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ABSTRACT 

In the present times, with the dynamically changing climatic conditions, it becomes very important to 
monitor and estimate the acreage and production of crops to meet the requirements of the bulging 
population. Conventionally, crop classification was carried out using unsupervised and supervised methods 
which demanded a lot of manpower and time investment. This research explores the automation capability 
of deep learning models for finding hidden patterns in the dataset. Keeping this in mind, an optimized 
number of dates were selected for generating training data for the deep learning model. 1-Dimensional 
Convolutional Neural Networks (CNN) and its integration with Long Short Term Memory (CNN-LSTM) 
models were explored and optimized to produce classified outputs. The Modified Possibilistic c-Means 
(MPCM) Classifier was utilized to test its performance in terms of handling intra-class variability within a 
crop class and compared with the deep learning model outputs. Also, the dual-sensor approach was studied 
to find any additional information useful for classification. 
The study area chosen was Ludhiana district in the agricultural state of Punjab, India. The research was 
divided into two phases with maize (Zea Mays), mentha (Mint), and guava (Psidium guajava) as target crops 
in phase-1 while early potato (Solanum Tuberosum), mid potato, and late potato as target crops in phase-2. 
Time series data was used to resolve the issue of overlapping spectral signatures of crops. The freely available 
Sentinel-2 dataset integrated with the Landsat-8 dataset was used in phase-1 of the study while the Sentinel-
2 dataset was utilized in the phase-2 study. Class-Based Sensor Independent Normalized Differential 
Vegetation Index (CBSI-NDVI) was used to enhance the target crop and separate it from the other non-
interest crops in the study area. The optimum number of dates was selected for each target crop by 
performing separability analysis. The date combinations that gave maximum separation between the target 
crop class and other (non-interest) crop classes were selected to be optimum. Then the dataset generated 
was used to create training data for the deep learning models. Two deep learning models were explored and 
optimized which were the 1D-CNN model and an integrated CNN-LSTM model. The deep learning models 
handle the heterogeneity within a crop class (intra-class variability) very well which is still a challenge for a 
fuzzy classifier. Here, a fuzzy MPCM classifier was studied against the training data to test its capability of 
handling the heterogeneity within a crop class during classification and was compared with the outputs of 
deep learning models. Also, a dual-sensor approach was explored where the Sentinel-1 Synthetic Aperture 
Radar (SAR) dataset was used alongside optical data to test for any additional information extracted from 
the data. 
It was observed that the CBSI-NDVI index proved to be reliable in enhancing a specific crop in the study 
area. The optimum dates selected using separability analysis helped to reduce the temporal domain. In phase-
1, six-date combinations came out to be optimum for Maize and Mentha while seven-date combinations 
came out to be optimum for Guava. In phase-2, four-date combinations came out to be optimum for early 
and mid-potato while three-date combinations came out to be optimum for late potato. A simpler CNN 
model architecture proved to be efficient for specific crop classification which consisted of two 1D-CNN 
layers followed by a max pool layer, a dropout layer, and a dense layer. The integrated CNN-LSTM model 
consisted of three pairs of 1D-CNN and LSTM layers, three dropout layers, two max pool layers, and a 
dense layer. It was observed that the hybrid model resulted in better classification outputs for the target 
crops from both phases. It was also observed that the hybrid CNN-LSTM model handled the intra-class 
variability (heterogeneity within a crop class) best when compared to 1D-CNN and MPCM classifiers. 
However, the MPCM classifier proved to handle heterogeneity within a crop class better than the CNN 
model. In the end, it was also observed that using a single sensor dataset yielded better classification results 
when compared to the dual-sensor dataset.   
After analyzing the results, the hybrid CNN-LSTM model provided the best classification results. Also, the 
fuzzy MPCM classifier performed similarly to a deep learning model in terms of handling heterogeneity 
within a crop class.  
  
Keywords: Deep Learning models, Time Series, CBSI-NDVI, Fuzzy based classifier, CNN, CNN-LSTM, MPCM, 
Crop classification.  
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1. INTRODUCTION 

1.1. Research Background 

‘Zero Hunger’ is the second sustainable development goal that aims at achieving food security around the 

world (Assembly, 2015). Globally, people have come together and are continuously working in the direction 

of accomplishing these goals for a better future. There are broadly four targets and indicators for this goal: 

sufficient availability of food, accessibility to people, adequate consumption of food by people, and stability 

of the previous three factors to ensure food security. Amongst these factors, the availability of food depends 

upon the production of crops in a country and acts as an important factor to be monitored, especially in a 

developing country like India. The government needs to make sure that the crops being produced are healthy 

for fulfilling the nutritious requirement with good yield.   

Earth Observation (EO) is the collection of information about the physical, chemical, and biological systems 

on the Earth’s surface. Remote sensing images have been extensively used for land use/land cover mapping, 

at level one classification. In remote sensing, Level 1 classification means classifying the image into broader 

classes like agricultural land, water bodies, urban land, barren land, etc. while in Level 2 classification, classes 

are sub-divided to form detailed classes, as shown in table 1 (Saritha & Santhosh Kumar, 2015). Level one 

classification has been implemented using conventional classification techniques such as Support Vector 

Machines, Random forest, k-means, etc. These classifiers have been used as hard classification with 

supervised and unsupervised classification modes. Some of the classifiers have been applied as soft classifiers 

using the fuzzy logic concept (Murmu & Biswas, 2015). The approach adopted in this research is Level-2 

and 3 classifications in which different types of crop classes, and, crop sub-classes are mapped using 

temporal information as crop phonology, respectively. 

 

Table 1: Classification Levels (Saritha & Santhosh Kumar, 2015) 

 
 

For sustainable natural resources, there is a need to manage agriculture by using effective cropland mapping 

and monitoring (Matton et al., 2015). Over time, there has been a tremendous amount of improvement in 

the spatial and temporal resolution of the remote sensing datasets. This helps to make use of the remote 

sensing datasets in the applications such as crop or forest tree species identification, land cover mapping, 

urban planning and disaster mitigation planning. Remote sensing image classification remains a challenging 
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task when specific agricultural crop classes are considered as there can be spectral overlap between the target 

class and other classes (Mazzia et al., 2020). In the case of crops, the growth stage of the crops changes with 

time having a unique phonological profile. This profile can be introduced using multi-temporal images. 

While using multi-temporal remote sensing data for the crop type mapping, the classifier should be capable 

of mapping specific classes of interest. The temporal data incorporates the phonological information of the 

crop to overcome the spectral overlap between the crop classes in the study area. While maintaining spatial 

(x, y) components of data, two of the three dimensions available are fixed, and there is one dimension left 

while two components, i.e., spectral or temporal that can be considered. So, the spectral dimension of each 

image has to be reduced to maintain the temporal dimension. This goal can be achieved by evaluating class-

based sensor independent – normalized differential vegetation index (CBSI-NDVI) which has proved to be 

efficient in crop mapping as well as in identifying fields with damaged crops (Rawat et al., 2020). The second 

advantage of using the CBSI-NDVI approach is that based on data sets as well as a class type, this approach 

selects appropriate bands from each temporal image (Misra et al., 2012). Meaning, it chooses the spectral 

bands that gives the maximum separation between the target crop and non-interest crop classes. Further to 

include unique changes, a potential solution to the spectral overlapping problem can be by increasing the 

temporal resolution of the dataset used. While using the multi-spectral datasets like Sentinel-2, it can be 

taken care to incorporate data from sentinel 2A and 2B series, with 5 days’ time intervals. As per the 

references, it is clear that a large number of fuzzy-based and other classifiers have been used for single-class 

mapping (Musande, Kumar, & Kale, 2012). But learning-based algorithms have not been tested or applied 

on temporal data processing for specific class mapping.  

The non-parametric classifier like Neural Networks (NN) has proved to perform better when compared to 

the parametric classifier in those cases where the distribution of data in the area is unknown (Gómez, White, 

& Wulder, 2016). NN-based algorithms are designed to mimic the human brain. Neural networks with their 

modified versions such as Convolutional Neural Network (CNN) and Recurrent Neural Network - Long 

Short Term Memory (RNN-LSTM) are comparatively newer techniques that are being actively explored for 

the classification purpose from past six years. The layers in a CNN architecture include a convolution, a 

non-linear activation function, and max pooling (Paola & Schowengerdt, 1995). Initially, when the CNN 

model is trained, a set of random weights are assigned to the layer which is optimized over the successive 

layers to minimize the model loss and maximize the model performance. An advantage of using RNN is 

that it stores the previously predicted values in its memory which is then considered along with the new 

input to predict the succeeding value. LSTM is a modified version of RNN where it stores the most relevant 

values in its memory while predicting the future values. Since it considers the values which have more 

importance over the others and discards other values, it is a faster and better approach (Sun et al., 2019). 

1D-CNN has proved to perform better when the training data is less or when an application is developed 

for a specific objective (Kiranyaz et al., 2019). CNN with its other versions has not been explored much for 

temporal data processing. Studies have shown that the results from this algorithm are similar to the 

conventional classifiers such as maximum-likelihood but it still needs further exploration before it could be 

adopted as an alternative to the conventional classifiers (Paola & Schowengerdt, 1995).  

More than a decade ago, fuzzy classifiers were used for specific crop mapping where the output generated 

was better than the conventional classifiers (Assimakopoulos et al., 2003). The deep learning models have 

proved to handle the heterogeneity within a class however it is still a challenge for fuzzy classifiers. 

Therefore, a modified version of the Possibilistic c-Means (MPCM) classifier was tested against the training 

dataset and the output was compared with the results obtained from the deep learning model. Here, a 

modified version of the fuzzy c-Means classifier was utilized which was made to perform similar to a deep 

learning model by considering an individual training data as input without performing statistical evaluation 

like mean on the inputs data. The output generated from the MPCM algorithm was further explored to 

handle heterogeneity within a class and compared with the outputs from deep learning models. Also, 
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microwave Synthetic Aperture Radar (SAR) image was incorporated with the optical image to test for any 

additional information extracted by using dual-sensor datasets for specific crop classification. 

1.2. Problem Statement 

In India, every year the state government estimates the yield of each crop at the district level and state level. 

For yield estimation, it is necessary for the government bodies to know the area under cultivation for each 

crop. Instead of using the traditional methods where each crop information was calculated manually, remote 

sensing is used for calculating the area under cultivation of each crop, which saves a lot of time and 

manpower. Several factors contribute to the selection of sowing date for a crop by the farmers like the 

variety of crop sown, availability of field (ready for sowing), the financial condition of the farmer, etc. As a 

result, even the crops that are sown in the same season differ in time, meaning, they have different sowing 

times. Due to this all fields having the same crop cannot be mapped at one time. Also in a particular season, 

a different variety of crops are cultivated in a given area due to which there is spectral overlap between the 

crop classes when observed through remote sensing images. This spectral overlap between the target crop 

class and other crops in the area needs to be reduced as they possess the potential to be classified as the 

target crop. 

Hence, a multi-temporal approach was adopted which provides phenology as changes occurring within crop 

information which is unique and helps in reducing the spectral overlap between the crop classes. A well-

known technique for finding out optimum features is separability analysis which was performed to find the 

optimum dates with minimum spectral overlap between the crop classes. 

1.3. Research Objectives 

The main objective of this research was to study and design a CNN-based deep learning algorithm for 

specific crop mapping using temporal data sets. 

Sub-objectives: 

The research focuses on developing a CNN and an integrated CNN-LSTM model focusing on crop type 

classification. Working of CNN and the integrated version of the algorithm was studied for mapping a single 

crop class. Heterogeneity within a class was also studied and was aimed to minimize using the fuzzy 

algorithm. Instead of taking the global mean of all the input samples, it has been experimented to use 

individual sample as a mean in the fuzzy based classifier which can handle heterogeneity. The specific 

objectives are stated below:   

1. Finding the minimum number of temporal images required to map specific crops using multi-

temporal data. 

2. To study and optimize the CNN and integrated CNN-LSTM model while monitoring parameters 

like no. of iterations (epoch), no. of layers, model loss and accuracy, no. of neurons, learning rate, 

etc. for specific crop mapping. 

3. To study heterogeneity (intra-class variability) within a class through deep learning-based classifiers 

and compare it with fuzzy Modified Possibility c-Mean (MPCM) classifiers. 

4. Testing dual-sensor data approach for classification. 

1.4. Research Questions 

The following research questions will be addressed: 

1. Referring to sub-objective 1: 

a. What is the minimum number of temporal images required to map a specific crop while 

working with temporal data? 

2. Referring to sub-objective 2: 

a. What are the values of the hyper-parameters that produce the best results? 
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b. How much is the model loss and final accuracy for which the proposed model gives the 

best result for specific crop mapping? 

3. Referring to sub-objective 3: 

a. Which method best handles the heterogeneity within a crop class – deep learning model or 

MPCM approach? 

4. Referring to sub-objective 4: 

a. Does the SAR data give any extra information as compared to the optical dataset? 

b. Which approach is better - single sensor or dual-sensor approach for classification? 

1.5. Innovation Aimed at 

The innovation in this research was focused on how CNN and integrated CNN-LSTM models can be 

applied for temporal data processing for specific crop mapping while handling heterogeneity within a class, 

with minimum hardware resources. 

1.6. Research Approach 

In this research, Sentinel-2 time-series datasets were used for the classification of specific crop types and to 

achieve the objectives. The research was conducted in two different time phases, the first phase between 

April 2020 to June 2020 where the identified class of interest (target classes) were ‘Maize (Corn)’, ‘Mentha 

(Mint)’ and ‘Guava’ while the second phase between October 2020 to March 2021 where the classes of 

interest (target classes) identified was ‘Early Potato’, ‘Mid-Potato’ and ‘Late Potato’.  The phase-1 aims at 

level-2 classification as the classification was done for distinct crop classes identified in the study area, while 

the phase-2 aims at level-3 classification as the classification was done within a single crop (Potato) where 

the target crops were divided depending upon the sowing time of the crop. During Phase 1, the Landsat-8 

dataset was incorporated to fill in the temporal gaps due to cloud cover. The data set was pre-processed and 

resampled to bring the spatial resolution of the Landsat-8 dataset equal to the Sentinel-2 dataset, i.e., 10m. 

Class-based Sensor Independent Normalized Differential Vegetation Index (CBSI-NDVI) was calculated 

for the dataset considering one target class at a time. This data was further utilized to perform separability 

analysis which gave the optimum number of dates minimizing the spectral overlap between the classes, 

necessary for specific crop classification. Using optimum date datasets, training data was generated to be 

fed as an input to the Convolutional Neural Network (CNN) model. The classified outputs generated from 

the models was assessed using precision, recall and f1-score. However due to the limited training data 

available, this evaluation alone could not be considered for assessing the performance of the classifier. 

Therefore, the classification results obtained were also assessed using Mean Membership Difference (MMD) 

(Singh, Kumar, & Upadhyay, 2020) evaluated between interest class and non-interest class, and the variance 

within the target crop field. The performance of the model was assessed graphically by observing the model 

accuracy and loss for each target crop class. Also, the hard classification outputs were generated and the 

target crop class field was observed to assess the performance of the classifier. Following a similar process, 

results were obtained for the hybrid deep learning model, i.e., Convolutional Neural Network – Long Short 

Term Memory (CNN-LSTM) model and compared with the CNN model. The fuzzy Modified Probabilistic 

c-mean (MPCM) classifier was used to handle the heterogeneity within a crop class (intra-class variability) 

and the output was compared with deep learning classifiers’ results. This classifier was adopted due to its 

ability to classify non-overlapping clusters and handle noise in the dataset. Lastly, the dual-sensor approach 

was tested by replacing one of the Sentinel-2 optical images with a Sentinel-1 SAR image to investigate an 

additional information added to the data, if any. 
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1.7. Structure of the Thesis  

This thesis has been divided into six chapters. The first chapter ‘Introduction’ talks about the motivation 

behind the research work and how this research work has been carried out. It also includes the research 

objectives and corresponding research questions along with the innovation introduced in the work. The 

second chapter ‘Literature Review’ includes the details of the previous research work conducted for similar 

application along with the conceptual explanation of the methodologies and technologies used in this 

research. The third chapter ‘Study Area and Datasets used’ explains in detail the study area and datasets that 

were chosen for this research and gives the motivation to choose them. It also discusses in detail how various 

crop classes were divided and used in this research. The methodology of this research is explained in detail 

in the fourth chapter as ‘Research Methodology’. The results obtained were visualized and discussed 

alongside in the fifth chapter ‘Results and Discussions’. The conclusions drawn from the analysis of the 

research along with future recommendations were presented in the last chapter ‘Conclusions and 

Recommendations’. 
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2. LITERATURE REVIEW 

The interaction of the Remote Sensing (RS) and Geo-information field have a lot of potential and 

significance in the use and analysis of spatial data. Geographic Information Systems (GIS) is a broader field 

that extends remote sensing fields to disciplines like photogrammetry, earth sciences, computer science, 

cartography, etc. (Courville, 1987). While classifying crop classes, the spectral profile of a crop plays a vital 

role as each crop has a varying and unique spectral reflectance. But in some cases, the spectral reflectance 

of two crop classes are very similar to each other which makes it difficult to classify. For this reason, the 

phenology of the crop is studied through time-series data that minimizes the spectral overlap between the 

classes (Bargiel, 2017). Time-series data extracts seasonal changes in the spectral profile of a crop type that 

is unique to each crop.  

Every year in India, state-wise yield estimation is calculated for each crop. This is performed to estimate the 

area under cultivation for each crop which further could provide a rough figure of crop yield in that season. 

Therefore, specific crop mapping plays an important role in estimating the area under cultivation for each 

crop.  

2.1. Role of Vegetation Indices in Time Series 

A lot of studies have suggested that temporal features are more useful than spatial features during 

classification (Simonneaux et al., 2008). The datasets like Sentinel-2, which are freely available with a high 

temporal resolution of five days and spatial resolution of around 10m have created the possibility to use the 

data for research in the applications like crop classification (Mazzia et al., 2020). Apart from the temporal 

feature extraction, other factors that make the selection methods more difficult are designing a model and 

extracting features, inter-class variability and uncertain atmospheric conditions. 

When the sunlight hits the ground surface, it absorbs some of the energy while reflecting the remaining back 

into the atmosphere. The pigments in the plants absorb the visible light and the shape of the leaves 

determines how much of the energy is reflected into the atmosphere. Near-infrared (NIR) wavelength is 

strongly reflected into the atmosphere by the vegetation dependent on leaf structure (Paul Przyborski, 2000). 

In the field of remote sensing, the Normalized Differential Vegetation Index (NDVI) is the most commonly 

used vegetation index for multi-temporal studies (Zhang et al., 2018). NDVI is the ratio of the difference 

between canopy reflectance of NIR and red bands as shown in Equation (1).  

NDVI =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
          (1) 

2.1.1. CBSI-NDVI Index and its importance 

With time, new satellites have been launched with an increased number of spectral bands as compared to 

previous satellites like Landsat. So, a new Class-Based Sensor Independent Normalized Differential 

Vegetation Index (CBSI-NDVI) was introduced which took into account all the bands that are available to 

produce the result (Kumar, 2012). Equation (2) represents the calculation of CBSI-NDVI: 

 CBSI-NDVI =  
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀𝑎𝑥+𝑀𝑖𝑛
         (2) 

Here min and max represent the bands in the image with minimum and maximum Digital Number (DN) 

values respectively. The selection of the minimum and maximum band depends on the target crop. The 

spectral signatures for each band are observed at the field of the target crop. The band which had maximum 

spectral reflectance values at the target crop field is chosen as the ‘maximum’ while the band that had 

minimum spectral reflectance values at the target crop field is chosen as the ‘minimum’. In this way, 

minimum and maximum bands are computed for each date image to calculate the CBSI-NDVI index. This 
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index has proven to enhance the spectral information of the image and creates better separation between 

the crop classes. 

2.2. Deep Learning based classifier 

Artificial Intelligence (AI) is a technology that enables computers to mimic human behaviour (Simmons & 

Chappell, 1988). AI has its applications in fields like robotics, speech recognition, computer vision, etc. 

Machine learning (ML) is a sub-domain of AI that can learn without explicitly being programmed and has 

its applications in logistics, regression, etc. (Ian Goodfellow et al., 2016) Representation learning is a more 

specific domain under ML where the model learns from the input data provided. Deep Learning (DL) is a 

type of representation learning that often extracts hidden patterns from the data using neural networks. The 

relationship between these domains can be seen in figure 1. 

 

 
Figure 1: Deep learning is a type of representation learning 

Classification using machine learning techniques is being practiced and has proven to produce improved 

results as compared to conventional parametric techniques. The training set that is being fed to the model 

needs to possess certain aspects. It is very important that there is no or minimum imbalance between the 

training samples and the features for the classifier to perform at its best (Z. Liu & Sun, 2008).   

2.2.1. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN), also known as ConvNets, were introduced in the 1980s by 

YannLeCun (Lecun et. al., 1998), who was a postdoctoral computer science researcher. It utilized the ideas 

of a Japanese scientist named Kunihiko Fukushima (Fukushima, 1988) who invented a basic image 

recognition neural network.  

CNN has been used for image classification since the 1990s (Choi et al., 2005). But due to the hardware 

constraints and the inability to perform complex computations, this area was not explored much previously. 

Figure 2 depicts the structure of a multi-layer perceptron (MLP) which is a class of feed-forward artificial 
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neural networks. Here, each circle represents a neuron. A neuron in a computational unit that receives input 

from the input wires and gives output after performing some computation. Layer 1 is known as the input 

layer and contains the input given to the model (Nielsen, 2015). Layer 2 is known as the hidden layers and 

contains an activation function that performs computation and produces an output which is further given 

to the output layer, i.e. Layer 3. Each neuron is a matrix of values and each wire connecting the neuron 

bears some weight which is used to evaluate the neuron in the next layer. There can be any number of 

hidden layers in a neural network. Also, a bias is introduced in every layer. So, output for is computed as 

mentioned in Equation (3): 

 

Output = sum (weights*inputs) + bias           (3) 

 

 
Figure 2: Structure of a Multi-layer Perceptron (Nielsen, 2015) 

 

CNN can be considered a special case of MLP where one input produces a single output after going through 

a number of layers. There are various layers constituting CNN as can be seen in its architectures, as shown 

in figure 3, which can increase or decrease based on the application for which it is being developed (C. 

Zhang et al., 2018). The hyper-parameters play a key role in determining the structure of the model and also 

decide how the model will be trained on the data. Some of the hyper-parameters include a number of hidden 

layers, dropout layer, activation functions, learning rates, number of epochs, and, the batch size (Loussaief 

& Abdelkrim, 2018). 

 

 
Figure 3: Connectivity of the layers in a CNN model 
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2.2.1.1. Convolution Layer 

The first layer is always the convolution layer. In this layer, convolutions (or filters or kernels) are applied 

to the input layer in such a way that it sweeps over the whole image. The dimension of the kernel applied 

varies based on the application but its size is always smaller than the input image. One of the main advantages 

of using a kernel is that it works with local perception information (Chunjing et al., 2017). This helps the 

kernel to learn from a specific portion of the input image by increasing the dimensionality of the input. 

When the first kernel is applied, weights for each kernel are initialized by learning and these weights remain 

the same for all the kernels applied in the convolution. In this way, parameter sharing takes place (J. Yang 

& Li, 2017). 

2.2.1.2. Activation Function 

The output from a neuron is fed directly into an activation function which introduces non-linearity to the 

data (Sharma, Sharma, & Anidhya, 2017). This is a crucial step to extract the hidden information from the 

input image. The most commonly used activation function is Rectified Linear Unit (ReLU) activation 

function due to its ability to performing faster computations (Gonzalez, 2007) as compared to other 

activation functions such as tanh, sigmoid, leaky ReLU, etc. 

2.2.1.3. Pooling Layers 

Since multiple convolutions are applied to the input data, the dimensionality of the data increases. To reduce 

the dimensionality of the output from the previous layer, a pooling layer is added in the model which also, 

in turn, saves the computational resources (Chunjing et al., 2017). When a model includes a large number 

of layers in it, there are high chances of overfitting the model. So, a dropout layer is included in the CNN 

architecture to prevent the model from overfitting (Mele & Altarelli, 1993).  

2.2.1.4. Fully connected layers 

In the end, a fully connected layer or dense layer is included which predicts the class of the output obtained. 

This uses a softmax activation function to predict the class (Ian Goodfellow et al., 2016).  

2.2.2. Recurrent Neural Networks (RNN) 

An advantage of using CNN is that the algorithm down-samples the input image without losing its original 

characteristics. Hence, it requires less computational resources and is more energy-efficient. With the 

advancement in technology, recently there has been more exploitation of CNN and its hybrid with RNN-

LSTM algorithm in the field of remote sensing (Zhong et al., 2019). CNN has proved to be beneficial in 

extracting the spatial features from an image while LSTM brings out the phonological characteristics which 

are useful in specific crop mapping (Sun et al., 2019). RNN is a feed-forward neural network that stores the 

output of the previous computation in its memory as shown in figure 4. 
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Figure 4: RNN Unit 

So, the network considers what it learns from the previous output along with the current input for making 

a decision (Wu & Prasad, 2017). Although after some iterations in RNN, some values seem to vanish from 

the memory when they become less dependent, also known as the vanishing Gradient problem. Therefore, 

a special case of RNN called LSTM (Long-Short Term Memory) is applied where it stores the information 

in its memory for a longer period. This helps in improving the predicting abilities of the model as the 

information about the neighbourhood of a pixel is stored in the memory.  

Studies suggest that deep learning methods can be exploited by incorporating them with neural networks to 

optimally extract the temporal information along with the spatial and spectral information (Courville, 2017). 

In some applications, 2D CNN has been used to extract spatial data from high-resolution images (Maggiori 

et al., 2017). But in the applications where there is limited availability of training data, 1D CNN and its 

hybrid approach have proved to be more effective (Kiranyaz et al., 2019). An advantage of adopting a hybrid 

approach is that the research work can be tested on CPU based hardware (Wang et al., 2017) making the 

proposed model energy-efficient.  

2.2.3. Deep learning for crop type mapping using Remote Sensing 

The classified maps produced by utilizing the RS data plays a crucial role in agricultural crop studies. The 

deep learning algorithms have been extensively utilized for crop mapping over the time and have proved to 

produce reliable results for complex and heterogeneous datasets (B. Yang & Xu, 2021). With the free 

availability of medium-high resolution RS dataset such as from Sentinel-2 mission, the performance of the 

classification outputs generated from the deep learning classifiers have improved significantly (Garnot, et. 

al., 2019). The deep learning classifiers automate the process of classification which in turn reduces both 

time and manual effort (Ashourloo et al., 2020). Various hybrid deep learning models have also been studied 

for crop classification and have proved to give better performance. Although, one of the main challenge 

during crop classification is the heterogeneity within a class due to non-uniform dataset (Turkoglu et al., 

2021).  

2.3. Fuzzy based classifier 

The conventional classifiers that used set theory for classification have been incapable of producing adequate 

classification results due to their incapability of handling the mixed pixels (Murmu & Biswas, 2015). These 

classifiers classified a given pixel into a particular class or label. Therefore, soft classification techniques used 

by fuzzy classifiers have been applied where membership values are assigned to a pixel. The membership 

value is the degree of belongingness of a pixel to a particular class or label (Foody, et al., 1992). In this 

technique, a pixel can belong to more than one class/label at a given time resulting in unique pixel values. 
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The key advantage of using a fuzzy classifier in remote sensing for classification is that it takes into 

consideration the real-world situation. Meaning, instead of considering all the boundaries as crisp, it assigns 

more than one class/label to a pixel in the form of membership values. These values lie between 0 and 1 

(Foody et al., 1992).  

Some of the most widely used fuzzy-based classifiers are the Fuzzy c-Mean (FCM) classifier and Possibilistic 

c-Mean (PCM) classifier with both of them having their advantages and disadvantages. The FCM classifier 

has a major assumption that the sum of the membership values of all the classes that a given pixel is 

composed of should always be equal to 1. FCM is also sensitive to the outliers which result in the formation 

of unrealistic clusters. The PCM classifier could be seen as an improved version of FCM as it handles the 

outliers more effectively, requiring good initialization. But the major drawback of the PCM classifier is that 

it results in coinciding clusters. This feature of PCM is undesirable when the aim is for single-class 

classification (Misra et al., 2014).  

2.3.1. Modified Possibilistic c-Means Classifier (MPCM) 

The specific crop classification is a challenging task due to the overlapping nature of the spectral reflectance 

of each crop type. This becomes even a major obstacle when performing a higher level of classification like 

level-2 and level-3 classification. The level-2 classification includes the division of study area into distinct 

crop types while level-3 classification includes the division of study area into classes within a crop type. 

The MPCM classifier is an enhanced version of the PCM classifier. It overcomes the drawbacks of the PCM 

classifier which includes its ability to classify the dataset into non-overlapping clusters (Singh et al., 2020). 

The working of the MPCM classifier is explained in detail in section 4.6. 

2.4. Dual-sensor Approach 

Over time, optical datasets have been utilized exclusively for land use land cover (LULC) classification. The 

integrated dataset from different optical satellites have largely been utilized due to its compatibility in the 

spectral domain. However, utilization of the optical datasets is restricted during cloud cover leading to 

capture of low spectral reflectance (Stroppiana et al., 2015). The cloud cover over a region in turn also results 

in low spectral separability between different classes. Unlike the optical datasets like Landsat-8 or Sentinel-

2 imagery, SAR datasets are independent of the spectral domain and instead use the structural and dielectric 

properties of the target (S. Liu et. al., 2019). There have been studies where the classification accuracy has 

significantly increased using the integrated optical and SAR datasets in the MLP classifier (Kussul et al., 

2016). Hence, the dual-sensor approach is studied in this research to test its performance with the deep 

learning classifiers. 
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3. STUDY AREA AND DATASET USED 

3.1. Study  Area 

The study area chosen for this research work lies in the Ludhiana district of Punjab state in India as shown 

in Figure 5. Punjab is an agricultural state in the Northern part of India. The Ludhiana district is located at 

30.9010°N and 75.8573°E alongside the river Sutlej. The major crops grown in this region are paddy (rice), 

wheat, and maize (corn). The research was carried out in two phases: Phase-1 covering the period from 

April 2020 to June 2020 while Phase-2 covering the period from October 2020 to March 2021. The study 

area remained the same for both the phases but the target or interest crop varied depending upon the period. 

 
Figure 5: Study Area 

For phase-1, the target crops were maize (scientific name - Zea Mays), mentha (also known as mint) and 

guava (scientific name - Psidium guajava) orchard. All the target crops have different sowing and cultivation 

periods which results in discrete phenology and hence discrete spectral signatures at a given instance.  

The initial growth stages of the Maize crop were observed in the study as depicted in table 2. The duration 

of cultivation of the crop in the field is around 90 days (Jaskaran & Simerjeet, 2020). During the initially 

observed period, a previous crop, i.e., the wheat crop was present in the field which was harvested in the 
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month of April. Subsequently, the field was prepared for the sowing of the maize crop and the maize was 

sown in the second fortnight of May. In the month of June mainly two stages of the crop were observed 

which were the seedling stage, where the crop starts to emerge from the ground, and the knee-high stage, 

where the height of the crop reaches the knee of a person. 

 

Table 2: Maize crop growth stages covered 

Time Period  Crop Stage of Maize Dates covered in 

dataset 

First Fortnight of April Previous crop (Wheat) 02-Apr-2020 

Second Fortnight of April Crop Harvested (Fallow 

field) 

22-Apr-2020 

First fortnight of May Current fallow 07, 12-May-2020 

Second fortnight of May  Preparation of field for 

Maize crop and pre-sowing 

irrigation 

27-May-2020 

First fortnight of June Sowing of Kharif Maize and 

seedling stage 

15-Jun-2020 

Second fortnight of June Knee-high stage 21-Jun-2020 

 

The later stages of the growth cycle of the Mentha crop were observed in the research as depicted in table 

3. The duration of the crop in the field is around 140-150 days (Jaskaran & Simerjeet, 2020). The crop was 

sown in the second fortnight of February month. Due to the lower temperatures, the initial growth of the 

crop is slow. Hence in April month, even after the emergence of the crop above the ground surface, the 

coverage of the crop is minimal. Due to this, the spectral signature observed through the satellite images 

seems to be similar to a fallow field. In the second fortnight of April, the temperature starts to rise, and the 

crop starts to cover the ground, hence vegetative crop signatures were observed in the satellite imagery. The 

crop starts to grow and spread throughout the field giving more intense spectral signatures. In the first 

fortnight of June, the crop reaches the Senescence stage, meaning the crop starts to mature making it ready 

for harvest (Sukhmal et. al., 2004). By the second fortnight of June, the crop was harvested and the field 

again gave signatures of the fallow field. 

 

Table 3: Mentha crop growth stages covered 

Time Period  Crop stage of Mentha Dates covered in 

dataset 

Second Fortnight of 

February 

Planting of Crop - 

First fortnight of March Emergence  - 

Second Fortnight of March Emergence - 

First Fortnight of April Emergence of crop 02-Apr-2020 

Second Fortnight of April Vegetative growth (partially 

covering ground) 

22-Apr-2020 

First fortnight of May Vegetative growth (Fully 

covering the ground) 

07, 12-May-2020 

Second fortnight of May  Continued vegetation growth 27-May-2020 

First fortnight of June Senescence 15-Jun-2020 

Second fortnight of June Harvesting of crop 21-Jun-2020 
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The third target crop in phase-1 was Guava orchards which is an evergreen crop. In India, Guava is grown 

in tropical and sub-tropical climatic conditions owing to its wider adaptability (Surinder & Jaskaran, 2020). 

The guava orchards observed in this research were around 10-12 years old. It bears fruits twice a year, i.e., 

during rainy and winter seasons. In this research, the fruit-bearing period of the crop is covered. The 

flowering in the plant starts around the second fortnight of April and the fruits start to grow around the 

second fortnight of May. 

Another crop found in the study area during the same period was bajra (scientific name – Pennisetum 

glaucum). The bajra crop was considered as the non-interest class in this phase because the size of the crop 

field was very small as compared to the other crops in the area resulting in less spectral information.  

For phase-2, the target crop was potato (scientific name - Solanum tuberosum). The level-3 classification 

was adopted where the potato crop was sub-divided into three target crop classes namely early potato, mid 

potato and late potato based on the sowing period of the crop as shown in table 4. 

 

Table 4: Phase 2 target crop classes’ growth considered 

Sentinel - 2 Early Potato Mid Potato Late Potato Dates covered 

in Dataset 

Second fortnight 

of October 

Sprouting & 

Emergence  

- - 14, 24-Oct-2020 

First Fortnight of 

November 

Foliage Sprouting & 

Emergence 

- 03, 08, 13-Nov-

2020 

Second Fortnight 

of November 

Foliage Foliage Sprouting & 

Emergence 

28-Nov-2020 

First Fortnight of 

December 

Tuber Formation  Foliage Foliage 03-Dec-2020 

Second Fortnight 

of December 

Tuber Development Tuber Formation Foliage 18, 23-Dec-2020 

First Fortnight of 

January 

Senescence Tuber 

Development 

Tuber Formation - 

Second Fortnight 

of January 

Early Harvesting Senescence Tuber 

Development 

27-Jan-2021 

First Fortnight of 

February 

Late Harvesting Early Harvesting Senescence 01, 06-Feb-2021 

Second Fortnight 

of February 

Field preparation 

and sowing of next 

crop 

Late Harvesting Early Harvesting 21, 26-Feb-2021 

First Fortnight of 

March 

- Field preparation 

and sowing of next 

crop 

Late Harvesting 08-Mar-20201 

 
This is called level-3 classification because the classification was done within a particular crop class. The 

target crop were selected based on the period of sowing of the potato crop in the field where early potato, 

mid-potato and late potato crops were sown in second fortnight of October, first fortnight of November 

and second fortnight of November respectively. Hence, different phenological stages were observed for the 

target crops on a particular date as shown in table 4. The duration of early potato, mid potato and late potato 

crops in the field is around 90-100 days, 90-100 days, and 100-110 days respectively. There can be slight 

variation in the duration of the crop in the field depending upon the variety sown (Surinder & Jaskaran, 

2020b). The Early potato crop was sown in the second fortnight of October, the mid potato crop was sown 
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in the first fortnight of November and the late potato was sown in the second fortnight of November. 

Phase-2 covered the whole phenological cycle of the target potato crops including the sowing and the 

harvesting of the crop. The crop growth starts with sprouting and emerging of the crop where the seed 

starts to germinate and the seedling start emerging from the ground. During the foliage stage, the leaves 

starts to emerge from the plant. An auxiliary bud starts to form on the potato stem during the tuber 

formation and the potato starts growing in size during the tuber development stage (KG, 2021). The 

Senescence stage indicated that the crop is proceeding towards maturity. In the end, early harvesting takes 

place which includes cutting and collection of the fully grown tuber mainly. Also, late harvesting of crops 

takes place where fully grown tubers are harvested at a slightly later stage. The non-interest classes 

considered in the study area for this period were guava, wheat as ‘other crop’ and the settlement.  

3.2. Dataset Used 

3.2.1. Phase 1 

This phase includes the crop types which are cultivated between April 2020 and June 2020. The dataset used 

in this phase was the freely available Sentinel-2 optical dataset. The Sentinel-2A and 2B satellites are a part 

of the Copernicus Program launched by the European Space Agency (ESA) in June 2015 and March 2017 

respectively (Sentinel missions overview, 2021). Sentinel-2A and 2B satellites carry optoelectronic 

multispectral sensors for which the resolution varies from 10m in the visible region to 20m in the near-

infrared (NIR) to 60m in short-wave infrared (SWIR) - Cirrus spectral zones. The main focus of the Sentinel-

2 mission was land monitoring which included monitoring vegetation, soil and coastal areas (User Guides - 

Sentinel-2 MSI - Overview, 2021). This mission comprises of two polar-orbiting satellites providing 

medium-resolution optical imagery. These satellites were equipped with a Multi-Spectral Instrument (MSI) 

sensor that measures Earth’s reflected radiance in 13 spectral bands. The sentinel bands that were used in 

this research are as mentioned in table 5: 

 

Table 5: Sentinel-2 bands details 

 
Band 

Resolution 

Band 2 – Blue 10m 

Band 3 – Green 10m 

Band 4 – Red 10m 

Band 5 - Vegetation red edge 20m 

Band 6 - Vegetation red edge 20m 

Band 7 - Vegetation red edge 20 m 

Band 8 – NIR 10m 

Band 8a - Narrow NIR 20m 

Band 11 – SWIR 20m 

Band 12 – SWIR 20m 

 

In June, cloud cover was observed over the study area in the Sentinel dataset which resulted in the temporal 

gap. To fill this temporal gap, Landsat 8 dataset was also used and integrated with the Sentinel dataset. 

Landsat 8 mission was collaboratively developed by NASA and US Geological Survey (USGS) and was 

launched in February 2013 (Survey, 2016). The Landsat 8 satellite consists of two sensors – Operational 
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Land Imager (OLI) and Thermal Infrared Sensor (Survey, 2018) which provides global coverage with the 

spatial resolution ranging from 15 meters for Panchromatic bands to 30 meters for visible, NIR & SWIR 

bands to 100 meters for thermal bands. The Landsat bands used in this research are as mentioned in table 

6: 

 

Table 6: Landsat-8 band details 

  
Band 

Resolution 

Band 1 - Coastal Aerosol 30m 

Band 2 - Blue 30m 

Band 3 - Green 30m 

Band 4 - Red 30m 

Band 5 - NIR 30m 

Band 6 - SWIR-1 30 m 

Band 7 - SWIR-2 30m 

Band 8 - Panchromatic 15m 

Band 9 – Cirrus 30m 

Band 10 - TIRS-1 100m 

Band 11 - TIRS-2 100m 

 

3.2.2. Phase 2 

This phase focuses on the potato crop cultivated in the given study area between the period of October 

2020 and March 2021. This phase used Sentinel - 2A and 2B datasets using the optical bands as shown in 

table 5 above. 

The Sentinel-1 dataset was used to test the dual-sensor approach and test if using Synthetic Aperture Radar 

(SAR) data along with optical data provides any essential information for classifying a specific crop. Sentinel-

1 was the first satellite launched under the Copernicus Program by ESA (Sentinel-1 Instrument Payload, 

2021). It also consists of twin satellites, i.e., Sentinel – 1A and Sentinel – 1B. It had a swath of 80 Km and a 

spatial resolution of 5m * 5m. It works in dual-polarization mode, i.e., VV+VH and HH+HV where the 

first symbol represents transmission (V for vertically and H for horizontally) while the second symbol 

represents receiving (V for vertically and H for horizontally). Sentinel- 1 produces two data products, 

Ground Range Detected (GRD) and Single Look Complex (SLC). GRD dataset is used in this research 

work. 

3.3. Data Availability 

In this research, the multi-temporal optical dataset was used. It included both Sentinel - 2A & 2B and 

Landsat-8 datasets for the phase-1 study. For testing the dual-sensor approach for phase 2 crops, Sentinel - 

1A & 1B SAR dataset was also included. The datasets used in the research are as shown in table 7 and table 

8: 
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Table 7: Temporal dataset for Phase 1 crops 

Sentinel - 2 Landsat - 8 

02 April 2020  

22 April 2020  

07 May 2020  

12 May 2020  

27 May 2020  

 15 June 2020 

21 June 2020  

 
Table 8: Temporal dataset for Phase 2 crops 

Sentinel - 2 Sentinel - 1 

14 Oct 2020  

24 Oct 2020  

03 Nov 2020   

08 Nov 2020  

13 Nov 2020  

28 Nov 2020  

03 Dec 2020  

18 Dec 2020  

23 Dec 2020  

27 Jan 2021 27 Jan 2021 

01 Feb 2021  

06 Feb 2021  

21 Feb 2021  

26 Feb 2021  

08 Mar 2021  

3.4. Field Data Collection 

The field visit was conducted in the study area which included visiting the agricultural fields in the villages 

lying in the west part of the Ludhiana district as shown in figure 6 for phase-1 crops and figure 7 for phase-

2 crops. The geo-location of the fields was collected along with the type of crop sown in that field. The geo-

locations were collected using the ‘mobile topographer’ app which gave high accuracy of around 1-2m. The 

sowing date of the crops was also confirmed by the farmers owing the land. The data collection for phase-

1 was done on field visit conducted in the third week of July 2020. The data collection for phase-2 was done 

once in November 2020 and then later in February 2021. 
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(a) Maize                                       (b) Bajra                                         (c) Mentha 

     
(d) Interaction with farmers                                       (e) Guava Orchards 

Figure 6: Field visit photographs of phase -1 

        
(a) Early Potato field                                                (b) Mid potato field 

 
(c) Late potato field 

Figure 7: Field visit photographs of phase -2 as observed in November, 2020 
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4. RESEARCH METHODOLOGY 

4.1. Methodology Adopted 

Figure 8 indicated the flowchart of the methodology that was adopted in this research. The multi-temporal 

data was used to classify the crop types by studying the phonological changes occurring over time. The 

research was divided into two phases capturing distinct seasons and crops while maintaining the spatial 

extent of the study area. The field visit was conducted in both phases where the geographical location of 

the field was collected along with the name and time of sowing of the crop sown in that particular field. For 

phase-1, three crops were selected as the target crop which was maize (Corn), Mentha (Mint), and Guava 

orchard. For phase-2, the potato crop was divided into three sub-classes which were early potato, mid potato 

and late potato. The pre-processing of the dataset was carried out as per the requirements to integrate 

distinct datasets. Thereafter, CBSI-NDVI was computed to better extract the spectral information of the 

crop from the dataset available. This helped by enhancing the spectral signatures for are our target crop 

classes in the study area and decreasing the spectral signature of non-interest classes. While the spatial extent 

of the study area was maintained, the spectral domain was minimized in a way that it extracted most of the 

spectral information required from the data. Hence, separability analysis was carried out in which the 

optimum number of dates were extracted as the output for each crop class that gave maximum separation 

of the target/interest class from the non-interest classes. These dates were then considered in the final 

dataset that was fed as the input to the deep learning models.  

 

 
Figure 8: Methodology Flowchart for (a) Phase 1, and (b) Phase 2 

The CNN model was generated and optimized for all the target crop classes in both phases. Subsequently, 

the classified results were produced from the model. Similarly, the CNN-LSTM model was further explored 

and optimized with the same dataset and compared with CNN model outputs. The classified results were 

produced in the form of both soft and hard outputs. These classified outputs from CNN and CNN-LSTM 

deep learning models were analysed using f1-score, precision and recall. Apart from this, the accuracy 

assessment was carried through Mean Membership Difference (MMD) and Variance. The performance of 

the deep learning models was also taken into consideration while evaluating the outputs. 
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Also, the fuzzy-based classifier was trained using the same training data and tested for heterogeneity within 

a crop class. The heterogeneity within a crop class was analysed and compared between the outputs 

generated from the fuzzy classifier and deep learning classifier. This was done to test which classifier 

produces better results even when there is heterogeneity (intra-class variability) within a crop class. 

Lastly, the dual-sensor approach was tested where one Synthetic Aperture Radar (SAR) date image from 

Sentinel – 1 was incorporated with the training data by replacing one of the Sentinel – 2 images. This was 

done to test if the SAR dataset adds any further information to the dataset which could subsequently help 

in aiding better classification results. 

4.2. Pre-Processing 

When working with Remote Sensing data, pre-processing acts as a very crucial step as this removes 

unwanted noise due to atmospheric conditions, making the dataset more interpretable. This becomes highly 

important when integrating datasets from different satellites as the final data needs to be compatible with 

each other in both spectral and spatial terms. All the fields in the dataset need to coincide especially when 

working with smaller fields as even a slight error in this phase could be transferred to the following 

processing steps. 

The Sentinel-2 optical dataset utilized in this research was level-2 atmospherically corrected data. This 

dataset was freely accessible and downloaded from the Copernicus Open access hub made available via the 

European Space Agency (ESA). Also, the Landsat-8 dataset was utilized in the study which is also level-2 

atmospherically corrected data and made freely accessible from USGS Earth Explorer. Both these datasets 

are georeferenced in the UTM projection system but available at different spatial resolutions. The Sentinel-

1 dataset was present at 10m resolution while the Landsat-8 dataset was present at 30m resolution. 

Therefore, the Landsat-8 image was resampled at 10m spatial resolution to make it compatible to use with 

the Sentinel-2 dataset.  

For the Sentinel – 1 dataset which was used for testing the dual-sensor approach, pre-processing was carried 

out in Sentinel Application Platform (SNAP) which includes orbital correction followed by radiometric 

calibration as shown in figure 9. Then multi-looking was performed to make the pixels square. Then speckle 

filtering was performed which removes unwanted noise from the dataset. Then backscatter coefficient was 

calculated which produces results in decibels (dB). Finally, to bring data similar to that of optical data, the 

dataset was exported as geo-tiff. The upscaling of the dataset was performed in ERDAS Imagine software 

to finally convert it into unsigned 8-bit. This was necessary as the Sentinel-2 optical data was present at an 

8-bit scale. Therefore Sentinel-1 dataset was made compatible with the Sentinel-2 dataset to be utilized 

further. 
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Figure 9: Pre-processing for SAR data 

4.3. Calculating Temporal Index 

After the data was pre-processed, the vegetation index was calculated for all the optical datasets used in both 

phases. The vegetation indices play an important role in enhancing the spectral signature of the vegetation 

in the study area by distinguishing it from other non-interest classes. In this research, CBSI-NDVI was 

utilized which is a slightly modified version of the NDVI index. While evaluating the CBSI-NDVI index for 

a target crop class, the band that gives maximum reflectance was considered as NIR while the band that 

gives the minimum reflectance was considered to be Red, as shown in equation (2) in section 2.1.1. The 

main reason for using the CBSI-NDVI index was that it enhances the target crop in the study area to 

maximum, making it suitable for specific crop classification. The final output produced was rescaled to 8-

bit.  

4.4. Spectral Separability Analysis 

The spectral separability analysis was carried out to choose the optimum number of dates required for 

specific crop mapping. This method was adopted because over the period, there could be a possibility of 

detecting spectral overlap responses from the crops in the study area. This plays a crucial role especially 

during level-3 classification which was carried out in phase-2 for the potato crop. Since the potato crops 

were divided based on their sowing period which differed by 2-3 weeks, it was important to extract the 

combination of those date datasets only where all the three target crop classes were at a maximum spectral 

distance.  

In this research, three spectral separability measures were evaluated on the dataset to prepare the training 

data for the models. The Euclidean distance (Misra et al., 2014) was calculated that evaluated separability 

using the crop class mean value which is least affected by any noise present in the data. The Euclidean 

distance is calculated as in Eq. (4). 
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D = √∑ (𝑛
𝑖=1 ai – bi)2              (4) 

 

Here, D is the spectral distance, 

n is the number of bands, 

d is the DN value of pixel ‘a’ at the ith band, 

e is the DN value of pixel ‘b’ at the ith band. 

 

Hence, the CBSI-NDVI outputs were taken as input for evaluating separability between the classes. For 

evaluating spectral separability both target/interest and non-interest classes were considered. This ensured 

that the target class was not only separated from other target classes in the area but also separated from 

other classes in the area. The separability analysis using Euclidean distance was calculated for both phase-1 

and phase-2 target crops. 

Apart from Euclidean distance, the spectral separability was also evaluated using Transformed Divergence 

(TD) and Jeffries-Matusita (JM) measure. These measures were used for separability analysis for target 

classes of phase-2 only. The phase-1 had very small fields in the study area which resulted in the limited 

number of samples for each crop type. The number of pixels per crop class was not enough to calculate the 

TD and JM distance measures, hence Euclidean distance was calculated for phase-1 crop classes. However, 

the Transformed Divergence distance method resulted in the selection of a single date image for the target 

crops during separability analysis. But the growth of the crop is a dynamic process and at a given time, more 

than one crop type could yield similar spectral signatures. It is only possible to separate the crop based on 

their phenological cycle which could be observed by taking a combination of two or more date spectral 

signatures. Therefore, Transformed Divergence method results were not considered.  

Lastly, the Jeffries-Matusita distance measure was evaluated for phase - 2 crop classes. Here, covariance 

matrices were calculated between the signatures of the classes being evaluated. The output from both 

Euclidean distance and Jeffries-Matusita distance measures were considered and two separate training sets 

were generated for the models which were further evaluated based on the classification results produced by 

the models. All the separability analysis measures were evaluated using ERDAS Imagine software. 

4.5. Deep Learning Based Classification 

In this research, two deep learning models were generated and explored for specific crop classification which 

was the CNN model and an integrated CNN-LSTM model. Both the models were generated using ‘Keras’ 

which is open-source software that acts as an interface to the TensorFlow python library. The model 

architecture used was ‘sequential’. The 1D-CNN model was generated as it uses less computation and can 

work with limited hardware resources and a limited dataset. The model was tested against different numbers 

of neurons, the number of epochs, learning rates, dropout rate and activation functions. Also, the model 

was tested against varying training sample sizes which were around 20, 30, 40, and so on. This was done to 

find the minimum number that were sufficient for classification of a specific crop class and to study the 

performance of model for corresponding number of samples. The model architecture was optimised based 

on the performance of the model and classification results obtained. The optimum number of training 

samples and hyper-parameters were decided by interpreting the model accuracy versus the number of 

epochs and model loss versus the number of epochs graphs. From the graphs when training loss became 

approximately equal to the validation loss, it gave the optimum number of training samples. The hyper-

parameters which gave the best fitting graphs were considered to be optimal for both models. The training 

dataset was tested against a simpler and slightly complex 1D-CNN model. The optimized model that gave 

the best output was then considered to be the best. 

In the CNN-LSTM model, the LSTM layer was added with every 1D-CNN layer and the model was 

optimized using the training data. The output generated by both the classifiers gives membership value as 

each pixel value which is further analysed during accuracy assessment. 
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4.6. Fuzzy based classifier for handling heterogeneity 

In an area, sowing of a particular crop by farmers depends on the conditions like availability of empty fields, 

seeds, or the variety of crops being sown in the field. Due to these reasons, sometimes, a particular crop 

type is sown by the farmers on different dates which could result in different spectral signatures from the 

same crop in an area. Apart from this, when a farmer owns a large field, there could be a case where a crop 

is sown in the whole field in consecutive days. All these reasons contribute to the difference in the growth 

of the same crop type introducing heterogeneity within a crop class or intra-class variation (Khitrov et al., 

2020). This could further lead to the misclassification of the crop type, and thereby degrading the 

classification result. 

The deep learning model is designed in a way that it handles the heterogeneity within a crop class by learning 

from the training data. So, by applying multiple convolutions over the training data and taking it to a higher 

dimension and by learning from the data, CNN and its hybrid models result in better classification.  These 

models take a little more time for training. In the fuzzy domain, there are classifiers which can extract a 

single class at a time, in minimum time. However, fuzzy classifiers evaluates statistical parameters during the 

classification such as mean. Therefore, the Modified Possibilistic c-Means (MPCM) classifier, which is a 

modified version of the Possibilistic c-Means (PCM) classifier was evaluated and was tested against the 

outputs generated from deep learning model for heterogeneity within a crop class. The MPCM classifier 

overcomes a major limitation of the PCM classifier by generating non-overlapping clusters which were not 

possible using PCM classifier.   

In a given input data X = {x1, x2, x3,....,xn} with ‘c’ no. of information classes having values 1<c<N, the 

MPCM classifier tends to minimize its objective function given by eq (5)–   

 

JMPCM (U, V) = ∑ ∑ 𝜇𝑁
𝑗=1

𝑐
𝑖=1 ji Dji2 + ŋi ∑ (𝑁

𝑗=1  μji log μji – μji)                                                                      (5)             

 

Here, 

U = N × c matrix where c is the number of information classes (c ≥ 2) and N is the number of pixels; 

V = collection set of vectors of information class centers; 

Membership value, 0 ≤ μji ≤ 1; 

Dji =Distance between feature vector xk containing pixel value at k and vector vi containing cluster centers 

and is computed as shown in eq (6) – 

 

Dji = dji
2 = ||xj – vi||2            (6) 

 

ŋi = distribution parameter computed as shown in eq (7) –  

 
ŋi = ( ∑ 𝜇𝑁

𝑗=1 ji (fcm)m D2ji )/ (∑ 𝜇𝑁
𝑗=1 ji (fcm)m )           (7)             

 

Here, 

m = weighing exponent; for specific crop classification since one class is considered at a time, m=1; 

μji for fcm is calculated as shown in eq (8) –  

 

 

μji (fcm) =            (8) 

 

 

But for specific crop classification, m=1. Therefore, in MPCM classifier, μji is calculated as in equation (9)– 
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μji =              (9) 

 

 

Here, the mean is calculated given by eq (10) in an unsupervised case or when all pixels are mixed in a given 

image-  

 

         (10) 

 
 

Where xj is the feature vector denoting the spectral response of a pixel j. 

For a single class classification, the weighing exponent, i.e., m becomes equal to unity as only one target 

class is to be classified in the MPCM. Hence, the final objective function of MPCM classifier, as mentioned 

in eq (5), becomes independent of ‘m’. 

The training samples fed to the MPCM classifier are generated from the training fields which were identified 

from field data collected during field visit. In the MPCM algorithm, as a conventional approach the statistical 

parameter as ‘mean’ was calculated for the training samples. In this situation, the significance of individual 

sample diminishes as it’s transferred and becomes highly dependent on the ‘mean’ of the samples. The 

presence of sample values close to mean decreases the significance of the outliers. Therefore, in the 

proposed approach for handling heterogeneity within a class, instead of calculating the mean from the input 

training samples, each individual samples was considered as the mean in the MPCM classifier.  

In this research, output was evaluated using variance parameter to understand how much heterogeneity 

effect was minimized in classified output and compared for both the cases – firstly when mean of all the 

training sample was considered and secondly, when all the individual training samples are considered as 

mean. These outputs were also compared with the deep learning model outputs. 

The statistical parameters such as ‘mean’ is one of the commonly generated parameter using the training 

sample data. This parameter, however, does not represent the whole range of the sample data but holds the 

value that lies closer to one of the sample values. During classification, a lot of sample points that belong to 

the same class lie far away from the ‘mean’ value. Therefore, these data points do not get assigned the label 

of that class. Therefore, a parameter such as the mean is not able to handle the heterogeneity within a class. 

Heterogeneity represents when there is variability in the dataset or within the class. It indicates that sample 

data values are distinct and are opposite of homogeneity. A homogeneous data has uniformity while 

heterogeneous data has non-uniform in itself. Instead of generating the mean parameter from sample data, 

each sample value can be treated as mean, to be used in a statistical MPCM classifier as shown in figure 10. 

This approach can handle heterogeneity within a class while considering the impact of each sample on 

classification outputs. 

 
Figure 10: Concept of ‘mean’ and ‘individual sample as mean’ 
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4.7. Dual – Sensor Approach 

In this research, the optical dataset was used as training data for the deep learning models. In one of the 

objectives, the microwave SAR dataset from Sentinel -1 satellite was incorporated with the optical Sentinel 

- 2 dataset. This dual-sensor approach was tested for phase-2 crop classes only. One of the optical date 

images was replaced from the training data by SAR image to generate a new training dataset. These datasets 

were then fed to deep learning CNN model to generate outputs. The output of the model was evaluated 

using MMD. 

4.8. Accuracy Assessment 

The performance of the deep learning models was analysed by evaluating precision, recall and f1-score from 

the output generated from the models (Foody et al., 1992). These parameters were evaluated from the 

confusion matrix generated from the classified image. The precision is calculated as shown in eq. (11) below- 

 

Precision = TP/(TP+FP)          (11) 

 

Here TP represents true positives and FP represents false negatives. True positives are the pixels that belong 

to the target class in the reference image and are also classified as the target class in the output (classified) 

image. While false positives are the pixels that belong to the non-interest (non-target) class in the reference 

image but are classified under the target class in the output image. The recall parameter is calculated as 

shown in the eq. (12) below- 

 

Recall = TP/(TP+FN)            (12) 

  

Here TP represents true positives and FN represents false negatives. False negatives are the pixels that 

belong to the target class in the reference image but are classified under the non-interest class in the output 

image. The f1-score is a function of precision and recall and can be evaluated as shown in eq. (13) below- 

 

F1 = 2 * (Precision * Recall) / (Precision + Recall)        (13) 

 

The value of the f1-score lies between zero and 1. The f1-score attains a high value only when the precision 

and recall values are high depicting a good performance of the classifier.  

The training fields in the study area were small in size and limited in number due to which there were fewer 

pixels identified per crop class when observed through satellite imagery. Due to the limited testing data 

available as a result of small fields, the number of pixels considered for evaluation of the confusion matrix 

was less. Therefore alternatively, accuracy assessment was carried out by evaluating Mean Membership 

Difference (MMD) (Singh & Kumar, 2020).  

MMD is a direct and sensor-independent approach.  As seen in figure 11, the target crop fields and the other 

crop fields were identified in the classified image produced by the models. The target crop field that was 

used for training the model is considered as the reference for the calculation of the MMD values. As the 

name suggests, the mean of difference in the membership values is calculated between the training field of 

the target crop and the non-training (testing) field of the target crop which gives MMD within a class. Taking 

Congalton’s findings as a base, 75-100 pixels were selected per class (Congalton, 1991) and their average 

value was evaluated which was then utilized for the calculation of the MMD parameter. 
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Similarly, the mean of difference in the membership values is calculated between the training field of the 

target crop and the fields of other non-interest classes in the area, which gives the MMD with other classes. 

The value of MMD lies between zero and one. If the MMD value is close to zero, it indicates that the field 

belongs to the target crop class and if the MMD value is close to one, it indicates the field belongs to non-

interest crop class. It means, when MMD is calculated between the training and testing fields of the early 

potato crop, the value should be tending to zero and when the MMD is calculated between training field of 

early potato and the field of other (non-interest) class, the value should be tending to one. Also, the MMD 

approach does not require higher resolution imagery for evaluation which is essential when evaluating using 

fuzzy error matrix kind of assessment. The MMD value was calculated for the outputs generated from both 

deep learning models as well as fuzzy MPCM model and results from the dual-sensor approach. 

Apart from this, assessment of the classified results for heterogeneity within a class was done by evaluating 

variance within a field. This parameter value indicates how homogeneously the crop fields have been 

classified by a classifier. The low value of variance indicates homogeneity in the output classified field and 

hence better classification by the classifier, and, the high value of variance indicates heterogeneity in the 

output classified field and hence poor classification results.  

 
  

Figure 11: Calculating Mean Membership Difference 
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5. RESULTS AND DISCUSSION 

5.1. Spectral Separability Analysis Result 

The separability analysis result gives the minimum number of dates that are suitable for specific crop 

mapping which addresses one of the main objectives of this research. 

5.1.1. Crop Spectral Growth Curves 

In this research, level-2 classification was performed in phase-1 and level-3 classification was performed in 

phase-2. Each crop follows a unique spectral curve over the period which plays a vital role in distinguishing 

the target crop from the other crops in the study area. In both the phases, each target crop has a distinctive 

crop cycle, meaning that all the target crops were sown on different dates resulting in distinct growth of the 

crop as observed in figure 12(a) and (b). The NDVI values for phase-1 crop classes were also plotted for 

phase-1 crop classes and shown in Appendix-I and it was observed that over time, CBSI-NDVI indices gave 

better separation between the crop classes. Hence, evaluation of the CBSI-NDVI indices was adopted for 

phase-1 and phase-2 crop classes. The details of the spectral bands considered for evaluation of CBSI-NDVI 

indices are mentioned in Appendix-I.  

 
(a) 

 
(b) 

Figure 12: Temporal CBSI-NDVI plots for (a) Phase-1 crops and (b) Phase-2 crops 
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5.1.2. Best Temporal Date Combination 

The separability analysis was performed using ERDAS Imagine software for each target/interest class and 

non-interest class. The separability between the interest class and non-interest class was evaluated using 3 

separability measures which include Transverse divergence, Jeffries-Matusita and Euclidean distance. 

However, the agricultural fields for phase-1 crop classes were so small that at 10m spatial resolution of the 

dataset, the total number of pixels was limited in number and insufficient to evaluate spectral separability 

using Transverse divergence and Jeffries-Matusita measures. Therefore, Euclidean distance was used for 

evaluating spectral separability for phase-1 crop classes.  

The CBSI-NDVI values calculated (as explained in section 2.1.1) for all the dates considered for a particular 

target crop were given as an input for evaluating separability. It was observed that for each target crop, the 

spectral distance between the target crop and non-interest crop started to saturate after a certain point. This 

was dependent on the number of date combinations considered to evaluate the spectral distance. A unique 

set of date combinations were observed for each target crop.  

Tables 9 to 11 represent the spectral separability results of the target crop class with other classes (non-

interest) for phase-1 in the study area evaluated using Euclidean distance. The spectral separability results 

evaluated using Euclidean distance between Maize (Corn) crop and the other crops were as mentioned in 

table 9. It was observed that after six-date combinations, the spectral separability of maize with the crop 

nearest to it in terms of spectral signature, which was Bajra (pearl millets), became constant. This indicated 

that no additional spectral information was being captured that would separate the crop class closest to 

maize crop, even after adding another date image into the data. The dates considered included the 

preparation of the field for sowing of the maize crop and the knee-high stage of the crop, which are 

explained in section 3.1.  

 

Table 9: Spectral Separability analysis result of Maize (Corn) with other crop classes  

No. of dates 
considered per 
combination 

Dates with best min. 
Separation between 

Maize and other classes 

Crop class closest to 
Maize during 
separability 

Best minimum 
Euclidean distance 

measured 

1 date 2 Bajra (Pearl Millets) 9 

2 dates 3:7 Guava 28 

3 dates 3:5:7 Bajra 35 

4 dates 1:3:5:7 Bajra 39 

5 dates 1:2:3:5:7 Bajra 40 

6 dates 1:2:3:4:5:7 Bajra 50 

7 dates 1:2:3:5:6:7 Bajra 50 

From Sentinel-2, Date-1=02-04-20; Date-2=22-04-20; Date-3=07-05-20; Date-4=12-05-20; Date-5=27-05-20; Date-

7=21-06-20; From Landsat-8, Date-6=15-06-20 

 

The spectral separability results evaluated using Euclidean distance between Mentha (mint) crop and the 

other crops were as mentioned in table 10. It was observed that the maximum spectral separability between 

mentha and guava (the class closest to mentha) was given at seven-date combinations. However, while 

evaluating the results from the deep learning model, it was observed that six-date combinations yielded 
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better classification results as compared to seven date combinations. Therefore, six-date combinations were 

selected as optimum. The optimized dates considered included the emergence of crop, vegetative growth of 

the crop and harvesting of the crop, which are explained in section 3.1.  

 

Table 10: Spectral Separability analysis result of Mentha (Mint) with other crop classes 

No. of dates 
considered per 
combination 

Dates with best min. 
Separation between 

Mentha and other classes 

Crop class closest to 
Mentha during 

separability 

Best minimum 
Euclidean distance 

measured 

1 date 5 Guava 22 

2 dates 1:5 Guava 79 

3 dates 1:3:5 Guava 82 

4 dates 1:3:4:5 Guava 83 

5 dates 1:3:4:5:7 Guava 93 

6 dates 1:2:3:4:5:7 Guava 101 

7 dates 1:2:3:4:5:7 Guava 176 

From Sentinel-2, Date-1=02-04-20; Date-2=22-04-20; Date-3=07-05-20; Date-4=12-05-20; Date-5=27-05-20; Date-

7=21-06-20; From Landsat-8, Date-6=15-06-20 

 

The spectral separability results evaluated using Euclidean distance between the Guava crop and the other 

crops were as mentioned in table 11. It was observed that the maximum spectral separability between Guava 

and bajra (the class closest to guava) came out to be at seven-date combinations. There was saturation 

observed after four-date combinations, but the spectral signatures from the guava seem to be similar to the 

evergreen plants present in the study area, hence, seven-date images were considered as optimum as they 

provided more input in the form of spectral information. The optimized dates considered included the fruit-

bearing stage of the guava trees. It covered the blooming of flowers and bearing of fruit. 

 

Table 11: Spectral Separability analysis result of Guava with other crop classes  

No. of dates 
considered per 
combination 

Dates with best min. 
Separation between Guava 

and other classes 

Crop class closest to 
Guava during 
separability 

Best minimum 
Euclidean distance 

measured 

1 date 3 Bajra 21 

2 dates 3:5 Bajra 48 

3 dates 3:4:6 Bajra 94 

4 dates 3:4:5:6 Bajra 104 

5 dates 1:3:4:5:6 Bajra   104 

6 dates 1:2:3:4:5:6 Bajra 104 

7 dates 1:2:3:4:5:6:7 Bajra 106 
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From Sentinel-2, Date-1=02-04-20; Date-2=22-04-20; Date-3=07-05-20; Date-4=12-05-20; Date-5=27-05-20; Date-

7=21-06-20; From Landsat-8, Date-6=15-06-20 

 
Tables 12 to 14 represent the spectral separability results of the target crop class with other classes for phase-

2 in the study area evaluated using Jeffries-Matusita distance. The spectral separability results evaluated using 

Jeffries-Matusita distance between early potato and the other crops were as mentioned in table 12. It was 

observed that after four-date combinations, the Jeffries-matusita distance attained its highest value possible, 

i.e., 1414. This indicated that all the classes considered in the study area were at the maximum spectral 

distance possible. Four-date combination was considered as optimum as saturation was observed in spectral 

distances evaluated after that. The optimized dates considered covered the tuber formation, tuber 

development, late harvesting of crop and field preparation for the sowing of the next crop, which is 

explained in section 3.1. 

 

Table 12: Spectral Separability analysis result of early potato with other crop classes  

No. of dates 
considered per 
combination 

Dates with best min. Separation 
between early potato and other 

classes 

Crop class 
closest to early 
potato during 
separability 

Best minimum 
distance measured 

using Jefferies-
Matusita 

1 date 10 Guava 1161 

2 dates 10:13 Guava 1408 

3 dates 6:10:13 Mid-Potato 1413 

4 dates 7:9:11:13 * 1414 

5 dates 1:7:9:11:13 * 1414 

6 dates 1:2:7:9:11:13 * 1414 

7 dates 1:2:5:7:9:11:13 * 1414 

8 dates 1:2:4:5:7:9:11:13 * 1414 

9 dates 1:2:3:4:5:7:8:10:13 * 1414 

10 dates 1:2:4:5:6:7:8:9:10:13 * 1414 

11 dates 1:2:4:5:6:7:8:9:10:13:14 * 1414 

12 dates 1:2:3:4:5:6:7:8:9:10:13:14 * 1414 

13 dates 1:2:3:4:5:6:7:8:9:10:13:14:15 * 1414 

14 dates 1:2:3:4:5:6:7:8:9:10:11:13:14:15 * 1414 

15 dates 1:2:3:4:5:6:7:8:9:10:11:12:13:14:15 * 1414 

* All non-interest crop classes came out to be spectrally at equal distance from Early Potato 
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From Sentinel-2, Date-1=14-Oct-20; Date-2=24-10-20; Date-3=03-11-20; Date-4=08-11-20; Date-5=13-11-20; Date-

6=28-11-20; Date-7=03-12-20; Date-8=18-12-20; Date-9=23-12-20; Date-10=27-01-21; Date-11=01-02-21; Date-

12=06-02-21; Date-13=21-02-21; Date-14=26-02-21; Date-15=08-03-21 

 

The spectral separability results evaluated using Jeffries-Matusita distance between mid-potato and the other 

crops were as mentioned in table 13. It was observed that after four-date combinations, the Jeffries-matusita 

distance attained its highest value possible, i.e., 1414. Hence, the four-date combination was considered 

optimum. The optimized dates considered covered the foliage, early harvesting of the crop, late harvesting 

of the crop and field preparation for the sowing of the next crop, which are explained in section 3.1. 

 

Table 13: Spectral Separability analysis result of mid potato with other crop classes  

No. of dates 
considered per 
combination 

Dates with best min. Separation 
between mid-potato and other 

classes 

Crop class 
closest to mid 
potato during 
separability 

Best minimum 
distance measured 

using Jefferies-
Matusita 

1 date 10 Guava 681 

2 dates 4:12 Late Potato 1339 

3 dates 7:12:14 Guava 1412 

4 dates 7:12:14:15 * 1414 

5 dates 5:7:12:14:15 * 1414 

6 dates 2:6:7:11:14:15 * 1414 

7 dates 5:6:7:10:12:14:15 * 1414 

8 dates 2:6:7:8:12:13:14:15 * 1414 

9 dates 2:6:7:8:11:12:13:14:15 * 1414 

10 dates 1:2:6:7:8:11:12:13:14:15 * 1414 

11 dates 2:5:6:7:8:9:11:12:13:14:15 * 1414 

12 dates 2:3:5:6:7:8:9:11:12:13:14:15 * 1414 

13 dates 1:2:3:5:6:7:8:9:11:12:13:14:15 * 1414 

14 dates 1:2:3:4:5:6:7:8:9:11:12:13:14:15 * 1414 

15 dates 1:2:3:4:5:6:7:8:9:10:11:12:13:14:15 * 1414 

* All non-interest crop classes came out to be spectrally at equal distance from Mid Potato 

From Sentinel-2, Date-1=14-Oct-20; Date-2=24-10-20; Date-3=03-11-20; Date-4=08-11-20; Date-5=13-11-20; Date-

6=28-11-20; Date-7=03-12-20; Date-8=18-12-20; Date-9=23-12-20; Date-10=27-01-21; Date-11=01-02-21; Date-

12=06-02-21; Date-13=21-02-21; Date-14=26-02-21; Date-15=08-03-21 
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The spectral separability results evaluated using Jeffries-Matusita distance between late potato and the other 

crops were as mentioned in table 14. It was observed that after three date combinations, the Jeffries-matusita 

distance attained its highest value possible, i.e., 1414 and then saturated. Hence, the three-date combination 

was considered optimum. The optimized dates considered covered the fallow field spectral signature being 

prepared for the sowing of the potato crop, and, early harvesting of the crop, which is explained in detail in 

section 3.1. 

 

Table 14: Spectral Separability analysis result of late potato with other crop classes  

No. of dates 
considered per 
combination 

Dates with best min. Separation 
between late potato and other 

classes 

Crop class 
closest to late 
potato during 
separability 

Best minimum 
distance measured 

using Jefferies-
Matusita 

1 date 10 Mid Potato 986 

2 dates 4:12 Other Crop 1358 

3 dates 3:10:13 * 1414 

4 dates 2:3:10:13 * 1414 

5 dates 2:3:10:13:15 * 1414 

6 dates 2:3:5:10:13:15 * 1414 

7 dates 2:3:5:9:10:13:15 * 1414 

8 dates 2:3:5:9:10:12:13:15 * 1414 

9 dates 2:3:5:9:10:12:13:14:15 * 1414 

10 dates 1:2:3:5:9:10:12:13:14:15 * 1414 

11 dates 2:3:4:5:7:9:10:12:13:14:15 * 1414 

12 dates 1:2:4:5:6:7:9:10:12:13:14:15 * 1414 

13 dates 1:2:3:4:5:6:7:9:10:12:13:14:15 * 1414 

14 dates 1:2:3:4:5:6:7:8:9:10:12:13:14:15 * 1414 

15 dates 1:2:3:4:5:6:7:8:9:10:11:12:13:14:15 * 1414 

* All non-interest crop classes came out to be spectrally at equal distance from Late Potato 

From Sentinel-2, Date-1=14-Oct-20; Date-2=24-10-20; Date-3=03-11-20; Date-4=08-11-20; Date-5=13-11-20; Date-

6=28-11-20; Date-7=03-12-20; Date-8=18-12-20; Date-9=23-12-20; Date-10=27-01-21; Date-11=01-02-21; Date-

12=06-02-21; Date-13=21-02-21; Date-14=26-02-21; Date-15=08-03-21 

5.2. Deep Learning Based Classification 

In this research, two deep learning models were utilized which were CNN and a hybrid of the CNN-LSTM 

model. This section addresses the second objective which included finding the optimized number of hyper-
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parameters and comparing the outputs of both deep learning models to find the model best suited for 

classification under conditions like having a limited dataset and smaller fields in the study area. The models 

were also tested against the different number of training samples to find the best training sample size as 

indicated in table 15-16 for CNN model and table 17-18 for CNN-LSTM model results. 

5.2.1. Optimum number of training samples 

The deep learning models were tested against different number of training sample sizes. This was done to 

identify minimum number of training samples that were adequate in generating the best classification 

outputs. Also, the optimum dates selected indicated the phenological stages of the target crop that were 

more crucial in separating it from the non-interest classes in the study area. The optimum number of training 

samples suitable for each target crop was chosen by plotting the model accuracy and model loss against the 

number of epochs. For phase-1 target classes, the graphs were plotted for the training sample size of 30, 40, 

50, 60, 70 and 100. While for phase-2 target classes, the graphs were plotted for the training sample size of 

30, 40, 50 and 60. 

Since the optimized dates covered different growth stages for each target crop, it was observed that the 

CNN and CNN-LSTM models performed better at different sample sizes. That sample size was considered 

to be best where the model accuracy curve and model loss curves plotted against the no. of epochs, were 

close to each other. When the accuracy curves of training and validation are far from each other, it indicates 

overfitting of the model, which is undesirable. Also, the loss curve closer to the x-axis representing the 

number of epochs is considered to have a good learning rate as the model loss is minimum in that case.  

Table 15 shows the plots between model accuracy and model loss with no. of epochs for mentha crop while 

classification using the CNN model. It was observed that the best-fit curves were obtained at the sample 

size of 50.  

 
Table 15: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN model at different sample sizes for mentha. 

CNN Model output – Mentha 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 
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50 

 
 

60 

  

70 

  

100 

  

 

The best-fit curves were plotted and observed for mentha when classified using the CNN-LSTM model. 

Table 16 shows the plots between model accuracy and model loss with no. of epochs for mentha crop while 

classification using the CNN-LSTM model. It was observed that the best-fit curves were obtained at the 

sample size of 60. 

 
Table 16: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN-LSTM model at different sample sizes for mentha. 

CNN-LSTM Model output – Mentha 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 
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40 

  

50 

  

60 

  

70 

  

100 

  

 

Similarly, the best-fit curves were plotted and observed for other target classes of phase-1, which are maize 

and guava. The best-fit curves of other phase-1 classes observed for the CNN and CNN-LSTM model along 

with the sample size are as shown in table 17. The other plots generated with varying numbers of training 

samples are shown in Appendix-II. 
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Table 17: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 
dataset using CNN and CNN-LSTM model at different sample sizes for maize and Guava. 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

CNN Model output – Maize 

70 

  

CNN Model output – Guava 

40 

  

CNN-LSTM Model output – Maize 

100 

  

CNN-LSTM Model output – Guava 

30 

  

 

Similarly, the model accuracy and model loss versus no. of epochs plots were generated and plotted for all 

the phase-2 target classes and the sample size which produced the best-fit curves are as shown in table 18 

for both CNN and CNN-LSTM models. The other plots generated with varying numbers of training 

samples for other target classes of phase-1 and phase-2 are shown in Appendix-II. 
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Table 18: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 
dataset using CNN and CNN-LSTM model at different sample sizes for early, mid and late potato crops. 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

CNN Model output – Early Potato 

60 

  

CNN Model output – Mid Potato 

30 

  

CNN Model output – Late Potato 

40 

  

CNN-LSTM Model output – Early Potato 

50 

 
 

CNN-LSTM Model output – Mid Potato 

50 
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CNN-LSTM Model output – Late Potato 

40 

  

5.2.2. Optimization Results 

The hyper-parameters used in the deep learning models were optimized by confirming the best-fit curves 

of model accuracy and model loss against no. of epochs. The deep learning models were tested along 

different hyper-parameters including different activation functions, no. of epochs, different batch sizes, 

learning rates, dropout rates, different convolutional layers and different no. of neurons. The best-fit curves 

obtained from CNN and CNN-LSTM models are as shown in figure 13 and 14. 

(a)                                                                                    (b)                                                                                

  

 (a)                                                                                    (b) 

After the hyper-parameters were optimized, the structure of the deep learning model was established. The 

dataset was tested against two 1D-CNN models, a simple and a complex model. The simpler CNN model 

generated the best outputs whose structure was as shown in figure 15. It consisted of two 1-Dimensional 

convolution layers having 128 and 64 neurons each with Rectified Linear Unit (ReLU) activation function. 

It was followed by the max-pooling layer with a pool size of 1. It was followed by a dropout layer having an 

optimized dropout rate of 0.1. In the end, a fully connected (dense) layer was added using softmax as an 

activation function and Adam optimiser was used with the learning rate of 0.0001. The model was trained 

using a batch size of 3 while the number of epochs varied between 40 and 120 depending upon the sample 

size of the training data. 

 

Figure 13: Best-fit plots for optimized CNN model between (a) model accuracy and no. of epochs (b) model loss and 
no. of epochs for training and validation dataset 

Figure 14: Best-fit plots for optimized CNN-LSTM model between (a) model accuracy and no. of epochs (b) model 
loss and no. of epochs for training and validation dataset 
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In the hybrid CNN-LSTM model as shown in figure 16, an LSTM layer was included after each 1-D CNN  

Layer. It included a total of three CNN-LSTM layer pairs along with the ReLU activation function. The 

CNN layer contained 32, 64 and 128 neurons respectively while the LSTM layer contained 64, 128 and 256 

neurons respectively. Each CNN-LSTM pair was followed by a dropout layer with a dropout rate of 0.6, 0.5 

and 0.4 respectively. The last layer was a fully connected layer that contained a softmax activation function 

and Adam optimizer with a learning rate of 0.001. The model was trained with the batch size of 5 while the 

number of epochs varied between 70 and 140 with 120 being suitable for most of the crop classes. 

5.2.3. Accuracy Assessment through f1-score, precision and recall 

The classified results generated by the CNN models were evaluated using f1-score, precision and recall and 

were as shown in table 19. From the results, it was observed that the f1-score of the early potato, mid potato 

and late potato were within the acceptable range indicating that the deep learning classifier generated fairly 

good outputs for the potato crops. It was observed that the precision for early potato and late potato came 

out to be around 0.6 indicating that most of the class labels were detected correctly by the classifier. The 

recall for all the three potato classes came out to be equal to one indicating that all the pixels were being 

classified into relevant classes. Whereas, the model does not give acceptable results based on the f1-scores 

observed for maize, mentha and guava crops. It was observed that there were more false positives for maize, 

mentha and guava resulting in lower precision which indicated that the relevant class was not being detected 

by the classifier during training. Also, a low value of recall was observed for maize indicating more false 

negatives which means that the pixels were not being classified into their relevant classes. This led to a poor 

f1-score for the phase-1 crop classes. 
  

Figure 15: Optimized CNN model 

Figure 16: Optimized CNN-LSTM model 
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Table 19: Accuracy Assessment using precision, recall and f1-score for CNN model outputs 

Target Crop Class Precision Recall F1-score 

Maize 0.4 0.666 0.498 

Mentha 0.4 1 0.574 

Guava 0.2 1 0.333 

Early Potato 0.6 1 0.75 

Mid Potato 0.8 1 0.88 

Late Potato 0.6 1 0.75 

 

The outputs generated from the CNN-LSTM models were evaluated using precision, recall and f1-score 

which were as shown in table 20. It was observed that the f1-score attained by the mid-potato crop was 

highest indicating better classification output. Similarly, f1-score for maize came out to be the lowest due to 

the low precision value. This indicated that for the maize crop, there were more false positives meaning the 

pixels that belonged to the non-interest class in the reference image were classified into target (maize) class 

in the output images. 

 
Table 20: Accuracy Assessment using precision, recall and f1-score for CNN-LSTM model outputs 

Target Crop Class Precision Recall F1-score 

Maize 0.2 1 0.3 

Mentha 0.4 0.666 0.499 

Guava 0.3 1 0.461 

Early Potato 0.6 0.75 0.666 

Mid Potato 0.6 1 0.714 

Late Potato 0.5 0.667 0.565 

 

Due to smaller fields and limited training data available, the number of pixels considered for evaluation of 

precision, recall and f1-score was less, making it less reliable for evaluating the performance of the classifier. 

Hence, alternate methods like the evaluation of MMD was adopted to give additional input on the 

performance of the deep learning models. 

 

5.2.4. Accuracy Assessment through Mean Membership Difference (MMD) 

The classification outputs from CNN and CNN-LSTM models were evaluated using MMD values. This 

method was adopted due to the limitation of availability of less training data as a result of small agricultural 

fields in the study area. This limitation resulted in a limited amount of training data restricting the proper 

calculation of other parameters such as f1 score, precision and recall. The evaluation of MMD values was 

explained in detail in section 4.8. The MMD results for phase-1 target classes for both the deep learning 

models were as shown in table 21.  
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Table 21: Mean Membership Difference for Guava, Maize and mentha crop classes 

Target Crop 

Class 

(Phase-1) 

CNN Model CNN - LSTM Model 

MMD within 

crop class 

MMD with other 

crop classes 

MMD within 

crop class 

MMD with 

other crop class 

Guava 0.0666 0.738 0.0117 0.9111 

Maize (Corn) 0.25 0.6143 0.0549 0.7398 

Mentha 

(Mint) 

0.0666 0.9215 0.247 0.9215 

 

When considering Guava as the interest (target) crop class, all the other crops were considered as the non-

interest class which included maize, mentha and bajra. Here, a crop field that was not considered for training 

the model was considered as the interest class for calculating the MMD value. It was observed that the 

MMD with interest class (i.e., within crop class) came out to be tending to zero while MMD with the non-

interest class (i.e., with other crop class) came out to be tending to one. In this way, MMD value was 

evaluated for maize and mentha crops also. However, in the case of the Maize crop, MMD with other crop 

classes was observed low than expected indicating slightly poor classification result CNN model which 

seemed to improve for the CNN-LSTM model. 

Similarly, MMD results were evaluated for phase-2 target crop classes which included early potato, mid 

potato and late potato, and is shown in table 22. It was observed that the classification results for the early 

potato class came out to be most desirable for both CNN and CNN-LSTM models. This was concluded as 

the MMD within the class was tending to zero in the CNN model and equal to zero for the CNN-LSTM 

model while the MMD with other classes was tending to one for both deep learning models. However, the 

MMD with other classes for late potato for the CNN model output was observed to be lower than expected 

indicating poor classification results. Although, this parameter seemed to be improved in the CNN-LSTM 

model results which indicated that CNN-LSTM model resulted in better classification results as compared 

to the CNN model. This is also true for other crop classes as the MMD values tend to be more desirable 

for the hybrid CNN-LSTM model as compared to the CNN model. 

  
Table 22: Mean Membership Difference for early potato, mid potato and late potato 

Target Crop 

Class 

(Phase-2) 

CNN Model CNN - LSTM Model 

MMD within 

crop class 

MMD with 

other crop 

classes 

MMD within 

crop class 

MMD with 

other crop class 

Early Potato 0.0372 0.9019 0 0.992 

Mid Potato 0.1137 0.8803 0.0803 0.8215 

Late Potato 0.0509 0.5362 0.0078 0.735 



DEEP LEARNING FOR IMAGE TIME-SERIES ANALYSIS: APPLICATION TO CROP MAPPING 

42 

5.2.5. Classification Results 

Apart from the evaluation using MMD values, the classification results from CNN and CNN-LSTM models 

were also observed through hard classification outputs. The training field used for each target crop class was 

observed through the hard classified outputs. Also, the training field is observed through the satellite images 

in FCC for better visualization and interpretation. 

 

a) Phase-1 

The hard classified outputs of CNN and CNN-LSTM models are depicted in figure 17 for maize crop class. 

It was observed that there were misclassifications in the CNN model results which were also reflected in 

the MMD results shown in section 5.2.3. However, the classification seems to be improved in the CNN-

LSTM model results which were also reflected in the MMD results.  

(a)                                                             (b)                                                           (c) 

The hard classified outputs of CNN and CNN-LSTM models are depicted in figure 18 for the mentha crop 

class. It was observed that both the CNN model and CNN-LSTM model results indicated good 

classification in the study area which was also reflected in the MMD results shown in section 5.2.3. However, 

it could be observed that the fields classified through the hybrid model were crisp with defined boundaries 

indicating that the hybrid model performed better classification for mentha crop. 

Figure 17: Maize crop in (a) FCC (b) CNN output (c) CNN-LSTM output 
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(a)                                                             (b)                                                        (c) 

The hard classified outputs of CNN and CNN-LSTM models for guava are depicted in figure 19. It was 

observed that both the CNN model and CNN-LSTM model results indicated acceptable classification in 

the study area which was also reflected in the MMD results shown in section 5.2.3. Also, it was observed 

that the fields classified by the hybrid model had more defined boundaries and had fewer misclassifications 

as compared to the CNN model output. 

 

(a)                                                            (b)                                                       (c) 

Figure 18: Mentha crop in (a) FCC (b) CNN output (c) CNN-LSTM output 

Figure 19: Guava crop in (a) FCC (b) CNN output (c) CNN-LSTM output 
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b) Phase-2 

The hard classified outputs of CNN and CNN-LSTM models for early potato are depicted in figure 20. It 

was observed that both the CNN model and CNN-LSTM model results indicated good classification in the 

study area which was also reflected in the MMD results shown in section 5.2.3. Here, again the fields 

classified by the hybrid model were crisp and more defined as compared to the CNN model indicating better 

classification output.  

 

 (a)                                                            (b)                                                        (c) 

The hard classified outputs of CNN and CNN-LSTM models for mid potato class were depicted in figure 

20. It was observed that both the CNN model and CNN-LSTM model results indicated good classification 

in the study area. From figure 21 (a), it can be noticed that the training field of the mid potato is not 

completely classified as there are some dark patches in the field depicting non-interest class. Whereas in 

figure 21 (b), it can be seen that the training field is completely classified, hence, making it a better output. 

Also, it is observed that the CNN-LSTM model yields some misclassified pixels when compared to the 

CNN model output. But when identifying the fields for a target crop, the hybrid model gives more 

homogeneous output making it a better classifier. 

 

Figure 20: Early potato crop in (a) FCC (b) CNN output (c) CNN-LSTM output 



DEEP LEARNING FOR IMAGE TIME-SERIES ANALYSIS: APPLICATION TO CROP MAPPING 

45 

 (a)                                                        (b)                                                 (c) 

The hard classified outputs of CNN and CNN-LSTM models for the late potato class are depicted in figure 

22. From figure 22 (a), it can be noticed that the training field of the late potato crop was not completely 

classified as it had some dark patches in the field. While in figure 22 (b), it can be seen that the training field 

is completely classified. When observed in the MMD results discussed in section 5.2.3, it indicates a low 

value for MMD with other classes which means that there are chances of non-interest classes to be classified 

into the target class, which in this case is late potato. This could be a reason why some fields are fields 

classified into the late potato in CNN output but not classified in the hybrid model output.  

 

(a)                                                          (b)                                                         (c)  

Figure 21: Mid potato crop in (a) FCC (b) CNN output (c) CNN-LSTM output 

Figure 22: Late potato crop in (a) FCC (b) CNN output (c) CNN-LSTM output 



DEEP LEARNING FOR IMAGE TIME-SERIES ANALYSIS: APPLICATION TO CROP MAPPING 

46 

Hence, considering the MMD results and by visually interpreting the model outputs, it could be concluded 

that the hybrid model yielded better classification results for both phase-1 and phase-2 crop classes, making 

it a better classifier. 

5.3. Fuzzy based MPCM classifier         

The fuzzy-based MPCM classifier was utilized in this research work, where the fuzzy classifier was made to 

work similar to the deep learning models as explained in section 4.6. The MPCM classifier was tested for 

the heterogeneity within a crop class and its outputs were compared with the outputs of deep learning 

classifiers. The heterogeneity within the class was observed in the training field of the target class and it was 

tested using the variance. The final classified output generated by the model was also tested for its accuracy 

using MMD values. This section 5.3 addresses the third objective of this research. 

5.3.1. Accuracy assessment using variance 

The MPCM model was tested against the training data for classification using two methods. As discussed in 

section 4.6, the fuzzy MPCM classifier evaluates using statistical parameters such as ‘mean’ which was further 

utilized to classify a particular pixel. In the first method, all the individual samples that are provided to train 

the MPCM model were considered as ‘mean’. This implies, instead of evaluating the mean of all the input 

training samples, each sample was taken as a mean. By adopting this method, the MPCM classifier works 

like a deep learning model where each sample provided to the model was considered individually for 

evaluating the output. In the second method, the mean of all the input training samples was evaluated which 

is further utilized to classify.  

To study the heterogeneity (intra-class variability), the variance was calculated within the training field in the 

model-generated outputs. Statistically, variance measure the spread of data. In this case, variance indicates 

how the membership values are spread within the training fields evaluated from the model outputs. So, a 

value closer to zero will indicate less spread and more homogeneity. With the increase in the variance, the 

classified output tends to become more heterogeneous which is undesirable. Table 23 shows the variance 

evaluated from the outputs of the MPCM model using the two methods explained, CNN model output and 

output from the CNN-LSTM model for phase-2 crop classes. 

From variance results, as seen in table 23, it can be observed that the heterogeneity was best handled by the 

hybrid CNN-LSTM model as the values evaluated from its output were closest to zero. This means the 

membership values of all the pixels inside the training field of the target class lie close to each other. It was 

also observed that the MPCM model performed better than the CNN model when each input sample was 

considered as a mean while classifying the image, as could be seen in the second column of table 23. This 

concludes that for phase-2 crop classes, the MPCM model works similar to a deep learning model and 

produces a homogeneously classified field. Also, training of MPCM model is simple in comparison to CNN, 

CNN-LSTM models used in this research work. 

 
Table 23: Output assessment using variance 

Target Crop 

Class 

Individual Sample 

as Mean in MPCM 

Mean from all 

samples in MPCM 

CNN Model 

Output 

CNN-LSTM 

Model Output 

Early Potato 0.2936 0.3871 7.1745 0.2645 

Mid Potato 1.19 20.946 6.54 0.545 

Late Potato 0.32 3.28 24.956 0.0649 
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5.4. Dual-sensor Approach 

The dual-sensor approach was tested in this research, where one of the optical date temporal datasets was 

replaced by the SAR imagery to investigate if any additional information can be extracted for improving the 

classification. This method was tested only on phase-2 target crop classes which included early potato, mid 

potato and late potato. After replacing one optical image with SAR, new training data was created for each 

target crop which was then fed into the CNN model for classification. The evaluation of the outputs 

generated by the CNN was done using MMD as shown in table 24. 

 
Table 24: Output assessment using MMD 

Target Crop 

Class 

(Phase-2) 

CNN Model 

MMD within 

crop class 

MMD with other 

crop classes 

Early Potato 0.0254 0.25 

Mid Potato 0.0941 0.211 

Late Potato 0.0235 0.194 

 

It was observed that MMD within a crop class was tending to zero indicating that the target class fields gave 

similar membership values. But it was observed that MMD with other (non-interest) crop classes came out 

to be closer to zero which is not desirable. This indicates that the other crop classes have membership values 

very close to that of the target class which makes it difficult to distinguish between target class and non-

interest classes. Based on these results, it could be concluded that replacing an optical image with the SAR 

date image did not provide any additional information to the dataset but rather degraded the performance 

of the model. This means some of the important information supplied by the optical images got removed 

which resulted in poor output from the model. 
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusions 

This research mainly focused on studying and designing an optimized deep learning model for specific crop 

classification. For this purpose, the CNN and integrated CNN-LSTM were the two deep learning models 

that were studied. The research was divided into two phases where distinct crop classes were studied for 

level-2 and level-3 classification respectively. The spatial extent of the study area was maintained in both 

phases. The CBSI-NDVI indices were evaluated for the satellite images which incorporated the phenological 

information of the crops. During specific crop classification, phenological information proved to be 

beneficial as it helped to reduce the spectral overlap between the crop classes in the study area.  

For the first objective, the separability analysis was performed using Euclidean distance for phase-1 which 

extracted the minimum number of temporal images required for classification. Similarly, Jeffries-Matusita 

distance was used to perform separability analysis for phase-2 crop classes. The minimum number of dates 

selected had the maximum spectral distance between the target crop class and the nearest non-interest class 

in the area. This optimized the temporal domain of the dataset.  

For the second objective, the CNN and integrated CNN-LSTM models were studied for the target crops 

of two phases. The hyper-parameters of the models were optimized to generate the best-fit model output. 

After evaluating the model outputs, it was observed that the integrated CNN-LSTM model produced the 

best classification results for the target crop classes of both phases. Also, the best classification results were 

yielded for phase-2 potato crop classes. This indicated that tuber formation and tuber development were 

important growth stages for early potato crop as it helped to separate it from other non-interest classes in 

the area. Similarly, foliage and harvesting stages came out to be significant for mid potato crop while tuber 

development and early harvesting came out to be significant for late potato crop separating them from other 

classes.  

For the third objective, a fuzzy classifier namely Modified Possibilistic c-Means Classifier was used to 

compare the heterogeneity within a crop class in the classification results with the results of deep-learning 

models. After analysing the outputs from the MPCM classifier, it was observed that it performed better than 

the CNN model outputs but slightly poor than the integrated CNN-LSTM model. Therefore, this indicates 

that the MPCM classifier works similarly to a deep learning classifier while handling the heterogeneity within 

a crop class. 

For the fourth objective, the dual-sensor approach was tested where an optical image was replaced by the 

SAR image in the temporal data set, to test for any additional information extracted from the dataset. This 

approach was only tested for phase-2 crop classes. It was observed that after replacing the image, some of 

the phenological information was lost as the output resulted in poor results than before. Hence for level-3 

classification, the single sensor approach was better than the dual-sensor approach.  

6.2. Answers to the research Questions 

 

Question 1: What are the minimum number of temporal images required to map a specific crop while 

working with temporal data? 

Answer:  To fetch the phenological information of the crop in the study area, CBSI-NDVI spectral indices 

were calculated on the satellite images for each target crop. This captures the unique spectral profile of each 

crop in the study area observed over time. The evaluation of the separability analysis over the CBSI-NDVI 

indices outputs returned the maximum spectral distances between the target (interest) crop class and the 

non-interest crop class. The non-interest crop class indicated the class nearest to the target class in terms of 

spectral reflectance. It was observed that when Euclidean distance was utilized for separability of phase-1 

crop classes, six dates came out to be optimum for classification of maize and mentha crops, while, for 
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evergreen target crops like guava, the optimum dates came out to be seven. Whereas for phase-2 crop 

classes, Jeffries-Matusita distance was utilized for separability which indicated four dates to be optimum for 

classification for early potato and mid potato classes while three dates to be optimum for late potato class. 

 

Question 2: What are the values of the hyper-parameters that produce the best results? 

Answer: For the CNN model, there were two 1-Dimensional convolution layers which consisted of 128 

and 64 neurons respectively. It used Rectified Linear Unit (ReLU) as the activation function. These layers 

were followed by the max-pooling layer with a pool size of 1. It was followed by a dropout layer having an 

optimized dropout rate of 0.1. Finally, a fully connected (dense) layer was added using softmax activation 

function and Adam optimiser with the learning rate of 0.0001. While training the model, a batch size of 3 

was used. For each target crop, the best results were achieved at varying sample sizes and hence the number 

of epochs of the model varied between 40 and 120. 

For the hybrid CNN-LSTM model, an LSTM layer was added after each 1-D CNN layer. There was total 

of three CNN-LSTM layer pairs using the ReLU activation function. The CNN layer contained 32, 64 and 

128 neurons respectively while the LSTM layer contained 64, 128 and 256 neurons respectively. Each CNN-

LSTM pair was followed by a dropout layer with a dropout rate of 0.6, 0.5 and 0.4 respectively. Finally, a 

fully connected layer was added at the end containing the softmax activation function. It used an Adam 

optimizer with a learning rate of 0.001. The model was trained with the batch size of 5 while the number of 

epochs varied between 70 and 140 with 120 being suitable for most of the target crop classes. 

 

Question 3: How much are the model loss and final accuracy for which the proposed model gives the best 

result for specific crop mapping? 

Answer: The model loss and model accuracy were observed from the best-fit model results of the CNN 

and CNN-LSTM models. As depicted in figure 12, it was observed that for the CNN model the training 

and validation accuracy curves were very close to each other, indicating that the model has a good fitting of 

the dataset and hence can be applied for other crops in the different study area. Also, the loss curves of the 

training and validation dataset were observed to be near zero and overlapping which indicated a good 

learning rate. Similarly, for the best-fit CNN-LSTM model, the accuracy curves were overlapping and there 

was very little gap observed between the training and validation curves which indicated good fitting of the 

dataset. The loss curves of the training and validation dataset were observed to be near to zero and 

overlapping indicating a good learning rate.  

 

Question 4: Which method best handles the heterogeneity within a crop class – deep learning model or 

MPCM approach? 

Answer: When classifying crops, there could be cases where heterogeneity could be observed within a crop 

field which could be a result of sowing of crops on consecutive days, or, sowing of different varieties of 

crop resulting in distinct growth. To study the heterogeneity within a crop class, the variance was calculated 

in the field used to create the training data for the model. The outputs from CNN mode and CNN-LSTM 

model were compared with the outputs from two MPCM models – one where each input was considered 

as a mean of the samples, and the second where mean was calculated for all the input samples. It was 

observed that the training field in the outputs from the CNN-LSTM model came out to be most 

homogeneous for all the crop classes. Whereas, the MPCM model where each input was considered as the 

mean of the samples, proved to be better than the CNN model, making it the second-best model to handle 

the heterogeneity. This indicated that a statistical model such as MPCM worked and gave outputs similar to 

a deep learning model in terms of heterogeneity within a crop class. 

 

Question 5: Does the SAR data give any extra information as compared to the optical dataset? 
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Answer: In this research, one of the optical images was replaced by the SAR dataset to test the dual-sensor 

approach. This approach was tested for phase-2 crop classes. The training data generated was used to 

produce classification outputs from the CNN model. The model outputs were then analysed by calculating 

MMD within crop class and MMD with other crop classes. It was observed that the value of MMD with 

other classes came out to be reducing which is undesirable. This means that the membership values attained 

by the other (non-interest) classes were very close to that of the target classes. Hence, it could be concluded 

that the phenological information got reduced when the SAR image was incorporated into the dataset. 

 

Question 6: Which approach is better - single sensor or dual-sensor approach for classification? 

Answer: The main aim of testing the dual-sensor approach was to find if using the SAR imagery with the 

optical image resulted in providing any additional phenological information about the crop which could, in 

turn, improve the classification of the crop. However, in the phase-2 crop classes where level-3 classification 

was carried out, it was observed that the dual-sensor approach didn’t prove to be beneficial. The output 

generated by the CNN model was evaluated using MMD. It was then compared with the CNN model 

output from the optical dataset and observed that the classification results degraded significantly. Therefore, 

the single sensor approach proved to be more efficient when compared to the dual-sensor approach. 

6.3. Short comings of the research 

A major shortcoming of the research was the availability of less training data. Due to the presence of smaller 

fields in the study area and utilization of a freely available dataset of 10m resolution, the number of training 

pixels generated for the study was less in number. This restricted the proper evaluation of important 

parameters such as f1-score, precision and recall for the deep learning models. Therefore, alternate method 

such as calculation of MMD (Singh & Kumar, 2020) was adopted to give an additional insight into the 

performance of the classifier. 

6.4. Recommendations and future scope 

The specific crop classification is important for the yield estimation of a crop at regional, state or nation 

levels to meet the current food demands. This research tested two deep learning models – the 1D-CNN 

and CNN-LSTM model for the classification of the crops. Following were some of the recommendations 

for future studies: 

1. The scope of classification using the deep learning models can also be tested for level-4 classification 

in the future based on training data available of level-4 class mapping. 

2. For specific crop classification, 2D and 3D CNN models could be explored incorporating spatial 

information. 

3. A CNN model integrated with the Gated Recurrent Unit (GRU) could be generated and tested for 

future classification. 

4. Apart from utilizing the deep learning models for classification, the models can be further utilized 

for prediction purposes. 
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APPENDIX-I 

Figure A1: NDVI plot for phase-1 crop classes 
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Table A1: CBSI-NDVI bands considered for phase-1 crops 

Class 

Dates 

Mentha Maize Guava 

Min. Max. Min. Max. Min. Max. 

02-Apr-

2020 

Blue SWIR Blue Narrow 

NIR 

Blue Narrow NIR 

22-Apr-

2020 

Blue SWIR Blue SWIR Blue Narrow NIR 

07-May-

2020 

Blue Vegetation 

(Red Edge) 

Blue SWIR Blue Narrow NIR 

12-May-

2020 

Blue Narrow NIR Blue SWIR Blue Narrow NIR 

27-May-

2020 

Blue Narrow NIR Blue SWIR Blue Narrow NIR 

15-Jun-

2020 

TIRS 2 TIRS 1 TIRS 2 TIRS 1 TIRS 2 TIRS 1 

21-Jun-

2020 

Blue SWIR Blue Narrow 

NIR 

Blue Narrow NIR 
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Table A2: CBSI-NDVI bands considered for phase-2 crops 

Class Date 

Early Potato Mid Potato Late Potato 

Min  Max.  Min  Max. Min  Max.  

14 - Oct – 2020 Blue 
Narrow 

NIR 
Blue Narrow NIR 

Blue Narrow NIR 

24 - Oct – 2020 Blue SWIR Blue SWIR Blue Narrow NIR 

03 - Nov – 2020 Blue SWIR Blue SWIR Blue SWIR 

08 - Nov – 2020 Blue SWIR Blue SWIR Blue SWIR 

13 - Nov – 2020 Blue SWIR Blue SWIR Blue SWIR 

28 - Nov – 2020 Blue NIR Blue  Narrow NIR Blue SWIR 

03 - Dec – 2020 Red NIR Blue NIR Blue SWIR 

18 - Dec – 2020 Red NIR Red NIR Red NIR 

23 - Dec – 2020 Red NIR Red NIR Red NIR 

27 - Jan – 2021 Blue NIR Red NIR Red NIR 

01 - Feb – 2021 Blue 
Narrow 

NIR 
Blue NIR 

Red NIR 

06 - Feb – 2021 Blue  SWIR Red NIR Red NIR 

21 - Feb – 2021 Blue 
Vegetative 

Red Edge 
Blue SWIR 

Blue Narrow NIR 

26 - Feb – 2021 Blue SWIR Blue SWIR Blue SWIR 

08 - Mar – 2021 Blue  SWIR Blue SWIR Blue SWIR 
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 APPENDIX-II 

CNN model optimization output results for different no. of training samples. 

Phase-1 

 
Table A3: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN model at different sample sizes for Maize 

CNN Model output - Maize 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

    

40 

    

50 

    

60 

  

70 
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100 

  

 
Table A4: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN model at different sample sizes for Guava 

CNN Model output - Guava 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 

  

70 
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100 

  

 

 

Phase-2 

 
Table A5: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN model at different sample sizes for Early Potato 

CNN Model output – Early Potato 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 
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Table A6: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 
dataset using CNN model at different sample sizes for Mid Potato 

CNN Model output – Mid-Potato 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 
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Table A7: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 
dataset using CNN model at different sample sizes for Late Potato 

CNN Model output – Late Potato 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 
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CNN-LSTM model optimization output results for different no. of training samples. 

Phase-1 

 
Table A8: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN-LSTM model at different sample sizes for Maize 

CNN-LSTM Model output - Maize 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

 
 

40 

  

50 

  

60 

  

70 
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100 

  

 
Table A9: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and validation 

dataset using CNN-LSTM model at different sample sizes for Guava 

CNN-LSTM Model output - Guava 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 

  

70 
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100 

  

 

Phase-2 

 
Table A10: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and 

validation dataset using CNN-LSTM model at different sample sizes for Early Potato 

CNN Model output – Early Potato 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 
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Table A11: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and 
validation dataset using CNN-LSTM model at different sample sizes for Mid Potato 

CNN Model output – Mid-Potato 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 
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Table A12: Model accuracy versus no. of epochs and model loss versus no. of epochs plots for training and 
validation dataset using CNN-LSTM model at different sample sizes for Late Potato 

CNN Model output – Late Potato 

 No. of 
training 
samples 

Model accuracy v/s no. of epochs Model loss v/s no. of epochs 

30 

  

40 

  

50 

  

60 

  

 


