
University of Twente

Master Thesis

Threat Analysis of RPKI
Relying Party Software

Koen van Hove

Supervisor:
prof. dr. ir. Roland van Rijswijk-Deij

Committee:
prof. dr. ir. Roland van Rijswijk-Deij

dr. ir. Andrea Continella
dr. Jeroen van der Ham

Faculty:
Electrical Engineering, Mathematics and Computer Science (EEMCS)

Chair:
Design and Analysis of Communication Systems (DACS)

2 February 2022



Chapter 1

Introduction

In agreement with the graduation committee, it was decided to document
the work done during this Master of Science Thesis in the form of a paper.
This paper will be submitted to the USENIX Security ’22 conference, which
can be found in appendix A.

This paper fulfils the requirements as set by the examination board 1. In
the remainder of this document I show how I meet all the requirements for a
Master of Science Thesis, as well as include the final thesis prior to outside
modification.

1https://www.utwente.nl/en/eemcs/ids/education/assessment-msc/

1



Chapter 2

Requirements

Below I describe for each of the set requirements how they were met during
the creation of this paper.

2.1 Scientific quality

2.1.1 Interpret a possibly general project proposal and
translate it to more concrete research questions

The original project proposal was “create a threat model for the RPKI”.
This proposal started my literature research into the RPKI. After drawing
up all the connections between different parts of the RPKI, it quickly be-
came apparent that the relationship between certificate authority (CA) and
relying party (RP), with the CA as malicious party, was an area of research
that had not been widely explored. The RPKI Repository Delta Protocol
(RRDP) was a new protocol specifically made for the RPKI, and in the
discussion of its security aspects, nothing regarding this CA-RP relationship
was mentioned. The lack of literature surrounding this attack vector inspired
me to the following hypothesis: it is probably possible to disrupt RP software
as a CA using RRDP. In order for me to better understand how the RPKI
works from a CA perspective, I started creating my own CA software. Dur-
ing this process I accidentally made my RP software crash, which made my
suspicions even greater.

This led to the following research question: What threats can an dishonest
repository and/or certificate authority pose to relying party software with
the aim of disrupting RPKI route validation using RRDP? To answer this
question, I considered the following sub-questions:

1. Are there any exploitable security vulnerabilities caused by omissions

2



in the RFCs in the implementation specifications for RRDP?

2. What known threats exist to the stack that RRDP runs on?

3. What unspecified or explicitly allowed aspects of RPKI/RRDP can a
repository and/or certificate authority abuse to make the relying party
software malfunction?

The questions are set up in such a way that they support the overall
research question, as well as ensure that it is an as complete as possible
view of the CA-RP landscape. In the final paper, the questions have been
condensed, and the research has expanded beyond purely RRDP, and also
considers the previous protocol used: rsync. The answers to the original
questions can still be found in the paper.

2.1.2 Find and study relevant literature, software and
hardware tools, and critically assess their merits

As mentioned in the previous section, formulating the research questions
required me to innately understand the RPKI, which meant researching the
literature of how it works, how it came to be, and what research has been
conducted already. For one, I first learned of the RPKI when visiting RIPE
78 in 2019, but apart from a rough understanding of “securing BGP”, I did
not know any of the details.

2.1.3 Work in a systematic way and document your
findings as you progress

The deadline was set as 1 February 2022 by USENIX Security ’22. This
provided a hard deadline for the paper. Furthermore, the resulting findings
needed to be communicated with the National Cyber Security Centre of
the Netherlands (NCSC) and the initially four organisations in the context
of a coordinated vulnerability disclosure (CVD). The reason for this was
that during the research some vulnerabilities were found that could easily
be exploited in the wild, which would have a large (inter)national impact
on the entire RPKI ecosystem. This collaboration between the organisations
and the University of Twente required a high level of systematisation and
proper documenting of the findings in order to provide the organisations
with adequate information to resolve the issues at hand.

3



2.1.4 Work in correspondence with the level of the
elective courses you have followed

Many of the electives I have followed revolve around logic, networking, and
security. What assumptions were made and whether those assumptions hold
was for example a core part of the Distributed Systems elective. Furthermore,
I want to highlight that ethics played a large part in this final project due to
the CVD. As this paper will be submitted to an actual conference, I believe
the level of work meets the level expected of a Master course.

2.1.5 Perform original work that has sufficient depth
to be relevant to the research in the chair

As mentioned previously, as my supervisor considers the work suitable for
submission to a conference in my opinion shows that the work is 1) original
and novel; and 2) has sufficient depth.

2.2 Organisation, planning, collaboration

2.2.1 Work independently and goal oriented under the
guidance of a supervisor

The majority of the work was done by me. I took the initiative for the
majority of the time, whilst keeping my supervisor informed of the actions I
took. The CVD required careful coordination and communication between
the University, the NCSC, and the organisations, which I did to a large
extent.

2.2.2 Seek assistance within the research group or else-
where, if required and beneficial for the project

As mentioned previously, during the project I worked together with the
NCSC and other organisations such as the RIPE NCC. This was majorly
beneficial to get an insight in how the RPKI works from an operational point
of view, as well as understand what decisions were made based on technical
merit, and which decisions were made based on politics. I also consulted
with implementers from NLnet Labs, NIC.mx, and others to find the cause
of the issues, and work together on solutions to the problems at hand.

4



2.2.3 Benefit from the guidance of your supervisor by
scheduling regular meetings, provide the super-
visor with progress reports and initiate topics
that will be discussed

I regularly kept my supervisor up-to-date with my progress. We did not
schedule regular meetings, as we deemed them unnecessary, but I did schedule
meetings if I felt like there was something we needed to discuss.

2.2.4 Organize your work by making a project plan,
executing it, adjusting it when necessary, han-
dling unexpected developments and finish within
the allotted number of credits

As mentioned before, the final deadline was set at 1 February 2022. The
project plan was made to easily accommodate this. The CVD, as well as the
unexpected turns the CVD took, did mean certain things took longer than
expected, and required some modification of the plan, but the final deadline
was never at risk. The CVD timeline can be found in appendix A of appendix
A.

2.3 Communication

2.3.1 Write a Master thesis that motivates your work
for a general audience, and communicates the
work and its results in a clear, well-structured
way to your peers

I have, with permission, a paper, thus the target audience is my fellow peers
at the conference. As this is a paper that will be submitted to the USENIX
Security ’22 conference, I believe this ensures the work and its results are
communicated in a clear, well-structured way.

2.3.2 Give a presentation with similar qualities to fellow-
students and members of the chair

This work has been presented at the University, as well as at APRICOT
2022.

5



Appendix A

USENIX Security ’22

The appendix contains the final version of the conference paper rpkiller:
Threat Analysis from an RPKI Relying Party Perspective which was written
before alterations by any of the other authors. The acceptance rate was
16.1% in 20201.

Name USENIX Security ’22
Venue Boston, MA, United States of America
Web page https://www.usenix.org/conference/usenixsecurity22
Date August 10-12, 2022
Submission deadline February 1, 2022
Notification date May 2, 2022
Final version due June 14, 2022

1https://www.usenix.org/sites/default/files/sec20 message.pdf

6



rpkiller: Threat Analysis from an RPKI Relying Party Perspective

Koen van Hove
University of Twente

Abstract
The Resource Public Key Infrastructure (RPKI) is a frame-
work that aims to secure routing by creating an infrastruc-
ture where resource holder can attest statements about their
resources. Certificate Authorities (CAs) publish these state-
ments at publication points. Relying party software retrieves
and processes the RPKI-related data from all publication
points. It does so using the RPKI Repository Delta Proto-
col (RRDP) – a protocol based on XML and HTTPS – and
rsync. We create a threat model for relying party software,
where an attacker controls a certificate authority and publica-
tion point. We analyse with a prototype how current relying
party software reacts to scenarios originating from that threat
model. Results show that all current relying party software
was susceptible to at least one of those threats, with some
threats stemming from choices made in the protocol itself,
allowing us to fully disrupt RPKI relying party software on a
global scale.

1 Introduction

The internet consists of interconnected networks managed by
many different organisations. Data is exchanged within these
networks, but also between these networks, e.g., data from
Google to an internet customer at Comcast. Just like address-
ing physical mail, the data on the internet needs an address.
This address is generally an Internet Protocol (IP) address, of
which two versions are currently in wide use, namely IPv4
and IPv6. Much like physical mail, there are arrangements
between operators to handle each other’s data. The Border
Gateway Protocol (BGP) is a protocol created to coordinate
this. Every network, also called an Autonomous System (AS),
sends 1. who they are; 2. who can be reached (indirectly)
via them. They send this to the peers they are connected to.
Every network has an Autonomous System Number (ASN).
By creating a list of these ASNs, one can eventually discover
how to reach all destinations. This string of numbers is also
called an AS path, and allows every network to find a path to
any other network [59].

The Resource Public Key Infrastructure, or RPKI for short,
is a public key infrastructure framework that aims to work
together with BGP [27]. RPKI tries to secure routing in the
same way that WebPKI tries to secure the connection between
your web browser and the web server, where a certificate at-
tests that you are actually talking to the website you intended
to visit. BGP forms an integral part of the worldwide inter-AS
routing system, and is not easily replaced. The main issue fac-
ing BGP currently is that it is largely based on good faith. By
default, anyone can send any BGP announcement, with their
own ASN as the destination for any prefix [18]. This means
someone else than the owner is now in control of a set of IP
addresses, and can use them for their own purposes. These
situations are not purely hypothetical - they have occurred in
the past due to misconfiguration or malice [19, 65].

RPKI currently solves that issue by providing attestation
using aforementioned certificates. There are five generally
agreed upon certificate trust anchors, namely the five Re-
gional Internet Registries (RIRs) – AfriNIC, APNIC, ARIN,
LACNIC, and RIPE. These five RIRs all host Route Origin
Authorizations (ROAs) for their customers directly in their
own repository, but it can also be delegated, where customers
host their own repository. Relying party software retrieves the
data from the repositories recursively, and then processes it.
Deployment is increasing rapidly, especially when it comes
to delegated RPKI. A question that arises is whether a dishon-
est repository owner can abuse their power to disrupt relying
party software, and potentially RPKI as a whole.

For that reason, our research question is: How can a dis-
honest repository or certificate authority disrupt the oper-
ations of relying party software? To answer this question,
we consider the following sub-questions:

1. What known threats exist to the stack that the RPKI runs
on?

2. Are there any exploitable security vulnerabilities caused
by omissions in the RFCs in the implementation specifi-
cations?

1

7



Figure 1: An example of a repository in RPKI. The CA cert
contains an extension that states where the repository can be
found, and what file inside the repository the manifest (MFT)
is. The manifest then contains entries to the ROAs, Certifi-
cate Revocation List (CRL), Ghostbusters Record (GBR), and
child CA certs. The objects in the repository (MFT, ROA,
CRL, GBR, and CA certs) are CMS signed objects [20] using
a certificate signed by the CA.

3. What unspecified or explicitly allowed aspects of RPKI
can a repository and/or certificate authority abuse to
make the relying party software malfunction?

To answer these questions, we will:

1. Develop a threat model for RPKI focussing on the abili-
ties of a dishonest repository and/or certificate authority
with identified possible threats;

2. Create a proof-of-concept exploit framework and an
overview of the behaviour of relying party software with
regards to these situations.

The remainder of this paper is organised as follows: in
section 2, we outline the background of RPKI, and our con-
siderations for focussing on this particular attack vector. In
section 3 we describe the related work. In section 4 we create
a threat model. In section 5 we create real test cases based on
the threat model and test those on real relying party imple-
mentations. In section 6 we discuss these results, and what a
solution could look like. Lastly, in section 7 we describe the
process we used to notify the parties of these vulnerabilities.

2 Background

2.1 BGP
The Border Gateway Protocol (BGP) is a protocol that aims to
exchange routing and reachability information. BGP generally
comes in two varieties: interior (within an AS) and exterior
(between ASes). We only concern ourselves with the latter –
an AS has full control over the routing within their network,
and is thus out of scope.

Figure 2: An example of a network with five nodes, 64501 to
64505, with lines representing the connections. An example
of the BGP advertisement for 1.2.0.0/16 from 64501 is shown.

Let us explain how BGP works by means of example as
shown in figure 2. The nodes 64501 to 64505 represent our
ASes, and the dashed lines represent connections between
them. Initially, the nodes do not know about each other. AS
64501 can advertise to 64503 that 64501 is the destination
for 1.2.0.0/16, thus an AS path of ⟨64501⟩. 64503 learns
that information, and advertises to 64502 (and potentially to
64501) that 1.2.0.0/16 can be reached via ⟨64503,64501⟩.
Repeat this, and 64504 learns that a path to 1.2.0.0/16
is ⟨64502,64503,64501⟩. This is depicted in figure 2. If
64505 also advertises 1.2.0.0/16, then 64504 will learn that
⟨64502,64505⟩ is also a route for that prefix. Generally a
shorter route is preferred. BGP uses the principle of longest
prefix matching, meaning if a more specific prefix were to
be advertised, e.g., 64505 advertising 1.2.3.0/24, then 64503
would generally prefer that over the more general announce-
ment of 1.2.0.0/16 from 64501. Note that in practice every AS
has its own policy for routing, for example regarding the max-
imum prefix length. BGP merely makes claims about what
can be reached, not which path should be used. An operator
may thus pick a different path.

1.2.0.0/16 does not appear in the clouds in figure 2. The
reason for this is that the claim by both 64501 and 64505
is entirely based on good faith. BGP does not provide any
means to verify any of the claims made. It is thus possible to
claim to be the destination of a prefix owned by someone else,
or to claim a different AS is the destination, or to claim that
an AS has connections to other ASes which it does not have.
For example, 64505 may advertise a path of ⟨64505,64501⟩
for 203.0.113.0/24, even though that does not exist in real life
and 64501 is not the destination for that prefix.

2

8



2.2 Increasing BGP security
There have been many attempts at making BGP more se-
cure, such as BGPsec [30]. One of the main hindrances in
most of them is that they require a fundamental change in the
BGP protocol that is backwards incompatible with the current
version, thus requiring a flag day. RPKI is a separate infras-
tructure that can be implemented gradually, and thus avoids
the issue of requiring a flag day. RPKI aims to enable cre-
ating attestable statements about internet number resources,
but in its currently only contains something called Route Ori-
gin Authorisations, or ROAs for short [29]. A ROA contains
an ASN and one or more IP prefixes. If one then receives
an announcement for an IP prefix, one can lookup whether
there exists a ROA that covers this prefix. The result can be:
1. valid - it exists, and the ASN matches the ASN of the ROA;
2. invalid – it exists, and the ASN does not match the ASN
of the ROA, or the prefix length does not match the length
of the ROA; 3. unknown (or “not found") – there is no ROA
for this IP prefix [22]. This solves part of the good faith issue
described above. It is important to note that a ROA only aims
to protect the final destination for a BGP path, meaning that
a valid destination does not guarantee an honest path. RPKI
may be used in the future for this as well, with for example
ASPA [3]. Additionally, it is to the recipient’s full discretion
what to do with the information from RPKI. They are free to
ignore it entirely or partially.

Figure 3: An example of a tree showing trust hierarchy in
RPKI. The example shows an example tree originating from
LACNIC. Every circle, as well as the RIRs and registro.br (a
NIR from Brazil), represent a CA. Every triangle represents a
ROA. Every subordinate CA can delegate (part of) their INR
to further child CAs. The five trees of the five RIRs are in
principle independent.

To determine whether a ROA is genuine, a standard PKI
setup using X.509 certificates [6], with signing and certificate
trees is used. There are five generally agreed upon certificate
trust anchors, namely the five Regional Internet Registries
(RIRs) – AfriNIC, APNIC, ARIN, LACNIC, and RIPE (al-
though one is technically able to choose their own trust an-
chors, but just like WebPKI this is mostly hypothetical) [27].
These five RIRs all host ROAs for their customers directly, but
they may offload tasks to subordinate certificate authorities,

such as National Internet Registries (NIRs), or organisations
that prefer to host their own ROAs. These subordinate cer-
tificate authorities can again create their own subordinate
certificate authorities, etc. They also host a repository, which
is a place where the ROAs, certificates, and other objects can
be downloaded from. These repositories are referenced in the
certificates [21]. Note that whilst normally a certificate au-
thority and repository owner are managed by the same entity,
this need not be the case. An example of a trust hierarchy tree
can be seen in figure 3.

From a technical perspective, this is done in the following
way: at the top of the tree are the five RIRs, each with their
own root certificate and repositories. Those repositories, ac-
cessible via rsync or RRDP, a protocol based on HTTPS and
XML, contain signed objects. Signed objects are currently
mainly ROAs, although Ghostbusters records have been added
as well [9]. These objects are signed with a certificate signed
by the certificate authority. The repository also contains other
certificates signed by the current certificate. Those certificates
then point to their own repository, which is what gives it the
tree structure. For every certificate, there is a manifest file. A
manifest file contains a list of expected signed objects and
their hash - this can be used to check that the data from the
repository is complete and correct [21]. An example of a
repository can be seen in figure 1. Do note that a single repos-
itory may host multiple manifests, and the CA certificates
may refer to another manifest within the same repository.

Recently, more subordinate certificate authorities and repos-
itories have appeared [25]. relying party software, the soft-
ware that collects all the ROAs and creates the lookup table,
traverses these subordinate certificate authorities and their
repositories. Previously, all repositories belonged to trusted
parties, such as regional internet registries, national internet
registries, or a select few miscellaneous parties that were gen-
erally well-trusted.

2.3 CA and repository
It is important to differentiate between the notion of a reposi-
tory and a CA:

Repository A repository, also called a publication point, is
a place where the data from the RPKI can be found.
A repository can be conceptualised as a “folder" with
signed files (e.g. ROAs) in them.

Certificate Authority A certificate authority (CA) is the
holder of the private key that can sign the files.

In a lot of cases the operator of the repository is also the oper-
ator of the certificate authority, but these can be two different
entities. For example, a NIR can operate the repository, whilst
the signing is done by the customers directly. Additionally,
in the case where RIRs host the ROAs for their customers
directly, it is often the case that the RIR is both the repository

3

9



and certificate authority, and the customer can only specify
what objects the RIR should create.

2.4 Rsync
The RPKI supports two protocols: rsync and RRDP. Initially
only rsync was used [27], and support for rsync is, at the
moment of writing, still required. All common relying party
software now also supports RRDP, as do nearly all of the
repositories. There are already several known issues associ-
ated with the usage of rsync that have spurred the adoption of
RRDP. We will itemize a couple of them:

1. rsync is a protocol specified by its implementation. All
current relying party implementations currently use the
reference implementation of rsync, with the exception
of rpki-client, which uses an open client-side reimple-
mentation of the early 2004 version of the rsync protocol
(version 27) called OpenRsync [56]. This adds a layer
of difficulty for relying party software, as they now need
to interact with an external rsync process.

2. rsync repositories are plagued by non-atomic updates [8,
66], meaning that if the content of a repository changes
whilst a relying party is retrieving the data, that attempt
will fail as the manifest entries do not match the retrieved
data.

3. It is trivial to execute a successful denial-of-service at-
tack on the rsync daemon by having a desktop open
several thousand connections to an rsync daemon from
a /48 IPv6 subnet, different Tor exit nodes, several VPN
endpoints, or a combination of the former. This causes
the rsync daemon to be overloaded, and bars honest par-
ties from retrieving the data from the repository over the
rsync protocol. This is against RFC 6481, which states
that “The publication repository SHOULD be hosted on
a highly available service and high-capacity publication
platform." [21]. Due to the reference implementation na-
ture of rsync, we consider resolving this issue infeasible.

4. rsync clients are easily disrupted, for example using a
very large “message of the day", or serving a repository
with millions of empty folders to cause inode exhaustion.
This causes the relying party software to crash.

These are not merely theoretical, but have been confirmed in
practice, and are well-known [7]. Given that, as well as the
current uptake of RRDP, we expect rsync to be fully replaced
in practice by RRDP by the end of 2022. As a consequence,
the main consideration will be RRDP, although we may con-
sider rsync as well if the issue transcends the protocol used.

3 Related work

The concept of having a system that recursively retrieves
data from unknown servers is not new. An example of this

is practice can be found in DNS [48]. One main differ-
ence between DNS and RPKI is that DNS needs to find one
path to the record it requested, and can ignore all other in-
formation, whereas RPKI collects all information first be-
fore it builds a table. This means a malicious DNS entry
for evil.example.org should not impact resolving benevo-
lent.example.com. DNSSEC aims to improve DNS security,
but at its inception did not specify what parts it tried to pro-
tect [2]. There have been external models checking the claims
made about DNSSEC, such as done by Bau et al. [4]. How-
ever, it is clear that the threat model differs from ours, as our
threat model mostly concerns disruption, something DNSSEC
hardly touches upon, and Bau et al. do not take into consider-
ation.

BGP, the system RPKI aims to protect, also works based on
a table. However, unlike RPKI, this table is built incrementally
whenever information comes in [59]. There are availability
vulnerabilities in specific implementations, such as BIRD
[35], but those cases appear isolated. Additionally, BGP does
not contain the same hierarchy as RPKI does. BGPsec aims
to improve BGP security [30], but much like DNS the focus
in the threat model is on integrity and verifiability of the data,
and not on availability.

TLS 1.3, the most recent TLS standard, does have a well-
described security models. They however mostly focuses on
confidentiality and non-tamperability [15, 60], and not on
availability. Like BGP, isolated cases of availability vulnera-
bilities are present here as well [37].

To our knowledge RPKI is unique in the field of computer
networking in that it creates a table based on a arbitrary hier-
archical data structure, where data is retrieved from arbitrary
non-trusted servers, where it needs all information first in
order to function correctly.

In the field of RPKI, the focus has mostly been on the exter-
nal effects the infrastructure provides, instead of looking into
the security of the infrastructure itself. For example, Wäh-
lisch et al. [70] look at the deployment of RPKI, and what
the reasons are deployment lags behind, and which attacker
models RPKI prevents. There has been research into the secu-
rity of RPKI itself, such as the importance of consistency of
objects [28], the lifetime of objects and certificates [24], and
the use of the maxLength attribute [17]. Cooper et al. [13]
look at what power different entities within the RPKI ecosys-
tem have, and what certain authorities could do to abuse that
power. Shrishak et al. [64] also look at this, and come up with
a solution that could be used to solve the issue that one RPKI
authority may have too much power. Others have come up
with solutions that involve the Blockchain [71] to counter
the centralised nature of RPKI. Additionally, RFC 7132 [23]
mentions some security considerations of the results of an
adversary CA, e.g., “An attacker could create very deep sub-
trees with many ROAs per publication point, etc.", but it does
not however assess the impact in any great detail, nor does
it create a comprehensive analysis of threats to RPKI itself.

4

10



It seems implied that, although not stated explicitly, that this
type of attack is from a purely theoretical nature due to the
unlikelihood of a CA takeover, with an expectation that a CA
can normally be trusted.

There is little public security research into RRDP. The
RRDP RFC [8] does include security considerations, but those
are mostly regarding the integrity and tamperproofing, which
references the recommendations for the use of TLS [63], and
some additional notes on how RRDP increases reliability.
RRDP is however built upon XML and HTTPS, and we con-
sider it worth looking into whether the known vulnerabilities
of those technologies affect RRDP as well.

4 Threat model

For our threat model, we assume that an attacker has its own
CA and repository in a non-malicious RPKI tree at the same
level as other non-malicious organisations, which includes
the ability to sign new CAs and objects. We will sketch the
assumptions made about the RPKI in section 4.1, and then
expand on the implications of that in section 4.2.

4.1 Assumptions
Let us look at the implicit assumptions made about the RPKI,
and whether those assumptions are guarded by technological
measures or as part of the standards. There are generally three
types of assumptions made: tree size, time, and stack.

4.1.1 Tree size

When one considers the RPKI, the most common visuali-
sation is a forest of trees as depicted in figure 4. The first
assumption is thus that the RPKI is a forest of independent
trees, where each tree stems from a Trust Anchor Locator
(TAL), a reference to the root certificate preloaded into the
relying party software. Each tree must be correctly evaluable
without information from the other trees, and no loops must be
possible. Furthermore, the RPKI presumes one first collects
all information from the repositories before making routing
decisions. For example, if a parent CA has a ROA for a /8, and
a child has a ROA for a subset of that /8 (e.g., a /16) with a
different ASN, and the child’s repository is unavailable, then
a route advertisement for that /16 might switch from valid to
invalid (instead of unknown), which means routes become
unavailable. If we take the tree for figure 4, and we suppose
ε has a ROA for 1.0.0.0/8 with AS 1, and η has a ROA for
1.2.0.0/16 with AS 2. If a BGP advertisement comes in for
1.2.0.0/16 with a path that ends with AS 2, it is considered
valid, as a known ROA for it exists. If we however do not
consider the data from η, then that same advertisement would
not match a known ROA, and instead, it would fall under the
ROA from ε for 1.0.0.0/8 with AS 1, which would make this
BGP advertisement invalid (rather than unknown).

Figure 4: An example of two RPKI trees. Each arrow signifies
a parent-child relationship.

When we look at the nodes themselves, we make another
set of assumptions. Let us look at node υ as shown in figure
4. We assume that the behaviour of node υ may affect itself,
as well as its children φ to ω, but that its behaviour may not
influence the validity of its parents or its siblings, in this case
α to κ. Furthermore, a node may not require information from
nodes other than its parents to function, thus υ must be able
to work with only information from α, β and δ. It is also
assumed that the view I have is the same as the view others
have of the RPKI, and that no different data is returned based
on the origin.

This means that the assumption is made that the tree is finite
and reasonably sized, and that that is the case for everyone.

4.1.2 Time

All these assumptions about the tree size are there for one
main reason: the certificates and objects in the RPKI all have
an expiration time after which they are no longer valid. It is
thus also assumed that the tree can be evaluated and processed
in reasonable time, generally considered to be between 30
and 60 minutes [25]. If the process takes significantly longer,
objects will have expired before they could be used. What is
“too long" is not defined, but the shortest objects have been
observed in practice to have a lifetime of around 8 hours.

4.1.3 Stack

As stated before, RRDP is a protocol that is based on XML
and HTTPS. This means that the threats that apply to that
stack, namely XML, HTTPS, and TCP (or UDP in the case

5

11



of HTTP/3 [5]) apply to RRDP as well. RRDP applies some
extra restrictions, such as requiring US-ASCII as character
set, and forbidding the verification of the WebPKI certifi-
cate [8]. The signed objects themselves are CMS-encoded
X.509 objects [20], which means the threats to signed objects,
certificates, and ASN.1 validation apply here as well. The
only file in a repository that is not a signed object is a certifi-
cate to another repository in the tree. Lastly, the relying party
software runs on a server, which most likely runs a UNIX-
based operating system. This means that OS threats, such as
inode exhaustion, running out of disk space, memory, or CPU
cycles apply here as well. This list is not exhaustive.

4.2 Implications
4.2.1 XML

Several XML exploits exist, such as 1. coercive parsing, where
an extreme (possibly endless) depth file is parsed; 2. invalid
structures, where the XML parser may trip up due to the un-
conventional nature of the file; 3. very large payloads, where
the XML parser may load everything into memory, or tem-
porarily store them on disk, causing resource exhaustion; 4. us-
ing external entities, thereby requesting resources it should
not be able to access, and possibly forwarding those to a
remote server; 5. entity expansion, by specifying recursive
entities, or referential entities, an XML parser may run out of
space or memory; 6. using external references in XML to let
the client DDoS another entity. [58]

4.2.2 HTTPS

Several HTTPS exploits exist, such as 1. decompression
bombs, where if the client supports compression such as GZIP,
the server may serve a small file that is orders of magnitudes
larger when unpacked [11]; 2. returning a 301 code with a
location header with a location that either loops, or keeps for-
warding to another location; 3. returning a 429 code with a
retry-after header with an unreasonably high value, such as a
year or century. [57]

4.2.3 TCP

Attacks on TCP exist. These mostly concern on stalling the
connection, for example by a Slowloris attack [12], or simu-
lating a very slow unreliable connection.

4.2.4 X.509

X.509 is a very elaborate protocol, of which RPKI only allows
a subset. However, many relying parties use a standard library
for X.509 that supports far more than RPKI requires. This
makes it vulnerable to attacks such as specially crafted private
keys [34]. Additionally, given the binary nature of this format,
unexpected data may cause the application to misbehave [33].

4.2.5 ASN.1

ASN.1 is a binary format that needs to be decoded, which in
the past has had vulnerabilities in some major implementa-
tions like OpenSSL [32] and BouncyCastle [36]. Addition-
ally, RPKI defines some uncommon modules with extra con-
straints, such as decoding an IP address prefix as BITSTRING,
which may not be adequately checked, and where strange val-
ues may cause undefined behaviour.

4.2.6 Trees

RPKI repositories are assumed to be structured like a finite
tree, where the application goes past every repository. This is
similar to directory traversal, and several exploits exist here as
well. A repository can for example introduce loops, or create
an endless depth chain of certificates, thereby causing the
relying party to endlessly fetch data. One can also introduce
very many children, and thus go wide instead of deep. One
can also combine the two.

4.2.7 Operating system

One can also try to target the underlying file system. Many
Linux systems use ext4 as filesystem, which has a limited
amount of inodes (pointers to entries) available. One can thus
serve a repository with many objects with the aim to exhaust
the amount of inodes. One may also try to serve extremely
large files, like a several gigabyte large Ghostbusters record
to exhaust disk space [14].

5 Evaluating threats in practice

Based on the analysis in section 4, we identified a set of
potential vulnerabilities. To test if current relying party im-
plementations were susceptible to these vulnerabilities, we
designed and implemented a testbed that instantiates these
vulnerabilities. The tests are labelled A to O, ordered chrono-
logically.

5.1 Testbed
The testbed creates custom repositories and CAs, and a sep-
arate TAL is available for each test instance. The server cre-
ates the files for each instance on-demand using a randomly
generated UUID version 4 [26], meaning that two test in-
stances cannot influence each other, and the result is not influ-
enced by caching. The resulting URI looks like h-f5654a8f-
6d17-4b62-9bb8-d5e11b8c08b2.example.org, where the
first letter of the hostname indicates the test (in this case H),
and the part after the first dash is the identifier. This host is
assigned its own unique IPv6 address, and serves all requests
for this test instance of test H over both RRDP and rsync. The
full overview of the setup can be found in figure 5.

6

12



A B C D E F G H I J K L M N O
Routinator ● ● ● ● ● ● ●

Validator 3 ● ●

OctoRPKI ● ● ● ● ● ● ● ● ● ● ●

Fort ● ● ● ● ● ●

RPKI-Prover ● ● ● ● ●

rpstir2 ● ● ● ● ● ● ● ● ● ● ●

rpki-client ● ● ● ● ●

rcynic ● ●

Table 1: The tests executed during our research in the then-recent relying party software. ● means an implementation was
vulnerable. The crossed-out cells for Validator 3 and rcynic were not tested.

Figure 5: A graph overview of how the testbed works, both for RRDP and rsync. For RRDP, the Server Name Indication (SNI) [1]
extension is used, which contains the hostname that was requested. As this extension (or similar) is absent for rsync, the IP
address used in the request is converted back to the corresponding hostname, and the testbed itself emulates the RRDP request. It
then converts the RRDP output to files (if possible), and starts the rsync daemon listening on that IP address. The original request
packet is dropped, and the relying party (RP) software retries after a timeout, which request is served directly by the rsync server.

7

13



Figure 6: The level of control required to execute a specific
attack. For CA control, the attacker needs to be able to sign
new objects. For RRDP, the attack only works via an RRDP
exploit, and not over rsync.

All implementations ran on their own virtual machine, with
only the implementation installed according to the instruction
manual provided by the implementation. The specifications
of the virtual machines used is listed in table 2. A partial
description of these tests was also published on RIPE Labs
[67]. The RIPE NCC RPKI Validator 3 and rcynic were not
fully tested due to them no longer being actively supported.
The level of access an attacker would need to successfully
execute the attack is shown in figure 6.

5.2 Tests

The success of our tests is shown in table 1. Relying party
software is constantly being updated; this research is thus not
meant as a definitive analysis of current relying party soft-
ware, but rather as an overview and threat model of dishonest
RPKI repositories and/or certificate authorities, with the aim
of hardening current and future relying party software. It thus
might be that threats mentioned in this research do not impact
current relying party software, but might impact future relying
party software that adheres to the RFCs.

5.2.1 (A) Infinite repository chain

We create a chain of repositories, where the repository root
has a certificate for its child, and when that child is visited,
a certificate for its child is generated. This is repeated ad
infinitum, creating an infinite repository chain. This tries to
attack the assumption that the tree is finite, and makes it that
clients get stuck retrieving new data forever.

Most tested implementations keep retrieving data endlessly.
Initial tests showed only Fort and rpki-client limit the maxi-
mum depth of a repository. This changed later as Routinator
also added a maximum depth.

5.2.2 (B) 429 response header

The 429 HTTP status code was added in RFC 6585 [16]. It
specifies that a user has sent too many requests, and should
apply rate limiting. To provide a hint to the user when they can
try it again, a “Retry-After" may be included which contains
the amount of seconds a user should wait before trying it
again. RFC 8182 [8] does not specify whether this HTTP
status code can appear in RRDP, and as relying party software
tends to use existing HTTP libraries that might abstract this
away, we wanted to find out what would happen if this value
was set to an unreasonably long duration, for example a day.
Older implementations sometimes instead use the 503 status
code with Retry-After header.

All tested implementations do not support 429 rate limiting,
and neither do the libraries that they use.

5.2.3 (C) Endless 302 response

The 3xx range of status codes indicate that the resource can
be found at another location [53]. These status codes can be
chained, i.e. A can link to B which links to C. Much like test
A, this can be done ad infinitum, thereby endlessly redirecting
without technically looping. Relying party software is not
required to support 3xx status codes, nor is limiting the maxi-
mum amount of redirects required. In most cases the default
value from the HTTP library is used.

All tested implementations either do not support 3xx redi-
rects, or if they do, they limit it to a small amount, generally
below 10.

5.2.4 (D) GZIP bomb

HTTP allows for compression to improve transfer speed [54].
This means that the amount of data transferred may be less
than the unzipped size on the disk. Gzip is such a compression
algorithm, and it is possible to create a file that is orders
of magnitudes larger uncompressed than it is compressed,
thereby exhausting the memory of the system the relying
party software runs on. Support for compression is generally
explicitly enabled in the used HTTP libraries.

Routinator, OctoRPKI, rpstir2, and rcynic crash due to
being out of memory, whereas Fort, rpki-client, and RPKI-
Prover reject the repository.

5.2.5 (E) Open connection

Repository provide data at a certain bandwidth – a minimum
bandwidth is required to adhere to the reasonable time re-
quirement. It is possible to break this bandwidth assumption
by limiting it to, for example, 3 bytes per second, making the
process several weeks if waited for completion. Note that data
is constantly transmitted, just at a very slow rate, to avoid
middleboxes cutting off the connection.

8

14



Version Operating System CPU RAM Disk
Routinator 0.10.1 Ubuntu 18.04 LTS 1× 2.3 GHz 2 GB + 2 GB swap 20 GB
Validator 3 3.2.2021.04.07.12.55 Ubuntu 18.04 LTS 1× 2.3 GHz 2 GB 20 GB
OctoRPKI 1.3.0 Ubuntu 18.04 LTS 1× 2.3 GHz 2 GB + 2 GB swap 20 GB
Fort 1.5.1 Ubuntu 18.04 LTS 1× 2.3 GHz 2 GB 20 GB
RPKI-Prover 0.1.0 Ubuntu 18.04 LTS 1× 2.3 GHz 2 GB + 2 GB swap 20 GB
rpstir2 master-7394f73 Ubuntu 18.04 LTS 1× 2.3 GHz 2 GB + 2 GB swap 20 GB
rpki-client 7.3 OpenBSD 7.0 1× 2.3 GHz 2 GB 20 GB
rcynic 1.0.1544679302 Ubuntu 16.04 LTS 1× 2.3 GHz 2 GB 50 GB

Table 2: The specifications of the machines used for executing the tests.

All tested implementations apart from RPKI-Prover keep
waiting forever. RPKI-Prover imposes a maximum transfer
duration, and continues with the next repository afterwards.

5.2.6 (F) Broken ROA

Whenever relying party software encounters a ROA, a file
with a .roa extension, it expects the structure that belongs to a
ROA. However, it is possible to encode any data, and give it a
.roa extension. Here the ROA merely consists of an encoded
ASCII NUL character. Without proper input validation, this
might cause relying party software to malfunction or crash.

Only OctoRPKI and rpstir2 crash when encountering the
broken ROA, whereas all other tested implementations show
a warning and move on.

5.2.7 (G) Billion laughs attack

The Billion Laughs attack is an XML expansion attack, where
an entity “lol1" is defined as “lol", and “lol2" as 10 times
“lol1". This is done ten times to create a billion entities [58].
The textual form is small, but XML parsers that try to handle
this in memory will likely run out of memory and crash.

Only RPKI-Prover and rpki-client ≤ 7.2 crash when en-
countering the billion laughs attack. All other tested imple-
mentations treat is as a broken repository, and retry it over
rsync.

5.2.8 (H) Exponential expansion

Similar to test A, we create a chain of repositories. Instead
of having one child, we have 10 children at each level. This
means that the amount of CAs and repositories that must be
visited becomes ∑d

i=0 wi, where w is the amount of children
and d is the depth. Even at a modest depth of 8, and a width
of 10, this already becomes 11,111,111 repositories that must
be visited. Even at one repository per second, this will take
months, which breaks the expectation that the tree traversal
can be done in reasonable time.

All implementations keep retrieving repositories. The or-
der in which the repositories are retrieved does differ. We

observed that most use either an depth-first search or breadth-
first search approach, and that some will retrieve repositories
in concurrent fashion.

5.2.9 (I) Impossible ROA

Much like test F, this is something presented as a ROA that is
in fact not a valid ROA. Here we undermine the assumptions
made in the structure of the ROA, namely, that an IPv4 address
will have a prefix with at most 32 bits and an IPv6 address
has a prefix with at most 128 bits. This is similar to the out-
of-bounds vulnerability as described in CVE-2021-3761 [38],
and we expect a similar impact: either the validator crashes, or
the output becomes nonsensical, causing the RPKI to Router
(RTR) protocol to terminate.

Only OctoRPKI and rpstir2 crash when encountering the
faulty ROA, whereas all other tested implementations show a
warning and move on.

5.2.10 (J) ROA ASN overload

Relying party software has two functions: it retrieves data
from repositories, and it processes that information so that
RPKI-to-Router (RTR) software can relay that information to
a router’s BGP Route Origin Validation (ROV) table [10]. The
memory of a router is limited. If one were to create ROAs for
a prefix for every ASN, that means that suddenly the router
has to store an extra 232 entries. Even at a mere 20 bytes for
each entry, this yields around 85 GB of data, which is larger
than the memory capacity most current routers have.

All tested implementations do not limit the maximum
amount of ASNs for a prefix. Some implementations do imple-
ment some safeguards, such as a maximum repository size or
maximum number of files. However, in all cases we were able
to generate a problematic number of entries. These protec-
tions can likely be circumvented by, for example, delegating
part of the ASNs to children, or using rsync exclusively.

9

15



5.2.11 (K) ROA prefix overload

Much like test J, what can be done with ASNs can also be done
with prefixes. If an IPv6 /48 has been delegated, then one can
create ∑80

i=0 2i ≈ 281 unique prefixes for one ASN. Combined
with the results from J, one can create 281×232 ≈ 2133 entries.
Even at 1 bit per entry, this results in the order of 1030 GB
of data. The repository does not need to store this amount of
data, as the data can deterministically be generated, only the
SHA-256 hashes need to be stored at 32 bytes per file.

All tested implementations do not limit the maximum
amount of subprefixes for a prefix; rpki-client exits with “ex-
cessive runtime (3600 seconds), giving up". That error mes-
sage comes up after around four to five hours, rather than the
expected one hour. We are unsure what the cause of this is.

We are not aware of any router that limits the subprefixes it
receives over RTR, nor are we aware of any RTR server soft-
ware that applies its own filtering or aggregation by default.

5.2.12 (L) Large file

This is a simpler version of test D and G. Instead of using
elaborate tactics to trick relying party software into processing
a lot of data, a lot of data is actually served. For this test, we
define a the URI attribute for the RRDP snapshot as an URL
that refers to a file several gigabytes in size, commonly used
for bandwidth tests. We expect similar results to D and G,
namely memory exhaustion. This file was hosted using an
external URI with the random bytes as content.

OctoRPKI, Fort, rpki-client, and rpstir2 crash when encoun-
tering the file. Routinator and RPKI-Prover treat is as a broken
repository, and retry it over rsync.

5.2.13 (M) XXE on attributes

This test tries an XML eXternal Entities (XXE) attack on an
attribute. This should not be possible, as XXE are not allowed
in attributes. However, as XXE attacks do happen [31], we
wanted to ensure that the used XML parsers also behave
according to the specifications. In this test, we try to extract
contents of a file on the filesystem, and pass them to our server,
by including an XML external entity in the snapshot URI.

All tested implementations do not support it, and neither
do the libraries that they use. This is not to say that none of
the implementations support XXE, but merely that we have
not found a way to exfiltrate data from the host system to the
server the repository runs on.

5.2.14 (N) Long paths

Much like D, G, and L, this test tries to exhaust the memory,
this time by using a path for the data that is much longer than
can be reasonably expected (in the order of megabytes). Our
expectation is that natively trying to parse this path will result

in a crash due to memory exhaustion, and that trying to write
to this path will cause an error from the operating system.

Only OctoRPKI and rpstir2 crash when parsing the long
path, whereas all other tested implementations show a warning
and move on. We are unsure whether this purely affects the
RRDP implementation, or whether this would also be possible
over rsync.

5.2.15 (O) Path traversal

This test contains valid data with a path that attempts to write
to a folder up from where it should. This is based on an rsync
security advisory from December 21st, 2015 [62], where the
server could send a file list containing a path with special
folders ‘..’ and ‘.’, causing the rsync client to write outside of
the destination folder. We attempt to do the same using RRDP,
by setting the URI to include ‘..’ in the path. Our expectation
is that this potentially allows for remote code execution by
being able to write files to arbitrary locations.

Only OctoRPKI, Fort and rpstir2 allow writing outside the
intended destination folder. The other tested implementations
reject it. We observed that default installation instructions
make it easy to accidentally (or even intentionally) run Oc-
toRPKI, Fort and rpstir2 as root. This means that a file like
“rsync://example.org/repo/../../etc/cron.daily/evil.roa" could
allow for remote code execution on the host machine the
relying party software is running on.

6 Discussion

It is important to determine the difficulty to execute this attack,
as well as its impact in the short term and long term.

All actively supported implementations had at least one
vulnerability that allows them to be disrupted without the need
for CA control. This means that an attacker who successfully
takes over a repository server, performs a DNS hijack, or
has the means to perform a Man-In-The-Middle (MITM)
attack, can disrupt the RPKI. As RFC 8182 states that HTTPS
certificates may be self-signed [8], this means that any party
in the path of any RPKI repository can disrupt RPKI for a
large part of the world, without necessarily being part of the
RPKI tree. Additionally, controlling part of the RPKI tree is
not too difficult. In the case of most RIRs, it consists of a
small fee and an identity check [61].

Parents, such as RIRs and NIRs, can monitor this, and re-
voke a certificate when malicious behaviour is discovered.
The main issue is that there is no guarantee that a repository
serves the same content to all parties. A malicious party can
purposefully exclude the parent from their attack, or direct
their attack at only one victim based on the IP address or ASN.
An attacker may also only deploy this attack once. This slows
down the process of getting the certificate of the malicious
party revoked, especially if the malicious party also has non-
malicious objects, such as a hijacked legitimate publication

10

16



point. This is not merely a technical issue, but also a political
one.

Once the threat has been removed from the tree, the op-
erators of relying party software often also need to manu-
ally restart their software. This requires adequate monitoring.
From a previous bug in Fort, where the software would crash
when encountering a BGPsec certificate [52], we observed
that roughly 3 out of 10 instances did not come back online
within a month. We expect that the long term effects of our
attacks will be similar, meaning that 30% of relying party
instances would not come back online for months after a
successful attack, even if that attack only lasted mere hours.

Most of these vulnerabilities have now been resolved
[39–47, 50]. However, as of 1 January 2022, insecure ver-
sions of relying party software is still present in the default
repositories. Ongoing data provided by Kristoff et al. [25]
shows that the now unsupported RIPE NCC RPKI Validator 3
is still used by approximately 5% of users. Debian 11 still has
rpki-client 6.8, OctoRPKI 1.2.2, and Fort 1.5.0 in its default
software repository – we found no evidence that the security
fixes have been backported. Ubuntu 20.04 still has Fort 1.2.0
in its default software repository. Ubuntu 21.04 and 21.10
also provide rpki-client 6.8 and OctoRPKI 1.2.2. The Fort
versions for Ubuntu 21.04 and 21.10 are newer (1.5.0 and
1.5.1 respectively), but are also both still vulnerable. rpstir2
and rcynic are also both still vulnerable with no known fix as
of 1 January 2022.

Additionally, we want to draw the attention to the fact that
all implementations are still vulnerable to test H. This is a
problem that is thus-far unsolved, as in discussions with rely-
ing party software developers we came to the conclusion that
there are to our knowledge no heuristics with which malicious
parties can be adequately detected without causing collateral
damage to non-malicious parties. When all information of the
tree is required, and the nodes in the tree are untrusted, then
limits to the structure are required for the tree to be evaluable
within a set time limit. The problem is that without outside
information, it is not possible to tell which node belongs to
the malicious set, and which one is not. Once a parent create
a child, and hands the key to a third-party, that third-party has
exactly the same ability under its subtree as the parent has.
Whilst for test A a depth limit is an adequate solution, expo-
nentially increasing repositories already become problematic
even at a very shallow depth. Some RIRs and NIRs may have
in the order of 10,000 CAs, which makes width restrictions
difficult, as our malicious node may be at the same level as
NIRs, which may have genuine reason for their structure. This
problem is still present to this day. Setting limits that fit the
current shape of the trees, whilst also preventing malicious
nodes from being able to disrupt the RPKI, is to our knowl-
edge not possible. This means that either the structure of the
RPKI tree must change, certain aspects must be hard-coded
in the relying party software, or the parent must be able to
provide the required outside information about what can be

Figure 7: An example of how RPKI tree hints could work.
Shown is an example tree, with the maximum descendants
allowed for each node indicated as number in the brackets.
The limit is applied recursively for all descendants, and the
effective limit is the strictest of all parents. Since B has an
effective limit of 4, and C to G are 5 nodes, Relying parties
may decide to not retrieve either E or G, depending on the
traversal order. What traversal order to use is not specified.

expected from the child. A draft to add the latter has been
submitted [68], but is still being discussed. It allows a parent
to provide “hints" about what limits should apply to their
children as shown in figure 7.

7 Ethical considerations

As a realistic possible outcome of our research was real vul-
nerabilities, we decided to test in a manner that would allow
us to verify the exploit, without disrupting actual day-to-day
RPKI operations. Primarily, we decided not to test this on the
“production" RPKI, but rather create our own separate tree.
As our research resulted in real exploitable security issues,
we started a multi-party coordinated vulnerability disclosure
(CVD) process with the National Cyber Security Centre of the
Netherlands (NCSC-NL), where the NCSC-NL coordinated
the CVD. The NCSC-NL decided to contact implementers of

11

17



Figure 8: Absolute relying party usage as observed by the RIPE NCC in the months leading up to the disclosure date. All dates
are in 2021. rpki-client was split into two, as part of their automated integration testing is done using the NLNOG ring, a cluster
of servers. The graph was provided as a courtesy by the RIPE NCC.

actively maintained relying party software. The decision who
to contact was based on whether the parties had 1. a clear vul-
nerability disclosure process compatible with the principle of
confidential coordinated vulnerability disclosure [49] 2. clear
points of contact to report security issues. At the time of start-
ing the CVD process, the parties included were Routinator by
NLnet Labs, RPKI Validator 3 by the RIPE NCC, OctoRPKI
by Cloudflare, and Fort Validator by NIC México. There was
also an explicit decision by the NCSC-NL not to contact the
developers of rpki-client, from the OpenBSD project, due to
their publicly announced policy of full disclosure of vulner-
abilities [55] and due to earlier issues with disclosures like
KRACK [69]. The secondary consideration was ensuring that
the users of the various relying party software would not be
harmed. We used data provided by the RIPE NCC, shown
in figure 8, to determine the most widely used relying party
software. We did not notice any significant change in these
figures over the course of the CVD. Other projects that were
not contacted at the start of the CVD process were:

rcynic Developed by Dragon Research Labs, due to the fact
that there is no security policy or contact, the software
sees little to no active use and the software had not been
actively maintained since 2016 as of the time the CVD
process started;

rpstir2 Developed by ZDNS, due to the fact that there is no
security policy or contact and the software did not build
or work at the time the CVD process started;

RPKI-Prover Developed by an individual developer, due to
the fact that there is no security policy or contact, and
the software saw little or no active production use at the
start of the CVD process.

The full timeline of the CVD can be found in appendix A. We
have contacted all parties involved before publication.

8 Conclusion

We have looked into the unique characteristics of the RPKI,
where unlike other common protocols all information must
be retrieved first, and used that to create a threat model where
an attacker that wanted to disrupt RPKI operations had full
control over a certificate authority and its RRDP publication
point. We have developed an exploit framework based on that
threat model, and tested how current RPKI relying party soft-
ware deals with these threats. We showed that in many cases
the case where the certificate authority or publication point
was malicious was inadequately considered by relying party
software, allowing a publication point to disrupt the entirety
of RPKI. Additionally, we showed that the protocol design

12

18



seems in its current state incapable of technically ensuring all
the necessary assumptions about the protocol to function prop-
erly and securely to hold, making it impossible for relying
party software developers to adequately prevent disruption
by a malicious certificate authority without collateral damage.
Lastly, we have described the steps and considerations for
reporting these issues to all parties involved.

Future work

So far we have only looked into the RRDP threat model from
a relying party perspective. We believe other aspects of the
RPKI would benefit from similar scrutiny.

Acknowledgements

We would like to thank, in no particular order, the people at:
NLnet Labs, RIPE NCC, the National Cyber Security Centre
of the Netherlands (NCSC-NL), NIC México, Cloudflare, and
LACNIC for their support during the vulnerability disclosure
process.

Availability

The code for the test framework, as well as the manual to set
it up, is available under the Affero General Public License ver-
sion 3 on https://gitlab.com/Koenvh/relying-party-
resiliency-platform.

References

[1] Donald E. Eastlake 3rd. Transport Layer Security (TLS)
Extensions: Extension Definitions. RFC 6066, Jan-
uary 2011. URL: https://rfc-editor.org/rfc/
rfc6066.txt, doi:10.17487/RFC6066.

[2] Derek Atkins and Rob Austein. Threat Analysis of the
Domain Name System (DNS). RFC 3833, August 2004.
URL: https://rfc-editor.org/rfc/rfc3833.txt,
doi:10.17487/RFC3833.

[3] Alexander Azimov, Eugene Bogomazov, Randy
Bush, Keyur Patel, and Job Snijders. Verification
of AS_PATH Using the Resource Certificate Pub-
lic Key Infrastructure and Autonomous System
Provider Authorization. Internet-Draft draft-ietf-
sidrops-aspa-verification-07, Internet Engineering
Task Force, February 2021. Work in Progress. URL:
https://datatracker.ietf.org/doc/html/draft-
ietf-sidrops-aspa-verification-07.

[4] Jason Bau and John C Mitchell. A security evaluation
of dnssec with nsec3. In NDSS, page 18, 2010.

[5] Mike Bishop. Hypertext Transfer Protocol Version
3 (HTTP/3). Internet-Draft draft-ietf-quic-http-34, In-
ternet Engineering Task Force, February 2021. Work
in Progress. URL: https://datatracker.ietf.org/
doc/html/draft-ietf-quic-http-34.

[6] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Hous-
ley, Stephen Farrell, and Dave Cooper. Internet X.509
Public Key Infrastructure Certificate and Certificate Re-
vocation List (CRL) Profile. RFC 5280, May 2008.
URL: https://rfc-editor.org/rfc/rfc5280.txt,
doi:10.17487/RFC5280.

[7] Tim Bruijnzeels, Randy Bush, and George G. Michael-
son. Resource Public Key Infrastructure (RPKI)
Repository Requirements. Internet-Draft draft-ietf-
sidrops-prefer-rrdp-01, Internet Engineering Task
Force, October 2021. Work in Progress. URL:
https://datatracker.ietf.org/doc/html/draft-
ietf-sidrops-prefer-rrdp-01.

[8] Tim Bruijnzeels, Oleg Muravskiy, Bryan Weber, and
Rob Austein. The RPKI Repository Delta Protocol
(RRDP). RFC 8182, July 2017. URL: https://
rfc-editor.org/rfc/rfc8182.txt, doi:10.17487/
RFC8182.

[9] Randy Bush. The Resource Public Key Infrastructure
(RPKI) Ghostbusters Record. RFC 6493, February 2012.
URL: https://rfc-editor.org/rfc/rfc6493.txt,
doi:10.17487/RFC6493.

[10] Randy Bush and Rob Austein. The Resource Pub-
lic Key Infrastructure (RPKI) to Router Protocol, Ver-
sion 1. RFC 8210, September 2017. URL: https://
rfc-editor.org/rfc/rfc8210.txt, doi:10.17487/
RFC8210.

[11] Margaux Canet, Amrit Kumar, Cédric Lauradoux, Mary-
Andréa Rakotomanga, and Reihaneh Safavi-Naini. De-
compression quines and anti-viruses. Proceedings of
the Seventh ACM on Conference on Data and Applica-
tion Security and Privacy, Mar 2017. doi:10.1145/
3029806.3029818.

[12] Cloudflare. Slowloris ddos attack, 2021. URL:
https://www.cloudflare.com/learning/ddos/
ddos-attack-tools/slowloris/.

[13] Danny Cooper, Ethan Heilman, Kyle Brogle, Leonid
Reyzin, and Sharon Goldberg. On the risk of misbehav-
ing rpki authorities. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, HotNets-XII, New
York, NY, USA, 2013. Association for Computing Ma-
chinery. doi:10.1145/2535771.2535787.

13

19



[14] Borislav Djordjevic and Valentina Timcenko. Ext4 file
system performance analysis in linux environment. In
Proceedings of the 11th WSEAS International Confer-
ence on Applied Informatics and Communications, and
Proceedings of the 4th WSEAS International Conference
on Biomedical Electronics and Biomedical Informatics,
and Proceedings of the International Conference on
Computational Engineering in Systems Applications,
AIASABEBI’11, page 288–293, Stevens Point, Wis-
consin, USA, 2011. World Scientific and Engineering
Academy and Society (WSEAS).

[15] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A cryptographic analysis of the tls 1.3
handshake protocol. Journal of Cryptology, 34(4):1–69,
2021.

[16] Roy T. Fielding and Mark Nottingham. Addi-
tional HTTP Status Codes. RFC 6585, April 2012.
URL: https://rfc-editor.org/rfc/rfc6585.txt,
doi:10.17487/RFC6585.

[17] Yossi Gilad, Omar Sagga, and Sharon Goldberg.
Maxlength considered harmful to the rpki. Proceed-
ings of the 13th International Conference on emerging
Networking EXperiments and Technologies, Oct 2017.
doi:10.1145/3143361.3143363.

[18] Sharon Goldberg. Why is it taking so long to secure
internet routing? routing security incidents can still slip
past deployed security defenses. Queue, 12(8):20–33,
aug 2014. doi:10.1145/2668152.2668966.

[19] Dan Goodin. Suspicious event hijacks amazon traffic for
2 hours, steals cryptocurrency, Apr 2018. URL: https:
//arstechnica.com/information-technology/
2018/04/suspicious-event-hijacks-amazon-
traffic-for-2-hours-steals-cryptocurrency/.

[20] Russ Housley. Cryptographic Message Syntax
(CMS). RFC 5652, September 2009. URL: https://
rfc-editor.org/rfc/rfc5652.txt, doi:10.17487/
RFC5652.

[21] Geoff Huston, Robert Loomans, and George G. Michael-
son. A Profile for Resource Certificate Repository Struc-
ture. RFC 6481, February 2012. URL: https://
rfc-editor.org/rfc/rfc6481.txt, doi:10.17487/
RFC6481.

[22] Geoff Huston and George G. Michaelson. Valida-
tion of Route Origination Using the Resource Certifi-
cate Public Key Infrastructure (PKI) and Route Origin
Authorizations (ROAs). RFC 6483, February 2012.
URL: https://rfc-editor.org/rfc/rfc6483.txt,
doi:10.17487/RFC6483.

[23] Stephen Kent and Andrew Chi. Threat Model for
BGP Path Security. RFC 7132, February 2014.
URL: https://rfc-editor.org/rfc/rfc7132.txt,
doi:10.17487/RFC7132.

[24] Stephen Kent, Geoff Huston, and George G. Michael-
son. Certification Authority (CA) Key Rollover in the
Resource Public Key Infrastructure (RPKI). RFC 6489,
February 2012. URL: https://rfc-editor.org/
rfc/rfc6489.txt, doi:10.17487/RFC6489.

[25] John Kristoff, Randy Bush, Chris Kanich, George
Michaelson, Amreesh Phokeer, Thomas C. Schmidt,
and Matthias Wählisch. On measuring rpki relying
parties. In Proceedings of the ACM Internet Measure-
ment Conference, IMC ’20, page 484–491, New York,
NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3419394.3423622.

[26] Paul J. Leach, Rich Salz, and Michael H. Mealling. A
Universally Unique IDentifier (UUID) URN Names-
pace. RFC 4122, July 2005. URL: https://
rfc-editor.org/rfc/rfc4122.txt, doi:10.17487/
RFC4122.

[27] Matt Lepinski and Stephen Kent. An Infrastructure to
Support Secure Internet Routing. RFC 6480, Febru-
ary 2012. URL: https://rfc-editor.org/rfc/
rfc6480.txt, doi:10.17487/RFC6480.

[28] Matt Lepinski, Stephen Kent, Geoff Huston, and Rob
Austein. Manifests for the Resource Public Key
Infrastructure (RPKI). RFC 6486, February 2012.
URL: https://rfc-editor.org/rfc/rfc6486.txt,
doi:10.17487/RFC6486.

[29] Matt Lepinski, Derrick Kong, and Stephen Kent. A Pro-
file for Route Origin Authorizations (ROAs). RFC 6482,
February 2012. URL: https://rfc-editor.org/
rfc/rfc6482.txt, doi:10.17487/RFC6482.

[30] Matt Lepinski and Kotikalapudi Sriram. BGPsec
Protocol Specification. RFC 8205, September 2017.
URL: https://rfc-editor.org/rfc/rfc8205.txt,
doi:10.17487/RFC8205.

[31] Mitre. CVE-2015-3451, 2015. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-3451.

[32] Mitre. CVE-2016-2108, 2016. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-2108.

[33] Mitre. CVE-2016-6308, 2016. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-6308.

14

20



[34] Mitre. CVE-2018-1000613, 2018. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-1000613.

[35] Mitre. CVE-2019-16159, 2019. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-16159.

[36] Mitre. CVE-2019-17359, 2019. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-17359.

[37] Mitre. CVE-2019-6659, 2019. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-6659.

[38] Mitre. CVE-2021-3761, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3761.

[39] Mitre. CVE-2021-3907, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3907.

[40] Mitre. CVE-2021-3908, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3908.

[41] Mitre. CVE-2021-3909, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3909.

[42] Mitre. CVE-2021-3910, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3910.

[43] Mitre. CVE-2021-3911, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3911.

[44] Mitre. CVE-2021-3912, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3912.

[45] Mitre. CVE-2021-43172, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-43172.

[46] Mitre. CVE-2021-43173, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-43173.

[47] Mitre. CVE-2021-43174, 2021. URL: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-43174.

[48] P. Mockapetris. Domain names - concepts and facil-
ities. RFC 1034, November 1987. URL: https://
rfc-editor.org/rfc/rfc1034.txt, doi:10.17487/
RFC1034.

[49] Nationaal Cyber Security Centrum. Leidraad co-
ordinated vulnerability disclosure, Jul 2019. URL:
https://www.ncsc.nl/documenten/publicaties/
2019/mei/01/cvd-leidraad.

[50] Nationaal Cyber Security Centrum. NCSC-2021-
0987, 2021. URL: https://www.ncsc.nl/actueel/
advisory?id=NCSC-2021-0987.

[51] Nationaal Cyber Security Centrum. Upcoming
announcement of rpki cvd procedure, Oct 2021. URL:
https://web.archive.org/web/20211029165109/
https://english.ncsc.nl/latest/news/2021/
october/29/upcoming-announcement-of-rpki-
cvd-procedure.

[52] NICMx/FORT-validator. 1.5.3 crashing repeatedly
starting about a hour ago, 2021. URL: https://
github.com/NICMx/FORT-validator/issues/65.

[53] Henrik Nielsen, Roy T. Fielding, and Tim Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.0. RFC 1945,
May 1996. URL: https://rfc-editor.org/rfc/
rfc1945.txt, doi:10.17487/RFC1945.

[54] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T.
Fielding, Jim Gettys, Paul J. Leach, and Tim Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616, June 1999. URL: https://rfc-editor.org/
rfc/rfc2616.txt, doi:10.17487/RFC2616.

[55] OpenBSD. Openbsd security, 2021. URL: https://
www.openbsd.org/security.html.

[56] OpenBSD. Openrsync, 2021. URL: https://
www.openrsync.org/.

[57] OWASP. Rest security cheat sheet, 2021.
URL: https://cheatsheetseries.owasp.org/
cheatsheets/REST_Security_Cheat_Sheet.html.

[58] OWASP. Xml security cheat sheet, 2021.
URL: https://cheatsheetseries.owasp.org/
cheatsheets/XML_Security_Cheat_Sheet.html.

[59] Yakov Rekhter, Susan Hares, and Tony Li. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January 2006.
URL: https://rfc-editor.org/rfc/rfc4271.txt,
doi:10.17487/RFC4271.

[60] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.
URL: https://rfc-editor.org/rfc/rfc8446.txt,
doi:10.17487/RFC8446.

[61] RIPE NCC. Become a ripe ncc member, 2021. URL:
https://www.ripe.net/participate/member-
support/become-a-member.

15

21



[62] Rsync. Rsync security advisories, 2021. URL: https:
//rsync.samba.org/security.html.

[63] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Rec-
ommendations for Secure Use of Transport Layer Se-
curity (TLS) and Datagram Transport Layer Security
(DTLS). RFC 7525, May 2015. URL: https://
rfc-editor.org/rfc/rfc7525.txt, doi:10.17487/
RFC7525.

[64] Kris Shrishak and Haya Shulman. Limiting the power
of rpki authorities. In Proceedings of the Applied Net-
working Research Workshop, ANRW ’20, page 12–18,
New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3404868.3406674.

[65] Tom Strickx. How verizon and a bgp optimizer
knocked large parts of the internet offline today, Jun
2019. URL: https://blog.cloudflare.com/how-
verizon-and-a-bgp-optimizer-knocked-large-
parts-of-the-internet-offline-today/.

[66] Nathalie Trenaman. Update on ripe roadmap and
experiences, 2021. RIPE 82. URL: https://
ripe82.ripe.net/archives/video/602/.

[67] Koen van Hove. Improving the resiliency of
rpki relying party software, Nov 2021. URL:
https://labs.ripe.net/author/koen-van-hove/
improving-the-resiliency-of-rpki-relying-
party-software/.

[68] Koen van Hove. Tree Hints for the Resource Public Key
Infrastructure (RPKI). Internet-Draft draft-kwvanhove-
sidrops-rpki-tree-hints-01, Internet Engineering Task
Force, December 2021. Work in Progress. URL:
https://datatracker.ietf.org/doc/html/draft-
kwvanhove-sidrops-rpki-tree-hints-01.

[69] Mathy Vanhoef. Key reinstallation attacks - breaking
wpa2 by forcing nonce reuse, 2017. URL: https://
www.krackattacks.com/.

[70] Matthias Wählisch, Robert Schmidt, Thomas C.
Schmidt, Olaf Maennel, Steve Uhlig, and Gareth Tyson.
Ripki: The tragic story of rpki deployment in the web
ecosystem. In Proceedings of the 14th ACM Workshop
on Hot Topics in Networks, HotNets-XIV, New York,
NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2834050.2834102.

[71] Zhiwei Yan and Jong-Hyouk Lee. Bgpchain:
Constructing a secure, smart, and agile routing in-
frastructure based on blockchain. ICT Express, 2021.
URL: https://www.sciencedirect.com/science/
article/pii/S2405959520304938, doi:https:
//doi.org/10.1016/j.icte.2020.12.005.

16

22



A Vulnerability disclosure timeline

Below is the full timeline from the start of the project
to the end of the CVD process. All dates are in 2021.

May • Start of the research project
June • First set of vulnerabilities

discovered, decision to start a CVD
process made, NCSC-NL is
contacted by the researchers

July • Discussion between the researchers
and NCSC-NL on the CVD process
to follow

August • Identification of stakeholders in the
CVD process to contact

12 August • Start CVD process – NCSC-NL
contacts relying party software
implementers to notify them that
vulnerabilities have been found and
asks them to confirm willingness to
participate under embargo on
providing patches with a
coordinated release tentatively
scheduled for November 8, 2021

12 August • RIPE NCC responds that they do no
longer support Validator 3, and that
they will not update it

17 August • The implementers have all
responded to the notification and
have received information on the
vulnerabilities

25 October • All three participating
implementations (Routinator,
OctoRPKI and Fort) have patches
ready and releases on standby

25 October • Due to early availability of fixes,
publication date is moved forward
to November 1, 2021, with
notification of all other parties
(rpki-client, rcynic, rpstir2, and
RPKI-Prover) set for October 27,
2021

26 October 18h • Pull request with fixes to OctoRPKI
is inadvertently made publicly
visible. Automated GitHub
notifications are sent to all users
following this project, including
parties not notified yet in the CVD
process

26 October 20h • OctoRPKI pull request is removed
from the public record

26 October 21h • Decision is made to move
notification of other parties forward
by a few hours in light of the public
PR

26 October 21h • Notifications are sent to rpki-client,
rcynic, rpstir2, and RPKI-Prover.
These notifications are sent by the
researcher instead of NCSC-NL, in
deviation from the process, in the
interest of speed in notification

27 October • OpenBSD responds to notification
of rpki-client, indicating they do not
agree to the terms because the time
between notification and
publication is too short, and not
wanting to agree to an embargo a
priori

27 October • NCSC-NL gives OpenBSD the
option to negotiate an entirely new
deadline provided OpenBSD agrees
to keep the disclosed information
confidential under embargo

27 October • OpenBSD responds negatively to
NCSC-NL and indicates they are
not willing to agree to an embargo
and request not to be contacted
again in the remainder of the CVD
process

27 October • Email to one of the rcynic
developers has bounced, and
another contact attempt with a
corrected email address is made to
both developers

27 October • OpenBSD developers publicly
criticise the CVD process in
multiple online forums

29 October • rcynic point of contact publicly
denounces CVD process on
NANOG mailing list including an
unredacted copy of the notification
mail in their post

29 October • NCSC-NL privately notifies the
rcynic point of contact about the
omission in the notification
message describing the rest of the
process and timeline

29 October • NCSC-NL issues a public statement
about the CVD process due to
ongoing discussion in public
forums [51]

30 October • OpenBSD changes its position and
agrees to keep the disclosed
information confidential under
embargo – is informed of the
vulnerabilities

31 October • Disclosure date is moved to 9
November

9 November 15h • Embargo is lifted, updates released,
CVD is over

17

23


