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Preface

In 2019, pushed by the continuous unsatisfactory feelings that haunted me, I quit my
consulting job as software developer and abandoned a stable situation to pursue a
Master’s degree in Human-Computer Interaction. I had the strong desire to expand
my knowledge and unleash my creativity, but I also wanted to dedicate my efforts
to something I truly cared about, that could be meaningful for me and for others.
When I stumbled upon Brain-Computer Interfaces, and later Affective Computing,
something clicked. I could finally draw a line connecting my technical background in
Computer Science with my interests in humanistic subjects like philosophy, psychol-
ogy and human learning - in other words: Cognitive Science, the study of the mind
and its processes using technological means. The passionate people I met in these
two years gave an essential contribution in shaping the direction of my studies, and
finally a fortuitous encounter on a flight from Paris to Milan in January 2020 set the
basis for what later became my graduation project, the core of this research.

The last decade has seen a wave of renewed attention to the individual needs of
people, from the fundamental ones like health and education, up to hobbies, creativ-
ity and passions. I think we struggle to better understand and take care of ourselves,
because it is inherently hard to keep control over our mind and body. Funnelling our
energies on what we think really matters feels tiring, and often we push ourselves
over limits we are not aware of, with critical risks for our mental health. Like many
others, I have always seen computers as an extension of the human brain, not as a
substitute tool for it. In my vision, technologies like Artificial Intelligence are not here
to replace humans, but to augment human intellect and help people express their
true potentials by taking away part of the effort we would need to put on boring or
hard tasks. Technology needs the capability understand us so we can use it to better
shift the focus on ourselves, and this is the great challenge that Affective Computing
and Brain-Computer Interfaces can help us facing in the years to come, possibly
disrupting society like many other great technological innovations did in the past.
Such epochal changes are unpredictable and frightening, but consciously embrac-
ing them in advance will reduce the risk of collateral damage caused by misusing
technology. With this project, I took my first step into these innovative fields and I
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am determined to responsibly design technologies that can improve each individ-
ual’s life and, consequently, society itself in the years to come.

I need to acknowledge many people for their direct or indirect contributions that
made this project possible. First of all my expanded family, including relatives and
close friends, that were always supportive and fueled me with love regardless the
physical distance. A special thanks goes to Mannes Poel, that guided my learning
process for more than a year and got me passionate about BCI. Another special
thanks goes to the crew of the Innovation Lab at myBrain Technologies: Giuseppe
Spinelli, whose random encounter on a flight created this beautiful opportunity,
Xavier Navarro-Sune, that weekly mentored and reviewed my progresses together
with Giuseppe, and Yohan Attal that always found the time to share insightful ideas
and comments despite being busy in running a company. I also wanna thank all the
other colleagues at myBrainTechnologies that welcomed me and helped in many or-
ganizational steps. Finally, heartfelt thanks to my university colleagues and friends,
from Université Paris-Saclay and University of Twente, because in the worst mo-
ments we stayed together and cheered each other up, and in the best moments we
shared our passions and enjoyed our adventures with a light mind as young people
should always do.

I wish you a good reading,

Michele

”Il corpo faccia ciò che vuole, io sono la mente.” - R.L. Montalcini



Summary

This research set out to investigate the feasibility of performing Emotion-Recognition
using Melomind, a wearable neural interface manufactured by myBrainTechnolo-
gies. Melomind is capable of recording EEG signals, that can be processed using
machine learning algorithms in the form of a classification task of the emotional
dimensions of valence and arousal.

This study introduces the fields of Brain-Computer Interfaces and Affective Com-
puting, the perception of the market, the leading companies producing wearable
neural devices for non-clinical applications and the relevance of studying emotions
using music, from both the perspectives of market demand and enhancing the user
experience.

The goal of this research was to evaluate Melomind’s capabilities for a future
real-time application that can be used to perform Emotion-Recognition. In order
to do so, the Valence-Arousal model by James Russel was used as metric for the
dimensions of emotions, then several models of emotional correlates in brain activity
were evaluated to define what features of the EEG would be more suitable for the
task.

The relevant related work was reviewed and studied to provide a methodologi-
cal framework for the machine learning task that could be adapted to the constraints
imposed by the limited hardware of the Melomind. An experimental protocol was de-
signed around the inherent advantages of wearable technologies to collect a dataset
with continuous labelling of emotions on the Valence-Arousal coordinate system.
Possible biases caused by listening conditions, data labelling tools, emotional inter-
ference, multiple cognitive tasks and external factors were taken into account and
the protocol was tested during a pilot week with employees of myBrainTechnologies
prior to the real experiment.

Data were collected using a robust protocol in two different conditions for music
listening: eyes-open with a labelling task and eyes-closed solely. Data were then
processed using a lightweight automated preprocessing pipeline and two types of
features were extracted from the Power Spectra Density of the EEG signal: neu-
romarkers and frequency-band specific spectral properties calculated in the Theta,
Alpha and Beta bands of the EEG signal. Features dimensionality was reduced
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VI SUMMARY

through features extraction using Principal Component Analysis and the classifica-
tion task was performed with subject-dependent strategy. The problem was simpli-
fied into two separate binary classifications tasks for valence and arousal, and two
supervised learning algorithms were tested: Support-Vector Machines and Multi-
Layer Perceptron. The hyper-parameters were tuned using GridSearch to select
the configuration that yielded the highest Matthews Correlation Coefficient score for
each participant, a coefficient that is gaining popularity in machine learning research
thanks to its higher reliability.

All models were then trained and tested using 5-fold leave-one-block-out cross-
validation that produced two cross-validated scores on the training datasets: CV
accuracy and CV MCC. Then, models were further tested on a completely unseen
split of data that produced two more scores: test accuracy and MCC. Results were
collected and the two classification methods were compared with each other and
then with the comparable related work.

Some models showed promising classification results, reaching 80% accuracy in
arousal classification and 75% accuracy in valence classification with both SVM and
MLP. MCC scores confirmed an average positive learning capability of the models,
although many models ended up overfitting or underfitting. The average classifica-
tion results did not meet the initial expectations and are below many of the related
studies, suggesting that the adopted lightweight pre-processing, the limited hard-
ware of the Melomind or a combination of both are hindering the classification task
and are not yet suitable for real-time Emotion-Recognition.

The final discussion covers the current challenges of real-time Emotion-Recognition
reported by this and related studies and delves into possible improvement of the
emotional self-reporting, the features selection, the artifacts cleaning process and
the requirements to move from subject-dependent classification to subject independent-
classification.

In the conclusion, some considerations are raised from answering the research
questions and then an improved artifact cleaning approach is recommended for a
follow-up study using the same dataset, that could give further insights on the de-
velopment of a wearable affective Brain-Computer Interface using Melomind.
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Chapter 1

Introduction

The evolution of technology is inherently bound to the evolution of society and hu-
man desires. In recent years the focus of the technology-mediated services has
shifted from mere functionalism to become more aesthetically, functionally, socially,
and interactively pleasurable. The most successful multimedia creation and distribu-
tion companies offer customized recommending services and then aggregate cor-
rect predictions between users sharing similar taste or preferences to improve their
offer: an experience as tailored as possible to users’ individual needs. Understand-
ing users’ behavior and emotions is not only very profitable for companies that want
to continuously engage their users, but also a popular topic among researchers and
designers that thrive to better understand the human mind to enhance the quality
of human-computer interactions. It is also becoming a necessity for the end users
themselves, who are not satisfied anymore by tinkering with technology but want the
interaction to be flexible and seamlessly usable in the daily life. Recent applications
and services offer the possibility for people to monitor their body, mind, and health
through continuous collection of physiological signals from wearable sensors, for ex-
ample to keep track of good sport habits, sleep quality, stress level and more. But
it is also possible to infer affective states from clues in the recorded brain activity.
Given the increasing interest of researchers and companies in the affective field,
the more and more frequent use of physiological and behavioral clues to assess
mental states will keep growing until technologies of daily use will be standardly
designed with brain-reading capabilities. The human brain is the central and most
important organ of our body because it is where our consciousness, our “self”, re-
sides and it is the command center of all vital functions. And yet, it is also the one
we understand least, despite the ongoing research. We rightfully assume emotions
originate in the brain, but we can only observe their physiological responses and we
can only qualitatively support these observations through inherently imprecise self-
assessment tools. Trying to find a correlation between the physiological response
and the self-assessed mental state or emotion is not as simple as correlating fac-
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2 CHAPTER 1. INTRODUCTION

tual measures, because of the uncertainty of the factors involved. Modern wearable
Brain-Computer Interfaces (BCIs), mostly represented by EEG-capable devices, are
still limited in their functionalities and design. Recorded signals are often affected
by noise or artifactual information and the user experience is so heavily hindered
that most companies are reluctant in investing into them, and more research and
optimization is needed before pushing them to the general public. Self-assessing
emotions is also non-trivial because it requires a strong understanding of one’s per-
ceived emotions, and this perception has great variability from individual to indi-
vidual. Creating models able to generalize through all the subjective differences is
complicated, especially with performances that enable designers to create enjoyable
user experiences for everyone. Thus, we enter in a challenging and almost paradox-
ical situation: on one hand the goal is to find a common approach to exploit generic
behavioral and physiological patterns, on the other hand it is also necessary to ac-
count for individual differences to offer the customized experience that users desire.
This research takes an extra step into the challenge by evaluating what could be the
classification performances of an affective Brain-Computer Interface (BCI) system
for emotion-aware recommendations using a wearable device. It delves on rele-
vant insights on the main problematics that researchers and designers will face in
the years to come when classifying brain emotions, and finally discusses possible
solutions and future developments towards online Emotion-Recognition.

1.1 Motivation

In 2016, the American research and advisory information firm Gartner published
their yearly hype cycle for emerging technologies , positioning “Brain-Computer In-
terfaces” and “Affective Computing” on the growing slope of the “Peak of Inflated
Expectations”, both with an estimated period of about 10 or more years before main-
stream adoption (see Figure 1.1). In the versions published over the last 5 years, ”Af-
fective Computing” completely disappeared from the hype cycle and ”Brain-Computer
Interfaces” slowly climbed the slope before disappearing as well. This trend sug-
gests that both fields reached the peak of the inflated expectations and fell down the
“Through of Disillusionment” slope as the technology failed to meet the expectations
of users, researchers, and investors. Nevertheless, some innovative companies and
startups stepped up to the challenge and started a new innovation cycle by devel-
oping wearable neural sensors and slowly pushing again BCI towards mainstream
adoption. For example, NextMind1 released in early 2021 a wearable sensor for
active control of multimedia applications and games. Muse2 instead developed sev-

1https://www.next-mind.com/
2https://choosemuse.com/
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Figure 1.1: Gartner hype cycle for emerging technologies in 2016, from Gartner[1]

eral wearable BCIs for neurofeedback during guided meditations, recently updated
to be used for sleep tracking. Enophone produces EEG-capable headphones and
recently made a partnership with BrainFlow to integrate their SDK and build affec-
tive applications for music listening [2]. Melomind3 , the device used in the current
research, is another EEG capable device with headphones and an application for
neurofeedback training. Ontbo4 already promises an application with their head-
phones to generate music playlists that can alter the level of motivation, relaxation,
stress, and concentration in the brain activity. Major brands like Valve, Tobii and
OpenBCI are collaborating to bring together the world of virtual reality and BCI [3],
and Facebook is developing their own neural interfaces after acquiring the neurotech
startup CTRL-Labs [4]. In the academic world, we can find very recent papers that
focused on affective music recommendations, for example Chang et al. [5] proposed
a recommending system to suggest the appropriate stress-relief music to the users
based on the inferred stress level in their EEG, while Abdul et al. [6] designed an
emotion-aware system to correlate implicit emotional user tags and musical features.
This reignited interest in affective applications and the development of a new genera-
tion of BCIs supports the relevance in researching and developing now the methods
and tools that will be used to design the affective systems of tomorrow. Given this

3https://www.melomind.com/en/product/melomind-en/
4https://ontbo.com/en/
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context, music is one of the best elicitors for the field of Emotion-Recognition for a
multitude of reasons:

• It is a proven powerful elicitor that arouses instinctive physiological reactions
in the human body.

• It has been used for centuries to convey emotional meaning, and now more
than ever even across cultures, social classes, and age groups.

• The physiological emotional response is agnostic of the stimulus, thus findings
on music-elicited Emotion-Recognition are theoretically transferrable to other
applications.

• The market of music recommending systems is flourishing and very compet-
itive, with many companies taking part in the technological development of
such systems.

The music-emotion experience is very personal and influenced by internal factors,
such as tempo and pitch of a song, as well as external factors such as memories,
context, or correlated events associated to a past pleasurable or unpleasurable ex-
perience. The proposal of this study is a novel approach to the Emotion-Recognition
task using Melomind, a wearable and consumer-oriented BCI. The goal is to in-
vestigate the feasibility and the performances of the classification task in realistic
listening conditions to evaluate the future development of wearable BCIs equipped
with online Emotion-Recognition for daily use. Instead of focusing on the correla-
tion between the musical features and the event-related potentials (ERPs) in the
brain, the approach of this research is to use emotion-labelled songs as elicitors
to study the spectral properties of frequency bands associated with emotions in
the Electroencephalography (EEG) signal. These spectral properties can be trans-
lated into features and used for the computation of neural biomarkers, called “neu-
romarkers” in this research, to be fed into a classifier for the classification of the
emotional valence and arousal based on known patterns in the brain activity. To
support the collected physiological data, participants have been asked to continu-
ously self-assess their emotions in a coordinate system representing the emotional
dimensions of valence and arousal. The research questions of this study try to fulfil
the design requirements of exploring the performances of the Emotion-Recognition
task using a wearable EEG headset, considering the disadvantages and the advan-
tages of this specific technology. The dry electrodes of the Melomind in pair with
the headphones form factor allow for a very quick and relatively comfortable setup,
enabling the researcher to focus on the task and overall shorten the experimental
sessions. Consequently, it was possible for a single researcher to collect data from
45 subjects over 15 days. This technology has also limited recording capabilities;
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thus, the quality and quantity of data is lower than what could be obtained with stan-
dard EEG lab equipment featuring 32 wet electrodes headcaps. Furthermore, the
position of the Melomind electrodes only allows recording signals from the frontal
and/or the parietal regions of the cerebral cortex, limiting considerably the area of
study. The data has been collected through an experimental phase as result of a col-
laboration between the University of Twente and myBrainTechnologies, the company
that manufactures Melomind. The research was approved by the Ethics Committee
Computer & Information Science and the Dean of the EEMCS faculty following the
regulations in force at the University of Twente, with reference number RP 2021-43.

1.2 Research questions

To evaluate this novel approach, this study aims to answer the following main re-
search question:

RQ: “What are the accuracy and MCC scores of subject-dependent classification
of music-elicited emotional valence and arousal in the EEG signal using SVM and
MLP algorithms with Melomind?”

The mains research question was then extended by the following sub questions to
support possible design choices for a real-time music recommending system based
on brain activity.

SRQ1: “What are the most relevant selected Power Spectral Density features to
perform the Emotion-Recognition using SVM and MLP algorithms with Melomind?”

SRQ2: “What is the best classification strategy applicable to the current software
and hardware capabilities of Melomind using SVM and MLP algorithms?”

1.3 Report organization

To answer these research questions, the main models for self-assessment of emo-
tions have been studied, together with the existing models relating the two main
dimensions of emotional valence and arousal to brain activity (see Chapter 2). The
most compelling related work in classification of music-elicited emotions has been
reviewed (see Chapter 3) and used as methodical foundation. An experiment was
designed to collect data in two listening conditions and a processing pipeline was
implemented to extract features and to train classification algorithms that could pro-
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duce comparable results with the related work (see Chapter 4). The results were
then collected (see Chapter 5) and discussed with a view to possible future devel-
opments (see Chapter 6).



Chapter 2

Background

In this chapter some background on Affective Computing and Brain-Computer Inter-
faces is provided. Then the circumplex model of affect is introduced together with
the models for emotional correlates in the brain. Finally, the neuromarkers used as
principal features for classification are presented.

2.1 Affective Computing

All technologies that support the expression and the processing of human affec-
tive behaviours fall under the name of Affective Computing (AC), a relatively new
branch of computer science named after Rosalind Picard’s work [7], that thoroughly
described the practical methods and the ethical implications of building comput-
ers that can understand and express human emotions through the processing of
behavioural, physiological, or conversational data. Building a very sophisticated
Artificial Intelligence (AI) that mimics the human behaviour and can understand and
replicate human emotions is still very far from the current state of art technology.
Yet, the idea raises compelling questions on how we could interact with such entities
and opens many the ethical implications that are valid already for the intelligent sys-
tems being built nowadays. In fact, concrete applications able to perform Emotion-
Recognition tasks are already on the market and in recent years have become a
matter of great interest for researchers working in both academia and the industry.
Emotion-Recognition (ER) is the task of recognizing human emotions by inferring
them from different clues in the data. For example, from metadata collected from
the usage of a software system; from data collected using wearable sensors such
as accelerometers and gyroscopes; from photos and videos of facial expressions
using computer vision; from text and voice samples processed using natural lan-
guage processing techniques; from physiological measurements such as heart rate,
dermal activity, and of course also brain activity.

7



8 CHAPTER 2. BACKGROUND

The rapidly growing branch of AI, mostly represented by machine learning and
deep learning algorithms, further fuels the development and the improvement of
systems that can perform ER, by offering powerful techniques that can leverage the
quantity of data to build fast and reliable systems more suitable for real-time tasks.
Because of the nature of these data, it is possible to infer very sensitive behavioural
and affective information from the users, exploitable by companies for commercial
uses and marketing proposals, evoking the unpleasant dreads of an Orwellian so-
ciety where powerful corporations know exactly what people are thinking, feeling,
desiring, or fearing and manipulate their emotions for “evil” purposes. Cases like
the “Facebook emotional manipulation study” [8] already demonstrate the interest
and the ease for companies in inferring and manipulating their users’ emotions and
getting away with little or no consequences. Thus, philosophers and scholars al-
ready advocate for researchers and designers to design technology in a socially
responsible behavior perspective [9], so that users and companies are not tempted
to misuse technology but rather use it to improve society. In the context of this
research, a company building an intelligent system that can offer affective user ex-
periences must ward the users’ control over their data and utilize these data with
consensus and in respect of privacy laws, for example with anonymization of sensi-
tive information and transparent guidelines to make the users aware on how, where
and when their data will be used. Even a music recommending system can raise
serious ethical concerns: social functionalities might reveal sensitive information of
a user to their network of friends, or groups of users might be targeted by affective
promotional advertisement that has a negative impact on their emotional state.

In 2003, Picard also addressed with several criticisms the main challenges [10]
faced by designers engaged in building machines with affective abilities. Some are
relevant for the current study, in particular regarding the ability of sensing and recog-
nizing emotions: Picard argued that the range of means, and modalities of emotion
expression is very broad and hardly accessible, unlikely to be feasible in the near
future. Another similar criticism regarded the accuracy of recognizing an individ-
ual’s emotional state from the available data and the difficulty in the articulation and
assessment of one’s own feelings. While these criticisms still hold true, the techno-
logical developments of the last two decades of wearable sensing devices, including
wearable BCIs, greatly contributed to the collection of data that can be leveraged for
affective computation, probably beyond Picard’s expectations. Brain activity, blood
volume pressure, movement recorded through accelerometers, and heart rate have
been used in several experiments for the ER task and it has been proven possi-
ble by all these means, with different degrees of precision.The most relevant criti-
cism probably regards the cognitive modeling of affective data. The progresses in
psychological interpretation of idiosyncratic processes that characterize emotional
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responses are little and often supported by data collected in highly artificial lab envi-
ronments. Multiple models for emotion assessments coexist in the emotion research
community and there is still disagreement on what type of mechanisms mediate the
effects of emotion. These models inevitably represent stylized stereotypes of emo-
tional responsiveness and do not exactly correspond to the behavior and feelings in
real people. While this study does not delve in evaluating the goodness of the emo-
tional models, the use of a wearable device and the automated processing of data
towards the realization of an online system are an attempt to simulate less artificial
conditions. Further discussion about the subjective experiences of the participants
(see Chapter 6) gives further insights on the difficulties that arise in building affective
systems from self-reported emotional responses.

2.2 Wearable Brain-Computer Interfaces

A BCI often referred to as brain-machine interface, is a system that creates a path-
way of direct communication between a brain and a computer. Research in BCI
dates back to 1973 when Jacques Vidal named the field in his paper “Towards Brain-
Computer communication”, and since then many technologies have been used to
build this “bridge” between the human brain and machines; in their overview paper,
Nicolas-Alonso and Gomez-Gil provide a good summary of the state-of-the-art BCIs
[11]. In short, a first categorization can be made between invasive or partially inva-
sive BCIs, implanted directly in the brain or on the skull, and non-invasive BCIs that
can be easily placed on the scalp. The main advantage of the first two categories
resides in the greater amount and quality of data that is possible to collect. However,
surgeries to implant electrodes can have negative outcomes for the subject includ-
ing the formation of scar tissues, rejection of the electrodes or even worse infection.
Consequently, invasive BCIs are now mostly used in the experimental medical field
where there is a necessity for a high temporal and spatial resolution to treat the pa-
tient’s conditions. Non-invasive BCIs instead often sacrifice spatial resolution and
cannot effectively capture high frequencies in the brain signal due to the dispersion
caused by the skull thickness. In addition, they are affected by a higher presence
of artefacts caused by environmental factors and muscular movements. Neverthe-
less, the easy and safe setup made non-invasive BCIs the preferred choice for re-
searchers and now the majority of published BCIs work involves this type of BCIs.
The main technologies for non-invasive BCIs are the following:

• EEG: can record electrical brain activity from the scalp in the form of time
series. Direct brain activity with good temporal resolution and bad spatial res-
olution.
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• Functional Magnetic Resonance Imaging (fMRI): can record brain activity
by detecting changes in the blood flow. Structural brain activity with bad tem-
poral resolution but good spatial resolution.

• Functional Near-Infrared Spectroscopy (fNIRS): can record brain activity
based on neuro-vascular coupling. Indirect brain activity through oxygenation,
bad temporal resolution, and good spatial resolution.

• Magnetoencephalography (MEG): can record brain activity through the mag-
netic fields produced by the electrical currents in the brain. Direct brain activity
with very good temporal resolution and spatial resolution is slightly better than
EEG.

Among these technologies, EEG has the best cost/capabilities compromise and
eventually became the most popular for BCIresearchers to study evoked potentials
(EP) and ERPs, thanks to the relatively cheap cost compared to MEG, the good
temporal resolution compared to fMRI and fNIRS and the good support provided by
standardized software libraries for recording, streaming, and processing data like
MNE1 , EEGLab2 , OpenVibe3 and LabStreamingLayer4. Except for some very rare
cases, most of the portable BCIs are based on EEG.

Figure 2.1: An example of standard EEG headset

Standard EEG-based BCIs require the subjects to wear a head-cap (Fig. 2.1)
with 16, 32 or 64 electrodes placed over the scalp following the standard 10-20 sys-
tem5. These electrodes usually require the displacing of conductive gel to obtain a

1https://mne.tools
2https://sccn.ucsd.edu/eeglab/index.php
3http://openvibe.inria.fr/
4https://github.com/sccn/labstreaminglayer
5https://www.evokedpotential.com/international-10-20-system.html
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stable and qualitative signal. While this type of setup is acceptable for researchers in
experimental environments, it is clearly impossible to imagine a daily adoption from
users from an usability perspective. This problem is nowadays partly addressed
by wearable EEG-capable headsets like Emotiv Epoc, Neurosky Mindwave, Muse
Headband, NextMind, Melomind (Fig. 2.2) and many others, that mostly feature
EEG capabilities with 2 up to 16 soft dry electrodes, and do not require conductive
gel to capture the electric signal of the brain. While the quality of the signal is not
usually as good and complete as the standard EEG-based devices, the setup of
these portable BCIs is seamless and often requires just a simple calibration making
them suitable for both researchers and consumers. The experimental and analytical
phases of this study have been conducted as part of a research project funded by
myBrainTechnologies, a startup based in Paris that designed Melomind, a BCI that
includes a real-time auditory neurofeedback application to induce a relaxation state.
Apart from its designed purpose, Melomind is a fully featured EEG-capable headset
that comes in two versions, standard (Fig. 2.2a) and Q+ (Fig. 2.2b).

(a) (b)

Figure 2.2: a) Melomind with 2 dry electrodes (on the flexible antennas), and 2
textile electrodes on the cushions.
b) Melomind Q+ with 4 dry electrodes (on the flexible antennas), and 2
textile electrodes on the cushions.

The standard version used in this experiment features Bluetooth headphones
with 2 textile reference electrodes and 2 dry electrodes for recording that can be
placed on the parietal area in correspondence of the P3/P4 electrodes or in the
frontal area in correspondence of the AF3/AF4 electrodes on the 10-20 system. The
Q+ version (Fig. 2.2.b) was still under development at the time of the experiment,
and it is identical to the standard version except that it features 4 dry electrodes for
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simultaneous recording on the frontal and parietal areas, an accelerometer, and a
photoplethysmogram (PPG) sensor to capture heart rate. Melomind records EEG
signals at a sampling rate of 250 Hz and the acquisition application uses an al-
gorithm called QualityChecker to help the researchers visually estimate the quality
of the recorded signal in real-time. Both the EEG signal and the quality values are
saved together with other metadata in a .json file at the end of the recording. The pe-
culiar design of Melomind allows it to play music with very good sound quality while
simultaneously recording EEG signals, thus making it a good choice for experiments
and applications based on auditory stimuli.

2.3 A circumplex model of affect

Defining what exactly is an emotion or how to measure emotions is non-trivial and
has been a matter of several studies by psychologists and cognitive scientists over
the last century. Many explanations and definitions have been given resulting in
a wide plethora of emotional models, sometimes discordant with each other. Re-
cently, the circumplex model of affect [12] proposed by James Russel in 1980, often
referred to as the valence-arousal (VA) model (Fig. 2.3), has become very popular
due to its simplicity yet its efficiency in representing emotions in a 2-dimensional
coordinate system. In the VA model, the valence of an emotion intended as a spec-

Figure 2.3: Valence-Arousal model taken from J.Russell [12]
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trum between an unpleasant and a pleasant feeling represented on the X-axis of a
Cartesian coordinate system, while the arousal of emotion intended as the physio-
logical and psychological level of activity is represented on the Y-axis of the coordi-
nate system. In the 4 quadrants originated by the intersection of the valence and
arousal axes, Russel positioned a total of 28 basic and complex emotions through
an experiment involving hundreds of participants that produced a similarity matrix
geometrically representing the relations between these 28 words. While the subjec-
tive perception of where emotions should be placed might differ from the model’s
labelling, the VA model is still widely used because it simplifies the visualization of
these emotional relations and can be easily integrated into tools for self-assessment
of emotions. Russel’s model is far from being perfect and other models tried to ad-
dress some of the limitations, for example the Self-Assessment Mannikin (SAM) [13]
allows the self-assessment of emotions in a 3-dimensional scale defined by valence,
arousal and dominance while the Positive And Negative Affect Scales (PANAS) [14]
were developed to reflect the extent to which a person feels enthusiastic, active, and
alert using two 10-item mood scales. However, the VA model remains a popular
choice among researchers for the classification of music-elicited emotions, and, for
this reason and the previously mentioned simplicity, it was chosen as main emotion
self-assessment tool. Some of its limitations are also discussed in the scope of this
study (see Chapter 6).

2.4 Models of emotional correlates in brain activity

The connection between music and emotions has been a matter of great interest
for researchers as music has shown its great potential for evoking a wide variety
of emotions. Musicians and composers intuitively know from their experience what
combination of notes, chords, tempo, or pitch is likely to evoke a specific emotion and
this information is valuable both in terms of artistic expression and commercial use.
Correlates between emotions and the physiological effects elicited on the human
body have been studied thoroughly with the intent to define a standard model for
the analysis and processing of emotional information. In 2001, Schmidt and Trainor
[15] conveniently reviewed the main models for analysis of emotional valence and
arousal (referred to as intensity) in the brain activity measured through EEG. The
first model reviewed is from Davidson [16], which introduced the concept of orga-
nizing emotions around approach-avoidance tendencies in the brain. According to
Davidson’s model, emotions are differentially lateralized in the frontal region of the
brain. In particular, the left frontal area is involved in the experience of positive emo-
tions and the right frontal region is involved in the experience of negative emotions.
The second model reviewed, brought up by Dawson [17] and Schmidt [18], states
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that the pattern of absolute activation in the frontal region may reflect the intensity
(arousal) of the affective experience. They supported this model with numerous
studies that brought data evidence of such patterns. The third model, proposed
by Heller [18], considers both dimensions and argues that frontal and right parietal-
temporal regions are involved in the processing of emotions. According to his model,
the frontal region modulates the emotional valence similarly to the model proposed
by Davidson. Heller further states that the right parietal region is involved in the mod-
ulation of autonomic and behavioural arousal, i.e. higher levels of parietal-temporal
activity are associated with high levels of arousal. In summary, these studies bring
evidence that asymmetrical frontal EEG activity may reflect the valence of emotion
experienced, while frontal and parietal absolute activation may reflect the intensity
of the emotional experience. The resulting models lay the foundations for the anal-
ysis of emotions regardless of the stimulus; the application of these models to the
analysis of music-elicited emotions is further discussed (see Chapter 3).

2.5 Spectral features and emotional neuromarkers

The power spectrum of the EEG signal can be decomposed and classified into five
main frequency bands associated to specific cognitive processes:

• Delta waves (0.5hz to 3hz): associated to deepest meditation states and
dreamless sleep.

• Theta Waves (3hz to 8hz): associated to learning, working memory and intu-
ition.

• Alpha Waves (8hz to 12hz): the most prominent in brain activity, it is associ-
ated with the resting state of the brain, as well as coordination and alertness.

• Beta Waves (12hz to 33hz): another commonly found wave in the brain activ-
ity, it is associated with active cognitive tasks, attention, and movement.

• Gamma Waves (25hz to 100h): associated to high level cognitive processing
tasks, senses, and perceptions.

For this study, the most sensitive frequency bands for the study of emotions, accord-
ing to literature, were considered: Theta, Alpha and Beta. These frequency bands
have been often encountered in the analysis of music-elicited emotions and used in
the ER task. The approach of this study was to calculate bio-markers from the brain
activity, referred to as “neuromarkers”, to represent differential and rational measure-
ments supported by the models of emotional correlates. These neuromarkers are a
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convenient mathematical expression of the theories of frontal asymmetrical activity
and regional absolute activation in the brain activity, and some equivalent version
can be found in the related studies with similar or different names. The computed
neuromarkers are the following:

• Approach-Withdrawal Index (AWI): asymmetry index representing the approach-
avoidance tendencies of Alpha waves in the frontal area of the brain and com-
puted as difference of Alpha power between the two frontal electrodes after
normalization against the baseline using the following formula

AW = (PowαAF4− PowαAF3)

• Frontal Midline Theta Index (FMTI): index representing absolute increas-
ing/decreasing activation in the Theta activity on the Fz channel compared to
the baseline period, it is inferred between the frontal electrodes after normal-
ization against the baseline using the following formula

FMT =Mean(PowθAF4, PowθAF3)

• Spectral Asymmetry Index (SASI): index representing the balance of Theta
and Beta frequency band power, computed on both frontal electrodes after
normalization against the baseline using the following formula

SASI(AF3) =
(PowβAF3− PowθAF3)
(PowβAF3 + PowθAF3)

SASI(AF4) =
(PowβAF4− PowθAF4)
(PowβAF4 + PowθAF4)

AWI and SASI, or equivalent measurements, have been reported to reflect the
emotional valence [15], [19]. FMTI, or equivalent measurements, has been reported
to reflect the level of appreciation [20], the emotional valence [21] and the arousal
dimension of emotions [22]. A multitude of reviewed studies [23], [24], [25], [26],
[27] (see Chapter 3) make use of equivalent measurements as features for classi-
fication of emotional valence and arousal. Zhao et al. [22] investigated the use of
asymmetries and mid-line absolute power in the Theta, Alpha and Beta frequency
bands to classify discrete emotion within the same emotional spectrum and were
able to successfully classify four emotions with appreciable precision. To strengthen
the effectiveness in the classification of emotional valence and arousal, the neuro-
markers were supported by an extra set of features of the EEG signal, extracted
in the same frequency bands of interest: raw power, skewness, kurtosis, standard
deviation, ratio, and relative spectral difference (see Chapter 4).
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Chapter 3

Related work

In this chapter, the most relevant studies on the classification of music-elicited emo-
tions are reviewed. In 2013 T. Eerola and J. Vuoskoski [28] reviewed and categorized
251 studies related to music and emotions in terms of approaches, emotion models
and stimuli. However, most of them are not comparable in terms of methods with
the current study and the list is not updated with the most recent findings in the
field of ER. Therefore, the selection of studies reported below features some very
well-known foundational ones that provide the theoretical framework to approach
the selection of relevant features and the analysis of emotions using physiological
signals, and some more recent ones, not included in the review paper from Eerola
and Vuoskoski, focused on the classification of music-elicited emotions using ma-
chine learning algorithms. They have been ordered chronologically to emphasize
the methodological progresses and their contribution to the design of the current
experimental protocol and the classification methods have been highlighted where
appropriate. However, to underline the novelty of this research, only one reviewed
study features the use of a wearable EEG headset with 8 dry electrodes and another
one artificially simulates the use of wearable device by picking 2 frontal electrodes
from a bigger dataset recorded with 32 wet electrodes.

3.1 Classification of music-elicited emotions

L.A. Schmidt and L.J. Trainor [15] were the first investigators that reviewed all the
existing regional brain activation/emotion models and tried to systematically verify
their validity for the analysis of music-elicited emotions. To do so, they designed
an experiment selecting 4 orchestral excerpts that were pre-rated to represent the
following classes:

1. Intense-unpleasant emotion: fear

2. Intense-pleasant emotion: joy

17
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3. Calm-pleasant emotion: happy

4. Calm-unpleasant emotion: sad

They hypothesized that:

• “Asymmetric frontal activation reflects emotional valence”

– Greater relative left frontal EEG activity for joy and happy musical pieces

– Greater relative right frontal EEG activity for fear and sad musical pieces

• “Regional brain activation reflects emotional intensity”

– A significant main effect for the intensity of affective musical excerpts on
overall frontal EEG activity is characterized by a frontal pattern that would
distinguish across valence as predicted by Davidson, Schmidt, and Daw-
son.

– Right parietal activity would distinguish the intensity of the affective musi-
cal excerpts across valence as predicted by Heller.

Then, they recruited 59 participants (30 females) right-handed undergraduates of
psychology between 18 and 34. Their EEG signal was recorded continuously for 60
seconds for each musical excerpt. The data was pre-processed and cleaned from
artefacts, then analysed using Discrete Fourier Transform (DFT) with a Hanning
window of 1-second width and 50% overlap.

Figure 3.1: Valence by hemisphere interaction showed differences among the four
musical excerpts on the left and right frontal EEG alpha power. Taken
from [15]
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Frequency-band specific power in the alpha band (8-13Hz) was derived from
the DFT output over the complete power spectrum. ANOVA analysis on valence
by hemisphere interaction revealed a consistent behaviour between the left frontal
EEG activity with positive valence songs and between the right frontal EEG activ-
ity with negative valence songs (Fig. 3.1). According to their findings, they could
confirm that asymmetrical frontal activation indeed distinguished the valence of mu-
sical emotion: subjects exhibited greater relative left frontal EEG activity for musical
excerpts with positive valence and vice versa on the right side for musical excerpts
with negative valence (Fig. 3.2), confirming their first hypothesis. Furthermore,
the results showed that musically induced emotions elicit the same frontal brain re-
gions as emotions induced through other means, which validates musical stimuli as
good emotional elicitors for agnostic emotion classification. Intensity by hemisphere
analysis reported main effects on intensity, but without interaction: subjects showed
significantly greater activity in the frontal region as the affective stimuli became more
intense.

Figure 3.2: Valence by hemisphere interaction.Alpha power is inversely related to
activity, positive left is accordingly lower for positive emotions and neg-
ative right is lower for negative emotion. Taken from [15]

The frontal EEG activity decreased from the presentation of the fear to the joy
to the happy to the sad excerpts and it is consistent with the behavioural rating of
intensity. Since they only used auditory stimuli, the lack of parietal differences might
be due to the lack of external focus from environmental stimuli.

Valence by intensity analysis showed that musical excerpts with higher intensity
and positive valence elicited significantly higher activity compared with the opposite
combination, low intensity and negative valence (Fig. 3.3). This study is relevant
for the analysis of music-elicited emotions because it provides a validation for the
models proposed by Davidson, Fox and Heller that state the approach-withdrawal
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Figure 3.3: Valence by intensity interaction. Greater power (lower activity) in the
low-intensity excerpts than in higher intensity excerpts, with a more ex-
treme difference for negative valenced excerpts. Taken from [15]

tendencies in the frontal EEG activity: positive emotions are processed in the left
anterior region of the brain, negative emotions are processed in the right anterior
region of the brain. Regarding the intensity, or arousal dimension, of the emotions,
the results are consistent with the models by Davidson, Dawson and Schmidt that
correlate absolute frontal activation with the intensity of the emotional experience.
However, in contrast with Heller’s model, they did not find relevant differences in the
right parietal activity, possibly because of their experimental setup.

In 2009, Lin et al. [23] recorded 26 participants to perform Emotion-Recognition
of four emotional states representing the 4 quadrants of the VA space: joy, plea-
sure, sadness, and anger. They proposed the listening of pre-labelled emotional
music and then collected the discrete self-reported labels from their subjects to be
used for classification. After removing motion artifacts with visual inspection, they
extracted the frequency-band specific power in the Theta, Alpha, Beta and Gamma
bands using Short-Time Fourier Transform (STFT) and then derived the power of
each EEG component across time over 32-channels. They calculated 12 asymme-
try indexes (ASM12) as the difference in power from 12 symmetric electrode pairs
for at total 60 features over five EEG components. Support Vector Machine (SVM)
was used to classify the data in three different configurations:

• “all-together”: multi-class in one step with Crammer’s optimization formulation

• “one-against-one”: binary classification for K(K-1)/2 classifiers, then the test
prediction is decided with max wins strategy.

• “model-based”: two-level nested binary classifiers, one for valence and one for
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arousal, then the results are aggregated.

The they then proceeded with a subject-dependent strategy for classification. They
obtained the best performance with the “one-against-one” scheme, respectively
94.86 % (1.76) accuracy for valence and 94.43% (2.12) for arousal and showed that
the binary classification strategy is consistently more reliable than multi-class clas-
sification. However, there are no reports about the distribution of the self-reported
labels, meaning we do not know if the datasets were balanced or unbalanced be-
tween the four emotional states.

In 2010, a remarkable comparison of modern methods can be found in a subsequent
study from Y. Lin et al. [24], which developed a systematic framework for optimiza-
tion of EEG-based emotion recognition. According to the asymmetry and regional
activation theories, they extracted a set of spectral features (PSD30) from Delta,
Theta, Alpha, Beta and Gamma frequency-band specific power. Subsequently,
they derived several asymmetry indexes by power subtraction (DASM12) or division
(RASM12) between 12 symmetrical pairs of 24 electrodes placed over the frontal,
central and parietal areas of the brain and lastly, they also used the individual spectra
of these 24 electrodes (PSD24). They then proceeded with automatic feature se-
lection to improve the accuracy of the classification of four emotional states, namely
joy, anger, sadness, and pleasure, testing subject-dependent classification with both
SVM and Multi-Layer Perceptron (MLP). After F-score ranking all the features by
performance, they identified which features were subject-independent to the whole
dataset. Finally, they repeated the experiment lowering the number of electrodes
and features, and they compared the performance of both subject-independent and
subject-dependent features.

According to the classification results, differential asymmetry features (DASM12)
yielded better accuracy than rational asymmetry features (RASM12), Furthermore,
DASM12 significantly improved classification performances compared to PSD24,
even if they were derived from the same electrodes, suggesting that hemispheric
power asymmetry is more discriminating in the measurement of mental states. These
differential asymmetries were also subject-independent, meaning that their perfor-
mance was consistent across subjects. In addition, further experiments on elec-
trodes reduction proved the classification performance to be quite comparable de-
spite the lower number of features, and only dramatically declined when the number
of features was reduced below 10 (see Fig. 3.4). This study provides useful insights
on the performances of features based on hemispheric asymmetry. However, it is
hard to compare with other works or the current study, because of the decision to
report classification performances of 4 emotional classes created from the aggre-
gated dimensions in the valence-arousal space.
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Figure 3.4: Comparison of average accuracy of subject-dependent and indepen-
dent features and the number of electrodes for subject-independent fea-
tures. Taken from [24]

In 2013, Koelstra et al. [27] created one of the biggest public available datasets,
both in terms of participants and variety of signals collected, to investigate the emo-
tion recognition task using physiological signals. They investigated the role of emo-
tions in communication and realized that most systems fail in interpreting the human
emotional vocabulary, they are not able to identify emotional states and use them
accordingly. According to the authors, the goal of affective computing is to fill this
gap and synthesize emotional responses. Affective characteristics are features that
can describe multimedia content and can be associated with implicit emotional tags.
These tags could then be used to improve the performance of recommendation and
retrieval systems in understanding the user’s taste and then recommend content that
matches the current emotion. They adopted a three-dimensional model that adds
third dimension to Russel’s valence-arousal model: dominance. Arousal ranges
from inactive to active, valence ranges from unpleasant to pleasant and finally dom-
inance ranges from a “helpless and weak” feeling to an “empowered” feeling. They
utilized SAM [13] for the self-reporting task of discrete emotions. Physiological sig-
nals seem to carry emotional information; they comprise signals from the central
nervous system (CNS) and peripheral nervous system (PNS) as well (see Fig. 3.5).
They are available to be used for emotion assessment but were not in the main
scope of the experiment. Music videos were used as visual stimuli, 32 participants
(16 females) took part in the experiment and their EEG and peripheral physiologi-
cal signals were recorded while they were watching 40 selected stimuli. They were
asked to rate each video in terms of arousal, valence, like/dislike, dominance, and
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familiarity and for 22 of them the frontal face video was also recorded. After sev-
eral steps of semi-automatic selection of 120 stimuli and a manual selection for the
rest, 40 final stimuli were selected, considering an equal distribution between the 4
quadrants/classes that can be identified in the valence-arousal space:

• LALV : low arousal / low valence

• LAHV: low arousal / high valence

• HALV: high arousal / low valence

• HAHV: high arousal / high valence

For each selected music video, they extracted a 1-minute segment and used an
affective highlighting algorithm by Soleymani et al [29]. Between each segment,
there were 55 seconds of overlap, content features were extracted and provided
the input for the regressors. The emotional highlight score was computed with the
following equation:

ei =
√
a2i + v2i

Where a is the arousal, v is the valence and ei is the i-th segment of emotional
highlight. For each video, the segment with the highest score was extracted for the
experiment.

Figure 3.5: Placement of physiological sensors to record EOG, EMG, GSR, BVP,
temperature and respiration. Taken from [27].

The experiment included 2 minutes recording of the baseline, then the 40 videos
were presented in 40 trials, each consisting of:

• 2-second screen displaying the current trial number
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• 5-second baseline recording

• 1-minute display of the music video

• Self-assessment for arousal, valence, liking and dominance

The stimuli from the four conditions, in general, elicited the target emotion (see Fig.
3.6) and high-arousing conditions worked particularly well.

Figure 3.6: Mean location of the stimuli on the Valence-Arousal space for the 4
classes. Liking is colour-coded as red for low and bright yellow for high,
while dominance is size-coded with small symbols for low and big sym-
bols for high.Taken from [27].

Emotions with strong valence and low arousal were instead more difficult to elicit.
They also observed a high positive correlation between liking and valence, and be-
tween dominance and valence, meaning that people liked music that gave them a
positive feeling or feeling of empowerment. Medium positive correlations were ob-
served between arousal and dominance and between arousal and liking. Familiarity
correlated with liking and valence moderately and positively. They found negative
correlations for arousal in the Theta, Alpha and Gamma band, with the central Al-
pha power decreasing for higher arousal, that matched the findings of their previous
study. There is also an inverse relationship between Alpha power and the general
level of arousal. Valence instead showed the strongest correlation with EEG sig-
nals in all the frequency bands. In Theta and Alpha frequency bands, an increase
in valence led to an increase in power. For the Beta frequency, there are a cen-
tral decrease and an occipital and right temporal increase of power, associated with
positive emotional self-induction and external stimulation. Liking correlates could be
found in all frequency bands, for Theta and Alpha power they showed an increase
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over the left frontocentral cortices (see Fig. 3.7). In summary, their observed corre-
lations partially concur with their previous study and other studies that explore the
neurophysiological correlates of affective states.

Figure 3.7: Mean correlations overall participants of valence, arousal, and rating
with power in Theta, Alpha, Beta and Gamma bands. Highlighted sen-
sors are significantly correlated with the ratings.Taken from [27].

To preprocess the EEG data, the signal was down sampled, high pass filtered
using EEGLab and then eye artifacts were removed with blind source separation
technique using the recorded Electrooculography (EOG). Classification was ex-
perimented in three modalities: EEG signals, peripheral physiological signals, and
Multimedia Content Analysis (MCA), but only the first one is relevant for the current
study. Power spectral features were extracted from the EEG signal in the Theta, Al-
pha, Beta, and Gamma bands, then the asymmetry was measured as difference in
spectral power from symmetrical pairs of electrodes. In total they used 216 EEG
features for single trial subject-dependent classification with leave-one-out cross
validation scheme, where one stimulus was used as test set at each step of the
cross validation. Many datasets where unbalanced in the distribution of valence
and arousal labels, thus they used F1-score to assess the reliability of the accu-
racy scores. Using a gaussian naı̈ve Bayesian classifier, they reported an average
accuracy of 62% for arousal classification with F1-score of 0.583, and an average
accuracy of 57.6% for valence classification with F1-score of 0.563. The results
were compared against random guessing, class ration and default majority class
guessing. The F1-score distribution was significantly higher than 0.5, indicating the
models’ capability to learn from EEG features despite unbalanced datasets and av-
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erage accuracy lower than majority class guessing.

Reuderik, Mühl and Poel [21] investigated correlations between emotional valence,
arousal, and dominance during game play to study affective correlates in a realistic
and uncontrolled environment. To induce frustration, they utilized a game designed
to ignore 15% of keyboard input for short periods, with the screen lagging to simu-
late an under-powered computer. They recruited 12 healthy users and asked them
to play the game through a sequence of random permutations of two normal games
and one frustrating game of 2 minutes each. After each game, the subjects were
asked to self-report their current mental state using Self-Assessment Manikins. Dur-
ing the experimental session, they were recorded with a BioSemi ActiveTwo EEG
system with 32 active electrodes placed at the extended locations of the 10-20 sys-
tem. In addition, EOG were recorded to measure the influence of ocular artifacts
and Electromyography (EMG) to record the finger movement used to control the
game. The EEG data were high pass filtered to remove frequencies below 0.2Hz
and notch filtered to remove power line noise, then the signal was corrected for
eye movements using linear regression analysis subtraction. Finally, the data was
re-referenced to the common average reference (CAR). For the feature extraction,
they estimated the power in different frequencies using Welch’s method for each
experimental game session, then within each session they summed the log-power
in the Alpha band for each electrode and subtracted the band power of electrodes
on the left hemisphere from the corresponding electrodes on the right hemisphere.
The obtained Alpha-asymmetry indexes for each sensor pair were used to find a
correlate with valence. The results of the statistical correlations of self-reported va-
lence, arousal and dominance confirmed correlates for both valence and arousal in
the Theta, Delta, and Alpha frequency-band specific powers during the activity of
gaming. The different affective dimension did not seem to be orthogonal, valence
and dominance ratings were highly correlated, thus effects found in the EEG re-
lated to one affective dimension can be attributed to the other. Their conclusions on
frequency-specific and localized emotional interpretation are valuable for the current
study, despite the use of a video-game as elicitor. The asymmetry of Alpha power
and fronto-central Theta power were validated for the measurement of emotional
valence. Right frontal Alpha power and the absence of right parietal Delta power
instead were instead indicative of the arousal dimension. They concluded stating
that these effects and the stronger narrow-band effects could be used for automatic
recognition of affect. The importance of this study lies in the validation of the asym-
metry and regional absolute activation theories in a realistic scenario, which is of
fundamental importance in the pursuit of real-time ER.



3.1. CLASSIFICATION OF MUSIC-ELICITED EMOTIONS 27

The data-oriented approach in the study from Thammasan et al. [26] in 2016
focused on considering emotional oscillations within a single music piece during
EEG-based emotion recognition. They proposed a continuous emotion-recognition
approach, including self-reporting and continuous emotion annotation using the VA
model. After adopting two different approaches for information extraction, Fractal
Dimension (FD) and Power Spectra Density (PSD), they discovered that FD slightly
outperforms PSD in both arousal and valence subject-dependent classification, while
having a higher correlation between the classification and self-reported emotions.
FD is an alternative approach to the analysis of irregular time series, proposed by T.
Higuchi [30], and it is now getting more popularity in affective computing research,
because of a relative simplicity compared to PSD. Higher values of FD reflect the
higher activity of the brain; PSD instead indicates the signal power in specific fre-
quency ranges, and it’s based on Fast Fourier Transform (FFT), used to decompose
the EEG signal into the previously explained frequency ranges: Delta, Theta, Alpha,
Beta, and Gamma. EEG-based emotion recognition is promising for potential appli-
cations like music therapy, multimedia tagging, and multimedia retrieval. However,
previous studies did not consider emotion variation and usually adopted a single
emotion annotation approach because the experiments were run with music ex-
cerpts shorter than a minute. Since emotions are subjective and the same piece of
music can induce different emotions in listeners, they also gathered self-annotated
emotion labels from them. This can overcome the problem that many studies have,
i.e. the use of emotionally pre-labelled music pieces from standard libraries, where
emotions are labelled by an expert or by other users. For the experimental session,
they recorded 15 male participants between 22 and 30, all healthy students from
Osaka University. The music collection was composed of 40 pieces in MIDI format,
so that additional emotions contributions by lyrics could be eliminated. The 12 elec-
trodes used were chosen for their location close to the frontal lobe, the part of the
brain that is crucial for emotion regulation: Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4,
T3, T4, and Pz. Each song length was on average two minutes, then followed by 16
seconds of silent rests to allow the participant to mitigate the effects from the pre-
vious song when starting the next one. After the listening session, the participants
listened to the same songs and annotated their perceived emotions by clicking on
the corresponding points in the valence arousal emotion space. For feature extrac-
tion, they applied a sliding window segmentation that could analyse temporal data
to track emotional fluctuation. A window of 1000 samples was used, equivalent to
4 seconds. To perform emotion classification, emotional tagging in one window was
set to a high or positive value if the number of positive instances was greater than
the number of negative instances. Using feature extraction with the two approaches,
they obtained 12 features from FD value calculation and 60 features with PSD. Since
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traditional methodologies neglected emotional changes over time, they decided to
compare the continuous recognition with the traditional method by simulating it with
a sliding window size expanded to the full length of the song. The “chance level” was
introduced for annotated emotion to provide a benchmark to evaluate models since
annotated data could be unevenly distributed in terms of positive/negative percep-
tion. In this way, the chance level is defined by the majority class of the training data
(with 60% positive samples, the chance level would be 60%).

Figure 3.8: Average classification accuracy and standard deviation for valence and
arousal across all subjects .Taken from [26].

The results (see Fig. 3.8) show that all the continuous approaches, regardless
of the algorithm used, outperform the traditional method. Classification with FD fea-
tures using SVM achieved the best relative result of 82.8% for arousal recognition
with a chance level of 62%. Also in valence recognition, FD features proved to per-
form better with SVM and the highest accuracy of 87.2%. The general higher arousal
correlation of FD value features might be the reason it performed better than PSD
for arousal recognition, and similarly, they could achieve better results for valence
recognition because of their slightly higher absolute correlations. The results ob-
tained with PSD features are later compared with the results obtained in the current
study, that also used features extracted from PSD (see Chapter 5.2).

Wu et al. [25] experimented valence classification on the DEAP dataset [27] in
2017 selecting a small subset of channels located in the frontal area according to
the asymmetry theory, to simulate the use of a wearable device. They extracted
spectral properties using FFT and calculated the following features:

• Entropy to measure the randomness of a signal in the Delta and Gamma fre-
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quency bands.

• SASI to detect emotions based on a balance between power in Theta and Beta
frequency bands as defined in Chapter 2.7.

• Emotion Valence Index (EVI) that reflects the hemisphere asymmetry of frontal
Theta power similarly to AWI and calculated as:

EV I =
10(log10(TFθPL)− log10(TFθPR)

(log10(TFθPL) + log10(TFθPR)

They also calculated differential asymmetry indexes based on the power in Beta
(BASI), Delta (DASI) and Gamma (GASI) frequency bands, for a total of 68 fea-
tures for classification. After building a multi-classifier system for subject-dependent
classification, they obtained the best performance with a Gradient-Boosting Deci-
sion Tree (GBDT) classifier that scored a maximum valence classification accuracy
of 76.34% and a mean accuracy of 75.15% using only two frontal electrodes, Fp1
and Fp2. They repeated the experiment with 4 and 6 frontal electrodes as shown in
Figure 15 only slightly improving the performance. The subject-independent exper-
iment with leave-one-subject-out scored sensibly worse, with an average accuracy
of 61.82%, having highest accuracy of 91.67% and lowest accuracy of 21.43%. Fur-
thermore, to consider the unbalance towards the positive valence class, the authors
labelled each trial as positive if the valence score was higher than 7 and negative if
the valence score was lower than 3, but it is not clear how the trial is labelled for a
value in between nor what is the actual distribution of labels for each subject.

Figure 3.9: Mean classification accuracy with 3 different subsets of electrodes from
DEAP. Taken from [25].
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These results proves that classification is possible with a meagre amount of elec-
trodes, but also that strategically selected frontal electrodes contain enough affec-
tive information to eventually perform the classification task using a wearable device
and with a lower computational cost, thus more suitable for real-time classification.
However, subject-independent classification seems to be highly affected by subject-
dependent variations, thus less promising. The authors also did not mention their
preprocessing strategy, and this fact is only explainable if they used the already pre-
processed version of the DEAP dataset, made available by the authors in the same
package with the raw data. This study is valuable for the investigation of Emotion-
Recognition with a simulated wearable device but does not give further insights for
a realistic real-time application.

Always in 2017, Thammasan et al. [31] presented a framework for adaptive multi-
modal recognition using a dataset collected recording the EEG, Electrocardiography
(ECG) and Galvanic Skin Response (GSR) signals of 9 healthy subjects listening to
music. This study is the only one based on a wearable EEG headset with 8 soft dry
electrodes developed by IMEC. All the musical stimuli were selected based on pre-
vious studies and with statistically verified emotional ratings, simplified to 4 classes
corresponding to the quadrants of the VA space. They also utilized a stratified music-
selection approach, with a selection of 16 songs from the researchers themselves,
and 8 songs subject-selected. They then proceeded with the experiment, collecting
the VA labels with continuous annotation using the mouse and SAM [13] in a scale
from 1 to 9 after each trial, followed by a rating of familiarity in a scale from 1 to 5 to
verify the overall familiarity with the music. They also collected whether the subjects
liked or not the song and their confidence in the self-rated annotations on a scale
from 1 to 3. The PREP [32] preprocessing pipeline was run in EEGLab with standard
filtering and Independent Component Analysis (ICA) decomposition to remove eye
movements activity and muscular artifacts. The EEG features were extracted using
multi-taper PSD to minimize the bias and make them more robust under stochastic-
ity. PSD features were extracted in the Theta, Alpha, Beta and Gamma frequency
bands, but no further differential or rational computation was applied. Classification
was performed with SVM based on RBF kernel with subject-dependent strategy. For
each subject, emotional valence and arousal were classified with leave-one-block-
out cross-validation, then Matthews Correlation Coefficient (MCC) scores were cal-
culated to give a more accurate representation of the classification performances
with unbalanced classes. This is one of the first reviewed studies to clearly con-
sider the unbalance of classes that is typical of emotion related studies involving
music, and the accuracy performances are compare against the “chance level” of
each subject, which is defined as majority-voting accuracy. The performances of
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the classification are evaluated as multi-modal contribution of several physiological
sources, but the maximum accuracy obtained by EEG as uni-modal source is 80%
for valence and 72% for arousal. Unfortunately, no detailed accuracy scores are
provided, but instead the MCC scores are presented for each modality. The aver-
age MCC score for valence is 0.247 (0.17) with the highest score being 0.596 (0.3),
while the average MCC score for arousal is 0.177 (0.04) and the highest score being
0.23 (0.22). Given the impact of personal perception on the distribution of emotional
labels, MCC is an important evaluation metric as later explained, when discussing
the optimization process of the current research (see Chapter 4.2.7).

Recently, Keelawal et al. [33] following up their previous studies [26], [34] com-
pared the use of the deep learning algorithm Convolutional Neural Networks (CNN),
with other methods for emotion recognition on EEG signals. CNN has shown very
good results and potential in the generalization of unseen subjects, therefore they
aimed to study how to tune the hyper-parameters to obtain beneficial optimiza-
tions. Their results show that the temporal information in distinct window sizes
significantly affects the recognition performance, and CNN was more responsive
to window changes than SVM. Subject-independent classification with (leave-one-
subject-out (LOSO) strategy and 10-fold cross-validation of arousal achieved highest
accuracy of 56.85% and MCC of 0.1369, window size of 10 seconds, while valence
recognition performed a highest accuracy of 73.34% and MCC of 0.4669 with an 8
second window size. CNN has been recently applied to EEG-based emotion recog-
nition with the advantage of circumventing feature engineering and improving classi-
fication accuracy thanks to its advantages at capturing adjacent spatial information.
The fact that emotional responses can evolve creates the necessity of continuous
annotation of emotions to allow capturing the temporal dynamic of emotion. Spatial
information is also important using CNN: the placement of adjacent electrodes in
the input matrix can be impactful, meaning the accuracy can be improved with an
optimal arrangement of the order of EEG electrodes over the most contributing re-
gions of the brain in emotional processing. The experiment was conducted with 12
male students from Osaka University, using a collection of 40 MIDI files, which were
equally distributed over the four quadrants of the arousal-valence space. Subjects
were instructed to select 8 familiar songs and 8 unfamiliar songs. Each song was
played for 2 minutes with a 16 second silence interval in between. The electrodes
were chosen near the frontal lobe. After listening to the songs, the subjects were
detached from the EEG equipment and were asked to listen again in the same order
and annotate the emotions by clicking on the arousal-valence space at the corre-
sponding position (every 2-3 seconds). During the EEG pre-processing a band-pass
filter was applied (0.5-60Hz) and ICA was computed using the Info-Max algorithm
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and then the components were evaluated based on the power spectral density, scalp
topography, and location of the equivalent current dipole. Four different architectures
were tested with respectively 3, 4, 5 and 6 convolutional layers and the same model
as represented in Figure 3.10.

Figure 3.10: Optimized architecture of the model in [33].

Increasing the window frame led to higher performance in all CNN architectures,
for both arousal and valence, with a higher improvement of the valence condition
considering the MCC ranges of both conditions (0.1302 for valence and 0.0951 for
arousal). Arousal classification scored the best results with window size of 10 sec-
onds, obtaining 56.85% accuracy and MCC value of 0.1369, and scored the lowest
with a 1-second window size obtaining 52.09% accuracy and MCC of 0.0418. On
the other hand, valence classification obtained the best accuracy at 73.34% with
a window size of 8 seconds and MCC value of 0.4669, while the lowest accuracy
was 66.83% and MCC of 0.3367 with 1-second window size. According to these
results, there could be enormous variations between the signal of each subject and
expanding the window size could reduce fluctuations among distinct subjects. Com-
pared to their previous work using SVM (linear, polynomial and RBF kernels) on the
same EEG dataset, the window size was way more influential for CNN. Electrodes
sorting instead had less marked effects on the classification in comparison with a
random order, with 3D Physical order for valence classification obtaining significant
differences with 72.94% accuracy and MCC of 0.4588. MinCBO also had some
significant improvement overall. The results of subject-independent classification in
this experiment seems to confirm that strategy is achievable with computationally
demanding offline pre-processing pipelines and a fine-tuning process of the deep
learning models. These considerations, together with the use of a standard EEG
headset, suggest that subject-independent classification might be still too challeng-
ing for real-time Emotion-Recognition using a wearable device.
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The general trend of investigating Emotion-Recognition using EEG is to support the
task with discrete or continuous emotion annotations to reduce the biasing effects
of pre-labelled emotional labels, as well as selecting the recording channels that
are positionally more relevant in the analysis of emotional processing in the brain.
Fractal Dimension algorithms and Power Spectral Density calculation seem to be
the most promising pre-processing techniques for features extraction. The reviewed
studies focus on the frontal asymmetrical hemispheric tendencies in the Alpha and
Theta powers, which are usually computed as differential or rational indexes be-
tween symmetrical pair of electrodes. The absolute activation in frequency-band
specific Theta, Alpha, Beta and Gamma powers in the frontal, central and parietal
area are all relevant in the study of emotions, but there was not a prominent method
for features computation. The limitation of the EEG equipment used for the current
study, as well as the light preprocessing approach, constrained the analysis so that
only frontal Theta, Alpha and Beta frequency-band specific powers were consid-
ered. Supervised learning algorithms, like Linear Regression, GBDT and SVM, but
also deep learning algorithms like MLP and CNN, were possible valid choices for the
task, depending on the amount of available data and the classification strategy. The
most popular strategy among the reviewed studies is subject-dependent analysis,
that generally yields better accuracy, compared to subject-independent strategy that
requires fine tuning of features and models. Not all the reviewed studies reported if
the distribution of self-reported emotional labels was balanced or unbalanced, which
may cause major problems in the classification and diminishes the reliability of re-
ported accuracy scores in absence of more informative coefficients like F1-score
and MCC score. In the next chapters, the methods used in the classification task
and the problems encountered further elaborate on these issues.
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Chapter 4

Methods

This chapter describes the methods used to carry on the research, from the data
collection to the preprocessing and the results of the analysis. It includes a brief
description of the population that took part into the experiment, the experimental
task and conditions, the procedure adopted, and the equipment used. Then it delves
into the analysis process starting with the preparation and preprocessing of the data
and concluding with the intermediate outcomes of the classification. As previouslyu
mentioned, the experiment is the result of a collaboration between the University of
Twente, that provided the space, the recruitment system and part of the recording
equipment, and myBrainTechnologies that provided their EEG-capable Melomind
headsets and the rest of the equipment. The experimental design was reviewed and
adjusted for ethical approval by the Ethics Committee of the university with reference
number RP 2021-43 and compliant with the safety measures to prevent the spread
of the Covid-19 virus.

4.1 Experiment

The experimental phase of the research was crucial for the proper evaluation of
Melomind. Previous studies conducted internally at myBrainTechnologies provided
the theoretical backbone to work with neuromarkers and music, however the datasets
of the employees were collected with a different experimental setup that did not ac-
count for the continuous measurement of emotional valence and arousal, and in any
case there was always a chance data could be biased by the previous knowledge
these ”expert” subjects had on the topic and the technology. A feasible alterna-
tive could have been the simulation of a wearable device, similarly to the approach
taken by Wu et al. [25], but that was kept as emergency solution in case it was not
possible to run an experiment under the safety restrictions enforced by the Covid-
19 pandemic. However, the open datasets available online for emotion analysis

35
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[27], [35], [36] are recorded with a very different equipment than the Melomind, that
would have not properly reflected the challenges of using a wearable neural inter-
face. Finally, the opportunity to conduct the study with the students of the University
of Twente and the availability of myBrainTechnologies to ship all the technical and
hygienic materials to the Netherlands made it possible to proceed with the experi-
mental protocol in the desired conditions.

4.1.1 Experimental Annotation app for data collection

An app was developed to collect continuous annotations of perceived emotion, in-
spired by the design of the FEELTRACE tool [37] and the app developed by Tham-
masan et al. [26]. The Experimental Annotation (EA) app was developed in Python
using the Psychopy1 engine for experimental behavioral sciences. The app is a
collection of timed routines that alternate guided instructions, annotation tasks on
a simplified GUI representing the valence-arousal space and Likert scales to re-
port familiarity/liking scores in the range [1-5]. Three training sessions have been
included:

• T1: the participant is presented with some background information about the
VA model and how to use the annotation tool.

• T2: the participant is asked to annotate on the VA space the perceived emotion
while listening to 2 minutes of mixed music genres.

• T3: the participant is presented with the simulation of a trial of the experi-
ment, including reporting of familiarity/liking and the two listening conditions
(see Chapter 4.1.5).

The EA app was designed and developed at myBrainTechnologies and then
tested with the other employees during a short pilot period to adjust the instructions,
the clarity of the GUI and the input method. Two input methods were evaluated with
A/B testing methodology, using mouse and joystick respectively. The results of the
test (see Appendix A.1) confirmed that using mouse as input source required less
training and effort, thus softening the cognitive load of the annotation task while mu-
sic listening. Using the joystick would have enabled collecting annotation even in
an eyes-closed listening condition thanks to the tactile feedback, but at the cost of
requiring more training and concentration. To record experimental timed events, the
EA app was connected to the Melomind through a TriggerBox with an USB cable,
a customized Arduino Nano board that can send binary-encoded labels using the
serial port.

1https://www.psychopy.org/
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4.1.2 Participants

In respect with the Covid-19 safety measures enforced by University of Twente, 45
healthy participants (28 females) participated in the experiment, all students, or ex-
students of the university. The mean age of the population is 23.8 ± 3.1, with the
oldest student being 31 years old and the youngest student being 18 years old at
the time of the experiment (see Appendix A.2.1). The lowest educational level was
the enrollment as bachelor student and the highest educational level was having
completed a master’s degree. Almost half of the participants (20) were Dutch, while
all the rest came from different countries, but all of them had at least a C1 or equiv-
alent English proficiency as requirement to enroll in University of Twente. Prior to
be confirmed as participants, they were invited through an invitation form inform-
ing them on the nature of the experiment and collecting personal information such
as demographic information, health conditions, drugs consumption, musical literacy,
and some behavioral information on their habits in listening and searching for music
to later support the design of a prototype. Almost 5% of the participants reported
to be left-handed, but none asked for an inverted setup of the equipment after it
was offered to them (see Appendix A.2.1). The only strict criterion to participate in
the experiment was the capability to hear music, eventually through a hearing sup-
port system. None of the applicants was discarded nor required additional support
for their health conditions. Prior to their experimental session, they were asked to
refrain from consuming recreational drugs and alcohol in the 12 hours before the
experiment and caffeine and tobacco in the hour before the experiment to prevent
unexpected biases in the cerebral activity.

4.1.3 Stimuli selection

The stimuli were selected to represent an even as possible distribution of emo-
tions according to the 4 classes identifiable by the quadrants of the Valence-Arousal
space. These 4 classes are the possible combinations of positive and negative va-
lence with high and low arousal. To keep consistency with related studies [27], the
classes have been named as follows going clockwise from the top-right quadrant:

• HAHV: High-Arousal and High-Valence.

• LAHV: Low-Arousal and High-Valence.

• LALV: Low-Arousal and Low-Valence.

• HALV: High-Arousal and Low-Valence.
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Selecting the right stimuli is a non-trivial task especially in the case of music since
many factors can bias the personal perception. For example, familiarity with a certain
song might elicit stronger emotions or create an effect of anticipation [38], [39], [40],
while cultural biases or genre preference might completely change how a song is
perceived [5], [41]. Choosing to include lyrics or no lyrics may shift the attention
of the listener from the meaning to the melody and vice versa. It is clearly hard
to address all the possible issues but considering the scope of this study and the
research on a realistic use-case scenario, most of these factors were either mitigated
or considered with the due precautions.

Figure 4.1: The Valence-Arousal space GUI used for the training with color cues
on the left, and the uncolored Valence-Arousal space GUI used for the
experiment session on the right.

The stimuli were finally selected as a subset of 8 songs (see Appendix A.2.2)
from the music database created by Koelstra et al. [27], according to their emo-
tional tagging. They used the popular online music database last.fm2 to retrieve
120 songs with associated music videos through their APIs, emotionally labelled by
thousands of users. They then screened them down 40 stimuli during a web assess-
ment session with at least 14 volunteers for each stimulus. The 8 songs selected
for this study are a randomly picked subset of those 40 stimuli whose emotional
web assessment belonged to the same Valence-Arousal quadrant as the last.fm
tagging. For each quadrant there are exactly 2 songs and in total 8 emotions are
supposedly portrayed: excitement, happiness, satisfaction, relaxation, depression,
sadness, anger, and anxiety. It is important to point out that the web assessment
conducted by Koelstra et al. was done using the music videos of these songs, and
that the placement of the emotions in the VA space used in this experiment (see
Figure 4.1) is a functional simplification of Russel’s model [12].

2https://www.last.fm/
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4.1.4 Conditions

There is no common agreement in the academic world on which should be the best
recording condition for an EEG experiment about emotions, but most researchers
agree on the minimization of external stimuli. Only few studies tried to assess the
impact of recording in eyes-open (EO) condition and eyes-closed (EC) condition on
emotion analysis. Barry et al. reported [42] differences in topography and power lev-
els, due to the processing of visual input, and recommend considering them when
choosing baseline conditions. Chang et al. [43] analyzed recording conditions in re-
lation to music listening and reported that frontal Theta power significantly increased
in the EC condition, while asymmetries indices in the Alpha power on parietal and
temporal sites reflected emotional valence for EC and EO states respectively. In ad-
dition, participants rated music as more pleasant and more positive while listening
with their eyes closed. These differences in the listening conditions did not seem to
significantly impact on the current study that only used frontal electrodes but were
considered in the design of the experimental task and in the choice of the resting
state baseline. Another problem is caused by ocular movements and blinks that gen-
erates large artifacts in the EEG signal [44]. As a consequence, the data collected
is of lower quality and requires more computationally expensive preprocessing. In
the worst cases, some data must be pruned or reconstructed, varying from a few
channels to the entire dataset of a participant. Eye artifacts are typically found in
the data recorded by the electrodes placed on the frontal area of the scalp and are
usually filtered away by subtracting EOG, if recorded, from the EEG signal. How-
ever it is not the case of this study that could not take advantage of extra sensors to
record EOG . In general, we can assume that an EC condition yields better quality
data than an EO condition because the quantity of ocular artifacts will be reduced to
the minimum and there is no underlying visual stimuli processing. The downsides of
experimenting in the EC condition are the obvious limitations on the task that could
be presented to the participants and a possible increase of power in the Alpha band
of the spectrum, that is usually amplified during resting and focused states. The
main advantage of the EO condition is the possibility to ask the participants for more
complex tasks, at the cost of generating more ocular and muscular artifacts and
eventually introducing multiple cognitive tasks at once, that can affect the analysis.
Prior to the experiment, we run an internal pilot test at myBrainTechnologies to ex-
plore the best compromise options between having good quality data, the maximum
amount of data and collecting the behavioral data we needed. Thammasan et al.
[26] opted for a double listening protocol, in EC condition to record EEG and in EO
condition to collect affective annotations. This translates into listening twice to the
same song but recording only in the EC closed condition and then overlapping the
annotations taken during the EO conditions. Our limitation of 2 frontal electrodes
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already constrained the collectable amount of data, so we decided to extend this
protocol with a double listening and recording approach, in both conditions. During
the pilot we explored the feasibility of collecting annotations in both conditions using
a joystick, but then opted for collecting annotations only during EO condition with
a mouse and then reuse the same annotations on the EEG data collected in EC
condition. As final consideration, the two conditions can be both present in realistic
scenarios, with EO being the most common listening condition, for example in an
office or free-time scenario in which a user listen to music while performing other
cognitive tasks (work, homework, gaming. . . ). Listening in EC condition resembles
a more relaxed scenario, for example when listening to music at the opera or on a
comfortable couch in the evening.

4.1.5 Task

During the experimental session, participants were presented a main task during
which their physiological signal were recorded. The task is divided into 3 sub-tasks
for both conditions during each trial, with a total of 8 trials. The average length of the
recording was approximately 35 minutes of recording. The sub-tasks in each trial,
repeated for both conditions, were the following:

• Listening to white noise: before presenting the stimulus, participants listened
to 15 seconds of white noise to “reset” their emotional state.

• Listening to the stimulus in EO/EC conditions: participants listened to 60 sec-
onds excerpts of each song. During the EO condition participants were re-
quested to continuously annotate their emotions on the VA space, during the
EC condition they focused solely on the music. The order of presentation of
the conditions depended on the assigned group.

• Rating the stimulus: after listening to the song, participants were requested
to give a rating in terms of familiarity and liking of the excerpts, using Likert
scales ranging from 1 to 5. If for any reason they failed to give a score before
the 20 seconds timer expired, the score would be automatically set to 3, that
represented a neutral answer.

So, during each trial, the participants would listen to two different songs, rate them
and only annotate during the EO condition (see Fig. 4.2).

It is important to underline that the order of the conditions might induce some bias
in the annotation task and the rating of each stimulus. To minimize the statistical
effects, participants were randomly assigned to two groups in equal distribution,
ECEO and EOEC, according to an inversion criterion that would determine the order
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Figure 4.2: Diagram of an experimental trial starting with EO listening condition.

in which the conditions were presented during the entire session. This solution
seemed more elegant and less confusing than fully randomizing the order of the
conditions for each trial, possibly creating confusion in the instructions. In addition,
instead to presenting the same song consecutively in both conditions, we decided to
split the session into two parts in which the stimuli are presented in pseudo-random
class order in the first part, and then inverted in the second part as shown in Figure
4.3.

Figure 4.3: Pseudo randomization scheme. Participants listen to all songs twice, in
both conditions, during the two parts of the experiment.

This approach also reduces the familiarity effect caused by listening twice to
the same song in a short span of time and mitigates cases of extreme emotional
fluctuation within each trial, for example if a very sad song would be followed by
a very happy song and then again another sad song. This emotional fluctuation
phenomenon cannot be fully eliminated, but it is statistically balanced by the pseudo-
randomization of the order in which the classes are presented.

4.1.6 Equipment

To record EEG signals from subjects the standard Melomind (Fig. 2.2) was switched
in frontal setup using electrodes placed over [AF3 AF4] positions of the 10-20 sys-
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tem. The standard Melomind has two more textile electrodes placed behind the ear
lobes to be used as ground and reference and can record signals with a sampling
rate of 250Hz. The Melomind was connected via USB cable to a laptop through a
TriggerBox and via Bluetooth to a smartphone to remotely control the start and end
of the acquisition with the proprietary Acquisier app developed by myBrainTechnolo-
gies. The TriggerBox is a micro-controller that can be used by third apps to send
binary strings to the Melomind to mark an event; during analysis these strings can
be decoded using a dictionary to flag a specific segment of EEG, for example a trial
of a specific VA class. In this way splitting the trials and group them by class is sim-
ple, even if they were presented in random order during the experimental session.
An Empatica E4 wristband was used to collect bio signals from the non-dominant
wrist of the participant, namely: blood-volume pressure (BVP), body temperature,
heart rate (HR) and electro-dermal activity (EDA) (Fig. 4.4).

Figure 4.4: EmpaticaE4, a wearable device that can record physiological data in
real-time.

The Empatica E4 was connected to an Android tablet running the Empatica ap-
plication, so the researcher could monitor in real-time the data collection. The EA
app was entirely developed as a set of automated routines in Psychopy, including
trainings for the task, synchronization of the triggers with each experimental event
and instructions for the users. The timers of each routine were calibrated during the
pilot to allow even slower readers to follow up.

The participants could interact with the experimental application through an ex-
ternal monitor connected to the researcher’s laptop and an agnostic mouse, al-
though all participants decided to use the right hand. Finally, all the sessions were
recorded with a GoPro Hero 7 to monitor accidental events and eventually support
the emotion recognition task through facial expressions in a later study. An example
of setup for the experiment can be see in Fig. 4.5.
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Figure 4.5: Experimental setup with Melomind, Empatica E4 and GoProH7. The
EA app is running on the monitor, while the participant is annotating
emotions using the mouse (on the left) and then keeping his eyes closed
as instructed in the following task (on the right).

4.1.7 Procedure

The experiment was conducted in a controlled environment made available by BMS
lab at the University of Twente, with a strict protocol for sanitizing the equipment
between each session, no direct skin-contact with the researcher during the setup,
opening of the air flows every 10-15 minutes and at least 1.5 meters of distance with
the researcher during the experimental task.

Figure 4.6: Scheme of the experimental procedure, estimated to last 75 minutes.

Upon their arrival, participants were invited to sanitize their hands, to read and
sign the informed consent form and then to fill a PANAS questionnaire [14]. The
PANAS is used to measure the change in positive and negative feeling and emotions
in a specific span of time, from a few minutes up to a few weeks. In this case it was
used to measure these changes when conducting the research task and analyse
the impact of the protocol on the population that participated in the experiment (see
Chapter 6.3. After the questionnaire, the participants could start the training session
divided into three parts for a total of 10 minutes, without recording any EEG. The
first part gave some introduction and background about the Valence-Arousal model
and allowed them to get some confidence with the annotation GUI. The second part
proposed a mix of 4 music excerpts, one for each Valence-Arousal class, and asked
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them to annotate in real time with the emotions they were feeling. Finally, the third
part was a complete simulation of an experimental trial, including instructions, white
noises, both listening conditions and ratings. After the training, participants were
asked to fit again the device on their head, then the researcher re-positioned the
reference and recording electrodes to obtain the best possible quality signal using
the Quality Checker (QC) tool of the Acquisier app. The Empatica E4 was then fit on
their wrist to allow a precise calculation of heart rate, and finally the Melomind was
connected to the laptop through the TriggerBox. Participants were also advised to
avoid sudden head movements. Before starting the session, their resting state base-
line was recorded, 2 minutes in EO condition and 2 minutes in EC condition. When
they were ready, they could start the session and follow the automated instructions,
with the order of conditions determined by their assigned group. Halfway through
the session they could take a 5-minute break, look away from the screen and drink
some water, but they were not allowed to remove the equipment. After completing
the second part of the session, another resting state was recorded with the same
settings of the previous one, and then they filled the second PANAS questionnaire.
The resting state recordings are also part of the standard myBrainTechnologies pro-
tocol to compare the mental changes in the resting states after an experiment and
to be used as baseline during EEG analysis. For this study only the resting state
in the EC condition prior to the experimental task was eventually used as recording
baseline. At the end of the session all participants were asked to fill a feedback form
to briefly evaluate the comfort of the experience, the clarity of the instructions and
GUI, any difficulty in the annotation task and to report some behavioral preferences
during music listening. Finally, they were debriefed on the purpose of the experiment
and dismissed. The total length of the session was of 75 minutes on average, with a
maximum of 90 minutes in some cases where the calibration of the equipment was
not satisfactory, and the participants were then compensated for their participation.

4.2 Data analysis

4.2.1 Data preparation

The first step in the analysis process was to reorganize each participant’s dataset
in a systematic collection that could be automatically parsed. Due to the pseudo-
randomization of the classes and the two different conditions, all trials, white noises,
and resting states were flagged using an encoded label through the TriggerBox dur-
ing the experimental phase. The labels were sent using timed events by the EA
app with a precision in the order of milliseconds. The resulting dictionary of events
was used to split the EEG recording and extract trials, white noises, and resting
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states. Each trial was associated with the appropriate label in the format ”condi-
tion/class * *” , where condition could be a value between “EO” and “EC” to rep-
resent the recording condition, the first * could be a number in the range [1-4] to
represent the valence-arousal class, and the second * a letter between “A” or “B”
to represent the order of presentation of a song within each trial. For example,
”EO/class 2 A” represents the part A of a trial using music from the LAHV class and
recording in EO condition. In addition, for each EEG segment, all the QC labels were
saved for later use in the preprocessing pipeline (see Chapter 4.2.2). Then another
dictionary containing the order of presentation of the classes was used to associate
the metadata saved by the EA app, namely the valence-arousal annotations and the
familiarity/liking scores for each song, to the respective entry in the newly organized
dataset. During the experiment sessions, some rare bugs in the recording appli-
cation caused brief interruptions in the recording or the failure to register triggered
events. For this reason, a total of 6 participants who had missing parts in their EEG
recordings or did not have the dictionary of events were excluded for further analy-
sis. Their data could still be utilized in future studies by synchronizing the splitting
functions with the timestamps saved in the metadata, but because of the time cost,
it was decided to exclude them for the current research.

4.2.2 Automated Pre-processing Pipeline

Given the goal of estimating the performances of a real-time oriented model, the pre-
processing of the data had to consist of a lightweight and automated process that
could be integrated in an application at some point. Consequently, more run-in tools
like EEGLab and PREP [32], both based on the MATLAB programming language
and very popular for offline analysis, were discarded in favor for more real-time ori-
ented tools. Therefore, the Automated Pre-processing Pipeline (AuPP) was imple-
mented as a combination functions of the open-source Python library MNE3 and the
SignalProcessingToolbox (SPT) from myBrainTechnologies, a closed-source library
that is more suitable to handle the proprietary data format of Melomind. After loading
each participant’s prepared dataset, the AuPP splits the signal in time windows of
5 seconds, removes the DC offset, applies a notch filter to remove power-line noise
in the 50Hz and the 100Hz frequency bands, then applies a band-pass filter in the
range 0.1Hz - 30Hz to remove slow and possibly large amplitude drifts and some
movement artifacts outside of the frequency bands of interest (Fig. 22). Unfortu-
nately, this light preprocessing is not suitable to remove most of the muscular arti-
facts, especially those generated by ocular movements that are frequently present
in the frontal electrodes. In addition, having two electrodes hinders artifact detection

3https://mne.tools/stable/index.html
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using more sophisticated signal processing algorithms like ICA and Principal Com-
ponent Analysis (PCA), that require a higher number of electrodes to effectively
separate the signal in components and identify artifacts. To deal with artifacts, the
AuPP features two methods that can be used independently or in conjunction.

Figure 4.7: Flowchart representing the preprocessing steps of the AuPP.

The first one is Artifact Subspace Reconstruction (ASR), available in the open-
source MEEGkit4 library, that automatically tries to clean the signal by removing
transient and large-amplitude artefacts. The second one is a custom method called
Quality Index Removal (QIRem), implemented for this study, and based on the QC
proprietary classification-based method developed by myBrainTechnologies. The
QC algorithm has been developed to support researchers in real-time visual assess-
ment of the quality of the signal [45], and for each second of recording it assigns a
label representing the quality of the signal as follows:

• Low Quality: LOW-Q = -1 and 0.

• Medium Quality with muscular artefacts: MED-MUSC = 0.25.

• Medium Quality: MED-Q = 0.5.

• High Quality: HIGH-Q = 1.

The QIRem method takes the QC labels and redistribute them on a simpler scale
from 0 to 1, where 0 corresponds to LOW-Q, 0.5 corresponds to MED-MUSC-Q and
MED-Q and 1 corresponds to HIGH-Q, and then for each 5 seconds time window it
calculates an average of the QC labels.

Figure 4.8: Example of how QIRem flags bad segments flagged for removal.

4https://nbara.github.io/python-meegkit/index.html
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If the average is below a specified threshold parameter, the EEG split is removed
from the dataset (Fig. 4.8). After removing all the contaminated splits if the dataset
has lost more than the percentage of data amount specified by the allowed loss
parameter, the entire participant’s dataset is flagged for exclusion from the analysis.
During the tuning of the AuPP, it was finally decided to avoid using ASR to clean the
signal, because it requires to be trained on a sufficiently clean segment of signal,
unfortunately not guaranteed to exist for all subjects, and most often resulted in very
aggressive cleaning that would flatten the signal (Fig. 4.9).

Figure 4.9: Examples of the effects of ASR on the signal.

The QIRem method was setup with threshold set to 0.5 and allowed loss set
to 0.25, meaning that the average quality of each time window had to be equal or
above 0.5 in the simplified scale and that at most 25% of data could be pruned
before flagging the entire dataset for exclusion. With the current configuration, 10
participants were excluded from further analysis, hence the reason why the thresh-
old was kept around medium quality (0.5), allowing some artefacts to persist in the
data. This approach is a compromise choice that carries three main problems that
must be addressed in future studies:

• Very aggressive: bad quality data are not cleaned, but removed instead, possi-
bly losing meaningful information and control over the distribution of the class
labels.

• Exclusive: 10 out of 39 participants were excluded from analysis, which summed
up to those excluded for other reasons is more than 1/3 of the entire experi-
mental dataset.

• Not Optimized: one limitation of the Quality Checker algorithm is that it was
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trained for the consumer use on Melomind with electrodes placed on the pari-
etal area of the scalp (P3, P4), so while able to discriminate good and bad
quality segments of signal, it has no specific label for ocular artifacts. An up-
graded version is under the work to provide classification of these artifacts.

4.2.3 Features Computation

To compute the spectral features, the PSD of each 5 seconds window of the EEG
signal was extracted and filtered for theta, alpha and beta frequency band using
the SPT wrapper for the FFT. Before computing features, the time-frequency power
was normalized using the decibel conversion method as described by M. X. Cohen
[46]. Time-frequency power follows a 1/f shape function, meaning that frequency
spectrum tends to show decreasing power at increasing frequencies, EEG included.
Consequently, there are 4 main limitations:

1. Difficulty in making power comparisons across such bands. Raw power values
change in scale as a function of frequency, meaning that lower frequencies
(Delta, Theta) will show larger effect than higher frequencies in terms of overall
magnitude.

2. Aggregation of subject-independent effects will not yield good results because
of differences influenced by skill thickness, sulcal anatomy, cortical surface,
recording environment or other internal and external factors.

3. Task-related changes in power can be tainted by background activity, particu-
larly for frequencies that tend to have higher power, especially during baseline
periods (Alpha).

4. Raw powers do not follow a normal distribution because they cannot be nega-
tive, and they are strongly positively distorted.

Using decibel conversion, which is an expression of power as the ratio between
strength of one signal (frequency-band-specific-power) and the strength of another
signal (a baseline level of power in the same frequency band).

dBtf = 10log10

(
activitytf

baselinetf

)
The scale and interpretation of frequency-band-specific power becomes the change
in power relative to the baseline. Any frequency-band-specific activity constant over
time will be removed, including background activity. As a baseline for normaliza-
tion, the resting state in the EC condition was used, to prevent ocular artifacts from
contaminating the trials. The baseline resting state, previously divided in 5 seconds
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time window, and pre-processed together with the other trials, was pruned from low
quality segments using the QIRem function and then averaged across all the time
windows, for each channel. The main advantages obtainable by normalizing the
date are the following:

• All power data are re-scaled to the same scale and thus can be compared
visually and statistically

• Normalization computed in respect to a pre-trial baseline enables to disentan-
gle time-frequency dynamics from background or task-unrelated dynamics

• All power results are in a common and easily numerically interpretable metrics

• Parametric statistical analysis is appropriated to use (for baseline-normalized
power data normally distributed) and quantitative group-level analyses and
integration with other data (behavioral performance, questionnaires) is facili-
tated.

The features extracted include the neuromarkers described in Chapter 2 and ad-
ditional properties of the power spectrum that could strengthen the models’ ability
to discriminate emotional dimensions. It was decided in a later stage to use these
properties of the raw signal because they could be conveniently extracted using the
SPT and potentially make up for information lost during the computation of the neu-
romarkers. For each 5s time window the following measurements were computed
and stored, for a total of 40 features among the two channels to be used in classifi-
cation:

1. Normalized power in Theta, Alpha and Beta frequency bands

2. Approach-Withdrawal Index

3. Frontal-Midline Theta Index

4. Spectral Asymmetry Indexes

5. Skewness of the power in Theta, Alpha and Beta frequency bands

6. Kurtosis of the power in Theta, Alpha and Beta frequency bands

7. Standard deviation of the power in Theta, Alpha and Beta frequency bands

8. Ratio of the power in Theta, Alpha and Beta frequency bands

9. Relative spectral difference of the power in Theta, Alpha and Beta frequency
bands
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Figure 4.10: Example of annotations of a single participant for all trials. The labels
are color coded according to the pre-labelled VA class of each song.

Finally, the raw VA annotations (Fig. 4.10) were averaged for each time-window
and then converted into positive labels whether the average was positive, or negative
labels otherwise. Consequentially, each time window was labelled twice: first as HA
or LA (High/Low Arousal), and then as HV or LV (High/Low Valence). The union of
the two labels generates one of the class labels of the Valence-Arousal quadrant that
represent the emotion elicited in that specific time window, according to the notation
proposed by Koelstra et al. [27] (see Chapter 4.1.3). In some studies, the notation
for valence is defined as PV and NV (Positive/Negative Valence), which is better
aligned with the etymology of positive and negative emotions. The labels were also
copied for each song from the EO listening condition to the respective EC listening
condition.

4.2.4 Classification

The classification pipeline was implemented using the open-source Python library
Scikit-Learn5. Multiple experiments were conducted with two supervised learning
models, SVM and MLP. These models are a popular choice for the Emotion-
Recognition task thanks to their relative simplicity yet their superior capacity to han-
dle not linearly separable data compared to statistical linear models (see Chapter
3.1). The SVM architecture was defined using RBF kernel, that usually grants bet-
ter accuracy, and it is relatively easy to calibrate, and decision function one-vs-one
for binary classification and one-vs-rest for multi-class classification. The architec-

5https://scikit-learn.org/stable/index.html
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ture for MLP was based on the LBFGS optimizer, a quasi-Newtonian method, that is
more suitable for small datasets and can converge faster with better perforances and
ReLU was chosen over TanH as activation function because it reduces the impact
of vanishing gradients, even if no substantial difference was observed while testing
both. The problem has been set as a separate binary classification of Arousal and
Valence using a subject-dependent strategy, similarly to most related studies. As ex-
plained in the Section 4.2.5, during the intermediate experiments the listening con-
dition did not reveal significant differences in the classification performances, there-
fore all the trials of each subject were later unified under a third condition named
“EO&EC” to take advantage of the greater amount of data-points. Then, from each
subject dataset, a total of 40 previously computed features were loaded in the clas-
sification pipeline. To begin with, the data were split into a training dataset and a test

Figure 4.11: Approach used to compute Test Accuracy, MCC, CV Accuracy and CV
MCC with separate splits of data.

dataset in 80:20 proportion and scaled using MaxAbsScaler, that re-scales the data
to its maximum absolute value without shifting or centering it, thus preserving any
sparsity.PCA was used to identify the features contributing for the 95% of the vari-
ability of the dataset and projecting them on a lower dimensional space, reducing the
dimensionality to 12 components and greatly reducing the overall computation time,
often referred to as curse of dimensionality. After applying PCA, the training dataset
was used to tune the best hyper-parameters each classifier, respectively C and
Gamma for SVM and Alpha and Hidden Layer Sizes for MLP, using GridSearch with
a K-Fold Cross-Validation strategy, k=5 (see Fig, 4.11). Finally, the tuned classifiers
were trained with K-Fold Cross Validation leave-one-block-out (LOBO) for testing,
and the relevant score metrics were collected.

4.2.5 Intermediate experiments

The classification problem was initially addressed as a binary classification prob-
lem for Arousal and Valence and then as a multi-class classification problem for
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Valence-Arousal. During the initial experimentation phase, these models were man-
ually tuned and studied keeping the listening condition separated and then adding a
third condition defined as EO&EC, composed by data from both listening conditions
joint together. To explore each condition and each type of model, a binary classifier
for Arousal, a binary classifier for Valence and a multi-class classifier for Valence-
Arousal were trained, following both subject-dependent and subject-independent
strategy, for a total of 36 possible combinations. All the other hyper-parameters were
initially manually tuned and kept identical for each classifier (see Appendix A.3.1).
The first full-scale experiment was launched with subject-dependent strategy and to
reduce the dimensionality of the data, the 5 most relevant features were selected
using forward sequential features selection (SFS) with cross-validation to select the
features most contributing to the variability of the data and using them to train each
subject’s classifiers with cross-validated scores. Consequently, the selected fea-
tures were ranked by adoption rate among all participants (see Appendix A.3.1) and
appointed as TOP5 features. It should be emphasized that this operation was com-
putationally intensive and took several hours to complete, underlying the necessity
for a better approach to envision a real-time application. Another subject-dependent
experiment was run, this time using the same pre-selected TOP5 features for each
participant, followed by a subject-independent experiment with the same configura-
tion with cross-validation and LOSO. The results of all experiments have been col-
lected and averaged (see Appendix A.3.1, A.3.2, A.3.4). A few observations were
made that led to further investigation and the search for a better approach:

• EC and EO conditions did not show significant differences in performance, sug-
gesting that the study could continue using just the EO&EC condition, greatly
reducing computation time and simplifying the analysis.

• The multi-class classifiers for VA reported the worst performances, thus was
discarded to focus the efforts on optimizing the binary classifiers.

• Many datasets were highly unbalanced in the distribution of the labels among
the four VA classes and both MLP and SVM struggled to discriminate positive
and negative class, with SVM always default guessing the majority class.

• Subject-Independent performance always resulted very close and sometimes
worse than default guessing the majority class.

• Selecting the average TOP5 features among all participants is idealistically a
good choice for a subject-independent strategy, but given the more promising
subject-dependent results, this approach is at best losing data variability for
some of the subjects and at worse using the least contributing features for
some others.
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Further investigation in the subjects labelling behavior and in the models’ predic-
tions (see Appendix A.3.4) led to the decision to optimize the strategy in function of
subject-dependent classification.

4.2.6 Unbalanced labelling

The stimuli were selected to elicit a wide as possible range of emotions to cover
evenly the Valence-Arousal quadrants. However, when selecting music that has
been pre-labelled with the average opinion of hundreds of annotators, there is al-
ways a possibility that part of the population disagrees. These subjects are not per
se “bad annotators”, but their personal taste and perception lies outside of median.
The distribution of labels across all subjects in Figure 4.12 also reveals that positive
classes are in general the most reported, with HAHV and LAHV taking absolute lead,
and corresponding to emotions very common during the music listening experience:
excitement, happiness, satisfaction, calm etc.

Figure 4.12: Distribution of arousal, valence, and Valence-Arousal labels across all
subjects.

Furthermore, the personal perception of a subject can be heavily biased by ex-
ternal factors such as memories, genres preferences or unexpected events occurred
over the day that are outside of the experiment control capabilities. In some cases,
this led to very extreme distributions of data (Fig. 4.13).

Although just a few data points of this subject lie in the negative spectrum of
Arousal and Valence, the continuous annotations allow to capture them while dis-
crete annotations at the end of each song might have ended up all in the HAHV
class, thus hindering any classification. However, a classifier trained to obtain the
maximum accuracy would always overfit and opt to classify the majority class, mis-
leading the interpretation of its performances.
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Figure 4.13: Annotations averaged over a 5 second window for a subject with un-
balanced dataset. The labels are color coded according to the pre-
labelled VA class of each song.

4.2.7 Optimizations

All the problematics were addressed before proceeding with the final experiment.
First, the dimensionality of the features was reduced using PCA to select the 95%
most contributing components, greatly reducing the computational time and the risk
of excluding meaningful features. Then MCC [47] was introduced as scoring pa-
rameter to provide better interpretability of the accuracy scores. The MCC is a
correlation coefficient between the observed and predicted binary classification and
is defined by the following formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The MCC value ranges between -1 and +1, where +1 represents a perfect prediction,
0 a random prediction and -1 and inverse prediction. Unlike the F1 score, that is the
harmonic mean of precision and recall, the MCC considers all the four quadrants of
the confusion matrix of a prediction, making it a more reliable measure for the learn-
ing performances of a model for binary classification, even when the dataset is un-
balanced [48]. The large number of factors that may hinder the Emotion-Recognition
task are reflected in the large variability of the classification results across subjects
and thus using solely the accuracy to measure the performances is not optimal and
more studies [31], [33] now relying on MCC score’s reliability to explain the learning
capabilities of their models. To optimize the models for the subject-dependent strat-
egy, GridSearch was used with K-Fold Cross-Validation on the training split of each
subject dataset to find the configuration that would yield the highest MCC score (see
Fig. 4.14).
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Figure 4.14: Scheme of data splitting strategy for cross-validated GridSearch opti-
mization.

In addition, SVM models were also initialized with the weights of each class
based on the distribution of the labels. Currently there is a known limitation in the
Scikit-learn library, as it does not seem to support custom loss functions to optimize
scoring parameters other than accuracy, a missing feature reported by users of the
library [49], [50]. Consequently, when feeding MCC as scoring parameter, it only
means that after optimizing accuracy for all possible configurations, the configuration
with highest MCC is selected. Two scoring strategies for GridSearch were tested in
the intermediate experiments:

• Maximization of MCC score, defined as “Max MCC” strategy

• Maximization of Accuracy score, defined as “Max Accuracy” strategy

Maximising accuracy scores is often desirable in machine learning because it gives
a clear idea of a model’s ability to predict a class. A ”good” accuracy in most cases
should be above 90%, while for an optimal score should be above 99%. How-
ever, given the presence of many unbalanced datasets in the current research, the
”Max Accuracy” strategy for GridSearch generated more often over-fitted models
that would have higher accuracy, at the cost of never predicting the minority class,
especially with SVM classifiers (see Appendix A.3.5). With MLP classifiers this phe-
nomenon was less evident, also because they already produced a larger number of
over-fitted and under-fitted models than their SVM counterparts, however in spite of
using the same strategy and MCC as principal metric to show evidences of learning
capabilities, the ”Max MCC” strategy was chosen to proceed with the final experi-
ment.
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Chapter 5

Results

In this chapter the results of the classification using “Max MCC” optimization strategy
are presented. Some premises are necessary before proceeding with the interpre-
tation of the data:

1. The average scores at the bottom of each table are between models with the
same architecture, but different hyper-parameters. Furthermore, as part of
the ”Max MCC” strategy, having an accuracy lower than the majority class
guessing (defined as ”chance level” in the tables) but with a positive MCC has
been preferred compared to having the highest possible accuracy with a zero
or negative MCC.

2. All models are underfitting or overfitting to some degree on their dataset but,
considering the challenges of classifying emotions, models with positive MCC
and cross-validated MCC (CV MCC) are reported as good models regardless
their scoring. As a consequence, only extreme cases of overfitting, i.e. models
with 0 or negative MCC and positive CV MCC, and extreme case of underfit-
ting, i.e. models with 0 or negative CV MCC are labelled as such in tables 5.1
and 5.2.

3. CV Accuracy, CV Acc Std, CV MCC and CV MCC Std stand for Cross-Validated
Accuracy and MCC and their respective standard deviation.

4. Test accuracy and MCC are computed using an unseen test split of the data.
CV Accuracy and CV MCC have been computed on the training split of the
data; thus, their purpose is to provide a measure of consistency of the test
scores (see Fig 4.11).

5. The confidence interval has been calculated on the test split, Z=1.96.

6. Chance level represents the default guessing of the majority class.

57
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7. Standard deviation of each measure, if present, is between round parenthesis
in the tables.

First, the classification performances of SVM and MLP are compared for both
arousal and valence classification. Then, the results are compared with related
work.

5.1 Support-Vector Machines vs Multi-Layer Percep-
tron

The results of the subject-dependent arousal classification experiment are reported
in Table 5.1, while the results for valence classification are reported in Table 5.2. In
these tables, learning models can be identified by a positive MCC score supported
by a positive CV MCC and are highlighted in blue. The models that over-fitted, high-
lighted in yellow, are characterized by negative MCC and positive CV MCC, meaning
that they learned well on the training data but could not discriminate classes on the
test data. Under-fitted models instead are characterized by zero or negative CV
MCC and positive or negative MCC, because they did not have the adequate capa-
bilities to capture the underlying structure of the training data, but possibly obtained
a good test accuracy by random guessing and they are highlighted in orange. In
arousal classification the average majority class guessing (defined as chance level
in the table) is 58 ± 8%, the highest and consistent test accuracy score is 84% with
MCC score of 0.20 using SVM and 88% with MCC score of 0.78 using MLP. For SVM
classifiers, the average test accuracy is 61 ± 9% with average MCC of 0.16 ± 0.20,
61± 6% cross-validated (CV) accuracy and CV MCC of 0.24± 0.12. For MLP classi-
fiers, the average test accuracy is 58±12%, with average MCC of 0.13±0.20, 57±8%
CV accuracy and CV MCC of 0.15± 0.16.

In valence classification (see Table 5.2) the average majority class guessing (de-
fined as chance level in the table) is 65 ± 12%, the highest and consistent test ac-
curacy score is 89% with MCC score of 0.27 using SVM and 77% with MCC score of
0.48 using MLP. For SVM classifiers, the average test accuracy is 67± 12% with av-
erage MCC of 0.13±0.18, 61±6% CV accuracy and CV MCC of 0.26±0.13. For MLP
classifiers, the average test accuracy is 65± 12%, with average MCC of 0.11± 0.18,
56± 9% CV accuracy and CV MCC of 0.13± 0.18. The large variances are affected
by the unbalanced distribution of positive and negative classes (see Chapter 4.2.6),
but it are also a clear symptom of diffused over-fitting, especially for MLP classifiers.

A final remark can be obtained by comparing the number of learning, over-fitting
and under-fitting models between the two type of classifiers (see Fig. 5.1. In arousal
classification it was possible to train 25 SVM learning classifiers, with 4 over-fitting
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Table 5.1: Arousal classification results using MCC as scoring parameter for Grid-
Search. Learning models are highlighted in blue, over-fitted and under-
fitted models are highlighted in yellow and orange, respectively.

Table 5.2: Valence classification results using MCC as scoring parameter for Grid-
Search. Learning models are highlighted in blue, over-fitted and under-
fitted models are highlighted in yellow and orange, respectively.

models and 0 under-fitting models against 15 MLP learning classifiers, 6 over-fitting
models and 8 under-fitting models. In valence classification it was possible to train
20 SVM learning classifiers, with 9 over-fitting models and 0 under-fitting models
against 17 MLP learning classifiers, 4 over-fitting models and 8 under-fitting models.
Overall, the classification performances between SVM and MLP are not significantly
different, but SVM proved to be more reliable and obtained average classification
accuracy above the majority default guessing threshold and generated more mod-
els able to discriminate unseen data. The are other model-specific advantages and
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disadvantages a to be taken into account in the implementation of a real-time appli-
cation, for example most MLP implementations support partial fitting of the models
that is very useful with continuous streams of data, however these technical consid-
erations lie outside the scope of this research.

Figure 5.1: Comparison of SVM and MLP in terms of number of learning, overfitting
and underfitting models.

5.2 Comparison with related work

Comparing the result of the current research with related work is non-trivial be-
cause of the methodological differences in data collection, processing, and evalua-
tion. These differences have been considered to sort the comparisons from most
comparable to least comparable.
The first and most comparable study [31] used self-reported continuous annotation
as main labelling method for classification, the data were collected from 9 subjects
with a wearable EEG headset equipped with 8 dry electrodes and processed using
the automated PREP pipeline in MATLAB. The accuracy scores of SVM classifiers
using EEG and LOBO cross-validation are only reported through plots, valence clas-
sification scored average accuracy of 68±10% and arousal classification scored av-
erage accuracy 64±10% . The comparison only takes into account results from SVM
classifiers, which in the current study reports average test accuracy of 67± 12% and
average LOBO cross-validated accuracy on the training set of 61 ± 6% for valence
classification . Arousal classification scored an average test accuracy of 61±9% and
average LOBO cross-validated accuracy of 61±6%. They provided a table reporting
the MCC scores for each classification modality, the average CV MCC reported for
valence is 0.247 ± 0.17 and the average CV MCC for arousal is 0.177 ± 0.04. The



5.2. COMPARISON WITH RELATED WORK 61

current study reports average test MCC score of 0.13 ± 0.18 and average CV MCC
score of 0.26 ± 0.13 for valence, while for arousal the average test MCC score is
0.16± 0.20 and average CV MCC score is 0.24± 0.12. Finally, the highest CV MCC
score reported for a single subject is 0.596 ± 0.30 for valence and 0.23 ± 0.22 for
arousal, while in the current study the highest CV MCC score reported is 0.51± 0.12

for valence and 0.57 ± 0.18 for arousal. These results are aligned with the current
study and provide individual insights for each subject that can be easily compared,
so in conclusion if we consider only the single EEG modality from [31], the learning
capabilities of the models trained in the current study are similar despite a lighter
pre-processing and a lower number of electrodes. This comparison suggests that
there definitely is room for improving the software pipeline on the current dataset,
especially the AuPP, to generate more stable models with lower variance and risk
of over-fitting and under-fitting even before considering an improvement of the hard-
ware equipment and another data collection phase.
The second comparable study [26] is the one that inspired the self-reporting of emo-
tions using continuous annotation. The focus of this study, however, was to com-
pare traditional discrete annotations to continuous annotation and to evaluate two
approaches for features extraction. For comparison purposes, the scores reported
usingPSD features will be considered instead of the scores obtained with FD fea-
tures. The accuracy scores, and relative standard deviations are mostly reported in
plots and partially during the discussion, so an estimate is provided. Using SVM,
valence classification score is 81.2 ± 8% average CV accuracy and arousal clas-
sification score is 75 ± 8% average CV accuracy. With MLP, valence classifica-
tion score is 80.2 ± 10% average CV accuracy and arousal classification score is
75 ± 10% average CV accuracy. These scores are significantly higher than default
guessing of the majority class and clearly outperform the results obtained in the
current study, that are not on average significantly different than default guessing.
No further insights are provided on subject-dependent performances, nor on MCC
scores, but their models are consistently reliable in performing better than default
guessing. This comparison suggest that the choice of stimuli, i.e. music with or
without lyrics and the distribution of emotional classes, can highly impact on the
classification performances. Furthermore, improving the features engineering part
to take full advantage of the continuous annotations, for example applying a slid-
ing window segmentation technique on the EEG data, can help better capturing the
underlying emotional fluctuation. Finally, they also dealt more aggressively on un-
balanced datasets, for example by removing those subjects where one of the two
binary classes (either in arousal or valence classification) was missing.
The third study [25] aimed at artificially simulating a wearable device by selecting,
2, 4 and then 8 frontal electrodes from the subjects of the DEAP [27] dataset, col-
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lected with and EEG system with 32 wet electrodes and discrete self-reported la-
bels. The asymmetry indexes used in this study are sim Only the results for the
2 electrodes configuration using SVM for subject-dependent classification are re-
ported and no specific description of the preprocessing pipeline is provided, so
the assumption is that they used the data already preprocessed by the original au-
thors of the dataset. The average CV accuracy scored for valence classification is
68.4±2.0%. The authors also present better accuracy scores using GBDT and Ran-
dom Forests classifiers, achieving respectively 75.10± 2% and 72.15± 2% accuracy
for subject-dependent classification, and subsequently reported 61.82%accuracy for
subject-independent classification using GBDT. A balancing strategy for the labels is
explained, but no specific distribution of positive and negative class is provided, nor
individual insights for subject-dependent classification so it is not possible to evalu-
ate the reliability of the accuracy scores compared to default guessing the majority
class. In conclusion, even assuming an equal distribution of positive and negative
labels, this study results with SVM are in line with the 67 ± 12% average test ac-
curacy in valence classification of the current research, but with a definitely lower
average variance that suggests that models trained were less prone to over-fitting.
In addition, this comparison suggest that other supervised learning algorithms that
are constituted by ensembles of weaker classifiers, for example Random Forests
and GBDT (that is conceptually similar), can obtain much better performances than
simpler models such as SVM and MLP.
The fourth and last comparable study [23] collected self-reported continuous anno-
tations from 26 subjects using a standard EEG system with 32 wet electrodes. The
data were preprocessed with visual inspection on EEGLab and then features were
extracted from 12 pairs of symmetrical electrodes. The authors provide 3 classifi-
cations schemes, but only the “one-against-one scheme is comparable in terms of
binary classification of valence and arousal and therefore reported. The reported av-
erage CV accuracy score for valence classification is 94.86 ± 17.6% and for arousal
classification is 94.43 ± 21.2%. The authors did not report the distribution of the
classes for each subject so it is not possible to evaluate the reliability of the ac-
curacy scores for each subject. The high average variance suggests that they also
generated a number of over-fitted models, similarly to the current study, nevertheless
their follow-up study [24] applied a better features engineering process that lowered
the overall variance that enabled them to obtain a lower but more stable average
classification accuracy of 82.29± 3.06% of four emotional states (joy, anger, sadness
and pleasure) using SVM and even to identify 30 subject-independent features rel-
evant to emotional processing across subjects. These studies by Lin et al. report
interesting strategies for selecting and ranking EEG features for the transition from
subject-dependent classification to subject-independent classification, however af-
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ter experimenting with electrodes reduction their models performances dramatically
dropped when the electrodes number was lower than 18 (9 pairs), suggesting that
subject-independent classification is still out of reach of wearable devices like Melo-
mind.
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Chapter 6

Discussion

In this chapter, the research results are discussed and contextualized with the re-
search questions (see Chapter 1) and the idea that inspired this work: evaluating
the feasibility of performing real-time Emotion-Recognition with a wearable device
for a future affective BCI system.

6.1 Challenges towards real-time Emotion-Recognition

When imagining users adopting a technology in their life, many functional and de-
sign aspects are rightfully expected. For example, the design of the device needs
to be sleek and intuitive, and the flow of the application must be seamlessly inte-
grated and well performing. This is clearly not the case for current Brain-Computer
Interfaces, that are still in their infancy and far from mass adoption, especially for
non-clinical applications. Lin, Jung and Onton [51] reviewed a collection of methods
that could greatly improve the quality of the user experience and finally open the way
for affective BCI to reach the consumer market. The core challenge of affective BCI
is to create a plug-and-play BCI system with limited electrodes that can consistently
perform accurate Emotion-Recognition regardless of the person that is using it. The
other challenges consequently follow:

• Reduction and selection of electrodes: the number of electrodes must be
relatively small, between 2 and 8, and strategically placed over the cortical
areas delegated to the processing of emotions. They also should be soft dry
electrodes and the system should be able to automatically recognize bad chan-
nels and excluding them from the processing.

• Automatic artifacts cleaning: artefacts are one of the most impacting prob-
lems, and currently the most popular approaches for offline artifact cleaning
are ICA, that is not applicable to small sets of electrodes and too computa-
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tionally expensive for online cleaning, and visual inspection. Alternative ap-
proaches might be achieved using regression to train algorithms in recogniz-
ing specific types of artifacts or features of the signal that indicate whether the
quality is good or not and adjust it accordingly. Cleaning artifacts is also vital to
the efficient use of as much data as possible. In the current study the artifacts
removal strategy led to the exclusion of 10 participants and the removal of up to
25% of the data of the remaining participants, a considerable cost considering
the time and efforts needed to collect the data with an experimental protocol.

• Features selection and reduction: selecting the most suitable features al-
lows to reduce the computational cost by removing redundant and less mean-
ingful features, and this is particularly correlated to the selection of electrodes
as well. Lin et al. [51] through their extensive research over the years dis-
covered that differential asymmetries are the most consistent type of features
among subjects and sessions, reliable also for subject-independent classifi-
cation. In more recent studies, Thammasan et al. [26], Keelawat et al [33]
and Avramidis et al. [52] , extracted EEG features using fractal dimension al-
gorithms instead of PSD, obtaining significantly better performances in both
subject-dependent and subject-independent classification. Another possibility
is to use more complex models like CNN [33] to automatically extract features
from the EEG signal, sacrificing the ease of interpretability of the model and
the direct connection with the theoretical neuroscience.

• Users training and calibration: a very time consuming and frustrating pro-
cess is the calibration of BCI systems for new users, especially if they have
no experience of brain-controlled inputs. A system that can only classify emo-
tions with a subject-dependent strategy is bound to train the users in reporting
their emotions and then train a classifier with the collected data, all under the
assumption that the resulting dataset is not too unbalanced. This of course
is not feasible, and ultimately subject-independent classification should be the
aim for real-time systems. However, this might not suffice, and even subject-
independent classifiers might have to be tuned with short calibration sessions
to adjust for each specific case, for example by selecting more susceptible fea-
tures for a certain user that matches similar brain “signatures” from a group
of users that the model has already been trained on. Zero-training strategies
[53], [54] have been object of study over the last decade and using spatial fil-
ters and transfer learning makes it possible to train a sub-optimal decoder and
then use unsupervised learning to transform it into a user specific decoder. Of
course, these solutions are still very experimental and use case specific, and
further investigation is required.
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The rest of the chapter will contextualize these challenges in the current study.
Using a wearable EEG is a solution to the first problem, but also a constraint around
which every other problem had to be worked around.

6.2 Self-reported emotional labels

Reporting emotions is a non-trivial task and could be subjectively difficult. From the
feedback forms collected after the experiment, 7 subjects reported to have found dif-
ficulties in choosing the quadrant of the valence-arousal space, 8 subjects reported
difficulties in assessing the emotional intensity (in both dimensions) and 9 subjects
reported difficulties in assessing the specific emotions. In addition, participants re-
ported an average fatigue score of 2.47 ± 0.97 after the first half of the experiment
and a fatigue score of 3.27 ± 0.86, on a scale from 1 to 5. Some emotions were re-
ported to be missing from the simplified valence-arousal space, for example ”annoy-
ance”. Another missing emotion was “bittersweet”, that is commonly experienced in
music listening yet difficult to report because of its composition of not-adjacent emo-
tions (sadness, happiness) on the valence-arousal space. Continuous annotation of
emotions has several advantages over discrete annotation, allowing a more granular
reporting that consider emotional “oscillations” over the duration of a stimulus and
more distributed labels across all classes that can favor the classification task. It
is a powerful tool for researchers to build affective datasets but heading towards a
real product it will eventually be an obstacle as it requires an extra layer of training
before the calibration. Discrete annotations are a simpler task that has virtually no
impact on the recording phase and can be more easily integrated in a calibration
tool, but seemingly yielding poorer performances compared with the continuous ap-
proach [26]. An example to compromise the benefits of both approaches could be
a subject-independent classifier trained using an offline dataset collected with con-
tinuous labelling, then discrete annotations collected by an online system would be
used to integrate subject-specific differences during a calibration phase.

6.3 Familiarity, liking and PANAS

During the experiment, participants were asked to rate every song they listened to in
terms of how much they liked the song referred to as “liking” and how much the song
was familiar to them referred to as “familiarity, both on a scale from 1 to 5 where “3”
represents neutrality. These scores could be used in a music recommending system
to enhance the quality and relevancy of recommendations, however for the current
research they were only used to assess the impact of the selected stimuli. The aver-
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age “liking” score across all trials and all participants 3.32 ± 0.52, indicating that the
selection has been in general positively perceived. Average “familiarity” score was
2.26 ± 0.53, quite below neutrality despite most of the songs being from interna-
tionally known artists. Having general low familiarity is positive for classification as
emotional biases caused by memories can occur. Looking at Tables 5.1 and Table
5.2 in the previous chapter it is also possible to observe that some of the participants
with highest average “familiarity” are also among the worst classification scores, but
the analysis was out of the scope of this research. Further investigation is needed
regarding the correlations of “liking” and “familiarity” with the emotional dimensions
of valence and arousal. Before each session, participants were also asked to fill a
PANAS questionnaire.

Figure 6.1: Average reported affects before and after the experimental session.

Comparing the assessed affects before and after the experiment (Fig. 6.1), it is
possible to observe that general interest, enthusiasm, and excitement of the partic-
ipants decreased, which was expected considering that for the majority of the par-
ticipants it was the first time participating in an EEG experiment. Attentiveness and
activeness also significantly decreased, suggesting that the task proposed, and the
length of the session were to some degree causing fatigue. Follow-up experiments
can account for these effects by shortening the length of musical excerpts, reducing
the number of conditions, or distributing the data collection from each participant
over multiple sessions.

6.4 Features selection and performances evaluation

The proposed principal features based on previous findings on differential and ra-
tional asymmetries were the neuromarkers: AWI, FMTI and SASI. The frequency-
band specific features of the EEG signal were extracted using the SPT proprietary
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library from myBrainTechnologies. Intermediary experiments using forward SFS re-
vealed a general trend in selecting the neuromarkers as most significant features,
with some exceptions. PCA was then used instead of SFS as better performing
subject-dependent features selection method to reduce the dimensionality of the
features vector in lower computational time. It was not possible to directly compare
the impact of using neuromarkers instead of frequency-band specific features, but
the results were very promising for a subset of participants. The evaluation of model
performances using MCC score led to better understanding and correcting models
who were over-fitting toward the majority classes because of uneven distributions
of labels. It made possible to easily identify under-fitting models too, however no
solution was found to prevent it. Overall, MCC score seems to be a more reliable
score to describe the learning capabilities of the models, and it is better for compari-
son with the most recent related studies that make use of it, instead of classification
accuracy only.

6.5 From subject-dependent to subject-independent
classification

Clearly, subject-dependent classifiers are not an optimal solution for a real-time sys-
tem and pose a threat to the usability by requiring full training sessions for new
users. Besides, training a separated model for each user is not a long-term scalable
solution. However, due to the subjective differences, subject-dependent remains the
current preferred choice for Emotion-Recognition. Subject-independent strategy is
only applicable to set of features that can represent the same emotional patterns
for everyone, for example differential asymmetry was reported to be very promising
[51], but also assumes that all the datasets used for training are as clean as possi-
ble to prevent the contamination of artefacts. In the current study it was not possible
to obtain better than default-guessing during intermediate experiments on subject-
independent classification. Some conditions are likely to hinder classification:

• Artifacts: Data might be too affected by artifacts, hindering any classification.

• Features: Selected features might not be suitable for all subjects, or they might
be suitable only for groups of subjects with similar “brain signature”.

• Labels: Distribution of the classes can be highly uneven, and self-reported
labels can be unreliable.

• Electrodes: Two electrodes might not contain sufficient significant data; they
can be misplaced or bad conducting.
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The enormous performance difference among subjects in subject-dependent clas-
sifications suggests that improvements in the first three conditions are not only pos-
sible, but also necessary towards the creation of wearable affective BCIs. If the
low number of electrodes were the main impediment to classification, it would not
have been possible for some participants to score more than 80% classification ac-
curacy. After reducing the variability created by these conditions and once subject-
dependent classification will yield consistent performances among subjects, it will be
possible to further develop a hybrid paradigm where a subject-independent classi-
fier serves as sub-optimal basis for fast calibration of subject-dependent classifiers.
Finally, if these goals are met, full subject-independent classification will be the next
step towards affective BCIs.

6.6 Reflections on future research

The analytical study of emotions is heavily impacted by subjective differences, and
the current state of art technology and signal processing techniques still struggle to
provide the desired performances to build seamless affective BCI systems. Many
critical factors starting from the data collection phase to the classification task can
hinder the expected outcome. Considering the interest in a follow-up study, the fac-
tors that mainly affected the current study are addressed in the paragraphs below.

Selection of the stimuli. The selection of the stimuli is critical for the success for
affective experiments, as there is nothing worse than selecting ineffective stimuli.
Music is usually a favorable stimulus, since only a few subjects do not react at all
to it. Even so, subjective preferences can highly impact the perception of the same
song in a population of participants. This study conveniently “recycled” a selection
of songs previously used in other experiments and proposed the same playlist to all
participants for the sake of inter-subject comparison. This choice led the participants
to a constrained experience, that for some resulted in listening to music genres they
usually would not listen to. In addition, the annotation experience suffered of great
variability, leading some subjects to never report some one or more valence-arousal
classes. There are alternative solutions for the stimuli selection, as some related
studies experimented [26]. For example, the researcher can ask the subjects to pick
music from a selection that covers the emotional spectrum during a pre-listening
phase. A better compromise could be a hybrid selection: part of the stimuli selected
by the researchers and the other part selected by the participants. Adapting the
selection to account for the subjective preferences is very time consuming in the
design of an experiment, but it is also what real users of an affective recommending
system would expect.
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Self-assessment of emotions. As several participants reported, it was not always
simple to assess in real-time perceived emotions, with the consequence of unre-
liable annotations. On one hand, knowing exactly what feelings are being experi-
enced requires considerable self-perception. On the other hand, models for assess-
ing emotions have limitations. As mentioned earlier (see Chapter 6.2 ), the VA space
used in the experiment was simplified to make it more understandable, sacrificing
the representation of some emotional states. Using a more complete representation
does not automatically improve the participants ability to report emotions, on the
contrary it is likely to introduce more confusion. Other studies [24] adopted an even
more simplified version that only associates one emotion to each quadrant of the VA
space, that maybe partially explains the significantly better performances in classi-
fication. Continuous emotion annotations require more effort but are very valuable
to capture emotion oscillations and provide classifiers with more realistic emotional
distribution. Once the models for the classification of emotion will have reached ma-
turity, continuous annotations will be discarded in favor of discrete reports, that better
suit a real product. The solutions for Emotion-Recognition cannot possibly start from
a complex representation of emotional states, thus building up from more simplified
models might be a better strategy now to support the ongoing development of the
field and then later scale up the complexity with more sophisticated tools.

Experimental sessions. Two main observations were made based on the feedback
received and the analysis of data. First one, a single session of 75-90 minutes (30-
35 of EEG recording) can be fatiguing for most people. Decreased attention and
discomfort are not favorable conditions for recording brain activity and are likely to
be reflected also on the emotional assessment. Second one, a single session does
not ensure that classification performances are consistent for the same subject over
time. External factors experienced prior to the session might bias the emotional per-
ception of a subject, for example if there as a breakup with a loved one or if very
good news brightened the day. In addition, the oscillatory nature of brain waves is
known to generate differences in the EEG signature of the same person over time.
Multiple shorter session can prevent fatigue by reducing the overall mental load, and
at the same time mitigate the effect of variations over time in the emotional assess-
ment and in the EEG.

Automated lightweight preprocessing. The requirements for a preprocessing pipeline
in an online system are not easy to meet. Computational time needs to be in the
order of seconds or even better milliseconds; at the same time the quality of data
must be ensured to prevent poor classification performances. Ocular artifacts are
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the greatest threat in the analysis of emotions because of the topological position
near the frontal lobe, where emotions are processed. Using EOG to subtract eye
movements from the EEG signal is effective for offline studies but is clearly not suit-
able for a product. Methods like ICA and PCA are very effective for EEG recordings
using standard equipment with many electrodes, but nevertheless computationally
expensive. For a final product using wearable devices with limited capabilities, infer-
ring the presence of artifacts by classifying EEG based on the signal qualities [45]
can be achieved with low computational effort and enable surgical precision in the
cleaning process. ASR has been proven effective in artifact removal for both offline
data analysis and online applications [55], but for optimal outcome, i.e. removing
artifacts and retaining the significance of the signal, it requires to be tuned using
good quality EEG samples. Investigating the best combination of approaches for
lightweight processing can be a suitable research question also outside the specific
scope of affective BCI.

Features extraction and selection. Selecting the right features has proved to be non-
trivial and affected by subject-dependent differences. The extraction process also
carries a computation cost, thus just extracting any possible feature and then apply
subjective selection criteria is not feasible. The current study used PCA to collapse
the features in the minimum number of components that could account for subjective
differences and retain at least 95% of the variability of the data. The neuromarkers
are a step towards the delineation of an optimal subset of features for emotional as-
sessment but require more investigation both from neuroscience and data science
perspectives to determine which combination of differential/rational measurements
and EEG frequency bands are more relevant for the study of emotions. The iden-
tification of more subject-independent features, like the asymmetry indexes [51],
is also essential towards the development of affective BCI systems and can be the
main topic of a dedicated research. The possibility to use other physiological signals
to build a multi-modal classification system has also been explored, and physiolog-
ical signals were collected during this research for eventual follow up studies. A
related study already assessed the increased performances that can be obtained
by decision-level multi-modal fusion [31], an adaptive approach to select by majority
voting the optimal uni-modal sources among several physiological measurements
(EEG, ECG, GSR) for classification. Any system designed on other physiological
data than EEG is, however, outside the strict scope of affective BCI.

Unbalanced datasets. One of the main obstacles in training and evaluating clas-
sification models was the uneven distribution of labels. Multiple experimental ses-
sions and subjective stimuli selection can minimize the possibility of having very
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unbalanced datasets, as explained in the previous paragraph. However, it would
still be possible to hit the same obstacle, regardless the minimization. In the field
of machine learning there are standard methods to deal with unbalanced methods.
Assigning weights to the classes to penalize the prediction of the majority class is
one of such methods, used in the current to improve the discriminative power of
SVM classifiers. Up-sampling of the minority class is another method that creates
copies of labels and data in the training dataset to reduce the bias of the classifier.
However, copying affective data does not seem optimal as it would simply repeat the
same emotional pattern and will not likely cover the entire emotional spectrum of the
minority class. Some studies investigated the possibility of simulating realistic EEG
data [56] from biologically plausible signals. Good affective EEG data from multiple
subjects could be collected for the realization of a plausible EEG simulator that can
account for individual variability. The data generator could then be calibrated over a
small sample of real EEG data from a real subject and be used to counterbalance
the distribution of emotional classes, thus improving the classification performances.
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Chapter 7

Conclusions and recommendations

The goal of the experiment setup for this research was to answer the main research
question: “What are the accuracy and MCC scores of subject-dependent classifica-
tion of music-elicited emotional valence and arousal in the EEG signal using SVM
and MLP algorithms with Melomind?” and the two sub-research questions that ex-
tended it. Each question is answered separately in the following section and then
some recommendations for future work are proposed in the last section.

7.1 Conclusions

“What are the accuracy and MCC scores of subject-dependent classification of
music-elicited emotional valence and arousal in the EEG signal using SVM and MLP
algorithms with Melomind?”.

For arousal classification, SVM scored higher average test accuracy of 61 ± 9%

and higher average MCC score of 0.16± 0.20 compared to MLP that scored average
test accuracy of 58 ± 12% and average MCC score of 0.13 ± 0.20. Cross-validated
scores are consistent, with SVM scoring higher average CV accuracy of 61±6% and
higher CV MCC of 0.24 ± 0.12, while MLP scored average CV accuracy of 58 ± 8%

and average CV MCC of 0.15± 0.16. The highest consistent test accuracy was 84%

with 0.20 MCC and 0.08 ± 0.32 CV MCC score for SVM; the highest consistent test
accuracy was 88% with 0.78 MCC and 0.28± 0.24 CV MCC score for MLP. Similarly,
for valence classification, SVM scored higher average test accuracy of 67±12% and
higher average MCC score of 0.13± 0.18 compared to MLP that scored average test
accuracy of 65±12% and average MCC score of 0.11±0.18. Cross-validated scores
are again consistent, with SVM scoring higher average CV accuracy of 61± 6% and
higher CV MCC of 0.26 ± 0.13, while MLP scored average CV accuracy of 56 ± 9%

and average CV MCC of 0.13± 0.18. The highest consistent test accuracy was 89%

with 0.27 MCC and 0.02 ± 0.20 CV MCC score for SVM; the highest consistent test
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accuracy was 77% with 0.48 MCC and 0.35 ± 0.14 CV MCC score for MLP. Over-
all, SVM models yielded more consistency between test and cross-validated scores:
only 4 and 9 SVM models over-fitted for arousal and valence classification respec-
tively, against 6 overfitting and 8 underfitting models in arousal classification and 4
overfitting and 8 underfitting models for valence classification using MLP.

“What are the most relevant selected Power Spectral Density features to perform
the Emotion-Recognition using SVM and MLP algorithms with Melomind?”.

Intermediate experiments selecting features with SFS suggested that the neuro-
markers were more relevant than other raw features of the EEG signal for a number
of participants for subject-dependent classification, but not for the entire population,
thus the choice of using PCA instead. The final results were obtained after com-
pressing the features using PCA and the contribution of the individual features to the
components was not measured. This aggregation of neuromarkers and frequency
band-specific spectral features showed encouraging results, but also great variabil-
ity among subjects that will require more study on the causes and possible solutions
to mitigate this effect. No neuromarker or subset of features could be proved to be
relevant towards subject-independent classification.

“What is the best classification strategy applicable to the current software and hard-
ware capabilities of Melomind using SVM and MLP algorithms?”

For this research it was possible to obtain subjective appreciable results using a
subject-dependent strategy. Subject-independent classification was discarded dur-
ing intermediate experiments due to inability of the model to perform better than
default guessing the majority class. Thus, subject-dependent classification strat-
egy is for the moment the most suitable using Melomind. Further investigation using
more sophisticated signal processing techniques and approaches to deal with unbal-
anced datasets might lead to more consistent results and enable the development
of better strategies that can be applied in an online system with minimal training and
calibration time.

7.2 Recommendations

Over the course of this research, I faced many design and technical challenges, but
the one that took most time to be handled was preparing the data for classification.
The preprocessing of the data required continuous reiteration and visualization to
understand what was happening when applying certain tools for improving the qual-
ity of the EEG signal. Ultimately, tools for artifact cleaning like ASR were discarded
because it was not possible to train them in removing the artifacts without affecting
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also the ”good” segments of signal. The choice of excluding or slicing data was
necessary to proceed with the real classification experiment, but took an heavy toll
on the dataset and left an unsatisfactory feeling of incompleteness. The AuPP is the
part of the project that required most time to be developed and tuned and yet it is
also the most fragile and the first one that should be rewritten and improved almost
entirely. The dataset collected for this research has still a lot of potential information
to give and the first step in that direction can be obtained by cleaning the artifacts
and including as many datasets as possible. Several types of artifacts are often
present in the EEG signal [57]:

• External artifacts: noise caused by interference of other electronic devices, like
power-line noise, smartphone frequencies, bad electrodes positioning, elec-
trodes movement.

• Muscle artifacts: caused by the movement of facial muscles (tongue move-
ment, swallowing) or neck muscles and often appear in frontal and temporal
lobes recording.

• Cardiac artifacts: the heart activity can also be detected by EEG electrodes,
especially in the left temporal region.

• Physiological artifacts: these type of artifacts include eyes and eyelids move-
ments and eye blinks and are prominent in the fronto-parietal areas.

There are standard signal processing methods to deal with these artifacts, such as
filtering (notch and band-pass) to remove interfering electric frequencies, while PCA
and ICA can be used to decompose the signal into components to identify almost
any type of artifact, but are only suitable for offline analysis and with a large num-
ber of electrodes. Recent researches focusing on automated removal necessarily
require to use classification or regression to continuously identify when a segment
of signal contains which type of artifact and then apply the right correction. Yeh Sai
et al. [58] performed artifacts identification and removal with wavelet-ICA without
visual inspection using a pre-trained SVM classifier trained on data contaminated
by eye blink artifacts. Their approach allowed the successful removal of target arti-
facts while retaining most of the EEG source signals of interest. A very recent deep
learning approach by Rajabioun et al. [59] was able to successfully classify up to
7 different types of artifacts with 78.12% accuracy score using CNN on a dataset
collected to include: blinks, eyes movements, eyebrows movements, head move-
ments, jaw clinches and jaw movements. The effort of cleaning artifacts from EEG
signal is a common struggle for researchers in academia or neurotech companies
and the development of novel methods that can automatically handle artifacts is
becoming essential for the design of interactive BCI applications that fulfill modern
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user experience requirements. Considering the aim of this research to evaluate
Melomind, a wearable technology with limited hardware, for real-time applications
it is clear that this is not only the biggest challenge, but also the one affecting all
the other directions for future research and developments. In In conclusion, my pri-
mary recommendation for a follow-up study is the collection of contaminated data
for the development of cleaning tools for automatic preprocessing of the EEG signal
that could be then applied to the dataset collected for this research and all future
datasets that will be collected using Melomind or similar wearabled devices with dry
electrodes. Besides artifacts cleaning, this research on affective BCI offers various
insights and ideas for further exploring the field of Affective Computing as discussed
in Chapter 6.6. In the time assigned to the project it was only possible to scratch the
surface, but hopefully an interesting and actual overview of the state-of-art methods,
devices, and strategies was provided to the readers. Researchers and designers in-
terested in building the affective technologies of tomorrow are welcomed to take part
in this challenging and exciting world, and share their ideas, insights and solutions
with the passionate community that is growing around Brain-Computer Interfaces,
that can only exist thanks to the shared efforts, ideas and cooperation that I had
the pleasure of discovering during my last two years of experience as scholar of
Human-Computer Interaction and Design.
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Appendix A

Appendix

The appendix roughly follows the structure of the main thesis. Some of the tables
and plots from the intermediate experiments section (Appendix A.3) were obtained
during an exploratory phase and thus are only approximated and do not contain
subject-wise information. However they should give an overview of the logical rea-
soning that led to the final experiment, for which more individual information is re-
ported in Appendix A.4. Individual ROC curves, labels distribution and confusion
matrices are only reported for specific examples regarding the unbalance of some
datasets (see Appendix A.3.3)

A.1 Pilot study

A pilot study was run internally with myBrainTechnologies employee to design the
Experimental Annotator App. The choice of using mouse as input method was eval-
uated through A|B testing with two training sessions using a demo of the app. The
table reports the average usability score for each training session.

A.1.1 Usability scores for ExperimentalAnnotator app demo

The usability scores were collected with forms asking to rate how simple it was on a
scale from 0 to 5 to perform the following annotation tasks on the GUI representing
VA space using either the mouse or a joystick:

• Selecting the desired quadrant

• Selecting the perceived emotion

• Selecting the correct intensity of the perceived emotion

The scores were collected using the training sessions developed for the experi-
ment, so the first training gave the participants some background on the experiment
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Figure A.1: Usability scores for training in condition A (joystick)

Figure A.2: Usability scores for training in condition A (joystick)

and the task while the second training asked the participants to annotate their emo-
tions in real-time while listening to 4 music excerpts of 30 seconds each. As it can
be seen from table A.1, on average joystick users improved their ability to select
what they wanted while mouse users were consistent. This was not completely un-
expected since the mouse is very likely to be used by most people working with
computers, while joystick is more of a niche input for people who play games or use
simulators.

The lower average ratings obtained by the joystick and the higher likelihood of
skill gaps between participants was enough to drop the joystick as input method,
which was only really interesting for the possibility of annotating emotions in eyes-
closed condition.
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Table A.1: Average usability scores for the two groups.

A.2 Methods

A.2.1 Participants infographic

Figure A.3: Age distribution of the population that participated in the experiment

A.2.2 Emotion-Music playlist

The playlist is a subset of the stimuli proposed by Koelstra et al. [27] and selected
using the emotional tagging available on last.fm. The arousal/valence intensity (Low,
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Figure A.4: Percentages of right-handed and left-handed over the population that
participated in the experiment

Medium, High) are a transposition of the scores assigned by users who participated
in the web assessment of the aforementioned study, but ultimately have been sim-
plified as a binary representation, low or high.
High Arousal / High Valence (HAHV)

• (High arousal, medium positive valence) Excitement- Weapon of choice by
Fatboy Slim

• (Medium positive arousal, high valence) Happiness - Love Today by Mika

Low Arousal / High Valence (LAHV)

• (Medium negative Arousal, high valence) Satisfaction - Nasty Naughty Boy, by
Christina Aguilera

• (Low arousal, medium positive valence) Relaxation – Amber by 311

Low Arousal / Low Valence (LALV)

• (Medium negative arousal, High negative valence) Depression - Last Flowers
by Radiohead

• (Low arousal, Medium negative valence) Sadness – Hurt by Johnny Cash

High Arousal / Low Valence (HALV)
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• (Medium positive arousal, High negative valence) Anger – Threshold by Slayer

• (High positive arousal, Medium negative valence) Anxiety - Trapped Under Ice
by Believe

Other songs were used in the training sessions, but no labelling is provided as
their only purpose was to teach the users how to use the EA app GUI.

• The white stripes - Seven Nation Army

• Gary Jules - Mad World

• Oren Lavie - Her morning elegance

• The Cranberries - Zombie

• Maneskin - I wanna be your slave

• Rage against the machine - Killing in the name of

A.3 Intermediate experiments

During the development of the classification pipeline, several intermediate experi-
ments were run to explore the data, the methodologies, and the different classifiers.
The dataset of each subject was explored singularly, but only some examples are
reported below

A.3.1 Subject-dependent experiment with Sequential Features
Selection

Sequential Features Selection is a greedy features selection method used to reduce
the amount of features by preferring those that improve the performances of a clas-
sifier while reducing the variance. Before computing SFS, GridSearch was used on
the entire dataset including all participants to select the best subject-independent
hyperparameters (tables A.2 and A.3).
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Table A.2: Manually tuned hyper-paramters for MLP.

Table A.3: Manually tuned hyper-paramters for SVM.

Then, forward SFS was used to select 5 features for each participant and perform
the first classification experiment with subject-dependent strategy for each type of
classifier (SVM or MLP) and each condition (EO, EC or EO&EC). Cross-validated
accuracy scores were averaged and reproted in A.4.

Table A.4: Average cross-validated accuracy for each classifier and listening condi-
tion using SFS.
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In addition, the most selected features for each classifier and each condition
were grouped (see table A.5) for later use in two more experiments under the name
of TOP5 features.

Table A.5: Most frequently selected features using SFS, renamed TOP5 features.

A.3.2 Subject-dependent experiment with TOP5 features

For this experiment, the average TOP5 features selected using SFS were applied to
all the generated models, for each classification task and in each condition similarly
to the previous experiment. Average CV accuracy scores were lower, suggesting
that applying the same features using this generalization criterion was not optimal
for subject-dependent strategy. For this reason, and to optimize computational time,
the dimensionality of the features array was later reduced using PCA instead in the
final experiments.

Table A.6: Average cross-validated accuracy for each classifier and listening condi-
tion using TOP5 features.
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A.3.3 Example of unbalanced dataset for arousal classification

A more insightful study was conducted on participants with suspiciously high Test
accuracy and low CV accuracy to identify the causes. Here is reported an example
from a participant with unbalanced arousal labels. First, the labelling behaviour
during experimental trials is reported in figure A.5, then the total distribution of VA
classes is reported in figure A.6.

Figure A.5: Summary of annotation session for participant s220602. The labels are
color coded according to the pre-labelled VA class of each song.

Figure A.6: Labels distribution of participant s220602. The LA* classes summed
up are 1/4 of the entire dataset.

For both SVM and MLP classifiers cross-validated ROC curves were computed
(see fig. A.7 and fig. A.8), showing the high variance between each split (in grey)
against the mean accuracy (in blue), that is usually a symptom of overfitting.
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Figure A.7: Cross-validated ROC curve for participant s220602 for arousal classifi-
cation using SVM.

Figure A.8: Cross-validated ROC curve for participant s220602 for arousal classifi-
cation using MLP.

Finally, PCA was computed to observe the distribution of labels across the first
and the second principal components obtained by the features, and confusion ma-
trices for both SVM and MLP revealed the difficulty in predicting the minority class
due to the data not being linearly separable (see fig. A.9)

Figure A.9: PCA (left) and confusion matrices (right) of s220602 participant with
unbalanced labels for emotional arousal classification.
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A.3.4 Example of unbalanced dataset for valence classification

A more insightful study was conducted on participants with suspiciously high Test
accuracy and low CV accuracy to identify the causes. Here is reported an example
from a participant with unbalanced valence labels. First, the labelling behaviour
during experimental trials is reported in figure A.10, then the total distribution of VA
classes is reported in figure A.11.

Figure A.10: Summary of annotation session for participant s050704. The labels
are color coded according to the pre-labelled VA class of each song.

Figure A.11: Labels distribution of participant s050704. The class HALV is com-
pletely missing.

For both SVM and MLP classifiers cross-validated ROC curves were computed
(see fig. A.12 and fig. A.13), showing the high variance between each split (in grey)
against the mean accuracy (in blue), that is usually a symptom of overfitting.
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Figure A.12: Cross-validated ROC curve for participant s050704 for valence classi-
fication using SVM.

Figure A.13: Cross-validated ROC curve for participant s050704 for valence classi-
fication using MLP.

Finally, PCA was computed to observe the distribution of labels across the first
and the second principal components obtained by the features, and confusion ma-
trices for both SVM and MLP revealed the difficulty in predicting the minority class
due to the data not being linearly separable (see fig. A.14)

Figure A.14: PCA (left) and confusion matrices (right) of s050704 participant with
unbalanced labels for emotional valence classification.
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A.3.5 Subject-independent experiment with Top5 features

Since it was impossible to apply SFS to the entire dataset for subject-independent
classification without days of computational time, for this experiment TOP5 features
previously identified were used. The poor average results (see table A.7) obtained
pushed to focus this research on subject-dependent strategy. Another subject-
independent experiment was conducted using PCA on a sub-group of participants
with balanced datasets, but the results were far below expectations and have not
been saved for reporting.

Table A.7: Average cross-validated accuracy for each classifier and listening condi-
tion using TOP5 features.

A.3.6 Subject-dependent experiment with ”Max Accuracy” scor-
ing strategy

Tables A.8 and A.9 report the results for arousal and valence subject-dependent
classification respectively with a scoring strategy that optimizes hyperparameters to
maximize ”accuracy” using GridSearch. While average accuracy and CV accuracy
scores are higher, the number of overfitting and underfitting models that were gener-
ated, especially for SVM classifier is also higher. This approach for GridSearch op-
timization was discarded in the final experiment in favor of maximising MCC scores
instead.
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Table A.8: Arousal classification results using ”accuracy” as scoring parameter for
GridSearch. Learning models are highlighted in blue, over-fitted and
under-fitted models are highlighted in yellow and orange, respectively.

Table A.9: Valence classification results using ”accuracy” as scoring parameter for
GridSearch. Learning models are highlighted in blue, over-fitted and
under-fitted models are highlighted in yellow and orange, respectively.

A.4 Final experiment

The Test accuracy and MCC scores of the final experiment with subject-dependent
strategy have been averaged and compared with default guessing of the majority
class in fig A.15, while the cross-validated scores have been averaged and com-
pared in fig. A.16. As it can be observed, the average accuracy scores are not
significantly different than default guessing, but it should be considered that the max-
imization of MCC scores often sacrifices accuracy when datasets have unbalanced
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labelling.

Figure A.15: Average Test Accuracy and MCC compare against majority class
guessing.

Figure A.16: Average CV Accuracy and CV MCC compare against majority class
guessing.

A.4.1 Ranking of SVM classification performances for arousal
classification

Test accuracy and MCC scores for arousal classification with SVM have been ranked
by descending MCC (see fig. A.17), CV accuracy and CV MCC have been ranked
by descending CV MCC (see fig. A.18), and compared with default guessing for
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each participant. These ranking shows that the highest accuracy scores are often
caused by unbalanced datasets.

Figure A.17: Ranking of subject-dependent SVM models performances for arousal
classification by Test MCC, descending.

Figure A.18: Ranking of subject-dependent SVM models performances for arousal
classification by CV MCC, descending.

A.4.2 Ranking of MLP classification performances for arousal
classification

Test accuracy and MCC scores for arousal classification with MLP have been ranked
by descending MCC (see fig. A.19), CV accuracy and CV MCC have been ranked
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by descending CV MCC, and compared with default guessing for each participant
(see fig. A.20). These ranking shows that the highest accuracy scores are often
caused by unbalanced datasets.

Figure A.19: Ranking of subject-dependent MLP models performances for arousal
classification by Test MCC, descending.

Figure A.20: Ranking of subject-dependent MLP models performances for arousal
classification by CV MCC, descending.

A.4.3 Ranking of SVM classification performances for valence
classification

Test accuracy and MCC scores for valence classification with SVM have been ranked
by descending MCC (see fig. A.21), CV accuracy and CV MCC have been ranked
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by descending CV MCC (see fig. A.22), and compared with default guessing for
each participant. These ranking shows that the highest accuracy scores are often
caused by unbalanced datasets.

Figure A.21: Ranking of subject-dependent SVM models performances for valence
classification by Test MCC, descending.

Figure A.22: Ranking of subject-dependent SVM models performances for valence
classification by CV MCC, descending.

A.4.4 Ranking of MLP classification performances for valence
classification

Test accuracy and MCC scores for valence classification with SVM have been ranked
by descending MCC (see fig. A.23), CV accuracy and CV MCC have been ranked
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by descending CV MCC (see fig. A.24), and compared with default guessing for
each participant. These ranking shows that the highest accuracy scores are often
caused by unbalanced datasets.

Figure A.23: Ranking of subject-dependent MLP models performances for valence
classification by Test MCC, descending.

Figure A.24: Ranking of subject-dependent MLP models performances for valence
classification by CV MCC, descending.
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