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Abstract 

The Dutch railway is transitioning towards digitization to improve the efficiency of maintenance and 

reduce material waste and system downtimes. Strukton Rail and the Saxion University of Applied Sciences 

are working on deep-learning-based methods to digitize the Dutch railway's catenary system. This paper 

explores the development of a data pipeline for the reconstruction of 3D models from point cloud-based 

railway scenes utilizing a provided CAD catalogue. We used a two step approach to achieve this goal: 

segmentation and object retrieval from the catalogue. In the first step, the deep learning-based 

segmentation method PointNet++ was used. We used a RANSAC and point pair features-based template 

matching implementation in the second step. Testing with three substantially different catenary 

components generates final region overlap scores ranging from 60% to 100%, depending on the quality 

of segmentation results, down-sampling parameters, and the number of RANSAC iterations. These results 

confirm the applicability of the approach. The manual steps of the current pipeline suggest a future need 

for the use of instance segmentation models, component-variant consideration, and automation of CAD 

model placement. 
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Chapter 1 – Introduction 

The Dutch railway network is the pillar of public and ware transport in the Netherlands, making it 

an invaluable piece of infrastructure that many people rely on daily. With around 6830 km of track [1], 

monitoring and maintaining the catenary system of the network, including the overhead lines, arches, and 

equipment mounted on them, is a difficult task to handle manually, as it requires trained experts to 

identify broken or deteriorated equipment.  

Strukton Rail [2], a railway company based in Utrecht, has begun digitalizing the Dutch railway 

network in cooperation with ProRail [3], a government task organization responsible for the maintenance 

and extension of the national railway network infrastructure, and the Saxion University of Applied 

Science’s Ambient Intelligence Research Group [4], from here on referred to as AMI. AMI’s task so far has 

been the development of a deep-learning model capable of automatically identifying and locating the 

different components of a catenary arch from high-density point cloud data recorded by a LiDAR sensor 

mounted on a train. The following project concerns the development of a deep-learning model to segment 

catenary arches from low-density point clouds and supplementary panorama images of the arches, and 

reconstructing the identified components into a digital twin based on a CAD catalogue provided by 

Strukton Rail. The focus of this thesis is the development of a prototype data pipeline capable of this task. 

1.1 Preliminaries 

The catenary system of the railway network consists of the overhead wires and arches along the 

railway track that are used to provide locomotive and light rail vehicles with electricity through 

pantographs. The wires themselves are not object of interest in this project, but the arches and mounted 

components responsible for holding the wires and maintaining mechanical and electrical tension. 

Overhead lines and arches are easily and frequently damaged by natural occurrences such as strong winds 

and storms carrying branches and other debris, as well as through the process of aging. Maintaining the 

system currently requires trained experts to visit the locations where damage is suspected and manually 

identify the deficiency before the required repair can be ordered. A digital twin, generated through deep-

learning and consistently updated by the trains on the network may help streamlining this process and 

allow for a safer and more efficient railway system. 

Deep-learning is a category of machine learning that refers to an approach of data analysis based 

on artificial neural networks. A deep-learning model commonly consists of a layered hierarchy of neurons 

which are connected through weights that modify values when they pass from one neuron to the next. 
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The first layer takes an input and the last layer represents the output, usually in the form of percentages, 

representing the confidence the model has that an input corresponds to a certain label or class. Deep-

learning models are trained by comparing the generated output for a specific input with the ideal output, 

which is usually assigned ahead of the training through tedious manual labour, and adjusting the weights 

of the network accordingly and automatically through a process called backpropagation. In simple 

classification problems, usually an entire input (such as an image) will be assigned one label by the output 

based on the highest confidence it can generate, whereas in segmentation problems, such as the one 

tackled in this project, each input component (such as each pixel in an image) is assigned a label, allowing 

the model to differentiate and locate different objects in an image. 

The primary data type used in this project are point clouds, unordered lists of 3D-coordinates 

(potentially containing additional information such as colour), which represent shapes in 3D space as they 

are recorded by a LiDAR sensor. LiDAR stands for “Light Detection and Ranging” and functions by sending 

out laser beams in pulsed waves and measuring the time it takes for the reflected light to return to the 

receiver. Using distances, estimated through the return-delay, and directional information, a 3D location 

for the reflection point relative to the sensor can be extrapolated and stored in a point cloud. LiDAR and 

point clouds are a promising technology in the field of computer vision for which much research is being 

done. Figure 1 shows an example of point clouds generated by various objects. 

 

Figure 1: Example Point Clouds (from http://mgadelha.me/mrt/) 

Digital twins refer to a virtual representation that serves as a real-time digital counterpart of a 

physical object. Virtual models of real-life objects allow for opportunities in planning, conceptualizing, and 

monitoring that would have previously been comparably complex to execute, depending on the level of 

complexity and size, as well as the abstract nature of an object.  
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 CAD catalogues simply refer to a collection of technical 3D models each of which represents some 

sort of technical component of a system. In the case of this project, the CAD catalogue would contain 3D 

models of the different components of the catenary arches, such as poles, insulators, etc. 

1.2 Research Objectives 

The goal of this project is to provide Strukton Rail with a working data pipeline prototype which 

takes point clouds (and optionally panorama images) of catenary arches as an input and returns 

corresponding (in scale, location, and orientation) 3D scenes containing models retrieved from a provided 

catalogue. The target audience of this project are the data engineers and scientists of Strukton Rail. The 

primary research question is the following: 

RQ:  How to leverage deep learning-based point cloud segmentation models for constructing railway 

scenes as a 3D model/digital twin? 

The research project can be divided into the following two phases: 

1. Development of deep-learning models for segmenting catenary systems from low-density point 

clouds. 

2. Development of a data pipeline for converting point-cloud-based railway scenes to 3D models 

leveraging the existing CAD libraries for the objects in the catenary system.  

1.3 Thesis Structure 

In the following chapters, the full process of preparation, implementation, and evaluation will be 

documented. Chapter 2 will outline the background research, containing the state of the art for each 

phase of the project and other relevant literature on the topic. Chapter 3 and 4 will concern the 

methodologies applied in this project, and the project specifications respectively, while chapter 5 tells the 

story of the realization/implementation. In Chapter 6, the results of the project are evaluated. Chapter 7 

will outline the conclusions to this project, and chapter 8 will consider the opportunities for future 

research based on this project. Visual representations of the data used, supplementary code displays, and 

an ethical assessment of the project can be found in the Appendices.  
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Chapter 2 – Background Research 

The goal of this background research is the investigation of existing deep learning models and 

their theoretical applicability to the given problem, as well as the retrieval of relevant information on the 

state-of-the-art approaches to converting point clouds into 3D models. 

2.1 Literature Research Questions 

The following four research questions were investigated in the scope of the background research. 

The first three focus on deciding on a suitable model for the first step of the project, while the last one 

aims to identify the state-of-the-art for the second part of the project. 

RQ1. Which deep learning methods are available for the segmentation of point clouds?  

RQ2. Which segmentation models are most applicable to low-density point clouds?  

RQ3. How do different point-cloud segmentation models perform in classifying large or small objects?  

RQ4. Which methods can be used to convert point-cloud-based scenes to 3D models?  

2.2 Methodology 

This background research is undertaken as a systematic literature review, loosely following 

Kitchenham’s methodology [5].  

The search process was a manual search in the largest computer science database called ACM 

Digital Library [6]. Relevant papers cited by articles found in this database have been searched for using 

the Google Scholar search engine [7]. The following search terms have been used in the ACM Digital 

Library for the respective research questions:  

1.1 point cloud segmentation  

1.2 outdoor point cloud segmentation  

2.1 low density point cloud segmentation  

2.2 segmentation of sparse point clouds  

3.1 large object segmentation in point clouds  

3.2 small object segmentation in point clouds  

4.1 converting point cloud to 3D model  

4.2 3D model reconstruction from point clouds 
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Due to the broad scope of this background research, very few criteria need to be mentioned. For 

papers concerning technical implementations, age is the primary inclusion criteria. Therefore, no papers 

older than 5 years have been included for the first three questions concerning deep-learning models, and 

no papers older than 10 years have been included regarding the fourth research question concerning 3D 

model reconstruction. 

2.3 Results 

2.3.1 Deep-Learning Models for the Segmentation of Point Clouds 

To consider a point cloud segmentation model’s viability for the specific task of the underlying 

project, the overall category of segmentation tasks is discussed. Then the categories of deep learning 

models will be explored before the considered models will be evaluated for criteria relevant to the 

application throughout the first three question. These criteria include performance, complexity, and 

common usage. Performance refers to the model’s comparable accuracy to others on commonly used 

datasets. Complexity considers a model’s implementation complexity, as well as its computational 

efficiency for the sake of this project’s limitation in time. Lastly, the common usage criteria considers how 

proven a model is in a variety of applications similar to this project, and therefore its likely reliability to 

perform to a satisfactory level. Beyond accuracy and task-taxonomy (segmentation, classification, etc.), 

no standard criteria for applicability of point cloud deep-learning models to real-world applications exists, 

which may represent an opportunity for future research. 

Semantic segmentation methods are viable enough for the scope of this project. There are two 

major types of segmentation methods as described by Guo [8]: those attempting semantic segmentation, 

and those attempting instance segmentation. Semantic segmentation is what is classically understood as 

segmentation, the labelling of each point with a corresponding class to which the point is supposed to 

belong. Instance segmentation on the other hand aims at not only labelling each point with a class but 

distinguish between instances of the same class within a point cloud. Instance segmentation is beyond 

the scope of this project. 

Point-based semantic segmentation methods are the most promising approach available for this 

project. Guo divided semantic segmentation methods into projection-based, discretization-based, hybrid, 

and point-based methods [8]. Projection-based methods generally include those that project the 3D point 

cloud onto a 2D surface and apply segmentation models on those 2D views of the scene. Discretization-

based methods turn the point cloud into a more regular grid-based datatype via for example voxelization. 
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Then convolutional neural networks can be applied to the 3D pixel grid, which works similarly to 2D 

segmentation using CNNs. Hybrid methods generally try to combine 3D CNN and 2D CNN streams of the 

same scene. Lastly, the point-based methods are meant to perform segmentation directly on the points 

of the point cloud, which is a newer and more promising approach according to Bello [9], as projection-

based methods lose information, while discretization methods may unnecessarily increase the volume of 

the data [10]. 

Within point-based methods, pointwise MLP (multi-layer perceptron), point-CNNS, and graph-

based methods are the most promising. Guo [8] further separated point-based methods into Pointwise 

MLP networks, convolution-based networks, and graph-based networks. Pointwise MLPs are fully 

connected neural networks, meaning each neuron of a layer is connected to each neuron of the next layer. 

These methods generally lack the ability to capture wider context for each point and learn richer 

structures. Bello [9] categorized the methods by their ability to perform this local region computation, but 

also to recognize local correlations. Convolutional-based networks were applied as a per-point method 

instead of their classical grid-based counterparts to solve the issue of local correlations. Lastly, graph-

based methods generate a graph from the point cloud, usually consisting of vertices and edges. Learning 

from this graph helps capture the underlying shapes and geometric structures. While pointwise MLPs 

pioneered point-based point cloud segmentation, CNNs and graph-based methods are promising to 

achieve a better understanding of the local geometric features. 

PointNet++ is the current state-of-the-art for point cloud segmentation. PointNet [11] was the 

pioneering method that most point-based methods are loosely based upon but lacks the ability to capture 

the local context of each point [9]. Its successor PointNet++ improves upon this point by dividing the point 

cloud into nested partitions on which PointNet is applied recursively [12]. While it is expensive 

computationally and many newer methods may report better accuracies for specified tasks, its common 

usage for tasks like the underlying project make it a reliable option. 

PointNet++ variants are promising, but unproven and lack an applicability guarantee for this 

project. A variety of modified networks have been developed on top of PointNet++, which promise better 

performances. For example, a graph-based aggregation module is reported to improve segmentation 

accuracy (measured in mean intersection over union) for indoor objects [13]. This project focuses on 

outdoor scenes, making this specific modification unnecessary. Meanwhile, OG-PointNet++ uses a 

method called octree-grouping to improve the partitioning process and the overall performance speed of 

the network [10]. MVPNet (MultiView PointNet++) means to enhance PointNet++ by supplementing it 
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with multiple 2D images of which features are lifted to 3D space and fusing complementary geometry and 

image information in canonical 3D space [14]. While some of these modifications appear promising, they 

present an increased difficulty in implementation and required data preparation, as well as a lack of 

guarantee that they are sufficiently applicable to the current project. Although not always the best 

performing model, PointNet++ is the most tested de facto state-of-the-art across most segmentation tasks 

[8] [9]. 

Point-convolution networks may record higher accuracies but are more complex and potentially 

inefficient. According to Bello [9], the three convolution-based networks A-CNN, RS-CNN, and SSCN had 

the highest performance for segmentation tasks. The Annular-CNN (A-CNN) model leverages 

neighborhood information to better capture local geometric features of 3D point clouds, and is 

supposedly computationally faster than PointNet++ [15]. The Relation-Shape CNN (RS-CNN) focuses on 

the geometric relations of the point cloud to achieve contextual shape-aware learning by extending the 

regular grid CNN to the irregular configuration of point clouds [16]. The Submanifold Sparse Convolutional 

Network (SSCN) is a CNN tailored to processing sparse data by strictly operating on submanifolds [17], 

which refers to subsets of data mirroring properties of its superset. According to Graham et al. [17], CNNs 

are generally inefficient when applied to typically sparse datatypes such as point clouds, which the SSCN 

may solve. Yet, in comparison to PointNet++, they are relatively untested on a wide range of applications. 

Graph-based methods like the SPG model can be viable implementations for this project. The 

Super Point Graph model has been previously tested for catenary arches using high density point cloud 

data by Dijkstra [18]. The Super Point Graph model [19] partitions the point cloud into simple shapes 

called superpoints which are geometrically homogeneous elements. These graphs may contain rich 

contextual relationships which may help a deep-learning model to better understand the geometry and 

relations of a scene. Additionally, a ground-aware framework using an attention mechanism has been 

developed which improves the understanding of long-range dependencies between objects and ground-

points [20]. While this may not be applicable to this project, in which ground-points are usually removed 

before training [18], its ground-detection module may allow for the automation of the ground removal 

step previously executed manually, which may be interesting for further research. 

A direct comparison of the SPG [19] and PointNet++ has shown that the SPG model performed 

better on smaller objects while PointNet++ performed better on larger objects [18]. This may be largely 

because PointNet in essence is limited in its ability to recognize fine patterns and the versatility of complex 

scenes [10]. While PointNet++ addresses that problem, its grouping methods are still limited, especially 



14 
 

when dealing with sparse point clouds. The addition of octree grouping in OG-PointNet++ aims to fix that 

but did not report data on segmentation accuracies of differently sized objects [10]. Kim et al. [21] 

suggests that starting with larger easier to match objects such as long poles might be helpful in the 

segmentation of smaller, connected objects afterwards. 

Additionally, the ground-aware attention model by Wu et al [20] seems to perform even better 

on small objects than the vanilla SPG. Yet, its focus on autonomous driving presents with a different 

definition for small objects, more so referring to people further away, represented by lower fidelity point 

clusters. In this project, smaller objects refer to physically smaller objects at the same distance, for 

example insulators vs long poles. 

DeepSets are a promising but unviable option for this project. DeepSets [22] also perform 

machine learning directly on the point cloud input set. While not specifically designed for point clouds, its 

ability to learn from unordered sets efficiently via permutation invariant functions makes it an interesting 

model to explore. Its key-feature of permutation invariance is important for point clouds which are 

inherently unordered and structureless beyond its coordinates. Additionally, it is projected to perform 

faster than graph-convolution as used by for example the SPG [22]. Unfortunately, no semantic 

segmentation implementation of DeepSets is currently available for public use. Implementing the 

DeepSets model for this task from scratch is beyond the scope of this project. 

Low and inconsistent densities are a common problem with point clouds, which is why most 

models are already equipped to deal with it to some degree. Yet, a few methods seem to report relatively 

good numbers on their lower density tests, namely the aforementioned ground-aware attention module 

for the SPG [20], OG-PointNet++ [10], the RS-CNN [16], and the SSCN [17]. No additional information is 

available on the performance of DeepSets on low density point clouds, which is a research gap potentially 

fillable in this project.  

2.3.2 Methods for Converting Point Clouds to CAD Models 

The two primary methods for converting point clouds to 3D models are template matching based 

on segmented point clouds, and direct conversion of the point cloud into a polygonal model [23]. Since 

this project is meant to use a provided catalogue of CAD models to reconstruct the scene, the latter 

approach is not of interest. Additionally, a panorama image-based approach to reconstructing 3D scenes 

exists. 
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PanoContext [24] can reconstruct room layouts and objects in 3D from panorama images. 

Although this approach is not point cloud based, panorama images are part of the supplementary data 

provided for this project. It was specifically designed for indoor scenes and primarily divides the room into 

rectangular boxes. Catenary arches are of very different geometry and exist within an outdoor scene. 

Therefore, the applicability of PanoContext for the reconstruction of the arches as 3D models would 

require further research. 

Template matching approaches generally use deep learning methods to segment the point cloud 

before replacing each segmented object with a CAD model in the scene. Kim et al. [21] used PointNet and 

MVCNN and structured their pipeline into the following steps: 1. Segmenting the point cloud, 2. Assigning 

labels to the segments, 3. Selecting the corresponding catalogue, 4. Placing the 3D shape from the 

catalogue in the same position and orientation as those of the segmented point cloud. They also pointed 

out that that it can be helpful to first identify easy objects (in their case long pipes, in the case of this 

project likely long, straight poles) and placing them in 3D space to improve the recognition of commonly 

connected objects. 

The state-of-the-art approach for template matching in point clouds is Point Pair Feature 

matching, short PPF. Vock et al. [25] proposes a RANSAC and PPF-based approach. RANSAC (random 

sample consensus) is a looping algorithm with which the parameters of a machine learning model can be 

estimated. PPF (point pair features) matching is a 3D object detection and pose estimation method that 

leverages the relational features between each two points. In their approach, they first determine edge 

points for improved geometric understanding, then they generate a PPF hash-map for the object 

templates. Next, they run the sampled point pairs through a RANSAC loop to match them with template 

pairs to determine pair correspondence and generate transformation hypotheses. These transformations 

allow an understanding of the orientation. Next, the transformation hypotheses are scored using a voxel 

distance field. Lastly, they fine-align the highest scoring match candidates with the scene point cloud via 

voxel based ICP (iterative closest point algorithm, which minimizes the difference between two clouds of 

points), and remove the corresponding scene points, effectively replacing it with the template model. 

Then the RANSAC loop is continued for the next object. This approach is comparably efficient according 

to the authors. 

2.4 Conclusion 

Of the four research questions investigated in this background research, the first three focused 

on determining the most suitable deep learning model for the segmentation of low-density points clouds 
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regarding this specific project, considering performance, complexity, and common usage. The final 

question sought to deliver an understanding of methods with which point clouds could be converted into 

3D models. 

Resulting from the findings for the literature research questions, the models and methods that 

will be applied in the respective phases of the project will be: 

[1] Deep-learning models for the segmentation of point clouds 

• PointNet++ 

[2] Method for converting point cloud scene to CAD model using CAD catalogue 

• Point Pair Feature Matching in a RANSAC loop 

2.5 Further Research 

The following further research opportunities have been identified throughout the background research: 

• Taxonomy of point cloud deep-learning models in regard to potential field of application. 

• Implementation of DeepSets for semantic segmentation applications. 

• Applicability of PanoContext for the segmentation or reconstruction of catenary arches from 

panorama images.  
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Chapter 3 - Methodology 

In this chapter, the general development life cycle, tools, and methods will be introduced, and the 

specific technologies used throughout the project explained in additional detail where necessary. 

The goal of converting a scanned scene point cloud of a railway scene to a 3D model may be 

divided into two major phases, making up the overall data pipeline: the deep learning-based segmentation 

phase, and the template replacement phase. Within the template replacement phase, the 

transformations necessary to place the template CAD model in the same position as the scene object will 

be estimated via template matching. Then the CAD model can be placed in the scene. This two-step 

process must be completed for each segmented object of the input point cloud. From this point onward, 

the discussion of methods, specifications, realization, and evaluation will be considered separately for the 

two phases. Figure 2 shows the two main phases and their relevance to the planned pipeline. 

 

Figure 2: Project Phases and the Pipeline 

3.1 CRISP-DM 

Data science projects commonly follow the so-called CRISP-DM process, which stands for Cross 

Industry Standard Process for Data Mining [26]. It was developed as a European project to standardize 

the processes of data mining projects across industries. CRISP-DM entails six cyclical phases: business 

understanding, data understanding, data preparation, modeling, evaluation, and deployment. These 

phases will be applied in the specification phase of this project and serve as the underlying project 

architecture. Figure 3 shows these phases and the common cycle of progression of CRISP-DM. 
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Figure 3: CRISP-DM, By Kenneth Jensen - Own work based on: 
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/ModelerCRISPDM.pdf (Figure 1), CC BY-SA 
3.0 

In the first phase, called business understanding, the objectives and requirements of the project 

are to be specified. This includes the definition of success criteria, and assessment of available resources 

as well as risks and contingencies. In a commercial project, a cost-benefit analysis may take place at this 

stage, but this is not applicable at this stage, as will be explained later. 

The second is the data understanding phase, during which the identification, collection, and 

analysis of data sets that may be useful for accomplishing the goal takes place. This may include the 

description of data via their surface properties like formats, row counts, and field identities, but also initial 

visualizations to identify relationships or preparation requirements. 

The third phase is the data preparation phase. In this phase, useful data will be selected, cleaned, 

and if necessary sampled, constructed, integrated, or formatted to fit the input requirements of the 

model. 

The fourth and fifth phase are the modeling and evaluation phases. During modeling, the 

algorithms are chosen and implemented, a test design generated, and the model built. In the case of the 

second phase of this project, no actual machine learning algorithm is trained. Therefore, this step will 
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primarily consist of implementation and testing for the second phase. In the evaluation step, the 

performance of these algorithms in consideration of the goal of the project will be considered. If found 

unsatisfactory, the cycle may be repeated, and other models and data sets applied.  

In the case of satisfactory results in the evaluation phase, one might continue to the sixth phase: 

deployment. During this phase, deployment and maintenance of the project’s outcome is planned, a final 

report produced, and the project reviewed.  

This project contains at least two partial cycles, one for each of the two project phases, as they 

are considered as two separate stages with individual evaluation procedures. Using a standardized 

process such as CRISP-DM makes it not only easy to track and organize the progress throughout the 

process, but also to communicate it easily with supervisors and clients. 

3.2 Development Environments 

For the technical implementations necessary for this project Python was used as the primary development 

language in an Anaconda development environment installed on a server of the Saxion University of 

Applied Sciences. Anaconda is used primarily for ease of setup of the development environment and 

installations of python dependencies. For deep learning implementations, TensorFlow [27] was used, as 

the original implementation of the chosen PointNet++ model is part of TensorFlow [27]. 

3.3 Methodology for Deep-Learning-based Point Cloud Segmentation (Phase 1) 

3.3.1 General Deep-Learning Techniques 

Chapter 1 already introduced deep learning as a category of machine learning which utilizes 

artificial neural networks organized in multiple layers from the input layer, the intermediate hidden layers, 

and the output layer, containing the model’s prediction for a given input in the form of confidence values 

(percentages). Each neuron is represented by a value container, which will receive its value from various, 

if not all, neurons’ values multiplied by a weight value which is unique for each neuron-to-neuron 

connection. A bias is also subtracted from each of the values and serves as a minimum value for “the 

neural connection to activate” (to be larger than zero and therefore affect the neuron in the next layer at 

all). Commonly, a sigmoid function or ReLu (Rectified Linear Unit function), which is as of 2017 the most 

popular activation function for deep neural networks [28], is used as an activation function to determine 

the output of each neural connection. Using this function, values are passed from each input node to each 

output node through the various hidden layers of neurons.  
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Generally, this process represents decision making in feedforward (meaning one-directional) 

neural networks. During training, the output for each input can be compared to the manually provided 

output, and the weights and biases towards each output revised through a process called 

backpropagation. In this process, the weights and biases between neurons are adapted repeatedly. The 

trained model then consists of these iteratively adapted weights. After training, a model can be evaluated 

based on how accurately it predicts outputs for an input data set, for which manually prepared outputs 

are also available. Therefore, before training, the data original dataset is usually split into a training set 

and a testing data set, so that the model will not be tested on exactly the same data that it has been 

trained on. This is also important to detect a common problem in deep learning referred to as overfitting 

of a model, which occurs when the training data is too specific, and the model is not able to identify 

general patterns based on it. 

3.3.2 Point Cloud Semantic Segmentation 

Point clouds as a format have already been thoroughly explained in chapter 1.1 and semantic 

segmentation was introduced in chapter 2. At this point, it is worth taking a look at the tools and methods 

with which point clouds can be prepared for the task of training a semantic segmentation model. Data 

preparation will commonly consist of the following steps: cleaning, labelling, down-sampling, splitting, 

and augmenting.  

During cleaning, irrelevant or false data will be removed from the data set, and during labelling, a 

class identifier will be added to each point of the point cloud which corresponds to the object that the 

point is a part of. Both of these tasks can be done manually using a software such as CloudCompare [29], 

which is the program predominantly used to create, edit, and visualize point clouds throughout this 

project.  

Down-sampling can be achieved with a variety of simple methods such as random down-sampling 

(randomly select x amount of points from point cloud), uniform down-sampling (every x-points from the 

list), voxel-based down-sampling (only one point per cube in a 3D grid with cube volume x3), but also via 

more sophisticated methods such as spectral decomposition [30] or adaptive hierarchical down-sampling 

[31]. According to a report by a M. Salahmand while working for AMI [32], data sets sampled via voxel 

down-sampling performed better than the of other tested sampling methods. Only the accuracy for 

particularly small objects suffered in the case of voxel-down-sampling. This deficit may be circumventable 

by reducing the cube volume x3 of the voxel grid based on the bounding box diameter of the object point 
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cloud. Additionally, voxel-based down-sampling algorithms are easily implementable with the use of 

python libraries such as open3d [33]. Therefore, a voxel-based method will initially be used for down-

sampling in this project. 

Data splitting refers to the process of dividing a labeled dataset into two sets: a larger one for 

training, and a smaller one for testing, based on proportionality parameters. 

Lastly, data augmentation is the process of creating additional data sets for training by 

transforming existing data sets in various ways. A student group working at AMI developed various 

augmentation methods and tested the resulting datasets for performance in point cloud segmentation 

[34]. The resulting methods will be applied in this project as well. 

3.3.3 Point Cloud Segmentation Evaluation 

 The most commonly used method for evaluating machine learning projects is to split the dataset 

into a training and a testing set, commonly at 80/20 or 70/30 proportions. The larger training set is then 

used to train the model and the small testing set is used to evaluate the performance of the model by 

comparing the labels predicted by the models to those manually assigned beforehand. 

 A slightly different method, which has been specifically designed for datasets with a significantly 

lower data size, is called “leave-one-out-cross-validation”. In LOOCV, the learning algorithm is applied 

iteratively for each instance of the data set, which in this case refers to one labeled catenary arch. On each 

iterations, the model is trained using all other instances and then evaluated on the arch left out. This 

method is especially useful when the model is supposed to be able to make predictions on data that is 

not used to train the model, for example future scans of catenary arches. It is primarily useful for small 

datasets as it is computationally more expensive than the traditional method of splitting ahead of training. 

Additionally, it is effective at reducing the overfitting effect, as a model that performs well with LOOCV is 

able to predict for data it hasn’t seen before. Overfitting refers to a model being trained on too similar or 

too small of a dataset which causes it to primarily adapt to very specific patterns which are not useful for 

the more general predictions it is supposed to make.  

 A common heuristic measure for the evaluation of point cloud segmentations is the so called 

“mean intersection over union”, short mIoU. It refers to the average intersection of points with the 

manual and predicted labels divided by the total number of points that have the label in the manual and 

predicted set (excluding doubles). This way, the heuristic not only accounts for points it mistakenly did 



22 
 

not label, but also for points that it mistakenly did label. It is commonly expressed as a value between 0 

and 1, or as percent, with a higher value signifying a higher model accuracy. 

3.4 Methods for Scene Reconstruction (Phase 2) 

3.4.1 RANSAC-based Template Matching 

 Chapter 2 introduced point pair features in a RANSAC loop as a highly efficient template matching 

method. At this point, these methods will be elaborated further. 

 RANSAC, or Random Sample Consensus, is a method for estimating a model’s parameters via 

repetitive identification of outliers and estimation of the model after removal of these outliers. In essence, 

a RANSAC loop consists of three internal steps as shown in Figure 4: sampling, hypothesizing, and 

verifying. In the sampling step, data points are randomly sampled. Using these data points, a hypothesis 

of the model’s parameters is created. In the last step, the hypothesis is scored, and compared to previous 

hypotheses and their scores. Of course, RANSAC does not guarantee the successful generation of an 

optimal or correct hypothesis due to its random sampling. By increasing the number of iterations of the 

loop, the probability to find a suitable hypothesis increases. 

 

Figure 4: RANSAC Loop Concept 

 Point Pair Features are a commonly used method for object detection applications in 3D space. It 

utilizes the relations between two sampled points from a scene point cloud and compares them with the 

features of two points from a corresponding template. If the features match, the scene point pair is likely 

to belong to an object corresponding to the template. Features may include distances between the points, 

angles between the distance vector between the two points and their normal vectors, and the principal 

curvatures, among others. 

Point pairs can be efficiently matched by indexing them using their hashed feature vectors. 

MurmurHash3 has been recommended for this task by Vock et al. [25]. Additionally, a library called mmh3 
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[35] is available to easily implement this function. Figure 5 shows the input and output of such a hash 

function in the context of point pair feature matching. 

 

Figure 5: Point Pair Features Index Hashing 

 Linear algebra concepts can be applied to calculate the necessary transformation from a template 

point pair to its matched scene point pair. 

 Lastly, to score each hypothesis, a simple point region overlap algorithm can be applied, which 

will check the immediate neighborhood of each point of the transformed template for the presence of a 

point of the scene point cloud. The fidelity of this scoring system therefore heavily depends on the 

neighborhood-radius parameter. Alternatively, voxel-based overlap scores or graph-based scoring could 

be applied. 

3.4.2 Methods for CAD Placement 

There are a variety of CAD programs which could be used to manually build the final 3D models 

using the transformation data optimally obtained via template matching, but CloudCompare [29], despite 

it not being a CAD program, and FreeCAD [36] have been identifies as the two main methods applicable 

in this project. 

CloudCompare requires the CAD models to be manually loaded in as .obj files. They can then be 

repositioned using CloudCompare’s “Apply Transformation Matrix” function. This has the advantage of 

being able to directly compare the final CAD model to the point clouds as both point clouds and .obj files 

can be loaded and displayed in the same scene. 

FreeCAD [36] comes with a Python API, which might enable the automation of the CAD placement 

step. Scene documents could be automatically created, objects loaded, and transformed via the obtained 

transformation matrices.  
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Chapter 4 – Specification 

4.1 Business Understanding 

4.1.1 Objectives 

 The precise purpose of this project is the creation of a prototype for a data pipeline capable of 

reconstructing 3D models from point clouds depicting catenary arches. It is part of the larger digitalization 

effort by Strukton Rail [2] for which they have contracted the Ambient Intelligence research group of the 

Saxion University of Applied Sciences to develop deep-learning models for the classification and 

segmentation of point clouds for catenary systems. Figure 6 demonstrates how this specific project fits 

into the overall work of AMI for Strukton. The green marked parts are those that are newly implemented 

in this project. 

 

Figure 6: Relation between AMI (blue) and my (green) project. 

 This project can be considered successful, if the pipeline prototype shows successful results for at 

least two structurally different components of the catenary arches. 
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4.1.2 Resources 

Strukton provided a dataset of 16 catenary arches for this project, of which 13 were deemed 

usable and have been preprocessed and labeled by AMI interns and researchers in previous projects. 

Additionally, tested data augmentation methods and a modified PointNet++ algorithm is provided by the 

researchers at AMI, which can be implemented for this project. Additionally, an archive of catenary arch 

component CAD models has been provided by Strukton. 

A server with extensive computational power and the anaconda software is provided by the 

research group for testing and running of code. Lastly, the supervisors and researchers at AMI offered 

their assistance for the completion of this project in the form of technical experience and know-how. 

4.2 Data Understanding 

4.2.1 Point Clouds of Catenary Arches  

 The data set provided for this project consists of 13 labeled catenary arches. They are stored in 

the “las/laz” format, which is the industry standard for archiving LiDAR scanned point clouds. They have 

all been manually labelled. Figure 8 shows an unlabeled catenary arch point cloud and a labelled one, 

where each color represents a label corresponding with a component type. It also must be noted that the 

catenary arches can differ severely in structure and attached components as can be seen in Figure 7, which 

shows a direct comparison of three arches with different components, structures, and environment points 

left in the dataset. A visualization of all 14 arches can be found in Appendix C. These point cloud arches 

have an average of approximately 4 million points per arch (3,942,666), amounting to over 50 million 

points in total. While this is a large amount of data in pure physical storage space required, these points 

only represent 13 arches, which is very little to train a solid model. 

 

Figure 7: Different types of Catenary Arches from Strukton's dataset. 
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Figure 8: Manual Segmentation via Labelling. 

 The following labels are available in the data set, each, with the exception of “Unlabeled”, 

corresponding to a component type commonly found on catenary arches. It has to be noted that the real-

life components corresponding with these labels come in many different versions and sizes, which puts 

additional emphasis on the deep-learning model for segmentation and the data pipeline as a whole being 

a prototype.  

ID Label/Component Colour Name RGB CAD Available 

0 Unlabeled White 255, 255, 255 - 

1 Portal Orange 255, 95, 0 No 

2 Messenger Wire Support Yellow 255, 255, 0 Yes 
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3 Drop Post Red 255, 0, 0 No 

4 Steady Arm Green 0, 255, 0 Inconsistent 
Shapes 

5 Insulator Fuchsia 255, 0, 255 Yes 

6 Pole Blue 0, 0, 255 Yes 

7 Pole Foundation Acqua 0, 255, 255 Not Isolated 

8 Dropper Light Yellow 255, 255, 135 No 

9 Stitch Wire Pink 255, 175, 255 No 

10 Wheel Tensioning Device Light Blue 215, 255, 255 No 

11 Tension Rods Dark Green 135, 175, 0 No 

13 Tension Rods Foundation Blueish 135, 175, 255 No 

14 Contact Wires - - - 

15 Top Tie (single arch top bar) - - - 

16 Bracket (45 deg bar, single arch) - - - 

Table 1: List of Catenary Components and their representative properties. 

4.2.2 CAD Catalogue 

Strukton also provided a catalogue of 59 CAD models in the “stp” format, also referred to as STEP-files. 

STEP is a “manufacturer-independent format for describing computer-generated 3D models” 

(www.gom.com).  Unfortunately, these 59 files do not directly correspond to each of the labeled 

components. In fact, multiple labels are not present in this archive at all, while for some labels, up to 18 

different CAD models are available. An overview of which labels have corresponding CAD models available 

can be found in Table 1, and the chosen models for each label can be viewed in Appendix D. Figure 9 

shows one of the CAD models in isolation when opened using CAD software such as FreeCAD [36]. 
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Figure 9: Messenger Wire Support CAD Model in FreeCAD. 

4.3 Pipeline Architecture 

 

Figure 10: Planned Pipeline Architecture 
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4.3.1 Planned Pipeline 

Figure 10 shows the broad pipeline layout as is planned for the implementation. During phase 1, 

a semantic segmentation model will be trained using PointNet++, which can then be used to segment a 

LiDAR scanned point cloud of a catenary arch. Once segmented, each identified component can be 

matched against template point clouds which will be generated from the CAD models provided in the 

catalogue. This matching will result in a verified transformation hypothesis, which can then be used to 

place the actual CAD model into the scene. Doing this for all segmented components will result in one 

CAD model containing the entire arch, in theory. 

4.3.2 Expected Limitations 

There are a multitude of certain and possible limitations with this project design. First of all, if the 

segmentation model fails to perform at acceptable accuracies, phase 2 will have to commence with the 

manually labelled point clouds instead. Secondly, there aren’t CAD models available for all the 

components the segmentation model may be trained to identify. These will have to be skipped, which 

means that this prototype will in no case be able to output a fully reconstructed catenary arch CAD model. 

Lastly, the PointNet++ segmentation model is known to be significantly more accurate when segmenting 

larger objects such as poles, and much less accurate when segmenting small objects like insulators [18]. 

Since the segmentation step is the first in the reconstruction pipeline, it is likely that the pipeline will 

perform better on replacing large objects than small ones as well. 

4.4 Phase 1: Training a Point Cloud Segmentation Model 

The goal of phase one is to generate a semantic segmentation model capable of segmenting the 

components of catenary arches well enough so that its output may be used for the accurate replacement 

of each component with a CAD model. How to define well enough is very ambiguous when considering 

the scope of this phase by itself. The model itself can be evaluated using the mIoU heuristic explained in 

chapter 3.3.3. At this point in time, it is unclear whether the template matching process of phase 2 will 

perform perfectly fine or won’t work at all with low accuracies in the segmentation model. 

The following figure 11 shows the flowchart for phase 1, with three CRISP-DM steps color-coded.  
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Figure 11: Generalized pipeline for the training of a deep learning-based segmentation model. 

4.4.1 Data Preparation for Point Cloud Segmentation 

The data preparation step has been mostly completed ahead of this project. A student group 

cleaned and labeled all the arches [34], and a script for data splitting has been provided by a researcher 

of AMI. Similarly, data augmentation [34] and down-sampling [32] methods have been implemented for 

the use with a PointNet++ model. At this point it is important to note, that PointNet++ takes a specific 

number of points as input, equaling 2n, where a lower n is likely to perform worse [11], but is 

computationally faster. 

Additionally, the PointNet++ model provided by the researchers at AMI does not take raw laz files 

as input, but instead an hdf5, which serves as an aggregate file storing the entire training and testing sets. 

A script is available to load the laz files into this format. 

4.4.2 Modeling: PointNet++ 

 As so often in data science projects, the modeling step simply consists of running the training 

command for the PointNet++ model with the previously created training set as input. Parameter tuning is 

not an expected step in this stage, as the model itself has been previously tuned for this input dataset by 

the researchers at AMI. 
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4.4.3 Segmentation Evaluation 

The used implementation of PointNet++ uses the leave-one-out-cross-validation methodology for 

training, introduced in chapter 3.3.3, meaning that instead of splitting the entire dataset prior to training, 

the model is trained iteratively with one arch being left out of the training set on each iteration. This arch 

is then used to evaluate this iteration’s results. Since the dataset used in this project is relatively small for 

a deep learning project, this method is the most suitable, despite its computational cost. 

The model’s accuracies for each component are computed via the mIoU heuristic introduced in 

chapter 3.3.3. Unexpected results are to be investigated for errors in the implementation. Otherwise, the 

resulting accuracies are to be reported as part of the prototype pipeline’s documentation, and the model 

itself can then be used to segment point clouds of catenary arches for the reconstruction of CAD models 

in phase 2. 

4.5 Phase 2: Reconstruction of Point Cloud Scenes as CAD Models 

The goal of phase two is the development of the actual pipeline prototype for the reconstruction 

of CAD models from point cloud-based catenary scenes. 

As input, the pipeline should take any unlabeled point cloud depicting a catenary arch, and the 

output should be a CAD model representing the input arch. No hard requirements for the format of the 

output CAD model have been set. Given that the CAD catalogue contains CAD models in the STEP-format, 

the output should preferably be in the same format to avoid unnecessary conversions. 

The following figure 12 shows the intended pipeline with added detail in the template matching, and the 

three CRISP-DM phases color-coded: 
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Figure 12: Projected Pipeline for the RANSAC-based template matching and CAD reconstruction. 

4.5.1 Data Preparation for Template Matching 

The first step in this phase’s data preparation process is the collection of applicable CAD models 

from the archive provided by Strukton. The models are not labeled in correspondence with the labels used 

for the segmentation model, so they must be manually compared to the scanned and labeled point clouds. 

One CAD model should be selected for each labeled component. Since the segmentation model does not 

currently differentiate between different types of the same component, there is no need to implement 

type specific CAD model retrieval for the scope of this project. 

Once a model for each labeled component, if available, has been selected, they must be converted 

into point clouds to serve as templates in the template matching process. CloudCompare [29] can be used 

for this process. 

 Then, input point clouds must be automatically labeled by the previously trained semantic 

segmentation model. Although this may not truly be considered a data preparation step as it occurs after 

the input in the pipeline, the modeling of this CRISP-DM iteration is meant to focus on the CAD 

reconstruction part of the pipeline, which is why it is included here.  
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 Lastly, the segmented component point clouds and the template point clouds should be sampled 

using the same parameters to decrease the random sparsity factor of the input point cloud. In chapter 

3.3.2 I discussed using the voxel-based sampling method for this purpose. 

4.5.2 Modeling: Template Replacement 

The modeling of phase 2 consists of the development of a RANSAC-based template matching 

approach capable of estimating template-to-scene transformations for the placement of CAD models into 

the scene. The various methods that should be used to implement this RANSAC-loop have been explained 

previously in chapter 3.4.1. 

The feature vector suggested by Vock et al. [25] for template matching consists of the following: 

 

Figure 13: Point Pair Feature Vector and Equations, taken from Vock et al. [25]. 

 The feature vector suggested consists of the following four values: 1. the absolute distance 

between the two points; 2. and 3. the two angles between the directional vector between the points and 

each point’s facing direction (normal vector); and 4. the principal curvatures at one point. The principal 

curvatures essentially measure the bending of the shape at the given point, and are not as essential for 

the functionality of the point pair features as the first three, according to Vock et al [25]. 

Additionally, Vock et al. [25] provides the formulas necessary for the calculation of transformation 

matrices from two matching point pairs. Vector and matrix math is efficiently implementable even on 

large data sizes using the numpy [37] library for python. 
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Figure 14: Equations for the calculation of transformation matrices from two feature-matched point pairs. Taken from Vock et 
al. [25]. 

By calculating Rij and Rkl using the point pairs from the scene and the template respectively, we 

can calculate a 4x4 transformation matrix which includes rotation, scaling, and transformation. Scaling 

and rotation transformations are part of the RklRT
ij, while the vertical vector pk-RklRT

ijpi corresponds to the 

translation. 

Once a transformation hypothesis is calculated it should be scorable by applying it to the template 

and comparing the transformed template’s points to the points of the scene object. The more points of 

the transformed template overlap with the scene component, the better must the transformation 

hypothesis be in theory. To rate the level of overlap, write an algorithm which checks the direct 

neighborhood of a certain radius of each template point for any existing scene component points. If a 

scene component point is in the neighborhood of the template point, this point is considered to overlap 

well. The fidelity of this algorithm would depend heavily on the neighborhood threshold, so different 

values should be tested. Theoretically, the mIoU principle could be applied to this as well by also adding 

all scene points which are not within the neighborhood of a template point to the denominator in the 

percent calculation. This is expected not to be beneficial in this case though, as it would cause mistakes 

by the semantic segmentation model to heavily deflate the scores of the template, if points outside the 

real shape of a component are falsely labeled as part of that component. 

After obtaining an optimal transformation matrix for each segmented object, the respective CAD 

model can be placed into a scene manually using CloudCompare [29]. Then the transformation matrix can 
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be directly applied to the CAD model and the meshes can be saves as a single scene. The automation of 

this step via the FreeCAD [36] API is not considered a necessity for the success of the prototype pipeline. 

4.5.3 Evaluation of Template Matching 

The evaluation of this phase takes places primarily via the point-region-overlap transformation-

scoring heuristic introduced in chapter 3.4.1, but the output of the pipeline should also be very easily 

visually evaluable without an additional heuristic. Based on how well the CAD model visually represents 

the input scene point cloud one can approximately estimate the success of the project. Yet, the point 

region overlap scores for each tested component should be reported as the official evaluation. 
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Chapter 5 - Realization 

5.1 Phase 1: Implementing PointNet++ for the Segmentation of Point Clouds 

 The main purpose of phase 1 of this project is the implementation of an existing deep-learning 

model. To succeed in this task, I had to setup a development environment, install all the necessary 

dependencies of the model, load and prepare the dataset, and finally write code to run the model and 

evaluate it. 

5.1.1 Setting Up the Development Environment 

 The Saxion University of Applied Sciences provided me with an Anaconda Jupyter Hub account on 

their server as my primary development environment. The machine that this Anaconda environment runs 

on had python 3.8 already installed. I created a fresh virtual environment with this python installation to 

start off. 

 Since the PointNet++ implementation I’d be using for this project is based in TensorFlow [27], I 

began with the installation of TensorFlow. To do this, I followed the instructions of the PointNet++ 

TensorFlow GitHub. The only difficult step in this process was the compilation of C-based dependencies 

using CMake [38]. The complications mostly stemmed from undocumented version incompatibilities. 

After researching the various errors and eliminating them over the course of a week, TensorFlow was 

correctly installed with GPU-support using CUDA [38]. CUDA was already installed on the machine in two 

different versions, which complicated the correct installation of the TensorFlow version I’d need for the 

correct PointNet++ implementation. CUDA [38] is a parallel computing platform developed by Nvidia 

which allows programs to use the GPU for extensive computing operations, such as training a deep-

learning model. 

5.1.2 Preparing the Dataset 

 The dataset had already been compiled and prepared for training using the PointNet++ model. It 

consisted of 11 laz files containing one catenary arch each. AMI provided me with shell and python scripts 

to down-sample the catenary arches for the correct input size of PointNet++ of 131072 points, and 

augment it to generate a larger dataset, as well as to compile it into an hdf5 file, which serves as a 

composite file that can be more easily loaded into the training model via the SaxionDataset python class 

provided to me. 



37 
 

 Multiple difficulties surfaced during this process. Primarily, the python scripts provided were 

written using the deprecated pylas [39] library, which I had to replace with its successor laspy [40] library. 

The reason for this change being necessary is not exactly clear to me at this point, as multiple function 

calls in the original script seemed to correspond to a mixture of laspy and pylas implementations. This is 

most likely due to a difference in the setup of the virtual environment between the original writer of the 

script and mine. By working with the laspy documentation, I debugged the code to work with my version 

of laspy until the errors disappeared. Additionally, a few data and dependency paths had to be corrected, 

which was not particularly difficult. 

5.1.3 Running the Model 

 After compiling the dataset to train the segmentation model, I began writing the code to train the 

model. Since there would be little code for me to write, I simply adapted the existing training code 

provided to me and altered it where necessary. Once again, I had to change the input and output paths, 

and fix dependencies. Then I ran the model. 

 At this point, I had to go back to work out some version incompatibilities between CUDA [38] and 

TensorFlow [27] as mentioned previously. After finding a workaround to the version problem using linux’ 

syslink function to create system links to the necessary CUDA file in the places that TensorFlow required 

it, I could finally train the model successfully. The trained weights of the neural net were saved as a pickle 

binary dump in my data folders. Figure 15 shows some of the console output while training the model. 
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Figure 15: PointNet++ Model Training Console Output. 

 5.1.4 Applying and Evaluating the Model 

 During the process of training, the model already reported accuracies via the leave one out cross 

validation method. For further testing I chose one of the catenary arches, the file “bram_02_03.laz” to 

run an automated segmentation on. The model completed the segmentation with a mIoU of 0.83, which 

is considerably high, given the expectation that it would not perform well on smaller objects such as 

insulators. While it did not do a perfect job on the insulators, neither on the differentiation of poles and 

pole-feet, it is good enough to continue working with in phase 2 of this project. The segmented point 

cloud can be seen in figure 16. 
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Figure 16: Automatically labelled/segmented point cloud. 
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5.2 Phase 2: Implementing the CAD Reconstruction Pipeline 

Phase 1 left me with the ability to automatically label point clouds of catenary arches for a certain 

set of components. This automatic labeling is the first step in the final CAD reconstruction pipeline. Before 

I can continue implementing the next step, the template matching process, the CAD catalogue and 

template point clouds need to be prepared. During this chapter, I will include code excerpts of my 

implementations. For an overview of majority of the code used for the template matching step, see 

Appendices E and F. 

5.2.1 Preparing the CAD Catalogue 

As mentioned in chapter 4.2.2, the CAD archive provided by Strukton Rail [2] contains 59 

individual CAD models, from which I am to select those corresponding to the labeled components the 

segmentation model has been trained for. While manually opening each of the 59 models in FreeCAD [36], 

it quickly becomes clear that these CAD models and the segmentation labels were not exactly provided 

with the other in mind. There are 18 different CAD models for poles, of which multiple have a pole 

foundation attached. Yet, there is no separate CAD model for the pole foundation itself. This would not 

necessarily be a major problem for the replacement process, as the pole foundation would be correctly 

transformed alongside the pole itself after matching the pole, the foundation existing in the pole’s 

template point cloud may lead to problems or at least misleadingly low point region overlaps. For the start 

and the scope of the prototype, it is enough to consider the CAD models directly corresponding to each 

label. The extracted CAD models can be found in Appendix D. 

After preparing the CAD catalogue, template point clouds must be generated. I intended to use 

CloudCompare [29] for this, as it has a tool that allows me to sample points from a mesh, but 

CloudCompare cannot import stp-files. Thankfully, STEP-formatted CAD objects can be exported as obj-

files, which can be loaded into CloudCompare. By loading both the CAD model and an example of an 

automatically labeled point cloud scene, I can pre-scale the CAD model to the size of the segmented point 

cloud’s components before sampling points, as can be seen in figure 17. I sampled a sufficiently large 

number of points to capture the shape of the CAD model in the point cloud, as can be seen in figure 18, 

and save it as a “laz”-file named based on the label corresponding to the template (“[l].laz”, where [l] is 

the label). 
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Figure 17: Scaled CAD model in relation to segmented point cloud. 

 

Figure 18: Point Cloud sampled from a CAD model. 

5.2.2 Sampling Segmented Component and Template and Calculating Normals 

The next step is to down-sample both the segmented component and the template point cloud 

using the same voxel-grid dimensions. Open3D [33] has an inbuilt method for voxel-based down-sampling, 
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so I converted my point cloud list into open3D geometry object to be able to apply voxel-based down-

sampling to it, the implementation and example console output of which can be seen in figure 19 and 20. 

 
Figure 19: Open3D-based voxel-based down sampling implementation. 

 
Figure 20: Console output of voxel-based down sampling using the implementation of figure 19. 

 Besides down-sampling, it is also necessary to calculate the normal vector of each point, which 

essentially represents the direction this point is facing. We need these vectors to calculate the features of 

the point pairs in the template matching step later on, as is described in chapter 4.5.2. Open3D [33] also 

provides a function for this task, which makes implementing it relatively straight-forward. 
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Figure 21: Method for calculating the normal vectors of a point cloud using open3D. 

5.2.3 Instance Segmentation 

While preparing for the template matching step, a problem became immediately noticeable. The 

template and the segmented scene component are very different. Primarily, this is because there will 

almost always be more than one of each component in the segmented point cloud, while the template 

generally consists of a singular component. This problem is visualized in the following figure 22. 

 

Figure 22: Incoherence between segmented scene and template point clouds. 

 I came up with two potential ways to get around this problem. The first is to apply some kind of 

instance segmentation algorithm to the already segmented point cloud to simply separate the two poles 

and then replace them individually. The second is to manually rebuild the pole template using CAD models 
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so that it would represent the segmented point cloud with two poles. While the first option might be 

computationally less efficient, since the template matching will have to be run for more instances in total, 

it might also perform better when the point clouds the template matching is done on would be less 

complex. Additionally, reconstructing templates for all the different combinations of poles, as can be seen 

in Appendix C, would take a lot of extra time and would be less scalable than an instance segmentation 

approach. Optimally, a deep learning model should be trained to perform the instance segmentation but 

considering the scope of this project and the point clouds I am working with, a point-neighborhood-based 

algorithm will do the job. 

 My prototype implementation is based on a simple algorithm that will continuously add points to 

a cluster. To add a point to the cluster, it must be within a certain range of the cluster’s current centroid. 

After adding the point to the cluster, its centroid will be recalculated. If a point does not fall within a 

cluster, it will start its own cluster for which future points will checked. Overall, this approach is not very 

scalable, as it requires drastically different neighborhood-radius parameters, depending on how far 

instances are apart from each other, and would not work at all for long, parallel components with very 

little distance between them, such as cables, but it works fine for majority of poles and insulators that it 

has been tested on. In the future, this implementation would need to be replaced with an actual deep-

learning-based instance segmentation model or some kind of graph-based algorithm. 
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Figure 23: Simplistic instance segmentation algorithm. 

After instance segmentation, the instances of the poles for example are automatically separated as can 

be seen in the following figure 24, with red and green representing the different instances. 

 

Figure 24: Instance segmented poles. 



46 
 

In the case of the segmented messenger wire support components, this algorithm meets its 

limitation, as the segmentation results in figure 25.b) show. In this case, the scope of this project 

suggested the manual instance segmentation of these components so that they could still be used for 

testing of the pipeline. The results of manual instance segmentation for the messenger wire supports can 

be seen in figure 25.c). 

 

Figure 25: Segmentation of messenger wire supports. a) Automatically labelled messenger wire supports by the PointNet++ model. 
b) Automatic instance segmentation attempt. c) Manually instance segmented messenger wire supports. 

5.2.4 General RANSAC Implementation 

The next step is to implement the RANSAC loop. For this project it will follow the following pseudo-

code, where the green text represents the actual RANSAC loop: 

1. For each component, repeat: 
2.     For each instance of that component, repeat: 

3.         var best_hypothesis 
4.         var best_score 
5.         Repeat x times: # where x is the maximum number of ransac iterations allowed 
6.             Sample scene point pairs and create a hashmap using their hashed features 
7.             Sample template point pairs and create a hashmap using their hashed features 
8.          
9.             Match scene and template point pairs 
10.              
11.             For each match, repeat: 
12.                 Calculate transformation hypothesis 
13.                 Score transformation hypothesis 

14.                 Update best_hypothesis and best_score if applicable 
15.   
16.         Place CAD model into the scene 
17.         Apply the best transformation hypothesis to the CAD model 
18.   
19. Save Scene 
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As the pseudo-code suggests, I decided to simply set a maximum for the number of RANSAC 

iterations allowed per component instance. Vock et al. [25] suggested the use of a probability framework 

that could estimate the number of iterations most likely needed to find a suitable hypothesis but playing 

with this max-iterations parameter will be effective enough for the prototype, as the template matching 

itself is not going to be particularly computationally slow. 

The main program code for the template matching including my RANSAC implementation can be 

found in Appendix E. 

5.2.5 Point Pair Sampling and Feature Calculation 

The first step in the RANSAC loop itself is the sampling step. I decided on a parameter for the total 

amount of point pairs I want the RANSAC loop to sample on each iteration. Initially, I’ll go with around 

2000 point-pairs sampled. The sampling process is relatively simple: First I create an empty dictionary into 

which the point pairs will be saved, with their hashed features as key. Then, 2000 times, I’ll select a 

random point from the instance point cloud, and the select another point, that is not the same as the first 

point. Then I calculate the feature vector for the point pair as described in chapter 4.5.2 and hash it to 

generate this pair’s index. The purpose of hashing the feature vector is to very quickly be able to identify 

other point pairs that are relationally the same (or at least extremely similar to, as the features will be 

rounded slightly) as this point pair. This is because comparing one integer value with another is much 

faster than comparing four decimal values with four others. Lastly, the point pair is inserted into the dict 

with its hashed features as its key/index. Figure 26 visualizes this process. 
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Figure 26: Point Pair sampling diagram. 

 In the code below you find the implementation of this loop and the calculations of point pair 

features. According to Vock et al. [25] the principle curvatures, or feature four, are not necessarily of 

importance for all types of objects, which is why I did not initially implemented it and set it to 0 in this 

implementation. Since the point pair matching worked to a satisfactory, even if considerably slow degree, 

I focused on improving other areas first. Reimplementing feature four for the point pair features might 

help optimizing the computational performance by decreasing the amount of matches per sampling while 

raising the quality of matches, which would allow for a higher number of iterations with potentially better 

transformation hypotheses. 

 

Figure 27: Point Pair sampling implementation. 
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 One conscious decision at this point was to not only resample scene point pairs, but also template 

point pairs. This might seem like a waste of computational power, but I found that the computational 

power required for the sampling step itself is negligible. Resampling template pairs as well does not 

actually decrease or increase the probability of matches but ensures that the program will never fail to 

execute its task simply because one batch of sampled template point pairs was not suitable for matching 

at all. 

The selection of matched point pairs is straightforward. By looping through all dict keys of the 

scene point pairs, one can easily check in python whether that key also exists in the dict of template point 

pairs. Alternatively, a union function could be applied to the scene and template dict keys, returning the 

union of those to lists. Using numpy [37] for this task is likely the most computationally optimized solution, 

but is unlikely to make a significant difference in the total runtime in comparison to more intensive tasks 

like the scoring of the transformation hypothesis. 

5.2.6 Transformation Hypothesis Generation 

The process of calculating transformation hypotheses is essentially a python version of the linear 

algebra equations introduced in chapter 4.5.2. First the point pairs need to be unpacked and the point 

and normal vectors separated. Then they can be applied to the formulas as can be seen in figure 28. My 

implementation of the formula that calculates the translational vector (cvec in figure 28) appears a little 

different than in the provided formulas. This is most likely because of a flipped coordinate system or a 

difference in the normalization of the dataset between Vock et al. and this project. 

 

Figure 28: Transformation Matrix Hypothesis Implementation with direct representation of formulas. 
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 Figure 29 shows all the hypotheses generated by matched point pairs over one RANSAC iteration 

as applied to the template in yellow. It quickly becomes obvious that around half of these transformations 

are transforming the position of the template in a completely wrong direction. It is possible to exclude 

these transformations from being tested on, by simply checking if the translation vector of the 

transformation matrix is within a certain range of the directional angle between a point of the template 

and the scene. Simply returning “None” instead of a valid transformation matrix allows to easily exclude 

them from the validation step. The results of the removal can be seen in figure 29 in blue and the code 

used for it in figure 30 below. 

 

Figure 29: Exclusion Visualizations: Collections of applied transformation hypotheses of the pole component. In yellow, collection 
of applied transformation hypotheses before exclusion. In blue, collection of applied transformation hypotheses after exclusion. 

 

Figure 30: Hypothesis Exclusion Implementation. 

 Lastly, considering some of the transformation results, I found it worth testing whether removing 

scaling and rotations from the transformations could have a positive effect on the result for some 

components, such as poles, and messenger wire supports, which -based on the available dataset- have 

generally the same orientation. While it isn’t guaranteed that locking rotations (and possibly scaling) for 

some components will make sense in the long run, I found it worth exploring for the scope of the 
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prototype. The following change in code allows me to lock the rotation and scaling of the transformation 

matrix. The results of this alternative are discussed in chapter 6. 

 

Figure 31: Implementation and output difference between rotation/scaling locked and unlocked transformation matrices. 

5.2.7 Transformation Hypothesis Scoring 

 In order to score and evaluate a transformation hypothesis, the hypothesis must first be applied 

to the template. This can easily be done by extending the point vector by one dimension to make it eligible 

to multiply with a 4x4 transformation matrix, which is exactly what is done then. Figure 32 shows the 

numpy-based [37] code used to apply the transformation matrix to a point list. 

 

Figure 32: Applying a transformation matrix. 

 Once a template point cloud has been transformed, the corresponding transformation matrix can 

be scored by comparing the transformed template to the scene’s component instance. To generate a 

score, I wrote what I call a “point-region-overlap” algorithm. It iterates over the points of the template 

and checks whether a scene point is within its immediate vicinity. Since this is a considerably 

computationally unoptimized algorithm, it is slow enough to significantly impact the runtime negatively. 

I therefore instead sampled 100 random points from the template and scored using these 100 points. 

Additionally, to improve performance, I stopped the scoring process once it was guaranteed not to beat 
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the previous best score. In hindsight, this choice may not be optimal, as even slightly lower scores can 

produce better results via fine-alignment later on. 

 The most important parameter of the scoring algorithm is the distance threshold that determines 

the point’s immediate vicinity/neighborhood. I initially experimented with a fixed parameter, but then 

opted to use the scene component point cloud’s resolution, which is essentially the point cloud’s average 

distance of each point to its nearest neighbor, of which my implementation can be found in figure 33. This 

makes sense here, for one because there are no outliers in the instance segmented point clouds, and for 

another because it suggests to limit the positional shift of scene to template at a max of one point distance 

in the case of an “optimal” transformation. My point-region overlap algorithm is shown in figure 34. 

 

Figure 33: Point Cloud Resolution Implementation. 

 

Figure 34: Point Region Overlap Scoring Algorithm. 
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5.2.7 Fine Alignment 

 After finding a hypothesis with a promising score, which is a heuristic I set individually for each 

component throughout testing to achieve workable results, each transformation would be fine aligned. 

The threshold depended primarily on the shape of the component. For example, the score threshold for 

fine aligning the poles was substantially higher than for insulators, because a low score for the poles 

generally suggested a significantly wrong rotation, and the higher scores suggested an already near 

optimal solution that would be significantly less computationally difficult to fine-align. Obviously, an 

argument could be made to attempt to fine align some of the lower solutions as well, but since the fine 

alignment algorithm employed required continuous rescoring using the computationally inefficient point 

region overlap, the computational cost would be too great, and it was overall more efficient to adapt the 

thresholds as described. 

 The fine alignment algorithm I wrote only attempted to realign the template and scene via 

translations, ignoring rotations and scaling. In the future, it is suggested to also fine align rotations and 

scaling, but those would be significantly harder to implement than translations, which is why they were 

ignored in the scope of this project. Additionally, the fine-alignment algorithm employed is incapable of 

retracing its steps once it found a slightly better solution, which while computationally less time 

consuming, is likely to cause it to miss more optimal solutions for more complex components such as 

messenger wire supports. The algorithm was originally intended to function well on simply shaped 

components such as poles and insulators. A future iteration of this algorithm would need to be able to 

retrace its step and iteratively try to fine align the template using a different order of translations. 

 In my implementation, it will first attempt to fine align the template, on the x-, then y-, and z-axis 

respectively. For each axis, it would try to translate the template by increasingly shrinking values starting 

from both 1 and -1. Whenever it finds an improved score, it will attempt the same translation again until 

the score can no longer improve, upon which it would shrink the translation value by 90% and try again 

until a certain threshold is reached. Originally, I set the shrinking to 50%, but 90% resulted in significantly 

better aligned end results, although it was computationally costly. Figure 35 shows examples of the 

algorithm attempting to fine align multiple templates. The blue point cloud is always the transformed 

template before fine-alignment, and the white one is after fine alignment. As is clearly visible, none of 

these are particularly good fine alignments, but they very nicely demonstrate some of the weaknesses of 

the prototype fine-alignment algorithm I implemented. The poles in 35.a) cannot correct for faulty 

rotations, the insulators in 35.b) don’t find back towards the scene object, once they have settled at a 
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slightly better position while putting themselves into a position from which the fine-alignment algorithm 

cannot recover, and the shape of the messenger wire support in 35.c) is too complex for the fine-

alignment to recognize a good path towards the optimal solution. Yet, with the right starting hypothesis, 

this fine-alignment algorithm can still reach very high overlap percentages on each of these components. 

Hence, improving the fine-alignment algorithm is primarily a question of computational efficiency, as less 

iterations would be needed to find a hypothesis that the fine-alignment can optimize. 

 

Figure 35: Fine alignment algorithm failing. 

 Throughout fine alignment, whenever an improvement is found, the transformation matrix would 

also be updated by adding the translation step undertaken by the fine alignment algorithm. My prototype 

implementation consists essentially of the following for-loop three times, for each axis one loop. 
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Figure 36: 1/3 fine alignment implementations. 

5.2.7 CAD Placement 

 The final step of the pipeline is the actual placement of a CAD model into the scene for each 

component using the correct position, rotation, and scaling. For the scope of this project, it was 

determined unnecessary to automate this step, as it has little technical implications on the feasibility of 

the pipeline. Instead, CloudCompare [29] was used to load the CAD model, in the form of an .obj file, 

corresponding to each component point cloud template. Then, the transformation matrix returned by the 

template matching for each instance of a component could be applied to the model, placing the model in 

the same position as the transformed template point cloud. Figure 37 shows this process in visualized 

steps as well as the resulting CAD model scene. The scene could then be saved as a single .obj file and 

converted into the original .std format using FreeCAD [36]. 
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Figure 37: CAD Placement step-by-step using CloudCompare. 

5.2.8 Final Pipeline as Implemented 

 The following figure 38 shows the specific pipeline I implemented for this prototype as explained 

in this chapter. It corresponds to the general pipeline introduced in chapter 4.3. It contains both the full 

pipeline for the general implementation and training of a semantic segmentation model, with the data 

preparation steps unspecific to PointNet++ or this implementation, and the actual pipeline for the 

reconstruction of 3D models, which uses the output of the deep learning pipeline as one of its building 

blocks. 
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Figure 38: Detailed pipeline mirroring the implementation. 
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Chapter 6 - Evaluation 

 In order to evaluate the pipeline, the point-region-overlap heuristic is used, comparing the 

transformed template to the original scene objects. While these scores are heavily dependent on the 

shape of each component itself, the shape parity between template and scene object, and the quality of 

the segmentation results in an earlier step, they do provide information about which components the 

prototype generally struggles to align. 

 In the following table, the average alignment scores of best transformations before and after fine-

alignment for each tested component can be found. Additionally, a comparison between the fully 

calculated transformation matrix and transformation matrices with locked rotation and scaling is included 

as well. 

Component Pre-Fine-Align 

(Unlocked) 

Post-Fine-Align 

(Unlocked) 

 Pre-Fine-Align 

(Locked) 

Post-Fine-Align 

(Locked) 

Poles 0.78 0.95  0.78 0.98 

Insulators 0.66 0.83  0.67 0.77 

Messenger 

Wire Supports 

0.33 0.78  0.33 0.70 

 

Table 2: Average point region overlap of best hypothesis after 100 RANSAC iterations for each component, with and without 
rotations and scaling locked and before and after fine alignment. Data from a single pipeline run using one catenary arch. 

 It is curious, but not entirely illogical that the averages for pre-fine-aligned scores are so similar 

between the rotation/scaling locked and unlocked tests. With enough RANSAC iterations, the algorithm 

should almost always be able to come up with a hypothesis that seems plausible enough. The similarities 

in scores between these two groups suggests that each component has an approximate limit to the 

possible scores without fine alignment. This limit likely depends on the complexity of the shape of the 

component and its relative position to the initial template position. Messenger wire supports have by far 

the most complex shape out of the three components tested as well as the lowest direct resemblance 

between scene objects and template, so the lower score makes sense. 

 For both the insulators and messenger wire supports, the post-fine alignment results of the 

rotation/scaling unlocked group are considerably better than for their locked counter parts, but the 

sample size is hardly significant, given that this is the average data of one run of the pipeline. For both 

components, it is not unlikely that they have benefitted from slight down-scaling transformations, which 

would push more of the template points to overlap with the points from the scene object. While this could 
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also be true for the poles, its lengthy shape causes it to drop significantly more overlap percentages even 

at small rotations on any but the vertical axis, which would explain why the rotation locked group was 

able to outperform the unlocked group marginally. While one would generally expect poles to be standing 

vertical all the time, this does not necessarily have to be true in real world scenarios, especially in the case 

of severely damaged catenary arches, which is why this marginally better performance of the locked group 

is not particularly significant.  

Since these values do not provide a full understanding of the quality of the results of the 

prototype, an additional visual evaluation is in order. By comparing the original point cloud to the 

segmentations and the resulting CAD model, the applicability of the approach can be estimated. Figure 

39 is supposed to provide this visual evaluation, by visualizing all the major steps of the pipeline: semantic 

segmentation, instance segmentation, template matching, and CAD placement. 

 

Figure 39: Visualized steps and result of the pipeline prototype. 
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 As can be seen in Figure 39, the resulting CAD model is not complete, as the prototype was 

primarily tested using three components: the vertical poles, insulators, and messenger wire supports. This 

was mostly due to a lack of available CAD models and time constraints as a result of the scope of this 

project. At the same time, the prototype showed that it can vaguely place a CAD model in the position of 

each scene component instance, which is promising. It clearly struggled with the fine alignment of the 

messenger wire supports, and the 180-degree rotations of the insulators, which all face the same 

direction. Both problems can be solved via an increased fidelity in the template matching and improved 

fine-alignment. Additionally, besides scaling, the prototype was almost able to perfectly place the poles 

into the scene. The only improvement to make here would be to include scaling in the fine-alignment 

algorithm. 

 The general model pipeline introduced in chapter 4.3 holds true and can be considered the 

successful result of this project, alongside the detailed pipeline introduced in chapter 5.2.8. It is reiterated 

here in figure 40. 

 

Figure 40: Confirmed generalized pipeline for the reconstruction of CAD models from point cloud-based railway scenes. 

  



61 
 

Chapter 7 - Conclusion 

 The pipeline developed throughout this project is a successful prototype for the task of 

reconstructing 3D models from point cloud-based railway scenes. The requirement was for the pipeline 

to be able to perform on both the largest and the smallest component of the catenary arch, which it did 

to a degree where future improvements within the frame of the existing pipeline may lead to production-

quality results. The pipeline consists of three primary steps: the segmentation of the catenary arches 

(semantic as well as instance segmentation), iterative template matching for each segmented component 

instance to retrieve an optimal transformation matrix, and finally the CAD placement to generate a 

complete scene 3D model using the transformations. 

 The modified PointNet++ developed by Bram Ton of the Ambient Intelligence Research Group was 

a suitable segmentation model for this prototype, as its results generally allowed for the template 

matching and CAD placement steps to work. It only struggled partially with insulators, the smallest 

components of catenary arches, which required a few adjustments in the data used for the template 

matching. 

 The use of locked rotations and scaling as part of the transformation hypothesis generation step 

of the template matching has shown to have merits in the performance of replacement of certain 

components. Depending on the expected features of the components and the reliability of the scan angle 

and data normalization processes, the future use of locked rotations and scaling for specific components 

such as messenger wire supports is recommended, due to their regular position and orientation within 

catenary arches. 

The conclusion is that the chosen approach of using a point-based deep learning segmentation 

model, alongside point pair feature and RANSAC based template matching to reconstruct 3D models from 

point cloud-based railway scenes using a provided CAD catalogue has been successful.  
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Chapter 8 – Future Work 

 Opportunities for future work have been hinted at throughout the project. They include the 

improvement of the semantic segmentation model or testing of other models, the extension of the CAD 

catalogue, the replacement of the instance segmentation algorithm, and the improvement of algorithms 

used throughout the template matching step, as well as the added automation of multiple steps of the 

pipeline. 

 Firstly, improving the semantic segmentation model would be one of the greatest benefactors to 

the performance of this pipeline. To correctly match the template and scene objects, the scene object 

must be correctly segmented in the first place, which the currently used model struggles with for multiple 

components. A higher accuracy in the segmentation model also allows the scoring of the template 

matching step to be more reliable, leading to better results more easily, as the thresholds for fine-

alignment and acceptable hypothesis can be tightened.  

 Secondly, the current CAD catalogue does not include all components and variants of components 

that can be found in catenary arches. Beyond just extending the CAD catalogue with more models, an 

approach to detecting and handling component variants should be developed towards later stages of the 

improvement of the currently presented pipeline. 

One of the initial assumptions, that of a semantic segmentation model being satisfactory, has 

proven incorrect, or at least partially so. Ideally, in the future, an instance segmentation model should be 

added or placed in the semantic segmentation model’s stead. Alternatively, various instance 

segmentation algorithms could be introduced depending on their reliability for the different components. 

Given the performance of such algorithms throughout this project, I suggest a deep learning or point pair 

feature based approached for the instance segmentation. 

As mentioned in chapter 5.2.5, it may be worth considering the implementation of the fourth 

feature for the point pair feature-based template matching. It is currently set to zero and implementing 

it may raise the quality of matches while lowering the overall quantity, allowing for a larger number of 

iterations and therefore a higher chance to get good results for less computational power. 

 An improved scoring heuristic for the template matching step should be tested or developed. The 

current template matching scoring algorithm is computationally slow and is not neutrally interpretable 

between components, as the relationship between the score and the quality of the transformation 

hypothesis is currently heavily dependent on the accuracy of the semantic segmentation model as well as 
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the instance segmentation. To reliably automate this pipeline in the future, a more consistent method 

should be introduced. 

 Finally, the prototype pipeline is not fully automated in its current implementation. Due to the 

unreliability of the instance segmentation, this step is not automated for all components, and would have 

to be replaced as mentioned previously. Additionally, the actual CAD placement step using optimal 

transformation matrices has also not been automated in the scope of this project. It might be possible to 

do so using FreeCAD or potentially using other 3D scene manipulation libraries for python or other 

languages.  
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Appendix A: Ethical Assessment Paper 

1. Introduction 

The purpose of this paper is the ethical assessment of the graduation project of student Zino J. Vieth 

of the University of Twente in the Winter semester of 2021/22. The topic of the graduation project is 

named as “Point Cloud Classification and Segmentation for Catenary Systems” and the research focus is 

the development of a data pipeline for the reconstruction of 3D models from a point cloud-based railway 

scene for the creation of a digital twin. 

First, the project will be introduced in detail and key concepts will be explained. Then, starting in 

chapter 3, overarching ethical dilemmas will be discussed regarding their relevance to the specific project, 

before design decisions and their moral basis in the form of ethical codes and principles is investigated. 

The project will then be put in relation to the UN’s sustainable development goals. Lastly, the project’s 

impact, limitations, and implications for the future will be briefly concluded based on the previous 

discussions. 

2. Project Description 

The Dutch railway network is the pillar of public and ware transport in the Netherlands, making it 

an invaluable piece of infrastructure that many people rely on daily. This reliance makes failures and 

delays within this system all the more impactful and noticeable to the quality of life, but also financial 

ventures of Dutch citizens. With around 6830 km of track as of 2014 [1], the maintenance and monitoring 

of the entire system has become a mammoth task, difficult to handle manually, as it requires trained 

experts to identify broken equipment, or those that might be at risk of faulty behaviour in the near future. 

To improve the efficiency and safety of the network, the Dutch railway companies ProRail [2] and Strukton 

Rail [3] have begun an extensive digitalization program. 

One of the fields of focus for Strukton Rail is the digitalization of the catenary system, which refers 

to the system of overhead electricity lines and the corresponding arches and equipment. The long-term 
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goal is the creation of a digital twin1 of the entire catenary system, which would help with the 

documentation and if consistently updated via real-world scans with the monitoring and maintenance of 

the system. Strukton Rail tasked the Saxion University of Applied Science’s Ambient Intelligence Research 

group (AMI) [4] with the development of relevant technologies for this goal. The graduation project in 

question lies within the scope of the development of these technologies. 

The graduation project’s goal is the development of a data pipeline2 for the reconstruction of 3D 

models from point cloud3-based railway scenes generated via LiDAR4 scans. This project can be divided 

into two phases: First, the implementation of a deep-learning5 model for segmenting6 the point clouds of 

catenary arches into the various components of the arch; Second, the replacement of each object in the 

point cloud with a correctly aligned 3D model provided by Strukton. Together, these major steps form a 

data pipeline which takes a LiDAR scan of a catenary arch as input and returns a 3D model of the same 

arch as an output. Given the fidelity of the data provided for this project and the state of the art of 3D 

point cloud segmentation models, which is still in a developmental phase, this project aims to deliver a 

prototype able to show that the chosen methods are applicable for the creation of a digital twin on this 

scale. Appendix B shows one of the primary outcomes of this project: the draft of the data pipeline for the 

reconstruction of 3D models from point cloud-based railway scenes. The other outcomes are in the form 

of the code actually implementing this pipeline, and the associated report detailing the workings of the 

pipeline. 

 

1 Digital Twin – “a virtual representation that serves as the real-time digital counterpart of a physical object or 
process” (Wikipedia, as of Jan 2022). In this case, a digital representation of the Dutch railway’s catenary system 
via 3D models. 
2 Data Pipeline – “a set of data processing elements connected in series, where the output of one element is the 
input of the next one” (Wikipedia, as of Jan 2022). 
3 Point Cloud – “a set of data points in 3D space” (Wikipedia, as of Jan 2022). 
4 LiDAR (Light Detection and Range) – “a method for determining ranges by targeting an object with a laser and 
measuring the time for the reflected light to return to the receiver” (Wikipedia, as of Jan 2022). Strukton used 360° 
LiDAR scanners mounted on trains to capture point clouds of railway scenes including 13 catenary arches to be 
used for this project. 
5 Deep Learning – “a part of a broader family of machine learning methods based on artificial neural networks with 
representation learning” (Wikipedia, as of Jan 2022). Essentially, a method by which a computer is allowed to learn 
the features and patterns of data by providing it with a lot of it. Based on the generated understanding of these 
patterns, a trained deep learning model is able to predict an output for a specific input. 
6 Semantic Segmentation – “the process of assigning a label to every pixel in an image” (beyondminds.ai, as of Jan 
2022), or every point in a point cloud, so as to associate that point with a specific object, for example the poles of 
the catenary arches, or other components such as insulators, wires, etc. 
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On one hand, the client of this project is Strukton Rail, and the data pipeline is more specifically 

developed for use by their data scientists. On the other hand, this project aims to deliver a prototype of a 

data pipeline, the feedback of which the researchers of AMI can use to continue developing the best 

possible technologies for the digitalization of the railway’s catenary system. It is therefore not the purpose 

of this project to deliver a final product, interface, or program testable for usability or ethical impact. 

In a previous project, AMI has begun the development of a PointNet++-based semantic 

segmentation model and tested it against various other state of the art models, such as the Super Point 

Graph model and the Point Transformer model. In that process, various preprocessing steps have been 

performed on the dataset provided by Strukton Rail, such as cleaning7, isolating the thirteen catenary 

arches into separate files, labelling8, down-sampling9, and augmenting10 the data. 

In my part of the project, I am working with this preprocessed data, and reimplement the deep 

learning model developed by AMI into the data pipeline in the first phase of this project. In the second 

phase, completely new technologies are introduced and tried for their applicability to the 3D model 

reconstruction pipeline. I work on this project, the entire data pipeline, autonomously as an intern at AMI, 

with the supervision and assistance of their researchers where required. Appendix A shows the structure 

of the project at AMI and where my work connects to theirs.  

My personal interest in this project stems from its technical nature and its relevance to public 

infrastructure. I believe that public transport is going to be one of the public sectors with the most exciting 

and observable changes in the future, which is why I decided to dip my toes into this vast field through 

this project. While this project is very much under the hood and does not include any significant user 

interactions, the changes that deep learning technologies will bring to transportation will greatly influence 

how people behave and move around their cities and countries. 

From a Creative Technology standpoint, this project is a little bit atypical, as it does not really 

contain a human-centered component, but I decided it is best to take the opportunity to look into a more 

 

7 Data Cleaning – the process of removing irrelevant or faulty points from the point clouds, in this specific example, 
such as the scanned trees and foliage next to the tracks. 
8 Data Labelling – the manual process of assigning a label to each point in the point cloud. Each label represents an 
object, such as a pole or insulator. 
9 Down-Sampling – the usually heuristic-based process of selecting data points to actually be used by the machine 
learning algorithms, as to reduce the computational load in comparison to using the entire dataset. 
10 Augmentation – the generation of additional, slightly modified data sets from existing data to enhance the 
training phase of a model by providing it with more unique arches to learn from. 
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technical topic while I am still at university, as I’ve always been most interested in the technical 

components of previous projects, but rarely had the chance to go into depth with it. 

3. Discussion 

In this chapter, ethical and philosophical issues related to this graduation project will be articulated, 

their impact on the design process discussed, and possible solutions analyzed. Additionally, this projects 

correspondence with the UN Sustainable Development Goals will be considered. 

Generally, the lack of public end consumers and the nature of a data pipeline prototype would suggest 

relatively little direct personal impact. Yet, the larger ramifications and consequences of the project and 

the field of digitalization that it underlies, as well as the project’s impact on the client, the data scientists 

of Strukton Rail and researchers of AMI will be considered. 

3.1 Ethical Dilemmas 

Commonly, the topic of artificial intelligence raises a variety of notoriously debated ethical 

dilemmas, few of which it is feasible to discuss to a satisfactory degree while maintaining the scope set by 

this graduation project. Yet, there are two for which the nuances presented by this application of artificial 

intelligence are worth discussing: the dilemma of automation and artificial intelligence replacing humans 

in the workforce, and that of the AI black-box. Beyond those, I will discuss this project’s potential 

economic ramifications, and the pitfall of documentation in the form of malevolent use of it. 

First, artificial intelligence and automation technologies have been reducing the need for manual 

human labour and pushed numerous professions to extinction. According to McKinsey [5], hundreds of 

millions of jobs will be lost to automation by 2030, and the improvement of artificial intelligence and 

computer vision technologies that this project relies on are certainly an important factor in that 

development. The task of manually monitoring the catenary system of the Dutch railway is likely to 

become obsolete as the result of the greater vision that this graduation project belongs to. Yet, this task 

was previously done on a considerably low and inefficient scale as the railway simply does not have access 

to enough experts to monitor the entire network sufficiently. At the same time, the experts that would 

previously manually monitor the catenary system would still be required to do so in the future, simply 

using the Digital Twin of the catenary system as a tool to do this task more effectively and on a larger 

scale. While it is not impossible that the railway companies may have a decreased need for catenary 
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system experts, this profession would not be entirely replaced by the outcome of this project. 

Concurrently, new jobs for data scientists and IT personnel may be generated to improve and maintain 

the digital twin. Therefore, I conclude that the upsides of this project, improved efficiency and safety of 

the railway network and generation of jobs for data scientists and IT professionals far outweighs the 

minimal loss of manual labour jobs. 

Second, the dilemma of the AI black-box has fairly little ethical implications for this project. The 

AI black-box problem is defined by the lack of interpretability or understanding of an outsider in the 

operations of an artificial intelligence model. For one, this problem has severe implications on the public’s 

trust and acceptance of artificial intelligence in their everyday life [6], but also on the question of 

accountability for an AI’s failure. If the AI is the only entity able to understand the reasoning of its decision, 

who but the AI itself should be held responsible for this decision? A detailed discussion of this problem is 

fortunately not applicable to this project, as the AI involved in this project, in the form of a semantic 

segmentation deep-learning model, does not make actually impactful or end-result deciding decisions. It 

acts merely as a single process in a data pipeline to decrease the amount of manual labour required. This 

quickly points at a design need for the data pipeline: it needs to be designed to allow data scientists to 

correct for inaccurate predictions by the AI and manually add or modify missing parts in the digital twin. 

This can be easily done by comparing the scanned catenary arch (which also serves as the input for the 

data pipeline) and compare it visually to the output 3D model. Additionally, spatial approximation 

algorithms can automatically detect whether certain regions of the input point cloud have not been 

replaced by a template 3D model and alert the data scientists operating the pipeline as such. Therefore, 

the AI black-box dilemma has no real ethical ramifications, as the data-scientists do not need to rely on 

trusting the AI’s predictive ability in this specific application of AI. 

The third notable ethical consideration relevant to this topic in general is that of the economic 

consequences of improving the reliability and efficiency of the railway system and ware transport in 

general. Generally, it could be argued that improving the transport infrastructure may benefit already 

large corporations who can easily corner the market in local communities due to their advantage of 

production efficiency, if the transportation barriers are further removed. At the same time, research by 

Gaus and Link [7] as well as Polyzos and Tsiotas [8] suggests that high quality and quantity of 

transportation infrastructure positively effects regional economies and their potential for growth. While 

concerns for the sustainable development of a region are warranted, according to Prus and Sikora [9], 

transportation and globalization are trends bound to continue developing, and this project or even the 
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digitalization project overall are unlikely to cause any notable negative consequences, if at all. On the 

other hand, the quality of life improvements and financial opportunities that will be generated by a more 

efficient and reliable railway system are likely to be significant. Therefore, this project is unlikely to affect 

the overall trend of development of transportation infrastructures, but aims to simply improve the 

existing system, which will have next to no negative economic ramifications. 

The last ethical dilemma to discuss is the argument that improved documentation may make the 

railway network more accessible for malevolent intentions, for example the more effective manipulation 

or damaging of railway equipment, in this case overhead electricity equipment. While it is true that a well-

documented system may be easier to damage should individuals with malevolent intentions get hold of 

this documentation, but the system is also more easily repairable, and damage can be more quickly 

identified through digitalization. Additionally, the documentation, in the form of a digital twin is, as far as 

the development team is concerned, not meant to be a public asset, but to be used exclusively by the 

companies in charge of monitoring, maintaining, and developing the network. This fact alone suggests 

that this is more of a security issue than an ethical dilemma. Almost any tool designed to help with a task 

may be used to harm in the hands of malevolent individuals. Therefore, the ways in which the digital twin 

may be used malevolently are neglectable and likely to be negated by its positive effect on maintenance 

and monitoring. 

Finally, it is worth noting that the LiDAR scanners employed to capture the catenary arches in this 

project do not pose a privacy threat, as they are not of photographic nature and individuals that are 

possibly captured by the scanners while near the tracks are not identifiable. Hence, there is no ethical 

privacy issue to be discussed. 

3.2 Ethical Codes and Moral Principles 

Ethical codes are a useful tool for decision making and design processes in engineering projects. 

Given the discussion of ethical dilemmas, the project itself may not seem to be of significant ethical 

consequence, but there is still a need to consider ethical behaviour and decision making in many minor 

aspects of the project. While the ethical dilemmas highlighted overarching ethical questions and the 

ethical soundness of the intention of the project, the employment of an ethical code and key moral 

principles may help to make important decisions within the project itself. Though first one must choose a 

code that reflects the nature of the project well. 
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This engineering project can be considered to lie within the fields of data science and software 

engineering, for both of which specific codes exist. When comparing a general engineering code such as 

the IEEE Code of Ethics [10] and field specific codes such as the joint ACM/IEEE-CS Software Engineering 

Code [11] or the Data Science Association’s Data Science Code of Professional Conduct [12], it quickly 

becomes clear that the field specific codes consider more typical activities of their field more closely, while 

the IEEE code is very general about upholding “the highest standards of integrity, responsible behaviour, 

and ethical conduct in professional activities” [10]. The software engineering code for example highlights 

the importance of adequate testing, debugging and reviewing of software, as well as documentation of 

code and tracking of errors and bugs [11]. The data science code of professional conduct on the other 

hand outlines the correct use of data science terminology and statistical methodology [12]. Both of these 

specifications are significant for the ethical completion of this graduation process, as correct and accurate 

documentation as well as truthful and precise reporting of statistical results are paramount to the client–

student relationship of this project, as will be further discussed by the use of moral principles. 

The majority of code of ethics are based on a certain set of moral principles which can be applied 

in different ways to specific professional fields. One of the original works on moral principles by Kitchener 

[13] outlined the five principles of autonomy, non-maleficence, beneficence, fidelity, and justice, with 

veracity being introduced by later works, such as that of Meara, Schmidt and Day [14]. In consideration of 

the Data Science Code of Professional Conduct [12] and the Software Engineering Code [11] I determined 

all but justice to be a moral principle worth discussing in the scope of this project. 

The principle of autonomy refers to respecting a person’s right to make his or her own decisions. 

In this project, this mostly translates to my responsibility as an engineer to provide the client with code 

and documentation which allows them to autonomously manipulate and change the data pipeline to their 

needs or change in requirements at a future date. It is therefore important to deliver well documented 

and flexible code, especially in terms of data transformations performed throughout the pipeline. 

The principle of beneficence refers to the intention of acting to the benefit of another. Since the 

researchers of AMI and data scientists at Strukton Rail are the target audience/users of the project’s 

outcome, they should be the primary recipients of this beneficence. The data pipeline should therefore 

be designed in a way that makes their life easier. This may manifest itself by providing dynamic input 

options, clear documentation, but also by not requiring specific and manual-work intensive data formats 

for inputs and outputs. 
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The principle of non-maleficence has a similar nature of that of beneficence, but more specifically 

states the developer’s intention to do no harm. In the case of this project, this can be achieved by 

considering each design decision from the perspective of the target audience and ask “How will this 

decision affect the data scientist or researchers?”. For the most part, this has affected design decisions 

regarding inaccuracies and failure cases. For example, if the AI is unable to detect a certain number of 

points for a component that would normally have a lot more points, the data scientists need to be 

informed of potential inaccuracies in the detection of this component. Similarly, if no 100% accurate 

transformation hypothesis can be generated for the placement of a 3D model in the 3D scene, this 

inaccuracy must be clearly labeled to make sure that the data scientists have the opportunity to correct 

it. 

The principle of fidelity refers to the faithfulness of the developer to the client. It is important that 

the client’s requirements are considered with at least as much importance as the developer’s own 

opinions and possible conflicts are discussed and resolved with an agreement on an appropriate course 

of action. In the case of this project, very few concrete requirements have been provided by the client 

besides the general idea of the data pipeline, its input and output, as well as the data given for training 

and testing. It is therefore mostly necessary to stay faithful to the format of the provided data and not 

modify to a degree that cannot be feasibly incorporated in the data pipeline itself. 

The principle of veracity refers to truthfulness. In the case of this project, truthfulness is especially 

important in the documentation of the pipeline’s limitations. Potential quirks and inaccuracies in the 

various employed algorithms and heuristics need to be detailed, to ensure that future work is equipped 

to deal with them. Similarly, the different use cases and the pipeline’s performance on each of them has 

to be truthfully reported, as do its tested or untested limitations on specific datasets or components of 

the catenary arches. For example, majority of the development for phase two has been done with the 

pole component in mind. The potential limitations when using this pipeline on significantly differently 

shaped components must be clarified. 

3.3 Ethical Analysis 

3.3.1 The Accountability Problem 

The problem of accountability becomes quite complex once artificial intelligence is introduced as 

an autonomous decision maker into a system. However, in the case of this project, the accountability for 
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failure cases at different points along the data pipeline can be clearly sketched via flowchart analysis as 

introduced by Fleddermann [15]. 

 

Figure A1: Flowchart Analysis of Failure Accountability 

In the figure above (Figure 1), the responsibilities for failure cases between the developers of the 

data pipeline (aka me) and the users of the data pipeline, the data scientists at Strukton rail, are sketched 

out. The first decision clarifies that the developer is not responsible for faults in the product of the end 

result for which the data scientists have been using the tool. The only path to a developer’s responsibility 

in this project is if the data pipeline produces inaccurate results due to undocumented inaccuracies/quirks 

within the data pipeline. In the case of this project, there is no case in which responsibility can be assigned 

to the AI/deep-learning model, as its accuracies are either undocumented, in which case it is the 

developer’s fault, or documented, in which case there is no failure reportable beyond the expected margin 

of error. 

3.3.2 Influence on Local Economies 

Previously, the potential influence of this project’s improvement to transport infrastructure’s 

efficiency and safety on local economies has been discussed and determined to be negligible. Yet, it may 

be worth to consider the potential scenarios and their ethical assessment. To do so, Fleddermann’s line 

drawing analysis [15] can be employed. Essentially, a scale between a positive and a negative paradigm is 

drawn, on which the expected problem and scenarios can be placed in relation to each other. 



77 
 

 

Figure A2: Line Drawing Analysis of Economic Impact 

3.4 UN Sustainable Development Goals 

In a globalized world, in which the environmental and social impact of individual companies 

outdoes that of entire countries [16], global guidelines for ethical and sustainable development are 

becoming increasingly relevant. To provide such guidelines, the UN has published a list of 17 goals as a 

call to action for companies and governments to ensure the preservation of our home and the equal 

treatment and availability of opportunity to all humans [17]. Aligning the development of new 

technologies with these goals should therefore be a universal concern. This project more or less directly 

relates to three of the 17 sustainable development goals (SDGs): “Industry, Innovation, and 

Infrastructure”, “Sustainable Cities and Communities”, and “Responsible Consumption and Production”. 

Goal 9 of the SDGs states to “build resilient infrastructure, promote inclusive and sustainable 

industrialization and foster innovation” [17]. This project aims directly at improving the reliability and 

efficiency of transport infrastructures. Within this goal, it will especially aid with target 9.1, which states 

to “develop quality, reliable, sustainable, and resilient infrastructure, including regional and transborder 

infrastructure, to support economic development (…)” [17]. More reliable transport is likely to open up a 

variety of economic opportunities, while increasing the efficiency of maintenance and monitoring of the 

railway system will make it more resilient and sustainable. 

Goal 11 of the SDGs states to “make cities and human settlements inclusive, safe, resilient and 

sustainable” [17]. Reliable local train transport is an important factor for the quality of life and 

sustainability of cities. Target 11.2 of this goal states to “provide access to safe, affordable, accessible and 

sustainable transport systems for all” [17]. The improvement of monitoring and maintenance systems for 
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the railway network will inevitably make local transport more affordable and sustainable by reducing 

system failures and delays through early damage detection. 

Goal 12 of the SDGs states to “ensure sustainable consumption and production patterns” [17]. In 

the railway network, nearly-expired or damaged equipment will commonly only be detected by the time 

it has caused a system failure, potentially damaging other components in the process. By monitoring the 

entire network via LiDAR scanners and deep-learning technologies, any potentially expiring equipment 

can be identified early and fixed, which will reduce the number of new components that need to be 

manufactured and therefore also reduce the resource consumption of the railway network as a whole. 

4. Conclusions 

4.1 Impact Statement 

This project stands as a prototype for the process of developing a digital twin of the catenary 

system of the Dutch railway, a key process in the digitalization efforts of Strukton Rail, the client of this 

project. Ethically, no major concerns have been raised about this specific project nor the overarching 

digitalization undertaking, beyond the potential loss of manual labour jobs in the monitoring tasks. 

As a driver for change, the outcome of this project will primarily function as a skeleton for the 

future development of a digital twin, based on this or modified implementations of the designed data 

pipeline. Its recommendation for technologies and their initial implementation should allow for rapid 

process in the development of a digital twin, once other hurdles, such as the low accuracies of deep 

learning models for the segmentation of catenary arches, have been overcome. 

4.2 Limitations 

On a technical level, the prototype is considerably limited in comparison to the overall vision of a 

pipeline for the development of a digital twin. For one, computing efficiency is not fully optimized, which 

may make large scale employment near impossible. Secondly, the deep-learning model implemented into 

the data pipeline is not trained for all possible components and their various versions and is significantly 

inconsistent in terms of the accuracy with which it identifies different components. For example, it 

performs significantly better on larger components such as poles than on smaller components such as 

insulators. Lastly, the dataset used for training and development of this pipeline was simply a small sample 

which underwent various preprocessing steps. Future versions of the pipeline would have to be adapted 
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to the datasets used at production-level, of which the structure and fidelity is not known at this point in 

time. 

The client is aware of those limitations and the project was planned with them in mind, which 

leaves no ethical uncertainties in the client-student relationship of this project. The project is meant to be 

of developmental and experimental nature, of which the results should be provided in a shape usable to 

the researchers at AMI, which makes documentation and code clarity the number one ethical 

responsibility of this project. 

4.3 Implications for the Future 

Digitalization is a nearly unstoppable process that will slowly encompass all aspects of our lives 

over the coming years. In most cases, this could be considered for the better, for example in the 

infrastructure sector. Monitoring via digital twins will make transport for example significantly more 

reliable in the long term, and deep-learning and computer vision technologies employed in this project 

will play a major role in perfecting that. At the same time, the digitalization of cities and human life 

through AI will bring with a wave of ethical dilemmas, as well as privacy and security uproars. Just 

considering the access question brought up by the fourth ethical dilemma discussed earlier. In a digitalized 

world, how will access privileges be handled, and how will they influence the power dynamics of the 

world. In comparison to an analogue world, in which access to any kind of data or decision making 

generally comes with physical and time-consuming boundaries, these limitations may essentially be 

eliminated and raise the potential power individuals hold over information and decisions exponentially. 

In the context of railway’s catenary systems, this may not be a significant concern though, so the 

implication of this digitalization project in particular is primarily positive because of it boosting the 

reliability and efficiency of the railway infrastructure in the Netherlands, which will improve the quality of 

life for residents, open up cheaper economic opportunities, and reduce the waste of resources used in 

the maintenance of the system.  
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Appendix B: Flowchart Legend 

 

Figure B1: Flowchart Legend 

  



83 
 

Appendix C: All Catenary Arch Point Clouds 

 

Figure C1: 01_01.laz 

 

Figure C2: 01_02.laz 

 

Figure C3: 01_03.laz 
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Figure C4: 02_02_bram.laz 

 

Figure C5: 02_03.laz 

 

Figure C6: 02_04_bram.laz 
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Figure C7: 03_01.laz 

 

Figure C8: 03_03_bram.laz 
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Figure C9: 03_03.laz 

 

Figure C10: 03_04_bram.laz 
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Figure C11: 04_01.laz 

 

Figure C12: 04_02_bram.laz 

 

Figure C13: 04_03_bram.laz 
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Figure C14: 04_04_bram.laz 
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Appendix D: Used CAD Models 

 

Figure D1: CAD Model of Messenger Wire Support 

 

Figure D2: CAD Model of Insulator 

 

Figure D3: CAD Model of Pole 
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Appendix E: Template Matching Notebook 
1. %reload_ext autoreload 

2. %autoreload 
3.  
4. import pickle 
5. import time 
6. import numpy as np 
7. from ppf import Labels, load_scene, load_instances, load_templates, normalize, save_pc, 

generate_normals, voxel_down_sample, pc_resolution, bounding_box_diameter, 
segment_instances, retrieve_ppf, generate_hypothesis, point_region_overlap, 
apply_transformation, fine_align, add_translation  

8.  
9. # Imports and settings 
10. INFILE = '03_02_bram_pred.laz' 
11. INTYPE = Labels.PREDICTED 
12. DATA_DIR = '/home/jupyter-zino/Data/data/data_train/' 
13. TEMPLATE_DIR = '/home/jupyter-zino/Data/data/templates/' 
14. INSTANCE_DIR = '/home/jupyter-zino/Data/data/instances/' 
15.  
16. MAX_PAIRS = 2000 
17. MAX_RANSAC_ITERATIONS = 10 
18.  
19. INSTANCE_INPUT = { # if this is none, instances will be automatically segmented 
20.     2: '03_02_bram_pred_2.laz', 
21.     5: '03_02_bram_pred_5.laz', 
22.     6: None 
23. } 
24.  
25. SAVE_SCALE = { 
26.     2: 0.000000001, 
27.     5: 0.0000001, 
28.     6: 0.000000001 
29. } 
30.  
31. TARGET_OVERLAP = { 
32.     2: 0.01, 
33.     5: 0.1, 
34.     6: 0.5 
35. }  
36. FINE_TARGET_OVERLAP = { 
37.     2: 0.25, 
38.     5: 0.25, 
39.     6: 0.975 
40. } 
41.  
42. COLOURS = [ 
43.     [255, 0, 0], # red 
44.     [0, 255, 0], # green 
45.     [255, 255, 0], # yellow 
46.     [0, 255, 255], # acqua 
47.     [255, 95, 0], # orange 
48.     [255, 175, 255], # pink 
49.     [135, 175, 255], # dark green 
50.     [221, 0, 210] # purple 
51. ] 
52.  
53. VOXEL_SIZE = { 
54.     2: 0.005, 
55.     5: 0.001, 
56.     6: 0.01 
57. } 
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58. INSTANCE_DISTANCE = { 
59.     2: 0.0365, # not used 
60.     5: 0.05,  # not used 
61.     6: 0.5 
62. } 
63.  
64.  
65. def print_transform(matrix): 
66.     for row in matrix: 
67.         print(f"{row[0]} {row[1]} {row[2]} {row[3]}") 

1. # Main 
2. %autoreload 
3.  
4. if __name__ == "__main__": 
5.  
6.     # load template point clouds 
7.     labels_template, template_points = load_templates(TEMPLATE_DIR) 
8.     print("-> Loaded templates for labels", labels_template) 
9.  
10.     # load segmented scene point clouds 
11.     labels, seg_points = load_scene(DATA_DIR, INFILE, INTYPE) 
12.      
13.     for l in labels: 
14.         print("--------------------------------------------------------------------") 
15.         print("--Running template matching and pose estimation for object with label", l) 
16.          
17.         if l not in labels_template: 
18.             print("-> No template was found for label", l) 
19.             continue 
20.  
21.         tp = template_points[l] 
22.         tp = voxel_down_sample(tp, voxel_size=VOXEL_SIZE[l]) # for manual 
23.         save_pc(np.asarray(tp), COLOURS[3], f"{l}_template_sampled", SAVE_SCALE[l]) 
24.         tp_wn = generate_normals(tp) 
25.         tp_resolution = pc_resolution(tp) 
26.  
27.         sp = seg_points[l] 
28.         sp = voxel_down_sample(sp, voxel_size=VOXEL_SIZE[l]) # for predicted 
29.         print("Sampled", len(sp), "points for this object.") 
30.          
31.         sp_resolution = pc_resolution(sp) 
32.         sp_diameter = bounding_box_diameter(sp) 
33.         print("Segmented object has a point cloud resolution of", sp_resolution, 'and 

bounding box diameter of', sp_diameter) 
34.  
35.         ins_sp = None 
36.         if INSTANCE_INPUT[l] is not None: 
37.             ins_sp = load_instances(INSTANCE_DIR, INSTANCE_INPUT[l]) 
38.         else: 
39.             ins_sp = segment_instances(sp, sp_diameter, INSTANCE_DISTANCE[l]) 
40.              
41.         print(f"Segmented {len(ins_sp)} instances for component {l}.") 
42.  
43.          
44.         for i, ins in enumerate(ins_sp): 
45.              
46.             print("--------------------------------------------------") 
47.             print(f"Matching for instance {i+1}/{len(ins_sp)} of object {l}.") 
48.              
49.             if len(ins) < 5: 
50.                 print(f"- !Not enough points found for this instance ({len(ins)}). Continue 

with next.") 
51.                 continue 
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52.              
53.              
54.             if INSTANCE_INPUT[l] is not None: 
55.                 ins = voxel_down_sample(ins, voxel_size=VOXEL_SIZE[l]) 
56.                  
57.             save_pc(ins, COLOURS[i], f"{l}_{i}") 
58.      
59.             ins_diameter = bounding_box_diameter(ins) 
60.             sp_wn = generate_normals(ins) 
61.  
62.             # RANSAC Loop 
63.             best_hypo = None 
64.             pre_score = 0 
65.             best_score = 0 
66.             total_applied = [] 
67.             ins_done = False 
68.             for ransac_i in range(MAX_RANSAC_ITERATIONS): 
69.                 if ins_done: 
70.                     print(f"Completed alignment of instance {i} of object {l}.") 
71.                     break 
72.                  
73.                 ransac_start = time.perf_counter()*1000 
74.                  
75.                 # randomly sample point pairs and their features 
76.                 pairs = retrieve_ppf(sp_wn, ins_diameter, MAX_PAIRS) 
77.                 template_pairs = retrieve_ppf(tp_wn, ins_diameter, MAX_PAIRS) 
78.  
79.                 # generate hypothesis by comparing with template ppfs 
80.                 i_matched = [] 
81.                 n = 0 
82.                 for key in pairs: 
83.                     if key in list(template_pairs.keys()): 
84.                         n += 1 
85.                         i_matched.append(key) 
86.      
87.                 local_best = 0 
88.                 for j, index in enumerate(i_matched): 
89.                      
90.                     # create hypothesis 
91.                     hypothesis = generate_hypothesis(pairs[index], template_pairs[index]) 
92.                     if hypothesis is None: 
93.                         continue 
94.  
95.                     # apply hypothesis 
96.                     tp_applied = apply_transformation(tp, hypothesis) # not yet implemented 
97.                     total_applied = [y for x in [total_applied, tp_applied] for y in x] 
98.  
99.                     # score hypothesis 
100.                     score = point_region_overlap(tp_applied, ins, pre_score, 

th=3*sp_resolution/2) # too slow atm, th:experimental threshold value 
101.                      
102.                     local_best = max(local_best, score) 
103.                     best_score = max(best_score, score) 
104.                     pre_score = max(pre_score, score) 
105.                      
106.                     if score >= TARGET_OVERLAP[int(l)]: 
107.                         tp_applied, score, fine_matrix = fine_align(tp_applied, ins, 

best_score, th=3*sp_resolution/2) 
108.                         hypothesis = add_translation(hypothesis, fine_matrix) 
109.  
110.                         if best_hypo is None or score > best_score: 
111.                             best_hypo = hypothesis 
112.                             best_score = score 
113.                          
114. #                         if score >= FINE_TARGET_OVERLAP[int(l)]: 
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115. #                             save_pc(tp_applied, [255, 255, 255], f"{l}_{i}_applied") 
116. #                             ins_done = True 
117. #                             break 
118.                          
119.                 ransac_time = int(time.perf_counter()*1000 - ransac_start) 
120. #                 print(f"-- Best hypothesis' point region overlap: {local_best}, in 

{ransac_time}ms.") 
121.                  
122.             print(f"- RANSAC complete with best score {best_score} and pre_score 

{pre_score}.") 
123.              
124.             if best_hypo is None: 
125.                 continue 
126.                  
127.             print_transform(best_hypo) 
128.              
129.             # Fine align and save transformed point cloud 
130.             tp_applied = apply_transformation(tp, best_hypo) 
131.             save_pc(tp_applied, [255, 255, 255], f"{l}_{i}_applied", SAVE_SCALE[l]) 
132.              
133. #             if len(total_applied) > 0: 
134. #                 save_pc(total_applied, [0, 0, 255], f"{l}_{i}_total_applied", 

SAVE_SCALE[l]) 
135.      
136. print("Finished") 
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Appendix F: Auxiliary Code Display (ppf.py) 

1.  from enum import Enum 
2. import laspy 
3. import numpy as np 
4. import open3d as o3d 
5. import random 
6. import time 
7. import math 
8. from scipy.spatial import distance 
9. from scipy.spatial.transform import Rotation 
10. from pathlib import Path 
11. import mmh3 
12.  
13. class Labels(Enum): 
14.     MANUAL = 0 
15.     PREDICTED = 1 
16.  
17.      
18. # LAZ Loading and Saving -------------------------------------------------------------------

--------------------------------- 
19.  
20. ''' Load Segmented Input Point Cloud 
21. ''' 
22. def load_scene(directory, file, label_mode: Labels): 
23.  
24.     file = directory + file 
25.     print("----------------------------------------") 
26.     print("--Attempting to load scene from:", file) 
27.            
28.     with laspy.open(file) as fh: 
29.         las = fh.read() 
30.          
31.         lbl = None 
32.         try: 
33.             if label_mode == Labels.MANUAL: 
34.                 lbl = las.label 
35.             else: 
36.                 lbl = las['class'] 
37.         except ValueError as e: 
38.             raise e 
39.          
40.         pc = np.stack([las.x, las.y, las.z], axis=1) 
41.          
42.         if label_mode == Labels.MANUAL: 
43.             pc = normalize(pc) 
44.          
45.         save_pc(pc, [0, 255, 0], "03_02_post") 
46.          
47.         labels = np.unique(lbl) 
48.  
49.         print("--Total points:", len(pc)) 
50.         print("--Found labels:", labels) 
51.         print("--Sorting objects:") 
52.          
53.         # For each label 
54.         objects = {} 
55.         for i in labels: 
56.             objects[i] = np.delete(pc, np.where(lbl != i), axis=0) 
57.             print("Sorted ", i, "with length", len(objects[i])) 
58.              
59.         print("----------------------------------------") 
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60.         return labels, objects 
61.      
62. def load_instances(directory, file): 
63.      
64.     file = directory + file 
65.     with laspy.open(file) as fh: 
66.         las = fh.read() 
67.          
68.         pc = np.stack([las.x, las.y, las.z], axis=1) 
69.          
70.         lbl = las.label 
71.          
72.     labels = np.unique(lbl) 
73.          
74.     instances = [0]*len(labels) 
75.     for i in labels: 
76.         instances[int(i)] = np.delete(pc, np.where(lbl != i), axis=0) 
77.          
78.     return instances 
79.  
80.      
81. ''' Load Template Point Clouds 
82. ''' 
83. def load_templates(directory): 
84.      
85.     print("----------------------------------------") 
86.     print("--Preparing template features from folder:", directory) 
87.      
88.     files = list(Path(directory).glob('*.laz')) 
89.     if len(files)==0: 
90.         print("No laz files found") 
91.      
92.     objects = {} 
93.     labels = [] 
94.     for f in files: 
95.          
96.         l = int(f.name.split('_')[0]) 
97.         if l in labels: 
98.             continue 
99.              
100.         labels.append(l) 
101.          
102.         with laspy.open(str(f)) as fh: 
103.             las = fh.read() 
104.             objects[l] = np.stack([las.x, las.y, las.z], axis=1) 
105.              
106.     return labels, objects 
107.  
108.  
109. ''' Save Point Cloud 
110. '   Method that stores a point list with a given colour as a laz file in a designated 

directory. 
111. ''' 
112. def save_pc(points, colour, file, scale=0.000000001): 
113.  
114.     las = laspy.create() 
115.     las.header.scale = [scale, scale, scale] 
116.     pc = np.asarray(points) 
117.      
118.     las.x = pc[:,0] 
119.     las.y = pc[:,1] 
120.     las.z = pc[:,2] 
121.     colours = np.array([colour]*len(points)) 
122.     las.red = colours[:,0] 
123.     las.green = colours[:,1] 
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124.     las.blue = colours[:,2] 
125.      
126.     las.write("/home/jupyter-zino/Data/data/save_las/{:s}.laz".format(file)) 
127.  
128.  
129. # Point Cloud Modifications --------------------------------------------------------------

--------------------------------------- 
130.      
131. ''' Generate Normals 
132. '   Generate Normals for a list of points. Returns pointlist with a point [x, y, z, nx, 

ny, nz] 
133. '   Uses open3D. 
134. ''' 
135. def generate_normals(points): 
136.      
137.     pcd = o3d.geometry.PointCloud() 
138.     pcd.points = o3d.utility.Vector3dVector(points) 
139.      
140.     pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, 

max_nn=30)) 
141.      
142.     pts = np.asarray(pcd.points) 
143.     nms = np.asarray(pcd.normals) 
144.  
145.     return np.stack([pts[:,0], pts[:,1], pts[:,2], nms[:,0], nms[:,1], nms[:,2]], axis=1) 
146.      
147.  
148. ''' Voxel-based Downsampling 
149. '   Samples points from input point list based on voxel grid. 
150. '   Similar method used in prediction, so recommended to use. 
151. ''' 
152. def voxel_down_sample(points, voxel_size=0.025): 
153.     pcd = o3d.geometry.PointCloud() 
154.     pcd.points = o3d.utility.Vector3dVector(points) 
155.      
156.     return np.asarray(pcd.voxel_down_sample(voxel_size).points) 
157.  
158.  
159. # Point Cloud Properties -----------------------------------------------------------------

-------------------------------------------- 
160.  
161.  
162. ''' Point Cloud Resolution 
163. '   Calculates the resolution of an input point point cloud, approximated as the average 

nearest neighbour 
164. '   distance. 
165. ''' 
166. def pc_resolution(points): 
167.     start = time.perf_counter()*1000 
168.  
169.     distances = [] 
170.     for (point, i) in zip(points, knn(points, 1)): 
171.         distances.append(dist(point, points[i][0])) 
172.      
173.     output = sum(distances) / len(distances) 
174.      
175.     runtime = time.perf_counter()*1000 - start 
176.     print("Found resolution of", output, "in", int(runtime), "ms.") 
177.          
178.     return output 
179.  
180.  
181. ''' Bounding Box Diamater 
182. '   Returns the diameter of the oriented bounding box of a point cloud. 
183. ''' 



97 
 

184. def bounding_box_diameter(points): 
185.     pcd = o3d.geometry.PointCloud() 
186.     pcd.points = o3d.utility.Vector3dVector(points) 
187.      
188.     bb = o3d.geometry.OrientedBoundingBox.create_from_points(pcd.points) 
189.      
190.     a, b, c = bb.get_max_bound() 
191.     diagonal = math.sqrt(a**2 + b**2 + c**2) 
192.      
193.     return diagonal 
194.  
195.  
196. ''' K-Nearest Neighbours 
197. '   Returns a list of the k-nearest neighbours of each point in an input point list. 
198. ''' 
199. def knn(points, k): 
200.     D = distance.squareform(distance.pdist(points))     
201.     closest = np.argsort(D, axis=1) 
202.     return closest[:, 1:k+1] 
203.  
204.  
205. # Main Functional Methods ----------------------------------------------------------------

--------------------------- 
206.  
207.  
208. ''' Segment Instances 
209. '   Method that separates same object points from one point list into a list of point 

lists 
210. '   for each instance of that object. Uses spherical clusters to determine instances. 
211. ''' 
212. def segment_instances(points, diameter, th, axis=0): 
213.     start = time.perf_counter()*1000 
214.      
215.     centers = [] 
216.     instances = [] 
217.      
218.     for p in points: 
219.          
220.         # check if the current point belongs to an existing instance 
221.         added = False 
222.         for i, center in enumerate(centers): 
223.             if dist(p, center) < th: 
224.                 instances[i].append(p) 
225.                 centers[i] = np.average(instances[i], axis=0) 
226.                 added = True 
227.                 break 
228.      
229.         if added: 
230.             continue 
231.                      
232.         # otherwise add a new instance 
233.         instances.append([p]) 
234.         centers.append(p) 
235.      
236.     runtime = time.perf_counter()*1000 - start 
237. #     print("Segmented", len(instances), "instances in", int(runtime),"ms.") 
238.     return instances 
239.      
240.  
241. ''' Point Pair Feature Retrieval 
242. '   Method that samples point pairs from a point list and hashes their features. 
243. '   Returns a dict with hashed features as indices and point pairs as values. 
244. ''' 
245. def retrieve_ppf(points, pc_diameter, sample_count): 
246.     pairs = {} 
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247.      
248.     for i in range(sample_count): 
249.          
250.         # sample a random p1 
251.         p1 = points[random.randrange(len(points))] 
252.          
253.         # sample a random p2 that is within the neighbourhood of p1 
254.         p2 = None 
255.         while p2 is None: 
256.             p2 = points[random.randrange(len(points))] 
257.              
258.             if (p1 == p2).all() or dist(p1, p2) > pc_diameter: 
259.                 p2 = None 
260.          
261.         # Get an index from the pairs features 
262.         hash_val = mmh3.hash_from_buffer(features(p1, p2)) 
263.          
264.         # Add it to the hashmap 
265.         pairs[hash_val] = (p1, p2) 
266.      
267.     return pairs 
268.  
269.  
270. ''' Calculate Features 
271. '   Method that calculates the actual point pair features for two input points and 
272. '   returns a tuple containing the features. 
273. ''' 
274. def features(p1, p2): 
275.  
276.     m1, n1 = pan(p1) 
277.     m2, n2 = pan(p2) 
278.      
279.     # Feature 1: distance between point 1 and point 2 
280.     f1 = round(dist(p1, p2)) 
281.      
282.     vec_dis = m2 - m1 
283.      
284.     # Feature 2: angle between distance vector and p1's directional vector (normal) 
285.     f2 = round(angle_between(vec_dis, n1)) 
286.      
287.     # Feature 3: angle between distance vector and p2's directional vector 
288.     f3 = round(angle_between(vec_dis, n2)) 
289.      
290.     # Feature 4: Kmin / Kmax, where Kmin and Kmax are the principal curvatures at p1 
291.     f4 = 0 
292.      
293. #     print([f1, f2, f3, f4]) 
294.     return np.array([f1, f2, f3, f4]) 
295.  
296.  
297. ''' Calculate Hypothesis 
298. '   Generates a transformation hypothesis based on matched scene and template pairs. 
299. '   INCOMPLETE 
300. ''' 
301. def generate_hypothesis(scene_pair, template_pair): 
302.     pi, pj = scene_pair 
303.     pk, pl = template_pair 
304.  
305.     mi, ni = pan(pi) 
306.     mj, nj = pan(pj) 
307.     mk, nk = pan(pk) 
308.     ml, nl = pan(pl) 
309.  
310.     uij = (mj - mi) / np.linalg.norm(mj - mi, 2) 
311.     vpij = np.matmul((np.identity(3) - np.matmul(uij, uij.T)), ni) 



99 
 

312.     vij = vpij / np.linalg.norm(vpij, 2) 
313.      
314.     ukl = (ml - mk) / np.linalg.norm(ml - mk, 2) 
315.     vpkl = np.matmul((np.identity(3) - np.matmul(ukl, ukl.T)), ni) 
316.     vkl = vpkl / np.linalg.norm(vpkl, 2) 
317.      
318.     rij = np.asarray([uij, vij, np.cross(uij, vij)]) 
319.     rkl = np.asarray([ukl, vkl, np.cross(ukl, vkl)]) 
320.      
321.     rijkl = np.matmul(rkl, rij.T) 
322.      
323.     cvec = mk + np.matmul(rijkl, mi) 
324.      
325.     dir_angle = np_angle([1, 0, 0], (mi - mk)) 
326.     hypo_angle = np_angle([1, 0, 0], cvec) 
327.     if hypo_angle < dir_angle-np.pi/8 or hypo_angle > dir_angle+np.pi/8: 
328.         return None 
329.      
330.     tijkl = np.asarray([ 
331.      np.asarray([rijkl[0, 0], rijkl[0, 1], rijkl[0, 2], cvec[0]]), 
332.      np.asarray([rijkl[1, 0], rijkl[1, 1], rijkl[1, 2], cvec[1]]), 
333.      np.asarray([rijkl[2, 0], rijkl[2, 1], rijkl[2, 2], cvec[2]]), 
334.      np.asarray([0, 0, 0, 1]) 
335.     ]) 
336.  
337. #     tijkl = np.asarray([ 
338. #      np.asarray([1.0, 0.0, 0.0, cvec[0]]), 
339. #      np.asarray([0.0, 1.0, 0.0, cvec[1]]), 
340. #      np.asarray([0.0, 0.0, 1.0, cvec[2]]), 
341. #      np.asarray([0.0, 0.0, 0.0, 1.0]) 
342. #     ]) 
343.      
344. #     print(tijkl) 
345.     return tijkl 
346.  
347.  
348. def fine_align(input, control, init_score, th=1): 
349.     start = time.perf_counter()*1000 
350.  
351.     output = input 
352.     score = init_score 
353.      
354.     step_th = 0.001 
355.      
356.     fine_align_matrix = x_matrix_trans(0) 
357.      
358.     # x translation 
359.     for i in [-1, 1]: 
360.         step = i 
361.         while abs(step) > step_th: 
362.  
363.             change = apply_transformation(output, x_matrix_trans(step)) 
364.             new_score = point_region_overlap(change, control, 0.0, th) 
365.              
366.             if new_score > score: 
367.                 output = change 
368.                 score = new_score 
369.                 fine_align_matrix = add_translation(fine_align_matrix, 

x_matrix_trans(step)) 
370.                 continue 
371.  
372.             step /= 1.1 
373.      
374.     # y translation 
375.     for i in [-1, 1]: 
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376.         step = i 
377.         while abs(step) > step_th: 
378.  
379.             change = apply_transformation(output, y_matrix_trans(step)) 
380.             new_score = point_region_overlap(change, control, 0.0, th) 
381.              
382.             if new_score > score: 
383.                 output = change 
384.                 score = new_score 
385.                 fine_align_matrix = add_translation(fine_align_matrix, 

y_matrix_trans(step)) 
386.                 continue 
387.  
388.             step /= 1.1 
389.      
390.     # z translation 
391.     for i in [-1, 1]: 
392.         step = i 
393.         while abs(step) > step_th: 
394.  
395.             change = apply_transformation(output, z_matrix_trans(step)) 
396.             new_score = point_region_overlap(change, control, 0.0, th) 
397.              
398.             if new_score > score: 
399.                 output = change 
400.                 score = new_score 
401.                 fine_align_matrix = add_translation(fine_align_matrix, 

z_matrix_trans(step)) 
402.                 continue 
403.  
404.             step /= 1.1 
405.              
406.              
407.     runtime = int(time.perf_counter()*1000 - start) 
408. #     print(f"Fine Alignment produced a score of {score} in {runtime}ms.") 
409.              
410.     return output, score, fine_align_matrix 
411.  
412. def add_translation(m1, m2): 
413.     return [ 
414.         [m1[0][0], m1[0][1], m1[0][2], m1[0][3]+m2[0][3]], 
415.         [m1[1][0], m1[1][1], m1[1][2], m1[1][3]+m2[1][3]], 
416.         [m1[2][0], m1[2][1], m1[2][2], m1[2][3]+m2[2][3]], 
417.         [m1[3][0], m1[3][1], m1[3][2], m1[3][3]] 
418.     ] 
419.  
420. def x_matrix_trans(step): 
421.     return [ 
422.         [1, 0, 0, step], 
423.         [0, 1, 0, 0], 
424.         [0, 0, 1, 0], 
425.         [0, 0, 0, 1] 
426.     ] 
427. def y_matrix_trans(step): 
428.     return [ 
429.         [1, 0, 0, 0], 
430.         [0, 1, 0, step], 
431.         [0, 0, 1, 0], 
432.         [0, 0, 0, 1] 
433.     ] 
434. def z_matrix_trans(step): 
435.     return [ 
436.         [1, 0, 0, 0], 
437.         [0, 1, 0, 0], 
438.         [0, 0, 1, step], 
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439.         [0, 0, 0, 1] 
440.     ] 
441.  
442.  
443. ''' Apply Transformation 
444. '   Method that applies a transformation to a point list. Returns a point list. 
445. ''' 
446. def apply_transformation(points, trans_matrix): 
447.     data = np.hstack((points, np.asarray([[1]]*len(points)))) 
448.     return np.matmul(trans_matrix, data.T).T[:,:3] 
449.  
450.  
451. ''' Point Region Overlap 
452. '   Tests point of a test point cloud against proximity to points in a control point cloud 

and returns the 
453. '   percentage of test points that are in proximity with control points. 
454. ''' 
455. def point_region_overlap(test, control, best_score, th=1): 
456.     start = time.perf_counter()*1000 
457.      
458.     miss_limit = int((1-best_score)*100) 
459.     n = 0 
460.      
461.     indices = np.random.randint(len(test), size=100) 
462.     for i, tp in enumerate(np.array(test)[indices]): 
463.         for cp in control: 
464.             if dist(tp, cp) < th: 
465.                 n += 1 
466.                 break 
467.                  
468.         if i - n > miss_limit: 
469.             break 
470.  
471.     runtime = time.perf_counter()*1000 - start 
472. #     print(f"Performed region overlap in {int(runtime)} ms with result {n/100}.") 
473.      
474.     return n/100 
475.  
476.  
477. # Utility Functions ----------------------------------------------------------------------

----------------------------------------------- 
478.  
479.  
480. ''' Point and Normal 
481. '   Breaks 6-field array into two 3-field arrays to separate point coordinates and their 

normals. 
482. ''' 
483. def pan(point): 
484.     return point[:3], point[3:] 
485.  
486.  
487. ''' Point Distance 
488. '   Returns the distance between two points. 
489. ''' 
490. def dist(a, b): 
491.     ax, ay, az = a[:3] 
492.     bx, by, bz = b[:3] 
493.     return math.sqrt((ax-bx)**2 + (ay-by)**2 + (az-bz)**2) 
494.  
495.  
496. def round(input): 
497.     return format(input, '.2f') 
498.  
499.  
500. def angle_between(vec1, vec2): 
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501.     high = np.linalg.norm(np.cross(vec1, vec2)) 
502.     low = np.linalg.norm(np.dot(vec1.T, vec2)) 
503.     return np.arctan(high/low) 
504.  
505.  
506. def np_angle(vec1, vec2): 
507.     unit_vector_1 = vec1 / np.linalg.norm(vec1) 
508.     unit_vector_2 = vec2 / np.linalg.norm(vec2) 
509.     dot_product = np.dot(unit_vector_1, unit_vector_2) 
510.     return np.arccos(dot_product) 
511.     return np.arctan(dot_product) 
512.      
513.      
514. def vec_mag(vec): 
515.     x, y, z = vec 
516.     return math.sqrt(x**2+y**2+z**2) 
517.  
518. def normalize(pc): 
519. #     centroid = np.mean(pc, axis=0) 
520.     vmin = np.min(pc, axis=0) 
521.     vmax = np.max(pc, axis=0) 
522.     span = vmax-vmin 
523.     centroid = vmin + span/2 
524.     #centroid[2] = 0 # Leave z-axis alone 
525.  
526.     pc = pc - centroid 
527. #     m = np.max(np.linalg.norm(pc, axis=1)) 
528.     m = 13.5 # 27m diagonal range will be from -1 to 1 
529.     pc = pc / m 
530.     return pc 
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