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1 Introduction

When humans breath they do not only inhale air but also trillions of aerosols. Aerosols are tiny
solids or liquids suspended in gasses. Examples of these are pollen, smoke, fumes or mist. We
breath in a lot of aerosols but not all will reach the alveoli.

The motion of the aerosols is determined by a number of mechanisms, effective in different
size ranges [14]. Most aerosols greater than 5µm will not be able to follow the airflow and will
bounce into the walls of the body, this is called inertial impaction. Then there is also gravitational
sedimentation, which as the name suggest is caused by the gravity pulling down the particles.
This mainly effects particles from 1-8µm. For smaller particles there is also Brownian diffusion.
Deposition by Brownian diffusion results from the random motions of the particles caused by
their collisions with gas molecules and is most effective in the alveolar region of the lung where
air velocities are low. Only micro and nano sized aerosols reach this area. The lung is a very
complex organ in our body. It consists out of 480 million alveoli [15] which each contributes to the
respiratory system of our body.

In our research it is of interest to investigate the air and the mucus media. This is chosen
because the mucus layer is the first layer that aerosols have to pass by diffusion or sedimentation
in the alveoli. There has been little research for the influence of the size of aerosols for diffusion
through the mucus layer [1,3]. We have investigated what the influence is and how researchers can
apply this information for therapeutic aerosols.

In this report we analyse these aerosols and make a one dimensional mathematical model of
the transport rate of the concentration of certain particles by forces of diffusion and sedimentation
through various media such as an air layer and through a mucus layer. This will be done using
Matlab tools, our general knowledge of PDE’s and other papers.

2 Methods

2.1 Description of the model and the aerosols

To investigate aerosol motion we will make use of the In-vitro Sedimentation, Diffusion and Dosime-
try model (ISDD) [1]. This model is constructed out of two main parts: an equation for the diffusion
coefficient and an equation for the sedimentation coefficient. Both are used in a single differen-
tial equation which describes the change of the rate of the concentration of particles in a viscous
medium in a 1D dimension by the force of gravity and diffusion.

The particles will flow parallel to the gravity in the vertical direction. We want to analyse
how different drug particles pass this barrier and how their transport rates compare against one
another. An assumption we make is that there is an absence of any agglomerates forming during
the experiment and that the particles are mono-disperse.

The aerosols that are being analysed will be two therapeutic aerosols with different physico-
chemical properties: (i) the inhaled bronchodilator Salbutamol sulfate, which, according to the oral
Biopharmaceutics Classification System, is a high solubility but low permeability drug; (ii) the non-
steroidal anti-inflammatory drug (NSAID) indomethacin which is, in contrast, a low solubility/high
permeability molecule. These are both drugs that are commonly used against chronic respiratory
diseases. [11]

2.2 Equations

The model before mentioned that we will be using is an ISDD model [1,3]. This is constructed by
two major parts. The first being the equation for sedimentation:

V =
g(ρp − ρf )d

2

18µ
. (1)

This equation is called Stokes’ law. Stokes’ law defines the gravitationally driven sedimentation
rate (V,m/s) of particles in solution from the viscosity (µ, Pa∗s) of the media, the relative densities
(kg/m3) of the particle (ρp) and fluid (ρf ), the diameter of the particle (d,m) and the acceleration
due to gravity (g,m/s2). The second equation we will be using is the Stokes-Einstein equation.
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The Stokes-Einstein equation describes the relation between the particle diameter and the diffusion
rate (D,m2/s) as a function of viscosity and temperature (T,K):

D =
kT

6πµd
(2)

where k is Boltzmann constant. When a particle moves through a fluid it can cause some motion
of the fluid. To describe this flow we will use Reynolds number which is a dimensionless ratio from
laminar to turbulent forces. If the Reynolds number is below one then equation 1 and 2 are the
only terms necessary for the Mason-Weaver laminar convection-diffusion equation which describes
the sedimentation and diffusion of solutes under a uniform force. The Reynolds number is under
one for particles smaller than 100µm [1]. This holds for the particles that we will use so we can use
this equation to derive the change of particles per time unit. This equation is a partial differential
equation (PDE), given by:

∂n

∂t
= D

∂2n

∂x2
− V

∂n

∂x
(3)

where n is the concentration of particles, t is the time (s) and x is the distance (m) in the vertical
direction.

2.3 Boundary and initial values

At the start of the experiment we assume that the distribution of particles is uniform (4a). The
actual value of n0 will not influence the results as can be seen at the next section with the nondi-
mensionalization. Furthermore we assume that at x = L, where L is the height of the media,
there is no flow of particles (4b), and that at the bottom of the media there is no concentration of
particles (4c). This means that they do not bundle together at the boundary and as soon as they
reach it they do not influence the particle concentration.

(a) n0 = c ∀ x, where c is constant (b)
∂n

∂x
= 0 for x = L (c) n = 0 for x = 0 (4)

2.4 Nondimensionalization

To analyse what is happening in the model we made the PDE dimensionless. The current dimen-
sions are defined as follows: n can be given in any concentration like g/ml or number of particles
per ml, x is the distance in m, V is the sedimentation rate in m/s and D is the diffusion rate in
m2/s. We made the model dimensionless by introducing new variables N , τ and χ that are defined
as follows:

(a) N =
n

n0
, (b) τ =

t

t0
, (c) χ =

x

x0
(5)

With this the PDE would boil down to

∂N

∂τ
=

Dt0
x2
0

∂2N

∂χ2
− V t0

x0

∂N

∂χ
(6)

We chose t0 to be the maximum time over which we measure called Tmax, we chose x0 to be the
medium length L and we chose n0 to simply be the initial concentration. These are chosen such
that the new variables will run from 0 to 1. Furthermore we will implement two dimensionless
parameters alpha and beta where

α =
DTmax

L2
, β =

V Tmax

L
(7)

Now the PDE looks like
∂N

∂τ
= α

∂2N

∂χ2
− β

∂N

∂χ
(8)

Alpha uses the diffusion coefficient and beta uses the sedimentation coefficient. We will research
values of alpha ranging from 1 until 400 and values of beta ranging from -0.01 until 0.4. This
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represents transport processes which are dominated by diffusion. The boundary equations and the
initial condition would become:

(a) N0 = 1 ∀ χ, (b)
∂N

∂χ
= 0 for χ = 1, (c) N = 0 for χ = 0 (9)

This is the main model which is used for explaining results and comparing the different transport
rates of the aerosols.

2.5 pdepe

The way we are going to solve the PDE is by using a solver called pdepe from MATLAB. pdepe
solves initial-boundary value problems for systems of parabolic and elliptic PDEs in the one space
variable x and time t. It solves PDEs of the form

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m ∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+ s

(
x, t, u,

∂u

∂x

)
(10)

Here x is the independent spatial variable. t is the independent time variable. u, which is in
our case n, is the dependent variable being differentiated with respect to x and t. c, f and s are
coefficients that could include variables like x, t, u and ∂u

∂x . m is the symmetry constant with values
0, 1 or 2 corresponding to slab, cylindrical, or spherical symmetry, respectively.

This solver has some conditions and properties. The PDE that is solved exists in the space
of t0 ≤ t ≤ tmax and a ≤ x ≤ b. The spatial interval of x: [a, b] must be finite. The coefficient
f
(
x, t, u, ∂u

∂x

)
is called the ’flux’ term which must depend on the partial derivative ∂u

∂x and the

coefficient s
(
x, t, u, ∂u

∂x

)
is called the ’source’ term.

The solver function is sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan). This consists out of
m, three functions and the x and t variable spans. The first function, pdefun, is the function
which establishes the c, f and s coefficient as in equation 10. The icfun is the function which
states the initial condition. The last function, which makes the boundary conditions, is a bit more
complicated since it uses inputs of the form p(x, t, u)+ q(x, t)f

(
x, t, u, ∂u

∂x

)
= 0 at x = a and x = b.

They use the same f as in pdefun and then for the left boundary case and the right boundary case
one would have to express the conditions in that formula.

”The MATLAB PDE solver pdepe solves systems of 1-D parabolic and elliptic PDEs of the form
of equation 10” [16]. This is the default version for the pdepe solver. To alter the error control
and the step size or to add an event logging one has to add an ’options’ variable.
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3 Results

3.1 Parameters

For the research we had to establish some parameters to reflect the most realistic version of this
model. Some of the values in table 1 were constants like the Boltzmann constant and the gravita-
tional constant. Another predetermined value was the symmetry constant since it followed directly
from equation 3.

In the human lungs most of the mucus is made form MUC5AC so we decided to use these
properties for the model [6]. The density we got for the mucus was around 1390kg/m3 [9] and the
viscosity was around 1e−2Pa∗s [4]. For the density of air we assume it to be dry air at atmospheric
pressure at a temperature of 35◦C [5], using the ideal gas law we calculated the density. We used
the same conditions for the viscosity of air. The density’s of both drugs are constant and a given
[7-8].

The diameters of the drugs can be varied for many different sizes. We decided to investigate
the influence of the diameters where the deposition fraction is higher in the alveolar region than
0.2 [10], starting from 5nm going up until 0.1µm.

Description Name Value Dimension

Density of mucus ρmucus 998 kg/m3

Density of air ρair 1.1460 kg/m3

Density of Salbutamol Sulfate ρs 1200 kg/m3

Density of Indomethacin ρi 1300 kg/m3

Diameter of Salbutamol Sulfate ds [5e-9, 1e-7] m
Diameter of Indomethacin di [5e-9, 1e-7] m

Viscosity of air µair 18.84e-6 Pa ∗ s
Viscosity of mucus µmucus 1.0016e-2 Pa ∗ s
Boltzmann constant k 1.38064852e-23 m2kgs−2K−1

Gravitational Constant g 9.80665 m/s2

Body temperature in alveolar region T 305 K
Symmetry constant m 0

Table 1: Table of parameters with values and dimensions.

3.2 Validation

Before the results can be presented we must make sure that the current discretization is sufficient
enough to deliver said results. There will be two cases, one with a dominant diffusion coefficient
and one with a dominant sedimentation coefficient. The model will be run with the standard
hundred time steps and fifty spatial steps, which will be labeled as normal, and with one million
time steps and five thousand spatial steps, which will be labeled as large. More steps could be
plotted for higher accuracy but the tools were not available to efficiently handle those plots.

In figure 1 we notice that for both discretizations the curve overlaps. This would suggest that
the normal discretization is sufficient enough for alpha dominated cases to deliver results which
can be analysed.

A problem arises however when investigating sedimentation dominated cases. As can be noted
in figure 2 the curve for normal discretization fluctuates heavily and heading into the negative
which should not be physically possible. However when increasing the amount of steps the solver
significantly increases in accuracy and almost shapes like a step function. This would indicate that
pdepe is valid to use with the current discretization but for sedimentation dominated cases one
would need stronger hardware to get sufficient results in an appropriate time.

3.3 Results

These plots were plotted with the parameters as in table 1. Four values of the diameter were taken
to investigate. These values were 100nm, 50nm, 10nm and 5nm. For the media length of the air
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Figure 1: Diffusion dominated case. Here the concentration n (particles per ml) is
given as a function of time (s) for a normal discretization (50 spatial steps, 100 time steps)
and for a large discretization(5000 spatial steps, 1e6 time steps)
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Figure 2: Sedimentation dominated case. Here the concentration n (particles per
ml) is given as a function of time (s) for a normal discretization (50 spatial steps, 100 time
steps) and for a large discretization(5000 spatial steps, 1e6 time steps)

layer we chose a length of 1e − 4m which is half the diameter of an alveoli sack. For the mucus
layer the length is 1e− 6m [6]. In table 2 the alpha, beta, diffusion and sedimentation parameters
have been calculated.

Drug Media Diameter Alpha Beta Diffusion (m2/s) Sedimentation (m/s)

I Air 1e-7 m 1.1858 0.3756 1.1858e-10 3.7560e-07
I Air 5e-8 m 2.3715 0.0939 2.3715e-10 9.3900e-08
I Air 1e-8 m 11.8577 0.0038 1.1858e-09 3.7560e-09
I Air 1e-9 m 23.7154 0.0009 2.3715e-09 9.3900e-10
I Mucus 1e-7 m 22.3042 -0.0049 2.2304e-13 1.6427e-10
I Mucus 5e-8 m 44.6085 -0.0012 4.4608e-13 4.1068e-11
I Mucus 1e-8 m 223.0425 -4.8955e-4 2.2304e-12 1.6427e-12
I Mucus 5e-9 m 446.0849 -1.2239e-4 4.4608e-12 4.1068e-13
S Air 1e-7 m 1.1858 0.3466 1.1858e-10 3.4668e-07
S Air 5e-8 m 2.3715 0.0867 2.3715e-10 8.6671e-08
S Air 1e-8 m 11.8577 0.0035 1.1858e-09 3.4668e-09
S Air 1e-9 m 23.7154 8.667e-3 2.3715e-09 8.6671e-10
S Mucus 1e-7 m 22.3042 -0.0103 2.2304e-13 1.0988e-10
S Mucus 5e-8 m 44.6085 -0.0025 4.4608e-13 2.7469e-11
S Mucus 1e-8 m 223.0425 -1.033e-3 2.2304e-12 1.0988e-12
S Mucus 5e-9 m 446.0849 -2.583e-4 4.4608e-12 2.7469e-13

Table 2: Table of parameters alpha and beta with the according diffusion and sedimenta-
tion values
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The figures 3 and 4 show the decline of the concentration of particles from Indomethacin and
the figures 5 and 6 show the same but now for Salbutamol Sulfate. The time in the plots for
the air media is 100 seconds and the time in the plots for the mucus media is 5 seconds. Every
concentration starts at 1e16 particles per ml to make it as realistic as possible. The difference in
time is explained by the fact that the length of the mucus media is a factor 100 smaller than the
air media.
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Figure 3: Plot of concentra-
tion of Indomethacin in air.
Here the concentration is in par-
ticles per ml, the time is in sec-
onds and the diameters are in
meters.
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Figure 4: Plot of concentra-
tion of Indomethacin in mu-
cus. Here the concentration is
in particles per ml, the time is in
seconds and the diameters are in
meters.
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Figure 5: Plot of concentra-
tion of Salbutamol Sulfate in
air. Here the concentration is in
particles per ml, the time is in
seconds and the diameters are in
meters.
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Figure 6: Plot of concentra-
tion of Salbutamol Sulfate in
mucus. Here the concentration
is in particles per ml, the time is
in seconds and the diameters are
in meters.

The plots show a faster decline of concentration of particles for smaller particles as can be
expected from equation 2. There is no significant difference in transport rates between the two
drugs. This can be explained by the fact that the densities are almost alike and that there are
no other attribute besides the diameter, which is chosen to be the same, which are being used in
equation 1 and 2.

As mentioned before we will analyse the half life of the concentration of the particles. In table
3 the values for the half life where the concentration reaches 5e-15 particles per ml are presented.

Table 3 shows negligible differences for the half life between the two drugs. We notice that for
this range of aerosols the half life time value is the fastest for the smallest particles with a linear
relation between the time and the diameter.
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Drug Diameter (m) Half life time value Half life time value
in air (s) in mucus (s)

Indomethacin 1e-7 29.08 1.697
Indomethacin 5e-8 15.82 0.8509
Indomethacin 1e-8 3.203 0.1702
Indomethacin 5e-9 1.602 0.0851

Salbutamol Sulfate 1e-7 29.33 1.702
Salbutamol Sulfate 5e-8 15.82 0.8509
Salbutamol Sulfate 1e-8 3.203 0.1702
Salbutamol Sulfate 5e-9 1.602 0.0851

Table 3: Half life time value for each diameter per particle

4 Conclusion

We have shown with the use of the ISDD model that for the two therapeutic drugs the smaller
aerosols diffuse faster through the air and mucus layer than the larger aerosols. This holds for
aerosols between 5 and 100 nano-meters. The ISDD model simulates in-vitro cases however the
ISDD model has been shown [1] to represent experimental data with a small error. Therefore it is
acceptable to assume the same results would hold with a small error when done with experiments.

Researchers could use this information when making drugs that are being applied via inhalation
to patients. The time for the half life is meant to represent the time for a drug to take effect in a
body. The faster it diffuses the faster the drug would be present in the bloodstream and thus help
the patient.

For the analysis of the differences between the two drugs we can say that it is negligible. As
can be noticed in table 2 the diffusion rate is the same for both but there are small differences in
the sedimentation rate. Since we only investigated the diffusion dominated cases it is clear that
there will not be any major difference.

5 Discussion

In this report we analysed the transport rate of diffusion dominated cases. Since the diffusion
coefficient is only effected by the size of the particle it would be interesting to further research
transport rates dominated by the force of sedimentation.

This report shows a relative simple model of the diffusion and sedimentation of particles com-
pared to the complexity of the lungs. However one could spend time and resources to make it
more advanced. Then maybe more differences and discoveries would come to light. One could for
example simulate agglomerate forming since we assumed it to be absent. This is of course not the
case in real life. Another point which is interesting for further research is the interface of the air
and mucus layer and how it would react to one another. From there one could even add more
layers like the epithelial layer.

In the previous section we conclude that the smaller a particle is the faster it will diffuse. This
however is not always possible to apply in real life [12-13]. It has always been a challenge to deliver
drugs of micron and nano sized particles. Depending one the need of fast absorption of a drug one
would need to think of a suiting particle size along with it.
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7 Appendix

A code

c l e a r a l l

%% Constants
g = 9 . 80665 ;
r h o f = 1 . 1460 ; %dens i ty o f a i r
rho p s = 1200 ; %dens i ty o f sa lbutamol s u l f a t e in kg/m3
rho p i = 1300 ; %dens i ty o f indomethacin in kg/m3
d s = 5e−9; % diameter o f sa lbutamol s u l f a t e in m
d i = 5e−9; % diameter o f indomethacin in m
mu = 18.84 e−6; %v i s c o c i t y o f a i r in Pa∗ s

9



k = 1.38064852 e−23; %boltzmann constant m2 kg s−2 K−1
T = 305 ; %average body temperature in degree s Kelvin
m = 0 ; %Symmetry constant
L = 100e−6; %Length o f a i r medium
Tmax = 100 ;
xdim = l i n s p a c e (0 ,L , 5 0 ) ;
tdim = l i n s p a c e (0 ,Tmax, 1 0 0 ) ;

%% Equations
%Ds = (k∗T)/(6∗ pi ∗mu∗ d s ) ; %D i f f u s i on c o e f f i c i e n t o f sa lbutamol s u l f a t e
Di = (k∗T)/(6∗ pi ∗mu∗ d i ) ; %D i f f u s i on c o e f f i c i e n t o f indomethacin
%Vs = ( g ∗( rho p s−r h o f )∗ d s ˆ2)/(18∗mu) ; %Sedimentat ion c o e f f i c i e n t o f sa lbutamol s u l f a t e
Vi = ( g ∗( rho p i−r h o f )∗ d i ˆ2)/(18∗mu) ; %Sedimentat ion c o e f f i c i e n t o f indomethacin

%% Dimens ion les s conver t i on
t = tdim/Tmax;
x = xdim/L ;

%% Writing down the s o l u t i o n func t i on
%f i r s t make a C matrix such that we can use the cons tant s in the f unc t i on s
C. Di = Di ;
C. Vi = Vi ;
C.Tmax = Tmax;
C.L = L ;
%Here the f unc t i on s are c a l l e d and the s o l u t i o n c a l c u l a t ed
%opt ions = odeset ( ’ RelTol ’ , 3 e−4 , ’AbsTol ’ , 1 e−5 , ’ I n i t i a l S t e p ’ , ) ;
eqn = @(x , t , u , dudx ) pdefun (x , t , u , dudx ,C) ;
i c = @(x ) i c f un (x ) ;
bc = @(xL , uL , xR,uR, t ) bcfun (xL , uL , xR,uR, t ,C) ;
s o l = pdepe (m, eqn , i c , bc , x , t ) ;

%% Alpha and Beta
Alpha = Di∗Tmax/Lˆ2 ;
Beta = Vi∗Tmax/L ;

%% Plot s
up = s o l ( : , 5 0 , 1 ) ;
f i g u r e
p l o t ( t , up )
x l ab e l ( ’ Time t ’ )
y l ab e l ( ’ So lu t i on n ’ )

%% Function d e f i n i n g
%Here the func t i on i s formulated in the form o f c∗dudt = f ∗ dudx + s
func t i on [ c , f , s ] = pdefun (x , t , u , dudx ,C)
Di = C. Di ;
Vi = C. Vi ;
L = C.L ;
Tmax = C.Tmax;

c = 1 ;
f = ( ( Di∗Tmax)/Lˆ2)∗dudx ;
s = −((Vi∗Tmax)/L)∗dudx ;
end
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%I n i t i a l cond i t i on
func t i on u0 = i c f un (x )
u0 = 1 ;
end

%boundary cond i t i on s
%These are put in the form o f p + q∗ f = 0 on the l e f t boundary and the
%r i gh t boundary . In my case the lower and upper boundary .
func t i on [ pL , qL ,pR,qR ] = bcfun (xL , uL , xR,uR, t ,C)
% Di = C. Di ;
% Vi = C. Vi ;

pL = uL ;
qL = 0 ;
pR = 0 ;
qR = 1 ;
end
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