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Abstract

With the advent of quantum computers, current practices in DNSSEC will become
vulnerable and obsolete since Shor’s algorithm was proven to break public-key cryp-
tography. Therefore, providing security of the DNS in the post-quantum era becomes
the main challenge and point of interest for different research groups. In this thesis,
we propose an innovative way of signing DNS using Merkle Tree and XMSS Hash-
Based Signature Scheme as having been proven to be quantum-resistant. We sug-
gest grouping resource records as leaves of a Merkle tree and signing the root of
the tree with XMSS. In this scenario, the signature over the record is merely the
intermediary hash nodes to recompute the root and the signature over ’DNSKEY’ is
the XMSS signed root node. Since the size of the tree determines the length of the
authentication path (signature size) and hence what needs to be transmitted in DNS
messages, larger trees will lead to an increase in the signature size as well as more
time to update the tree and compute the signatures. Therefore, the objectives of this
research are threefold. The first is to identify important variables from the proposed
approach to be traded off. Second is to analyse and evaluate the impact of the
variables on important DNS metrics such as signature size, signing and verification
speed. Finally, checking the impact of the innovative grouping approach based on
the popularity or update frequencies of the records on the tree update frequencies
along with the metrics.
Results show that the identified variables have a major impact on the signing speed
rather than verification. In the same zone, constructing smaller trees would yield
more trees but less time to sign the entire zone than having a few large trees. In the
case of many small trees, the number of roots to be signed increases and concate-
nating all the roots for further XMSS signing might lead to excessively large DNS
messages. On the other hand, having large trees would mean fewer trees in the
zone thus fewer tree roots. However, since a single tree contains more records,
the likelihood of frequent tree updates is high which leads to the regeneration of
the signature in the entire tree. We evaluated the impact of these trade-offs using
a prototype and real-world data and show that it is possible to pick values for the
three variables that lead to a feasible, implementable version of our proposed sign-
ing scheme. Consequently, a mix of small and large trees (variable size trees in the
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mid and large zones) are suggested as a common ground for the above trade-offs.



Contents

Abstract iii

List of acronyms vii

1 Introduction 1
1.1 Report organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 DNSSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Hash-based Signature Schemes . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Lamport One-time Signature Scheme (L-OTS) . . . . . . . . . 11
2.3.2 Winternitz One-time Signature Scheme (W-OTS) . . . . . . . . 12
2.3.3 Merkle Signature Scheme (MSS) . . . . . . . . . . . . . . . . . 15
2.3.4 Extended Merkle Signature Scheme (XMSS) . . . . . . . . . . 17

3 Problem Statement 19
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Post-Quantum DNSSEC Design and Variables 25
4.1 Signer Design and Variables . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Resolver Design and Variables . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



VI CONTENTS

5 Methodology and Prototype 37
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Results and Evaluation 41
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 Impacts of variables on the Metrics . . . . . . . . . . . . . . . . 47
6.2.2 Trade-off in Multi-Tree Zones . . . . . . . . . . . . . . . . . . . 48

7 Conclusions and Discussion 51
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Limitations and Remarks . . . . . . . . . . . . . . . . . . . . . 52
7.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References 55

Appendices



List of acronyms

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

TLD Top Level Domain

TTL Time To Live

MTU Maximum Transmission Unit

PKI Public Key Infrastructure

RR Resource Record

OTS One Time Signature

MSS Merkle Signature Scheme

XMSS Extended Merkle Signature Scheme

XMSSMT Extended Merkle Signature Scheme Multi Tree

vii



VIII LIST OF ACRONYMS



Chapter 1

Introduction

The Domain Name System (DNS) provides the essence of accessing and reaching
online resources on the internet. Similar to other internet protocols, securing DNS
is an important responsibility of the operators. DNSSEC is the security extension
for DNS that allows to verify the integrity and authenticity of the DNS messages.
Nowadays, public-key cryptography offers security to various systems and network
protocols. DNSSEC is one of them as the authentication and integrity of DNS data
rely on the digital signatures based on public-key cryptography. With the advent of
quantum computers, public-key cryptography becomes vulnerable since Shor’s al-
gorithm [1] was proven to solve the discrete logarithm problem that is the essence of
public-key cryptography. Hence, scientists have already started to work on alterna-
tives that could potentially provide strong security in the existence of quantum and
traditional computers. Undoubtedly, there is not a universal quantum-proof solution
that can deliver a unique solution to all the existing systems. Therefore, each of them
requires separate investigation and design decisions based on the analysis of sys-
tem limitations. DNS, an essential enabler of internet browsing, should also receive
scrutiny. In this research, we investigate a possible application of quantum-resistant
hash-based signatures, namely the Extended Merkle Signature Scheme in combi-
nation with Merkle Tree on the security of the DNS. Although hash-based signature
schemes and Merkle Tree are known for quite a long, the signature size and signa-
ture verification time (for hash-based signatures) have been the major hindrance for
their large-scale adoption. On the other hand, DNS messages have a limitation on
the size, signing and verification speed. Unfragmented DNS message size is limited
to the MTU (1500 bytes) if TCP connection is used; otherwise, UDP message size
is limited to 512 bytes. Additionally, signing and resolution operations also need to
be at least as fast as they are now. Therefore, this creates additional challenges to
make DNS quantum-proof with little impact on its performance and signature size.
Nevertheless, what would be the relative impact of using a quantum-proof approach
on DNS signing, verification and message size? Recent studies mainly focus on
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2 CHAPTER 1. INTRODUCTION

the replacement of currently used PK algorithms in DNSSEC such as RSA with
newly developed quantum-safe algorithms that rely on Lattice-based, Multivariate
or Hash-based Cryptography [2]. On the contrary, we experiment with a combina-
tion of hash-based signature schemes (XMSS) and Merkle Tree authentication with
DNS while incorporating its limitations and requirements. Merkle Tree is a simple
binary tree of hash nodes that provides a quantum-resistant security mechanism.
Hash-based signature schemes are based on the Merkle Tree, and even though
both exist for a while, they possess certain disadvantages which prevent their mass
usage. The main contributions of this research are to give a solid idea about the
trade-offs in the proposed quantum-proof approach and analyse its impact on DNS
performance.

1.1 Report organization

The remainder of this report is organized as follows. In Chapter 2, we give back-
ground information on DNS, DNSSEC and existing Hash-based Signature Schemes.
Later, we introduce the approach and research questions as well as relevant liter-
ature for this thesis. Chapter 4 provides the design for the approach and answers
the first research question. Chapter 5 describes methodology and prototype details.
Results from prototype are followed by evaluation in Chapter 6. Finally, in Chapter 7,
conclusions and recommendations are given.



Chapter 2

Background

2.1 DNS

Domain Name System (DNS) is an essential network protocol to access and re-
trieve online web resources. It provides a mapping of domain names such as cloud-
flare.com to an IP address so that the browsers can load the information provided
by the endpoint located in that IP address. This mapping process, called DNS
lookup, involves two types of globally distributed DNS servers: recursive and au-
thoritative DNS servers. Recursive DNS servers, also referred to as DNS resolvers,
are operated by the local Internet Service Provider (ISP) and responsible for re-
cursively sending the DNS queries requested by the user (browser) to authoritative
DNS servers. Initially, the recursive DNS server attempts to lookup for the domain
name to IP address mapping in its cache of DNS records which is updated regu-
larly once TTL values of DNS records expire. The existence of the cache memory
mainly serves the purpose to reduce the network traffic by avoiding the whole re-
cursive querying process for the Domain Names that have been recently accessed
(non-expired TTL value). If the mapping does not exist in the cache, the recursive
DNS server redirects the query to the Root Server. There are, in total, 13 globally
distributed Root Server addresses, whereas actual instances of Root Servers are
more than that thanks to the anycast addressing. At the time of writing, the Root
Domain contains around 1500 Top Level Domains (TLDs) [3], which are classified
as generic top-level domains (gTLDs) such as “.com”, and country-code top-level
domains (ccTLDs) such as “.nl”. The Root Server responds with the address of the
corresponding TLD DNS servers (“.com” in the case of cloudflare.com) for further
querying. Recursive DNS server sends the same query to the specified TLD server,
and TLD server responds with the address of authoritative name server for cloud-
flare.com. Finally, querying the authoritative name server for ”cloudflare.com” will
result in retrieving the A or AAAA records that contain the IPv4 or IPv6 address re-
spectively of the server hosting ”cloudflare.com”. The user will retrieve the resource
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4 CHAPTER 2. BACKGROUND

hosted by the provided endpoint. The summary of this process is depicted in Fig-
ure 2.1. Note that if the DNS resolver has already cached the corresponding DNS
Resource Record (RR), the entire process is shorter as shown in Figure 2.2. After
the expiration of the TTL value of RR, the extensive querying process has to be re-
peated. It ensures that any changes to the RRs are regularly communicated to the
DNS resolvers.

Figure 2.1: DNS complete lookup process

Challenges and Limitations. The initial design of DNS was not intended to satisfy
major security and privacy concerns such as the integrity and authenticity of the
communication between DNS resolvers and authoritative servers. Thus, a variety of
DNS attacks have been launched against the resolvers as well as the name servers
throughout the years. Cache Poisoning attack [4] is one type of attack that exploits
the lack of authentication of the DNS records. As mentioned above, DNS Resolvers
preserve the cache of DNS records for faster references. In a simple Cache Poi-
soning attack, an attacker tries to inject a malicious IP address into a name server
cache. To generate the attack, the intruder needs to request a web resource that
has not been cached by the resolver so that the lookup process takes place. Once
the resolver starts the lookup process, it sends the query to the authoritative name
servers after receiving a response from the Root Server. Meanwhile, the intruder
tries to spoof the IP of authoritative name servers and floods the DNS resolver with
responses that include malicious IP addresses. Resolvers accept the first response
only if the below criteria match:
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Figure 2.2: DNS lookup process for a cached record

• Response ID should be identical to query ID

• Response should arrive at the same UDP port as it was originated from

At the early development of DNS, these two criteria were poorly designed. The
query ids were incremented by one; hence, it was sufficient for the intruder to ob-
serve traffic and try to send the response by increasing the ID. On the other hand, the
UDP source port was also fixed as 53. These issues were attempted to be mitigated
by randomizing the IDs and source port which resulted in a 216 number of possibil-
ities per each criterion. It should be noted that these mitigation techniques did not
necessarily resolve the issues but made it slightly challenging and time-consuming.
Moreover, classic DNS packets are restricted to 512 bytes. With extension mech-
anisms for DNS (EDNS(0)) [5], the accepted DNS packet size can be up to 64kB.
On the other hand, the Maximum Transmission Unit (MTU) size is 1500 Bytes for
IPv4 packages. Typical DNS responses are generally short hence unfragmented.
If EDNS(0) is supported, attackers can often cause fragmentation by registering a
maliciously crafted subdomain [6] to make the packet size larger than MTU. Attacks
that exploit the limitations of DNS urged the community to find a new way of securing
DNS – DNSSEC (DNS Security Extensions) which is discussed in the next section.

2.2 DNSSEC

DNSSEC is designed to meet the authentication and integrity requirements of DNS
by signing record sets using public-key cryptography. A cryptographical signature is
added to each DNS response and transmitted to the resolvers.
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PKI Signing and Verification. Authoritative name servers handle the signing pro-
cess with the help of zone operators. Signature generation involves a few sets of
records which are explained below in detail.
RRset – Resource Record Set
Securing each DNS Zone starts with grouping identical record types (e.g. all AAAA
records) for the same domain name into RRsets. In fact, it is the RRsets that is
signed instead of the single record. Hence, there could be multiple RRsets in a
zone such as one for AAAA records and one for MX records.

RRSIG – Resource Record Signature
Each RRset is signed using a private portion of the zone signing key (ZSK) main-
tained in each zone. Signed RRsets stored in RRSIG records in the name servers
controlled by zone operators. The public portion of ZSK is used during the verifica-
tion process and needs to be accessible by the resolver. Therefore, along with the
RRset and RRSIG records, the zone operator also provides a public portion of ZSK
in the DNSKEY record. These three sets of information are essential but insufficient
to trust the DNS records.

KSK – Key-Signing Key
To trust all the records in the zone, it is crucial to verify public ZSK in the DNSKEY
record [7]. To do that, another pair of keys – KSK is generated, and a public portion
of it is stored in another DNSKEY record. A private portion of the KSK is used to
sign public ZSK as well as its public KSK. The signed RRset of DNSKEY records
is stored in a new RRSIG record. Thus, RRset of DNS records and corresponding
RRSIG record; RRset of DNSKEY records (Public ZSK and KSK) and correspond-
ing RRSIG record will be sent by the name server to resolvers. Now, the public KSK
of the zone should also be verified since signing public KSK with its own private KSK
does not provide any additional security (man in the middle can replace the signed
DNSKEY RRset record using a different KSK pair). Because zones are intercon-
nected and usually operate dependently as shown in figure 2, DNSSEC introduces
a new record called Delegation Signer (DS) which is discussed below.

DS – Delegation Signer
The purpose of the Delegation Signer is to establish the chain of trust among parent
and child zones and provide a means for verification of public KSKs for resolvers.
The child zone operator provides the parent zone with its public KSK by hashing the
DNSKEY record, which contains public KSK, and the parent zone publishes it as a
DS record. Whenever a resolver receives a reference from a parent zone to a child
zone, the DS record of the child zone is also provided. This way, the resolver has a
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means of verifying the public KSK by hashing the DNSKEY record sent by the child
zone and comparing it to the DS record retrieved by the parent zone. It could be
argued that the way public KSK is used to build up trust, it could have been done
the same way with public ZSK without introducing a new KSK pair. The underly-
ing reason for this design is due to the cryptographical strength and the limitation
of DNS message sizes. It is desired to have a smaller ZSK key and signature with
regular key changes to minimize the exchanged data size. Regular key renewals
ensure that compromised ZSK keys (particularly when the key size is small) are
not preserved for a long period. Swapping out DS records is expensive since it re-
quires delegating the key to the parent. Thus, if ZSK was used in the DS record,
regular key rollovers should have been performed which is not desirable due to the
complex multi-step process performed by the parent and child zone. Therefore, to
decrease the frequency of key rollovers without compromising the security, longer
KSK is used. Hence, ZSK is smaller than KSK and easier to perform key rollovers
as it only involves a particular zone. On the other hand, because KSK is relatively
larger, the key rollover does not have to be performed regularly. Ultimately, the re-
lation between small key size – frequent key rollovers and large key size – rare key
rollovers are achieved with ZSK and KSK design. In the above design, the DS record
also needs to be trusted. Therefore, like other records, the DS record is signed by
the private ZSK of the parent. The whole verification process is continued until the
root DNS server. Root DNS server signs the DS record of the child but there is no
means to verify the public KSK of the root server as there is no parent DS record
for the root server. Nevertheless, DNS resolvers are pre-configured with the public
KSK of the root server and trusted by default. The summary of the Signing and
Verification Process for www.cloudflare.com is as follows:
1. Root DNS Server (signing)

• signs the DS record for “.com” TLD zone with root zone’s PrvtZSK – RRSIG1

• signs RRset of DNSKEY records (containing root zone’s PubKSK and Pub-
ZSK) with its PrvtKSK – RRSIG2

• sends RRSIG1, corresponding unsigned DS record along with the referral
for the authoritative name servers for the “.com” zone. Only after the re-
solver’s separate query request for root DNSKEY, the Root Server will send
the RRSIG2 and corresponding RRset of the root zone’s DNSKEY records
(DNSKEY PubKSK and DNSKEY PubZSK).

2. Recursive DNS server (verification)
Zone verification:
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• verifies root zone’s DNSKEY PubKSK by comparing it to already obtained
PubKSK through pre-configuration done by e.g. server’s operating system’s
vendor.

Record verification:

• verifies RRset of root zone’s DNSKEY records (PubKSK and PubZSK) by de-
crypting the RRSIG2 using preconfigured PubKSK (trusted).

• verifies DS record for “.com” zone by decrypting RRSIG1 using PubZSK which
was verified above.

• sends the same query to a “.com” zone for www.cloudflare.com. “.com” TLD
server (signing)

3. “.com” TLD server (signing)

• signs the DS record for the “cloudflare” zone with its PrvtZSK – RRSIG1

• signs RRset of DNSKEY records (containing “.com” zone’s PubKSK and Pub-
ZSK) with its PrvtKSK – RRSIG2

• sends RRSIG1, corresponding unsigned DS record for “cloudflare” zone along
with the referral for the authoritative name servers for the “cloudflare” zone.
Only after resolver’s separate query request for DNSKEY, ”.com” TLD server
will send the RRSIG2 and corresponding RRset of ”.com” zone’s DNSKEY
records (DNSKEY PubKSK and DNSKEY PubZSK).

4. Recursive DNS server (verification)
“.com” Zone verification:

• verifies the zone by comparing the hashed value of the DNSKEY PubKSK
record to the previously obtained DS record for the “com” zone from the Root
Zone.

Record verification:

• verifies RRset of “com” zone’s DNSKEY records (DNSKEY PubKSK and DNSKEY
PubZSK) by decrypting the RRSIG2 using “com” zone’s PubKSK (which was
trusted as a result of Zone verification process).

• verifies DS record for “cloudflare” zone by decrypting RRSIG1 using PubZSK
which was verified above.

• sends the same query to a “cloudflare” zone for www.cloudflare.com
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5. “cloudflare” authoritative server (signing)

• signs RRset of A or AAAA records for “cloudflare” zone with its PrvtZSK –
RRSIG1

• signs RRset of DNSKEY records (containing “cloudflare” zone’s PubKSK and
PubZSK) with its PrvtKSK – RRSIG2

• sends above-signed records (RRSIG1 and RRSIG2), corresponding RRset of
A/AAAA records for “cloudflare” zone and RRset of zone’s DNSKEY records
(DNSKEY PubKSK and DNSKEY PubZSK).

6. Recursive DNS server (verification)
“cloudflare” Zone verification:

• verifies the “cloudflare” zone by hashing the DNSKEY PubKSK record and
comparing the hashed value to the previously obtained DS record for the
“cloudflare” zone from the “com” zone.

Record verification:

• verifies RRset of “cloudflare” zone’s DNSKEY records (DNSKEY PubKSK and
DNSKEY PubZSK) by decrypting the RRSIG2 using “com” zone’s PubKSK
(which was trusted as a result of Zone verification process).

• verifies RRset of A or AAAA records by decrypting RRSIG1 using PubZSK
which was verified above.

Challenges and Limitations. While DNSSEC addresses the limitations of DNS by
providing authenticity and integrity of the DNS records via digital signatures, this ad-
ditional security comes with a price of an increase in DNS responses size. Attackers
have recently leveraged this increased DNS response size for DNS Amplification at-
tacks [8]. According to the findings by Nexusguard Research [9], a big portion of the
domains that were abused in DNS Amplifications had indeed deployed DNSSEC.
Various research has been conducted to tackle the size limitation of DNSSEC by
replacing the underlying digital signature algorithms [8], [10], [11]. Root zone KSK
rollover is another challenge in DNSSEC. Since the resolvers are manually con-
figured with the Root zone’s KSK, in case of the disruption that might require the
renewal of the root KSK, it will cause manual intervention that could be very prone
to errors.
DNSSEC relies on digital signatures and the power of signatures on their own is
limited to the security of the underlying cryptographic algorithms. That is, any newly
introduced weakness to the digital signature algorithms (particularly PKI) will po-
tentially threaten DNSSSEC infrastructure and require undesirable drastic changes.
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The strength of PKI, on the other hand, lies in the “unsolvable” discrete logarithm
problem by classical cryptography and computers. Quantum algorithms such as
Shor’s algorithm [1] are highly specialized to solve this “unsolvable” problem. With
the construction of large-scale quantum computers on which quantum algorithms
could be eventually run, currently deployed public-key algorithms including RSA,
ECDSA and EdDSA will be breakable [12]. Thus, new security mechanisms that
will be resistant to quantum computers are being researched intensively. In particu-
lar, constraints such as DNSSEC response size, signing and verification time need
to be considered while developing quantum-proof security mechanisms to make it
effective for DNSSEC.

2.3 Hash-based Signature Schemes

Public-key cryptography relies on the number-theoretic problems such as Pell’s equa-
tion, factoring and discrete log. In fact, quantum computers are shown to solve the
factoring and discrete log problem in polynomial time [1], and Pell’s equation in ex-
ponential time [13]. As the traditional digital signatures are based on public-key
cryptography, it is critical to come up with new post-quantum signature mechanisms
that promise strong security in the existence of quantum as well as traditional com-
puters. One of the potential post-quantum signature schemes is Hash-based sig-
natures. Unlike conventional digital signature algorithms (RSA, DSA, ECDSA), the
security of hash-based signatures does not rely on the difficulty of factoring large
composite integers and computing discrete logarithms [13]. It is one of the reasons
that lead cryptographers to believe in the quantum immunity of hash-based signa-
tures. Hash-based signatures use cryptographic hash functions which take input
strings of arbitrary length and outputs strings of short, fixed-length called message
digest [14]. Those hash functions must satisfy three criteria [15] to be considered
secure:

• Preimage resistance – given a hash function h and hash value v: v = h(m)
where m is the unknown message, it ought to be hard to find the message m
that yields the hash value v.

• Second preimage resistance – given a message m and hash function h, it
ought to be hard to find another message m’ such that h(m) = h(m’) where m
6= m’.

• Strong collision resistance – given only a hash function h, it ought to be hard
to find two messages m and m’ such that that h(m) = h(m’) where m 6= m’
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The difference between collision resistance and the second preimage is whether the
message is known or arbitrary. Collision resistance itself implies the second preim-
age resistance: an attacker can pick any message m and try to compute the second
preimage message m’ which should yield the same hash value as the message m.
Hash-based digital signatures rely on the collision resistance or second preimage
resistance of the hash functions. This is considered as a minimum requirement for
the existence of the digital signature scheme [10]. Hash-based signature schemes
are potentially good candidates for the quantum era, and each existing scheme has
already been undergone some improvements and changes. The hash-based signa-
ture schemes explained below make use of hash function g denoted as

g : {0, 1}∗ → {0, 1}∗

and one-way function
f : {0, 1}n → {0, 1}n

Additionally, each scheme has different security parameters which are discussed in
a more detailed manner.

2.3.1 Lamport One-time Signature Scheme (L-OTS)

One of the early proposals for hash-based signature schemes is L-OTS [16]. The
security parameter of L-OTS is a positive integer n. The size of the keys, as well as
the signature, is expressed in terms of this security parameter. The essential idea
behind the scheme is that the private and public key must only be used once to sign
a message.
Key pair generation. Let’s denote the private key as PrvtK. It is composed of 2n
strings or n pairs; each consists of n bits uniformly picked at random. The first
element of i th pair is denoted as xi[0] and the second element of i th pair is denoted
as xi[1]:

PrvtK = ((xn−1[0], xn−1[1]), ..., (x1[0], x1[1]), (x0[0], x0[1])) ∈ R(0, 1)(n,2n)

The signer needs to store all the pair elements to compute PrvtK. Since each ele-
ment is n bit string, this makes size of PrvtK equal to 2n ∗ n = 2n2. Let’s denote
public key as PubK. Similarly, PubK is composed of 2n bit strings or n pairs; each
consists of n bits but instead of picked at random, it is the one-way function of the
PrvtK pairs with a length n.

PubK = ((yn−1[0], yn−1[1]), ..., (y1[0], y1[1]), (y0[0], y0[1])) ∈ R(0, 1)(n,2n)

where
yi[j] = f(xi[j]), 0 ≤ i ≤ n− 1, j = 0, 1.
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Thus, both PrvtK and PubK has a size 2n2. Moreover, PubK also requires 2n evalu-
ation of f one-way function.
Signature generation. The first step towards signing a message M is computing the
message digest d using the hash function g which was defined previously:

d = g(M)

A signature will be computed on the digest d as follows: if the i th bit in the digest is 0
then the signature will be the first element of the i th pair in PrvtK or if the i th bit in d

is 1 then the signature will be the second element of the i th pair in PrvtK. In another
word, i th bit in the digest determines the element of the i th pair to be used for the
signature.

Sig = (xn−1[dn−1], ..., x1[d1], x0[d0]) ∈ R(0, 1)(n,n)

Signature Sig has the length of n2, and no evaluations of function f are required.
The sender provides signature Sig, PubK and plain text message M for verification
which is explained below.
Signature verification. First step of verification is to compute the message digest
using the same hash function as above. Then each string in signature denoted with
small sig will be fed to the one-way function f and following will be checked:

f(sign−1), . . . , f(sig0) = (yn−1[dn−1], . . . , y1[d1], y0[d0]) ∈ R(0, 1)(n,n)

If we substitute sigi with above signature generation formula and public key with its
generation formula, we get identical formulas:

(f(xn−1[dn−1]), . . . , f(x0[d0])) = (yn−1[dn−1], . . . , y0[d0]) = (f(xn−1[dn−1]), . . . , f(x0[d0]))

Unlike signature generation, signature verification requires n evaluations of function
f .
Challenges and Conclusion. Although signature and key generation in the L-OTS
scheme can be considered efficient, the main disadvantages of L-OTS are the large
key and signature sizes [17], and impractical one-time key usage. The signer has to
use the PrvtK and PubK only once so after each signature, the signature generation
process needs to be repeated. To tackle the large signature size issue, Winter-
nitz offered his modified one-time signature scheme which is explained in the next
subsection.

2.3.2 Winternitz One-time Signature Scheme (W-OTS)

The main goal of W-OTS is to achieve a smaller signature and key size. Unlike L-
OTS where each bit in the message digest is signed using the corresponding private
key element, W-OTS uses a compact approach where several bits in the message
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digest will be signed using one private key element. To accomplish this, the scheme
introduces a new security parameter w to denote the number of bits to be signed at
once and following changes to key pair generation and signing.
Key pair generation. In the W-OTS scheme, w is the security parameter that shows
the number of bits in the message digest d to be signed simultaneously. The number
of private key elements that form the PrvtK is reduced by a few factors depending
on the choice of security parameter w and determined as such:

l = l1 + l2

where
l1 = dn/we, l2 = d(dlog2l1e+ 1 + w)/we

l2 here shows the number of private key elements to sign the checksum of the mes-
sage digest. Thus, PrvtK is composed of l key elements, each uniformly distributed
at random with length n.

PrvtK = (xl−1, . . . , x1, x0) ∈ R(0, 1)(n,l)

PubK is computed by applying the one-way function f to each PrvtK element 2w − 1

times.
PubK = (yl−1, . . . , y1, y0) ∈ R(0, 1)(n,l)

where
yi = f (2w−1)(xi), 0 ≤ i ≤ l − 1.

Both PrvtK and PubK have the size n ∗ l. PubK generation requires l ∗ (2w − 1)

computation of function f.
Signature generation. Signature generation starts with hashing the message to pro-
duce the message digest d. As mentioned above, in this signature scheme, w bits
are signed simultaneously. Therefore, bits in message digest d are grouped into
w bits which results in l1 blocks assuming the length n of the message digest is
divisible by w; otherwise, extra zero bits are appended to the digest.

d = (dl1−1, . . . , d1, d0)

Additionally, checksum of the message digest is also calculated since actual mes-
sage with the checksum is signed, not the single message:

C = Σl1−1
i=0 (2w − di)

where di is binary to decimal conversion of each w bits group in message digest.
Therefore, the maximum value that di could get is 2w − 1. The checksum C will be
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converted back to binary representation and similar to d, divided into blocks of w bits
which are appended to the message digest d:

M = dl1−1||. . . ||d1||d0||cl2−1||. . . ||c1||c0 = (ml−1, . . . ,m1,m0) ∈ R(0, 1)(w,l)

Finally, signature is generated by applying mi times one-way function f on PrvtK
element xi.

Sig = (sigl−1, . . . , sig1, sig0)

where
sigi = fmi(xi), 0 ≤ i ≤ l − 1, 0 ≤ mi ≤ 2w − 1

Since each xi consists of n bits, this makes signature size l ∗ n long. Additionally, it
requires at most l ∗ (2w − 1) computations of f function since maximum value of mi

could be 2w − 1.
Signature Verification. Signature Sig = (sigl−1, . . . , sig1, sig0) verification involves
calculation of message M as above and comparison of public key as following:

yi = f 2w−1(xi) = f 2w−1−mi(si), 0 ≤ i ≤ l − 1, 0 ≤ (mi) ≤ 2w − 1

Thus, applying the f function on blocks of signature as above would yield PubK
if the signature is valid. Signature verification, similar to generation, requires at
most l ∗ (2w − 1) computations of f . An improved version of W-OTS – W-OTS+
reduces the security requirement of the underlying hash function to a second pre-
image resistance [18]. Instead of simple one-way f function to be iterated, function
T is defined as such:

T i(x, r) = f(T i−1(x, r)⊕ ri)

Each iteration is the one-way function of the output from the previous iteration XOR-
ed with a random string ri in r = (r1, ..., rj) ∈ (0, 1)nj.
Challenges and Conclusion. Figure 2.5 summarizes the key and signature size,
generation and verification time and complexity. It shows that the key as well as
the signature size of W-OTS is smaller than L-OTS. However, this comes at the
price of an increase in the computational cost of key and signature generation and
verification. Table 1 shows the relation between time and Winternitz parameter w. A
higher value of w would allow signing more bits simultaneously and result in a shorter
signature and key size (smaller l decreases the size linearly). Nevertheless, this
results in slow key and signature generation and signature verification (exponential
increase). Therefore, the choice of w should be done carefully considering the trade-
off between key/signature size, signature generation as well as verification time.
Moreover, W-OTS on its own is still inefficient as PrvtK must only be used only once,
and new random key elements have to be generated each time after signing.
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2.3.3 Merkle Signature Scheme (MSS)

Even though W-OTS improves key and signature size problems, key management
remained unsolved. In the above schemes, the new signature generation requires
the new key generation and exchanging long public keys, which are complex and
costly processes [17]. Therefore, Merkle introduced a new way of key management
in which keys and their sizes are reduced [17], [19]. With MSS, instead of the long
PrvtK, a key pair is used to generate a new signature, using any of the one-time
signature generation schemes. It means a predefined number of messages can be
signed with the same PubK, thus, reducing the frequency of public key generation.
Public key elements of a key-pair are arranged in a binary tree to form a PubK of
which verification is required along with signature verification. The following explains
each process in detail.

Figure 2.3: Merkle’s Hash Tree

Key Pair generation. Similar to key pair generation in L-OTS and W-OTS, 2H num-
ber of one-time private and public key pairs (xi, yi), 0 ≤ i < 2H , H ≥ 2 are gener-
ated. The number H defines the height of the Merkle’s binary hash tree. Figure 2.3
demonstrates the tree structure with height H = 3. The leaf nodes of the tree are
hash values of public key elements from the generated pairs: g(yi). The inner nodes
are hash of the concatenation of left and right children:

aj,h = g(ah−1,2j || ah−1,2j+1) 0 ≤ h ≤ H, 0 ≤ j < 2H−h

h shows the level of node a, counted from leaf (level 0) node to the node itself and
j shows the node number counted from left to right in the level h. PrvtK is the
concatenation of all key pairs (xi, yi) and PubK is the root of the tree. Thus, PubK
generation requires 2(n+1) − 1 calculation of hash function g.
Signature generation. Instead of using the PrvtK to sign the message, only one of
the one-time private signature key pairs is used per message. Therefore, with MSS,
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at most 2H messages can be signed. Assume the k th key xk is picked for the one-
time signature generation that uses any signature scheme mentioned previously.
MSS signature will be composed of the one-time key index k, corresponding public
key element yk, generated one-time signature sigots and the authentication path Ak

from public key element yk to the root of the tree PubK:

Sig = (k, yk, sigots, Ak)

where
Ak = a0, . . . , an−1

Authentication path allows efficient reconstruction of Merkel hash tree to validate
the root of the tree – PubK without revealing all the key pairs and exchanging the
PubK. To reconstruct the tree, only n nodes need to be known. An example authen-
tication path for k = 2 is shown in Figure 2.4. The one-time private key element
to be used for signing is x2 and public key element to be shared is y2 . To calcu-
late and verify the root of the tree from y2, it is sufficient for receiver to know the
nodes a0,3, a1,0, a2,1. Thus, the authentication path is A3 = (a0,3, a1,0, a2,1). Signature

Figure 2.4: Authentication path for k=2

generation requires one-time signature generation sigots and computation of an au-
thentication path, which might require entire tree construction - 2H+1− 1 evaluations
of hash functions at worst if no node is pre-stored. Note that algorithm choice for
authentication path mainly concerns the trade-off between time and storage capac-
ity [20], [21], [22].
Signature verification. Verification has two parts. The first part is verifying sigots

using a verification algorithm of the corresponding OTS and yk. Once the signature
has been verified, using auth path A as well as yk, the root of the Merkel tree will be
computed. Note that the receiver knows the PubK and will compare the output from
the calculation of the root of the tree to the PubK. PubK Verification requires only H

hash operations and sigots depends on the chosen OTS.
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Challenges and Conclusion. Merkle OTS has a clear advantage of signing many
signatures without generating a new PubK every time. However, this leads to a
trade-off between computation time and storage. Computation time to build the
Merkle’s Hash Tree includes time to generate 2H one-time private (signature) keys
and 2H+1 − 1 evaluations of hash functions, one evaluation per node. Construction
of the entire tree is a costly operation and needs to be done irregularly. To generate
the signature, an authentication path consisting of H nodes need to be sent. In case
the nodes are not pre-stored, the node computations must be done again for each
signature. On the other hand, storing all pre-computed nodes might require a large
storage capacity. Therefore, there is a need for an efficient technique to compute the
authentication path on demand (either due to an update in one-time key pairs or new
signature generation) without storing too many nodes. In literature, this problem is
called the Merkle Tree Traversal problem, and several algorithms [20], [21], [22] have
been proposed to optimise the time complexity of authentication path calculation us-
ing less memory capacity. Moreover, MSS’s signature size is also a bottleneck and
has been the major downside for the common use and adaption.

Figure 2.5: Space and Time comparison of one-time signatures

2.3.4 Extended Merkle Signature Scheme (XMSS)

XMSS is standardized, the most efficient existing hash-based signature scheme
[23]. It introduces several improvements on MSS such as 1. reduced signature size,
2. reduced security requirement – from collision resistant to the second pre-image
resistant hash-function, 3. forward security property and 4. unforgeability under
Chosen Message Attacks. XMSS achieves these advantages with three major de-
sign choices made on top of the MSS. First, it uses W-OTS or W-OTS+ (preferably)
as a one-time signature scheme. As discussed above, W-OTS already outputs a
smaller signature. Additionally, XMSS signature (or MSS if used with W-OTS) does
not need to include the one-time public key since it can be calculated from the W-
OTS signature and if the root of the tree is verified successfully by using that one-
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time public key, it indicates the authenticity of the signature and one-time public key.
This reduces the signature size from ≈ 2n2 + nlog2N to ≈ n2 + nlog2N , roughly a
factor of 2 [23]. Second design choice is the usage of bitmasks in tree node calcu-
lation. The hash function inputs the bitmasks along with the child nodes to calculate
the parent node in Merkle’s binary hash tree:

ah,j = g((ah−1,2j⊕bitmaskleft,h)||(ah−1,2j+1⊕bitmaskright,h)), 0 ≤ h ≤ H, 0 ≤ j ≤ 2H−h

This provides the second improvement mentioned above which allows the replace-

Figure 2.6: XMSS tree [24]

ment of collision-resistant hash functions [18], [25]. Third design choice introduced
in XMSS that is different from MSS is the leaf node construction. The leaf nodes in
XMSS are computed by constructing another XMSS tree called L-tree in contrast to
the MSS where it is simply the hash of the one-time public key. The leaves of the
L-tree are the bit strings of the corresponding one-time public key. In case is not
the power of two, the node that does not have the right sibling will be levelled up
until another node needs the right sibling. The nodes are calculated the same as
in XMSS. Each L-tree will have the same bitmasks but different from the one used
in the XMSS tree. That means additional bitmasks are required per tree level. The
root of the L-trees will be the leaf nodes of the XMSS tree. This also adds up to the
improvement towards the reducing the security requirement to second pre-image
resistant hash functions. Forward security property states that even a one-time pri-
vate key is compromised, all the previously generated signatures are valid. This
statement holds for the key evolving schemes where each one-time key pair has a
lifetime period T that will be expired after a signature is generated using that key pair.
XMSS is forward secure [18] with a lifetime period T showing the maximum number
of signature generations. Signature generation invokes key update functions and
the index keeps track of generated signatures. Since XMSS should keep track of
generated signature and key pair, it is considered a stateful signature scheme. Any
machine that is running the algorithm needs to preserve the state of the algorithm in
a reboot.



Chapter 3

Problem Statement

3.1 Research Questions

Hash-based signatures are considered one of the quantum robust methods along
with lattice-based as well as code-based cryptography. The focus of the research
is, however, solely on hash-based signatures schemes and specifically their appli-
cation on DNSSEC. While examining quantum robust signature options as potential
future alternatives, the challenges of DNSSEC and its signature requirements must
be taken into account. As mentioned earlier, DNSSEC introduces an overhead of
an increase in response size due to the attached signatures, and this potentially can
lead to fragmentation issues and an increase in amplification attacks. Thus, while
considering the acquisition of the quantum-safe digital signature algorithms, one
must consider the signature size. Moreover, in [2], desirable values for DNSSEC
signature and key size, as well as signature verification and generation speed are
approximated as part of requirements for quantum-safe algorithms. To meet the re-
quirements, Westerbaan, in his private research statement (can be provided upon
request), suggested to form Merkle trees out of DNS records, and instead of signing
each record, only the root of the tree will be signed using hash-based signature algo-
rithms such as XMSS. Similarly, [26] suggested the same approach except labelling
the root of the Merkle tree as-synthesized ZSK. In this research, we want to explore
the impact and effectiveness of this approach concerning DNSSEC requirements.
We aim to answer the following questions:

– What are the important variables to be considered if we use Merkle tree Au-
thentication and sign the root of the tree with XMSS in DNSSEC?

– What are the impacts of those variables on signature size, signature generation
and verification speed in DNSSEC?

– How will grouping domains in different Merkle trees depending on the update
frequencies impact the verification speed and frequency of tree updates?

19
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3.2 Approach

We propose a two-level approach similar to the current design choice of DNSSEC
with differences stated below.
Record authentication. The first level ensures the Record authentication (ZSK
level). The main difference between the current and proposed approaches is that
in the current design, RRsets are signed using public-key cryptography resulting
in RRSIG records. In contrast, simple Merkle trees will be used where the DNS
records are the leaf nodes, and the root node is the one that will be signed using
a hash-based signature which is discussed below. Thus, neither private ZSK nor
signature algorithms other than hash functions are used at this level. Leaf nodes in
a tree might be grouped based on the domain popularity (if A or AAAA records) and
record types (all NSEC records). The authentication path to the root will be the only
information provided as a signature. Note that the approach of a grouping of records
based on popularity (update frequencies) and record types will further be explored
during the research.

Figure 3.1: Merkle tree used for Record authentication.

Zone authentication. The second level entails Zone authentication (KSK level)
where public ZSKs formed from the first layer (roots of Merkel trees) will be signed
using hash-based signature algorithm XMSS. This corresponds to the generation of
RRSIG record of public ZSK in current design of DNSSEC. The root of XMSS tree
can be named as Public KSK and verified along with verification of ZSK.
We propose the implementation in three main steps. In step one, we will analyse the
records in the ”.nl” TLD zone provided by SIDN Labs to identify the popular domains
and update frequencies for those domains. This will help us determine the important
variables such as the amount of Merkle trees and their heights (depth). Secondly,
we will model the signer and resolver accordingly. In the final step, we will do the
benchmark test to check the impact of the variables on verification, signing speed
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Figure 3.2: Merkle tree for Zone Authentication: XMSS trees as leaf nodes.

and signature size. We will also modify the records to see how updates impact the
verification speed overall.

3.3 Literature Review

Hash-based signatures can be potentially used in DNSSEC to provide quantum-
resistant security. Even though the idea of hash-based signatures dates back to
the 20th century, it is not one of the commonly used signature schemes due to
the relatively larger signature size. Applications of Merkle’s tree are also limited to
certification refreshal [27], broadcast authentication protocols [28], third-party data
publishing [29], zero-knowledge sets [30], micropayments [31] and certificate trans-
parency logs [32]. With the rising demand in Post-Quantum Cryptography, hash-
based signatures are being revisited as a quantum-proof alternative to traditional
signatures. Therefore, there is a lack of studies in securing protocols, particularly
DNS with hash-based signatures. In general, we can divide relevant literature stud-
ies into three categories: The first category has investigated the applications of
hash-based signatures on various areas other than DNSSEC. The second category
studied signature and performance improvements on DNSSEC in a non-quantum
era, and the third group studies the intersection of the first and second categories -
hash-based signatures on DNSSEC.
Application Domains of Hash-based signatures. There have been several at-
tempts to apply hash-based signatures in practice. Butin et al. [33] tried to integrate
XMSS into the OpenSSL library to support XMSS based authentication in TLS and
S/MIME protocols. They provided a common integration guideline for OpenSSL in-
dependent of the use cases as well as analysis and evaluations of XMSS in TLS
and S/MIME. Analysis shows that the signature size is larger than RSA or DSA sig-
nature sizes as expected. Depending on the applications of TLS, a small signature
size may or may not be the core requirement. For HTTPS, fast signing speed is
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more desirable than the small signature size [33] as the average size of a web page
is already much higher, and technically, there is no limiting factor. This makes it
suitable for XMSSMT with more layers since more layers would speed up the sign-
ing process but increase the signature size. Additionally, more layers also make the
state management more complicated [33]. In contrast, small signature size and fast
signature verification are critical requirements for DNSSEC as mentioned above.
Requirements and architectural decisions for S/MIME, however, differs largely from
HTTPS and align with DNSSEC. Another study [34] measured the performance of
post-quantum algorithms including SPHINCS+ from hash-based signature family on
authentication in TLS 1.3. It was found out that SPHINCS+ performs particularly
lower in the signing process. Kampanakis et al. [35] constructed similar research to
check the viability of post-quantum signatures on X.509 certificates and protocols
that use X.509 for authentication, namely TLS and IKEv2. A hybrid approach that
utilizes traditional(RSA) and post-quantum signatures (Merkle tree with W-OTS) are
used to construct the certificates: Post-quantum public key and the one-time signa-
ture algorithm are added as two extensions to the base certificate. The certificate
is then encoded and signed using a one-time private key to produce the signature.
This hash-based signature is added as a third extension to the base certificate and
then signed using RSA or ECDSA private key. The research does not study the
signing and verification speed of hash-based signatures but mainly the performance
overhead of a protocol transmission caused by the certificate size which is shown to
be less critical since TLS and IKEv2 use fragmentation of lengthy TLS records. [35].
A very different survey [36] was conducted on the analysis of hash-based signa-
tures for IoT. IoT devices are performance and resource-constrained. Therefore,
post-quantum security choices have to be made carefully considering the require-
ments. These are similar requirements to DNSSEC where performance constraints
in IoT can map to a fast signature verification requirement in DNSSEC and resource
constraints to limited response size (thus short signature size). The authors discuss
six factors of hash-based signatures that are essential in decision making for IoT
devices. Some of them could be potentially considered for DNSSEC.
Improvements on DNSSEC. Limitations of DNSSEC mentioned on page 5 led re-
searchers to look for alternatives for the underlying architecture in DNSSEC. Van
Rijswijk-Deij et al. [37], [10], [8] investigated the use of Elliptic Curve Cryptogra-
phy(ECC) and Elliptic Curve Digital Signature Algorithm(ECDSA) in DNSSEC since
the problems associated with DNSSEC appeared to stem from the default choice of
RSA. The use of ECC has shown to have the disadvantage of increasing verifica-
tion time on the resolvers side. [38] proposed to change the DNSSEC architecture
completely by using Blockchain: eliminating chain of trust to yield easier key man-
agement and reducing the signature size. Nevertheless, none of these studies takes
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the quantum challenges of DNSSEC into account.
DNSSEC with Hash-based signatures. Only two known pieces of literature exist
on Hash-based signing in DNSSEC. Müller et al. [2] measured the performance of
signature generation and verification using quantum-safe algorithms that are under
standardization process by NIST [39]. First, they defined DNSSEC requirements for
quantum-proof algorithms, namely signature size, optimal verification and signing
speed. Only those algorithms that provide a smaller signature size than required
were evaluated further for signing and verification speeds. From Hash-based sig-
nature schemes, three candidate algorithms (Sphincs+-Haraka-128s, Picnic-L1-FS,
Picnic2-L1-FS) were considered but not evaluated as they do not pass the signature
size requirement for DNS. It was found out that the evaluated algorithms perform
signing and verification fast enough. However, two of them have significantly larger
key sizes which make them less desirable. Nevertheless, XMSS and variants are
not considered in any studies so far.
Kaliski [26] proposes to reduce the long signature size issue by applying a hash-
based signature to only the KSK level, instead of the ZSK level. The integrity of the
DNS records is protected by arranging them in the leaf nodes of the Merkle tree and
involves verification of the root–synthesized KSK. In this case, the actual signature
contains only an authentication path from a leaf to the root. The root node will be
checked separately at the KSK level which requires hash-based signatures.
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Chapter 4

Post-Quantum DNSSEC Design and
Variables

Redesigning the DNSSEC protocol from scratch is not usually the most efficient so-
lution considering the time that it takes to build trust in the community, implement
the prototype and deploy on large scale. Even though DNSSEC has been proposed
more than a decade ago, it is still in the process of adoption by different opera-
tors [40]. Therefore, in this chapter, we will demonstrate and analyse the integration
of the newly proposed approach to the existing protocol scheme (adjustment) from
the signer and resolver perspective. Before beginning with the signer and resolver
design, we gathered requirements through interviewing relevant parties such as an
operator of a medium-sized TLD (SIDN), an operator of a large TLD and two root
servers (Verisign) and a resolver operator (SURFnet). Table 4.1 summarizes the
key responsibilities of each interviewed company. Requirements Analysis for signer
and resolver can be found in Section 4.1.1 and Section 4.2.1 respectively. We later
demonstrate the possible design flow for signer and resolver, taking into account
current design choices such as update periods of zones. We identified important
variables from the combination of requirements analysis and design flows and intro-
duce them in Section 4.1.3 and 4.2.3 as signer and verifier variables. By this, we
answer the first research question of identifying important variables to be traded off
in the proposed approach (see Section 3.1).

4.1 Signer Design and Variables

4.1.1 Requirements

We conducted three video call interviews with Domain Name operators such as
SIDN labs as a .nl TLD operator, SURFnet as a DNS resolver and Verisign as an
operator for two of the Root Servers as well as ”.com”, ”.net”, ”.gov” TLDs. Meetings

25
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Table 4.1: Interviewed companies

were voice recorded for a later content referral.
In general, requirements can be categorized as general performance-related re-
quirements and specific operator related requirements. Performance-related re-
quirements include mainly fast resigning and zone updating. Below is a list of re-
quirements for each operator.
Requirements by SIDN:

1. Complete signing of the zone: 10-11 mins

2. DNSSEC response size (majority of the responses) should not exceed 1,232
bytes [2].

3. Whole Zone Updating (including signing and checks) should not take more
than 30 minutes.

4. Update Frequency analysis on the records should be done periodically if it is
ever done.

5. Updates in the zone should be visible every 30 minutes.

Fast upfront signing and small signature size are a common performance-related
requirement for TLDs.

Requirements by Verisign:

1. Ceremonial signing should occur every two months (as a Root DNS operator).

2. Upfront Tree signing - singing all the records before it gets (as a Root DNS
operator), compare with dynamic signing.
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3. ZSKs in the zone should be renewed latest every three months.

4.1.2 Design Flow

This section provides a detailed view of the integral functional flow of the offline
signer, combined with the proposed approach, requirements, and current protocol
standards. Note that it only covers offline signing, and online signing is kept out of
the scope.
Upfront Signing Process. Most Root, TLD or authoritative name servers compute
the signatures upfront. The signing flow is depicted in Figure 4.0 and each activity
is explained below:

(A) To start with the signing process, the first step in the proposed approach will
be the analysis of the frequency of changes for each signed Record type. It
involves determining how many times each record set has been updated during
a given period.

(B) Based on the identified range of update frequencies, those records that have
similar update frequencies will be grouped in the same tree. This provides a
high probability to keep the number of trees that potentially need to be updated
low. For instance, having a tree that contains only one record with a high update
frequency will force the number of nodes equal to the height of the tree to be
updated. This will cause all signatures for the leaf records to be recomputed
since at least one of the updated hash nodes is included in each signature.
Figure 4.1 explains this correlation more detailed. In the figure, changes to the
record and the effects on intermediary hash nodes are indicated in red. The
change to the last leaf node affects the three hash nodes a0,7, a1,3 and a2,1. The
affected a2,1 is also included in the signature of the first four records. Similarly,
a1,3 is part of a signature of a record y4 and y5 and node a0,7 is part of a signature
of a record y7. It proves that a single record change forces to update each record
signature. If there are N of this kind of frequently updated records, placing them
separately over N trees will cause N different tree updates, thus, N new tree
roots and even more signatures. In contrast, placing them in one tree would only
cause one tree update at a time (note that the record changes are accumulated
and applied at once every X duration determined by a zone operator, not every
time a record change occurs). As one of the requirements mentioned in Section
4.1.1, analysis of update frequencies should be done timely since historical data
on domain name changes can no longer hold as time passes. This is due to a
couple of reasons one of which is a move of an inactive domain from one host
to a different host where changes become much more frequent.
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(C) After grouping the records by update frequencies, Merkle trees will be con-
structed from each group of records. The leaves of the tree are hash values
of RRsets, and each parent node is the concatenation of the left and right child
node.

(D) Merkle tree construction will initially require 2H+1 − 1 computation of the hash
nodes. Later, depending on the number of updates to the leaf nodes, the recon-
struction of the tree may require the calculation of up to 2H+1 − 1 hash noded
in the worst-case scenario (where each leaf node has been updated simultane-
ously).

(E) The tree construction produces an integral root node that needs to be signed us-
ing the XMSS signature (G). As discussed in Approach Section 3.2, this ensures
that the root node itself is trusted as it provides the authenticity and integrity of
the record signatures.

(F) Record signing involves a binary search for indices of Hmtree number of hash
nodes and outputs a signature that contains Hmtree number of concatenated
hash nodes.

(G) Signing the root typically involves computing XMSS signature over the root of
the Merkle tree.

(H) The activities such as Signing (G) the roots as well as construction (C) of Merkle
tree are re-occurring processes. That is, any changes to the records need to be
reflected in the root and record signatures. A new signature will be generated in
two scenarios: either a tree has been updated or signatures are about to expire.
Signatures belonging to the same tree will have the same expiration time.

4.1.3 Variables

The aforementioned Design flow reveals important variables to consider for a signer.
In this section, we will identify and list relevant variables per flow activity (labelled
with capital letters) which consequently answers the first research question - ”What
are the important variables to be considered if we use Merkle tree Authentication
and sign root of the tree with XMSS in DNSSEC?”. We also list important metrics
to later analyse the impact of the subset of the variables on them as a part of the
second Research Question covered in Section 6.

1. Update Frequency Analysis of Resource Records (A).

• Min and max update frequency in the zone: frmin, frmax.
These variables indicate the highest and lowest update frequency among
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the records during a period. For instance, in a certain period, the records
that have never been updated set the min update frequency as zero in the
zone.

2. Grouping Resource records with similar update frequencies (B).

• Frequency range difference variable (similarity level definer): frdiff .
This variable shows the maximum allowed difference of update frequen-
cies of resource records in each tree. It implies the degree of similarity
among resource records in each tree. For instance, frdiff = 20 would
mean that in any given tree, the difference between the highest and low-
est update frequencies of records cannot be more than 20 times. The
value of this variable should be determined after the update frequency
analysis of zones and depends on the zone operator.

3. Merkle Tree Construction (C,D,E,F).

• Merkle tree Height: Hmtree. Height of the Merkle Tree is determined by the
amount of the records each tree contains (number of leaves). It also de-
termines the size of a record signature which needs to be within the limit
of DNS response size requirement. This ensures to avoid a fragmentation
issue in DNS (see 2.1).

• Number of Trees: nmtree.
This variable shows how many trees with the determined frdiff or Hmtree

need to be constructed to cover all the signed Resource Records in the
domain name operator.

• Size of the Merkle Tree: nrecords. This variable indicates the number of
Records in a Merkle Tree.

• Record Signature Size: ss. This variable indicates the size of the signa-
ture over an RRset for a specific domain.

• Tree Generation Time: tmtree. This variable indicates how much time it
would require for a new tree to be constructed.

4. Root Signing (G).
Variables identified in this process mainly entails parameters relevant to XMSS
algorithm. Since most of these parameters already have standard accepted
values, we treat XMSS as a given; thus, the analysis and evaluation of the
value choice of these variables will not be discussed further in this thesis.

• Number of supported XMSS signatures: nsigs.
This variable shows how many roots (trees) can be signed in a zone. The
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amount of leaf tree nodes in the XMSS tree correspond to this variable. A
standardly accepted value can be used initially.

• XMSS tree Height: Hxmss. Similar to Hmtree, the height of the XMSS tree
is closely related to the number of leaf nodes it contains.

• Root Signing Speed: txmss. This variable shows the time that it takes to
sign the root of the tree. As a result of the signing process, an XMSS sig-
nature is generated. This variable will have a predicted value independent
of the tree size and type.

• Winternitz security parameter: w. This variable shows how many bits of
the message (in this case, root of the tree) need to be signed simultane-
ously.

• XMSS Signature Size: ssxmss. This variable shows the size of the XMSS
signature over the root of the tree.

5. Setting Zone Update time (F).

• Zone Update Period: Tupdate. This variable shows the period where the
changes to the zones are processed. It is set based on the internal con-
figuration of the zone operator. The analysis of this variable is out of the
scope of this thesis.

Extended performance metrics for signer activities are listed below:

1. Single Record Signing speed: trrsig. This variable shows the time that it takes
to generate the signature for the RRset in the tree. Note that this variable will
have a different value depending on the tree, which will be discussed later.

2. Zone Signing Speed: tzone−sig. This variable shows the time it takes to sign the
entire zone upfront. Most of the record signatures are generated in advance
and usually, the aggregated time of signing all records is more useful than the
time spent on individual signature generation (trrsig).

3. Tree Update Time: tupdate. This variable indicates the time that it takes for a
tree to be updated. In the worst-case scenario where all the records have been
changed, it is identical to tree generation time.

4.2 Resolver Design and Variables

4.2.1 Requirements

For resolver requirements, an interview was conducted with SURFnet. Fast verifi-
cation of record signatures (verifying at least 1000 signatures per second [2]) is the
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only crucial requirement that was identified.

4.2.2 Design Flow

This section provides a detailed view of the integral functional responsibilities of
the verifier as soon as the requested record is not cached, combined with the pro-
posed approach and current protocol standards. When the resolver receives RRSIG
records as a response, the very first task is to check the validity time of the signa-
tures (A). It should be noted that all the records belonging to the same tree will have
the same signature expiration date of the signature. If the signature is up-to-date,
the verification process starts (C, D); otherwise, it is considered bogus. Figure 4.0
shows verification flow for the record verification. It omits the queries necessary to
fetch records, signatures, and keys.
As mentioned in Merkle Tree 2.3.3 and proposed in Approach 3.2, a signature for a
record contains (r, authPath) where r indicates the index of the record in a tree and
authPath contains the required values of hashed nodes to verify the record. Veri-
fication involves traversing through the authPath to the root node from a leaf node
(record itself) and comparing the computed root node to an already trusted XMSS
signed root node. If the root node (XMSS signature) has not been verified yet, then
a standard XMSS signature verification process is followed up (E). Thus, a record is
considered to be verified if traversing through authPath leads to a verified root node.
The root signature will be cached (F) for a certain period depending on the zone
requirement and will be updated periodically. This aims to reduce verification time
as the XMSS signature verification process will not be repeated every time a new
record signature from the same tree needs to be verified.

4.2.3 Variables

The aforementioned design flow reveals important variables to consider for a verifier.
In this section, we will identify and list relevant variables as well as a metric per
verifier flow activity that adds up to the list of variables for the first research question.

• Root Node Verification Speed: txmss−ver This variable indicates the time to
spend on verifying the root - XMSS signature.

• Cache Update Period: Tcaching. This variable indicates how long the verified
XMSS signature should be cached.

For this research, we mark a single performance metric for the verifier to be analysed
and evaluated further:
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• Record Verification Speed: tver. This variable indicates the time spent on
record verification by traversing through the hash nodes provided in the sig-
nature.

4.3 Summary and Conclusion

In this chapter, we shortly demonstrated signer and resolver perspectives by gath-
ering requirements on their internal operations. Operator specific requirements con-
cern mainly the size of the operator. For instance, Verisign’s algorithm choice for
signing the root of the trees in larger TLD zones would require supporting many more
one-time signatures compared to that of smaller and medium-size zones. Thus, a
different root signing algorithm (e.g. XMSSMT instead of XMSS) can meet the re-
quirement by Verisign due to its support for large scale signature generation. Later,
we tried to integrate the proposed approach to the standard signing and verification
flow by taking some of the general requirements into account. It should be noted that
no operator-specific such as ”ceremonial signing” [41] by Verisign is reflected in the
design as it requires additional modification that is out of the scope for this research.
Furthermore, we also identified a list of variables from signer and resolver activities
that can potentially have an impact on performance metrics - signature size, signing
and verification speed. Table 4.2 and Table 4.3 summarizes important variables and
metrics respectively.

Table 4.2: Important Variables
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Table 4.3: Extended Metrics
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Figure 4.1: Single record change affecting other signatures.



Chapter 5

Methodology and Prototype

This chapter provides a guideline to find out the impact of the important variables on
the metrics defined above (second research question) as well as explore an option
of grouping domains based on update frequencies (third research question). The
methodology section introduces the data sets that are used in the prototype and the
procedures to analyse them. The prototype section further explains the technical
sides of the signer and resolver implementation such as Merkle Tree generation,
intermediate node calculation out of the generated tree (signature generation) and
verification - traversing from provided index of leaf node to the root when a signature
is provided.

5.1 Methodology

To practically evaluate the impact of the variables identified from the first research
question and identify the upsides as well as downsides of the record grouping, we
implemented a simple prototype for Signer 4.0 and Resolver flow 4.0 by mostly using
real-life data for Merkle Tree construction. For the prototype, two types of the dataset
were selected for the update frequency analysis of the signed records as shown in
the signer flow. Below, we introduce the datasets that were used and gives details
on the actual analysis that was carried out:

1. Root zone updates from git repository [42]. Since the root zone plays a signifi-
cant role in the DNS hierarchy, we started the analysis process with a publicly
available dataset repository for the root zone. This repository contains a his-
tory of updates to the Root zone between 2014-03-05 and 2021-02-12. For
the root zone, DS, NSEC and SOA record types are usually signed and there-
fore, are expected to be the leaf nodes of the Merkle tree. Firstly, zone files
were extracted from the repository which resulted in two zone files per day
(5,522 zone files). In general, for the frequency update analysis of the domain
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names, zone files in the past one year or even a month would be more rele-
vant. Since TLD domains, particularly DS record changes are not expected
to happen frequently, we decided to analyse the entire dataset to be able to
distinguish frequent updates in records. The analysis includes three stages:

(a) parsing each zone file,

(b) in each zone file, grouping signed record sets by domain name per record
type such as DS, NSEC or SOA records,

(c) comparing the contents of the record sets for each domain across the
zone files and counting the differences per domain name for DS record
changes.

2. Dataset on .nl Zone. Almost 60% of the domains are signed in the .nl zone.
Considering the high adoption of DNSSEC, .nl is the most fitting medium-sized
TLD zone that could give a good approximation on the performance metrics.
The dataset was already pre-processed by SIDNlabs and spanned a whole
year of DS record changes between 2020-12-21 and 2021-12-21. As opposed
to the first dataset, it only contains domain names and counts of DS record
changes per domain, not actual DS records themselves. Therefore, random
SHA-256 hash values were generated as DS records for later use.

After the data analysis phase, prototype testing was carried out in two parts. First is
Single Tree signing and verification performance testing depending on the variables.
This part of testing aimed at smaller zones such as the Root zone where the amount
of records and frequency of the record changes are a few times less compared to
the .nl zone. However, considering a potential increase in the root zone in the future,
some artificially generated DS records were added to the dataset and signing as well
as verification with a single tree were simulated as well.
The second part was Multi-Tree signing and verification testing which aims at mainly
mid or larger zones such as .nl. This testing has two sub-cases depending on the
fixed or variable tree sizes. In the first sub-case, all trees contain equal number
of records. All the DS RRsets in the zone were sorted by update frequencies and
divided into fixed-size chunks where each chunk forms the leaves in a tree.
Second sub-case is having variable size of trees. That is, the RRset with only a very
high update frequencies should be grouped in even smaller trees and the rest with
much lower update frequencies can either be merged in one tree or can be divided
into fixed-size chunks.
The simulation for most of the test cases was run 3-5 times. Since the standard
deviation of the results was low, providing the average as final results suffices.
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5.2 Prototype

The purpose of the prototype building is to create a proof of concept for the proposed
approach and support theoretical analysis with practical results on the metrics. The
analysis, implementation, and simulation were run on Anaconda Jupyter software
installed in ASUS ZenBook UX360CA with 8GB Random Access Memory. The Fol-
lowing gives more insights into the three components of the prototype. The code
for each component is provided in a git repository [43]. It should be noted that the
efficiency of the algorithms used in prototype is not included in the objectives of this
work. Hence, even though the technical choices were briefly mentioned, their imple-
mentation efficiency is out of the scope.
Tree Construction. To generate the Merkle Tree, an input parameter of a dictionary
or set of leaf nodes is needed. In the case of the dictionary, the keys show domain
names and values are corresponding RRset records of the type to be signed (in our
case, DS records). Values are stored as leaf nodes in the tree after calculating their
hashes and converting them into the digest. The rest of the implementation is trivial
and involves concatenation and storing a hash of concatenated nodes in the tree.
Note that hashed nodes are indexed from top to bottom, meaning that Root node
has an index of 1 and Leaf nodes has index of maximum 2Hmtree+1 or 2 ∗ nrecords. Im-
portant decisions in the tree implementation are dealing with the number of leaves
that is not necessarily a power of two and whether or not to store all the intermedi-
ary nodes in the tree. For the former one, the approach of simply padding enough
number of null nodes was used. Thus, only balanced trees were considered. For
the latter, known as the tree traversal problem in literature, no special algorithm was
taken into consideration thus all the nodes were saved in the tree. This means that
a prototype might have a larger memory footprint. Tree construction ends with out-
putting the root node.
Signature Generation. As discussed in Approach 3.2 and Signer Design 4.1.2 sec-
tions, a signature over RRset contains the index information of the record (leaf node)
and the authPath which is a set of Hmtree number of hash nodes in the tree. Given
the pre-constructed Merkle tree and index of the leaf node to be verified, the pro-
totype outputs the intermediary nodes as authPath. Calculated authPath together
with the index of an RRset (leaf node) forms the record signature. Note that XMSS
signature generation for the root node is excluded from the prototype since it has
a predetermined effect on the signature size, signing and verification speed inde-
pendent of the tree size. Thus, the prototype covers only signing the record without
signing the ’synthesized ZSK’.
Signature Verification. To verify the record signature, the root of the tree needs to
be known and trusted. This is normally achieved by verifying the XMSS signature
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over the root. Since signing the root has been skipped in the prototype, we trust the
root node computed from the tree construction component. Additionally, the verifi-
cation component takes input parameters of {index:leaf} where a leaf is the plain
record to be verified, depth of the tree that the leaf node belongs to and signature
as an authPath for that leaf node. Algorithm for the verification steps are as follows:

1. Hash the leaf node.

2. Add value from Step 1 to the queue as a dictionary pair {index:hash value}.

3. Take the top index:value pair from the queue.

4. Check the index of the queue element from Step 3. If it is equal to the index of
the root node, program compares the Root value to the value from Step 3 and
returns True or False. Otherwise, Step 4 followed.

5. Hash the concatenated value of Step 3 and the first hash node from the
authPath.

6. Add index:value pair to the queue with where index is half of the previous index
and value is from Step 5.

7. Repeat from Step 2 on.

The index value is needed for only optimization purposes. That is, if multiple records
are to be verified, the Therefore, the verification process only entails traversing from
the specified leaf node to the root through the authPath provided by the signature
and comparing the computed root node to the already trusted root. The prototype
outputs True or False depending on the result of the comparison.

5.3 Summary

In the methodology section of this chapter, we provided motivations for dataset
choices and briefly explained procedures for data analysis and prototype testing
phases. The first phase, which is the Single Tree phase, was targeted at small
zones; whereas, the Multi-Tree testing phase was mainly suitable for mid and large
size zones. Later in the prototype section, we provided details on the components
of the prototype such as Tree Construction, Signature Generation, and Signature
Verification.



Chapter 6

Results and Evaluation

This chapter consists of two sections. The results section itself is divided into two
categories: important outcomes obtained from data analysis and numerical results
obtained from prototype testing. The evaluation section elaborates on the obtained
results from prototype testing, provides correlation among the variables and the met-
rics and discusses trade-offs identified from prototyping. Overall, this chapter aims
to provide answers to the second and third research questions.

6.1 Results

Data Analysis. Frequency analysis of the Root zone and .nl TLD zone indicate that
the DS records for .nl domains tend to change much more frequently than in the
Root zone. Table 6.1 provides some statistics over the data sets. As can be seen,

Table 6.1: Update Frequency Analysis for DS records.

Table 6.2: Variables that have direct impact on the Metrics

there are 1372 signed domains in the root zone and 4.084.519 in the .nl zone. In the
root zone, the DS record that changed the most has been updated 23 times (frmax
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= 23) and belongs to the pl. domain. Meanwhile, the most frequently changed
DS record in .nl zone changed 265 times in just a year. 276 domains in the root
zone never updated their DS records over the past decade. Similarly, 2.441.373 DS
records in .nl zone never get updated during a year.
We further analyse update frequency ranges for only .nl zone to identify records
with similar update frequencies. For the root zone, this is not essential since the
highest update frequency is low, and all records can easily be managed in one tree.
Figure 6.1 shows the cumulative record distributions over the full frequency range
(0 ≤ fr ≤ 263) for .nl zone. The majority of the records have update frequencies
between 0 < fr < 50. If we zoom in that range, Figure 6.2 shows that fr = 20
can be a good candidate for an upper bound for the records with low update fre-
quencies. Thus, records with an update frequency higher than 20 are referred to as
records with high update frequencies. Figure 6.3 demonstrates detailed statistics
on records with high update frequencies. Update frequency ranges for this part of
the records were chosen for only demonstration purposes. In total, 22 records have
update frequencies higher than 20. Concerning records with low update frequencies
(fr < 20), majority of the records are accumulated below fr = 5 (Figure 6.2). There-
fore, we pick 5 to be the range determiner for records with low update frequencies
(5 < fr < 20, 0 < fr < 5 and fr = 0). Figure 6.4 shows the number of records with
low update frequencies in each range.

Figure 6.1: CDF over all data points.

Prototype Results. In this section, we provide numerical results for signature gen-
eration and verification speed affected by the previously identified variables. Since
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Figure 6.2: CDF over the data with frequencies 0 < fr < 50.

we primarily focus on the record signing in this research, variables relating to XMSS
signature generation (signing the root node) defined in Section 4.1.3 are excluded
from testing. Remaining variables can have either direct or indirect impact on the
metrics: signature size, signing (single record set and entire zone) and verification
speed. Variables that have a direct impact are summarized in Table 6.2 and are the
target for the impact evaluation. Indirect variables, on the other hand, play role in
determining the direct variables, hence indirectly impacting the metrics. The reason
why we mention the height of the tree (Hmtree) and number of records(nrecords) jointly
in the table is as provided in Section 2.3.3, number of records in a tree precisely
determines the height of the tree and can be written as Hmtree = log2(nrecords) so
the impact of one of them on any metrics is relevant for the other one as well. The
following provides results from each part of the testing of the direct variables on the
metrics.

Single Tree Testing

As described in Methodology 5.2, for a small zone like the root zone, we constructed
a single tree containing all DS RRsets from the root zone dataset and noted perfor-
mance metrics. Table 6.3 below summarizes the results on the metrics dependent
on the tree size (records in the zone). Note that artificially generated DS records
(random hash values) were added to simulate a slightly larger Root zone with more
records. Moreover, all the results refer to the worst-case scenarios. That is, zone
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Figure 6.3: DS Records with High Update Frequencies.

Figure 6.4: DS Records with Low Update Frequencies.
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Table 6.3: Root Zone: Single Tree Performance in relation with the Tree Size.

signing time (tzone−sig) includes resigning all of the DS records which is true under
the condition when all the signatures are expired at the same time or at least one
record gets updated within the zone update period. tupdate also shows the upper
bound for the time that it takes to update the entire tree in case all the leaf nodes
have been changed.

Multi-Tree Testing

Multi-Tree testing aims at medium and larger zones such as .nl with higher fre-
quency changes. Depending on the Tree Size of each tree, we divided this part into
two sub-parts:

1. Fixed-Size Trees. In this part of the testing, records in the zones were sorted
by update frequencies and divided into the same size trees. As shown in Table
6.4, with 4.084.519 DS records in .nl zone, the possible grouping would be
1024 small trees each containing 4096 RRsets, 128 large trees with 32,768
or even bigger and fewer trees. In this part of the testing, final trrsig shows
the average of trrsig for records from different trees. tupdate shows the update
time for the entire zone. The main remark from the result is full record signing
takes much less time with many smaller trees than a few bigger trees (shown
as not available in the table 6.4 due to much longer execution time). Moreover,
simultaneously updating all records in the zone are an equally costly operation
regardless of the tree sizes.



46 CHAPTER 6. RESULTS AND EVALUATION

Table 6.4: Fixed Size Multi-Tree Variations and Results.

Table 6.5: Variable Size Multi-Tree Results.

2. Variable Size Trees. In Variable Size Trees, all the records with the high up-
date frequency (fr > 20) were grouped in one tree. RRsets with low update
frequencies (fr < 20) are spread over three subcategories corresponding to
Figure 6.4. Frequencies within range 5 to 20 are grouped in one tree with
Hmtree = 14. RRsets with frequency updates within range 1 to 5 are grouped
into 50 trees each having Hmtree = 15. Finally, the non-changed RRsets are
grouped into 38 larger trees each with Hmtree = 16. Table 6.5 summarizes
these results. The minimum and maximum value range for metrics depend on
the size of the tree a record belongs to.
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6.2 Evaluation

6.2.1 Impacts of variables on the Metrics

Results from single-tree testing indicate that a single tree for Root Zone would be
more than enough to sign DS records and potentially, other types of records such
as NSEC and SOA can be merged into the same tree considering the amount of
the leaves will not exceed 32,768 (Hmtree = 15) since the time to spend on zone-
signing increases drastically. On the other hand, time spent on signature verification
increases only slightly as the height of the tree increases. Thus, the impact of the
direct variables (particularly, Hmtree) on the metrics can be summarized as follows:

Figure 6.5: Correlation of Hmtree with nrecords and metrics

1. Hmtree on ss (signature size). As explained in Section 2.3.3, Merkle Tree
authPath contains exactly H number of intermediary hash nodes to be tra-
versed to the root. Since signature for the RRset contains authPath along
with the index of the RRset, the impact of tree height can be shown as linearly
ss ∼ Hmtree. Since Hmtree has direct correlation with nrecords, the impact chain
can be rewritten as ss ∼ Hmtree ∼ log2(nrecords).

2. Hmtree on trrsig. As described in Prototype 5.2, signature generation outputs H

number of hash nodes. This involves binary search over all the 2H+1 − 1 hash
nodes to find the correct neighboring nodes as depicted in 2.4. Therefore, time
complexity can be written as an exponential dependence on the height of the
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tree trrsig ∼ 2Hmtree+1. Rewriting this would yield trrsig ∼ 2Hmtree+1 ∼ nrecords.
Table 6.3 and 6.4 also prove the correlation.

3. Hmtree, nmtree and tupdate on tzone−sig. The metric tzone−sig is an extended version
of trrsig where it includes updating existing trees and signing not a single RRset
in a given tree but all RRsets in the zone. Separate evaluation of the Afore-
mentioned three variables have different impacts on this metrics and need to
be evaluated separately. Additionally, certain conditions should also be im-
posed on the variables to prove the impact analysis valid.

(a) Hmtree. Keeping the total number of records in the zone stable, time to
spend on signing the entire zone is exponentially dependent on the Hmtree.
Refer to table 6.4 for comparison of tzone−sig values.

(b) nmtree. Only in the multi-tree zone, keeping the Hmtree in each tree con-
stant, increase in the amount of trees (new records in the zone) require
more time to sign the entire zone.

(c) tupdate. Time to spend on updating the tree is exponentially dependent on
the height of the tree. Thus, it has linear impact on the tzone−sig.

4. Hmtree on tver. As depicted in Resolver flow 4.0 and explained in 5.2, verifica-
tion requires re-construction of the tree by using the provided Hmtree number
of hash nodes in signature. This yields the same correlation as the signature
size tver ∼ ss ∼ Hmtree. Table 6.3 and 6.4 demonstrate a small increase level
in verification time.

Figure 6.5 summarizes the impact of tree height on important metrics.

6.2.2 Trade-off in Multi-Tree Zones

The downside of the fixed-size trees is that if the number of records that change
frequently (more than 20 times in a year) is rather small - only 22 RRsets in case of
.nl zone (see Figure 6.3) then having 2048 leaves in a single tree forces to include
RRsets from a less frequency category. Since an update in the tree causes resigning
of all the records in the tree, frequently changed RRset records cause the resigning
of the other leaves in the same tree which is an expensive operation as proved
above. On the other hand, the disadvantage of having smaller trees with less than
2048 leaves is that having many small trees mean many tree roots to be signed
using XMSS. In case all the roots are concatenated and signed as a single root
(DNSKEY record), this could exceed the upper limit for standard XMSS signature
and cause fragmentation in the DNS packet. On the other hand, if the tree roots are
signed separately as a new record type, this may require relatively more one-time
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XMSS keys (for larger zones, even more). Variable Size Trees can be a common
ground between many small trees and the high signature generation time of large
trees. With variable size trees, RRsets with the highest frequency updates can be
grouped in a small tree and the rest of the RRsets with low update frequencies
can be grouped in fixed medium-size or large-size trees depending on the available
resources. Even if the size of the tree is large with leaves being RRsets with low
update frequencies, the signature generation of those records might need to happen
only a few times in a year. Even though the record signatures have been expired,
if there was no change in the RRsets, record signatures will have the same value
except the root node will need to be resigned.
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Chapter 7

Conclusions and Discussion

The conclusion section in this chapter provides the main takeaways from this re-
search. The discussion section gives an insight into the limitations of this thesis and
recommendations for future work.

7.1 Conclusions

The goal of this research was to experiment with the new two-layer approach for
quantum-proof DNSSEC and perform variable correlation as well as trade-off anal-
ysis. We began with identifying variables from signer and resolver design flows. In
total, 16 variables concerning signers and three variables concerning resolvers were
listed in Section 4. The importance degree of the variables was mainly determined
based on their direct impact on the metrics (signature size, signature generation and
verification speed for RRsets). Thus, Merkle Tree Height, a total number of records
as well as trees are classified as ”important” or variables with a direct impact on
the metrics. It should be noted that although we identified variables relating to the
root signing with XMSS, for this research, further testing and analysis of the XMSS
related variables were skipped.
To analyse the impact of the variables identified from the first research question on
the three performance metrics, the prototype was developed, and testing has been
done. The key takeaways from this research are listed below:

1. Signature Size solely depends on the height of the Merkle Tree. Although
larger trees (we define large trees as Hmtree > 15) lead to larger signatures
and a drastic increase in total signature generation time of all the records in
the tree, signature verification is the least impacted.

2. Updating the entire tree is not a costly operation per se. However, regener-
ating signatures for all the leaves in the tree is a costly operation. Since a
single record update in the tree modifies at least one node in every signature
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(authPath), all the record signatures are affected by a single update in the
tree. Therefore, updates are inefficient in larger trees causing many signature
updates.

3. Smaller zones up to 32,768 records do not necessarily need to split the records
into smaller trees as the entire tree signing is faster enough to meet the require-
ment even in the case of frequent tree updates (see table 6.3). On the other
hand, medium and large-sized zones should strive to reduce the number of
signature updates affected by record changes and improve the signing speed.

4. Keeping the total number of records the same in the zone, grouping records
into large size trees utilize high memory consumption compared to grouping
them into small size trees.

5. Grouping Domains into variable size trees by update frequencies can reduce
costly signature generation process to only hundreds of records that require a
couple of minutes to sign.

7.2 Discussion

7.2.1 Limitations and Remarks

Below we acknowledge and list the existing limitations of this research. Firstly, due
to limited hardware memory resources, the programming language choice (Python)
and time constraints, the tests for larger trees (Hmtree = 15) could not be repeated
and executed only once. Although initially all the signatures were also planned to be
stored, due to the above-mentioned limitations, it could not be done. All the provided
results on metrics aimed at displaying the relative impact of different parameters, not
precise numbers for metrics.
Secondly, this research mainly focuses on the record signing by the possibility of
grouping the records. As demonstrated in Approach 3.2 and Design 4.1, ZSK sign-
ing in current design corresponds to root signing using XMSS in the proposed ap-
proach. Variable analysis of XMSS signature such as winternitz parameter as well
as XMSS algorithm variations are not studied in this thesis since there are already
plenty of studies regarding analysis of optimal parameters [44] and improving veri-
fication speed. Additionally, an interactive platform has also been provided by Bas
Westerbaan [45] to check the impact of different XMSS parameters on signature
size, the number of supported signatures and the number of hashes required for
verification.
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7.2.2 Future Work

Based on the limitations acknowledged in this research, certain suggestions can
be made to improve the results and complete the study. Firstly, the implementation
including tree traversal and signing process can be optimised by using C or Rust
programming languages. Secondly, hardware resources would help approximate
the results much more accurately and most importantly, store the pre-computed sig-
natures. It includes repeating the test cases 10s of times for larger trees, storing
the signatures or pre-computed hash nodes. Much larger and dynamically signed
zones such as .com may require special modification to the design and algorithm
choice (e.g XMSSMT instead of XMSS for root signing). This needs to be studied
separately. Finally, a real-world test should be done with the optimised implementa-
tion.
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[11] O. Surý and R. Edmonds, “EdDSA for DNSSEC,” Internet En-
gineering Task Force, Internet-Draft draft-ietf-curdle-dnskey-eddsa-00,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-curdle-dnskey-eddsa-00

[12] J. Rijneveld, “Practical post-quantum cryptography,” https://joostrijneveld.nl/
thesis/.

[13] J. Buchmann, E. Dahmen, and M. Szydlo, Hash-based Digital Signature
Schemes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 35–93.
[Online]. Available: https://doi.org/10.1007/978-3-540-88702-7 3

[14] B. Preneel, Hash Functions. Boston, MA: Springer US, 2011, pp. 543–553.
[Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5 580

[15] B. Kapoor and P. Pandya, “Chapter 2 - data encryption,” in Cyber Security
and IT Infrastructure Protection, J. R. Vacca, Ed. Boston: Syngress, 2014,
pp. 29–73. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780124166813000021

[16] L. Lamport, “Constructing digital signatures from a one way func-
tion,” Tech. Rep. CSL-98, October 1979, this paper was pub-
lished by IEEE in the Proceedings of HICSS-43 in January, 2010.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
constructing-digital-signatures-one-way-function/

[17] G. Becker and R. universität Bochum, “Merkle signature schemes, merkle trees
and their cryptanalysis.”

[18] A. Hülsing, “W-ots+ – shorter signatures for hash-based signature schemes,” in
Progress in Cryptology – AFRICACRYPT 2013, A. Youssef, A. Nitaj, and A. E.
Hassanien, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
173–188.

[19] R. C. Merkle, “Secrecy, authentication, and public key systems.” Ph.D. disser-
tation, Stanford, CA, USA, 1979, aAI8001972.

[20] M. Szydlo, “Merkle tree traversal in log space and time,” vol. 3027, 05 2004, pp.
541–554.

[21] P. Berman, M. Karpinski, and Y. Nekrich, “Optimal trade-off for merkle
tree traversal,” Theoretical Computer Science, vol. 372, no. 1, pp. 26–36,
2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0304397506008693

https://datatracker.ietf.org/doc/html/draft-ietf-curdle-dnskey-eddsa-00
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-dnskey-eddsa-00
https://joostrijneveld.nl/thesis/
https://joostrijneveld.nl/thesis/
https://doi.org/10.1007/978-3-540-88702-7_3
https://doi.org/10.1007/978-1-4419-5906-5_580
https://www.sciencedirect.com/science/article/pii/B9780124166813000021
https://www.sciencedirect.com/science/article/pii/B9780124166813000021
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.sciencedirect.com/science/article/pii/S0304397506008693
https://www.sciencedirect.com/science/article/pii/S0304397506008693


BIBLIOGRAPHY 57

[22] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo, “Fractal merkle tree repre-
sentation and traversal,” in Topics in Cryptology — CT-RSA 2003, M. Joye, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 314–326.

[23] A. Hülsing, S. Gazdag, D. Butin, and J. Buchmann, “Hash-based signatures :
An outline for a new standard,” 2014.

[24] J. Buchmann, E. Dahmen, and A. Hülsing, “Xmss – a practical forward secure
signature scheme based on minimal security assumptions,” in IN PROCEED-
INGS OF THE 4TH INTERNATIONAL CONFERENCE ON POST-QUANTUM
CRYPTOGRAPHY, PQCRYPTO’11. Springer, 2011, pp. 117–129.

[25] M. Bellare and P. Rogaway, “Collision-resistant hashing: Towards making
uowhfs practical,” in Advances in Cryptology — CRYPTO ’97, B. S. Kaliski,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 470–484.

[26] B. Kaliski, “Securing the dns in a post-quantum world: Hash-based sig-
natures and synthesized zone signing keys,” https://circleid.com/posts/
20210122-securing-the-dns-in-a-post-quantum-world-hash-based-signatures/,
Jan 2021.

[27] S. Micali, “Efficient certificate revocation,” 07 2000.

[28] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The tesla broadcast authentication
protocol,” RSA CryptoBytes, vol. 5, 11 2002.

[29] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine, “Authentic third-party data
publication,” vol. 73, 01 2000, pp. 101–112.

[30] S. Micali, M. Rabin, and J. Kilian, “Zero-knowledge sets,” in 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings., 2003,
pp. 80–91.

[31] R. Rivest and A. Shamir, “Payword and micromint: Two simple micropayment
schemes,” in CryptoBytes, pp. 69–87.

[32] “How log proofs work - certificate transparency,” https://sites.google.com/site/
certificatetransparency/log-proofs-work.
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