
An empirical evaluation of approximation algorithms to
find maximal cliques in hypergraphs

Alexandra Iosif
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

a.iosif@student.utwente.nl

ABSTRACT
In this research, two methods based on the replicator trans-
formation are applied to circulant k-hypergraphs in order
to find their maximal cliques. An experiment is conducted
on hypergraphs to test the algorithms considering three
main parameters in their generation: the edge size k, the
edge density d, and the total number of vertices n. The
paper shows the relation between these algorithms and
the above-mentioned parameters. Specifically, by increas-
ing the edge density, a better time performance of the
algorithms is seen. Further, it concludes that the repli-
cator dynamics method is more efficient than the descent
method.

Keywords
uniform hypergraph, maximal clique, replicator dynamics,
descent method.

1 Introduction
Mathematical optimization has been a key player in the
performance of existing algorithms and in the develop-
ment of new solution approaches for problems in computer
science. Numerical techniques such as the descent type
methods are used to (approximately) solve this optimiza-
tion problem. The descent methods are simple to employ
and depend on a single parameter. The algorithms gained
more attention with the advent of deep learning, where a
variation of descent algorithm that is gradient descent is
used and parameters are termed as the learning rate.

Cliques in graphs and hypergraphs have influenced the
way of constructing combinatorial objects in many fields,
from unrestricted error-correcting codes to Keller’s con-
jecture and partitions of codes and designs [7]. The maxi-
mum clique problem is also remarkable for its applications
in computer vision, experimental design, information re-
trieval and fault tolerance [2]. Moreover, graph theory has
greatly contributed to the research in social networks, as
stated by Luce and Perry [4].

The present paper offers a thorough characterization of
two special methods, as described in [1], applied on search-
ing maximal cliques in circulant k-hypergraphs. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
36th Twente Student Conference on IT Febr. 4th, 2022, Enschede, The
Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

methods, which are based on the replicator transforma-
tion, aim at computing local or global maximizers of ho-
mogeneous polynomials over the unit simplex. The global
maximization, equivalent to maximum cliques in hyper-
graphs, is an NP-hard problem [5]. However, this pa-
per [1] concentrates on delivering local maximizers of ho-
mogeneous polynomials with degree greater than 2, using
the replicator dynamics as the first proposed method. The
replicator dynamics algorithm is further refined to include
a descent step in order to gain convergence speed. The
descent algorithm depends on a step size that has been
chosen by dividing the interval into discrete steps.

Since finding the maximum clique is an NP-hard problem,
one resorts to developing heuristics in order to achieve not
optimal but satisfactory results. One type of these heuris-
tics deploys recursive backtracking. A more recent ap-
proach is the Russian doll algorithm proposed by Österg̊ard [6].
It uses the Russian doll technique [12] over the basic back-
tracking algorithm in order to prune results with its dy-
namic programming structure. As presented in [9], a new
outlook based on combining the Russian doll and the neck-
lace algorithm that constructs binary necklaces [10] has
resulted in the Russian necklace algorithm. Because of
the special necklace structure, it has been applied to cir-
culant k-hypergraphs on different edge densities in order
to find maximum cliques. The results show that the Rus-
sian necklace algorithm is more efficient for hypergraphs
with higher edge density. The paper [9] underlines the
performance differences between the Russian necklace al-
gorithm and the above mentioned: necklace, Russian doll,
and backtrack algorithms.

This paper is organized as follows. Section 1.1 introduces
cliques in circulant k-hypergraphs starting by defining no-
tions of graphs, uniform hypergraphs, cliques, and neck-
laces. Then an optimization problem is formulated, aim-
ing to find strict local minimizers of a homogeneous poly-
nomial of degree k. Section 2 details step-by-step the
algorithms replicator dynamics and descent method ap-
plied on k-hypergraphs, then further studies the parame-
ters used to generate the instances for experiments. Sec-
tion 3 discusses the main results, and section 4 concludes
the present paper.

1.1 Preliminaries
This section defines the notions and notations used in this
paper.

A graph is defined as a set G = (V,E), where V is the
set of n vertices vi ∈ V, i = 0, n− 1 and E is the set of
edges, each edge corresponding to a pair (vi, vj) of vertices,
vi, vj ∈ V, i, j ≤ n−1. A graph is complete if all its pairs of
vertices are connected by an edge. A subgraph A of a graph

1

Figure 1. Hypergraph Example. [3]

G = (V,E) is a set (Va, Ea) in which Va ⊂ V,Ea ⊂ E.
Note that not all edges connected with Va found in E are
necessarily in Ea. A subgraph A = (Va, Ea) of a graph
G = (V,E) is induced if all edges of E with endpoints in
Va are found in Ea.

A clique C in a graph is defined as a complete induced
subgraph. A clique C is maximal in a graph G = (V,E) if
there are no other vertices vi ∈ V, vi /∈ Vc such that Vc∪vi
forms a clique. A maximum clique is the largest maximal
clique in a graph. However, multiple cliques may have the
maximum size within the same graph.

A hypergraph H = (V,E) is a generalization of a graph, in
which an element of E is a subset of vertices vi ∈ V . Fig-
ure 1 shows an example of a hypergraph with four edges. A
hypergraph H = (V,E) is complete if the edge set E is the
power set of vertices V . A k-hypergraph is a hypergraph
with all its edges being subsets of vertices with the same
cardinality k. A k-hypergraph is complete if all k-subsets
of its vertices are edges. A clique in a k-hypergraph is a
complete induced k-subhypergraph.

The complement of a hypergraph H = (V,E) has all edges
not found in H on the same set of vertices V , such that
H = (V,E) with E = Pk(V)/E.

1.1.1 Binary Canonical Necklace
Binary canonical necklaces have been used by Plant [9] to
generate circulant k-hypergraphs and to find maximum
cliques through the algorithm Russian necklace search.
However, in this paper they are used only to generate the
hypergraphs. In order to define circulant k-hypergraphs,
the concept of binary canonical necklaces will be intro-
duced through an example.

Consider the set N = {0, 1, 2, 3, 4, 5, 6, 7, 8} and the subset
A = {1, 3, 5, 6}, A ⊂ N . The characteristic string of A is
α = 010101100 so that each element of N is represented
by 1 if it is found in subset A and 0 otherwise.

The right justified characteristic string is formed by shift-
ing the characteristic string to the right until the first 1
is met at the end of the string (or by max(N) −max(A)
places, specifically 8 − 6 = 2 places in this case). Thus,
the right justified characteristic string is 000101011.

A rotation to the right hand side by three places is ap-
plied. The characteristic string becomes β = R(α, 3) =
100010101, so B = {0, 4, 6, 8}.

Under rotation, the strings α and β are equivalent and
thus referred to as binary necklaces. Further, necklaces
can be defined as isomorphism classes of subsets of a set
under rotation. A canonical necklace is the right justified
characteristic string of a subset.

A circulant graph has its adjacency matrix a circulant ma-
trix. For circulant k-hypergraphs, symmetric adjacency
tensors are used; tensors can be seen as multi-dimensional
matrices. As defined by Plant [8], a k-hypergraph H =
(V,E) is circulant if there exists a relabeling of the ver-
tices V = {0, 1, ..., |V |−1} and a set N of canonical subset
necklaces, each being a subset of V and having cardinality
k, such that E = {R(N, i) : N ⊂ N , 0 ≤ i ≤ |V | − 1}. In
other words, a k-hypergraph is circulant if the hypergraph
has an automorphism that is a cyclic permutation of its
vertices [9].

1.1.2 Continuous Optimization Formulation
This section is based on the work presented in [1].
For a given x ∈ Rn, the Lagrangian function of a comple-
ment k-hypergraph H = (V,E) is defined as:

LH(x) =
∑
e∈E

(∏
i∈e

xi

)
, (1)

where

∆ = {x ∈ Rn : x ≥ 0,

n−1∑
i=0

xi = 1} (2)

represents the unit simplex [2].
Consider the following homogeneous polynomial of degree
k:

hτ
H(x) = LH(x) + τ

n−1∑
i=0

xk−1
i , τ > 0, (3)

then the optimization problem:

min hτ
H(x), for x ∈ ∆n. (4)

The characteristic vector xS of a subset S ⊂ V consists of
the components:

xS
i =

1

|S| , i ∈ S,

0, i /∈ S.
(5)

The following theorem connects the maximum clique prob-
lem in a hypergraph with the continuous optimization
problem as presented in 4.
Theorem Let H = (V,E) be a k-hypergraph and let 0 <

τ ≤ 1

k(k − 1)
. Then x ∈ ∆n is a strict local minimizer

of min hτ
H
(x) if and only if x = xC is the characteristic

vector of a maximal clique C of H.

1.2 Problem Statement
The maximum clique problem has interesting applications,
as mentioned in Section 1. Since it is an NP-hard problem,
the only approach is to rely on heuristics to solve it. Like-
wise, circulant k-hypergraphs or circulant tensors are used
in various fields. Therefore, the focus is on finding cliques
in circulant k-hypergraphs only, by analyzing existing al-
gorithms. In particular, the methods based on the repli-
cator transformation studied in [1] will have a dedicated
implementation for the special structure of hypergraphs.
Afterwards, they will be tested on the same benchmark
instances used by Plant [8]. The benchmark instances are
generated to compare his algorithm, the Russian neck-
lace, with the necklace algorithm developed by Tzanakis
et. al. [11]. An empirical comparison of the performances
of these algorithms and their results will follow.

2

2 Methodology
This section studies the replicator dynamics method and
the descent method applied to circulant k-hypergraphs.

2.1 Algorithms
In this section, we derive an algorithm from the work of
Ahmed & Still. The algorithm is based on the replicator
equation as presented in the section 1.1. In the following,
we describe the algorithm and comment on its computa-
tional complexity. The basic algorithm is given below.

1: Compute the complement hypergraph H = (V,E)

2: Choose τ ∈
[
0,

1

k(k − 1)

]
3: Choose starting x ∈ Rn

+

4: Normalize x such that x ∈ ∆n

5: Set ϵ = 10−3

6: Set flag = true
7: while flag do
8: Compute h as:

hτ
H
(x) =

∑
e∈E

(∏
i∈e xi

)
+ τ

∑n−1
i=0 xk

i

9: for j = 0, 1, ..., n− 1 do

10: yj =
1

hτ
H
(x)

xj

(∑
e∈E δje

(∏
i∈e/j xi

)
+τkxk−1

j

)
,

▷ where δje =

{
1, j ∈ e,

0, j /∈ e.

11: end for
12: if ||y − x|| < ϵ then
13: flag = false
14: end if
15: x = y
16: end while
17: Computed x is the characteristic vector for the maxi-

mal clique

The algorithm requires a k-hypergraph H = (V,E), where
V is the set of vertices with |V | = n, and E the set of
edges. This requirement has been ensured by taking the
set of edges of the hypergraph, each edge having size k,
and the number of vertices n as input.
The algorithm ensures the characteristic vector x ∈ ∆n

of the maximal clique. Thus, the algorithm returns a list
of elements ranging between 0 and 1 which, when added,
give value 1. In other words, it returns a normalized vec-
tor of length n.

Step 1 The first step of the algorithm is to compute the
complement hypergraph for H: H = (V,E). This step is
done by removing the elements of the edge set of H from
a set containing all combinations of n elements taken k
times. This way, it results in the set of edges of the com-
plement hypergraph, E. Thus, the space complexity of
this step is

(
n
k

)
. In the worst case, a hypergraph with the

edge density close to d = 0% would have the complement
hypergraph with d = 100%, where E =

(
n
k

)
. For time

complexity, O
(
n
k

)
is achieved if an edge of H is the last

element of the
(
n
k

)
set, since it would require

(
n
k

)
steps to

eliminate the edge. However, the average time complexity

is O

(
|E| <

(
n
k

))
. This complexity requires an exponen-

tial growth of time.

Step 2 In the second step, τ has to be chosen consider-

ing τ ∈
[
0,

1

k(k − 1)

]
. This is a static step as τ is always

taken in implementation as τ =
1

k(k − 1)
.

Step 3 The third step initializes a vector x ∈ Rn
+. In terms

of complexity, the space complexity grows linearly with
n, while the time complexity is constant, depending on
the randomization function. To generate a random ar-
ray of length n, numpy.random.rand() has been used over
random.random() offered by Python, since it creates an
ndarray of n random elements without the need of a loop,
thus it is more efficient.

Step 4 In the fourth step, the vector x defined previously
needs to be normalized. For this, the following manner of

normalization has been considered: x =
x∑n−1

i=0 xi

. This

is a two-step operation, firstly all elements of x need to be
added, and secondly, each element needs to be divided by
the sum. This results in a linear time complexity of O(n),
and a space complexity of n.

Step 5 This step is devoted to set ϵ = 10−3. It is a fixed
step and does not influence either the complexity.

Step 6 This step is meant to initialise flag = true. This is
used as a breaker of a the while-loop that will follow next.

Step 7 First, a parameter counter is initialized to 0 in or-
der to ensure that the while-loop is not called more than
2000 times. Then, the while-loop starts and runs under
the conditions: flag = true and counter <= 2000.

Step 8 The homogeneous polynomial of degree k, hτ
H
(x),

is computed in this step. Considering 3, the first addend
is the Lagrangian function1 for the complement hyper-
graph H. To get the sum inside the function, for each
edge e in the edge set E, it is computed the product be-
tween the elements xi of the normalized vector x found
on the positions corresponding to the vertices i ∈ e of
the specific edge. Adding all these products, it results in
the Lagrangian function LH(x). As the complement has

|E| <
(
n
k

)
edges, the time complexity is O(|E| ∗ k), |E| by

taking each edge and k given that each edge has this size.
The Lagrangian function has an exponential growth.
The second addend, let it be called the tau sum, computes
the sum of all elements xk

i and multiplies it by τ . The time
complexity in this case is O(n ∗ k), thus it is linear. The
space complexity remains n.
Considering the complexities of the Lagrangian function
and of the tau sum, the sum of these gives the complexity
of the homogeneous polynomial h, which is the exponen-
tial O((|E|+ n) ∗ k).

Step 9-11 This step computes vector y ∈ Rn
+. For each

element yj , the first step is to compute the sum of the
products between xi’s. The product is solved in the fol-
lowing way: for each edge e in the edge set E, if j ∈ e, then
it is computed the product between xi elements, where
i ∈ e but e ̸= j. Then the products for all edges with j ∈ e
are added. Taking each edge requires |E| <

(
n
k

)
steps,

while all edges having exactly k elements, the complex-
ity of this part is the exponential O(|E| ∗k) and the space
complexity is |E|. The final addend to this sum is τkxk−1

j ,
which is only a set of operations, without influencing the
complexity.
After this sum is completed, it is divided by polynomial h
and multiplied by xj . Once more, this is not significant to
the final complexity.
If the complexity for computing each element yj is O(|E|∗

3

k) and there is a total of n elements, the complexity in the
average case for obtaining vector y is O(|E| ∗ n ∗ k).

Step 12-14 This step checks the following statement con-
sidering the Euclidean norm: ||y − x|| < ϵ. If it is true,
then flag is changed to false. In order to compute the
norm, a set of operations is performed on vectors x, and
y. Then the result is compared to ϵ. Thus, the complexity
here is linear, O(n).

Step 15-16 This is the last step of the while-loop. The x
vector is changed to vector y: x = y. The space complex-
ity is n2, while the time complexity gets to linear O(n).
Depending on the value of the flag, the algorithm might
return to Step 7, otherwise exit it.

Step 17 The algorithm finishes returning vector x as the
characteristic vector of the maximal clique of the hyper-
graph H.

Considering the complexities for each step mentioned above,
the time complexity of the algorithm replicator dynamics
is the largest complexity of all steps, thus it is O(|E|∗n∗k).

2.1.1 The Descent Method
The descent method is similar to the above algorithm, the
only change is to extend Step 15. A step-size α is set to
α = 0.01. Then it follows:

Set z = x+ α(y − x)
if

∑n−1
i=0 zi = 1 then

x = z
else

x = y
end if

The complexity of this if-statement is O(n), without influ-
encing considerably the total complexity of this algorithm.
Thus, the time complexity of both algorithms is the same:
O(|E| ∗ n ∗ k).

2.2 Experiments
An experimental evaluation of the algorithms is performed
by comparing the algorithms based on replicator dynamics
and descent methods. The experiments are conducted us-
ing randomly generated circulant k-hypergraphs with re-
gard to the same parameters imposed by Plant in his own
experiment: number of vertices n, edge size k, and edge
density d. The edge size k varies between 3 and 5 vertices.
The first parameter n is set to 60 for k = 3, 4 until n = 100
with an increase of 5 vertices at each step. Because of the
memory required by k = 5, it is reduced to ranging from
20 to 50 vertices, maintaining the increase of 5 vertices
with each step. In this case, the search space is likely 25

or 32 times larger with each rise [8]. The edge density d
starts with 0.35, increasing by 0.05 until 0.95 is reached.
This is meant to represent the division between the num-
ber of edges found in the k-hypergraph and all possible
edges. However, a circulant k-hypergraph is formed from
its canonical necklaces with all their rotations involved and
the number of rotations per canonical necklace can differ.
In Table 1, the canonical necklaces with their rotations of
a 3-hypergraph on 6 vertices are shown. As it can be seen,
the probability differs for each set of edges. Thus, the
edges do not have the same weight of being chosen, taking
into account their rotations necessarily to be included in
the formation of the hypergraph. A reasonable solution
to this problem is to choose randomly only between the
canonical necklaces so that the edge density becomes only
an approximation of the total number of edges found in

Table 1.
Edge Probability

Edge Rotations Period Probability

0, 1, 2 0,1,5 0,4,5
1,2,3 2,3,4
3,4,5

6
6

20
= 30%

0, 1, 3 0,2,5 0,3,4
1,2,4 1,4,5
2,3,5

6
6

20
= 30%

0, 1, 4 0,2,3 0,3,5
1,2,5 1,3,4
2,4,5

6
6

20
= 30%

0, 2, 4 1,3,5 2
2

20
= 10%

Figure 2.

the hypergraph. To achieve this, a random 0 ≤ r ≤ 1 is
generated for each canonical necklace. It is selected to be
an edge, together with its rotations, for r ≤ d.

Since the complexity of computing the complement of the
edge set is O

(
n
k

)
, it generates an exponential time increase

with each new step of vertices addition. Consider Figure 2
showing the runtime needed for the algorithm of replicator
dynamics when k = 3, d = 35%, and n = 60, 100. The
method for computing the complement of the hypergraph
takes the spotlight, reaching over 250 seconds runtime for
100 vertices. Meanwhile, the rest of the algorithm keeps its
computation time below 60 seconds. This way, the differ-
ence between the two methods in runtime becomes difficult
to be observed. For this reason, the runtime of generat-
ing the complement hypergraph is excluded for the rest of
the plots. Further, for k ≥ 4, this step is entirely omit-
ted. Instead, hypergraphs are directly generated with the
edge density d = 5, 65%, as opposed to d = 35, 95%, and
these are accepted as the complement hypergraphs. Thus,
the algorithms can be computed using hypergraphs with
the highest suitable range of vertices n for all k’s, without
the possible time inconvenience created by generating the
complement hypergraph.

3 Results
The algorithms have been implemented and tested in Python
3.7.5 using Pycharm as IDE. All experiments have run on
an Intel Core i7-8750H CPU @ 2.20GHz having Windows

4

Figure 3.

Figure 4.

11.
The algorithms are tested considering the parameters: n,
k, and d. For each edge size k and edge density d, the aver-
age runtime of all runtimes for n = 60, 100 and n = 20, 50,
respectively, is computed. The remaining figures show
the average runtimes for each k = 3, 5 and d = 35, 95%.
Method 1 represents the algorithm for the replicator dy-
namics method, and method 2 for the descent method.

At a first glance, considering Figures 3, 4, and 5, the al-
gorithm based on replicator dynamics appears to be more
optimal than the descent method. Furthermore, both al-
gorithms are more time-efficient with the increase in edge
density. This happens because the algorithms work on the
complement hypergraph. Thus, while the hypergraph gets
more edges with the increase in edge density, its comple-
ment becomes the opposite, having reduced the number
of edges. Additionally, the second algorithm seems to be
more affected in runtime with the change in edge density.
Another point can be that the more we increase the edge
size k, the more it grows the discrepancy between the av-
erage times of these two algorithms.

Looking at the average runtimes, we observe an exponen-

Figure 5.

tial increase with the edge size k. Considering Figure 3
and 4 which both have the average times for n = 60, 100,
the first method shows a range of 2-40 seconds for k = 3,
while for k = 4 we see a large growth to 30-200 seconds.
For the descent method, the ranges are 3-60 seconds for
k = 3 and 110-750 seconds for k = 4. For k = 5, al-
though the number of vertices is reduced to n = 20− 50,
the first method requires on average more than 100 sec-
onds for d ≤ 50%, while the second method takes over 300
seconds for the same d.

In these plots, the lines are not straight. This can be
a result due to the approximation of the edge density d.
Since every canonical necklace receives a random number
from 0 to 1 in the generation of the hypergraphs, it could
happen to a hypergraph to have more or less edges than
the number required by d.

4 Discussion and Conclusion
In this paper, we have discussed an optimization problem
with the aim of finding maximal cliques in circulant k-
hypergraphs. We have introduced the concepts behind
cliques in hypergraphs and formulate a continuous op-
timization based on the minimization of a homogeneous
polynomial as defined in 3. Then we have applied them
to create a dedicated implementation of the replicator dy-
namics to circulant k-hypergraphs. This has been ana-
lyzed step by step with regard to its complexity. After-
wards, Section 2.1.1 looks at a possible optimization in-
troducing a step-size α in implementation. As it is shown
in results, the first method, replicator dynamics, is more
efficient than the descent method for hypergraphs with
k = 3, 5, d = 35, 95, and n = 60, 100/n = 20, 50, respec-
tively. Both algorithms perform better with the increase
of the edge density d due to the requirement imposed by
these methods to work with the complement hypergraph.

5 References

[1] F. Ahmed and G. Still. Two methods for the
maximization of homogeneous polynomials over the
simplex. Computational Optimization and
Applications, 80(2):523–548, 2021.

[2] S. R. Bulo and M. Pelillo. A continuous
characterization of maximal cliques in k-uniform

5

hypergraphs. In International Conference on
Learning and Intelligent Optimization, pages
220–233. Springer, 2007.

[3] Kilom691. An example of a hypergraph. retrieved on
23/01/2022 from https://
en.wikipedia.org/wiki/hypergraph/media/file:hypergraph-
wikipedia.svg.

[4] R. D. Luce and A. D. Perry. A method of matrix
analysis of group structure. Psychometrika,
14(2):95–116, 1949.

[5] K. G. Murty and S. N. Kabadi. Some np-complete
problems in quadratic and nonlinear programming.
Technical report, 1985.

[6] P. R. Österg̊ard. A fast algorithm for the maximum
clique problem. Discrete Applied Mathematics,
120(1-3):197–207, 2002.

[7] P. R. Österg̊ard. Constructing combinatorial objects
via cliques. In Surveys in combinatorics, pages
57–82, 2005.

[8] L. Plant. Maximum clique search in circulant
k-hypergraphs. Master’s thesis, Université
d’Ottawa/University of Ottawa, 2018.

[9] L. Plant and L. Moura. Maximum clique exhaustive
search in circulant k-hypergraphs. In C. J.
Colbourn, R. Grossi, and N. Pisanti, editors,
Combinatorial Algorithms, pages 378–392, Cham,
2019. Springer International Publishing.

[10] F. Ruskey, C. Savage, and T. M. Y. Wang.
Generating necklaces. Journal of Algorithms,
13(3):414–430, 1992.

[11] G. Tzanakis, L. Moura, D. Panario, and B. Stevens.
Constructing new covering arrays from lfsr
sequences over finite fields. Discrete Mathematics,
339(3):1158–1171, 2016.

[12] G. Verfaillie, M. Lemaitre, and T. Schiex. Russian
doll search for solving constraint optimization
problems. In AAAI/IAAI, Vol. 1, pages 181–187,
1996.

6

	Introduction
	Preliminaries
	Binary Canonical Necklace
	Continuous Optimization Formulation

	Problem Statement

	Methodology
	Algorithms
	The Descent Method

	Experiments

	Results
	Discussion and Conclusion
	References

