
. Observe that

when comparing the phases before and after the transition point (figures
33.(a) and (b)) that the sudden phase shift in the normal reflections near
θ = ±π

2
is inverted. Effectively the summed blue curve flips, consequently, the

bound state energies are inverted too. This sudden transition is responsible
for the observed inversion.

5.3 Multiple Andreev reflections

We now focus on the multiple Andreev reflections possible in the topological
Josephson junction consisting of two superconducting leads connected by a
tunnel barrier. Figure 3 serves as an illustration of the system when the tun-
nel barrier is due to a ferromagnetic insulator inducing a magnetic energy gap
into a region of the TI. Essentially this system is the symmetric realization
obtained by connecting the MTI-TI-STI system (figures 20 and 21) studied
in the previous section with its mirrored image: STI-TI-MTI. As explained
in section 2.2.2, the I, V curves for a system hosting MAR are greatly influ-
enced by the potential structure at E = 0. Here we investigate two types
of barriers, i.e. a tunnel barrier due to a Fermi surface mismatch and a
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magnetic tunnel barrier, and study the resulting I, V curves by numerically
solving the so-called recurrence relations (detailed descriptions in [40], [46],
and [41]). The approach shown here is general, in the sense that, by solving
the recurrence relations for the resulting MAR I, V spectra and using those
to probe a potential structure around E = 0 in the density of states, is also
applicable to non topological Josephson junctions (e.g. a superconductor-
ferromagnetic insulator-superconductor).

First in sections 5.3.1 and 5.3.2 we study the reflection and transmission
through each barriers and compare these properties for electrons and holes
by computing the complex factor F . Based on (the real part of) F for each
barrier we use the phase coherence result from section 5.1.4 to predict the
global shape of the MAR I, V spectra of the Josephson junctions consisting
of such a barrier. Next in section 5.3.3 we generalize and solve the recurrence
relations derived in [46] to also accommodate this factor F . The factor F
introduces the non-trivial difference between the electron and hole interac-
tion with the tunnel barrier to the recurrence relations. Next, the adapted
recurrence relations are solved numerically to reveal the (asymmetric) I, V
curves, which are then analysed to reveal the potential structure in the DOS
around E = 0 for both types of barriers. Final, we relate the peaks in the
I, V curves for a 2D MTI tunnel barrier to the CMM bound state energies
found in section 5.1. Concretely, we relate the bound state energies obtained
from the two isolated systems (see figure 30) to the entire Josephson junction
when now the two systems communicate through the tunnel barrier. This
coupling could delocalize the bound state energies as predicted by [45], but
this effect is discussed later on (section 6).

5.3.1 Fermi surface mismatch tunnel barrier

Consider a system of the form STI-TI-TI’-TI-STI. The prime in the mid-
dle TI indicates a Fermi surface mismatch (FSM) relative to its neighbours,
which makes it act as a (tunnel) barrier. The middle tunnel barrier TI-TI’-
TI system was already introduced and studied in section 4.4.2 to illustrate
the tool’s functioning. There we introduced the propagation angle θ′ in the
middle TI′ barrier, different from θ in its neighbouring sites to model the
FSM effect. We derived the electron normal reflection coefficient, (4.8), for
an electron incoming from the left TI under an angle of θ, here we study the
equivalent scattering process for an incoming hole under angle −θ, in basis 2.

Since the electron case was derived in section 4.4.2 we now consider an
inbound hole. The continuity of the hole spinors is imposed at x = 0 and
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x = b giving

φ
TI,(2)
h− (−θ)+r

(2)
hhφ

TI,(2)
e− (π+θ) = A

(2)
h φ

TI,(2)
h− (−θ′)+B

(2)
h φ

TI,(2)
h− (π+θ′), (5.29)

evaluated at the origin, and

A
(2)
h φ

TI,(2)
h− (−θ′) +B

(2)
h φ

TI,(2)
h− (π + θ′) = t(2)

ee φ
TI,(2)
h− (−θ), (5.30)

evaluated at (x, y) = (b, 0). Again we cast the set of continuity requirements
to a matrix-vector system that we then algebraically solve for the hole hole
normal reflection coefficient

r
(2)
hh (−θ) =

2e−iθ sin (kxhb) (sin θ − sin θ′)

eikxhb cos (θ + θ′) + e−ikxhb cos (θ − θ′) + 2i sin (kxhb)
. (5.31)

This results is strikingly similar to the previously derived electron electron
normal reflection (4.8). In fact we can relate the two by

r
(2)
hh (−θ) = r∗ee (θ) . (5.32)

To phrase it in terms of the complex function F introduced to study the
phase coherence criterion in section 5.1.3, we find that FTI = 1. So based on
the prediction formulated there, a FSM tunnel barrier violates the necessary
condition for the formation of an ABS. Hence we predict that the there will be
no structure in the DOS around E = 0 on either side of a system comprising
of a FSM tunnel barrier. The resulting I, V curve should therefore be trivial,
i.e. it will globally obey (2.7) and thus show prominent steps in the current
for biases of eV = 2∆0/n, n ∈ N.

5.3.2 Magnetic tunnel barrier

We now consider the topological Josephson junction comprising of a mag-
netic tunnel barrier, i.e. a STI-TI-MTI-TI-STI system. Through this change,
we introduce normal reflections in the middle TI-MTI-TI sub-system for en-
ergies in the forbidden region in the MTI band structure. The forbidden
energy range in the MTI’s band structure is parameterized by the induced
magnetic energy gap mz. The barrier is illustrated in figure 34. Again we
solve for the electron and hole normal reflection coefficients ree and rhh.

An incoming electron (hole) from the left TI is inbound on MTI under an
angle of θ (−θ). By imposing the continuity of the spinors at each interface
(we take the first interface at x = 0 and hence the second at x = b), we
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Figure 34: A schematic illustration of an incoming electron (hole) from a TI traveling
under an angle θ (−θ) undergoing normal reflection ree (rhh) or transmission tee (tee) for
a double barrier system consisting of a MTI. The magnetic field in the middle MTI results
in a nonzero possibility for normal reflection to occur, and an exponentially decaying
tunneling probability is present giving rise to a finite transparency (D := 1 − rr∗). In
the MTI the spinors become evanescent waves, so we consider the superposition of an
increasing and decreasing evanescent wave.

can build a system corresponding to these two requirements. For an initial
electron we evaluate the following equations

φ
TI,(2)
e+ (θ)+ r(2)

ee φ
TI,(2)
e+ (π−θ) = A(2)

e φ
MTI,+,(2)
e (θ)+B(2)

e φ
MTI,−,(2)
e (θ), (5.33)

A(2)
e φ

MTI,+,(2)
e (θ) +B(2)

e φ
MTI,−,(2)
e (θ) = t(2)

ee φ
TI,(2)
e+ (θ), (5.34)

at the origin and at (x, y) = (b, 0) respectively. We arrive at similar18 continu-
ity requirements for an incoming hole travelling in the −θ direction. We solve
this set of equations for the electron and hole normal reflection coefficients.
Due to the enhanced complexity of the MTI spinors, a comprehensible alge-
braic expression can not be given for the reflection coefficients. We therefore,
need to reduce the complexity algebraically and study limiting behaviour, or
study the original outcome graphically.

First we plot the real and imaginary part of the complex ratio F
(2)
MTI(θ, µ)

defined by
r

(2)
hh (−θ) = r∗ee(θ)F

(2)
MTI(θ, µ), (5.35)

18Simply change the subscript e to h and choose the − solution rather than the + for
the TI wavefunctions and evaluate it for θ → −θ
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(a) Real part F
(2)
MTI

(b) Imaginary part F
(2)
MTI

Figure 35: The the real (a) and imaginary part (b) of the ratio F
(2)
MTI = rhh(−θ)/r∗ee(θ)

as a function of the incoming angle θ and the chemical potential in the TIs over the
magnetic energy gap (µ/mz) for the double barrier junction given in figure 34. The
chemical potential in the MTI is zero, and the width of the barrier is b = ~vf/mz. Here,
mz = 800∆0 and µ = µs is varied to get the ratios shown on the y-axis.

to graphically quantify the relationship between them. Figure 35 shows the
real and imaginary part of this ratio as a function of θ and the chemical
potential in the TI relative to the magnetic energy gap in the MTI. The
chemical potential in the MTI is taken to be zero, and the width of the
barrier is of the order of ~vf/mz. We consider the real part F first for two
limiting values (-1,1) in the figure 35a. In the 1D limit for a weak magnetic

barrier <(F
(2)
MTI) = −1, but for sufficiently strong magnetisation and finite

incidence angles the real part of F
(2)
MTI goes to -1. Moreover, there is a smooth

transition from F
(2)
MTI = −1 around θ = 0 and for small values of µ relative

to mz to F
(2)
MTI = 1 for almost vertical incidence angles.

To reiterate, the value of F
(2)
MTI can be used to predict the possibility of

the system having a nontrivial I, V spectrum due to a structure at E = 0
on the DOS based on the prediction formulated in section 5.1.4. A value of
+1 corresponds to the violation of the necessary Andreev bound state phase
criterion (5.26) whereas a value of -1 is a strong indication of a potential non-
trivial I, V curve. Based on this, we predict that in the STI-TI-MTI-TI-STI
system we can smoothly transition from a trivial I, V curve (F

(2)
MTI = 1) to a

nontrivial I, V curve (F
(2)
MTI = −1) by changing the incidence angle.

From the graphical survey using figure 35 we could already observe that
in the 1D limit (θ = 0 cross-section) F

(2)
MTI = −1, but now we further study

the system by considering the 1D limit algebraically. In a 1D limit, θ → 0,
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we reduce the length of the algebraic expression for the electron and hole nor-
mal reflection coefficients considerably. From the 1D reflection coefficients,
we can moreover study the transparency D := 1− rr∗ of a magnetic topolog-
ical tunnel barrier and compare it to literature [41]. Hence this limit could
further validate the correctness of the tool’s implementation.

We take the lengthy algebraic relations for the reflection coefficients that
give rise to figure 35 and set θ = 0. For the ree(θ = 0) coefficient we find

ree(θ = 0) =
−A sinh bκe

C sinh bκe − iB ~vfκe
mz

cosh bκe
, (5.36)

where the terms A,B and C are given by

A = mz + 2
Eµm
mz

− (E + µm),

B = mz − (E + µm),

C =
E2

mz

+
µ2
m

mz

− (E + µm).

For rhh(θ = 0) we arrive at

r
(2)
hh (θ = 0) =

A(2) sinh bκh

−C(2) sinh bκh + iB(2) ~vfκh
mz

cosh bκh
, (5.37)

with the terms

A(2) = mz − 2
Eµm
mz

− (E − µm),

B(2) = mz − (E − µm),

C(2) =
E2

mz

+
µ2
m

mz

− (E − µm).

For a fair comparison to the result in figure 35 we take µm = 0 here too.
Based on the order magnitudes of the energy scales E,∆0, µ and mz in section
3.2.4, terms of order mz or µ dominate over those of order E. We recall that
since ~vfκe,h(θ = 0) =

√
m2
z − (E ± µm)2 = −iqe,h(θ = 0) the ~vfκe,h terms

approximately equal mz. This means that the terms with C and C(2) are
small and we can safely neglect them. Using this we find in the large mz

limit

r
(2)
hh (θ = 0) = −r∗ee(θ = 0). (5.38)

So in the 1D limit, we retrieve F
(2)
MTI = −1, as we found graphically in the

2D case given in figure (5.35). In literature this value was assumed of a 1D
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magnetic topological junction based on time reversal symmetry [41].

As a final check, we compute the transparency in the 1D limit and com-
pare it to literature [41]. From the reflection coefficients, we can derive the
transparency in the 1D limit, since the two reflection coefficients are related
by a unit one factor (-1) we can pick either coefficient to compute D. We
find

R = r∗ee(θ)ree(θ) =
A2m2

z sinh2 bκe

C2m2
z sinh2 bκe +m2

z~vfκ2
e cosh2 bκe

→ tanh2 bκe

in the 1D limit. So we retrieve the transperancy found by Badiane et al. [41]

D(θ = 0) = [1 + sinh2(bκ)]−1. (5.39)

5.3.3 Recurrence relations

In quantum transport, a key physical observable to model is the conduction
through a quantum device. Since conduction arises from a non-equilibrium
situation (voltage bias) and the BdG equations considered in this work are
solved in a steady-state, we can not directly model the conduction. We there-
fore, resort to the so-called recurrence relations. Here we briefly introduce
the physical origin of the recurrence relations and refer to [40] and [46] for a
derivation. Then we show in detail how the recurrence relations change when
introducing the complex factor F to account for a non-trivial tunnel barrier.
Then we solve and analyse the adapted recurrence relations and relate the
results to the prediction based on the phase coherence criterion for the ABS
formulated in section 5.1.4.

As explained in section 2.2.2 charge carriers in a system hosting MAR gain
energy when traversing through the applied external electric field resulting
from an applied voltage difference over the superconducting leads. Each con-
secutive scattering event changes the complex amplitude of the electron’s (or
hole’s) wavefunction. This means we get a sequence of complex amplitudes,
(An)n∈N for right-moving electrons and (Bn)n∈N for left moving electrons,
based on the number of times, n, Andreev reflections has taken place. The
recurrence relations in short arise from matching the various wavefunctions
for all comprising charge carriers in the system, accounting for these energy
gains, at the interface by using so-called scattering matrices. By matching
the wavefunctions, we get a set of equations expressing the amplitude of the
jth term in (An)n∈N in terms of previous terms in the sequence. Similarly
for (Bn)n∈N. The recurrence relations are derived for a SNS junction in [40]
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and for a topological junction in [46].

The reason for the focus on the ratio F between the electron- and hole
normal reflection coefficients for the tunnel barriers is because this term en-
ters the recurrence relations through the so-called scattering matrices used
to derive them. In literature [40],[41] derivations of the recurrence relations
always assumed a ’simple’ value of F = ±1 depending on the type of tunnel
barrier. In this work we showed (section 5.3.2) that in 2D systems using a

magnetic barrier the value of F
(2)
MTI is complex and transitions between these

two limiting values for varying parameters. In fact, we showed in section
5.1.4 that the factor is used as a mean to predict whether a certain system
would have a non-trivial I, V spectrum and hence act as a strong indication
for the existence of a zero-energy bound state. To study non-equilibrium ef-
fects, we thus need to adapt the recurrence relations to accompany this factor.

The way F enters the equations is through the scattering matrices. A
derivation of the recurrence relations is given in the appendix D. There we
highlight where F enters and how it changes the original recurrence relations.
(Bn)n∈N is described by a non-homogeneous three-term recurrence of the form

Bn+1 + γnBn + χnBn−1 = ζnδn0, (5.40)

where the terms γn, χn and ζn are given in the appendix D. These coefficients
are made up of the energy dependent Andreev coefficient after successive
reflections, an = a(E + neV ) for a given in (5.13), the factor F and the
transparency of the tunnel barrier defined by D := 1 − reer

∗
ee. (An)n∈N is

described by a non-homogeneous two term recurrence of the form

An+1 + γ′nAn = f(n), (5.41)

where again γ′n and f(n) are given in the appendix D. For (5.41) we should
note that the f(n) is dependent on the sequence (Bn)n∈N, thus we should
solve (5.40) before (5.41).

We shortly describe the (three and two-term) recurrence relations and
the stability of possible algorithms. A two-term recurrence relation is a lin-
ear first-order equation whereas a three-term recurrence relation is of second
order. Hence the former has only one solution, but the latter has two linearly
independent solutions. Thus if we’re not careful we could numerically land
on either solution. This fact makes constructing a stable algorithm for find-
ing a specific single solution to a three-term recurrence relation non-trivial.
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The reader is referred to [46] for an excellent analysis of the stability of so-
lutions to and possible algorithms for non-homogeneous two and three-term
recurrence relations.

The recurrence relations analysed in [46] are the ones given in (5.40) and
(5.41) for the case F = −1. In the current work, we allow for a general
complex F ∈ C in the recurrence relations. The stability analysis in [46]
remains valid in this case, with one caveat that the matrix inversion method
(implemented through the use of the Matlab backslash operator) is no longer
stable. The matrix inversion method was the fastest algorithm studied in
[46], but fortunately, it was shown that the slower so-called backwards recur-
rence algorithm remains usable. As concluded by the author: ”the backslash
operator algorithm turns out to be much faster than the backward recurrence
algorithm, however, when using the backward recurrence algorithm, we can
be absolutely sure that the numerical solution is the solution we are looking
for. The backslash operator might still give a diverging solution for certain
(unknown) parameter sets.” The recurrence relations are solved numerically
in this work by the method of forward elimination, by backward substitution
[98],[99].

After obtaining (Bn)n∈N and then (An)n∈N numerically by solving (5.40),
and (5.41) we compute the DC current using [46]

IDC =
e

π~

[
eV D −

∫
J(E)

{
a∗0A

∗
0 + a0A0 +

∑
n

(
1 + |a2n|2

) (
|An|2 − |Bn|2

)}
dE

]
.

(5.42)
Note that J(E) =

√
1− a2

0. By repeating this process for varying biases eV
we get get the DC current as a function of the applied voltage. We normalize
the current by the conductance quantum G0 = 2e2

h
and the tunnel barrier’s

transparency D, IDC = IDC
DG0

and draw the I, V curves.

5.3.4 Fermi surface mismatch tunnel barrier spectrum

We derived that FTI = 1, and thus hypothesized that a system comprising of
a Fermi surface mismatch tunnel barrier would have a trivial I, V spectrum,
i.e. show increases in the current at integer submultiples of 2∆0. In this
section, we test this hypothesis by computing the DC current (5.42) for a
bias eV sweep. Figure 36 shows the I, V curves for various transparencies
D. As indicated by the dashed lines, we see the current has steps at values
of 2∆0/n for n = 1, 2, 3. Moreover, the higher-order (n > 2) steps are vis-
ible too. Thus the I, V curves for a Fermi surface mismatch tunnel barrier
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Figure 36: The MAR I, V spectra, normalized by G0 = 2e2

h and tunnel barrier’s trans-
parency D, for a system consisting of a Fermi surface mismatch tunnel barrier. The dashed
lines highlight the voltages eV = 2∆0/n, n ∈ N for a few values of n. Various curves are
drawn for different values of D. Here F = 1 for all parameters values.

are as predicted, trivial. This serves as a strong indication of the absence of
any exotic structure at zero energy in a topological superconducting junction
consisting of a Fermi surface mismatch tunnel barrier.

To discuss the effect of the transparency D, we note that the lower the
transparency the harder it is for charge carriers to pass through the tunnel
barrier. So in general the overall current is suppressed for smaller values of
D, as can be observed in figure 36. Due to the MAR charge carriers can gain
high energies when traversing the field increasing the tunnelling probability
thus creating resonances in the current. So even for low transparencies the
steps in current still occur at resonance biases. The effect is the steps become
more apparent for a lower transparency due to the suppressed background.
For sufficiently small transparencies, we see vertical steps for increasing bias
when the continuum level on one side aligns with an integer submultiple of
2∆0. The reason for the formation of the steps is that charge carriers start
to flow when the energy levels (or integer multiples of that) align for the first
time and continue to get replenished through the leads. For a subsequent
increasing bias, the current will not increase until a new energy level aligns
and a new channel for conduction is opened up.
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Figure 37: The MAR I, V spectrum, normalized by G0 = 2e2

h and the tunnel barrier’s
transparency D, for a system with a magnetic tunnel barrier in the 1D (θ = 0) limit for
D = 0.42. The dashed lines highlight the biases eV = ∆0/n for n = 1, 2, 3, 4. In the 1D
limit F = −1 for all parameters.

5.3.5 Magnetic tunnel barrier spectra

The existence of CMMs in the form of ABS in a MTI-TI-STI system in
section 5.1.3 together with the computed factor F

(2)
MTI in figure 35a allows

us to predict that a topological Josephson junction consisting of a magnetic
tunnel barrier should show a non-trivial I, V spectrum. Figure 37 shows the
I, V spectrum for a 1D magnetic tunnel barrier and figures 38 and 40 show
the 2D case. By comparing the MTI spectra to the Fermi surface mismatch
case in figure 36 it is immediately clear that the MTI tunnel barrier junction
displays of a much richer DOS structure resulting in various peaks and steps
in the current that were previously absent. We focus on three aspects in the
I, V spectra. First we discuss the 1D (θ = 0) case in the figure 37, then we
discuss the features in a single (asymmetry) I, V curves for a nonzero θ in
figure 38, and finally relate the features in the 2D spectra in figure 40 to the
Andreev bound state energies of the two isolated STI-TI-STI and MTI-TI-
STI systems.

1D MTI tunnel barrier

We first consider the 1D magnetic tunnel barrier MAR results shown in figure
37. As illustrated by the dashed lines, the steps occur at integer submultiples
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of ∆0. This results is in line with the observed existence of an ABS in the
MTI-TI-STI system at E = 0 in the 1D limit for all values of the magnetic
energy gap mz in figure 26, as well as with the prediction on the existence of
an ABS in the sub-system formulated in section 5.1.4 for F

(2)
MTI = −1. This

result was also found by Badiane, Houzet, and Meyer [41]. We have now ob-
served that for both limiting cases F = ±1 for the FSM tunnel barrier and
the 1D MTI tunnel barrier the feature in the I, V spectra are as we predicted.

2D MTI tunnel barrier

The 2D magnetic tunnel barrier topological Josephson junction allows for
the study of the intermediate regime between the FMTI = 1 and FMTI = −1
cases. This 2D regime has never been modelled in this much detail before.
Recall that for a fixed ratio µ/mz we get a horizontal cross-section in figure
35a along which the real part of FMTI transitions smoothly from the limiting
values 1 to -1 and back to 1 again by varying θ from −π/2 to π/2. Hence
we predicted a smooth transition from the 2∆0/n to the ∆0/n, for n ∈ N,
resonance features in the I, V curves.

We first consider a single I, V curve in figure 38 for a finite θ with a
corresponding non-trivial F , and describe its main features before studying
the overall behaviour for a changing θ and thus FMTI . It shows the absolute
current as a function of the (negative) applied bias voltage. The figure drawn
is for <(FMTI) = 0.3, a positive θ with corresponding bound state energy of
EABS = −0.8∆0. Right away it is clear that an intermediate complex value
of FMTI gives rise to a much richer MAR spectrum than the limiting cases.
For instance, the I, V becomes asymmetric in the voltage and shows steps
and peaks at locations different from integer submultiples of (2)∆0. The
dashed green and red lines indicate biases of interest.

First of all we observe a shift in the current steps initially at biases of
(2)∆0/n, n ∈ N. In fact we can relate this shift to the energy of the Andreev
bound state of the (right) isolated MTI-TI-STI system computed shown in
figure 26. The steps occur at biases of

eV =
∆0 + |EABS|

n
, n ∈ N, (5.43)

as indicated by the green dashed lines at biases of |eV | = 1.8∆0 and |eV | =
0.9∆0. Peaks rather than steps are present in the spectrum for a biases
indicated by the red dashed line at. Again these broad peaks can be related
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Figure 38: A figure showing the asymmetric MAR I, V spectrum, normalized by G0 = 2e2

h
and the tunnel barrier’s transparency D, for a topological Josephson junction consisting
of a magnetic tunnel barrier in 2D. The absolute current is drawn, but the left hand side
of the spectrum would have been negative. The drawn curve is drawn for a fixed positive
angle with the corresponding negative bound state energy of EABS = −0.8∆0 from figure
26, here <(FMTI) = 0.3. The dashed lines (n = 1, 2,m = 1, 3) highlight bias voltages
of interest. The parameters corresponding to the FMTI values used here are, µm = 0,
mz = 800∆0, µ = µs = 240∆0, θ = 0.4π, and the width of the barrier is b = ~vf/mz.

to the bound state energy

eV =
−2EABS

m
, for positive odd m. (5.44)

Consider e.g. the two peaks at eV = 1.6∆0 and eV = 0.53∆0. It should be
noted that the −2EABS peaks are best fitted by (5.44) for sufficiently small
transparencies. The reason for only odd m in (5.44) is due to the asymmetry
of the opposing energy levels, this will be discussed momentarily.

The observed asymmetry and the location of the peaks (5.43), and (5.44)
in the Josephson junction’s MAR spectra are best explained by consider-
ing the bound state energies on either side of the junction for varying biases
shown in figure 39. The asymmetric bound state energies for the STI-TI-MTI
(dashed curve) and the MTI-TI-STI system (solid curve) in figure 39a are
drawn for a fixed positive (negative) θ by a red (blue) structure in the den-
sity of states in the Josephson junction (figure 39b). Due to this asymmetry
applying a negative bias (figure 39c-e) is different from applying a positive
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(a) Chiral Majorana mode (CMM) energy levels
E as a function of the incident angle θ for the
ABS on the right (solid) and left (dashed) su-
perconductor side. Here, mz = 800∆0, µm = 0,
and µ = µs is varied to get the ratios shown in
the legend.

(b) The effect of the levels in (a) on the DOS
for θ > 0 (blue) and θ < 0 (red).

(c) eV = −2EABS (d) eV = ∆0 + |EABS | (e) eV = 2∆0

(f) eV = −2EABS (g) eV = −(∆0 + |EABS |) (h) eV = −2∆0

Figure 39: (a) The the Andreev bound state energy levels of CMM for θ 6= 0 in an isolated
STI-TI-MTI (MTI-TI-STI) system are drawn as dashed (solid) lines on the left. (b) The
density of states on the superconducting sides in the full STI-TI-MTI-TI-STI Josephson
junction obtained by connecting the two isolated STI-TI-MTI and MTI-TI-STI systems.
The red states correspond to a positive incidence angle. A positive bias (c-e) results in
the alignment of different levels (and subsequent higher order MAR resonances) than a
negative bias (f-h). 116



bias (figure 39f-h). By applying a voltage bias over the levels illustrated in
figure 39b we identify the biases at which empty and occupied levels align
and hence MAR features occur in the I, V spectra. Note that for integer sub-
multiples of these biases peaks and steps are already observed due to MAR.

Consider the red structure in figure 39 present for a negative incidence
angle, then the for positive biases we get the consecutive alignment of empty
and occupied levels biases of eV = −2EABS (c), eV = ∆0 + |EABS| (d), and
eV = 2∆0 (e). These aligned levels (with corresponding integer submultiple
modes) explain the structure observed in figure 38 for a positive voltage bias.
For negative voltage biases, the aligned levels are different, because now the
blue levels align rather than the red levels. This together with the fact that
we only have the red or the blue structure of a given value of θ gives rise to
the asymmetry in the MAR spectra. We now come back to the reason for
the odd m in (5.44). Consider a charge carrier in the left blue peak in the
density of states in figure 39b, by traversing the electric field (and gaining
energy along the way), the charge carrier’s energy level may align with the
opposing blue level after an even number of Andreev reflections. For an odd
number of reflections, the initial charge carrier arrives back at the left side
but, because of the asymmetry of these energy levels, there is no empty state
to scatter to on this side. The fact that only an even number of Andreev
reflections are admissible means that the charge carrier has gained an odd
multiple of eV in energy, explaining the odd m in (5.44).

2D MTI tunnel barrier transition

Now we study the effect of varying <(FMTI) by plotting the I, V curves for
a horizontal cross section in figure 35a. For such a cross section we draw the
curves shown in figures 40a and 40b. The former shows the MAR spectra
for negative θ and the latter for positive θ. The purple line for EABS = 1 in
40a and <(F ) = 0.98 is the I, V curve for a (negative) almost vertical inci-
dence angle. We see that for this parameter choice that we get a pronounced
resonance step at (almost) 2∆0. This case is similar to the FSM results for
F = 1 in figure 36. As we increase θ we decrease <(F ) gradually towards the
red curve for EABS = 0.05 and <(F ) = −1. The red curve is (almost) iden-
tical to the 1D MTI limit shown in figure 37. In fact in the legend in figure
40a we see that for <(F ) ≈ 1 we have that EABS ≈ ∆0 this transitions to
<(F ) ≈ −1 and EABS ≈ 0. In all the intermediate curves |EABS| transitions
from ∆ to 0 as <(F ) = 1 → −1, so c.q. (5.43) the locations of the biases
shifts from integer sub-multiples of 2∆0 to those of ∆0.
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Similar to figure 40a, figure 40b shows the I, V spectra for positive inci-
dence angles with corresponding negative bound state energies. The latter
figure might be less clean than the former, but it is certainly not less excit-
ing. We first consider the limiting behavior for the purple (red) curve for
EABS/∆0 ≈ −1(0) and <(F ) = 1(−1). The purple curve shows the charac-
teristic 2∆0/n, n ∈ N steps we observed for the FSM tunnel barrier (F=1).
Similar to the 1D magnetic tunnel barrier limit (F = −1), the red curve
displays steps at biases of integer submultiples of ∆0. As well as for nega-
tive incidence angles, figure 40b shows the transition from these two limiting
regimes for varying θ. The striking difference between the two figures is that
for positive incidence angles in figure 40b we see pronounced broad peaks
in the spectrum, which are absent in figure 40a. The broad peaks occur at
biases following 5.44, consider e.g. the two peaks in the dark blue curve at
eV
∆0

= 2×0.8
1

= 1.6 and eV
∆0

= 2×0.8
3

= 0.53.

Experimentally we observe angle averaged conduction rather than the
shown I, V curves per single θ value observed asymmetry in figure 40, so
we now consider the angle average in figure 41. The asymmetry in I, V
curves for single θ values is lost when we take the angle averaged current
(
∫
IDC(θ) cos θdθ) as can be seen in the green solid curve in figure 41. When

we compute the angle average over either only positive or negative angles we
retrieve the asymmetry as can be observed in the dashed blue and orange
curve.
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(a) θ < 0

0.0 0.5 1.0 1.5 2.0 2.5
eV/ 0

0

1

2

3

I D
C

EABS = 0.03, (F) = 1.00
EABS = 0.11, (F) = 0.97
EABS = 0.19, (F) = 0.92
EABS = 0.27, (F) = 0.84
EABS = 0.35, (F) = 0.75
EABS = 0.43, (F) = 0.60
EABS = 0.52, (F) = 0.43
EABS = 0.60, (F) = 0.28
EABS = 0.70, (F) = 0.02
EABS = 0.80, (F) = 0.28
EABS = 0.88, (F) = 0.56
EABS = 0.96, (F) = 0.91
EABS = 0.98, (F) = 0.98
eV = 0/n

(b) θ > 0

Figure 40: The MAR I, V curves, normalized by G0 = 2e2

h and the tunnel barrier’s
transparency D, for a topological Josephson junction consisting of a magnetic tunnel
barrier. The label EABS indicates the energy (relative to ∆0) of the Andreev bound state
in the right (MTI-TI-STI) sub-system in the figure 30 and the label <(F ) is the real part
of the ratio shown in figure (35). (a) shows the I, V curves for θ < 0 where the bound
state energies obtained for the ’right’ isolated MTI-TI-STI system are positive. (b) shows
the I, V curves for θ > 0 corresponding to negative bound state energies. Together the
I, V in (a) and (b) correspond to horizontal sweep across figure 35 for θ from −π/2 to π/2.
Here, mz = 800∆0, µm = 0, µ = µm = 240∆0, the width of the barrier is b = ~vf/mz.
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Figure 41: A figure showing the angle average over the normalized (by G0 = 2e2

h and the
transparency D) I, V curves in figure 40. The three curves shown are the angle averaged
absolute current over negative angles (θ < 0), positive angles (θ > 0), and over all angles
(θ) as a function of the applied voltage bias eV .
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6 Concluding remarks and outlook

Fu and Kane’s prediction [1] on the existence of chiral Majorana modes as
Andreev bound states at the interface of a superconducting topological insu-
lator to a magnetic topological insulator could form an important approach
to the realization of the fault tolerant topological quantum computer[2]. Ex-
perimental confirmation of Majorana zero modes emergining in condensed
matter physics has not been established, so the importance of further theo-
retical analysis of quantum systems potentially hosting such Majorana states
is evident both from a fundamental perspective as well as in relation to mul-
tiple applications. In light of these applications we modelled the quantum
transport in systems consisting of magnetic- and superconducting topolog-
ical insulators. By constructing a tool that automates all the computation
in the route from finding the plane-wave eigensolutions to the Bogoliubov-de
Gennes equations to solving the scattering problems occurring at the in-
terfaces between magnetic- and superconducting topological insulators the
effect of Andreev bound states on the charge transport was investigated. In
doing so we re-derived various results in literature and made several novel
predictions.

To gain confidence in the automated derivations and analysis, the tool is
validated by the (re)derivation of

• the BdG spinors equivalent to [47].

• the reflection coefficient in a 2D Fermi surface tunnel barrier equal to
the one found by [46], [62] and [95].

• the reflection coefficient and related transmission in a 1D magnetic
tunnel barrier [41].

• the angle and energy dependence of the chiral Majorana modes in a
MTI-STI bi-layer, and the controllability of their chirality by inverting
the magnetisation in the MTI [38].

• the characteristics of 1D MAR I, V curves for a magnetic topological
Josephson junction [45].

Furthermore, the tool enabled the formulation of a novel mechanism to invert
the chirality of Majorana modes in a MTI-STI bi-layer by controlling the ra-
tio of the chemical potentials in the MTI and TI. This inversion is a unique
signature of chiral Majorana modes in a spinful topological superconductor
and it could actually be detected in a transport experiment [39]. The in this
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work proposed mechanism for the inversion of the Majorana mode’s chirality
allows for further study.

By combining the (adapted) recurrence relations with the input provided
by the custom made tool, we were able to study the topological Josephson
junction consisting of a magnetic tunnel barrier in the 2D regime, which
was not done before. Beyond the verification of the 1D limit by Badiane et
al. [41], we established the connection between the occurrence of steps and
resonance peaks in the multiple Andreev reflection spectra and the Andreev
bound state energies of the constituent STI-TI-MTI and MTI-TI-STI sys-
tems. It was shown that by varying the angle of incidence the MAR spectra
undergo a smooth transition according to the predicted relation

eV =
∆0 + |EABS|

n
, n ∈ N. (6.1)

Here the bound state energy EABS varies from 0 to ±1, and consequently
the MAR spectra transitions from steps at biases of 2∆0/n to ∆0/n. These
two limiting cases correspond to the absence and presence of a zero energy
structure in the density of states respectively. Moreover, we predicted an
asymmetry in the MAR spectra per fixed θ giving rise to the peaks in the
DC current at voltage biases of eV = 2EABS.

The MAR results for a topological Josephson junction translate the non-
topological junctions case too. In fact, when we consider a superconductor-
ferromagentic insulator-superconductor (SFS) junction, zero-energy bound
states will form when a spin active barrier is considered [100]. That is, the
barrier acts differently on opposite spin orientations, introducing a mixing
term between the spin branches. In a topological junction, topology intro-
duces this spin mixing. The results obtained in this thesis suggest a number
of follow-up research directions. We finalize the discussion by giving recom-
mendations for future research.

Superconducting phase effects

The biggest point of discussion following from the results shown is the rec-
onciliation of the MAR results with the theoretical prediction by Badiane et
al. [45]. There it was shown that for a 1D topological Josephson junction
consisting of a magnetic tunnel barrier, as shown in figure 3, the bound state
energy scales with the square root of the transparency D of the tunnel barrier

E(ϕ) =
√
D cos

ϕ

2
. (6.2)
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Figure 42: Dependence of the energy spectrum on the superconducting phase difference ϕ,
including the continuum of states above the gap (gray) and a filled (solid line) or empty
(dashed line) Andreev bound state, in a topological Josephson junction with transparency
D = 0.7. Note that there is a level crossing at ϕ = π. This figure is an adaptation from
[45].

Note that this effect works on top of the bound state energies derived for the
CMM in section 5.1. That is, when we consider the full Josephson junction,
the CMM bound state energies become delocalized and would be modulated
additionally by this effect when the sub-systems are coupled.

The bound state’s predicted 4π periodicity (period of cosφ/2) in the
phase difference over the superconducting leads is well established [30]. The
proportionality to

√
D can quite easily be derived and motivated qualita-

tively. The resulting bound state energy is shown in figure 42. Note that, for
a vanishing phase difference, the bound state energies in the coupled Joseph-
son junction go to ±

√
D∆0 rather than ±∆0. For a finite phase difference

of ϕ = π the gap closes. As shown by the authors no avoided level crossing19

takes place at the crossing of the two bound state energies at ϕ = π. This√
D scaling does not contradict the limiting behaviour for the CMM bound

state energy in the isolated MTI-TI-STI (or MTI-TI-STI) systems shown in
figure 26, because there we do not consider two superconducting leads thus
no superconducting phases enter the discussion. The expected

√
D scaling

behavior could, however, show up as a modulation of the peaks in the MAR
I, V spectra for the full Josephson junction.

Physically it makes sense that when we connect the two isolated STI-TI-
MTI and MTI-TI-STI systems to form the magnetic topological Josephson
junction, the previously isolated CMM bound states become coupled through

19Avoided level crossing is the phenomenon that, e.g. two, energy levels at different
energies in a quantum system generally do not cross when their levels are moved past
each other under influence of some changing parameter. Please see [101] for a layman
introduction.
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the tunnel barrier. Effectively, the observed bound state energies in the iso-
lated sub-systems become delocalized, resulting in a shift in their energy
levels. This behavior is not recovered in the spectra in figure 37, 38, or 40.
In their paper [45] the authors also do not recover this effect in the 1D mag-
netic tunnel barrier MAR I, V spectra. The expectation is that the bound
state energies remain localized for a sufficiently small transparency. This can
be seen by the fact that for a small D, the delocalization (shift away from
zero) of the bound state energies in (6.2) is small, since for D well below 1,
the square root behaviour brings the gap size down even more. Therefore,
in this range the effect of the

√
D gap opening (6.2) would only result in a

minute change in the location of the peaks in the I, V spectra. For now, this
brief discussion bounds the validity of the 2D MAR results shown in this
work to the small D regime.

An alternative approach to derive the recurrence relations might allow
for the observation of the

√
D effect. To greatly reduce the complexity of

the derivation of the recurrence relations we choose the Andreev reflections
(in basis 2) such that they were equal for both electrons and holes at either
side of the junction for any angle. In appendix C.2 we gathered all possible
Andreev reflections. In basis 2 the superconducting phase difference only
disappears for ϕ = 0. This means that the derived recurrence relations are
for ϕ = 0, which would result in the

√
D scaling of the bound states seen in

(6.2) and figure 42.

For further research we propose to re-derive the recurrence relations not
under the condition that all Andreev reflections are identical for electrons
and holes for all angles and a superconducting phase of ϕ = 0. By allow-
ing for a complex phase difference between the Andreev reflections in the
derivation of the recurrence relations we could capture the superconducting
phase effects that would give rise to the predicted behavior in (6.2) [45]. In
fact, these generalized recurrence relations might even shed light on the ad-
ditional open question whether avoided level crossing occurs between the left
and right CMM bound states, shown in figure 30, when we couple them in
the Josephson junction. The question is whether the bound state energies
left and right are sufficiently coupled through the magnetic tunnel barrier to
undergo avoided level crossing as the angle of incidence θ is varied. Avoided
level crossing would result in a slight local dip of certain resonances peaks,
this was however not observed in the MAR I, V spectra. Further study is
encouraged.
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Experimental effects

The virtue of doing theoretical rather than experimental work is that we can
(for the time being) neglect certain inconvenient effects, as is best illustrated
by the fact that in this work we take the linear dispersion in a topological
insulator for granted where colleagues [66] go to painstaking lengths to show
the linear bands in figure 18. But various convenient simplifications need to
be abandoned, when we want to compare a model to experiments. In that
case, we have to also discuss various physical effects not (yet) taken into con-
sideration in this work. Consider for instance the effect of the interference of
the bulk bands with the surface states observed in topological insulators [44].
We however assumed perfect clean surface states in our 3D topological insu-
lators. This interference clouds the adequate detection of characteristics of
Majorana modes, theoretical work has been done to model these effects [102].

Additional effects that would appear in an experimental determination
of the shown I, V curves would be the broadening of the bandwidth of the
various resonance peaks (due to dissipation), and the occurrence of other
resonance effects. The width of 2EABS peaks in the 2D MAR curves, or the
width of the TI-MTI-TI-STI transmission result in figure 29 can be studied
further, e.g. similar to [103]. Moreover, tunnel resonances occur when the
width of the TI sections or of the barrier are of order[62]

kxL = nπ, n ∈ N, (6.3)

where L is the width of the section, and kx is the (plane wave) momentum.
Then the electron waves interfere constructively and transmission resonances
will occur analogously to Fabry-Pérot interference in optical waves [104]. The
broadening of the bandwidth and the emergence of other resonances reduce
the visibility of the predicted peaks and steps shown in this study. We there-
fore propose to further study and model them.

In conclusion, the re-derived results from literature in this work reflect the
validity of the constructed tool and its application, but more importantly the
new results and their discussion form a basis for further study. In light of the
mentioned experimental significance in the search for CMM, the proposed
mechanism controlling the chirality of the Majorana modes should be stud-
ied in more detail. Furthermore, the novel 2D magnetic tunnel barrier MAR
I, V curves uncovered the intimate relationship between the CMM bound
state energies in isolated STI-MTI bilayers and current resonances in I, V
curves for a magnetic topological Josephson junction. To bridge the gap to
experimental data we propose to on the one hand extend the analysis by con-
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sidering a multitude of physical effects that would refine the model to better
match a realistic experiment, and on the other hand re-derive the recurrence
relations in full generality to study the effect of the superconducting phase
difference.

126



Acknowledgements

In yet another year dominated by a not to be mentioned virus, I have worked
mostly online on a year-long project under the great supervision of Alexander
Brinkman and Bernard Geurts. Their guidance was different but comple-
mentary. In many discussions with Alexander the focus was on the physical
details, whereas Bernard, because of his distance to the underlying physics,
was a great mentor in scientific writing and keeping track of the overall scope
of the project. I’ve had an uncountable number of discussions, with both of
them, on whether various minus signs in spinors or coefficients should be plus
signs and vice-versa, but at the end of the discussion Bernard’s conclusion
was the same: ”just automate the computational steps”. Ironically, this re-
mark actually lead me to build the tool that formed the backbone of this
thesis.

It was refreshing to see Bernard’s and Alexander’s excitement about and
commitment to this project, this, in part, has led me to pursue a further
career in academia. I would like to express my appreciation for the positive
and friendly atmosphere I experienced in both the MMS and ICE/QTM re-
search groups, in the somewhat limited, number of live meetings I’ve had
during my stay there. Lastly, I would like to thank Linde Olde Olthof for
the pleasant and fruitful collaboration on the recurrence relations, I hope we
can continue our combined work and finalize our combined efforts.

127



A Spinors basis 2

In the following sections we will solve the Hamiltonian derived from the
Bogoliubov-de Gennes equations in a plane wave basis for the three men-
tioned materials, TI, MTI and STI using basis 2. The BdG equations in
represented in matrix form in basis 2 is given in (3.50). Note that here, we
will derive the eigenfunctions in case of a right moving (quasi)particle. This
results in a sign difference between the electron- and hole-like quasiparticless
in the wavevector in the exponential for the plane wave term. We consider
the following basis (so-called basis 2). The two bases are related by

φ2 = diag [σ̂0, iσ̂y]φ1. (A.1)

As described in section 3.3 the electron spinors for an TI and MTI are the
same in basis 1 and 2. We therefore only describe the TI and MTI hole
spinors and the STI spinors in basis 2 here.

A.1 Topological insulator

Consider the 2× 2 lower right hole block in (3.50). In absence of induced su-
perconductivity and ferromagnetism the 2D topological states are described
by the eigenproblem(

µ −~khvfe−iθ
−~khvfeiθ µ

)(
v0↓
−v0↑

)
= E

(
v0↓
−v0↑

)
, (A.2)

with eigensolutions

ETI
h∓ = ∓~khvf + µ↔ φTIh∓(x, y) =

1√
2

(
1
±eiθ

)
e−ikxx−ikyy, (A.3)

where kh = |E−µ|/(~vf ). The ± in the spinors and energy relations refers to
the sign in front of the k term. We see that we retrieve the same dispersion
relations. The explanation per branch (label) is elaborated upon in section
3.2.4.

A.2 Magnetic topological insulator

Now we consider the above with a nonzero magnetic field orientated perpen-
dicular to the two dimensional surface, i.e. m = (0, 0,mz)

T . The effect of the
magnetisation is explained in section 3.2. In basis 2 the MTI eigenproblems
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for both an increasing or decreasing evanescent (∓qe) wave are given by(
mz + µm ~vf (ikh sin (θ)∓ qh)

~vf (−ikh sin (θ)∓ qh) −mz + µm

)(
v0↓
−v0↑

)
= E

(
v0↓
−v0↑

)
.

(A.4)
This problem has two energy eigensolutions with corresponding eigenvectors

EMTI
h± = µm ±

√
m2
z + ~2k2

hv
2
f sin2 (θ) + ~2q2

hv
2
f

↔φMTI,±
h (x, y) =

1√
Ah±

(
−i~khvf sin (θ)± ~qhvf
−E +mz + µm

)
e∓iqhx−ikyy,

(A.5)

where Ah± is used for normalization. We solve for qh in the dispersion relation

qh = ±
√
−m2

z − (~vfkh sin θ)2 + (E − µm)2

~vf
, (A.6)

again the same sign convention for φMTI±
h (x, y) as for basis 1 in section 3.2

will be used.

A.3 Superconducting topological insulator

Next we consider a topological insulator in close contact with a s-wave su-
perconductor. For a s-wave superconductor, the energy gap becomes a real
valued constant. The gap couples the electron- and hole-like components
in the Hamiltonian matrix, so for the STI need to solve the entire matrix
eigenproblem

−µs ~kvfe−iθs ∆0e
iϕ

~kvfeiθs −µs 0 −∆0e
iϕ

∆0e
−iϕ 0 µs ~kvfe−iθs

0 −∆0e
−iϕ ~kvfeiθs µs




u0↑
u0↓
v0↓
−v0↑

 = E


u0↑
u0↓
v0↓
−v0↑

 .

(A.7)
As frequently mentioned, the momenta considered in the superconducting
regime are in relative distance close to kf , hence we describe both the electron-
and hole-like momenta by a single momentum k with 2-norm k. θs is defined
as in section 3.2.

The above system can be simplified using a unitary transformation. Let’s
denote the matrix in (A.7) by Ȟ

(2)
STI . Consider the unitary matrix

Ǔ2 = diag(U,U), (A.8)
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where the unitary matrix U is given by

U =
1√
2

(
−1 e−iθs

eiθs 1

)
. (A.9)

The unitary transformation gives us the eigenproblem for

ȞTrans
STI = Ǔ2Ȟ

(2)
STIǓ2 =


−~kvf − µs 0 0 −∆0e

iϕe−iθs

0 ~kvf − µs −∆0e
iϕeiθs 0

0 −∆0e
−iϕe−iθs −~kvf + µs 0

−∆0e
−iϕeiθs 0 0 ~kvf + µs

 ,

(A.10)
which has the four eigenvalues

ESTI
±± = ±

√
∆2

0 + (µs ± ~kvf )2, (A.11)

with eigenvectors,
(∆0e

iϕe−iθs/χ±, 0, 0, 1)T ,

(0,∆0e
iϕeiθs/χ±, 1, 0)T ,

(A.12)

where

χ± := E ± χ = E ±
√
E2 −∆2

0. (A.13)

Suppose x is an eigenvector of (A.10), then Ǔ2x is an eigenvector of the
original problem (A.7) with the same eigenvalue. We find four eigenvalues

ESTI
±+ = ±

√
∆2

0 + (µs − ~kvf )2 ↔ φSTI,±+ (x, y) =
1

2


1
eiθs

χ±
∆0
e−iϕ

−χ±
∆0
eiθse−iϕ

 eikxx+ikyye±χx

ESTI
±− = ±

√
∆2

0 + (µs + ~kvf )2 ↔ φSTI,±− (x, y) =
1

2


1
−eiθs
χ∓
∆0
e−iϕ

χ∓
∆0
eiθse−iϕ

 eikxx+ikyye±χx.

(A.14)
The ± sign labels in the eigenvectors correspond the the increasing or de-
creasing nature of the wave term. The kx,y term is the same as it was in the
TI, but now weighted with the chemical potential in the STI, µs.

B Equivalent spinors: spin rotation

In this appendix we show the equivalence between the output of this tool to
results in literature [47]. The section consists of two parts, first we establish
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the equivalence up to a spin rotation (as explained in the main text) and
then we rewrite the STI results to create a one to one correspondence. We
only show the results for a single wavefunction per material, but the other
wavefunctions follow analogously. We adopt basis 1 in this section since this
is the same basis used in [47].

First we focus on the difference between the tool’s output and the ref-
erences output due to a spin rotation in the definition of the single particle
Hamiltonian. We only consider the two dimensional spinors here, but the 4
dimensional spinors follow analogously by transforming both the ’electron’
and ’hole’ block in the 4 × 4 BdG matrix form similarly. In section 3.2 we
work in a spin basis of eigenfunction of σx, i.e., { 1√

2
(1, 1)T , 1√

2
(1,−1)T}. In

this basis the spin locking part has the form

ĥx = p · σx = pxσx + pyσy. (B.1)

The basis used in [47] is, w.r.t. to σy { 1√
2
(1, i)T , 1√

2
(1,−i)T},

ĥy = p · σy = pyσx − pxσy. (B.2)

The basis vectors are related by the transformation transformation matrix T

T =

(
1 0
0 i

)
. (B.3)

Hence we have φ̂y = T φ̂x where the hat vectors are the basis vectors in each
specified spin basis. Then we can transform a coefficient vector in spin basis
x to a coefficient in spin basis y using T . Since we solve for eigensolution
to (B.1) and (B.2) we can derive a condition for the equivalence of the two
bases as follows

ĥyφy = λφy

→ĥyTφx = λTφx

→T−1ĥyTφx = λφx

→T−1ĥyT ≡ ĥx ⇐⇒ −T−1σxT = σy, and T−1σyT = σx,

Indeed if we plug in the Pauli matrices and use

T−1 =

(
1 0
0 −i

)
,

the two relations are satisfied. This means that we can apply the transfor-
mation to relate the wavefunctions in either basis. By applying T on the
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wavefunctions derived in section 3.2 they become identical to those in [75].

In literature two ways to represent the superconducting wavefunctions
are common. One uses the χ’s

χ± = E −
√
E2 −∆2

0,

another is using the BCS quasiparticles weights u, v as introduced in section
2.1.2. To make the equivalence to the STI wavefunctions in [47] explicit we
introduce

u0 =
1√
2E

√
E +

√
E2 −∆2

0,

v0 =
1√
2E

√
E −

√
E2 −∆2

0.

To illustrate this equivalence we consider a specific STI wavefunction solution
from section 3.2, i.e. the right traveling ’electron’ quasiparticle wavefunction
given by

φSTI,++ =
1

2


1
eiθ

χ−
∆0
eiθ

χ−
∆0

 .

Where we have set the superconducting phase to zero, since this was not
modelled in the referenced work. We want to show this is equivalent to (we
have already corrected for the spin rotation difference discussed above)

φ′ =
1

2


u0

u0e
iθ

v0e
iθ

v0

 ,

we can go from one representation to the other using the following useful
relations

χ+χ− = ∆2
0 → ∆0 =

√
χ+
√
χ−

u0 =
1√
2E

√
χ+

v0 =
1√
2E

√
χ−.
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We ignore normalisation for intermediate calculations and simply normalize
afterwards. Moreover we can always take out any common factor in front of
vector

φSTI,++ ∼


1
eiθ

χ−
∆0
eiθ

χ−
∆0

 ∼


1
eiθ

χ−√
χ+
√
χ−
eiθ

χ−√
χ+
√
χ−

 ∼

√
χ+√
χ+e

iθ

√
χ−e

iθ

√
χ−

 ∼


u0

u0e
iθ

v0e
iθ

v0

 ∼ φ′.
Hence the STI wavefunction are equivalent.

C Additional calculations

In this appendix we gather various calculations similar to those given in the
main text. We consider for example a mirrored system or bilayer as discussed
in the main text.

C.1 TI-MTI-TI-STI-transmission

In this appendix we give the imposed continuity requirements that give rise
to the transmission results through the entire TI-MTI-STI-STI system (fig-
ure 28) shown in figure 29. The system consists of three interfaces, i.e. a
TI-MTI interface at x = −b−d; a MTI-TI interface at x = −d; and a TI-STI
interface at x = 0. We will use the coefficients as shown in figure 28 in the
following three continuity requirements. At the first two interfaces we have
separate equations, of dimension two, for the electrons and holes, whereas
for the last interface we have a single four dimensional equation. The wave-
functions are labelled by an index (i) to indicate a potential basis, and for
basis 1 and basis 2 they are given in section 3.2 and A.

TI-MTI interface:
For the electron wavefunctions at x = −b− d and y = 0,

φ
TI,(i)
e+ (θ) + C1φ

TI,(i)
e+ (π − θ) = C3φ

MTI,+(i)
e (θ) + C4φ

MTI,−(i)
e (θ),

and for the holes at x = −b− d

C2φ
TI,(i)
h− (π + θ) = C5φ

MTI,+(i)
h (π + θ) + C6φ

MTI,−(i)
h (π + θ).

MTI-TI interface:
For the electron wavefunctions at x = −d and y = 0

C3φ
MTI,+(i)
e (θ) + C4φ

MTI,−(i)
e (θ) = C7φ

TI,(i)
e+ (θ) + C8φ

TI,(i)
e+ (π − θ),
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similarly for the holes we find

C5φ
MTI,+(i)
h (π+ θ) +C6φ

MTI,−(i)
h (π+ θ) = C9φ

TI,(i)
h− (π+ θ) +C10φ

TI,(i)
h− (−θ).

TI-STI interface:
For the TI-STI interface we have a single four dimensional spinor continuity
requirement at x = y = 0. Since we use the short hand notation to display
the TI hole and electron spinors in two dimensions, we should now note
that actually they are four dimensional. However since the electron spinors
would look like (·, ·, 0, 0)T and the hole ones like (0, 0, ·, ·)T , we can easily
go from the two dimensional representation to the four dimensional one by
app(pre)pending the electron (hole) spinor by two zero entries. Using the
extended TI wavefunctions we find

C7φ
TI,(i)
e+ (θ) + C8φ

TI,(i)
e+ (π − θ) + C9φ

TI,(i)
h− (π + θ) + C10φ

TI,(i)
h− (−θ)

= C11φ
STI,−(i)
+ (θs) + C12φ

STI,−(i)
− (−θs).

We note that in these five equations, we have twelve unknowns C1 through
C12 and we have 2 + 2 + 2 + 2 + 4 = 12 equations. Since the some coefficients
are present in different continuity requirements, we can not solve the linear
systems separately and we cast all five equations to a 12× 12 linear matrix
system.

C.2 AR coefficients

In this section we compare the AR coefficients for a STI-TI system and a
TI-STI for both bases and for both an incoming electron and hole. The
calculations are done completely analogously to those in section 5.1.1. We
suppose a phase of ϕR on the right STI, i.e. the superconductor in the TI-STI
bilayer, and ϕL on the left superconductor.

TI-STI

The AR reflection coefficients for the TI-STI bilayer in basis 1 are

r
(1),R
eh (θ) =

χ−
∆0

g(θ, θs)e
iθe−iϕR , (C.1)

and
r

(1),R
he (−θ) = −χ−

∆0

g(θ, θs)e
iθeiϕR . (C.2)

Where g(θ, θs) is given in (5.5). The two coefficients are related by

r
(1),R
eh (θ) = −r(1),R

he (−θ)e−2iϕR . (C.3)
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Similarly in basis 2

r
(2),R
eh (θ) =

χ−
∆0

g(θ, θs)e
−iϕR (C.4)

and
r

(2),R
he (−θ) =

χ−
∆0

g(θ, θs)e
iϕR . (C.5)

Hence the two are related by

r
(2),R
eh (θ) = r

(2),R
he (−θ)e−2iϕR . (C.6)

STI-TI

The AR reflection coefficients for the STI-TI bilayer in basis 1 are

r
(1),L
eh (π − θ) = −χ−

∆0

g(θ, θs)e
−iθe−iϕL , (C.7)

r
(1),L
he (π + θ) =

χ−
∆0

g(θ, θs)e
−iθeiϕL . (C.8)

Hence the two are related by

r
(1),L
eh (π − θ) = −r(1),L

he (π + θ)e−2iϕL . (C.9)

The AR reflection coefficients for the STI-TI bilayer in basis 2 are

r
(2),L
eh (π − θ) =

χ−
∆0

g(θ, θs)e
−iϕL , (C.10)

r
(2),L
he (π + θ) =

χ−
∆0

g(θ, θs)e
iϕL , (C.11)

hence the two are related by

r
(2),L
eh (π − θ) = r

(2),L
he (π + θ)e−2iϕL . (C.12)
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Phase difference

Consider a phase difference of ϕ = ϕL − ϕR over the superconducting leads,
this gives ϕR = −ϕ/2 and ϕL = ϕ/2. For simplicity we set χ−

∆0
g(θ, θs) := rAR

r
(1),R
eh (θ) = rARe

iϕ/2eiθ,

r
(1),R
he (−θ) = −rARe−iϕ/2eiθ,
r

(1),L
eh (π − θ) = −rARe−iϕ/2e−iθ,
r

(1),L
he (π + θ) = rARe

iϕ/2e−iθ, (C.13)

r
(2),R
eh (θ) = rARe

iϕ/2,

r
(2),R
he (−θ) = rARe

−iϕ/2,

r
(2),L
eh (π − θ) = rARe

−iϕ/2,

r
(2),L
he (π + θ) = rARe

iϕ/2.

Now consider a Josephson junction with a phase difference of ϕ and consist-
ing of a tunnel barrier with a transparency D. We can first consider two
limits, D = 0, 1. For D = 0 we have two isolated bound states on either side
of the barrier. In each bound state we should compare the electron and hole
reflections on the same side. When we compare for instance the right hand
side r

(2),R
eh and r

(2),R
he we see that for an isolated system with an infinite thick

MTI that the additional electron and hole phase gain due to a superconduct-
ing phase cancel and we retrieve the same Andreev bound states found in
section 5.1.3.

For a fully transparent barrier D = 1 we consider a right traveling electron
and we compare the electron to hole Andreev reflection at the right STI, i.e.
r

(2),R
eh (θ) = rARe

iϕ, and the hole electron Andreev reflection at the left STI,

r
(2),L
he (π + θ) = rARe

iϕ. Since these two are equal we get an total phase of ϕ
per round trip.

D Recurrence relations for a topological tun-

nel junction

The recurrence relations used to compute the I, V curves in section 5.3 are
derived here. An elaborate discussion of their origin is given in [46]. In the
work [46] the recurrence relations are derived in the case F = −1, here we
focus on the main derivation and highlight the effect of the factor F in the
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case when it is not necessarily -1. The work shown is a combined effort with
the original author of the mentioned work.

D.1 Scattering matrices

We introduce the scattering matrix for electrons and holes as,

Se =

[
ree tee
tee S22

e

]
, Sh =

[
rhh thh
thh S22

h

]
, (D.1)

where ree is the electron-electron reflection, tee the electron-electron trans-
mission, rhh the hole-hole reflection and thh the hole-hole transmission. We
follow the procedure by [96] and find the the bottom-right elements S22

e and
S22
h by normalising Se and Sh to be a unitary matrix, i.e. S†S = SS† = I,

where I is the 2 × 2 identity matrix. For simplicity, we define r ≡ ree and
t ≡ tee. For the electrons, we find

S†eSe =

[
r∗ t∗

t∗ (S22
e )∗

] [
r t
t S22

e

]
=

[
r∗r + t∗t r∗t+ t∗S22

e

t∗r + (S22
e )∗t t∗t+ (S22

e )∗S22
e

]
!

=

[
1 0
0 1

]
.

(D.2)
Probability conservation gives r∗r + t∗t = |r|2 + |t|2 = 1. Solving the other
equations, we obtain

Se =

[
r t

t −r
∗t

t∗

]
. (D.3)

Comparing the electrons and holes, we assume the holes pick up an extra
phase F upon reflection. Without loss of generality, we write rhh = Fr∗ee =
Fr∗ with |F |2 = 1. For the transmission, we use thh = t∗ee = t∗. Hence,

Sh =

[
r∗ t∗

t∗ S22
h

]
. (D.4)

The unitary matrix criterion then gives

S†hSh =

[
F ∗r t
t (S22

h )∗

] [
Fr∗ t∗

t∗ S22
h

]
=

[
FrF ∗r∗ + tt∗ F ∗rt+ tS22

h

tFr∗ + (S22
h )∗t∗ tt∗ + (S22

h )∗S22
h

]
!

=

[
1 0
0 1

]
.

(D.5)
By solving this equation, we obtain

Sh =

[
Fr∗ t∗

t∗ −F ∗ rt
∗

t

]
. (D.6)
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Figure 43: Image courtesy of

We note that S22
h = (S22

e )∗. When F → 1, we find the same matrices as in
the S/N/S case [40]. When F → −1, we obtain the S/TI/S case [41]. Hence,
this scatter matrix is a generalisation of the previous works that allows for
consideration of any intermediate case.

D.2 Recurrence relations for the TI/MTI/TI junction

The recurrence relations are based on the matching of the possible wavefunc-
tions through the scattering matrices found above. To illustrate the possible
waves we consider the wavefunctions in a Josephson junction connected by
some scattering regime in the middle as depicted in figure 43. The sketched
situation would be the same for a topological junction. An incoming electron
wave with amplitude J and energy ε can under go the following processes:

1. Reflection as an electron-like quasiparticle (normal reflection) Bn

2. Reflection as a hole-like quasiparticle (Andreev reflection) An

3. Transmission as an electron-like quasiparticle Cn

4. Transmission as a hole-like quasiparticle Dn
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where the subscript n indicates the amount of Andreev reflections that have
occurred and a is the Andreev reflection coefficient. This acts as a brief intro-
duction to the wavefunctions taking part in the derivation of the recurrence
relations, but the reader is referred to [46] for a more elaborate explanation.

The wave amplitudes in the regions in figure 43 are related by the scat-
tering matrices as follows[

Bn

Cn

]
= Se

[
δn0 + a2nAn
a2n+1Dn

]
, Se =

[
r t
t −r∗t/t∗

]
,[

An
Dn−1

]
= Sh

[
a2nBn

a2n−1Cn−1

]
, Sh =

[
Fr∗ t∗

t∗ −F ∗rt∗/t

]
,

where F is the extra phase picked up by the holes upon Andreev reflection.
This phase is material-dependent and ranges from F = 1 for a normal metal
and F = −1 for a topological insulator.

From these matrices, we obtain a system of equations with four unknowns
An, Bn, Cn and Dn:

Bn = r [δn0 + a2nAn] + ta2n+1Dn,

Cn = t [δn0 + a2nAn]− r∗t

t∗
a2n+1Dn,

An = Fr∗a2nBn + t∗a2n−1Cn−1,

Dn−1 = t∗a2nBn − F ∗
rt∗

t
a2n−1Cn−1.

The above equations (D.7)-(D.10) form a system of four equations with four
unknowns. By substituting them into each other, we can reduce this to a
single recurrence relation for Bn. After solving for Bn, we express An in
terms of Bn, since An and Bn combined are sufficient to calculate the current
through the junction.

In the following, we will need expressions for both indices n and n − 1,
which can be obtained by simply substituting n 7→ n − 1 (for Bn, Cn and
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An) and n 7→ n+ 1 (for Dn−1). The full set of equations that we will use is{
Bn = r [δn0 + a2nAn] + ta2n+1Dn,

Bn−1 = r [δn−1,0 + a2n−2An−1] + ta2n−1Dn−1,
(D.7)

Cn = t [δn0 + a2nAn]− r∗t

t∗
a2n+1Dn,

Cn−1 = t [δn−1,0 + a2n−2An−1]− r∗t

t∗
a2n−1Dn−1,

(D.8)

{
An = Fr∗a2nBn + t∗a2n−1Cn−1,

An−1 = Fr∗a2n−2Bn−1 + t∗a2n−3Cn−2,
(D.9)

Dn = t∗a2n+2Bn+1 − F ∗
rt∗

t
a2n+1Cn,

Dn−1 = t∗a2nBn − F ∗
rt∗

t
a2n−1Cn−1,

(D.10)

D.2.1 Recurrence relation for Bn

We aim to substitute all relations between Bn, Cn, An and Dn into each
other to obtain a closed recurrence relation for Bn. We start from Bn in
(D.7) and substitute An from (D.9) and Dn from (D.10) into Bn from (D.7),
which gives a relation between Bn and Cn. We obtain

Bn = r [δn0 + a2n (Fr∗a2nBn + t∗a2n−1Cn−1)] + ta2n+1

(
t∗a2n+2Bn+1 − F ∗

rt∗

t
a2n+1Cn

)
= rδn0 + Frr∗a2

2nBn + rt∗a2na2n−1Cn−1 + tt∗a2n+1a2n+2Bn+1 − F ∗rt∗a2
2n+1Cn.

(D.11)

We also substitute (D.9) and (D.10) into Cn from (D.8) to obtain a second
relation between Bn and Cn, that is

Cn = tδn0 + ta2n (Fr∗a2nBn + t∗a2n−1Cn−1)− r∗t

t∗
a2n+1

(
t∗a2n+2Bn+1 − F ∗

rt∗

t
a2n+1Cn

)
= tδn0 + Ftr∗a2

2nBn + tt∗a2na2n−1Cn−1 − r∗ta2n+1a2n+2Bn+1 + F ∗r∗ra2
2n+1Cn.

(D.12)

To combine (D.11) and (D.12), we conveniently write the source term on the
left-hand-side and all other terms on the right. We obtain
δn0 =

1

r
[1− Frr∗a2

2n]Bn − t∗a2na2n−1Cn−1 −
tt∗

r
a2n+1a2n+2Bn+1 + F ∗t∗a2

2n+1Cn.

δn0 =
1

t

[
1− F ∗r∗ra2

2n+1

]
Cn − Fr∗a2

2nBn − t∗a2na2n−1Cn−1 + r∗a2n+1a2n+2Bn+1.

(D.13)
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This allows us to equate the two equations. The t∗a2n22n−1Cn−1 and Fr∗a2
2nBn

terms cancel. What remains is

1

r
Bn =

[
1

t
− F ∗

(
r∗r

t
+ t∗

)
a2

2n+1

]
Cn +

(
r∗ +

tt∗

r

)
a2n+1a2n+2Bn+1.

(D.14)

We use the probability conversion r∗r + t∗t = rr∗ + tt∗ = 1 to simplify the
terms between round brackets and find

1

r
Bn =

1

t

[
1− F ∗a2

2n+1

]
Cn +

1

r
a2n+1a2n+2Bn+1. (D.15)

We divide by Cn’s pre-factor to express Cn in terms of Bn by rewriting
Eq. (D.15):

Cn =
t

r

1

1− F ∗a2
2n+1

Bn −
t

r

a2n+1a2n+2

1− F ∗a2
2n+1

Bn+1. (D.16)

Accordingly, by replacing n 7→ n− 1, we find an expression for Cn−1:

Cn−1 =
t

r

1

1− F ∗a2
2n−1

Bn−1 −
t

r

a2n−1a2n

1− F ∗a2
2n−1

Bn. (D.17)

We now substitute (D.16) and (D.17) into (D.11)

Bn = rδn0 + Frr∗a2
2nBn + rt∗a2na2n−1

(
t

r

1

1− F ∗a2
2n−1

Bn−1 −
t

r

a2n−1a2n

1− F ∗a2
2n−1

Bn

)
+ tt∗a2n+1a2n+2Bn+1 − F ∗rt∗a2

2n+1

(
t

r

1

1− F ∗a2
2n+1

Bn −
t

r

a2n+1a2n+2

1− F ∗a2
2n+1

Bn+1

)
= rδn0 + Frr∗a2

2nBn + tt∗
a2na2n−1

1− F ∗a2
2n−1

Bn−1 − tt∗
a2

2n−1a
2
2n

1− F ∗a2
2n−1

Bn

+ tt∗a2n+1a2n+2Bn+1 − tt∗
F ∗a2

2n+1

1− F ∗a2
2n+1

Bn + tt∗
F ∗a3

2n+1a2n+2

1− F ∗a2
2n+1

Bn+1.

We sort all the terms as follows:

tt∗
[
F ∗a3

2n+1a2n+2

1− F ∗a2
2n+1

+ a2n+1a2n+2

]
Bn+1 −

[
1− Frr∗a2

2n + tt∗
(

a2
2n−1a

2
2n

1− F ∗a2
2n−1

+
F ∗a2

2n+1

1− F ∗a2
2n+1

)]
Bn

+ tt∗
a2na2n−1

1− F ∗a2
2n−1

Bn−1 = −rδn0.

The coefficient in front of Bn+1 can be simplified as

F ∗a3
2n+1a2n+2

1− F ∗a2
2n+1

+ a2n+1a2n+2 =
a2n+1a2n+2

1− F ∗a2
2n+1

, (D.18)
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which makes it symmetric with the Bn−1 coefficient. We define the interface
transparency as D ≡ tt∗. The final recurrence relation for Bn becomes

D
a2n+1a2n+2

1− F ∗a2
2n+1

Bn+1 −
[
1− Frr∗a2

2n +D

(
a2

2n−1a
2
2n

1− F ∗a2
2n−1

+
F ∗a2

2n+1

1− F ∗a2
2n+1

)]
Bn

(D.19)

+ D
a2na2n−1

1− F ∗a2
2n−1

Bn−1 = −rδn0.

(D.20)

We can cast the recurrence relation (D.20), to a more general to reveal the
mathematical structure more explicitly. By dividing (D.20) by the term in
front of Bn+1 we get,

Bn+1 + γnBn + χnBn−1 = ζnδn0. (D.21)

where,

γn = − 1

D

(1− Fa2
2n)(1− F ∗a2

2n+1)

a2n+1a2n+2

− a2
2n

F − (FF ∗ − 1)a2
2n−1

1− F ∗a2
2n−1

1− F ∗a2
2n+1

a2n+1a2n+2

− F ∗a2n+1

a2n+2

(D.22)

χn =
a2na2n−1(1− F ∗a2

2n+1)

a2n+1a2n+2(1− F ∗a2
2n−1)

(D.23)

ζn =
r

D

1− F ∗a2
2n+1

a2n+1a2n+2

δn0 (D.24)

In the form (D.21) we readily recognize the non-homogeneous three term
recurrence relation for Bn.

D.2.2 Recurrence relation for An

Now that we have found a closed expression for Bn, we can consider Bn as
known and express An in terms of Bn. Substituting Cn−1 from (D.8) into An
from (D.9) yields

An = Fr∗a2nBn + t∗a2n−1

(
ta2n−2An−1 −

r∗t

t∗
a2n−1Dn−1 + tδn−1,0

)
= Fr∗a2nBn + tt∗a2n−1a2n−2An−1 − r∗ta2

2n−1Dn−1 + tt∗a2n−1δn−1,0.

We use probability conversation to rewrite tt∗ = 1− rr∗ and sort the terms
in a clever way, as follows

An − a2n−1a2n−2An−1 = Fr∗a2nBn − r∗a2n−1 (ta2n−1Dn−1 + ra2n−2An−1 + rδn−1,0)

+ a2n−1δn−1,0.
(D.25)
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We note that the part in between brackets is exactly Bn−1 from (D.7). Hence,
we rewrite (D.25) as

An − a2n−1a2n−2An−1 = Fr∗a2nBn − r∗a2n−1Bn−1 + a2n−1δn−1,0.

This is already a correct recurrence relation for An. However, to mimic the
recurrence relations in literature, we replace n 7→ n+1. The source term has
a Kronecker δ-function at n = 0, which turns its pre-factor into a2n+1 = a1.
Our final recurrence relation for An becomes

An+1 − a2n+1a2nAn = r∗ (Fa2n+2Bn+1 − a2n+1Bn) + a1δn0. (D.26)

We can write (D.26) in the following form,

An+1 + γ′nAn = f(n). (D.27)

where,

γ′n = −a2n+1a2n (D.28)

f(n) = r∗ (Fa2n+2Bn+1 − a2n+1Bn) + a1δn0. (D.29)

and recognize the non-homogeneous two term recurrence relation (D.27).
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