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Chapter 1

Introduction

1.1 Introduction
In this master thesis we set out to design and develop a productive, low-level FPGA design language. A
productive language offers designers abstractions such that complex designs can be defined efficiently and
elegantly. Low-level languages offer major control over how exactly the program text is translated to the
target architecture. Consequently, in a low-level language the target architecture is in a certain way visible
to the designer. To anchor this research in reality, we additionally required the language to work for a real
FPGA chip.

No current language for FPGAs fulfills these criteria. The design and implementation of such a language
have shown what difficulties must still be overcome to realize a production-ready productive low-level lan-
guage. However, it has also shown that modern tools enable the development of such languages while this
used to be impossible.

1.2 Organization
This thesis starts with a survey of computational complexities in modern FPGA synthesis flows. This
research was conducted as no such overview was readily available, while having a clear view of the processes
involved in synthesis and their computational complexities does provide much insight into what a low-level
language must be able to do.

Our main findings are then presented in the paper On Productive, Low-Level Languages for Real-World
FPGAs. The design of our language Ex-PART (Explicit Place And Route Tool – a bit of a misnomer as the
final version does not explicitly allow routing constraints) Several larger hardware designs built in Ex-PART
are analyzed. The results of the designs defined in Ex-PART are discussed.

As an academic paper is not a good place to present all the design decisions taken during the development
of Ex-PART, an extra design decisions document is included after the main paper.

Since Ex-PART is quite a large software package its design, implementation, and usage are explained in
Ex-PART manual. This manual provides a thorough explanation of every source file in the program and of
every feature a designer can use. It also contains warnings for partly implemented features and behavior
that one may not expect. Furthermore, a guide to setting up Ex-PART is provided.
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Abstract—The modern FPGA synthesis flow from hardware
description to bitstream requires solving four main problems
either optimally or up to certain constraints: logic synthesis,
packing, placement, and routing.

In the literature no comprehensive overview of the com-
putational complexities of these problems is available. This
paper provides such an overview. It was found that both logic
synthesis and placement are NP-complete. Packing was shown
to be the same problem as placement and routing in general,
but polynomially solvable in special cases that occur in real
FPGAs. Routing has been found to be NP-complete for a specific
architecture. Optimizations in logic synthesis were surveyed: cir-
cuit minimization is ΣP

2 -complete, subcircuit substitution is NP-
complete, and finite state machine extraction and optimization
are efficiently solvable.

New, larger FPGAs allow FPGA engineers to build larger
designs. However, such a larger design implies that the size of the
problems to be solved increases as well. The found complexities
indicate that run-time of tools solving these problems will grow
much faster than the size of the problem does. Therefore, it is
concluded that this method of defining and synthesizing FPGA
designs is not sustainable.

Index Terms—Complexity, Digital Hardware Design, Elec-
tronic Design Automation, NP-Complete, NP-Hard, Logic Syn-
thesis, Place and Route

I. INTRODUCTION

A modern solution to the stagnating performance of proces-
sors is parallelism. The reconfigurable fabric of logic on an
FPGA is very suitable to solve problems in parallel. In theory,
this parallelism scales well: a larger FPGA immediately allows
one to instantiate more of the same design, and thus solve more
problem instances at the same time. Likewise, it allows larger
instances of the same problem to be solved.

Larger FPGAs and larger designs imply that the problems
synthesis tools need to solve also increase in size. Already
it can take hours to fully synthesize a large design. With the
continued growth of FPGAs, run-times will only increase.

How much run-times can increase can be predicted by
examining the computational complexity of the problems
involved. Formal statements and proofs on the complexity
of synthesis are not available in a clear review. While it is
generally known that these problems are ‘hard,’ it is difficult
to find exactly how hard.

This paper surveys the problems a modern FPGA flow
must solve to synthesize a design described in a hardware
description language (HDL) such as Verilog or VHDL. For

each of these problems the complexities are surveyed. Fur-
thermore, the complexities of computing some optimizations
are surveyed.

High-level synthesis is left out of this survey, as in most
cases high-level languages compile to a conventional HDL,
and from that point on the process is the same.

Note that, in the literature, the term synthesis is not just used
for the process of translating a hardware description language
to a bitstream. It is also used for logic synthesis, which is just
one step of synthesis. In this paper, synthesis always refers to
the full process.

Some background information on complexity theory nec-
essary to understand this paper is provided here. P and NP
are classes of problems. A problem belongs to class P if it
is solvable by an algorithm that runs in “Polynomial time:”
the run-time grows according to a polynomial function, where
the variable of the polynomial represents the size of the
input to the algorithm. NP is the class of problems solvable
in “Non-deterministic Polynomial” time. A non-deterministic
computer (which is a mathematical construct to reason about
complexity) can ‘guess’ how to continue instead of always
applying the same next computation deterministically. When
solving the problem, the non-deterministic computer has the
power to always ‘guess’ correctly allowing it to solve problems
much faster. However, if a problem is only practically solvable
on such a computer, it is hard to solve in real life, where such
computers do not exist and must be simulated on a regular
computer which has to evaluate every guess. A problem is
in NP if a polynomial time verifier exists. This verifier is an
algorithm that can determine whether some solution is indeed
a solution to the problem. If it can determine this in polynomial
time for any solution, the problem is in NP.

Note that if a problem is in P then it must also be in NP. We
can come up with an answer in polynomial time, hence we
can also verify an answer in polynomial time using the same
algorithm. Whether NP is also a subset of P, and therefore P =
NP, is one of the greatest open problems in computer science.

If a problem is at least as hard as the hardest problems in
NP, this problem is said to be NP-hard. Note that an NP-hard
problem can be much harder than some problem in NP, as
NP-hardness is a lower bound.

With NP-hardness as a lower bound to complexity, it is
natural to consider some upper bound. Membership of NP is
exactly such an upper bound. Problems that are both NP-hard
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Fig. 1. A modern synthesis flow from HDL to bitstream.

and in NP are called NP-complete. Showing that a problem is
NP-complete thus provides both a lower and upper bound on
the hardness of the problem.

In practice, usually it turns out that if a problem is in P
it is efficiently solvable, even for relatively large instances.
NP-complete problems turn out to be very difficult to solve:
consequently, supplying a larger input to an algorithm solving
an NP-complete problem results in a much longer run-time of
the algorithm. To remedy this problem a little, heuristics and
approximate algorithms are used.

Complexity classes containing problems that are not in NP,
but are NP-hard, also exist. One such class is ΣP

2 -complete
[1]. For this paper it suffices to know that these problems are
harder than NP-complete problems, but just like NP-complete
problems, ΣP

2 -complete problems have a well-defined upper
bound.

For more information on complexity theory, see Computers
and Intractability [2].

II. SURVEY

A. Logic Synthesis

1) HDL conversions: Hardware is designed in a hardware
description language (HDL). While Verilog and VHDL were
designed with both synthesis and simulation in mind, most
of the demand at the time was for a simulation language [3].
Therefore, these languages contain unsynthesizable simulation
constructs. However, the synthesizable subset is still not one-
to-one mappable to an FPGA. For example, processes contain-
ing if-statements do not map directly to a circuit, they must
first be translated to a multiplexer tree. Therefore, HDL code
must be converted to some representation that is one-to-one
mappable to an FPGA.

A parsing and elaboration step converts HDL code to the
intermediate representation of the synthesis tool. This problem
is hard to translate to a formal statement, as it consists of many
different algorithms which are applied to the parse tree and the
details highly depend on the exact intermediate representation.
A well-documented example of this process can be found in
the open-source synthesis tool Yosys [4], [5].

2) Technology Mapping: The core problem of logic syn-
thesis is that of technology mapping. Informally, this is the
process of converting a circuit of Boolean functions to a circuit
of size K look-up tables (K-LUTs), where K is some positive
integer. Given some Boolean network B where nodes are

arbitrary Boolean functions, find some Boolean network N
with K-LUTs as nodes. N must compute the same function
as B. Hence, a hardware description is in this step converted
to a collection of combinational circuits consisting only of K-
LUTs, connected via registers. It is possible to concentrate on
combinational circuits since this process can be applied for
every combinational path between registers, and the registers
can simply be assigned as many flip-flops as their size requires.

Note that this definition for technology mapping does not
specify anything about the quality of the Boolean network. If
B, or the functions on the nodes of B, are sufficiently simple
(i.e. have K or less inputs), the conversion can be trivially
achieved by mapping every Boolean function to a size K
look-up table corresponding to that function and preserving the
connection structure [6]. This technique wastes look-up tables,
as it does not combine functions with less than K inputs.

To make good use of the available resources it is imperative
to optimize to certain resource-minimizing measures. In the
case of optimization for using the least amount of LUTs, the
problem is called K-RLMP [7]: find the network N consisting
of K-LUTs as described above, such that the amount of nodes
is minimal. Thus solving this problem minimizes LUT usage.
It has been proven that this problem is NP-complete for K ≥ 3
for combinational circuits in general [7], [8]. For other K
the complexity has not been determined. Real FPGAs have
look-up tables with K ≥ 3, so solving a real-world K-RLMP
instance is always NP-complete.

3) Optimizations: In synthesis tools used in industry dif-
ferent optimizations are applied on sub-designs, and can be
applied several times [6], shrinking the inputs considerably for
the latter steps, decreasing run-time and possibly delivering in
a higher quality end-result.

Boolean circuit minimization optimizes the amount of gates
used in combinational circuits. The problem is as follows:
“given a Boolean network, find the smallest Boolean network
that computes exactly the same function” [9]. Since a Boolean
network corresponds to a combinational circuit, this amounts
to finding a circuit that computes the same function as the
input circuit using as little gates as possible. It has been shown
that in general Boolean circuit minimization is ΣP

2 -complete
[9]. This procedure is applied to combinational logic, so
instances usually stay small, as in most hardware designs long
combinational paths are cut by registers. Moreover, Boolean
circuit minimization is such a common optimization problem
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that many heuristics have been developed. Therefore, even
though the minimization problem is hard, it is possible to
minimize or at least significantly shrink real-world circuits
using Boolean circuit minimization. The high complexity does
however imply that when instances do grow, the run-time of
these algorithms increases significantly.

Subcircuit substitution is the process of identifying a part
of the circuit that can be replaced by one single cell. For
an FPGA that contains hardware adders, this process may
identify an addition operation and synthesize it to a hardware
adder instead of configuring LUTs as an adder. Ad hoc
methods are able to solve this problem, for certain types of
circuits. However, in general this corresponds to the subgraph
isomorphism problem, which is NP-complete [10].

Finite State Machine (FSM) extraction and optimization
detects finite state machines and minimizes the amount of
states and control bits. This saves on routing and logic
resources used by the design. For FSM extraction very efficient
algorithms are available [11] which are used in practice [5].
FSM optimization entails finding the FSM with the minimum
number of states performing the same function as the given
FSM. Minimizing the number of states of an FSM corresponds
to DFA minimization, for which an O(n log n) algorithm
exists [12].

B. Packing

Modern FPGAs do not consist of variably interconnectable
LUTs, but of connectable configurable logic blocks (CLBs),
which can contain much more than just LUTs. Registers,
multiplexers, adders, and DSP blocks are commonly found
in such CLBs [13]. FPGAs can contain many types of CLBs,
laid out in a grid and connectable via a reconfigurable routing
network. Not necessarily every port of every circuit in the CLB
is connected to the routing network.

Packing translates an optimized cell graph to a graph of
configured CLBs. A configured CLB contains a configuration
for the registers controlling its routing resources and LUTs
such that it corresponds to the part of the cell graph that is
mapped to the CLB. So, given a graph of cells (like LUTs,
registers, adders, etc.) the packer maps these cells onto specific
instances of those cells in a type of CLB available on the
target architecture. The packer must preserve the connection
structure as defined in the optimized cell graph when it packs
several elements in the same CLB. The packer may optimize
to use the minimal amount of CLBs for the given graph. Other
optimization criteria, like minimizing delay, may be employed
as well.

Notice that the packing problem, as presented here, is a
place and route problem [13]. A CLB can contain both LUTs
and routing resources, hence mapping some subgraph of the
input graph to the internal components of a CLB is indeed a
small place and route problem. This place and route problem
is not just limited to the internal components of a CLB as it is
not necessarily given how some part of the input graph may
be divided over several CLBs.

The description of the packing problem has been kept very
general. In practice, CLBs are far more homogeneous, or
their structure is very simple. Since this highly restricts the
problem, algorithms can solve this restricted packing problem
in polynomial time: VPack [14] operates on CLBs that consist
of n basic logic elements (BLE), partially connected to the
global routing network via configurable multiplexers. VPack
can pack designs for this simple architecture in O(kC), where
k is the maximum fan-out, and C is the amount of LUTs in
the design.

Feasible solutions are obtainable in polynomial time for
real-world FPGAs. However, the general case amounts to
solving placement and routing.

C. Placement

The placement phase of digital hardware synthesis takes a
graph produced by the packer and for each node allocates
a specific CLB on the FPGA onto which that node will
be placed. A good placement algorithm should place highly
connected CLBs closely together to make the routing problem
easier. Hence there is no one single ‘Placement Problem’: a
measure must be defined to be optimized against and this
results in problems of different complexity.

Two variations of the placement problem are presented: an
optimization version and a constraint satisfaction version. The
optimization version is defined as follows [15]: given are a
set of modules M (which are CLB types accompanied by a
configuration), positions P (these positions are physical CLBs
to which a module may be mapped), signals S, a set of nets
for every signal {N1, ..., N|S|}, a distance function d(pi, pj)
where pi, pj ∈ P , a weight function w(Ni), and some cost
measuring function f(Ni, X) that computes the cost for a
net Ni under a module assignment X . Such a function could
be the minimum wire length of a net under assignment X ,
computed using the distance function d. With these givens,
construct some assignment X : M → P such that:

1) Each module m ∈ M must be assigned to some position
p ∈ P.

2) Each position p ∈ P has either one or zero modules
assigned to it.

3) Σs
i=1w(Ni)f(Ni, X) is minimal.

This definition of the placement problem corresponds di-
rectly to the Quadratic Assignment Problem [15], which has
been proven to be NP-hard [16].

The other variant has the same givens and requirements,
except for requirement 3) [17]:

3) Σs
i=1w(Ni)f(Ni, X) ≤ L, for some given L.

This requirement checkable in polynomial time: simply by
applying the sum and checking whether it is indeed smaller
than the given L (assuming that f is a function computable
in polynomial time). Therefore this version of the placement
problem is both in NP and NP-hard, thus it is NP-complete.

D. Routing

In the last step of synthesis the placed CLBs need to be
connected via the routing network as defined by the placed
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CLB graph. Architectures of commercial FPGAs differ [18],
but in general the routing network of an FPGA consists
of wires, configurable switches and configurable connection
points. In- and outputs of CLBs can be connected to wires via
connection points and switches can be configured to connect
or disconnect wires.

Because of large differences in architecture it is impractical
to define one general routing problem suitable for complexity
analysis [18]. A general graph-theoretic definition may be
possible, but has not been attempted. A complexity result
from this definition might not be useful either: routing in
general may be far more complex than routing on a specific
architecture.

One instance of the routing problem has been investigated
in detail [19]. A Xilinx-like FPGA model was investigated
where a global routing step assigns a string of connection and
switching blocks to a net after which a detailed router assigns
specific wires, switches and connections points for that net. It
is shown that detailed routing is NP-complete [19], irrespective
of the topologies of the switch blocks [20].

Little research has been done on the complexity of routing
on real FPGA architectures. During most of the history of
FPGAs their exact architecture was strictly proprietary and
thus not available to researchers. Since any conclusions about
routing depend heavily on the exact architecture hardly any
results are available.

III. CONCLUSION

To achieve a working design from a description in an HDL
it is necessary to solve at least three problems that have
been partially shown to be NP-complete. Applying certain
optimization strategies further increases the amount of NP-
hard problems that must be solved. Finding an optimal solu-
tion requires solving all problems optimally at once, further
increasing complexity.

To improve tractability of the synthesis problem many of
the problems can be split up to smaller instances, since a
smaller instance decreases run-time just as dramatically as
a larger instance increases it. Further improving workability,
approximations and heuristics for these problems exist.

The complexities of the problems involved show that the
current method of synthesizing FPGA designs is not sustain-
able. It is already increasingly difficult to quickly prototype
a large design with run-times as long as they are. Effectively
utilizing future larger FPGAs for larger designs will take in-
creasingly more time, severely hampering an engineer’s ability
to quickly prototype designs - one of the most distinguishing
features of FPGAs.
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Abstract—FPGA designs are described in either Verilog or
VHDL (HDLs), or in a high-level synthesis language that compiles
to one of these. HDLs, however, are such an abstraction over
FPGAs that the synthesis process is convoluted. Hence, hardly
any control is available to hardware designers, hindering them
in maximizing the performance of FPGAs.

To show that languages with more control than HDLs are
possible, “Ex-PART” was designed and developed: a language
that enables fine-grained control over placement of modules. The
hypothesis is posited that the hierarchic structure of a hardware
design corresponds well with a structure of adequate placement
directives for FPGAs.

Non-trivial hardware was designed in Ex-PART demonstrating
that it behaves as intended. For many designs the hypothesis held
true. For the largest design it did not: a much better result was
obtained by placement directives that were decoupled from the
program structure.

These findings show that it is possible and practical to
build low-level hardware design languages in which substantial
hardware can be designed. However, if designers need to optimize
their FPGA designs to their maximum potential, a future low-
level languages must decouple placement directives from the
program structure.

Index Terms—FPGA, low-level language, Digital Hardware
Design

I. INTRODUCTION

The languages in use today for the description of FPGA
designs were not conceived specifically for FPGAs. Verilog
and VHDL (Hardware Description Languages or HDLs) de-
scribe digital hardware in general, not specifically targeted for
an FPGA architecture. This mismatch in purposes becomes
apparent with issues such as long synthesis times, and a lack of
fine-grained control over the synthesis process. Contemporary
HDLs do not include features that can solve these problems
elegantly.

When every last bit of performance must be squeezed from
the FPGA a language with a high degree of control is required.
Compare software engineering, where an embedded engineer
with very limited resources can use a language such as C to
manage these in detail. A language providing much control
over the resources of the target architecture is classified as a
low-level language.

For processors, languages with a high degree of control
exist: C provides all the power a software engineer needs
to exert full control over the final product, while providing
abstractions to efficiently develop software. These features are
what is intended with a productive, low-level language. Such

languages do not exist for FPGAs: the “lowest” level language
available to hardware designers are the conventional HDLs.

For example, a feature that can increase control that is not
available in HDLs is determining where some part of a design
should be placed on an FPGA. Sometimes this is possible, but
only by using synthesis directives which are not part of the
language itself and may be ignored by the compiler.

In this paper, we present a new language, “Ex-PART”, and
a synthesis flow that implements it. The language is equipped
with features allowing hardware designers to make informed
design decisions on the exact location of components, or
hierarchies of components, on the target FPGA.

Instead of developing an entire synthesis tool from scratch,
we extended open-source tools for both logic synthesis and
place and route to support our language features. This allowed
us to test whether it is practical to design non-trivial hardware
in Ex-PART and to evaluate the results.

In Ex-PART, a designer can specify coordinates and sizes for
modules in a hardware design, facilitating fine-grained control
over placement. Using coordinates and sizes for hardware
modules in the language is based on the hypothesis that there
is a good match between the structure of the hardware design
and the structure of the placement on the FPGA.

This hypothesis is stated as follows:

Hypothesis 1 The hierarchic structure of a hardware design
corresponds well with a structure of adequate placement
directives.

However, our results show that this hypothesis does not hold
in general.

The main contributions of this paper are:
1) Ex-PART, an HDL that offers fine-grained control over

placement on FPGAs (Section III).
2) An extension to the open-source synthesis toolchain

implementing Ex-PART (Section III-E)
3) Three hardware designs (Section IV) show that hypoth-

esis 1 does not hold in general (Section V-A) providing
important feedback on the development of other low-
level FPGA languages (Section V)

II. RELATED WORK

Research on unifying HDLs has been conducted. LLHD
(Low-Level Hardware Description) [1] is a language that
aims to be an intermediate representation for any hardware
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description language. LLHD has three versions: behavioral,
structural, and netlist. Note that LLHD stops at the netlist
level because LLHD needs to be synthesizable to both ASICs
and FPGAs. Therefore, it is impossible to incorporate FPGA-
specific information like placement and routing constraints
into a language that compiles to LLHD.

A low-level FPGA language does exist: Reticle [2] aims to
describe modern FPGAs at the tile level. It includes support
for LUT and DSP tiles. Reticle is meant as a compilation
target, and transforming Reticle to a bitstream is extremely fast
because the language is so close to the FPGA hardware. As
Reticle is a compilation target, it is not productive to program
directly in Reticle (Similar to programming in Assembly for
a processor). A language such as Reticle would, however, be
an appropriate compilation target for a low-level language.

In [3] the FPGA is divided into regions in which parts of
the design may be placed. The regions are then connected
via a packet-switched network as a communication channel
between the sub-designs. By splitting up the design, synthesis
run-times can be reduced: a smaller design decreases run-
time just as drastically as a larger design increases it. This
strategy allows parallel synthesis of the sub-designs, further
decreasing the run-time of synthesis. Designs built in this
scheme should not be subdivided very often since connecting
very small, simple, components via a packet-switched network
wastes FPGA resources. Moreover, the strategy applied here
is not integrated into a language.

III. EX-PART

Describing hardware in Ex-PART consists of two phases:
First, components are defined. Then instances of those com-
ponents are laid out and connected. Inspired by C’s header
system, these phases happen in two separate files: respectively
the “component file” and the “instantiation file”.

A. Component Definition

Every component is modeled as a mealy machine, which
enables the description of sequential hardware. A component
without a state describes combinational hardware. A compo-
nent may have any amount of inputs, states, and outputs. Each
of these properties is annotated with a type. Inputs and outputs
can only be connected if they are of the same type. States must
additionally be supplied with an initial value. As an example,
defining a 16-bit unsigned integer state with initial state zero
and name ‘counter’ is written as:

state counter = 0 : Unsigned 16
The types used are those of the high-level synthesis tool

Clash, which will be elaborated on in Section III-E.
For every output and state, an expression describing its

relation to the inputs and previous state must be defined. The
syntax for these expressions is that of a Haskell expression.
The current state and next state are differentiated by adding a
prime (’) to the state name to designate the next state.

For example, incrementing the state ‘counter’ by some
amount set on the ‘interval’ input is denoted as:

counter’ = counter + interval

Fig. 1. Example instantiation of a component. 1. Name given to this instance;
2. Name of component to be instantiated here; 3. Width and height of
component; 4. Coordinates of the top left corner of this component; 5. X
property of instance named ‘second’; 6. Width property of component named
‘second’.

Fig. 2. Example of a connection between the output port of one component
instantiation and the input port of another; 1. Name of the source instance;
2. Name of the output port of this instance; 3: Arrow syntax to denote
connection; 4. Name of the destination instance; 5. Name of an input port
of the destination instance.

The complete code of a simple combinational component is
shown in Figure 3.

It is possible to add arbitrary Haskell code in a haskell
block. In such a block, data types and type synonyms may
be defined as well. These definitions can be used in every
component definition.

B. Instantiation and Connection

The components defined in the component file are laid out
and connected in the instantiation file. Instantiation files are
structured as a hierarchy of modules. Modules can have inputs
and outputs annotated by types as in component definitions.
A module is located at a certain position on the FPGA and
is of a certain size. These properties are given through x
and y coordinates and width and height numbers. In denoting
these properties, the size and location information of other
modules and components may be used. Modules may contain
submodules, component instantiations, and connections. All
coordinates used in one module are relative to the top-
left corner of that module. Submodules define a hierarchy
in modules and ease working with the coordinate notation.
Component instantiation statements place a component defined
in the component file at a certain position and allocate some
rectangular area for the component, as shown in Figure 1.
Again, this position is relative to the position of the module
in which this component is instantiated. Connections connect
ports from components and modules to other ports. An ex-
ample of connecting the output port of one component to the
input port of another is given in Figure 2.

Note that this definition allows overlapping components.
Overlap gives the placer more freedom to find better place-
ments. Good placements on FPGAs are often not rectangular,
or components may be interconnected thoroughly. In these
cases some or full overlap of components yields much better
results. Hence, the hardware designer can decide how large
the solution space is that the placer must explore by adjusting
the amount of overlap.

To ease the development of larger designs, features are
available for repetitive layouts of components and their con-
nections. These language constructs are all elaborated to
modules utilizing only submodules, instances, and connec-
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1 component on_odd() {
2 input value : Maybe Value
3 output result : Maybe Value
4

5 result = case value of
6 Just v -> Just (v * 3 + 1)
7 Nothing -> Nothing
8 }

Fig. 3. Description of the component on_odd

tions. Documentation and usage examples are available in the
repository [4].

C. Design Feedback

Overviews of metrics like area usage, maximum frequency,
and synthesis times for the entire design and for individual
components can be provided by a script.

Both the bitstream and the location information can be
visualized. The visualizer shows changes immediately when
compiling. Therefore, it is possible to monitor important
properties of the design during development.

Clash can be used to verify the functional correctness
of a design. It provides an interactive interface that allows
simulating the defined module and all its submodules with
arbitrary inputs. It is possible to automate these tests with
testing libraries.

D. Example Design

This walk-through exhibits the design process of a simple
module in Ex-PART. This module applies the rules of the
Collatz conjecture to an integer n in a register. After cycle
i, the value of n is given by:

ni+1 =

{
ni/2 if ni is even
3 · ni + 1 if ni is odd

(1)

Components: To realize this design five components are
defined in the component file.

1) control stores the value of n, and sets a new value
for n if it is provided on its input.

2) on_odd performs the computation for odd n.
3) on_even performs the computation for even n.
4) router sends n from the controller to either on_odd

or on_even, depending on the parity of n.
5) merger takes the result from either on_odd or

on_even and sends it to the controller.
The components are to be connected as shown in Figure 4,

where the arrows are annotated with the type of the ports they
connect.

The definition of the on_odd component is shown in Figure
3. Both its input and output are of type Maybe Value: there
can either be a value on the input, or Nothing, signifying that
there is no input. In hardware, this would be translated into a
port with enough bits to contain the representation of Value,
and one extra bit signifying whether the value is Nothing.
The relation between the input value and the output result
is defined in the case expression. It states that if value is of
the form Nothing, emit Nothing again. If it does contain

controller

router merger

onEven

onOdd

Value Value

Maybe Value

Maybe Value Maybe Value

Maybe Value

Maybe ValueValue

Fig. 4. Architecture for the Collatz conjecture calculator.

a value, multiply that value by three and add one, as is the
definition for the odd case in equation 1. Notice that this is a
combinational piece of hardware: the relation between input
and output is defined directly, without state.

When a component has been defined in Ex-PART, one can
inspect properties such as area usage. The visualizer can render
these results and an analysis script gives a quick overview of
resource usages reported by the tools.

Using similar information for the remaining components of
the Collatz design, a layout is defined in the instantiation file
which is shown in Figure 5. Plenty of space is taken for each
component and connections are not shown. An explanation of
important lines is provided below.

1: The definition of the top-level module. The top-level
module must have a constant expression for its coordi-
nates, as its position is what the coordinates of every
submodule and component depend on. It is instantiated
at (2, 2) as on the target architecture the two leftmost
columns and the two topmost rows do not contain any
LUTs. An area of six by five tiles is deemed sufficient
for the whole module.

2: Modules have inputs and outputs. As these are the I/O
of the top-level module, they will be connected to the
I/O pins of the FPGA.

5: This is one of the component instantiations. In the com-
ponent file, the control component was defined. This
instantiation has been given the name controller
and an area of six tiles at the top of the module is
allocated.

7: The submodule update_n is defined. Its location is
relative to its parent module’s location, thus we can
instantiate it at (0, controller.h) to place the
whole module exactly under the controller component.
Its width is set equal to that of the controller, and height
is set as the remaining module height.

8: Similarly to the top-level module, the update_n mod-
ule also exposes its internal data to two ports. An input
and output port are defined. This definition shows that
we can place a value at the input of this module, and
the module will return the new value according to the
rules of the Collatz conjecture.

13: The instantiation of the on_odd component. Its width
and location are defined in terms of other components
to make resizing and moving easier.

Connections: Every component has input and output ports.
These ports can be referenced in a connection statement. The
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1 collatz in (6, 5) at (2, 2) {
2 input setting : Maybe Value
3 output result : Value
4

5 controller is control in (6, 1) at (0, 0)
6

7 update_n in (controller.w, 4) at (0, controller.h) {
8 input value_in : Value
9 output value_out : Value

10

11 router is router in (1, on_odd.h + on_even.h)
12 at (0, 0)
13 on_odd is on_odd in (update_n.w - 2, 2)
14 at (update_n.x + 1, 0)
15 on_even is on_even in (on_odd.w, on_odd.h)
16 at (on_odd.x, on_odd.h)
17 merger is merger in (1, on_odd.h + on_even.h)
18 at (on_odd.x + on_odd.w, 0)
19 }
20 }

Fig. 5. Instantiation file for the Collatz example.

connections in the update_n module are shown in Figure 6.
An explanation is provided of the important lines:

1: When no component is specified, as with value_in
in this statement, the current module’s I/O ports are
intended. Hence, this connection statement connects the
input value_in of the update_n module to the input
value of router. As these are both of the type
Value, this connection is possible.

2: This is a connection internal to the update_n module.
The odd port of the router component is connected
to the value port of the on_odd component.

4: The result port of on_odd is connected to the
value_odd port of merger.

6: The value at the result port of merger is the result
of the calculation and should therefore be routed out of
the module via the value_out port.

The rest of the connections can be found in the complete
example in the repository [4].

Visualization: Since coordinates usually do not speak to the
imagination, we also supply a visualizer that can show both
bitstreams and layout definitions. Therefore, it is possible to
check with the visualizer whether the layout is as intended.
The layout defined in Figure 5 is shown in Figure 7.

Synthesis: With the components, layout, and connections
specified the design can be synthesized and the result is shown
in Figure 8. This is a visualization of the bitstream generated
by the tools Ex-PART employs. This bitstream can be flashed
to a Lattice ECP5 FPGA.

This visualization should be read as follows: FPGAs consist
of a grid of tiles. Every square in the visualization is such a
tile. Each tile on the ECP5 contains four slices, which are
drawn as a colored horizontal rectangle. A slice contains two
registers and two 4-bit LUTs. Notice that the background of

1 value_in->router.value
2 router.odd->on_odd.value
3 router.even->on_even.value
4 on_odd.result->merger.value_odd
5 on_even.result->merger.value_even
6 merger.result->value_out

Fig. 6. Connections defined in the update_n module.

Fig. 7. Layout of the Collatz example, as shown by Ex-PART’s visualizer.

Fig. 8. visualization of the bitstream as synthesized for the Collatz conjecture
example.

a tile is not always white: the brightness of a tile illustrates
the usage of routing resources on that tile: the darker it is, the
more resources are used.

Some conclusions can be drawn based on this visualization.
Conceptually, on_odd and on_even perform similar tasks.
In hardware these differ: dividing by two is the same as
a shift of one bit which is just a rearrangement of wires
while calculating the odd branch requires LUTs. Therefore,
fewer resources should have been allocated to the on_even
component. Similarly, the router uses just one slice, but four
tiles have been allocated. On the other hand, examining the
controller shows that decreasing its area may not work: it
uses two-thirds of its slices and many routing resources. With
this information, the design can be reworked to use much less
area. Thus the visualization gives valuable feedback on the
resource usage of components.

E. Implementation

To be able to focus on language design, and target a real
FPGA, existing tools were repurposed. This choice resulted in
a compilation process that seems quite elaborate; however, it
actually enabled rapid prototype development.

Auxiliary Tools: To synthesize Ex-PART we use three ex-
isting tools for Verilog generation, logic synthesis, placement,
and routing. All tools used by Ex-PART are open-source.
Using open-source tools as the back-bone of the language
gives us the freedom to inspect the processes employed
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whenever necessary. This, along with well-document input
and output formats, allow fast development of experimental
software extending these tools.

Clash [5] is used to generate Verilog. Clash is a high-
level synthesis tool that can transform hardware descrip-
tions in Haskell to Verilog or VHDL. Haskell’s syntax was
deemed very concise and appropriate for the description of
expressions in Ex-PART, and it is relatively easy to generate
programmatically. By repurposing Haskell’s syntax in Ex-
PART it is straightforward to generate Clash components from
a description in Ex-PART.

Yosys [6] is an open-source logic synthesis tool. It can
synthesize Verilog for some FPGAs. Yosys’ outputs are in
the JSON format which is human-readable and easy to work
with programmatically. The specification of the output is well-
documented. For features absent in the documentation, Yosys’
code is available for inspection.

To perform placement and routing for the ECP5 FPGA
nextpnr [6] is used. This tool can perform placement and
routing given a JSON file generated by Yosys. It can output a
JSON file describing the placed and routed design, or a textual
configuration file that can easily be converted to a bitstream
that can be flashed to the ECP5.

Compilation: In summary, compilation from Ex-PART to
the ECP5 FPGA consists of the following steps:

1) Parse the component and instantiation file.
2) Elaborate the design.
3) Calculate absolute positions.
4) Generate Clash for simulation and synthesis.
5) Compile Clash to Verilog per component.
6) Synthesize the components with Yosys.
7) Connect and instantiate components as defined in the

instantiation file.
8) Place and route the resulting design with nextpnr, con-

straining locations.
The component and instantiation files are read and parsed.

The parsing process produces data structures representing the
hardware design. Many of the constructs available in Ex-PART
can be elaborated into simpler constructs. Thus elaboration
converts the design into a design that only uses connections,
component instantiations, and submodule definitions. The rest
of the compilation is applied to the elaborated data structure.

A file (locations.json) with absolute coordinates of
the top-left and bottom-right corner of every component in-
stantiation is generated. This file is used in constraining LUT
locations during placement.

Every component is compiled to its own Clash file. Such
files can be loaded in the interactive Clash environment
to validate the functional correctness of the design through
simulation.

For every component, the generated Clash is compiled to
Verilog, as that is the format accepted by the synthesis tool
Yosys. Notice that synthesis has to be applied only once for
every component, even if it is re-used. The entire design is
not compiled to Verilog: only every bottom-level component
that is defined in the component file.

The generated Verilog files are synthesized with Yosys.
Yosys produces a JSON file describing the design in terms
of look-up tables and flip-flops. Note that Yosys could be
configured to synthesize to more complicated cells, such as
DSP blocks. This does imply that when a component uses
such cells, the designer must place the component in an
area that contains such cells. After logic synthesis by Yosys,
the connections, instantiations, and hierarchy described in the
instantiation file are converted into Yosys’ JSON format and
appended to this file.

The resulting JSON file is processed by nextpnr to place
and route the design on the ECP5 FPGA. A Python script is
executed just before the placement step to constrain the place-
ment of look-up tables. The script looks up the rectangular
area a LUT should be in, in the locations.json file that
was generated earlier. If the designer did not supply enough
area for a component, nextpnr will throw an error.

If every component did indeed get enough space for all
its LUTs, registers, and connections, nextpnr produces textual
bitstream files, which can be converted into a binary bitstream
for programming an ECP5 FPGA. The visualizer can show
where all the LUTs are placed.

Note that in this implementation constraints are added to the
placer which may make the problem at hand harder to solve.
We chose this strategy as it was the fastest route to realization.

A detailed description of the compilation process and the
complete code are available in the repository [4].

IV. RESULTS

A. Compilation Flows

Ex-PART comes with three alternative compilation flows to
compare the results of different synthesis strategies.

1) Ex-PART takes location and size annotations into ac-
count when synthesizing the design.

2) Hierarchic: The design is split into Verilog modules as
a designer using a conventional HDL would do. Every
component is compiled to a separate Verilog module.
This generates HDL code organized similarly to how a
hardware designer would have. No placement constraints
are applied.

3) Monolithic: No modules are generated at all. One fully
flattened design is generated such that the synthesis tool
can optimize between module interfaces.

For three examples the placements are shown: the Collatz
example from Section III-D, a parallel MD5 hash calculator,
and a simple manycore. To further compare the costs and
benefits of each flow, performance metrics like maximum
frequency, area usage, and synthesis run-times for all three
flows are given.

B. Collatz Conjecture Calculator

The placement found for the Collatz conjecture calculator
is shown in Figure 8. The results of running all three flows
for this module are shown in Table I.
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Ex-PART Hierarchic Monolithic
LUTs 54 54 49
fmax (MHz) 122.29 132.01 148.46
Flip-flops 32 32 32
Synthesis time (s) 0.75 0.74 0.6
Placing time (s) 0.05 0.04 0.04
Routing time (s) 0.07 0.06 0.1
Total time (s) 0.87 0.84 0.74

TABLE I
RESULTS FOR THE COLLATZ CONJECTURE CALCULATOR.

C. MD5 Hasher

MD5 [7] is a hashing algorithm. Although it has fallen out
of use for cryptographic purposes, it is a good demonstrator
for Ex-PART as the calculation of an MD5 hash is not trivial.

This design can hash 128-bit messages. These messages are
provided in 32-bit chunks. When four chunks have arrived, the
hasher starts. It applies the MD5 algorithm in 64 cycles. When
finished, the 128-bit hash is emitted in 32-bit chunks in four
cycles.

Module re-use is used to instantiate the hasher four times,
demonstrating Ex-PART’s productivity. A load balancer di-
vides the incoming message words over the four hashers to
compute four hashes in parallel.

The placement found by the hierarchic flow is shown in
Figure 9. The default placement algorithm found a rectangular
area and a roughly symmetric placement for the four hashers.
The total design takes up a rectangle of 44 by 29 tiles, or
1279 tiles in total. For the sake of showing that Ex-PART
can impart control over placement, suppose instead a linear
layout is desired. Such a layout was defined in Ex-PART, and
the result is shown in Figure 10. This layout fits in an area
of 20 by 62 tiles, occupying 1240 tiles in total. Hence, this
layout uses a very similar amount of space as the hierarchic
flow, showing that a linear layout could be achieved without
wasting area.

In Table II the rest of the metrics are shown. The monolithic
run takes much more time to synthesize as it applies logic
synthesis to the entire design at once, instead of optimizing
smaller modules separately. The place and route time of the
Ex-PART flow is longer than the hierarchical. This is due to
the stricter constraints on placement that are applied by the
designer in Ex-PART. The hierarchical design is free of such
constraints. Note that the quality of the designs does not differ
much: the maximum frequency fmax is nearly identical for
every flow.

Ex-PART Hierarchic Monolithic
LUTs 6606 6602 6249
fmax (MHz) 17.04 17.45 18.38
Flip-flops 3176 3176 3176
Synthesis time (s) 5.02 5.91 25.32
Placing time (s) 49.56 31 30.38
Routing time (s) 25.76 12.43 12
Total time (s) 80.34 49.34 67.7

TABLE II
RESULTS FOR THE FOUR MD5 HASHERS.

Fig. 9. Placement of four MD5 hashers by the hierarchic flow.

Fig. 10. Linear placement of the MD5 example, constrained as such by the
placement directives in Ex-PART.

D. 4×4 Manycore

A manycore was designed to exhibit designing hardware
requiring more resources in Ex-PART. The manycore consists
of very elementary processors with four 8-bit registers, six in-
structions, and a program memory of 32 instructions. They are
connected via a packet-switched network in a grid topology.
Each processor is paired with a router providing access to the
on-chip network. This Processing and Routing Unit (PRU) is
laid out in a grid. The processor and router were kept simple to
be able to synthesize many PRUs for a relatively small FPGA.

The architecture of a PRU is shown in Figure 11. The
processor reads incoming packets from a FIFO and pushes
packets into the routing network via another FIFO. The router
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Fig. 11. Design of a Processing and Routing Unit, the main building block
of the manycore.

Fig. 12. Architecture of the 4× 4 manycore.

uses a simple decision procedure based on its location and the
destination location in the packet to send incoming packets to
their destination.

The architecture of the manycore is shown in Figure 12.
The cores are linked to their neighboring PRUs through the
routers via their north, east, south, and west I/O ports. On the
fringes of the network one input and one output are located to
feed data into the network and receive results from the cores.
These are constrained to I/O ports of the FPGA.

A space-efficient placement of the manycore was hard to
achieve. In Figure 13 one placement obtained by Ex-PART is
shown, and in Table III the metrics of synthesizing this design
are shown. The Ex-PART flow is faster than the hierarchical
flow because the hierarchical flow places the cores close to
eachother while in Ex-PART the designer can pre-emptively
leave room between the PRUs to make routing easier.

Notice the discrepancy between the amounts of LUTs used
between the three flows. The monolithic flow manages to
optimize out one-third of the LUTs, resulting in saving a huge
amount of time during placement and routing and obtaining a
higher maximum frequency. The main difference between the
Ex-PART and hierarchic flow, and the monolithic flow is that
the monolithic flow can optimize over the interfaces between
modules. This strategy increases synthesis run-time, as is clear
from the results: the monolithic flow runs more than ten times
as long. In this case, however, the extra time spent during
synthesis saves much time during placement and routing.

Upon further inspection, the large optimization was
achieved mainly between routers. The conceptual design of
this manycore favors routers and processors to be grouped
as one unit, the PRU. However, this conceptual separation of
routers in the network implies a physical separation as well,

Ex-PART Hierarchic Monolithic
LUTs 14560 14848 9954
fmax (MHz) 58.3 57.4 74.24
Flip-flops 17632 17632 14932
Synthesis time (s) 3.93 7 87.2
Placing time (s) 128.63 147.26 63.06
Routing time (s) 353.42 2007.7 35.78
Total (s) 485.98 2161.96 186.04

TABLE III
RESULTS FOR THE MANYCORE.

Fig. 13. A placement of the 4× 4 manycore found through Ex-PART. Each
PRU is clearly visible as a separate entity.

by hypothesis 1. When the design was arranged such that the
entire routing network was one optimizable module, indeed a
similar result as the monolithic flow was found.

V. DISCUSSION

A. Hypothesis

During the design of Ex-PART, hypothesis 1 on the corre-
spondence of design hierarchies and adequate placements was
assumed to hold. The results of the MD5 design show that
there are designs for which the hypothesis is true; however,
the development of the manycore shows that the hypothesis
does not hold in general: the structure of a design may be
pleasant to work with, easy to expand, and easily modified, but
using this structure as a directive for placement did not yield
an adequate placement. Hence, it is critical for a low-level
language for FPGAs to take into account that the structure
of the design cannot be linked in a one-to-one fashion to
directives involving low-level features. This result is vital for
the further development of Ex-PART, or the design of other
low-level languages.

The manycore design did show that the designer had control
over placement. In this case, the design for the routing network
was split up such that certain optimizations were not detectable
for the tools; hence, the conceptual structure of the design
induced a sub-optimal design. However, in the placement the
conceptual separation of the PRUs is still visible, showing that
Ex-PART works as intended.
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B. Open-source Synthesis Tools

To gain more control over synthesis, placement, and routing
of hardware designs tools must provide clearly documented
input and output formats: the fact that Yosys and nextpnr do
provide this, entirely enabled the development of Ex-PART. If
every step in a synthesis flow produces and consumes open
files anyone can inject their own processing just as has been
done for Ex-PART enabling the development of low-level
FPGA languages and thereby giving hardware designers just
as much freedom in their tools as software engineers.

When the tools are open-source as well, any lacking docu-
mentation can be compensated for by investigating the source
code. Bugs in custom processing can also be resolved more
conveniently when the source code is available for debugging.

C. Routing

Ex-PART focuses on placement; however, a low-level lan-
guage could allow hardware designers to put constraints on
routing as well. The granularity of this control can vary
immensely: a language may require designers to specify paths
completely, or allow designers to specify parts of paths while
the tooling figures out the rest. The design of a language that
effectively incorporates this control in its syntax and semantics
is future work.

D. Synthesis Speed

To apply the placement directives, Ex-PART supplies extra
constraints to the place and route tool. This method may
introduce harder to solve constraints resulting in longer place
and route times. However, it did enable the fast development
of Ex-PART as this method is supported by nextpnr. A
low-level FPGA language could be designed with synthesis
speed in mind. A language where hierarchies are synthesized,
placed, and routed completely separately can be much faster
than current synthesis tools. Synthesis consists of three NP-
complete or harder problems [8], thus having the designer split
up the design into smaller problems decreases the individual
run-times of the sub-designs such that the sum of their run-
times is smaller than synthesizing the entire design at once.
The smaller designs must then be connected correctly again,
this corresponds to another (quite small!) routing problem.
Such strategies are only possible when the designer annotates
where the design can be split up.

E. Dynamic Partial Reconfiguration

Language features constraining placement as in Ex-PART
may be combined with dynamic partial reconfiguration. Defin-
ing rectangles for modules within the language in which the
hardware is designed explicitly shows when components can
be interchanged. A tool strictly enforcing such area allocations
eases working on reconfigurable designs.

VI. CONCLUSION

The development of Ex-PART was sparked by the lack of
languages offering fine-grained control over synthesis, place-
ment, and routing of hardware designs intended for FPGAs.

In the design of Ex-PART, the assumption was made that
the structure of a design corresponds well with a structure
of adequate placement directives.

To evaluate Ex-PART three designs were developed: a
Collatz conjecture calculator, a parallel MD5 hash calculator,
and a rudimentary manycore. For the first two designs, Ex-
PART proved very effective: the designs could be laid out
in a largely different layout from the regular synthesis tools,
proving that Ex-PART grants designers more control.

However, the manycore design demonstrated that linking
placement directives to design structures does not always
yield good results. The conceptual separation of cores in the
manycore worked well during development, but inhibited the
tools from making an extreme optimization.

This shows that the hypothesis does not hold in general.
This result is critical in the development of other low-level
FPGA languages as it implies that directives increasing control
should to be decoupled from hierarchic design constructs.

Ex-PART opens up a lower level FPGA programming style
previously inaccessible to hardware designers. With placement
design decisions embedded inside the language, and tools
available to make these decisions in an informed manner,
placement can be performed while describing the hardware.
It has been shown that developing a language like Ex-PART
is highly feasible with modern open-source synthesis and place
and route tools. New productive, low-level languages will open
up FPGAs enabling skilled hardware designers to use FPGAs
up to their maximum potential.
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Chapter 4

Design Decisions

4.1 FPGA Design Descriptions
The lowest level hardware description languages available to FPGA engineers are Verilog and VHDL. The
results from the survey paper on computational complexities [1] show that the conversion from HDLs to an
FPGA design is three times NP-hard. Furthermore, HDLs obscure many features inherent to FPGAs: where
some part of the design is placed and how it is routed is entirely hidden from the perspective of an HDL.
Hence, HDLs are not very low-level at all.

To examine what kind of language could be a good low-level language for an FPGA, we decided to start
with examining the architecture of a specific FPGA (the Lattice ECP5). We took the ECP5 FPGA and forgot
about every programming toolchain and from that perspective we designed a hypothetical toolchain from
the ground up, balancing abstracting away cumbersome details of the FPGA architecture with preserving
transparency.

The first step in the design of this hypothetical toolchain was an assembly-like language for the ECP5.
In this language every LUT and register could be configured in as much detail as was available on the ECP5.
This description of a design on an FPGA can be trivially compiled to a bitstream. This idea is indeed not
new, Reticle [2] is such a language where the designer must specify the exact location and configuration of
a tile on the FPGA. Their compilation speed is of course lightning fast: they make the designer specify so
many details that no NP-hard problems need to be solved at all.

Building a large design in such a language is not productive as specifying the configuration and location
of every tile by hand is a huge task. To obtain a productive language, language we started abstracting
away details from that low-level language to provide productivity while maintaining transparency. This
process of abstraction is what led to the current design of Ex-PART. These abstractions were made with
attention to computational complexity of synthesis in mind, however this was a secondary goal. Sadly, in
the current implementation of Ex-PART not much gains were made in synthesis speed in general. However,
as discussed in the paper, Ex-PART’s syntax and organization do open up avenues to synthesis strategies
that may significantly speed up synthesis. See also Section 4.8 of this document.

4.2 Design Representation
Hardware description languages represent designs differently. Ex-PART must use a representation that is
easily annotated with low-level directives. First we introduce how traditional HDLs and Clash represent
their designs.

In Verilog and VHDL, a hierarchy of modules represents the hardware design. These modules define
their inputs and outputs, and state is defined as registers belonging to that module. Inside the module
combinational and sequential constructs can be applied to the input signals and state to define the output
signals. Each module may instantiate other modules to create a hierarchy.
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In Clash one can lift pure Haskell functions to the domain of signals by using the functions moore and
mealy to generate a Moore or Mealy machine from a specific type signature, or one can utilize the applicative
functor instance of the Signal datatype to apply pure functions over signals. These structures allow powerful
functional programming patterns to be used to describe hardware designs on many levels of abstraction.

For Ex-PART a limited version of a module representation is used. We view the hierarchy defining a
hardware design as a tree of module instantiations. The leaves of this tree are all Mealy machines, and the
nodes are groups of instantiations of predefined Mealy machines, or definitions of other submodules. This
design is more limited than Verilog and VHDL as it only allows logic to be defined on the leaves of the tree,
not in the nodes where only instantiations and connections between modules can be defined. This design
representation also does not allow any of the powerful programming patterns Clash features. What this
design does allow is clear places for placement annotations: the nodes and leaves of the tree. Furthermore,
tree structures are easy to work with and implement, and enable such features as placement relative to
parents.

Restricting logic to the leaves made implementation easier. Furthermore, this logic could have been
represented differently, e.g. by a Moore machine or a set of processes. Mealy machines are used as they
support both combinational and sequential hardware: To build a combinational circuit, leave out the state.
To define memory elements, simply drive the value of the state unmodified to the output. Furthermore, it
is easy to generate the definition of a mealy machine in Clash programmatically, making implementation of
Ex-PART easier.

4.3 Separate Component Definitions and Instantiations
Designing hardware in an HDL consists of defining a hierarchy of modules, each operating on their inputs and
state to produce an output. When that definition is ready, the design is synthesized. If synthesis succeeds
in reasonable time, the design can be uploaded to an FPGA.

In Ex-PART, more control is given to the designer. With this control the designer can improve the
chances that synthesis succeeds. This does add an extra phase in the design of hardware in Ex-PART. In
the first phase of development the designer defines the modules themselves in the form of Mealy machines,
this is quite similar to development in a traditional HDL. In the second phase the hierarchy and connections
between those modules is defined and the components and hierarchies are laid out physically on the FPGA.

To explicitly show that these phases are separate concerns, they are performed in separate files. Compo-
nent definitions are written in .expc (c for component) files, and hierarchies of instantiations in the .expi
(i for instantiation) file.

4.4 Layout Expressions
The goal of Ex-PART is to allow a lower level of hardware descriptions, and specifically to provide language
constructs to influence placement.

Some other work has been done in designing (embedded) languages with language constructs for place-
ment. Wired [3] uses a relative system: components are laid out next to each other. Thereby allowing
descriptions along the lines of ”component a is below component b, component c is to the left of component
a”. Reticle [2] on the other hand uses a coordinate system. Elements of the system can be placed by the
designer on an (x, y) coordinate.

To denote positions and sizes we chose to use a coordinate-based system, i.e. positions are denoted by an
x and y value and sizes by a width and height value. With this system it is completely clear where a cell will
be placed. Furthermore, this matches well with the tools as they also use a coordinate system for tiles on the
ECP5 FPGA. Since coordinates are not easy to reason about for humans a visualizer is available. Having
the visualizer in the design loop helps the designer verify their coordinate expressions. Another measure
that makes defining placements easier is the fact that coordinates need not be expressed absolutely but can
be denoted as an expression whose terms are other coordinates and sizes.
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4.5 Component Shapes
In Ex-PART the designer is able to place a component in a certain area. The ideal shape of this area
differs per component and it may also change when the component is connected to another component.
For example, a component on its own may be best synthesized in a rectangular fashion, while when it is
synthesized as a sub-component of a complicated hierarchy it may take on a more circular shape.

Synthesis tools usually generate standalone designs in a rectangular pattern, showing that any other shape
usually is not necessary. Furthermore, we need to take into account that defining a shape in a text-based
format is not human friendly. Allowing the definition of any shape would lead to much more syntactical noise
causing confusion. Experience in designing in Ex-PART shows that a visualizer is necessary to efficiently
work with defining rectangles using coordinates and sizes. These factors motivate the choice of limiting
Ex-PART component shapes to rectangles.

Ex-PART allows overlap in component shapes. The exact consequences of overlapping components varies
wildly per component and by the degree of overlap. To illustrate some of the consequences one may encounter
we elaborate two examples.

Two components may not contain much logic but are connected via a high bit width connection. If one
does not define areas for these two components that overlap, all the connections must go between the edge of
the two areas that they share. This results in a complicated routing problem. To make the routing problem
easier these components can be given a partly or fully overlapping area to be synthesized in. Now the placer
can place the cells of both components in an interspersed fashion such that the routing problem becomes
easier again.

It may be nice to define a component in terms of very small components, but the degree of control
intended may be more coarse grained. Take for example the manycore described in the paper in Chapter 3,
where a PRU was treated as one component during placement: all the sub-components of any given PRU
were given the same shape to be placed in. This is done as every PRU needs a slightly different placement
of its sub components: the top-left most PRU benefits from having its routing logic placed in the bottom
right, nearer to the other PRU’s. For the bottom-right PRU the reverse holds. Giving every sub component
of a PRU the same area gives the placer the chance to find this out on its own. As the PRU design is quite
small, the placer can detect this in little enough time. This experience with the manycore again confirms the
conclusion in the paper to decouple program structure from low-level directives. The program structure of a
PRU consists of many tiny components. To describe the entire manycore these PRU modules can simply be
repeated into a 2D grid. To place these efficiently every PRU needs a different placement, which in Ex-PART
requires the PRU’s instantiations and connections to be completely redefined. This is not an ergonomic way
of programming a design.

4.6 Chain and Repeat
A goal of Ex-PART was to allow productive low-level development. Hence, it must be possible to abstract over
designs in a certain way. For inspiration on a solution for this we looked at Clash. In Clash, components can
easily be instantiated often by applying map and fold functions. We decided to use slightly more specialized
versions of these functions and to rename them such that they make more sense in a physical context. Chain
and repeat are specialized versions of map and fold because chain and repeat only describe a layout, while
map and fold are higher order functions that in the context of a hardware design describe a layout. Hence
map and fold are much more general as in other contexts they describe different procedures while chain and
repeat are simply layout and connection descriptions.

Since map applies a function to each element in a vector it is analogous to instantiating that function
once for every component, i.e. the function is repeated for every element. Thus, with the keyword repeat we
can repeat components in Ex-PART and provide placement constraints for this repetition of components.

fold not only applies a function to every element, this function also takes the result of the function
operating on the previous element. This results in a chain of function instantiations. In Ex-PART the chain
keyword instantiates such a chain of functions.
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Experience in programming in Ex-PART was gained when developing the example designs for the paper.
We will elaborate a little on these (hard to quantify, slightly subjective) experiences regarding chains and
repeats here. As mentioned, chain and repeat statements in Ex-PART are a bit more specialized than
maps and folds in Haskell. Working with chains and repeats showed that their expressiveness was a little
more limited than expected: the possibilities for abstraction that Haskell offers are much greater than Ex-
PART, and some designs could have been written in a more elegant or terse fashion with those abstractions.
Programming with Ex-PART’s chain and repeats also immediately gives insight into what structure is being
described, while in a VHDL for-loop that is only clear after careful inspection of the body. Exact statements
on the power of the chain and repeat abstraction relative to HDLs and Clash is future work.

4.7 Open-source Software
To realize Ex-PART, we either had to implement a logic synthesis and place and route tool from scratch or
modify existing tools. Since implementation of such tools is not in the scope of this research we investigated
whether it was possible to modify or extend existing tools.

Since the changes that needed to be made to implement Ex-PART’s semantics were quite large there was
a good chance that some part of the tool might break or start behaving weirdly due to the changes. When
this happens in a closed source tool, there is no way to solve the problem short of talking to the manufacturer
and hoping they might help you. When the source-code is available however, we are able to fully investigate
where this behavior comes from. Therefore we decided to use the open-source logic synthesis tool Yosys and
the place and route tool nextpnr [4]. These tools are the only open-source synthesis tools that can synthesize
a design for a real-world FPGA. Inspection of the source code and addition of debugging print statements
were applied at least twice in the project to debug Ex-PART.

Further facilitating implementation of Ex-PART is the input and output formats of these tools. The
output of Yosys is a JSON file which is also the input of nextpnr. By modifying the JSON file Yosys outputs
before giving it to nextpnr we can inject our own processing. The implementation of this processing is further
aided by the fact that Yosys’ outputs are very well documented [5].

Additionally, nextpnr can be extended with Python scripts. Being able to use a modern, fully fledged,
widely used programming language to process data in between the steps nextpnr takes enables a great
flexibility.

4.8 Compilation Strategies
The design of Ex-PART is highly influenced by realizability. It is a high priority to be able to demonstrate
that synthesis like this works for real-world FPGAs. To realize Ex-PART several compilation strategies were
considered and tested on their realizability.

To implement the design of Ex-PART for a real-world FPGA the tools Yosys and nextpnr [4] are extended.
The organization of these tools has a major influence on the possibilities for the realization of Ex-PART.
The most important goal is a tool that can produce designs which are placed as annotated by the designer
according to the defined semantics of Ex-PART. Synthesis speed is a secondary goal.

A strategy under consideration is to apply logic synthesis and place and route for every bottom-level
component. Logic synthesis has to be applied once for each component. Placement and routing is applied
for every instantiation of a component. The idea is to run nextpnr for every instantiation for a newly
generated FPGA architecture consisting of just the subset of tiles of the ECP5 onto which the component
may be placed according to the annotation. Thus for every component it is impossible to be placed and routed
outside the allocated area, as nextpnr does not know about any other tiles. To produce the final design these
configurations are combined, and between their interfaces routes are set up. This strategy has the upside that
it keeps every place and route problem small, which can speed up placement and routing immensely as these
problems are NP-hard [1]. This approach is sadly unpractical due to nextpnr’s organization. Generating a
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new FPGA configuration for each component seems to require a full recompilation of nextpnr. This is not
easy to manage and takes a long time.

The strategy we did use was extending nextpnr by a Python script right before the placement step. Such
a script gets access to a ctx (context) variable containing all the nets, cells, routes, placements, and whatever
else is relevant. The context object also contains functions allowing safe modification of the state. One of
these functions is createRectangularRegion which defines a rectangular region on the FPGA identified
by a name. Using constrainCellToRegion a cell can be constrained to a region by the region’s name.
Ex-PART creates rectangular regions for every component instantiation, and then every cell is constrained
to the correct region. Note that this strategy adds constraints to the placer. Therefore, we cannot make
any claims on place and route speed: tight constraints may take longer to place, while loose constraints can
speed it up. As the placement has a huge effect on the routability of the design, placement constraints may
also have an effect on the time the routing step takes.

4.9 Routing
Ex-PART’s low-level directives are limited to placement. Another obvious place were low-level directives can
be useful in FPGAs is routing. In this section we elaborate on why Ex-PART does not enable control over
routing, and give some of the ideas on routing we did have.

As mentioned in Section 4.1, we first built a hypothetical toolchain where the lowest level describes designs
for the ECP5 FPGA on as low a level as possible. On that level, routing is done by configuring routing
switches: every slice has some multiplexers that can be configured and thus every signal can be routed via
these multiplexers to a different slice on the tile or a different tile altogether. Since these multiplexers are
baked into the chip the options here are quite limited and very specific. For example, on the ECP5 it is
possible to route a signal to a tile six tiles south via one switch, but it is not possible to do so to a tile five
tiles south.

As the goal was a productive low-level language there had to be some kind of abstraction on top of
this routing system as for complicated designs it becomes impossible for a human to keep track of all the
multiplexer settings and what that results in. Upon further inspection of the place and route tool it turned
out that it did have features to constrain placement, but not for routing. Since constraining placement was
considered a good demonstration of a low-level feature we decided that Ex-PART would not provide any
low-level programming constructs to constrain routing.

Some features that slightly constrain routing were considered but never implemented. In the first design
of Ex-PART it was disallowed to connect any two components if their areas did not share a border. That
meant that components that had to be connected had to be placed next to each other by the designer, and
the router would have the additional information that the routing would have to go through that border. A
problem that arose later that showed that this would not have worked is the fact that the designer does not
have any way of specifying where in the rectangle the interface of the component is synthesized. Therefore
the designer might put some component B to the right of a component A, while the output interface of
component A is on its left side. Often the placement tool is able to infer that it should place the interface
of a component in the direction of the component that interfaces with it, but this does not always happen
as exactly as one would like (especially with large bit width interfaces).

A design that is legal in Ex-PART but is very hard to synthesize exists: define a mealy machine with
a ridiculously high bit width input and output without much logic between them, and instantiate it. This
component will utilize a lot of routing resources to route that input to the output, without using many LUTs.
The analysis script will show that this component uses hardly any LUTs which may lead the designer to
erroneously think that this component uses little space. Here the syntax of the language does not discourage
an inefficient choice, however the routing visualization in the visualizer should give the designer some idea
that what they are doing is very hard to synthesize. Furthermore, since Ex-PART is explicitly designed as
a low-level language it is considered reasonable to assume that designers using Ex-PART are very familiar
with their target FPGA and all its available resources.
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Chapter 5

Software Manual Introduction

Introduction
Explicit Place And Route Tool: a low-level hardware description language for FPGAs allowing fine-grained
control over placement of modules.

As this software was written for academic research, no time was spent on a user-friendly interface,
clear errors, or any other feature one may expect from maturely developed software. Your best hope of
working with this project is opening it in GHCi and looking around the code when errors are encountered.
Furthermore, much information is dumped in the output directory of the synthesized project. Errors not
given by this tool may have ended up in a .err or .log file. This manual aims to give a comprehensive overview
of any error you may encounter and of every file involved in the project.

Getting Started
The following chapters explain everything there is to programming in Ex-PART, and to maintaining the
software. Ex-PART repurposes Clash’ syntax for many of its constructs. Therefore it is good to be at least
slightly familiar with Clash. Ex-PART is written completely in Haskell, given that Ex-PART is very much
immature software, experience with reading Haskell code, and some understanding of its type system is
strongly advised. Although the Haskell features used here are quite elementary, here are some subjects this
project uses that you may need to brush up on: Parsec, Records.

In the first chapter on setting up the software you will find the necessary versions of all the software
Ex-PART depends on, and information on how to best structure and build an Ex-PART project.

After the set-up guide the guide for programming in Ex-PART is presented. It contains documentation
for every language construct, tips on how to best configure your editor, and warnings about everything that
seems like it should work but doesn’t.

In the examples section several examples detailing all Ex-PART’s features are located. The examples
in the paper are collatz, md5 reuse, and manycore. Explanations of what all the available examples are
supposed to do are located in this section.

Next is the Ex-PART maintenance manual. If you want to add a feature to Ex-PART, read this guide
to discover where that can be done. It also contains an explanation of the project structure.

As Ex-PART was developed for a master thesis, there are still many issues with the software. Inspect
the GitHub issues page [6] to find what bugs are present and which enhancements are possible.

In case the software does not run, one build directory (collatz) is committed to the repository, such
that at least one run of building a project is available for inspection.
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Notes on the Paper
In the paper On Productive, Low-Level Languages for Real-World FPGAs (Chapter 3), a hierarchy of com-
ponent instantiations and connections is called a module. In the code and explanation in this repository it is
called a system. The name module is used in the paper as it ought to call up the concept of Verilog modules,
which are slightly more general than Ex-PART’s systems.

Notes on Printed Versions of this Document
This document is an adaptation of the Markdown version available in the repository [7]. This Markdown
version contains links to code files, chapters, and GitHub issues which can make everything considerable
easier to understand as it is possible to conveniently navigate to relevant documents. When a GitHub issue
is mentioned this is done as “#6”, which refers to https://github.com/PietPtr/Ex-PART/issues/6.
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Chapter 6

Setting Up

6.1 Prerequisites
Ex-PART is built on exactly these versions of software involved, any older or newer may work, but probably
won’t as Ex-PART uses features which are changed often. Find here all used software and their --version
strings.

Yosys version 0.10.0:
Yosys 0.10.0 (git sha1 UNKNOWN, gcc 11.1.0 -march=x86-64 -mtune=generic -O2 -fno-plt
-fPIC -Os)

nextpnr at git hash dd637643
nextpnr-ecp5 -- Next Generation Place and Route (Version dd637643)

Ex-PART uses nextpnr’s Python script extension, so make sure you enable Python when building nextpnr.

Clash version 1.4.6
Clash, version 1.4.6 (using clash-lib, version: 1.4.6)

Boost 1.76.0-1
extra/boost-libs 1.76.0-1 (2.3 MiB 9.3 MiB) (Installed)

Python 3.9.7
Python 3.9.7

Pygame 2.0.1
pygame 2.0.1 (SDL 2.0.16, Python 3.9.7)

6.2 Project directory structure
A project called ‘project’ is best structured as follows:

project/
project.expc
project.expi
project.lpf

It is possible to use different names for the expc/expi/lpf file, but using the same allows the use of the
shorthand make function to build a project.
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6.3 Running Ex-PART
Make
First run either make install or make symlink with root privileges. This will create the directory /usr/share/ex-part,
and either copy or symlink certain files (scripts, CSVs) there. Ex-PART always assumes that this directory
exists and that the relevant resource files are located there.

ghci
Ex-PART does not come with a nice main function, instead it is generally run through ghci. To run it,
navigate to the root directory of this repository and run:

ghci -iparser -iclash-generator -ijson-builder -iyosys -inextpnr
-ielaboration -icompiler Main.hs

As far as I am aware, Ex-PART does not have any dependencies that do not ship with Haskell by default.
A nicer way to structure and run all this is by using Cabal or Stack, see issue #6.

6.4 Flows
Running flows
Ex-PART comes with several ‘compilation flows’, these are basically build scripts that build the project using
different approaches. All flows can be found in /compiler/Compiler.hs and have type Flow. A flow can
be run by itself, it always requires four arguments: the .expc file, the .expi file, the constraints (.lpf) file,
and the output directory. If the first three files have the same name (as suggested in the previous section)
they can be run with the make :: Flow -> String -> IO () function, which takes a flow, a project name
of one of the projects in the examples, and runs the flow for that project.

Compile flows often change directory. When a compile flow crashes the directory is not reset to the main
directory. Use :r to reset this. This is of course not very convenient, see issue #8.

List of Available Flows
Here all available flows are listed, including their caveats and features.

clean

The clean flow rebuilds the entire project. It clears the output directory of all files generated by previous
runs and rebuilds everything from scratch.

auto

Since the clean flow can take quite some time (rerunning Clash on all components takes forever), the auto
flow can be used. The idea of this flow is that it detects which components must be rebuilt (if any), and if
the connections have to be rebuilt.

This detection is not always very good, as detailed in #7.
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monolithic

Builds the project as a monolithic design: it produces Clash.hs (normally used for synthesis), which has
every function inlined by default. This file is converted to one enormous Verilog file with clash, synthesized
with Yosys, and placed and routed without any placement constraints by nextpnr.

The build files for the monolithic flow are stored in the monolithic/ directory in the given output
directory.

hierarchic

Similar process as the monolithic flow, but adds annotations to Clash.hs to not inline every function. This
produces a hierarchic Verilog project that is synthesized by Yosys and placed and routed without placement
constraints by nextpnr.

The build files for the hierarchic flow are stored in the hierarchic/ directory in the given output
directory.

resource

For every component in the design, produces a clash file, synthesizes that (so just the component is synthe-
sized), and places and routes it using the --out-of-context switch of nextpnr. This option does not route
the ports of the component to I/O ports. This flow is used to investigate resource usage of the components
used in the design to provide information necessary during layout. This is the flow where you would discover
how much area one component needs (at least).

resource'

The same as resource, but additionally takes a list of strings (so call it as e.g. make (resource' ["component1",
"component2"]) "project") of the names of the components for which it should run the resource flow. This
is a nice flow to have when you do not want to re-synthesize every component after adding some new ones.

sim

Only rebuilds Clash.hs. Useful when the expc/expi has changed and only the functional correctness of the
design must be checked.

location

Only rebuilds location.json. This may be useful when the auto flow seems broken (#7) and only the expi
file has changed.

pnr

Only runs nextpnr on the project. Assumes that locations.json and synthesized.json are both available.
Useful when placement has failed and a subtly different placement is tried (in tandem with the location
flow).
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Chapter 7

Programming In Ex-PART

7.1 Designing Hardware with Ex-PART
In this guide as much as possible information on how to design hardware in Ex-PART is provided. Since
Ex-PART was developed for a Master thesis, there are quite some hacks and pitfalls you may encounter and
there are a wide variety of features available.

This guide fully focuses on allowing you to design hardware in Ex-PART. If anything goes wrong (crashes,
unexpected results, etc), take a look at the maintenance manual to find out how to continue, and where you
may need to apply a fix.

7.2 General Remarks
• Haskell syntax highlighting works quite well with Ex-PART, it’s not perfect but as there was not really

a consistent grammar available no custom syntax highlighting was developed.

• Parse errors are usually not very clear, see issue #10.

• Parse errors may occur when spaces or other white space occurs in the wrong place. The parser does
not allow some kinds of statements to end with white space, for example.

• Parse errors will also occur when the character ‘}’ occurs unexpectedly, since this character is used to
detect the end of a block (like a haskell block, as will be explained later). This character occurs in
Haskell multiline comments and in records, hence these cannot be used in Ex-PART.

• If parse errors in Haskell statements happen because of other reasons, it’s possible that you used a
character that is not mentioned in haskell stat in Parse shared.hs (See also issue #1)

• Bit widths of types are not determined automatically. In parser/Types.hs a switch statement is
located that matches the name of a type to a bit width. Usually this becomes clear by the error
“cannot find birdbath for type <Type>”. This means that if you use any type that it is not listed
there, or define a type synonym of the same name but with a different bit width that is defined
there, Ex-PART will not function correctly (Issue #2). If you want to add a type, either solve this
problem correctly by looking at how Clash determines type bit widths, or simply add / modify the
case statement.

• Scopes are very unclear. No time was spend on designing some exact scoping of variables, and in
practice there are several namespaces in Ex-PART (even though they were not necessarily built on
purpose). There is the namespace of component/system instantiations, these are given a name such
that they can be referred to in coordinate expressions. These names are globally referenceable in
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coordinate expressions, but no error will be given if they do overlap, simply the ‘first’ will be returned.
Then there is a namespace of system and component type names, which is used to designate the kind
of system instantiated when instantiating something. This is also globally referenceable. If anything
goes wrong in scopes, it’s likely that there is a bug, try renaming variables such that everything has
a unique name and see if that goes better. Furthermore, I have not checked whether scopes in the
simulation and in synthesis behave the exactly the same. See also #11.

• The feature list below also details some hacks, tips, and tricks for these features that may ease devel-
opment or help understanding why something behaves unexpectedly.

• When driving the same input with two outputs, none of the tools will give warning, the design is just
synthesized to . . . something. Beware.

• Overlap between components is allowed in Ex-PART. Experience shows that it is often very useful to
have two components share area; if they are thoroughly interconnected it is much easier to find a good
placement if the LUTs can be in the same rectangle.

7.3 Glossary
• Component: a mealy machine defined in the component file (.expc).
• Element: Anything with input and output ports that can be laid out on the FPGA: so either a

component or a system.
• Instance: a particular occurrence of some element, with a position and size, on the FPGA.
• System: a hierarchy of systems defined in the instantiation file (.expi), corresponds loosely to a

module in Verilog, or a function in Clash operating on Signals.

7.4 Design Feedback
To aid in designing with Ex-PART, some helper tools are available. These give much information on your
design while you are working on it.

Visualization
The Python program vizualizer/main.py is a visualizer for two types of output JSON files of Ex-PART.
It can visualize component placement (taken from the generated locations.json) and placement of slices
onto the FPGA taken from an output JSON generated by nextpnr (consistently named bitstream.json
throughout all Ex-PART builds). visualize.py expects one argument: the directory in which it should
search for JSONs. When none are found or the directory does not exist, the program simply shows an empty
screen. As soon as either one of the JSONs is available it will be drawn by the visualizer. To differentiate
between location information as given in the .expi and placement information as generated by Ex-PART,
.expi colors are more muted and drawn as a border. If the information is available, a legend will be drawn
in the top right corner. Indicators in the bottom right corner show which files are loaded.

Example commands

python visualizers/main.py project
Shows bitstreams and locations in project directory project/, as soon as they are generated.

python visualizers/main.py project/builds/component/
Shows out-of-context (i.e. I/O is not routed to) pnr result of component component in project project,

as soon as it is generated.
python visualizers/main.py project/monolithic/

Shows bitstream as generated by the monolithic flow for project project.
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The visualizer can always be run and does not need the directory to exist, it simply waits until the direc-
tory contains visualizable files. File loaded indicators in the bottom right corner indicate which visualizable
files were found.

Controls

Click-and-drag works to pan around the design. Scrolling zooms in and out. Pressing F1 re-randomizes all
the colors (can be useful if some colors look too much alike or are just plain ugly). F2 takes a screenshot and
saves it as “<unix-timestamp>.png”. Pressing R sets the coordinate ranges to relative mode: the tile your
mouse hovers over is then (0, 0). This feature is currently broken if the view was panned (#23)

Notes:

• The visualizer will try to visualize any directory that contains either a locations.json or a bitstream.json,
so it also works on the output directories of the monolithic, hierarchic, and resource flow.

• There is a switch, -c, to enable showing connections that leave a component. This will render every
connection that goes from one cell in a component to a cell in some other component.

• There is also a switch, -p, to enable a simpler view that shows the full ECP5 at once.

• The visualizer is built entirely for the 85k version of the ECP5 [8]. For more comments see issue #9.

Metric Analysis
All the tools Ex-PART runs to obtain results emit outputs and errors that may be valuable for debugging
and evaluating a design. Since these are spread all over the place, a script gathering these metrics is available
in the root directory: analyze.py. Simply run it with the name of an Ex-PART output directory as its
argument and it will search all available logs for metrics like LUT/FF usage, maximum frequency, and run
times. If it can’t find a metric it will print it as a dash. If hierarchic and monolithic output directories are
available it will print the metrics in a table to easily compare them. Just as the visualizer, this script can
be run on directories in the builds/ directory to gain insights into resources used by components.

The Output Directory
A ton of information is available in the output directory, all the logs, intermediate files, simulation files, etc.
If anything goes wrong, do look at those files as some errors may have ended up only there and not in the
output of Ex-PART.

Clash.hs
For every project a Clash.hs file is generated, this is intended for simulation, but running it with Clash can
also catch type- and other errors.

7.5 Thorough Explanation of a basic Ex-PART program
In this chapter we will walk through the collatz example (examples/collatz/). This file describes a piece
of hardware that keeps a number in a 16 bit register, and applies the rules of the Collatz conjecture, i.e. if
the number in the register is even it is divided by two, and if it is odd it is multiplied by three and one is
added to it.

In the image below the architecture is shown. Every box is a mealy machine as will be defined in the
component (.expc) file, and every line is a connection between I/O ports of the components. Lines are
annotated with the type of the output and input port they connect.
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Figure 7.1: Collatz conjecture calculator architecture

.expc file
Now, an explanation of the .expc file, starting at the top:

1 haskell {
2 (>>>) :: Bits a => a -> Int -> a
3 (>>>) = shiftR
4

5 (<<<) :: Bits a => a -> Int -> a
6 (<<<) = shiftL
7

8 type Value = Unsigned 16
9 }

In a haskell block arbitrary Haskell code can be added to the design. Each component has access to
these definitions. Do not indent them as they are copied straight to a Haskell file. Define helper functions,
type and data definitions, and debugging functions here. By default, Data.List and Clash.Prelude are
available, and the extension NumericUnderscores is enabled.

1 component router() {
2 input val : Value
3 output odd : Maybe Value
4 output even : Maybe Value
5

6 even = if testBit val 0 then Nothing else Just val
7 odd = if testBit val 0 then Just val else Nothing
8 }

A component definition. After the keyword component the name of the component is defined, followed by
(). The parentheses are necessary as a feature was planned to allow generics to be passed to a component.
This feature has not been implemented, but some support for it remains there in the parser (issue #19).

The first lines of a component are the input, output, and state definitions. This component happens to
be a combinational component: it has no state. This component receives a 16-bit value (namely val, of type
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Value, which was defined to be an Unsigned 16 in the haskell block earlier). It has two outputs, both of
type Maybe Value.

1 component onEven() { ... }
2 component onOdd() { ... }
3 component merger() { ... }

These components are also all combinational, so not much news happens here, so their implementation
is omitted.

1 component control() {
2 input next_val : Value
3 input set_val : Maybe Value
4 state last_val = 0 : Value
5 output result_value : Value
6

7 last_val' = case set_val of
8 Just new_value -> new_value
9 Nothing -> next_val

10

11 result_value = last_val
12 }

This is a component with state. Its state is defined in the fourth line. It is given a type just like the
inputs and outputs (Value). Additionally an initial value is supplied, namely 0.

To define the state transition, an expression is defined for last val'. Notice that this expression can
depend on any of the inputs, and the previous state. It can also depend on some other state, or their next
states, as long as they do not form a mutually recursive dependence.

.expi file
With the components defined, the .expi file can be written to layout those component on the FPGA.

1 system in (6, 5) at (2, 2) {

The top-level system is called system, takes up an area of six by five, and is located at position (2, 2)
on the ECP5. This coordinate system is zero-indexed, (0, 0) is the top left corner. Ex-PART uses the same
system as the HTML documentation of the ECP5.

The size of systems is not checked by Ex-PART, if you specify (1, 1) here it may work as well. Where it
is taken into account is when any of the components refer to this value, that is if a component is placed at
e.g. (system.x, 0). This size is currently not in any way inferable, if you resize components in a hierarchy
and you need to use an accurate size for the system, you need to update the system size manually. See also
issue #12 on inferable sizes.

1 input setting : Maybe Value
2 output result : Value

The I/O of the top-level system. As the input we define setting, this Maybe Value can set the value
in the register to which the Collatz conjecture rules must be applied. control is a component that has an
input of type Maybe Value for exactly this purpose, so once that component is instantiated we must route
this input to that component.

Since this is I/O of the top-level system, this is also the I/O that must be constrained in the .lpf file.

1 controller is control in (6, 1) at (0, 0)
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The control component is instantiated. It is given the name ‘controller’, an area of six by one, and the
location (0, 0). This location is relative to the system it is a child of, so on the FPGA this component will
be located at (2, 2).

The size could also have been defined as (system.w, 1), for example.

1 controller.set_val<-setting
2 controller.result_value->result

The controller’s inputs are linked to the inputs of its parent system. Notice that the arrow notation can
go both ways. A port of the control component is referred to by writing the name of the instance of the
component, followed by a period, and then the port name.

Local system ports do not need this period-syntax, they are simply referred to by name, as is done with
setting and result.

With these statements the system I/O port setting and result are connected to the controller, so that
the controller component drives/is driven by the FPGA I/O ports as intended.

1 collatzer in (controller.w, 4) at (0, controller.h) {

A subsystem with the name collatzer is defined. At this point it is probably a good idea to view the
file this comes from, as the indentation here will make it much clearer that this is a sub-system. Note that
its size and position is defined in terms of the controller, so if we resize the controller, this entire system
moves with it.

1 input val_in : Value
2 output val_out : Value

This subsystem also has its own input and output ports. Since the goal of this system is to calculate
the next value of its input according to the rules of the Collatz conjecture, the types of the single input and
output port are both Value.

1 router is router in (1, onOdd.h + onEven.h) at (0, 0)
2 onOdd is onOdd in (collatzer.w - 2, 2) at (collatzer.x + 1, 0)
3 onEven is onEven in (onOdd.w, onOdd.h) at (onOdd.x, onOdd.h)
4 merger is merger in (1, onOdd.h + onEven.h) at (onOdd.x + onOdd.w, 0)

All the necessary components are instantiated. To showcase what kind of expressions are possible in the
coordinate and size expressions they have been written to be highly dependent on other values. Notice that
both components (like onOdd), a system (collatzer), and constants are used in these expressions. See also
issue #13 and #14 for more information on what you cannot do with these expressions.

1 router.val<-val_in
2 router.odd->onOdd.val
3 router.even->onEven.val
4 onOdd.res->merger.vo
5 onEven.res->merger.ve
6 merger.res->val_out
7 }

To finish up the subsystem collatzer the connections are defined as in the diagram shown at the start
of this chapter. If you try to connect ports of different types, Ex-PART will throw an error.

1 collatzer.val_in<-controller.result_value
2 collatzer.val_out->controller.next_val
3 }

The I/O ports on the subsystem need to be connected to the controller, and that is exactly what we do
here. The ports of the subsystem can be referenced by using the name of the subsystem, a period, and then
the port name.
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7.6 Simulation with Clash
The following flows generate simulation files: clean, auto, monolithic, hierarchic, and of course sim
(which is there just for simulation file generation).

“Simulation files” in Ex-PART are simply Clash files, i.e. Haskell code. After using either one of these
flows you will find the files Definitions.hs and Clash.hs. Definitions.hs contains everything you put
inside haskell blocks, and Clash.hs contains all the mealy machines representing components, and functions
representing the hierarchies of systems in the .expi file. If you’re familiar with Clash it may be very useful
to inspect these generated files when checking for functional correctness. They have been generated in a way
that they ought to be relatively readable. Furthermore, in the output directory a directory called builds
is created, which contains a directory for every component in the design. These directories also contain
Clash files for just those components. These are called Synth <component>.hs, where <component> is the
component name.

To simulate your entire project, use the command:

clashi Definitions.hs Clash.hs

To simulate just one component with the name component:

clashi Definitions.hs builds/component/Synth_component.hs

Once in the clashi shell, test for functional correctness as usual using Clash’s simulate, sample, etc.
functions.

7.7 Post-Synthesis Simulation
Since Ex-PART operates directly on the JSON file that Yosys outputs, no post-synthesis simulation is
available.

7.8 Bitstream Generation
Ex-PART uses nextpnr to generate bitstreams. Nextpnr emits bitstreams in both JSON format and
the Trellis textual configuration format. Both of these versions are available in the output directory as
bitstream.json and bitstream.config. With the program ecppack (which is part of project Trellis)
bitstream.config can be converted from a textual representation to a bitstream that can be programmed
to an ECP5 FPGA.

Nextpnr warns that it is experimental software and that it might break your FPGA. Ex-PART is (clearly)
even more experimental, and uses nextpnr. Before flashing any designs Ex-PART generated to your FPGA,
you should really try to manually verify nothing weird is going on in both the bitstream.json and the
synthesized.json.

7.9 Feature List
In this chapter you find a comprehensive feature list of the language Ex-PART. For every feature a brief
explanation is provided, syntax examples are given, and the example designs which use the feature are listed.
For a short description of their implementation the same list is available in the maintenance manual.
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Comments
Comments are a little iffy in Ex-PART. In .expi files single line comments usually work:

1 a is a in (5, 3) at (0, 0) -- this is a single line comment

In expc files comments at least do always work in the expression statement parts, as those are directly
copied to Haskell code during compilation. However, comments outside components and between input,
output and state definitions may not work. Multiline comments do not work, as the } character is used to
determine if a component definition has finished (issue #31).

1 -- This comment fails
2 component router() {
3 input val : Value
4 -- This comment fails
5 output odd : Maybe Value
6 output even : Maybe Value
7

8 -- A working comment
9 even = if testBit val 0 then Nothing else Just val -- This comment is fine

10 odd = if testBit val 0 then Just val else Nothing
11 {- This multiline comment
12 causes problems
13 -}
14 }

Types
In both component definitions and system definitions ports and states need to be annotated with a type.
These types are exactly Clash types, so it is always possible to give ports any type Clash supports. Do note
that the parser of the types in Ex-PART does not support everything, so to circumvent any parse errors you
may get in types, define a type synonym in a haskell block. For example, this line may not parse:

1 input inp : Maybe (Vec 4 (Unsigned 16))

Solve this by defining this haskell block:

1 haskell {
2 type SomeInputType = Maybe (Vec 4 (Unsigned 16))
3 }

And changing the erroneous line to:

1 input inp : SomeInputType

.expc file
The component or .expc file is where components and generally available Haskell code is defined. Every
example contains an .expc file as without components no hardware can be described.

haskell block
In a haskell block general Haskell code can be written. Any component can use the function or type
definitions defined in such a Haskell block.

In this example two synonyms for the Clash functions shiftR and shiftL are defined, and a type synonym
for Unsigned 16 is set.
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1 haskell {
2 (>>>) :: Bits a => a -> Int -> a
3 (>>>) = shiftR
4

5 (<<<) :: Bits a => a -> Int -> a
6 (<<<) = shiftL
7

8 type Value = Unsigned 16
9 }

This is useful because now it is possible to easily change the bit width of every port and state in the
components simply by changing the type to which Value aliases.

Do not indent any code in this block, as Clash will give errors during Verilog compilation or simulation.
Every example uses a haskell block since basically always you’ll need to define some helper functions

and types / type aliases. There may be a bug as well regarding .expc files without a haskell block: issue
#4.

Component definition
A general component definition looks as follows:

1 component <name>() {
2 input <input n> : <input_type n>
3 state <state n> = <initial_state n> : <state_type n>
4 output <output n> : <output_type n>
5

6 <state n>' = <state_expr n>
7 <output n> = <output_expr n>
8 }

Where <text n> means that there can be any number n of such statements.

• <input n>: the name of some input port.
• <input type n>: the type of some input port.
• <state n>: the name of a state.
• <initial state n>: the value for the initial state of that state. The parser is quite weak for this

initial state (e.g. Just 0 may not work), define a constant function in a haskell block to circumvent
this (e.g. my initial state = Just 0, and setting the initial state to my initial state). When you
forget this value, a very unclear parse error pops up. When these statements don’t parse it’s usually
because the initial state was left out.

• <output n>: the name of some output port.
• <output type n>: the type of some output port.
• <state expr n>: the transition expression for this state. This expression is simply a Haskell expression.

Any Haskell construct can be used here, except for records, as they contain the character } in their
syntax (see also issue #15). A transition expression can use any of the variables that are in scope in the
component: inputs, other states, even the next values for other states, as long as there is no mutually
recursive dependency between them. To find out if this has happened (on accident), run the Clash
simulation. If it produces no output there probably is such a mutually recursive pair in a component
somewhere.

• <output expr n>: the transition expression for some output.

Notice that there is a prime (') after <state n> in the equation for the transition expression! The new
state for an old state state is always called state'.

Example components are given in the “Thorough Explanation of a Basic Ex-PART Program” section,
and of course every example project contains many components.
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.expi file
In the instantiation or .expi file the components defined in the .expc file are laid out on the two-dimensional
grid of the FPGA.

Coordinates and Sizes
Every system definition and component instantiation has a size and location. These are both given as two-
tuples, (width, height) for the size and the (x, y) for the location. In these tuples layout expressions
can be used. The operators + and - are available to define layouts. Furthermore, layout properties of other
components can be used. The layout properties for a component called component are as follows:

• component.w: the width of component
• component.h: the height of component
• component.x: the x coordinate of component
• component.y: the y coordinate of component

There exists somewhat of a global scope for these variables: ‘somewhat’ because Ex-PART does not give
errors if any names in this scope overlap, it simply returns the first value it finds.

Parentheses can be used to impose precedence on sub-expressions as usual in arithmetic expressions.
In almost every example many examples can be found of these expressions being used.
See also issue #13 on cycle checking in coordinate and size expressions.

System Definitions
A system definition is of the following form:

1 <system_name> in (<system_width>, <system_height>) at (<system_x>, <system_y>) {
2 input <input n> : <input_type n>
3 output <output n> : <output_type n>
4

5 <instantiations>
6 <connections>
7 <subsystems>
8 <elaborated_features>
9 }

• <system name>: the name of this system, can be any identifier.
• <system width>: the width of the system.
• <system height>: the height of the system.
• <system x>: the x coordinate of the system.
• <system y>: the y coordinate of the system.
• <input n>: some input of the system.
• <input type n>: the type of some input of the system.
• <output n>: some output of the system.
• <output type n>: the type of some output of the system.
• <instantiations>: component or system instantiations. The order of statements of this and the

following three kinds does not matter.
• <connections>: connections between ports of systems and components.
• <subsystems>: subsystem definitions. A definition for a subsystem is exactly the same as a system,

just indented by one more level (by convention).
• <elaborated features>: Some extra syntactic sugar is available to make development of repetitive

designs easier, these features are all “elaborated” to a collection of the previous three kinds (instanti-
ations, connections, subsystems).
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Top-level systems have some more requirements/caveats: the width, height, x, and y expressions must
be constant expressions: they cannot depend on any other component or system. Furthermore, the ports
defined as I/O ports in the top-level system are the ports that must be constrained to the FPGAs I/O pins
in the .lpf file.

Component Instantiation
The basic way to layout components is as follows:

1 <instance_name> is <component_name> in (<width>, <height>) at (<x>, <y>)

• <instance name>: the name given to this instantiation. May be the same name as the component
that is instantiated.

• <component name>: the name of the component that is to be instantiated, this is the name of one of
the components in the component file.

• <width>, <height>, <x>, <y>: layout expressions defining the position and size of this instance.

Port connection
Ports of instances and systems can be connected as follows:

1 <from_element>.<from_port>-><to_element>.<to_port>
2 <to_element>.<to_port><-<from_element>.<from_port>
3 -- Example:
4 component.output_port->component2.input_port

Notice the . and ->/<-. The period signifies that the port to its right is a port of the element to its left.
The arrows denote connection. Both directions are available, use whichever is more convenient to read or
write at the moment.

An “element” refers here to anything that has ports: systems, components, and subsystems.
Ports of the current system are referred to without any element:

1 <system_input>-><to_element>.<to_port>
2 <from_element>.<from_port>-><system_output>
3 -- Example:
4 system.output->local_output

View the example section and code examples for many examples on connection. There is some extended
syntax for so-called multi-connections and constant drivers, explained in their respective sections.

Constant Drivers
When some input of a component must be driven by a constant value, you would have to define a mealy
machine with one output whose transition expression is a constant. This is quite cumbersome, so shorthand
is available to do this:

1 router.x<-(4)

Taken from the manycore example, where a router must know its own position, and that value is simply
constantly driven to the x input port of the router. A constant driver is of the form (<constant>), and
may only appear on the dash-side of the arrow (obviously, as otherwise you would route the output of some
component to a constant value, that doesn’t make any sense).

Constant driver support is quite limited at the moment: it is only possible to drive numbers constantly.
It would be preferable to have that be any constant value available in Haskell, but as Haskell allows defining
your own data types that would result in a bit more complicated parsing.
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If you’re willing to give up simulation it is possible though. Let’s suppose we have a component with a
port of type (Maybe (Unsigned 4)). Suppose we want to drive Nothing on it constantly. Since Nothing ::
Maybe (Unsigned 4) is represented as ‘0....’ (cf. pack (Nothing :: Maybe (Unsigned 4))) in Clash),
by driving the constant (0) we will get the intended effect in hardware. This is not simulatable since the
Clash code will throw a type-error, as 0 is not of type Maybe a.

Another approach that does preserve simulation is defining a mealy machine as follows in the .expc file:

1 component constantNothing() {
2 output c : Maybe (Unsigned 4)
3

4 c = Nothing
5 }

Instantiate the component anywhere, and connect its constantNothing.c port to the port that must be
driven by Nothing.

See issue #16.
Examples using constant drivers: manycore, chain, core, constants.

Repeat statement
The repeat statement simply repeats a component or system several times. In Clash this corresponds loosely
with a map. Its syntax is as follows:

1 repeat <repeat_name> at (<x>, <y>) {
2 component = <element> in (<width>, <height>),
3 amount = <amount>,
4 layout = <layout>
5 }

• <repeat name>: The name of this repetition. This name is referred to in multi-connections.
• <x>, <y>: The location of the first instance in this repetition.
• <width>, <height>: The width and height of every instance in this repetition.
• <element>: The component or subsystem name to be repeated. A subsystem can be repeated too, if

you have instantiated some system somewhere it is possible to also lay it out using repeat as well. For
more info see the section on unplaced systems.

• <amount>: How often the element must be repeated.
• <layout>: either horizontal, vertical, or identical. These describe how the layout must be

continued: in a horizontal or vertical line, or placing every component at the same position.

This image shows an example of a vertical layout of some component of size (4, 2), at location (2, 2),
with amount five.

The order of the settings does not matter.
Once instantiated, individual components of the repetition can still be addressed:

1 <repeat_name>[<index>].<port>->some_port

Where <repeat name> is the name given to the repetition, and <index> is a 1-indexed accessor for the
components, so the first component in the repeat with name repetition is repetition[1]. This is
1-indexed since this is not an array in memory, this is a line of components laid out in 2D space. When, in
real life, some line of objects is laid out, it is most natural to refer to the leftmost or topmost component as
the “first”, not the “zeroth”. Furthermore, with 1-indexed component references the last component index
is equal to the amount, which is again quite natural: if there are in total five objects somewhere, you refer
to the last as the “fifth” in natural language and hence as repetition[5] in Ex-PART.

Accessing more than one component at the same time as possible with multi-connections
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Figure 7.2: Chain diagram

Coordinate and size expressions do not support indexing in the parser. It is possible to circumvent this:
internally a statement such as repetition[1] is translated to an instance with the name repetition 1,
and this identifier is available in coordinate and size expressions. This hack is used in the manycore. See
also issue #17.

Examples using the repeat statement: repeat, manycore, chain, core, smallnet, router.

Chain statement
Use the chain component to build chains of components. In Clash this corresponds loosely to a fold. Its
syntax is as follows:

1 chain <chain_name> at (<x>, <y>) {
2 component = <element> in (<width>, <height>),
3 amount = <amount>,
4 layout = <layout>,
5 chain_in = <chain_in_port>,
6 chain_out = <chain_out_port>
7 }

The diagram below shows what hardware this generates.
Given the top component, with an some input port <chain in port> and an output port <chain out port>

of the same type, the chain primitive builds a chain of <amount> components, connecting the <chain out port>
of component n to the <chain in port> of component n + 1.

Other inputs and outputs may be available, as shown in the diagram. These still can be accessed using
the same access syntax as in the repeat statement. Accessing more than one component at the same time is
possible with multi-connections

Chain is a special (more elaborate) case of repeat, so whatever holds for repeat is usually also true for
chain.

This is used in the examples: manycore, chain.
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Multiconnections
To easily connect many ports of chains or repetitions of components to other chains and repetitions (to
e.g. create a two-dimensional grid of hardware) multi-connections are available. They can take several
forms:

1 <from_repetition>:<from_port> -> <to_repetition>:<to_port>
2 -- Example:
3 drivers:out -> sum_chain:next

Using the : with a repetition instead of a . denotes that for every component in the <from repetition>,
the port <from port> must be connected to the <to port> of every component in the <to repetition>.
This only works when both repetitions are of exactly the same size. When they are not the following syntax
is available to select parts of a range:

1 <from_repetition>[<from_index>-<to_index>]:<from_port>
2 -- Example:
3 repetition[1-3]:port

This denotes that the <from port> in every component with index larger than or equal to <from index>
and smaller than or equal to to index are connected. More examples of this usage are available in the repeat
and manycore example.

This is used in the examples: manycore, chain, repeat.

Unplaced Systems
As mentioned, it is possible to chain or repeat a system instead of just components. However, to define
a system hierarchy implies immediately instantiating it as well. When you just want a chain of the same
system hierarchy, and not one extra system somewhere, it is possible to add the qualifier unplaced before a
system definition:

1 unplaced <system_name> in (<width>, <height>) { ... }
2 -- Example taken from manycore.
3 unplaced pru in (28, 14) { ... }

This qualifier tells Ex-PART that this system hierarchy may be reused or instantiated somewhere, just
not here.

This is done in the manycore example.

System Instantiation
Systems can also be re-instantiated using similar syntax to components. This allows you to define a system,
and then add several more instances of the system. This is done in the md5 reuse example: first the MD5
hashing hierarchy is defined as the subsystem named hash1. Then under that system three statements
are located that instantiate three more of the same system to build a design that can perform the same
calculation four times in parallel.

1 <instance_name> is <system_name> in (<width>, <height>) at (<x>, <y>)

Notice that this is exactly the same syntax as component instantiation. The only difference in semantics
is that now we use a system name instead of a component name. This <system name> is one of the systems
in the .expi file, and may be unplaced.
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7.10 Error Messages
Ex-PART’s error system is very simple: it uses Haskell’s error :: String -> a function whenever anything
unexpected happens (see issue #20). Occasionally Ex-PART will dump extra output in the error message as
well. This list aims to go through all error messages Ex-PART may throw and provide a short explanation
on why this error may be thrown and what can be done to fix it.

If an error is not mentioned here, it is probably in the maintenance guide, as it may be indicative of an
error in Ex-PART instead of in your .expc or .expi.

Errors List
• No such file or directory: /usr/share/ex-part/<filename>

– Make sure you have run make install or make symlink, as explained in setting up.
• clash-generator/Flattener.hs:131: No connection specified for element $name (is $type), port

$portname
– The flattener searched for a driver for the port $portname of element $name (which is of component

or system type $type), but could not find it. Check if that port is indeed connected to something.
• clash-generator/Flattener.hs:151: No connection specified for io statement $io in system $sysid

– Flattener couldn’t find a driver for the IO port $io of a system called $sysid. Also prints all the
connections that it did find. Check if that port is connected.

• compiler/Compiler.hs:91: No components in expc file. . .
– An .expc file must contain at least one component.

• elaboration/ElaborateConnection.hs:9: Cannot connect ports $from -¿ $to as they have differing
types: $fromType -¿ $toType.

– Ports must have the same type when they are connected, this error is thrown when two ports are
connected with different types.

• elaboration/ElaborateConnection.hs:25: Cannot find port with name $portName in $iostats
– The port with name $portName was not found in the IO statements of an element. It prints the

IO statements it did find.
• elaboration/ElaborateConnection.hs:27: Found several ports with name $portName in $iostats

– Only place in Ex-PART that actually errors when several entities of the same names are found,
instead of just picking the first one. There are several ports with the name $portName and there
should not be. To help debugging, the IO statements that were searched were found.

• elaboration/ElaborateConnection.hs:40: Cannot find element with name $name in $elemnames
– During Yosys post-processing a bit width of ports must be found, and that can be quite hidden

in the data structures. That’s why these elements must be searched through and these kind of
errors may be thrown. If an element that does not exist occurs in e.g. a connection statement
this error may be thrown.

• elaboration/ElaborateConnection.hs:42: Found several components with name
– Similar issues but with several components with the name.

• elaboration/Elaboration.hs:76: Cannot find system $name in this scope. $sytem names
– Is thrown for system instantiations that refer to systems that are not in scope. Check if the system

is in scope or you’ve given your instantiation/repetition statement the correct type. Also prints
a list of names of systems it did find.
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• elaboration/Multiconnection.hs:8: Cannot connect differing amount of ports: $from’ -¿ $to’

– Multi-connections can only connect ranges of the same size. Take care that the ranges you tried
to connect are indeed of the same size. This can be especially obfuscated when not using the
range operator.

• elaboration/Multiconnection.hs:20: Cannot find repetition with name $repname for multi-connection
$repname:$portname

– The specified multi-connection refers to a repetition with $repname, the system did not find any
repetition with that name in scope. Check if you are referring to the correct repetition.

• elaboration/Repetition.hs:34: Missing option chain in in chain statement

– Chain statements must contain a chain in option (Chains)

• elaboration/Repetition.hs:37: Missing option chain out in chain statement

– Chain statements must contain a chain out option (Chains)

• elaboration/Repetition.hs:42: Missing option component in repetition statement.

– Repeat and chain statements must contain a component option (Chains, Repeat)

• elaboration/Repetition.hs:45: Missing option amount in a repetition statement.

– Repeat and chain statements must contain a amount option (Chains, Repeat)

• elaboration/Repetition.hs:48: Missing option layout in a repetition statement.

– Repeat and chain statements must contain a layout option (Chains, Repeat)

• elaboration/Repetition.hs:119: Cannot find element $elemName in source files.

– The system searched for an element of a certain name but couldn’t find either a component or a
subsystem of that name. Check if you spelled the system or component name correctly in every
repetition.

• elaboration/Repetition.hs:172: Unknown layout procedure.

– The only available layout procedures are horizontal, vertical, and identical (Repeat). Use
only those, or implement a new one at this line.

• json-builder/Locations.hs:154: Could not find ID $id in provided list.

– The identifier $id in a coordinate or size expression could not be found. Make sure that the
identifier was typed correctly and is indeed defined in the instantiation file.

• json-builder/JSONBuilder.hs:21: Top-level coordinates must be constants.

– As defined in System Definitions, the top-level system must have constant coordinates. Ex-PART
found a non-constant coordinate.

• json-builder/JSONBuilder.hs:32: expi file contains a cyclic coordinate definition, cannot generate
location JSON.

– Ex-PART found a cyclic dependency for coordinates or sizes, see issue #13 for more information
on seemingly resolvable dependencies.

• nextpnr/Nextpnr.hs:28: nextpnr terminated with code $code

– Somewhere in nextpnr an error occurred, usually this is a failed assertion, a segfault, or some
error in the python script (nextpnr/constrainer.py). In any case, take a look at nextpnr.err
for more information.
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• parser/Types.hs:149: Cannot find bit width of type $type

– Bit width for types are hard-coded in Ex-PART, as that was the fastest solution for now. It should
use Clash’s system that maps types to bit widths (See also issue #2). If you want to add a type’s
bit width, add it to the case statement here.

• yosys/Postprocessing.hs:204: Could not find driver $cid in $(sys connections system)

– $cid is some connection ID, so an element and a port. In the connections in the current system,
no driver driving this connection ID was found. It also provides a list of connections of the system
so you can see which connections were found.

• yosys/Postprocessing.hs:331: cannot find net for cid in netmap $cid ($netmap)

– Errors here are harder to debug and more often they are errors in Ex-PART and not in your code.

• yosys/Postprocessing.hs:333: No net found, something is disconnected. . . $port ($relevantCon-
nections) ($netmap)

– Some output port $port is not connected to anything. Much debug output is printed here as well,
so you may miss the error because of all the extra output.

• yosys/Preprocessing.hs:63: Found zero-output component.

– Components must have at least one output.

• yosys/Yosys.hs:54: Clash terminated with code $code

– Clash terminated with an error. Take a look at the clash.err in one of the directories in builds/
in the output directory.

• yosys/Yosys.hs:138: Yosys terminated with code $code

– Yosys had some error, take a look at the yosys.err and yosys.log in the output directory.
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Chapter 8

Example Programs

8.1 Examples
In the examples directory you will find several examples developed to test Ex-PART features and to research
how well the ideas Ex-PART tries to implement work. Here we detail what their use is and what features
they employ. The chapter titles here correspond with (and link to) the directories the example is located in.

For every example a demonstration of how to run it in clashi is provided.
To best understand this document it is recommended to first read the programming manual.

8.2 Paper Examples
These three examples are used in the paper.

collatz
The Collatz conjecture calculator. In both the programming manual and the paper this example is explained
in much detail.

1 *Main> simulate @System system
2 [Nothing, Just 5, Nothing, Nothing, Nothing, Nothing, Nothing]
3 [0,0,5,16,8,4,2,1,*** Exception: X: finite list

md5 reuse
Most readable code of the four-way parallel MD5 hash calculator. md5 parallel describes exactly the same
hardware, had the system copied manually to instantiate four hashers. In md5 reuse system instantiation is
used instead.

This design implements four parallel components that compute the MD5 hash of incoming 128-bit mes-
sages. Every cycle 32 bits of a message can come in and are stored until the entire message has arrived.
When an entire message has arrived, the message is transferred to one of the hashers in a round-robin fashion
by the load balance 4 component. 64 cycles after the entire message has been transferred, the hasher will
emit the 128-bit hash in four 32-bit messages and the cat 4 maybes makes sure exactly one hash is put on
the output. Since every hasher takes the same amount of time, the order of the hashes on the output is
exactly the same as the order on the input.

The pseudocode shown on Wikipedia was followed. Since the messages are always 128-bit, the outer
for-loop is unnecessary: everything is already in a 512-bit chunk. The inner for-loop contains 64 steps that
compute the hash by (inter)changing the 32-bit variables A, B, C, and D. To achieve this in hardware, these
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Figure 8.1: collatz as seen in the visualizer

variables are stored in four registers. For 64 cycles, their values are sent into a multiplexer, and based on
a cycle counter (i in the pseudocode) their values are sent to the correct computation path. To perform
these computations, constants are necessary. Two constant stores, for K and s, are included in the system.
The correct value is selected from the store based on the cycle counter (this is also why every instantiation
of the MD5 hasher has its own store, it needs a value every cycle, and we would need 4-port read memory
to achieve this with just one memory). At the end of the process the found values for A, B, C, and D are
added to constants defined by MD5 (a0, b0, c0, and d0 in the pseudocode) to produce the final result.

1 *Main> simulate @System system $
2 [Just 0, Just 0, Just 0, Just 0, -- First message
3 Nothing, Nothing, -- pause
4 Just 1, Just 0, Nothing, Just 0, Just 0] -- second message with break in between
5 L.++ (L.take 69 $ L.repeat Nothing)
6 [Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
7 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
8 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
9 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing

10 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
11 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
12 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
13 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
14 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
15 ,Just 869400926,Just 2891193117,Just 428080646,Just 1142714583 -- First hash appears
16 ,Nothing,Nothing,Nothing
17 ,Just 540878663,Just 3516292304,Just 2802766885,Just 4124385854 -- Second hash appears three cycles later
18 ,*** Exception: X: finite list

The message consisting of four words of zeroes is loaded in (128 bits, all zero), and 64 cycles later the
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Figure 8.2: md5 reuse as seen in the visualizer

hash appears. Two cycles after the first message, a different message (with just one bit set) is loaded in,
with a one cycle pause between the second and third word. This second message is sent to the second hasher
and both hashes are computed in parallel.

manycore
The manycore as described in the paper. The basic idea of the manycore is that it is a grid of “PRUs”:
Processing and Routing Units. These units contain a very simple processor and a router. Routers receive
packets from their core, and send them to the correct router based on a 4-bit x and y coordinate. When a
router receives a packet destined for that location, it sends it to its core.

The haskell block of this design is quite large. It contains data types both for the instructions for the
processor, and for instructions to the FIFO. Many type synonyms are defined here as well. Two functions,
decode and encode, convert 8-bit representations of instructions to and from the Instruction data type.
The Instruction data type is 10 bits, but we only need 8 to actually store all the information we need. A lot
of test inputs for several components is present in this haskell block too, and the program (default prog)
that is burned into the core (cores are not reprogrammable, the program memory is synthesized into the
design). Initial states for many states used in components are defined as well as functions with no arguments
and with names like empty *. To do easy conversion from locations on the grid (two 4-bit numbers in a tuple)
to 8-bit numbers (the type that goes over the bus between routers), the functions int2loc and loc2int are
used. Data types for states of components are defined here as well.

Components defining the processor are:
- datapath: Contains the ALU and logic for manipulating incoming data from the registers, and calculates

new values for registers. Also manages program counter updates (both the regular increments and jumps),
and sends commands to the FIFO managing outgoing packets of this core.

- registers: The register file of the core: four 8-bit registers are available. Register 0 is constant zero
when read from, and discards values when written to. Allows selection of two registers in one cycle.
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- prog mem: The program memory, simply always sends the value pointed to on its input to its output. As
its state is never modified, it can be synthesized as a combinational circuit. The size of this circuit depends
on the program burned in the core. The default program waits for inputs it receives (ReadFIFO is blocking),
and then adds it to a summing register. When it receives the value zero it sends the result of the sum to (4,
5), i.e. the output of the manycore.

Components for managing the outgoing packet queue and the incoming data queue between the router
and the processor are:

- in fifo: The FIFO for incoming data from the router. Code taken from an an example given by
Clash [9].

- queue controller: in fifo uses quite a different style of arguments from the rest of the system, so
this FIFO is controlled by this component. It translates FIFOCommands from the processor (to read data)
and the router (to push data) to correct signals for the in fifo.

- packet queue: Very similar FIFO to in fifo, just with some types changed (sadly means that some code
had to be copied, as Ex-PART does not allow for most of the pretty abstractions that Clash does).

- packet control: similar job to queue controller, just with the packet queue. A large difference is
that the packet queue is a queue of type Packet, which is built up by two writes from the processor: first
for the 8-bit coordinate (4 bits for x and 4 bits for y), then for the 8-bit value. This component saves the
location and waits until the processor has pushed the value, then it pushes the entire assembled packet to
the packet queue.

Routers send packets in two cycles: one for the address and one for the data. Every router starts with the
same state, and is thus synchronized. Therefore every router knows exactly what to expect on what cycle:
either two cycles of no data, or one cycle of location data and one cycle of value data. The router is built
from the following components: - pkt ser: “packet serializer”, serializes the 16-bit packet by splitting it up
into two packets of 8 bits. - pkt des: “packet deserializer”, combines incoming 8-bit data over two cycles
to one 16-bit packet. - direction decider: Given some incoming packet, determine to which direction it
should go. It uses a very simple decision procedure for this, defined in the if/else tree for pick packet. If
several packets arrive at once one of the packets is dropped.

Since every input and output port must be connected to something in Ex-PART, the cap component
exists. It takes some PRU’s output data and does nothing with it, and drives the input of that PRU with
Nothing.

The layout of the manycore is done by defining a pru hierarchy. This system is chained four times in
a vertical manner. Chain can only chain one input/output, so the remaining vertical connections in the
other directions are defined manually. The horizontal connections are defined by using multi-connections.
Constant drivers supply x and y coordinates to the routers, so they know where in the grid they are located.
These coordinates are 1-indexed.

All around the perimeter of the grid caps are inserted, except at the west input of the top left component,
and at the south output of the bottom right component. This input and output are connected to the I/O
pins of the FPGA and are used to supply outside data to the system and retrieve data from the system.

For test runs the test input mc input is provided, run it like this:

1 *Main> simulate @System manycore mc_input
2 [Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
3 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
4 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
5 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
6 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
7 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
8 ,Nothing,Nothing,Nothing,Nothing,Just 69,Just 10,Just 69,Just 26,

This input sends two numbers to two different cores, which send their result to address 69, which is (4, 5)
(shiftL 4 4 + 5 = 69), i.e. the bottom right, where the output is located, hence two packets have arrived
at the output, the sums of the inputs.
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Figure 8.3: The manycore as seen in the visualizer

8.3 Feature Testing Examples
To test Ex-PART’s features, examples where defined. This resulted in a nice library of examples, their
purposes and workings are explained in this chapter.

chain
Demonstrates chain with a combinational summing structure. the summer component takes two inputs: a
6-bit partial sum and a 2-bit number to add to partial sum. Chaining the output of one instance to the the
partial sum input of another creates a chain that sums all the inputs.

The summers need inputs, so the sum driver provides these. It simply cycles through all values of an
Unsigned 2 over four cycles.

To show multi-connections and component accessors, the first component of the chain is driven by a
constant value in line 20 of the .expi. A multi-connection connects the sum chain and the repetition of
drivers.

1 *Main> L.take 10 $ simulate @System system []
2 [0,0,6,12,18,0,6,12,18,0 -- continues for ever

constants
Demonstrates constant drivers. A counter that must be enabled and has a configurable interval is driven by
two constant values. The three most significant bits of the counter are sent to the output.

1 *Main> L.take 500 $ simulate @System system []
2 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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Figure 8.4: Chain as seen in the visualizer

3 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
5 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1
6 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
7 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
8 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
9 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

10 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
11 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
12 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
13 ,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 -- continues for ever

md5
Implementation of one MD5 hasher. This implementation was copied to build md5 reuse and md5 parallel.
See the chapter on md5 reuse for more information on the MD5 hasher.

1 *Main> simulate @System system $ [Just 0, Just 0, Just 0, Just 0] L.++ (L.take 69 $ L.repeat Nothing)
2 [Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
3 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
4 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
5 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
6 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
7 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
8 ,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing,Nothing
9 ,Nothing,Just 869400926,Just 2891193117,Just 428080646,Just 1142714583

10 ,*** Exception: X: finite list
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Figure 8.5: Constants as seen in the visualizer

Computing the hash of the 128 zeroes message on one hasher.

myhash
Demonstrates that systems can be used in chains and repeats. It implements a custom “hashing” algorithm:
it applies a computation that’s inspired by MD5, just simplified very much and with unproven effectiveness.
This was done because the MD5 system was quite unwieldy to work with, so using a smaller hashing algorithm
is nicer to demonstrate everything with.

The chain at line 23 chains the system calc sys defined in line 10-21.

1 *Main> simulate @System system [Just 5, Nothing]
2 [Nothing,Nothing,Nothing,Nothing,Nothing,Just 3090003402,*** Exception: X: finite list

pipe
A similar component as pipeline is used, but instead of it being chained it is instantiated three times and
connected manually. This is a simple example that was used in a presentation to demonstrate Ex-PART’s
main features.

1 *Main> simulate @System system [14,13,23,4]
2 [0,0,0,5,1,7,16,*** Exception: X: finite list

pipeline
Demonstrates a larger design than Collatz to examine how synthesis times are affected by Ex-PART’s
strategies.
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Figure 8.6: md5 as seen in the visualizer

Figure 8.7: myhash as seen in the visualizer
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Figure 8.8: pipe as seen in the visualizer

Consists of one component, compute, that sets its state to its input, and applies a hardware-unfriendly
computation to its state to compute its output:

1 out = (s * 13) `mod` 17 - 4

Multiplication and modulo are very simple expressions, but they generate a lot of hardware.
Eight of these compute components are chained to form a simple pipeline. The computation is obviously

not very relevant, this hardware design only intends to show how Ex-PART deals with a larger designs (this
design was first defined a little after Collatz was built, hence it was one of the largest at the time).

1 *Main> simulate @System system [14,13,23,4]
2 [65532,65532,65532,65532,65532,65532,65532,65532,10,9,6,3,*** Exception: X: finite list

repeat
Demonstrates both repeat and several features of multi-connections.

The design describes 4 rows: 2 rows of counters and 2 rows enablers, the enablers decide whether counters
continue, and the result of the first row of counters is used to enable the second row of counters. The second
row of counters is wider than the first. Viewing this in the visualizer makes things most clear (see below
example command)

The slightly irregular layout allows demonstrating both the :-multi-connections and ranges for multi-
connections.

1 *Main> mapM_ print $ simulate @System system []
2 (0,0,0,0,0)
3 (1,1,0,0,0)
4 (2,2,1,1,1)
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Figure 8.9: pipeline as seen in the visualizer

5 (3,3,1,1,1)
6 (4,4,2,2,2)
7 (5,5,2,2,2)
8 (6,6,3,3,3)
9 (7,7,3,3,3)

10 (8,8,4,4,4)
11 (9,9,4,4,4)
12 (10,10,5,5,5)
13 (11,11,5,5,5)
14 (12,12,6,6,6)
15 (13,13,6,6,6)
16 (14,14,7,7,7)
17 (15,15,7,7,7)
18 (0,0,8,8,8)
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Figure 8.10: repeat as seen in the visualizer
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Chapter 9

Maintenance

9.1 Introduction
This is the maintenance manual for Ex-PART. If you are planning on adding features or fixing bugs, you
should read the relevant portions of this manual first. Information in this manual can also be of service when
designing hardware and encountering unexpected or incorrect behavior (e.g. the error section).

9.2 Types
In parser/Types.hs types that are used in the entire project are defined. The idea behind most of them
and their uses are outlined here. See also issue #18.

LayoutExpr
Recursive data type for containing size and coordinate expressions as they are defined by the designer. This
data type is necessary as it is impossible to immediately evaluate expressions during parsing. With this data
type expressions can be stored until they actually can be evaluated, after elaboration. There is an instance
of the Pretty typeclass to pretty-print expressions to make them easier to debug.

ISOStat and IOStat
ISOStat is an Input, State, or Output statement. These contain the information defined in the statements
at the start of a component definition. IOStat is an Input or Output statement, so the statements at the
start of (sub-)system definitions. These types basically contain the same information, and perhaps merging
them may be better, as very often it is necessary to do ad-hoc conversions between them. See also issue
#21.

Component
Stores the information in a component definition: a list of ISOStats, the name of the component type, and
the where block. Currently there still is a list of constants arguments as well, but that is always an empty
list. See also issue #19.

Instance
In instance is a laid out version of either a component or a system with a location and size on the FPGA.
There are two data constructors for Instance: CmpInstance and SysInstance. The component instance
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constructor requires the actual Component object, such that that component does not have to be looked up
every time when processing the instance. The system instance constructor just takes the name of the system
it instantiates, and of course the rest of the parameters an instance needs.

ExpcDesign
The parse functions work towards parsing the .expc and .expi files to a Design, however as they need to
be parsed in two separate steps this intermediate data type exists. It contains only the information that is
present in an .expc file: a list of haskell blocks and a list of components.

Design
This data type contains the design as it is written down by the designer. It contains the same information
as the ExpcDesign, but also a SystemTree, which stores the design described in the .expi file.

SystemTree
Represents the .expi file. It is a tree because one of its fields is of type SystemTree, hence it is a recursive
datatype. This tree structure represents the hierarchy of systems that is defined in the .expi. SystemTree
contains a lot of fields as there are many constructs available in an .expi file that later need to be elaborated.

System
The elaborated version of the Design. Elaboration is indeed simply a function Design -> System. System
is also a recursive datatype, but its recursion is a bit more hidden. A System has:

- A name.
- A type, which is equal to the name, except for system instantiations and systems re-instantiated through

chains and repeats.
- “TopData”, which is only available in the top system, and contains the information from the .expc file.
- Size and coordinates.
- I/O statements.
- Connections.
- Constant drivers.
- Elements, separated in two lists, elems and allElems, where elems is exactly the elements that have

a location. The recursion occurs here, as an Element can be another System.

Element
An element is an abstraction over components and subsystems, and contains the information where those
types overlap, so an element has a name, type, size, coordinates, and I/O definitions. Furthermore, an
element has an implementation, which is either the system or the component. Using the implementation it
is still possible to differentiate between component and system wherever they need a different treatment.

Connection(') and CID
A CID is a combination of an element name and a port name. Two CIDs can form a Connection. A
connection is always ordered as Connection from to, so even if the arrow points to the other direction,
the parser constructs the Connection such that this holds. Connection' is a connection including the bit
width of the two ports that are connected. This is useful information to have during post-processing, and is
determined during elaboration.
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RawRepetition
A repetition as written down by the designer. This can be either a chain or a repeat. It has a name and
coordinates and a list of options, like the amount of repetitions and layout procedure. Since the parser does
not need to enforce whether all the options are present, some options may be missing in this list. That is
why during elaboration this RawRepetition is converted to a Repetition, and throws an error when options
are missing.

Repetition
An exact representation of a repetition like chain and repeat: in this type exactly every option is guaranteed
to be present. During the construction of a value for Repetition errors could be thrown if any its values
have not been specified by the designer.

MultiConnection and MCID
Similar to Connection and CID, but for multi-connections. An MCID also has an element name and port
name, but additionally has a range, which is either All or a range from some integer to some other integer.

A multi-connection is, just like Connection, two MCID ordered as the originating MCID first, and the
destination MCID second.

ConstantDriver
Similar to a Connection, but instead of an originating CID, the constant it drives is stored as a String.
This string can later be converted to a series of bits in Postprocessing.hs to set the constant value to the
correct ports.

9.3 Program Structure
This section walks through the directories of the source code in approximately the order that the program
operates. For each file a description of what kind of functions are located there and what everything is
supposed to do is present.

Compiler (compiler/)
Contains all the compilation flow definitions and a lot of helper functions to construct these flows.

Compiler.hs

Contains the actual compilation flows of type Flow that are described in setting up. If you want to add a
new flow, build a function of type Flow here. Its helper functions should be in Flows.hs and Steps.hs.

Flows.hs

Contains functions that are pretty much only a monadic concatenation of IO () actions. Organized as such,
the flows read very much like a script. Flows defined here any arguments, using those they concatenate steps
from Steps.hs.
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Steps.hs

Contains many IO () actions that can be concatenated in a flow in Flows.hs. Each of these steps is
accompanied by a neat putStrLn that prints what step is being taken. This way any flow prints the steps it
is currently taking, informing the user of what is happening. This is really nice to have as some steps can take
quite a long time, and it is nice to see that something is happening. Some steps (like compileToVerilog)
print intermediate messages as well.

Parser (parser/)
Just as the first step of any compiler, first the source files must be parsed. In the parser directory all the
Parsec functions necessary to parse both the component file and the instantiation file are located.

The type definitions used basically everywhere in the program are defined in a source file here as well.
This could be placed in a more logical position at some point (issue #18)

Parse shared.hs

Parser definitions shared between the .expi and .expc parser. The very hacky Haskell parsing mentioned
in issue #1 is located here, mostly in haskell type and haskell stat.

This also defines some standard often used parsers like whiteSpace and parens.

Parse expc.hs

expcdesign can parse one entire .expc file. As the order of statements mostly does not matter in Ex-PART,
the data structures just keep lists of types of statements. That’s why in expcdesign there is a sorter, which
groups statements according to types.

Furthermore, isoStatement parses input, state, and output statements. When no initial state is given,
quite an unclear error message pops up. Usually if a parse error occurs in this function, it’s because of a
missing initial state.

Parse expi.hs

system parses the .expi file. It uses a similar strategy as in Parse expc of parsing to a list of Statements,
and then sorting those such that it fits nicely in the SystemTree datatype.

The parsers here are pretty elaborate, this is because they must be able to parse all the features that are
later elaborated (like chains and repeats).

Parser.hs

Contains three parsers, that operate on file paths. These make it convenient to parse the two files.
parse both combines the two parsers to parse two files to one Design.

Types.hs

Types defined here are explained in the Types section.
Besides just important types used in the project, the function mapping Haskell types to bit widths is also

located here. Regarding this function, see issue #2.

Elaboration (elaboration/)
Parsing parses to a Design, while Ex-PART operates on a System. Elaboration makes the conversion. It
unrolls chains, repeats, and multi-connections, and elaborates system instantiations.
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To better understand how elaboration works, compare your .expi file with elaborated.expi in the
output directory. elaborated.expi is a pretty printed version of the System that your Design was elaborated
to. In this file the comments after a connection is the bit width of that connection.

Elaboration.hs

elaborate applies all the elaboration steps on a Design to obtain a System. This is more of a wrapper, as
the interesting recursive elaboration function is elaborateSystem. That function creates a System record
and fills in all the properties. As some of these properties contain more systems (some of which are again
copies of other subsystems), this function builds up the system recursively by going through the SystemTree.
The properties are obtained from the given SystemTree and Design on which it operates, and on the results
obtained by functions in the other files in this directory.

Repetition.hs

Supplies functions to unroll both kinds of repetition. It converts a RawReptition to a Repetition, which
fits the list of options that the user supplied to a record containing exactly the necessary information. Once
fitted, the Repetition is unrolled: for the elements, it generates $amount new elements (i.e. components or
systems) and appends those to the system. For the chain, connections are also generated and appended to
the connection list.

ElaborateConnection.hs

To make Yosys post-processing much easier, we already calculate the bit width of every port here. Connection
does not have bit width, Connection' does. elaborateConnection finds the bit width for every connection.
It’s good to do this this early in the process as well, since many common errors regarding connections are
caught by this step and that saves waiting on Clash and Yosys before discovering these.

Multiconnection.hs

In a similar fashion to repeats and chains, multi-connections need to be unrolled. A multi-connection
connecting n ports is simply converted to n connections connecting one port of the element with the correct
name.

JSON Builder (json-builder/)
After elaboration the system is ready to be built. The first step in the Ex-PART build process is to generate
a locations.json, which is later used to constrain LUTs to the correct area on the FPGA.

Locations.hs

Four important functions are defined here. allInstsWithCoords restructures the data to a new type that
the rest of the file can work with. This type is a three tuple, which does not help in clarity of the code. A
nicer type could be designed for this.

hasCycle checks whether there is a cyclic dependency in coordinate or size definitions. See also issue
#13.

reduceAll reduces expressions, i.e. given an expression with variables, and a mapping of variables to
values, it reduces that expression to (hopefully) a constant. It uses a recursive approach for this evaluation,
reducing any other expression it encounters.

relToAbs takes reduced expressions, which are still relative to their parent systems, and turns them into
absolute coordinates on the FPGA by adding the parent’s coordinates.
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JSONBuilder.hs

Converts the data in a System to something that Locations.hs can work with, then by combining the
functions in Locations.hs obtains a tree of absolute positions. This is exactly what nextpnr allows for
constraining, so that can be written to locations.json.

Clash Generator (clash-generator/)
To be able to synthesize the components, they are converted to Clash. In this directory there is also code
for creating simulation files: Clash files representing the entire design to verify functional correctness.

Generator.hs

Wrapping functions using the doPreliminaryProcessing function from Preliminary.hs and toClash from
ComponentConversion to generate Clash code for the components, and using The Flattener module to define
a default flatten function.

Preliminary.hs

Creates the builds/ directory in which all the components will have their own directory, in which it creates
directories for each component with the name of the component as the name of the directory. It also creates
Definitions.hs, this is the file containing all haskell blocks of the component file. To Definitions.hs
some preamble is added in the genDefs function. If you need any GHC extensions or imports enabled during
simulation, this is where you could add them.

ComponentConversion.hs

Converts components to Clash. For each component a function is generated, this function has the type
that Clash’s mealy function expects: s -> i -> (s, o). The toClash function combines every step. In
summary:

1. The type signature is generated from the information in the I/S/O statements.
2. The equation is generated: the function name, state argument, input argument, and the two-tuple that

a mealy machine emits in Clash is generated.
3. The where statement for this component is generated by simply copying the transition expressions,

and any other expressions the designer may have specified to the where clause.
4. A topEntity is defined, and decorated with synthesis annotations to ensure it synthesizes in a pre-

dictable way.

To gain more insight into what exactly this file generates, take a look at an output file looking like
builds/component/Synth component.hs in the output directory of your project. The Clash code produced
is usually quite readable.

Flattener.hs

Generates simulation files by ‘flattening’ the design: Starting at the top level system, it creates a Clash
function where the connections and instantiations are defined exactly as in the .expi. Then for any subsystem
it creates additional functions, recursively.

To use mealy machines defined in the .expc on the Signal level, it generates for every mealy machine
with name e.g. component a function componentM that operates on the Signal level.

Constant drivers are generated by creating an extra statement in the where clause like const 0 = pure
0, for a constant driver of 0.

A topEntity is also defined, so that the system can be converted to Verilog as one system, instead of just
the components. The monolithic and hierarchic flow use this topEntity.
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Yosys (yosys/)
Takes care of much of the Yosys-related stuff: running the tool and applying necessary pre- and post-
processing steps. The organization of this module is a little weird: some Clash related stuff, like compiling
generated Clash to Verilog also happens here (issue #22)

Preprocessing.hs

To make synthesis much faster, its better to concatenate all the loose Verilog files generated by Clash, and
synthesizing that. However, if the top module does not use some module, then Yosys will not synthesize that
(as an obvious optimization). To circumvent this a dummy top module is generated, that simply instantiates
every component once, and routes inputs and outputs directly to and from each instance from the arguments
of the top. This top module can later be deleted, and our own hierarchy of modules can be inserted. This
happens in Postprocessing.hs.

Here definitions for Clash processes are generated as well for each component. The function proc from
System.Process can simply be monadic mapped (mapM) over a list of these definitions to run all the processes.

Yosys.hs

Contains functions to compile the Clash file for all components to Verilog, and calls the pre- and post-
processing steps. Also contains synthesis functions for the hierarchic and monolithic functions, and of course
an IO () action to actually run Yosys to synthesize generated Verilog

Postprocessing.hs

Generates a JSON (interconnect.json) representing the connections and instantiations in the instantiation
file. Data structures representing Yosys’ JSON structure are defined first, and Aeson ToJSON instances are
defined for these. Then, given a System a list of Modules is produced. This process is very non-trivial and
very sensitive to bugs. The main problem is that Yosys defines their connections via unique integers inside
a module, and Ex-PART’s are defined through module and port names. Therefore a map from module and
port names to these integers must be created first, and then everything needs to be arranged exactly as
Yosys does in the JSON file.

This JSON goes (almost) directly to nextpnr to be placed and routed. Bugs in this part of the project,
like incorrectly connecting bits in a bus, cannot be simulated anymore and are very hard to find. Manual
verification of the process has occurred for the Collatz example, but not for any larger designs.

Other Files

This directory contains several .ys files, these are scripts for Yosys to run. grouped.ys is for the default
flow, monolithic.ys and hierarchic.ys should be self-explanatory.

merge json.py merges the Yosys JSON with just component modules and the JSON generated by
Postprocessing. This is done by a Python script instead of with Aeson because it was a little bit more
convenient at the time. . . It should of course just be done with Aeson, as that is much neater (issue #24).

Nextpnr (nextpnr/)
Runs nextpnr on the combined JSON files, synthesized.json.

Nextpnr.hs

Only contains one function, nextpnr, that runs nextpnr for the ECP5 with 85k LUTs. If any of the settings
for nextpnr turn out to not fit your use-case, modify them here. Note that functions calling nextpnr (e.g. in
Steps.hs or Flows.hs) may provide extra options for the process.

Just as every other tool, nextpnrs output and error streams are logged to a file.
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constrainer.py

Nextpnr allows scripts to be run just before certain steps in placement and routing. In Nextpnr.hs this
python script is set to be run just before placement. Any Python script nextpnr runs has access to the ctx
object that contains all the cells to be placed, and nets to be routed. This script goes through all the cells,
and based on the name of the cell, looks up where in the JSON the rectangle constraining the cell should be,
finds that rectangle, and constrains the cell to that rectangle. Not every cell will have a standard name, as
for example I/O cells are not part of the Ex-PART specification. These cells are therefore not constrained.

Visualizer (visualizer/)
While technically not part of the program Ex-PART, the visualizer is quite an important part of the workflow.
It is implemented in Python, using Pygame as a graphics library.

color.py

A small library implementing some commonly used color features. As slices and much other stuff is colored
based on its name, and colors are randomizable, this is all handled centrally here.

init.py

Contains everything that many modules might need. Some global zooming and viewing variables, argument
parsing, Pygame initialization, and a function handling (keyboard, mouse) events.

files.py

Function for monitoring and reloading bitstream.json and locations.json, the two files that the visualizer
can show. There is also the drawing function for drawing indicators in the bottom right of the screen showing
which file is loaded.

iodb.json, blinky.lpf and parse iodb.py

To render the IO on the sides of the FPGA, Trellis’ IO database (iodb.json) had to be parsed and linked
to names for the I/O pins. This blinky.lpf contains the default names of many sites of the I/O pins, and
parse iodb.py is a script that can parse the I/O DB, link it to names in the lpf, and generate an easy to
visualize CSV. as long as iodata.csv is available and valid you probably don’t need to touch these.

iodata.csv and tiledata.csv

Some features of the ECP5 are described in these CSVs. iodata.csv links locations to pin names, so its
easy to know exactly where a pin is on the FPGA. This helps in placing the design as it enables the designer
to place the I/O of the design near the actual I/O pins.

tiledata.csv contains the tiles that are not LUT tiles. These tiles are also visualized in the tile grid as
differently colored squares. The data for this file comes from here.

grid.py

Functions for drawing the grid, special tiles, and I/O pins.

slice.py

Functions for drawing slices. Slices are drawn with a random color if their name abides the Ex-PART naming
conventions, otherwise they are drawn in a random shade of gray.
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routing.py

Functions for showing usage of routing resources, by drawing darker shades of gray on tiles if more resources
are used. It draws this based on a “routemap” which is regenerated if the bitstream has been updated.

legend.py

Functions for drawing a legend which shows which color is used for which module.

connections.py

Off by default, as computing this costs a long time for even slightly larger designs. Can be enabled with
-c. Functions for drawing outgoing connections of a component. This is a neat way to visualize where the
outputs of a component are located, and where the data comes in. Certainly for large components this can
give insights into why placement and routing may be difficult.

systems.py

Functions for drawing boxes as defined in the locations.json. Goes through the JSON file recursively and
draws boxes for every bottom level component it finds at the specified location.

main.py

Contains the main loop which calls all the functions defined in the other files for drawing, event handling,
file loading, and view updating.

9.4 Feature Implementations
Below the same feature list as in the programming manual is shown. Here a brief explanation of the
implementation of the feature is provided, including where to find the code.

Comments
Technically partially implemented in GHC, as comments near transition expressions are simply copied to
Haskell. For .expi files, Parsec does the heavy lifting. By defining a lexer in Parse shared.hs with
haskellDef as language definition, haskell style comments are automatically supported as white space.
After parsing the comments have been ignored, as is the intention.

haskell block
haskell blocks are stored in the Design as a list of HaskellDefs. This list extracted by genDefs in
Preliminary.hs to generate Definitions.hs. This file is then imported by every other Clash file generated
by Ex-PART such that the definitions can be used.

Component definition
In ComponentConversion.hs most of the processing on components happens. Here they are all converted
to Clash files as described ComponentConversion.hs.

Coordinates and Sizes
All coordinates and sizes are stored as LayoutExprs. In Location.hs the coordinates and sizes are processed
into the locations.json file.
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System Definitions
System definitions are parsed in Parse expi.hs and are then elaborated in Elaboration.hs. The size and
position of a system are enforced in Nextpnr.hs and constrainer.py. Connections and instances are made
in Postprocessing.hs for the ECP5, and in Flattener.hs for simulation.

Component Instantiation
Instantiations before placement are done by instantiating cells of the component name in the Yosys JSON in
Postprocessing.hs. The instantiation location and size are enforced in Nextpnr.hs and constrainer.py.

Port connection
Port connections are made in Postprocessing.hs by generating a NetMap = Map CID Net, where a Net
is simply an integer: specifically, the unique integers Yosys uses to denote which ports are connected. For
more information on Yosys’ connection system, view the Yosys manual (PDF), in appendix C.218. The
NetMap thus assigns an integer to ports, the same integer is assigned to two ports if they are connected via
a Connection.

Constant Drivers
Constant drivers are implemented in Postprocessing.hs, there a Yosys JSON module is generated for a
constant driver, which is instantiated in the correct place to implement the design. For simulation lines like
const 0 = pure 0 are added to where statements of systems containing constant drivers in Clash.hs.

Repeat and Chain statement
Repeat and chain statements are fully implemented during elaboration as they are simply unrolled to simpler
elements.

Multiconnections
Multi-connections are unrolled to simple single connections during elaboration. From then on the generated
connections are indistinguishable from regular connections.

Unplaced Systems
A System has two fields for elements, one which contains all elements, including the unplaced ones, and one
which contains just the elements which need to be put somewhere. When instantiating a system the field
with all elements is filtered on the name of the system that need to be placed, and when Postprocessing.hs
actually instantiates all the systems only the field with the placed elements are instantiated.

System Instantiation
During elaboration, if a system instantiation is encountered, the system is simply copied, but with a different
name.

9.5 Error List
This lists errors that may be thrown that are not listed in the programming manual. If you see any of these
errors, there is most likely a bug in Ex-PART, and not in your code. The information here may point you
to where to search for a solution.
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Errors
• clash-generator/ComponentConversion.hs:82: A state is not a port.

– During component conversion, an ISOStatement constructed as an SState was given to the
function toPortName. This function is a local function, and is called only on filtered lists of
ISOStatements such that either only inputs or only outputs are passed, hence this error should
never appear.

• clash-generator/Preliminary.hs:38: Something went wrong during elaboration, the top system
does not have top-data.

– Elaboration generates a System, which has a property topdata. The idea is that the root node
of the System hierarchy has the topdata set to the information in the expc file. If this hasn’t
happened, something is broken in Elaboration.hs.

• compiler/Compiler.hs:100: How can there be several components with the same name?

– This code is part of the auto flow, which is a little bit broken. No research has been done where
exactly it breaks as it is quite time-consuming and hard to reproduce (issue #7).

• json-builder/Locations.hs:101: Coordinate reduction found non-constant value ($expr)

– The reduction should only be run on constant coordinate expressions, so any width/height/x/y
variable must have been substituted by a constant value. Probably the error “Could not find
ID in provided list” will be thrown earlier than this one, as that appears in a function that
turns expressions into expressions without variables, and that function is always called before the
function this error appears in.

• nextpnr/Nextpnr.hs:28: nextpnr terminated with code $code

– This error may occur when assertions in nextpnr are tripped, and these can be tripped by incor-
rectly constraining LUTs, e.g. to a “negative” area rectangle (by setting reversing the top left and
bottom right). It may also be the case that something weird was defined in the JSON generated
by Postprocessing.hs.

• parser/Types.hs:102: Invalid ISOStatement for bitwidth (state not implemented)

– In the current implementation of Ex-PART, the bit width of states is irrelevant. Therefore no
conversion to bit width from states is implemented. This function probably is never called with a
state, but the types cannot guarantee this right now.

• yosys/Preprocessing.hs:57: No state should have been seen here.

– Again the issue with ISOStatements appearing where only I/O is relevant. . . (issue #21) This
function is again only called with filtered statement lists, so this error should never trip. These
next two errors are to catch the same problem, just more specifically for either only inputs or only
outputs.

– yosys/Preprocessing.hs:68: Not an input: $x
– yosys/Preprocessing.hs:74: Not an output: $x
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Appendix A

Case Studies Code

A.1 Collatz Conjecture Calculator
collatz.expc

1 haskell {
2 (>>>) :: Bits a => a -> Int -> a
3 (>>>) = shiftR
4

5 (<<<) :: Bits a => a -> Int -> a
6 (<<<) = shiftL
7

8 type Value = Unsigned 16
9

10 }
11

12 component router() {
13 input val : Value
14 output odd : Maybe Value
15 output even : Maybe Value
16

17 even = if testBit val 0 then Nothing else Just val
18 odd = if testBit val 0 then Just val else Nothing
19 }
20

21 component onEven() {
22 input val : Maybe Value
23 output res : Maybe Value
24

25 res = case val of
26 Just v -> Just $ v >>> 1
27 Nothing -> Nothing
28 }
29

30 component onOdd() {
31 input val : Maybe Value
32 output res : Maybe Value
33
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34 res = case val of
35 Just v -> Just $ (v <<< 1 + v) + 1
36 Nothing -> Nothing
37 }
38

39 component merger() {
40 input vo : Maybe Value
41 input ve : Maybe Value
42 output res : Value
43

44 res = case vo of
45 Just v -> v
46 Nothing -> case ve of
47 Just v -> v
48 Nothing -> 0
49 }
50

51 component control() {
52 input next_val : Value
53 input set_val : Maybe Value
54 state last_val = 0 : Value
55 output result_value : Value
56

57 last_val' = case set_val of
58 Just new_value -> new_value
59 Nothing -> next_val
60

61 result_value = last_val
62 }

collatz.expi
1 system in (6, 6) at (2, 2) {
2 input setting : Maybe Value
3 output result : Value
4

5 controller is control in (6, 1) at (0, 0)
6

7 collatzer.val_in<-controller.result_value
8 collatzer.val_out->controller.next_val
9

10 controller.set_val<-setting
11 controller.result_value->result
12

13 collatzer in (controller.w, 4) at (0, controller.h) {
14 input val_in : Value
15 output val_out : Value
16

17 router is router in (1, onOdd.h + onEven.h) at (0, 0)
18 onOdd is onOdd in (collatzer.w - 2, 2) at (collatzer.x + 1, 0)
19 onEven is onEven in (onOdd.w, onOdd.h) at (onOdd.x, onOdd.h)
20 merger is merger in (1, onOdd.h + onEven.h) at (onOdd.x + onOdd.w, 0)
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21

22 router.val<-val_in
23 router.odd->onOdd.val
24 router.even->onEven.val
25 onOdd.res->merger.vo
26 onEven.res->merger.ve
27 merger.res->val_out
28 }
29 }

A.2 Parallel MD5 Hasher
md5 reuse.expc

1 haskell {
2

3 import Data.List as L
4

5 start :: Hash
6 start = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)
7

8 zero_hash :: Hash
9 zero_hash = (0, 0, 0, 0)

10

11 start_hash :: Hash
12 start_hash = (1732584193,4023233417,2562383102,271733878)
13

14 -- a message of four zeroes
15 zero_msg :: Vec 16 UInt
16 zero_msg = (0:>0:>0:>0:>128:>0:>0:>0:>0:>0:>0:>0:>0:>0:>0:>4:>Nil)
17

18 hash_a (a,_,_,_) = a
19 hash_b (_,b,_,_) = b
20 hash_c (_,_,c,_) = c
21 hash_d (_,_,_,d) = d
22

23 data MD5State = Loading (Unsigned 2) | Hashing (Unsigned 6) deriving (Show, Generic, NFDataX)
24

25 start_state = Loading 0
26

27 add_hash :: Hash -> Hash -> Hash
28 add_hash (a,b,c,d) (a',b',c',d') = (a+a', b+b', c+c', d+d')
29

30 data_ctr_state = LoadingData 0
31

32 data DataCtrState = Ready | LoadingData (Unsigned 2) deriving (Show, Generic, NFDataX)
33

34 type UInt = Unsigned 32
35 type Hash = (UInt, UInt, UInt, UInt)
36

37 }
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38

39

40 component const_store() {
41 input stall : Bool
42 state i = start_state : MD5State
43 output k : UInt
44 output s : Unsigned 5
45 output out_i : Unsigned 6
46 output is_hashing : Bool
47 output ready : Bool
48

49 ready = case i of
50 (Loading _) -> False
51 (Hashing n) -> n == 63
52

53 k = k_store !! index
54 s = s_store !! index
55

56 -- We assume that loading will actually happen in those four cycles, and will happily start
57 -- hashing even if that didn't happen.
58 i' = if stall then i else case i of
59 Loading 3 -> Hashing 0
60 Loading n -> Loading (n + 1)
61 Hashing 63 -> Loading 0
62 Hashing n -> Hashing (n + 1)
63

64 out_i = index
65 load_i = case i of
66 Loading step -> step
67 Hashing _ -> 0
68

69 is_hashing = case i of
70 Loading _ -> False
71 Hashing _ -> True && (not stall) -- Ja dit kan korter
72

73 index = case i of
74 Loading _ -> 0
75 Hashing step -> step
76

77 k_store =
78 3614090360:>3905402710:>606105819:>3250441966:>4118548399:>1200080426:>2821735955:>
79 4249261313:>1770035416:>2336552879:>4294925233:>2304563134:>1804603682:>4254626195:>
80 2792965006:>1236535329:>4129170786:>3225465664:>643717713:>3921069994:>3593408605:>
81 38016083:>3634488961:>3889429448:>568446438:>3275163606:>4107603335:>1163531501:>
82 2850285829:>4243563512:>1735328473:>2368359562:>4294588738:>2272392833:>1839030562:>
83 4259657740:>2763975236:>1272893353:>4139469664:>3200236656:>681279174:>3936430074:>
84 3572445317:>76029189:>3654602809:>3873151461:>530742520:>3299628645:>4096336452:>
85 1126891415:>2878612391:>4237533241:>1700485571:>2399980690:>4293915773:>2240044497:>
86 1873313359:>4264355552:>2734768916:>1309151649:>4149444226:>3174756917:>718787259:>
87 3951481745:>Nil
88 s_store =
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89 7:>12:>17:>22:>7:>12:>17:>22:>7:>12:>17:>22:>7:>12:>17:>22:>5:>9:>14:>20:>
90 5:>9:>14:>20:>5:>9:>14:>20:>5:>9:>14:>20:>4:>11:>16:>23:>4:>11:>16:>23:>
91 4:>11:>16:>23:>4:>11:>16:>23:>6:>10:>15:>21:>6:>10:>15:>21:>6:>10:>15:>21:>
92 6:>10:>15:>21:>Nil
93 }
94

95 component message_store() {
96 input g : Unsigned 4
97 input data_in : Maybe UInt
98 state data_ctr = data_ctr_state : DataCtrState
99 state message = zero_msg : Vec 16 UInt

100 output m : UInt
101 output stall : Bool
102

103 (message') = case data_in of
104 (Just d) -> case data_ctr of
105 (LoadingData ctr_index) -> (replace ctr_index d message)
106 _ -> message
107 Nothing -> (message)
108

109 data_ctr' = case data_in of
110 (Just d) -> case data_ctr of
111 LoadingData 3 -> Ready
112 LoadingData n -> LoadingData (n + 1)
113 Nothing -> data_ctr
114

115 stall = case data_ctr of
116 Ready -> False
117 _ -> True
118

119 m = message !! g
120 }
121

122 component fabcd_update() {
123 input f : UInt
124 input mg : UInt
125 input s : Unsigned 5
126 input k : UInt
127

128 input in_A : UInt
129 input in_B : UInt
130 input in_C : UInt
131 input in_D : UInt
132

133 output out_A : UInt
134 output out_B : UInt
135 output out_C : UInt
136 output out_D : UInt
137

138 f' = f + in_A + k + mg
139 out_A = in_D
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140 out_D = in_C
141 out_C = in_B
142 out_B = in_B + rotateL f' (fromIntegral s) -- Kan dit wel, variabele rotate?
143 }
144

145 component calculator() {
146 input a : UInt
147 input b : UInt
148 input c : UInt
149 input d : UInt
150 input i : Unsigned 6
151

152 output out_F : UInt
153 output out_g : Unsigned 4
154

155 stage = i `shiftR` 4
156

157 out_F = case stage of
158 0 -> (b .&. c) .|. ((complement b) .&. d)
159 1 -> (d .&. b) .|. ((complement d) .&. c)
160 2 -> b `xor` c `xor` d
161 3 -> c `xor` (b .|. (complement d))
162

163 out_g = case stage of
164 0 -> resize i
165 1 -> resize (5 * i + 1)
166 2 -> resize (3 * i + 5)
167 3 -> resize (7 * i)
168 }
169

170 component abcd_store() {
171 input enable : Bool
172 input in_A : UInt
173 input in_B : UInt
174 input in_C : UInt
175 input in_D : UInt
176

177 state s_A = 1732584193 : UInt
178 state s_B = 4023233417 : UInt
179 state s_C = 2562383102 : UInt
180 state s_D = 271733878 : UInt
181

182 output out_A : UInt
183 output out_B : UInt
184 output out_C : UInt
185 output out_D : UInt
186

187 (s_A', s_B', s_C', s_D') = if enable
188 then (in_A, in_B, in_C, in_D)
189 else (s_A, s_B, s_C, s_D)
190
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191 out_A = s_A
192 out_B = s_B
193 out_C = s_C
194 out_D = s_D
195 }
196

197 component hash_output() {
198 input ready : Bool
199 input a : UInt
200 input b : UInt
201 input c : UInt
202 input d : UInt
203 state saved_hash = start_hash : Hash
204 state output_ctr = 0 : Unsigned 2
205 output hash_word : Maybe UInt
206

207 saved_hash' = if ready
208 then ((a,b,c,d)) `add_hash` saved_hash
209 else saved_hash
210

211 should_emit = ready || output_ctr /= 0
212

213 output_ctr' = if should_emit
214 then output_ctr + 1
215 else output_ctr
216

217 hash_word = if should_emit
218 then case output_ctr of
219 0 -> Just (hash_a saved_hash')
220 1 -> Just (hash_b saved_hash')
221 2 -> Just (hash_c saved_hash')
222 3 -> Just (hash_d saved_hash')
223 else Nothing
224

225 }
226

227

228 component load_balance_4() {
229 input msg_words : Maybe UInt
230 state word_ctr = 0 : Unsigned 4
231 output word_out_1 : Maybe UInt
232 output word_out_2 : Maybe UInt
233 output word_out_3 : Maybe UInt
234 output word_out_4 : Maybe UInt
235

236 word_out_1 = if turn == 0 then msg_words else Nothing
237 word_out_2 = if turn == 1 then msg_words else Nothing
238 word_out_3 = if turn == 2 then msg_words else Nothing
239 word_out_4 = if turn == 3 then msg_words else Nothing
240

241 word_ctr' = case msg_words of
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242 (Just _) -> word_ctr + 1
243 Nothing -> word_ctr
244

245 turn = word_ctr `shiftR` 2
246 }
247

248 component cat_4_maybes() {
249 input hash_1 : Maybe UInt
250 input hash_2 : Maybe UInt
251 input hash_3 : Maybe UInt
252 input hash_4 : Maybe UInt
253 output hash : Maybe UInt
254

255 hash = case hash_1 of
256 (Just hash) -> Just hash
257 Nothing -> case hash_2 of
258 (Just hash) -> Just hash
259 Nothing -> case hash_3 of
260 (Just hash) -> Just hash
261 Nothing -> case hash_4 of
262 (Just hash) -> Just hash
263 Nothing -> Nothing
264 }

md5 reuse.expi
1 system in (100, 80) at (2, 2) {
2 input msg_words : Maybe UInt
3 output hashes : Maybe UInt
4

5 -- Compile this design with "--lpf-allow-unconstrained" in Nextpnr.hs
6 -- There aren't really 33 pins for input and output available on the ECP5,
7 -- So there should be some serdes components included as well, but that was
8 -- not important for the research.
9

10 msg_words->hash1.data
11 hash1.hash->hashes
12

13 balance is load_balance_4 in (100, 80) at (0, 0)
14 -- in (3, hash1.h + hash2.h + hash3.h + hash4.h) at (hash1.x - 3, 0)
15

16 msg_words->balance.msg_words
17 balance.word_out_1->hash1.data
18 balance.word_out_2->hash2.data
19 balance.word_out_3->hash3.data
20 balance.word_out_4->hash4.data
21

22 cat is cat_4_maybes in (100, 80) at (0, 0)
23 -- in (3, balance.h) at (hash1.x + hash1.w, 0)
24

25 cat.hash->hashes
26 hash1.hash->cat.hash_1
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27 hash2.hash->cat.hash_2
28 hash3.hash->cat.hash_3
29 hash4.hash->cat.hash_4
30

31 hash1 in (21, 16) at (0, 0) {
32 input data : Maybe UInt
33 output hash : Maybe UInt
34

35 calculator is calculator in (hash1.w, hash1.h) at (0, 0)
36 const_store is const_store in (msg.w + 4, 10) at (8, 0)
37

38 abcd is abcd_store in (hash1.w, hash1.h) at (0, 0)
39 fabcd is fabcd_update in (14, hash1.h) at (outputter.w, 0)
40

41 msg is message_store in (hash1.w - 12, hash1.h) at (12, 0)
42

43 data->msg.data_in
44

45 abcd.enable<-const_store.is_hashing
46 abcd.out_A->fabcd.in_A
47 abcd.out_B->fabcd.in_B
48 abcd.out_C->fabcd.in_C
49 abcd.out_D->fabcd.in_D
50 const_store.s->fabcd.s
51 const_store.k->fabcd.k
52 const_store.stall<-msg.stall
53 msg.m->fabcd.mg
54 calculator.out_F->fabcd.f
55

56 calculator.out_g->msg.g
57 const_store.out_i->calculator.i
58

59 abcd.out_A->calculator.a
60 abcd.out_B->calculator.b
61 abcd.out_C->calculator.c
62 abcd.out_D->calculator.d
63

64 abcd.in_A<-fabcd.out_A
65 abcd.in_B<-fabcd.out_B
66 abcd.in_C<-fabcd.out_C
67 abcd.in_D<-fabcd.out_D
68

69 outputter is hash_output in (5, hash1.h) at (0, 0)
70 outputter.a<-fabcd.out_A
71 outputter.b<-fabcd.out_B
72 outputter.c<-fabcd.out_C
73 outputter.d<-fabcd.out_D
74 outputter.ready<-const_store.ready
75

76 hash<-outputter.hash_word
77 }
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78

79 -- square config
80 -- hash2 is hash1 in (hash1.w, hash1.h) at (hash1.x, hash1.y + hash1.h)
81 -- hash3 is hash1 in (hash1.w, hash1.h) at (hash1.x + hash1.w, hash1.y)
82 -- hash4 is hash1 in (hash1.w, hash1.h) at (hash3.x, hash3.y + hash3.h)
83

84 -- line config
85 hash2 is hash1 in (hash1.w, hash1.h) at (hash1.x, hash1.y + hash1.h)
86 hash3 is hash1 in (hash1.w, hash1.h) at (hash1.x, hash2.y + hash2.h)
87 hash4 is hash1 in (hash1.w, hash1.h) at (hash1.x, hash3.y + hash3.h)
88 }

A.3 4×4 Manycore
manycore.expc

1 haskell {
2

3 (>>>) :: Bits a => a -> Int -> a
4 (>>>) = shiftR
5

6 (<<<) :: Bits a => a -> Int -> a
7 (<<<) = shiftL
8

9 type Int8 = Unsigned 8
10 type PC = Unsigned 5
11

12 type InstructionWord = Unsigned 8
13

14 type RegID = Unsigned 2
15 type Immediate = Unsigned 5
16

17 data Instruction
18 = ReadFIFO RegID
19 | WriteFIFO RegID
20 | Add RegID RegID RegID
21 | Move RegID RegID
22 | Branch RegID RegID
23 | LoadImm RegID Immediate
24 deriving (Show, Generic, NFDataX, BitPack)
25

26 nop = Move 0 0
27

28 data FIFOCommand
29 = FIFO_Write Int8
30 | FIFO_Read
31 | FIFO_Nothing
32 deriving (Show, Generic, NFDataX, BitPack)
33

34 type ReadRegs = (RegID, RegID)
35 type WriteReg = Maybe (Int8, RegID)
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36 type RegisterFile = Vec 3 Int8
37

38 decode :: InstructionWord -> Instruction
39 decode word = if (bit 7)
40 then LoadImm immreg imm
41 else if not (bit 6)
42 then Add reg45 reg23 reg01
43 else if (bit 5)
44 then if bit 4
45 then WriteFIFO reg23
46 else ReadFIFO reg23
47 else if bit 4
48 then Branch reg23 reg01
49 else Move reg23 reg01
50 where
51 bit = testBit word
52 -- the .&. is probably unnecessary due to the resize
53 imm = resize $ word .&. 0b11111
54 immreg = resize $ (word >>> 5) .&. 0b11
55 reg01 = resize $ word .&. 0b11
56 reg23 = resize $ (word >>> 2) .&. 0b11
57 reg45 = resize $ (word >>> 4) .&. 0b11
58

59 encode :: Instruction -> InstructionWord
60 encode instr = case instr of
61 ReadFIFO id ->
62 0b0110_0000 .|. (resize id <<< 2)
63 WriteFIFO id ->
64 0b0111_0000 .|. (resize id <<< 2)
65 Add left right dest ->
66 0b0000_0000 .|. (resize left <<< 4) .|. (resize right <<< 2) .|. (resize dest)
67 Move from to ->
68 0b0100_0000 .|. (resize from <<< 2) .|. (resize to)
69 Branch cond addr ->
70 0b0101_0000 .|. (resize cond <<< 2) .|. (resize addr)
71 LoadImm reg imm ->
72 0b1000_0000 .|. (resize reg <<< 5) .|. (resize imm)
73

74 empty_regs :: RegisterFile
75 empty_regs = 0:>0:>0:>Nil
76

77 type Program = Vec 32 InstructionWord
78

79 default_prog :: Program
80 default_prog = map encode $ program ++ repeat (nop)
81 where
82 program =
83 (LoadImm 1 1):> -- 0 Load non-zero value in reg1 to avoid jumping
84 (LoadImm 3 7):> -- 1 Set jump addr to write sequence
85 (ReadFIFO 1):> -- 2 read from fifo
86 (Branch 1 3):> -- 3 if we receive zero, jump to write sequence

78



87 (Add 1 2 2):> -- 4 otherwise, add input to sum reg
88 (LoadImm 3 1):> -- 5 Set jump addr to start of program
89 (Branch 0 3):> -- 6 Always jump to address 1, i.e. read again
90

91 (LoadImm 3 31):> -- 7 Set destination to (4, 5)
92 (LoadImm 1 31):> -- 8 We need this convoluted way, since (4, 5) is 69
93 (Add 1 3 3):> -- 9 as an encoded value, which does not fit in 5 bits imm_values...
94 (LoadImm 1 7):> -- 10 31 + 31 + 7 = 69, probably better to use the 5th loadimm bit for
95 (Add 1 3 3):> -- 11 load upper vs load lower, but meh
96 (WriteFIFO 3):> -- 12 write destination
97 (WriteFIFO 2):> -- 13 write sum value
98 (LoadImm 3 15):> -- 14 set jump addr to end program
99 (Branch 0 3):> -- 15 End program, infinite loop

100 Nil
101

102

103 writes :: FIFOCommand -> Maybe Int8
104 writes (FIFO_Write a) = Just a
105 writes _ = Nothing
106

107 type DataQueue = Vec 8 Int8
108 type DataPtr = Unsigned 3
109

110 empty_queue :: DataQueue
111 empty_queue = 1:>2:>3:>4:>5:>6:>7:>8:>Nil
112

113 type PacketQueue = Vec 4 Packet
114 data Packet = Packet Location Int8
115 deriving (Show, Generic, NFDataX, BitPack)
116 type Location = (Unsigned 4, Unsigned 4)
117

118 empty_packet_queue :: PacketQueue
119 empty_packet_queue = zr:>zr:>zr:>zr:>Nil
120 where
121 zr = Packet (0, 0) 0
122

123 empty_packet :: Packet
124 empty_packet = Packet (0, 0) 0
125

126 empty_loc :: Location
127 empty_loc = (0, 0)
128

129 nothing = Nothing
130

131 data PacketControlState = Idle | GotLoc Location | Ready Location Int8
132 deriving (Show, Generic, NFDataX, BitPack)
133

134 int2loc :: Int8 -> Location
135 int2loc v = (resize $ v >>> 4, resize v)
136

137 loc2int :: Location -> Int8
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138 loc2int (x, y) = resize x <<< 4 .|. resize y
139

140 data SerializerState = SerIdle | SerSendLoc Packet | SerSendVal Packet
141 deriving (Show, Generic, NFDataX, BitPack)
142

143 data Direction = North | East | South | West | Core
144 deriving (Show, Generic, NFDataX, BitPack, Eq)
145

146 -- A test case for the full manycore.
147 mc_input :: [Maybe Int8]
148 mc_input = [
149 Just 17, Just 5,
150 Nothing, Nothing,
151 Just 18, Just 13,
152 Nothing, Nothing,
153 Nothing, Nothing,
154 Nothing, Nothing,
155 Just 17, Just 5,
156 Just 18, Just 13,
157 Nothing, Nothing,
158 Just 17, Just 0,
159 Just 18, Just 0
160 ] L.++ (L.take 1000 $ L.repeat Nothing)
161

162 }
163

164 component datapath() {
165 input instr_word : InstructionWord
166 input reg_a : Int8
167 input reg_b : Int8
168 input fifo_val : Maybe Int8
169

170 state delay = 0 : InstructionWord
171 state pc = 0 : PC
172

173 output read_ids : ReadRegs
174 output update_regs : WriteReg
175

176 output fifo_cmd : FIFOCommand
177 output pc_out : PC
178 -- 5x4
179

180 instruction = decode instr_word
181 delay' = instr_word
182

183 read_ids = case instruction of
184 (ReadFIFO _) -> (0, 0)
185 (WriteFIFO reg) -> (0, reg)
186 (Add left right _) -> (left, right)
187 (Move from _) -> (from, 0)
188 (Branch cond addr) -> (cond, addr)
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189 (LoadImm _ _) -> (0, 0)
190

191 delayed_instr = decode delay
192

193 update_regs = case instruction of
194 (ReadFIFO dest) -> case fifo_val of
195 Just v -> Just (v, dest)
196 Nothing -> Nothing
197 (WriteFIFO _) -> Nothing
198 (Add _ _ dest) -> Just (reg_a + reg_b, dest)
199 (Move _ to) -> Just (reg_a, to)
200 (Branch _ _) -> Nothing
201 (LoadImm reg imm) -> Just (resize imm, reg)
202

203 update_pc = case instruction of
204 (Branch _ _) -> if reg_a == 0
205 then Just $ resize reg_b
206 else Nothing
207 (ReadFIFO _) -> case fifo_val of
208 Nothing -> Just pc
209

210

211 fifo_cmd = case instruction of
212 (ReadFIFO _) -> FIFO_Read
213 (WriteFIFO _) -> FIFO_Write reg_b
214 _ -> FIFO_Nothing
215

216

217 pc' = case instruction of
218 (Branch _ _) -> if reg_a == 0
219 then resize reg_b
220 else pc + 1
221 (ReadFIFO _) -> case fifo_val of
222 Nothing -> pc -- block on no value
223 _ -> pc + 1
224 _ -> pc + 1
225

226 pc_out = pc
227

228 }
229

230 component registers() {
231 input read_ids : ReadRegs
232 input write : WriteReg
233

234 state regs = empty_regs : RegisterFile
235

236 output reg_a : Int8
237 output reg_b : Int8
238

239 -- 4x4
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240

241 regs' =
242 case write of
243 Just (value, regid) -> if regid == 0
244 then regs
245 else replace (regid - 1) value regs
246 Nothing -> regs
247

248 (reg_a_id, reg_b_id) = read_ids
249

250 reg_a = if reg_a_id == 0
251 then 0
252 else regs !! (reg_a_id - 1)
253 reg_b = if reg_b_id == 0
254 then 0
255 else regs !! (reg_b_id - 1)
256 }
257

258 component prog_mem() {
259 input pc : PC
260 state program = default_prog : Program
261 output instr : InstructionWord
262 -- voor default prog, moeilijk weinig: like 3x3, maar wsch in general een stuk meer nodig
263

264 instr = program !! pc
265 program' = program
266 }
267

268 component queue_controller() {
269 input proc_cmd : FIFOCommand
270 input route_cmd : FIFOCommand
271 input router_read : Bool
272

273 input outgoing_empty : Bool
274 input outgoing_value : Packet
275 output outgoing_read : Bool
276 output read_packet : Maybe Packet
277

278 input incoming_value : Int8
279 input incoming_empty : Bool
280 output incoming_read : Bool
281 output incoming_write : Bool
282 output incoming_datain : Int8
283 output read_value : Maybe Int8
284

285 -- 11 LUTs, ze lagen wat verspreid, niet veel iig.
286

287 incoming_read = case proc_cmd of
288 FIFO_Read -> True && (not incoming_empty)
289 _ -> False
290
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291 incoming_write = case route_cmd of
292 FIFO_Write _ -> True
293 _ -> False
294

295 incoming_datain = case route_cmd of
296 FIFO_Write v -> v
297 _ -> 0
298

299 outgoing_read = router_read && (not outgoing_empty)
300

301 read_value = if incoming_read
302 then Just incoming_value
303 else Nothing
304

305 read_packet = if outgoing_read
306 then Just outgoing_value
307 else Nothing
308 }
309

310

311

312 component in_fifo() {
313 input datain : Int8
314 input write : Bool
315 input read : Bool
316 state rpntr = 0 : Unsigned 4
317 state wpntr = 0 : Unsigned 4
318 state elms = empty_queue : DataQueue
319 output dataout : Int8
320 output empty : Bool
321 -- output full : Bool
322 -- 6x5, at least
323

324 -- https://github.com/clash-lang/clash-compiler/blob/master/examples/Fifo.hs
325 wpntr' | write = wpntr + 1
326 | otherwise = wpntr
327 rpntr' | read = rpntr + 1
328 | otherwise = rpntr
329

330 mask = resize (maxBound :: Unsigned 3)
331 wind = wpntr .&. mask
332 rind = rpntr .&. mask
333

334 elms' | write = replace wind datain elms
335 | otherwise = elms
336

337 n = 3
338

339 empty = wpntr == rpntr
340 full = (testBit wpntr n) /= (testBit rpntr n) &&
341 (wind == rind)
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342

343 dataout = elms !! rind
344

345 }
346

347 component packet_queue() {
348 input datain : Maybe Packet
349 input read : Bool
350 state rpntr = 0 : Unsigned 3
351 state wpntr = 0 : Unsigned 3
352 state elms = empty_packet_queue : PacketQueue
353 output dataout : Packet
354 output empty : Bool
355 -- output full : Bool
356 -- 5x5
357

358 write = case datain of
359 Just _ -> True
360 Nothing -> False
361

362 -- https://github.com/clash-lang/clash-compiler/blob/master/examples/Fifo.hs
363 wpntr' | write = wpntr + 1
364 | otherwise = wpntr
365 rpntr' | read = rpntr + 1
366 | otherwise = rpntr
367

368 mask = resize (maxBound :: Unsigned 2)
369 wind = wpntr .&. mask
370 rind = rpntr .&. mask
371

372 elms' | write = case datain of
373 (Just v) -> replace wind v elms
374 | otherwise = elms
375

376 n = 3
377

378 empty = wpntr == rpntr
379 full = (testBit wpntr n) /= (testBit rpntr n) &&
380 (wind == rind)
381

382 dataout = elms !! rind
383 }
384

385 component packet_control() {
386 input proc_cmd : FIFOCommand
387 state ctrl_state = Idle : PacketControlState
388 output packet : Maybe Packet
389 -- 3x3 is ruim
390

391 ctrl_state' = case ctrl_state of
392 Idle -> case proc_cmd of
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393 (FIFO_Write v) -> GotLoc (int2loc v)
394 _ -> Idle
395 GotLoc l -> case proc_cmd of
396 (FIFO_Write v) -> Ready l v
397 _ -> GotLoc l
398 Ready _ _ -> Idle
399

400 write = case ctrl_state of
401 Ready _ _ -> True
402 _ -> False
403

404 packet = case ctrl_state of
405 Ready l v -> Just $ Packet l v
406 _ -> Nothing
407

408 }
409

410

411

412 component pkt_ser() {
413 input empty_send_queue : Bool
414 input packet : Packet
415

416 state ser_state = SerIdle : SerializerState
417 state send_loc = True : Bool
418

419 output value : Maybe Int8
420 output read_from_send_queue : Bool
421

422 send_loc' = not send_loc
423

424 ser_state' = case ser_state of
425 SerIdle -> if read_from_send_queue
426 then SerSendLoc packet
427 else SerIdle
428 SerSendLoc p -> SerSendVal p
429 SerSendVal p -> if read_from_send_queue
430 then SerSendLoc packet
431 else SerIdle
432

433 value = case ser_state' of
434 SerIdle -> Nothing
435 SerSendLoc (Packet loc _) -> Just $ loc2int loc
436 SerSendVal (Packet _ val) -> Just val
437

438 read_from_send_queue = send_loc && not empty_send_queue
439 }
440

441 component pkt_des() {
442 input value : Maybe Int8
443 state recv_loc = True : Bool
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444 state prev_value = Nothing : Maybe Int8
445 output packet : Maybe Packet
446

447 recv_loc' = not recv_loc
448 prev_value' = value
449

450 packet = if recv_loc
451 then Nothing
452 else case value of
453 -- if this fromjust triggers, input data is out of sync with the des
454 (Just value) -> case prev_value of
455 (Just loc) -> Just $ Packet (int2loc loc) (value)
456 Nothing -> Nothing
457

458 }
459

460 component direction_decider() {
461 input my_x : Unsigned 4
462 input my_y : Unsigned 4
463 input from_north : Maybe Packet
464 input from_east : Maybe Packet
465 input from_south : Maybe Packet
466 input from_west : Maybe Packet
467 input from_core : Maybe Packet
468

469 state read_timer = 0 : Unsigned 2
470

471 output to_north : Maybe Packet
472 output to_east : Maybe Packet
473 output to_south : Maybe Packet
474 output to_west : Maybe Packet
475 output to_proc : FIFOCommand
476 output ready : Bool
477

478 -- expects to be have my_x and my_y driven by a constant signal.
479

480 to_north = pick_packet North
481 to_east = pick_packet East
482 to_south = pick_packet South
483 to_west = pick_packet West
484 to_proc = to_fifo $ pick_packet Core
485 ready = read_timer == 0
486

487 read_timer' = read_timer + 1
488

489 dest (Just (Packet (x, y) _))
490 | x > my_x = Just East
491 | x < my_x = Just West
492 | y > my_y = Just South
493 | y < my_y = Just North
494 | x == my_x && y == my_y = Just Core
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495 dest Nothing = Nothing
496

497 -- silently drops packets :(
498 pick_packet dir = if dest from_core == Just dir
499 then from_core
500 else if dest from_north == Just dir
501 then from_north
502 else if dest from_east == Just dir
503 then from_east
504 else if dest from_south == Just dir
505 then from_south
506 else if dest from_west == Just dir
507 then from_west
508 else Nothing
509

510 to_fifo pkt = case pkt of
511 Just (Packet _ v) -> FIFO_Write v
512 Nothing -> FIFO_Nothing
513 }
514

515 component cap() {
516 input out : Maybe Int8
517 output inp : Maybe Int8
518

519 inp = Nothing
520 }

manycore.expi
1 manycore in (100, 92) at (4, 4) {
2 input job_data : Maybe Int8
3 output sums_out : Maybe Int8
4

5 job_data->core_layout.topleft_in
6 core_layout.botright_out->sums_out
7

8 core_layout in (119, 88) at (0, 0) {
9 input topleft_in : Maybe Int8

10 output botright_out : Maybe Int8
11

12 topleft_in->col_1[1].west_i
13 col_4[4].south_o->botright_out
14

15 io_cap is cap in (core_layout.w, core_layout.h) at (0, 0)
16

17 io_cap.out<-col_1[1].west_o
18 io_cap.inp->col_4[4].south_i
19

20 -- Column 1
21 chain col_1 at (0, 0) {
22 component = pru in (router.w, router.h),
23 amount = 4,
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24 layout = vertical,
25 chain_in = north_i,
26 chain_out = south_o
27 }
28 -- chain can only do one way, so we need to do the other manually
29 col_1[4].north_o->col_1[3].south_i
30 col_1[3].north_o->col_1[2].south_i
31 col_1[2].north_o->col_1[1].south_i
32

33 -- Cannot propagate constants through chains, so we'll do it this way :/
34 col_1[1].my_y<-(1)
35 col_1[2].my_y<-(2)
36 col_1[3].my_y<-(3)
37 col_1[4].my_y<-(4)
38

39 col_1[1].my_x<-(1)
40 col_1[2].my_x<-(1)
41 col_1[3].my_x<-(1)
42 col_1[4].my_x<-(1)
43

44 -- Column 1<=>Column 2 link
45 col_1:east_o->col_2:west_i
46 col_1:east_i<-col_2:west_o
47

48 -- Column 2
49 chain col_2 at (col_1_1.w, 0) {
50 component = pru in (col_1_1.w, col_1_1.h),
51 amount = 4,
52 layout = vertical,
53 chain_in = north_i,
54 chain_out = south_o
55 }
56

57 col_2[4].north_o->col_2[3].south_i
58 col_2[3].north_o->col_2[2].south_i
59 col_2[2].north_o->col_2[1].south_i
60

61 col_2[1].my_y<-(1)
62 col_2[2].my_y<-(2)
63 col_2[3].my_y<-(3)
64 col_2[4].my_y<-(4)
65

66 col_2[1].my_x<-(2)
67 col_2[2].my_x<-(2)
68 col_2[3].my_x<-(2)
69 col_2[4].my_x<-(2)
70

71

72 -- Column 2<=>Column 3 link
73 col_2:east_o->col_3:west_i
74 col_2:east_i<-col_3:west_o
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75

76 -- Column 3
77 chain col_3 at (col_2_1.x + col_2_1.w, 0) {
78 component = pru in (col_1_1.w, col_1_1.h),
79 amount = 4,
80 layout = vertical,
81 chain_in = north_i,
82 chain_out = south_o
83 }
84

85 col_3[4].north_o->col_3[3].south_i
86 col_3[3].north_o->col_3[2].south_i
87 col_3[2].north_o->col_3[1].south_i
88

89 col_3[1].my_y<-(1)
90 col_3[2].my_y<-(2)
91 col_3[3].my_y<-(3)
92 col_3[4].my_y<-(4)
93

94 col_3[1].my_x<-(3)
95 col_3[2].my_x<-(3)
96 col_3[3].my_x<-(3)
97 col_3[4].my_x<-(3)
98

99

100 -- Column 3<=>Column 4 link
101 col_3:east_o->col_4:west_i
102 col_3:east_i<-col_4:west_o
103

104 -- Column 4
105 chain col_4 at (col_3_1.x + col_3_1.w, 0) {
106 component = pru in (col_1_1.w, col_1_1.h),
107 amount = 4,
108 layout = vertical,
109 chain_in = north_i,
110 chain_out = south_o
111 }
112

113 col_4[4].north_o->col_4[3].south_i
114 col_4[3].north_o->col_4[2].south_i
115 col_4[2].north_o->col_4[1].south_i
116

117 col_4[1].my_y<-(1)
118 col_4[2].my_y<-(2)
119 col_4[3].my_y<-(3)
120 col_4[4].my_y<-(4)
121

122 col_4[1].my_x<-(4)
123 col_4[2].my_x<-(4)
124 col_4[3].my_x<-(4)
125 col_4[4].my_x<-(4)
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126

127

128 -- Caps on unused sides of a PRU:
129 repeat caps at (0, 0) {
130 component = cap in (core_layout.w, core_layout.h),
131 amount = 14,
132 layout = identical
133 }
134

135 -- left side of manycore
136 col_1[2-4]:west_i<-caps[1-3]:inp
137 col_1[2-4]:west_o->caps[1-3]:out
138

139 -- bottom
140 col_1[4].south_i<-caps[4].inp
141 col_1[4].south_o->caps[4].out
142 col_2[4].south_i<-caps[5].inp
143 col_2[4].south_o->caps[5].out
144 col_3[4].south_i<-caps[6].inp
145 col_3[4].south_o->caps[6].out
146

147 -- top
148 col_1[1].north_i<-caps[7].inp
149 col_1[1].north_o->caps[7].out
150 col_2[1].north_i<-caps[8].inp
151 col_2[1].north_o->caps[8].out
152 col_3[1].north_i<-caps[9].inp
153 col_3[1].north_o->caps[9].out
154 col_4[1].north_i<-caps[10].inp
155 col_4[1].north_o->caps[10].out
156

157 -- right
158 col_4[1-4]:east_o->caps[11-14]:out
159 col_4[1-4]:east_i<-caps[11-14]:inp
160

161

162 -- The PRU design which is the basis of the manycore.
163 unplaced pru in (28, 14) {
164 input north_i : Maybe Int8
165 input east_i : Maybe Int8
166 input south_i : Maybe Int8
167 input west_i : Maybe Int8
168 output north_o : Maybe Int8
169 output east_o : Maybe Int8
170 output south_o : Maybe Int8
171 output west_o : Maybe Int8
172

173 input my_x : Unsigned 4
174 input my_y : Unsigned 4
175

176 router.north_i<-north_i
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177 router.east_i<-east_i
178 router.south_i<-south_i
179 router.west_i<-west_i
180

181 router.north_o->north_o
182 router.east_o->east_o
183 router.south_o->south_o
184 router.west_o->west_o
185

186 router.my_x<-my_x
187 router.my_y<-my_y
188

189 router.route_cmd->core.route_cmd
190 router.ready_for_packet->core.read_packet
191 router.packet_from_core<-core.packet
192

193 router in (30, 22) at (0, 0) {
194 input north_i : Maybe Int8
195 input east_i : Maybe Int8
196 input south_i : Maybe Int8
197 input west_i : Maybe Int8
198

199 output north_o : Maybe Int8
200 output east_o : Maybe Int8
201 output south_o : Maybe Int8
202 output west_o : Maybe Int8
203

204 output route_cmd : FIFOCommand
205 output ready_for_packet : Bool
206 input packet_from_core : Maybe Packet
207

208 input my_x : Unsigned 4
209 input my_y : Unsigned 4
210

211 unplaced send_queue in (router.w, router.h) {
212 input packet : Maybe Packet
213 output value : Maybe Int8
214

215 queue is packet_queue in (router.w, router.h) at (0, 0)
216 serializer is pkt_ser in (router.w, router.h) at (0, 0)
217

218 queue.datain<-packet
219

220 serializer.value->value
221 serializer.packet<-queue.dataout
222 serializer.empty_send_queue<-queue.empty
223 serializer.read_from_send_queue->queue.read
224 }
225

226 repeat deserializers at (0, 0) {
227 component = pkt_des in (router.w, router.h),
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228 amount = 4,
229 layout = identical
230 }
231

232 deserializers[1].value<-north_i
233 deserializers[1].packet->dir_dec.from_north
234 deserializers[2].value<-east_i
235 deserializers[2].packet->dir_dec.from_east
236 deserializers[3].value<-south_i
237 deserializers[3].packet->dir_dec.from_south
238 deserializers[4].value<-west_i
239 deserializers[4].packet->dir_dec.from_west
240

241 dir_dec is direction_decider in (router.w, router.h) at (0, 0)
242 dir_dec.ready->ready_for_packet
243 dir_dec.to_proc->route_cmd
244 dir_dec.my_x<-my_x
245 dir_dec.my_y<-my_y
246 dir_dec.from_core<-packet_from_core
247

248 repeat queues at (0, 0) {
249 component = send_queue in (router.w, router.h),
250 amount = 4,
251 layout = identical
252 }
253

254 queues[1].packet<-dir_dec.to_north
255 queues[1].value->north_o
256 queues[2].packet<-dir_dec.to_east
257 queues[2].value->east_o
258 queues[3].packet<-dir_dec.to_south
259 queues[3].value->south_o
260 queues[4].packet<-dir_dec.to_west
261 queues[4].value->west_o
262

263 }
264

265

266 core in (router.w, router.h) at (0, 0) {
267 input route_cmd : FIFOCommand
268 input read_packet : Bool
269 output packet : Maybe Packet
270

271 processing.instr<-progmem.instr
272 processing.pc->progmem.pc
273

274 processing in (core.w, core.h) at (0, 0) {
275 input instr : InstructionWord
276 input fifo_val : Maybe Int8
277 output pc : PC
278 output fifo_cmd : FIFOCommand
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279

280 instr->datapath.instr_word
281 datapath.fifo_cmd->fifo_cmd
282 datapath.pc_out->pc
283

284 regfile is registers in (core.w, core.h) at (0, 0)
285 datapath is datapath in (core.w, core.h) at (0, 0)
286

287 datapath.reg_a<-regfile.reg_a
288 datapath.reg_b<-regfile.reg_b
289 datapath.fifo_val<-fifo_val
290

291 regfile.read_ids<-datapath.read_ids
292 regfile.write<-datapath.update_regs
293 }
294

295 progmem is prog_mem in (core.w, core.h) at (0, 0)
296

297 route_cmd->router_comm.route_cmd
298 processing.fifo_cmd->router_comm.proc_cmd
299 router_comm.packet->packet
300 router_comm.read_packet<-read_packet
301 processing.fifo_val<-router_comm.value
302

303 router_comm in (core.w, core.h) at (0, 0) {
304 input proc_cmd : FIFOCommand
305 input route_cmd : FIFOCommand
306 input read_packet : Bool
307 output value : Maybe Int8
308 output packet : Maybe Packet
309

310 ctrl is queue_controller in (core.w, core.h) at (0, 0)
311 ctrl.proc_cmd<-proc_cmd
312 ctrl.route_cmd<-route_cmd
313 ctrl.router_read<-read_packet
314

315 in_queue is in_fifo in (core.w, core.h) at (0, 0)
316 in_queue.datain<-ctrl.incoming_datain
317 in_queue.write<-ctrl.incoming_write
318 in_queue.read<-ctrl.incoming_read
319 ctrl.incoming_value<-in_queue.dataout
320 value<-ctrl.read_value
321 ctrl.incoming_empty<-in_queue.empty
322

323 out_queue is packet_queue in (core.w, core.h) at (0, 0)
324 packet_control is packet_control in (out_queue.w, out_queue.h) at (out_queue.x, out_queue.y)
325 packet_control.proc_cmd<-proc_cmd
326 out_queue.datain<-packet_control.packet
327 out_queue.read<-ctrl.outgoing_read
328 out_queue.empty->ctrl.outgoing_empty
329 out_queue.dataout->ctrl.outgoing_value
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330 packet<-ctrl.read_packet
331 }
332

333 }
334 }
335

336 }
337 }
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