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Abstract
Current automatic speech recognition (ASR) systems are
greatly impacted by expressive speech, causing higher Word Er-
ror Rates (WER). Producing a large-scale training corpus with
human expressive speech is a very laborious task. Very simi-
lar to data augmentation, we explore the field of expressiveness
within a text-to-speech (TTS) system, creating a larger amount
of speech data. Our speech synthesizer, ExpressTTS, aims to
separately explore prosodic factors (pitch, energy, duration) and
spectral tilt in a regularized latent space, while conditioning on
the text and speaker. This way, we find expressive patterns that
are natural in these contexts. Our non-autoregressive model par-
allelizes inference, allowing us to generate a large-scale corpus.
We focus on the TTS part of augmentation pipeline. The qual-
itative evaluation shows that diverse but natural prosodic varia-
tions are found, but clear emotions are not audible. We see that
our model generalizes consistently better to unseen in-domain
utterances than the baseline. Quantitative analysis shows that
the stability of the baseline and models is strongly influenced
by the composition of the training corpus. There is a lack of ex-
pressive training data for our system, and padding it with neutral
speech data yields domain mismatch which also inhibits model
and baseline stability.

Nonetheless, the model generates speech with prosodic
variation, and we find our model ExpressTTS consistently
generalizes better to unseen in-domain data than the baseline
GlowTTS. The user study suggests our model produces more
diverse expressiveness than the baseline. To add, it creates sig-
nificantly more intense emotion and style than the baseline. We
conclude with directions on how to use our model for exploring
expressiveness.
Index Terms: speech recognition, speech synthesis, data aug-
mentation, prosody, computational paralinguistics

1. Introduction
1.1. Motivation

Modern automatic speech recognition (ASR) systems can tran-
scribe speech audio for different conditions, such as speakers
and acoustic environments. An ideal speech recognizer can
also correctly transcribe speech with any form of human ex-
pressiveness. Current systems are however greatly impacted by
expressive speech, causing higher Word Error Rates (WER) [2,
36]. Theoretically and proven empirically, training on expres-
sive speech will mitigate this [36]. Popular corpus domains are
commonly audiobooks [5, 16], which are not expressive in na-
ture. Attaining a large annotated speech dataset in itself is a
very laborious task, and forcing a certain level of expressive-
ness complicates speech collection more. Without expressive
training data, ASR systems are not robust to expressive input
– suffering increases in Word Error Rate (WER). After train-
ing on audiobooks, using distressed speech instead of neutral

speech can increase the WER by 20-30% [2]. Different vocal
effort levels, from whispering to shouting, can also increase a
neutral baseline WER by 10-60% [36]. This can be mitigated
by training specifically on only the same vocal effort level, de-
creasing WER by 5-40%. Alternatively, training on synthetic
speech instead can also improve ASR systems [22].

Hypothesis We see limitations in expressive speech recogni-
tion and we hypothesize that including a wider or selected range
of expressiveness in the training data may yield WER improve-
ments – even if it is synthetic. Building a synthetic corpus
through a text-to-speech (TTS) system allows for large-scale
generation while controlling various conditions, such as text in-
put and speaker selection.

Approach We propose a method to synthesize speech with
diverse patterns of expressiveness for the same input. We call
it ExpressTTS, and we discuss its use as a data augmentation
model for ASR. The scope of this research is limited to the
TTS part of the data augmentation pipeline. Further compo-
nents of the pipeline – such as evaluating the WER improve-
ment as a consequence of the resulting synthetic dataset – will
be discussed as future work in Section 9.

1.2. Challenges

Building an expressive speech synthesizer comes with several
challenges. Firstly, the model needs to learn from a small ex-
pressive corpus. Synthesizing expressive speech addresses the
lack of expressive speech corpora. However, we need expres-
sive speech to construct such synthetic corpus. As a conse-
quence, the model needs to learn from a small expressive cor-
pus. Too little training data overfit the model, making it unstable
and causing poor or inconsistent performance on unseen utter-
ances. We make a distinction between two types of unseen ut-
terances: lexically in-domain and lexically out-of-domain. The
model may not generalize to synthesize unseen texts from the
corpus. They are lexically in-domain, i.e. from the same do-
main as the training texts. It is expected the model performs
worse for texts from outside the corpus, and thus a different
lexical domain.

Secondly, human expressiveness does not have an objective
definition. This inhibits us from evaluating or training with a
single direct metric or loss. Moreover, generative models are
hard to evaluate – for the same reasons. There is not a single
objective metric that indicates the generated sample is correct.

1.3. Research aims

The research aims to answer the following questions.

RQ1 How perceptually diverse in terms of expressiveness can
we synthesize speech for a given text and speaker, while
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Figure 1: base. The original Glow-TTS model [7]. It includes
a reversible decoder with normalizing flows and a monotonic
alignment search to match speech units with mel-spectrogram
frames.

maintaining a similar standard of naturalness across sam-
ples?

RQ2 How can a speech synthesizer construct and exploit a la-
tent representation to generate perceptually diverse ex-
pressive speech for a given text and speaker?

RQ3 To what extent can the synthesizer increase diversity
across samples, and at what cost in terms of computing
resources?

Moreover, we note several requirements and desired properties
for the system.

Firstly, the synthesizer is required to perform quick infer-
ence. Around 500 to 1000 hours is a common size for a multi-
speaker ASR corpus [16]. As we are incorporating expressive
patterns as well, we require a larger dataset. With limited re-
sources for a data augmentation pipeline in mind, we aim at
an inference speed that can comfortably produce around 3000
hours. For real-time TTS, the inference frequency should be
high, surpassing 16 kHz. For our application, inference should
be several orders of magnitude quicker. For example, if we
want to build the 3000-hour corpus of 16 kHz speech within
three days, the inference rate should be 666 kHz. Note that this
does not include the computation time needed for training the
speech synthesizer. Quick training for TTS will be greatly ben-
eficial for performing various experiments, changing datasets
and tweaking hyperparameters. This flexibility of changing
datasets is also useful for real-life applications, where demands
can change or ‘better’ expressive datasets may be released. Ad-
mittedly, human expressiveness is a subjective topic, so there is
no objectively ‘best’ dataset to capture it. This very fact also
invites experimentation with multiple datasets.

Secondly, the two common properties for TTS is intelligi-
bility and naturalness [27]. While our evaluation focuses on the
diversity of expressiveness, it includes a check for these proper-
ties to confirm basic TTS functionality.

1.4. Contributions

Our main contribution is the model ExpressTTS. It is designed
to produce a large ASR corpus with high diversity efficiently.

It explores expressiveness via a separate latent space, which is
built from an expressiveness encoder. This way, expressiveness
is conditioned on the input text and speaker. A secondary loss
teaches this latent space to match the ground-truth energy, pitch,
and spectral tilt contours. The model is an extension of Glow-
TTS [7], featuring novel methods from Glow-TTS. It uses flow-
based decoders, transformer encoders, and a monotonic align-
ment search. Contrary to most works, we do not use an en-
coder to represent the expressive ground truths. Instead, we
use a reversed flow-based decoder. Lastly, we designed a new
component for ExpressTTS: a latent merge, which merges the
expressiveness latent space with another latent space.

Secondly, we analyze a multitude of speech corpora that
could be used for expressive TTS. Our findings can help
decision-making in corpora for similar research.

Thirdly, we provide several evaluation methods for expres-
sive synthesizers (for ASR augmentation). We define an en-
tanglement metric that measures entanglement between the two
latent spaces. Moreover, the user study setup we designed can
be used for similar systems – especially useful for benchmark-
ing in this new field. We have customized the webMUSHRA
[23] questionnaire source code to include these changes, and
we have released it as open-source contributions1.

Lastly, the nature of our work – exploring expressiveness
using novel methods – shows ExpressTTS is a pioneering step
in synthetic expressive ASR augmentation. One can use it to
implement similar methods with additional restrictions when
exploring expressiveness.

1.5. Outline

We provide background information about expressiveness and
we define several key terms for expressive TTS in Section 2.
We outline the state-of-the-art in speech synthesis, ASR aug-
mentation, and style modeling in Section 3. Section 4 provides
a detailed overview of the speech corpora we considered and
choose. It provides important details, such as domain mismatch
in our corpus, that are useful for interpreting our results. We
describe our method in Section 5: the features, our method for
exploring expressiveness, and the model ExpressTTS. Our ex-
perimental setup in Section 6 shows our baselines and defines
our qualitative and quantitative evaluation methods. They in-
clude prosodic variation plots, several metrics, and a user study.
Section 7 shows our results, which lead to the answering of the
research questions in Section 8. Limitations and future work
(Section 9) of the research are discussed as well. We end with
conclusions in Section 10.

2. Background
2.1. Prosody

A speech recording contains information about the acoustic en-
vironment and about the speech uttered. The speech properties
can be divided into phonemic and non-phonemic. To model hu-
man expressiveness, we focus on the non-phonemic properties
only. To limit our scope, we will not consider non-phonemic
vocalizations, e.g. laughing or sighing, but focus on prosody.
Prosody refers to the non-phonemic properties of speech on a
suprasegmental level, i.e. for syllables or larger units. There is
no consensus on what all the attributes of prosody are. How-
ever, the generally agreed upon attributes are (i) the variation
of pitch, (ii) variation of loudness, and (iii) durations of speech

1https://github.com/Linths/webMUSHRA-expressiveness
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Category Subcategories (non-exhaustive) Effect Has neutral

Emotion Amusement, Anger, Disgust, Sleepiness, Sadness, Fear Global Yes
Interpersonal attitude Authority, Contempt, Politeness, Irritation, Seduction Global Yes
Propositional attitude Incredulity, Sarcasm, Surprise, Rhetoricity, Doubt, Confirmation, Obviousness Local Yes
Topical emphasis* Beginning, Middle, End Local Yes
Style Whispering, Shouting, Instructional, Broadcasting Global Yes
Marked tonicity* Different interpretations of syntactically ambiguous utterances through tonicity Local No
Syntactic phrasing* Different interpretations of syntactically ambiguous utterances through pauses Local No

Table 1: Speech classes with prosodic effect from [29] with small adjustments. Terms marked with an asterisk are further explained in
Appendix A.

units [18]. With these, one can find patterns such as intonation,
stress, tempo, and rhythm. Speakers use these patterns to con-
vey additional information: to highlight speech units for focus
and contrast. Moreover, physical correlations have been found
between emotion and speech patterns, showing effects on pitch,
timing, and voice quality (timbre) [18]. Specific emotions in-
duce arousal of the sympathetic or the parasympathetic nervous
system, causing changes in the heart rate, blood pressure, and
salivation levels, which then influence speech loudness, pitch,
and speaking rate. By measuring prosody to explore expres-
siveness, we in fact model both the speaker’s emotional state
and the additional information they want to convey.

A recent study defines several speech classes with prosodic
effect [29] that carry such additional information. Table 1 shows
an overview. The classes convey emotion, attitude, or clarifica-
tion for a syntactically ambiguous utterance. This way, they
classify speech samples into a non-exhaustive list of expressive
categories and subcategories that are perceivable for listeners.
Appendix A clarifies the terms topical emphasis, marked tonic-
ity, and syntactic phrasing.

2.2. Definitions

We provide definitions for several key terms. As defined in [27],
a speech sample is considered natural if it sounds like human
speech. It is a perceptual phenomenon. To measure this, human
listeners are often asked to rate the naturalness of the sample.
This is commonly done with a Mean Opinion Score on a scale
of 1 to 5: from bad to excellent. MUSHRA tests are also used,
which employ a scale of 1 to 100 and require several extra test
conditions, such as a reference sample [30]. Preference tests
can also be used to ask listeners which sample is perceived as
more natural.

Another perceptual phenomenon is expressiveness. We
provide our own definition: a speech sample is considered ex-
pressive if it does not sound neutral, i.e. not encoding additional
information besides the text uttered. The same techniques for
measuring naturalness can be employed for expressiveness. For
example, a preference test for expressiveness is performed in
[10]. However, because listeners may have different interpreta-
tions of which audio deviations qualify as expressiveness, our
tests provide expressive examples, providing an upper bound to
anchor the MOS or MUSHRA scale.

Lastly, we define diversity in expressiveness. A set of sam-
ples has diverse expressiveness if the samples are perceived to
convey different types of additional information, such as differ-
ent emotions or attitudes. Similarly to expressiveness, we can
evaluate it with human perception through a MOS, MUSHRA,
or preference test.

3. Related work
3.1. Speech synthesis

Text-to-speech (TTS) systems can synthesize speech from any
given text. They infer tremendous amounts of information to
be able to convert from the low dimension of text to the signif-
icantly higher dimension of a waveform. Modern TTS systems
are usually generative Encoder-Decoder models that focus on
transforming text to a Mel-spectrogram, an intermediate repre-
sentation of the waveform [34, 25, 15, 14, 19, 9, 7]. Then, a
vocoder converts the Mel-spectrogram into a waveform.

To create correct and natural speech, several recent mod-
els use variational inference [14, 19, 7]. With a regularized la-
tent space to represent any speech sample, the model obtains a
well-structured organization of the speech data. This makes the
model robust to outliers and unseen data, avoiding overfitting
and generating diverse but natural speech samples. In Glow-
TTS the latent space is as long as the speech sample, therefore
it can generate meaningful speech for text of any length [7].

Another consideration for improving speech quality is how
to model the dependencies between the text tokens and output
tokens. Several methods use attention to capture long-term de-
pendencies [34, 25, 19, 9, 7]. For specifically the dependen-
cies between the output frames, some models use autoregres-
sion [34, 25, 15, 14, 19, 9]. While autoregressive models have
been state-of-the-art for several years, they have a few disadvan-
tages. As the spectrogram frame generation in an autoregressive
model depends on the previously generated frame, the inference
is slow. To add, it biases exploration as the autoregressive error
accumulates, making the model less robust. Several autoregres-
sive models arose that can parallelize inference using inverse
autoregressive flows, resulting in sample inference at over 500
kHz [14, 19]. Their training is however complex, as it requires
alignment with a pre-trained speech synthesizer.

The recent model Glow-TTS can model long-term depen-
dencies without autoregression without compromising on out-
put quality [7]. This not only improves inference speed but also
robustness of the model. Figure 1 shows the system architec-
ture. Glow-TTS’ inference is 15.7 times faster than Tacotron 2
on average. Non-autoregression normally comes at the cost of
training simplicity, as the output is predicted at once instead of
frame by frame. Glow-TTS mitigates the training complexity
by calculating the exact data likelihood in an efficient manner.
During the forward pass, the spectrogram decoder uses normal-
izing flows to retrieve the exact representation of the output in
the latent space. This latent space instance can be matched di-
rectly with the latent space distribution as determined by the in-
put text, through a monotonic alignment search. Though, to en-
sure monotonicity, Glow-TTS requires Grapheme-to-Phoneme
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conversion of the text input.

3.2. ASR augmentation

Data augmentation has been proven useful to improve speech
recognition, and it can be considered standard practice. Re-
search shows that even simple audio transformations allow for
more diverse modeling of acoustic environments [32, 17] or
prosody [6]. Noise is commonly added to clean signals. For
example, real or simulated room impulse responses to add re-
verberation can give a relative WER improvement (WER-RI)
of 45% . Inspired by cutout techniques in image augmenta-
tion, SpecAugment applies time warping, time masking, and
frequency masking to spectrograms, resulting in up to 46%
WER-RI [17]. Other augmentation methods for acoustics are
low-pass smoothing or additive Gaussian noise. Augmentation
policy search, first popularized in computer vision, can be used
to maximize utility of such augmentation methods, especially
when enforcing consistency measures [32].

Prosody augmentation can model change in speaker as-
pects. To make the prosody of adult speech childlike, [6] use
vocal-tract length normalization, explicit pitch modification,
and duration modification, resulting in 32% WER-RI on child
speech. To convert emotive utterances to a neutral version, [21]
apply uniform and non-uniform modification of pitch, duration,
and energy. The modification factors for the three emotive cate-
gories anger, happiness, and compassion followed from dataset
analysis. WER improved by an absolute 5% across all three
categories.

Instead of augmented real speech, one can use augmented
synthetic speech to improve ASR. Such speech can be cre-
ated by forcing enhancements in the speech synthesis process.
For example, [22] apply data augmentation with TTS in two
fields. They model speaker diversity by synthesizing speech
with speakers sampled from existing embeddings. Randomly
generated speaker embeddings proved less beneficial. To add
lexical diversity, they feed the TTS system new texts sampled
from a trained language model. WER improvements are seen
for both augmentation experiments, but do depend on (i) the
augmentation ratio of the training data – synthetic versus orig-
inal data – and (ii) the size of the original dataset. The larger
dataset benefited less from augmentation because it likely con-
tains more diversity on itself. Moreover, they concluded that an
in-domain synthesizer, trained on the same dataset as for test-
ing the ASR, gives better WERs than an out-domain synthe-
sizer. Their experimental setup can be used as a follow-up for
our work. Then, one can explore the augmentation ratio, and
consider the effects of domain adaptation when using datasets
of different domains and sizes. Their speaker-domain findings
also suggest that a random generation of expressiveness will be
less useful than sampling. Lastly, we use multi-speaker TTS
which they deemed necessary for ASR augmentation.

3.3. Style modeling

Modeling style in speech synthesis can be done in various ways.
Firstly, one can take different definitions for style: prosody, cer-
tain prosodic features, or the audio variance unexplained by text
and speaker factors. Secondly, the eventual purpose can moti-
vate different modeling approaches. While synthesizers may
model style to solely improve speech naturalness, we focus on
more specific uses.

To create speech with the specific prosody of sadness, [4]
use a simple prosody transfer method. They synthesize speech
with equal-pitch and equal-duration syllables, and then apply

voice transformation with pitch and duration factors copied
from a reference speech sample. Other prosody transfer meth-
ods avoided the need for labeled prosody by using unsupervised
representations of prosody within the TTS system. With a ref-
erence encoder, they create a global prosody embedding from a
reference spectrogram or spectrum [26, 33, 37]. This embed-
ding will then be used in the TTS decoder [26, 37] or TTS
encoder [33]. There might be certain constraints to transfer
prosody. In [26], prosody could only be transferred if the ref-
erence text (nearly) matches the target text. Furthermore, when
the reference speaker differs from the target speaker, the transfer
results show apparent traces from the reference speaker’s voice.
This indicates entanglement of speaker and style.

Another prosody transfer work with style embeddings,
called Global Style Tokens (GSTs), use it for prosody control
as well [34]. Because they enforced a maximum of ten unique
GST embeddings, the resulting GSTs would model commonly
found patterns. Experiments show that a single GST influ-
ences the whole speech contours for pitch, intensity, speaking
rate, and ‘emotion’ (quoted). They also found that scaling the
GSTs with positive or negative factors can intensify or lessen
the style effect, respectively – though this may lead to unintelli-
gible speech.

The design of speech synthesizer Glow-TTS allows for cer-
tain prosody control [7]. With generative flows, it can directly
convert a spectrogram from a sample z of a Gaussian latent
space with a learnt mean µ and unit variance σ. If we however
use temperature T as variance, we retrieve z = µ+ϵ∗T , where
ϵ is a standard normal distribution sample. It was found that by
only varying ϵ, the resulting speech samples showed different
intonation patterns. Moreover, controlling only the tempera-
ture T showed control over the speech pitch. Another crucial
component of Glow-TTS is the duration predictor, which learns
from observing the text-speech alignment search during train-
ing, to then impose durations onto the phonemes during infer-
ence. Imposing a manually chosen duration vector allows for
direct control of the speaking rate.

Style can also be captured to make the TTS system robust to
noise and highly biased data. A hierarchical Variational Auto-
Encoder (VAE) was used to improve stability and fidelity when
working with non-studio speech data [22]. The hierarchical
VAE creates one global style embedding from a reference spec-
trogram, much like the aforementioned prosody transfer meth-
ods, and additionally creates a local embedding for each spec-
trogram slice. Then, each TTS decoder step takes into account
the global embedding and the relevant local embedding. Includ-
ing the hierarchical VAE gives a WER improvement of 1%.

4. Dataset
Our work addresses a lack of large expressive speech corpora,
but to build our pipeline, we still require an expressive corpus.
The dataset chosen will heavily influence the way our speech
synthesizer learns and how the ASR is evaluated. Table 2 con-
tains most of the corpora considered. All contain American En-
glish speech. We found five possible multi-speaker datasets that
contain at least 9.1 hours of transcribed and highly expressive
speech. Three of them are developed for multimodal emotion
recognition: MELD [20], IEMOCAP [3], and CMU-MOSEI
[35]. The other two are built for emotion control or transfer in
speech synthesis: EmoV-DB [1] and ESD [38]. All five cor-
pora contain emotional labels and the (quite uniform) emotion
distribution can be carefully sampled. Emotion labels are not
necessary for our pipeline because they can be left out as input
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Corpus Purpose #Speakers #Emotion
labels

#Utterances,
distinct

#Utterances,
non-distinct Size (h) Avg. speaker

size (h)

EmoV-DB [1] Emotion control 4 5 593 6.9 K 9.5 2.4
ESD [38] Emotion transfer 10 5 350 17.5 K 10.3 1.0
MOSEI [35] Emotion recognition 1000 6 23.5 K 23.5 K 66.0 0.1
IEMOCAP [3] Emotion recognition 10 10 10.0 K 10.0 K 11.5 1.1
MELD [20] Emotion recognition 6 6 13.0 K 13.0 K 13.5 1.92

Blizzard [8] TTS 1 / 40.6 K 40.6 K 41.0 41.0
LJSpeech [5] TTS 1 / 13.1 K 13.1 K 24.0 24.0

Table 2: Training corpora considered. Our experiments use EmoV-DB and LJSpeech.

features. However, they can provide insight during our system
analysis.

For any of the emotion recognition datasets, a first inspec-
tion suggests good audio quality. However, for TTS, speech
quality needs to be very high with clean acoustic environments.
MELD, which contains fragments from the TV sitcom Friends,
has noise ranging from subtle background sounds to an overlap-
ping laugh track [20]. IEMOCAP, with 12 hours of speech from
scripted and spontaneous dialogues from 10 actors, has speaker
overlap [3]. The CMU-MOSEI dataset contains 65 hours of at
least 1000 speakers from different YouTube videos [35]. The
dataset is a strongly mixed source which may lead to domain
mismatch in a lexical and acoustic sense. A more consistent
dataset is preferred to facilitate the learning of expressive pat-
terns. Besides that, the speech quality was found to be lack-
ing, as well as the transcriptions [24]. However, while CMU-
MOSEI has clear disadvantages, it can still be interesting to run
a side experiment on it as the high size and number of speakers
may uncover a high range of expressive patterns.

Rather than emotion recognition, EmoV-DB and ESD are
made for synthesis purposes. Our data analysis also confirmed
they both meet TTS quality standards. EmoV-DB is created for
emotional expressiveness control in voice generation systems
[1]. It contains 9.5 hours of scripted speech in 5 emotive cate-
gories, voiced by 2 female and 2 male speakers. The emotions
are acted out in an exaggerated manner with non-verbal vocal-
izations such as laughter and yawning. ESD is made to improve
emotional style transfer in voice conversion. It contains 10.3
hours over 5 female and 5 male speakers, using 5 emotions. A
very important note is that they both use parallel utterances. Ut-
terances are purposely re-recorded in different conditions: each
speaker and emotion. Arguably, this encourages disentangle-
ment of emotional patterns and the text input, as any text input is
seen in various styles. There is a clear downside, however. The
corpus size of around 10 hours is already considerably small
for TTS, but the number of distinct utterances is only in the sev-
eral hundreds. A lack of lexical diversity inhibits the speech
synthesizer from properly training for the complex task of TTS.
We confirmed this through experimentation with both corpora.
Moreover, in our case, low lexical diversity may inhibit the gen-
eralization of the emotional patterns found.

To ensure our model can in fact perform speech synthesis,
we pad a highly expressive corpus with a common large-scale
TTS corpus. As highlighted in [22], this does lead to domain
mismatch. Lexically and acoustically, the two corpora have dif-
ferent distributions. This can also inhibit convergence of train-
ing and decrease model stability. For the highly expressive cor-

2The MELD subset includes six main speakers and a multitude of
non-frequent speakers which make up around 1/7th of the corpus.

pus, we chose EmoV-DB over ESD based on the number of
distinct utterances. As the neutral corpus we use LJSpeech, a
single-speaker 24.0 hour corpus of audiobooks. As can be seen
in Table 2, we also retrieve an imbalance in utterances and hours
per speaker. The LJSpeech speaker has a tenfold of hours over
one EmoV-DB speaker. EmoV-DB uses the emotions {Amused,
Angry, Disgusted, Neutral, Sleepy}. When merging the corpora,
we assign the label Neutral to all LJSpeech samples – creating
an emotion imbalance as well. These imbalances also decrease
model stability.

While we performed our experiments on the aforemen-
tioned composite corpus, we listed one other corpus. With the
stability issues in mind, we see potential in the Blizzard 2013
corpus [8] as well. This is a large-scale single-speaker TTS cor-
pus. It contains animated and emotive storytelling. As it is a
regular TTS corpus, there are no emotion labels. An additional
experiment would be to train our synthesizer on just the Bliz-
zard corpus, trading off some expressiveness for a high increase
in model stability.

5. Method
5.1. Approach

We designed ExpressTTS, an expressive speech synthesizer, to
produce a large corpus with diverse expressiveness efficiently.
Based on the high inference speed and quality, we use Glow-
TTS [7] as a base system. Moreover, Glow-TTS already of-
fers the possibility to explore diversity within speech, providing
a baseline for ExpressTTS. In Glow-TTS, spherical Gaussian
distributions represent the spectrograms. Thus at inference time
one can trade off between naturalness – sampling near the mean
– and diversity – sampling away from the mean.

The strength of style embeddings in many works motivates
our choice to create a separate latent space for expressiveness.
This way, we can model variation in expressiveness separately
from any other type of variation, such as pronunciation. For
a more fine-grained representation, we use local embeddings
which are on a frame level. We use a well-structured regu-
larized representation that motivates the generation of diverse
but natural samples. For this, we use spherical Gaussian dis-
tributions for expressiveness embeddings, like Glow-TTS has
for spectral embeddings. This expressiveness latent space of-
fers the same trade-off between naturalness and diversity. Sec-
tion 5.3 describes our method to systematically sample diverse
variations within our model ExpressTTS and the baseline Glow-
TTS.

To model human expressiveness, we focus on the non-
phonemic properties only. To limit our scope, we will not con-
sider non-phonemic vocalizations, e.g. laughing or sighing. In-



5 METHOD 6

Figure 2: ExpressTTS, version 1.4. It extends the Glow-TTS
[7] base model with reversible decoders for prosodic features,
a prosody encoder, a prosody loss, and a latent merge. At infer-
ence time, it samples from the prosody latent space to synthesize
speech with diverse expressiveness.

stead, we focus on prosody. Section 5.2 describes the exact fea-
tures we use. Prosodic properties are specific for the text uttered
and the speaker’s voice. Certain languages use for example lexi-
cal stress to distinguish semantics. A speaker might have a more
high-pitched voice or a low speaking rate in general. To fully
explore the spectrum of human expressiveness, we condition the
prosody on the text and speaker. More specifically, we control
the text and speaker to model expressiveness in different con-
ditions. Prior works in prosody modeling however show these
two factors are prone to entanglement with expressiveness, so
our system evaluation also focuses on the disentanglement of
them.

Figure 2 is a detailed overview of our model, ExpressTTS.
We made the following additions to the original Glow-TTS
model: (i) an energy-pitch decoder, (ii) a prosody encoder, and
(iii) a merge for the prosody latent space and the content latent
space. These changes include an additional loss, which mini-
mizes mismatch between the prosody predicted from the input
text and speaker and the prosody extracted from the ground-
truth sound wave. In addition, the model still learns from the
main loss (which minimizes spectral mismatch) and the dura-
tion loss (which minimizes phone-frame alignment mismatch).

After a description of what ground-truths we use to build
the expressiveness latent space from (Section 5.2), and how we
sample from it (Section 5.3), we show how our model integrates
this latent space in Section 5.4 and later.

Figure 3: Sampling methods used, visualized in a 2D example.
Purple depicts samples drawn from N (µ,σ). Both shades of
green depict samples drawn by taking random angles at a fixed
distance Tσ from µ.

5.2. Features

To recognize and emulate patterns of expressiveness, we focus
on several features: pitch, energy, spectral tilt, and the emo-
tion labels. Pitch is decomposed into the voiced probabilities
– the probability a frame is voiced – and the interpolated pitch.
Spectral tilt can be considered a composite factor that considers
pitch and energy. The interpolated pitch has less sudden drops
than the non-interpolated pitch. Instead, these drops are mod-
eled by the voiced probabilities. The emotion labels are added
to encourage the clustering of expressive patterns per emotion.
While only pitch and energy concern prosody, for the sake of
simplicity we refer to all of the aforementioned features as the
prosodic features.

As a first normalization step, we apply a logarithm to the
pitch and energy values found. The voiced probabilities and
spectral slope naturally fall in a small and better-distributed
range of values. A one-hot encoding is used for the five emotion
labels. Z-normalisation is applied to all features, except for the
emotion labels. Per feature, the mean and standard deviation
needed for the normalization are calculated from the training
subset.

5.3. Exploration of expressiveness

Our model and the baseline model contain Gaussian latent
spaces, representing spectral or prosodic variation. We can use
different methods to sample from a Gaussian latent space. The
most straightforward method, as used in Glow-TTS for regular
speech synthesis, is to sample ẑ ∼ N (µ,σ), or ẑ = µ+ ϵ∗σ.
Per definition, this yields natural patterns. Their limited experi-
mentation with sampling lead them to sample ẑ = µ+ ϵ ∗ Tσ,
while varying only the temperature T or only the noise ϵ.

To force diverse samples in a systematic way, we fix the
distance to µ – the most likely sample – to be Tσ with a T of
choice. This creates a sphere of possible samples. As shown in
the 2D example in Figure 3, the last unknown is the angle. We
calculate these samples as follows.

ẑ = µ+ T ∗ a

∥a∥ (1)

Here, a is the reference vector that has the chosen angle. One
can sample it from any Gaussian with zero mean. The variance
does not matter; we divide a by its ℓ2-norm to bring the coordi-
nate on the unit circle – yielding unit distance to µ.
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We designed the following methods to choose a.

• Random angles. We randomly draw a ∼ N (0,1).

• Independent angles. To ensure the samples represent
independent information, we can force every a vector to
be orthogonal to the previous samples.

• Dimension extremes. Every sample represents one ex-
treme of one latent dimension. Note this is a specific
case of the previous category. With N as the number of
dimensions, we use the following equations to attain 2N
samples. ∀i ∈ {1, ..., N}:

apos
i =(01, .., 0i−1, 1i, 0i+1, .., 0N ) (2)

aneg
i =(01, .., 0i−1,−1i, 0i+1, .., 0N ) (3)

To quickly find the influence of input changes in the latent
space, the dimension extremes are the preferred reference vec-
tors – given that N is reasonably small enough. Otherwise, the
random angles are a good alternative to still explore.

5.4. Encoders

Prosody encoder The prosody encoder learns the prosody la-
tent space distribution µp,σp given the text for any speaker.
As it is a distribution, it can not only represent the most likely
prosody for a given text and any speaker, but also less likely
possibilities for prosody. It allows modeling human expressive-
ness as a trade-off between naturalness (i.e. likelihood) and di-
versity. The backpropagation from the prosody loss Lp ensures
the prosody encoder includes various expressive patterns. The
prosody encoder does not backpropagate via the main loss Lm

to ensure it does not represent non-prosodic information.

Content encoder The text encoder learns µc,σc, the latent
space distribution of the text and speaker. Using the main
loss Lm, the variation within the spectrogram is explained by
the prosody encoder and the content encoder together. As the
prosody encoder is taught to solely represent prosodic infor-
mation, the remaining information – e.g. phoneme pronuncia-
tion – should be provided by the content encoder. Because the
ground-truth spectrogram contains prosody as well, it is possi-
ble prosodic information leaks into the text encoder via the main
loss. This would be redundant, as the prosody encoder already
represents prosody.

Common encoder The prosody encoder and text encoder
share a common encoder, to detect fundamental patterns in the
given text. The common encoder learns from both the prosody
loss and the main loss. We build the common encoder from 4
layers, and the follow-up encoder from 2 layers. Encoders for
speech synthesis commonly have around 6 layers.

5.5. Decoders & predictor

Main decoder The main decoder operates on a frame-level.
When reversed during the forward pass, the main decoder gives
z′
m = f−1

m (xm). This is the exact representation of the
ground-truth spectrogram xm in the main latent space Zm.
The decoder reversal is possible through invertible functions in
its normalizing flows. No adaptations were made to this Glow-
TTS component.

Prosody decoder The internal design of the prosody decoder
is hugely similar to the main decoder. It operates on a frame-
level. When reversed during the forward pass, the prosody de-
coder return z′

p = f−1
p (xp). This is the exact representation

of the ground-truth prosodic features xp in the prosody latent
space Zp.

Duration predictor The duration predictor is the same as the
one in Glow-TTS. It operates on a phone-level and predicts the
duration for each phone. We feed it the main latent space sam-
ple.

5.6. Latent merge

The latent merge learns to merge the prosody latent space distri-
bution µp,σp with the content latent space distribution µc,σc,
such that it forms the main latent space µm,σm with as little
mismatch with the decoded ground-truth spectrogram as possi-
ble. This is learnt via the main loss Lm. This is a crucial compo-
nent in the model. More information about the implementation
details will be reported in a later version of this document.

5.7. Losses

Main loss The main loss minimizes the mismatch between
z′
m: the latent space instance that exactly represents the spec-

trogram, and µm,σm: the latent space distribution representing
the text and speaker information. The main latent space distri-
bution is built by merging µp,σp and µc,σc, the latent space
distributions of the prosody encoding and content encoding. We
calculate the main loss Lm with the negative log-likelihood of
the spectrogram xm given the context c (i.e. text and speaker).
The main decoder fm : xm → z′

m is reversible via normal-
izing flows. Therefore, we can use the change of variables to
calculate the log-likelihood of zm instead – which is z′

m after
alignment. The change of variables is the second term in Equa-
tion 5.

Lm = − logPXm(xm|c) (4)

= − logPZm(z′
m|c)− log

∣∣∣∣det ∂f−1
m (xm)

∂xm

∣∣∣∣ (5)

The main latent space Zm is a Gaussian distribution with mean
µm and standard deviation Σm = Im. We fix the standard de-
viation to be this constant, as done in the original experiments
of Glow-TTS. Similarly to Glow-TTS, we parameterize the data
and prior distributions with network parameters θ and the align-
ment function A. If A(j) = i, then z′

m,j (the j-th frame of z′
m)

is distributed with mean µm,i and variance σm,i (the elements
of µm and σm that refer to the i-th phone). We denote the
number of mel-spectrogram frames by Tmel.

logPZm(z′
m|c;θ, A) =

Tmel∑
j=1

logN (z′
m,j ;µm,A(j),σm,A(j))

(6)

µm,σm = latent merge(µp,σp,µc,σc) (7)

Prosody loss The prosody loss minimizes the mismatch be-
tween zp: the latent space instance that exactly represents the
target prosody, and µp,σp: the latent space distribution rep-
resenting the prosody implied by the text and speaker embed-
dings. Here the variance is fixed too, as σp = Ip. Because the
prosody decoder fp : xp → zp is reversible via normalizing
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Figure 4: ExpressTTS, version 1.5.

flows, we can calculate Lp with the change of variables and a
simple Gaussian likelihood, similarly to Lm.

Lp =− logPXp(xp|c) (8)

=− logPZp(zp|c)− log

∣∣∣∣det ∂f−1
p (xp)

∂xp

∣∣∣∣ (9)

logPZp(z
′
p|c;θ, A) =

Tmel∑
j=1

logN (z′
p,j ;µp,A(j),σp,A(j))

(10)

Duration loss The duration predictor fdur is trained with a
mean square error. It uses a gradient stop sg to ensure the loss
will not propagate to the rest of the architecture. In the follow-
ing equation, xd denotes the ‘ground-truth’ durations as found
by the alignment search.

Ld = MSE(fdur(sg[zm]),xd) (11)

5.8. Model variations

1.4 and 1.5 The model as explained is called version 1.4.
It has one drawback that may severely limit to what extent
exploring the Zp can cause prosodic changes in the spectro-
gram. During the training forward pass, the latent merge gets
fed µp and µc. This means that the resulting µm is based on
the most likely prosody for a given text and any speaker. It
essentially loses important prosodic information. During the

Figure 5: base adapted. Adaptation of the Glow-TTS
model [7], used as additional baseline. The change allows
for prediction of variation in phone durations for one text and
speaker.

backward pass, the main loss may find significant mismatch
for non-neutral speech. The spectrogram would then contain
prosody clearly modeling a certain emotion, but µm is based on
the most likely prosody, which is most probably neutral. This
unnecessary spectral mismatch will then be propagated to the
latent merge and the content encoder – not the prosody encoder
because of the deliberate gradient stop. As a consequence, the
main latent space will learn to model prosodic variation instead
of the prosody latent space.

Figure 4 shows version 1.5, which addresses this issue. In
1.5 the latent merge is fed z′

p, the exact latent space representa-
tion of the prosodic ground-truth. The resulting µm then incor-
porates this prosodic information, which in turn decreases the
spectral mismatch. The latent merge will also learn to properly
merge more diverse instances of Zp, which is useful for when
we explore during inference time. Because the latent merge op-
erates on a phone level, the prosodic ground-truth embedding
z′
p needs to be reverse-aligned. An alignment needs to be cal-

culated for this, which is why we added a prior forward pass. In
the first pass, µp is used to attain µm, which gives the align-
ment. In the second pass, the reverse alignment returns zp,
which is together with µc fed to the latent merge. The sec-
ond pass is visualized as greyed-out blocks in Figure 4. The
following steps are then standard procedure.

1.4 switch and 1.5 freeze Around two thirds of our
corpus consists of neutral speech. To encourage generation of
highly expressive speech despite the imbalance, we adjust our
training methods. In 1.4 switch, we freeze the prosody de-
coder for LJSpeech batches. To ensure the prosody encoder can
still generate patterns for any text input, we do not freeze it for
LJSpeech batches. Instead, the prosody encoder switches from
learning from the prosody loss to the main loss. For version
1.5 the latter is not possible, which is why we then freeze both
the prosody decoder and encoder.

6. Experimental setup
Model configuration We train for 5000 epochs and use a
batch size of 128; 32 per GPU. We use an Adam optimizer with
the Noam learning rate schedule. The other details are in Ap-
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pendix E.

Baselines Figures 1 and 5 depict our baselines. As a first
baseline, we train the Glow-TTS model on the EmoV-DB and
LJSpeech composite corpus. This base model predicts spec-
tral variations through the main latent space. However, the du-
ration predictor only gives a single prediction for the phone du-
rations – meaning it does not model variation in durations. Ex-
pressTTS does, so to provide a baseline with equal influence on
the output audio we created another baseline. By feeding the
duration predictor samples from the latent space (Figure 5), the
base adapted model can predict diverse phone durations
for a given utterance and speaker.

6.1. Analysis overview

In the next subsections, we define the methods which we use
to answer the research questions one by one. To provide an
overview, we outline which methods are relevant for each re-
search question.

RQ1 Prosodic variation plots, individual listening test, main
loss, and quantitative listening test

RQ2 Prosodic variation plots, latent space inspection, prosody
loss, duration loss, entanglement score, and cluster score

RQ3 Quantitative listening test

6.2. Qualitative analysis

To answer the research questions, we not only analyze the
model output but also the model components by performing
ablation studies. By analyzing the constructed prosodic latent
space, we can see how and which expressive patterns are
incorporated. While the quantitative analysis enables us to
make more generalizable and statistically justified conclusions,
qualitative analysis plays an important role in generative
systems such as TTS.

Prosodic variation plots We analyze the influence of diverse
samples from the prosody latent space while keeping the con-
tent latent space sample fixed. Then, we can plot the predicted
prosodic features, attained by simply decoding the prosody la-
tent space samples. Figure 6 is an example. Next to this, we
can plot the extracted prosodic features from the resulting au-
dio wave. This waveform is vocoded from the spectrogram,
which is the result of decoding the main latent space sample
– constructed from the prosody sample and the fixed content
sample. The extracted prosodic features help answer RQ1 as it
visualizes diversity in prosody. The predicted prosodic features
help answer RQ2 as it is a direct visualization of what prosodic
information the model stores in the latent space – regardless of
how well-preserved it is in the latent merge and the following
steps in the main branch of the system.

The same plotting technique can be applied to plot the
prosodic influence of the main latent space. The possibilities
are limited to only plotting the extracted prosodic features from
the waveform. Inspecting the main latent space in ExpressTTS
garners understanding of entanglement between the prosodic
latent space and the content latent space – answering RQ2.
Further explanation about evaluating entanglement follows in
section 6.3.

Individual listening test To investigate the perceptual
diversity and naturalness as mentioned in RQ1, a human
ear is needed. Listening to samples confirms whether the
prosodic diversity results in an audible change in audio and in
expressiveness. We first listen for these properties ourselves
without a strict question setup to get an indication. Note that
this qualitative method is mostly used as a sanity check and
guide to shape further experiments.

Latent space inspection We can inspect how well-structured
the latent space is by plotting the locations of samples in the
latent space. Dimensionality reduction techniques such t-SNE
and UMAP [31, 11] allow us to visualize the latent space.
Visually inspecting the clusters and relative distances allows us
to hypothesize which aspects are modeled or disregarded. This
all helps us answer RQ2. Note that this qualitative method
is mostly used as a sanity check and guide to shape further
experiments.

6.3. Quantitative analysis

Several of the aforementioned qualitative techniques can be
executed on a larger scale. This can not only give more
data-driven conclusions but also help answer RQ3 as varying
sampling parameters sheds light on the efficiency of the system.

Losses The prosody loss helps answer RQ2 as it is a direct
indicator of the mismatch between the predicted prosody
and the ground-truth prosody – showing the capabilities of
Zp. Similarly, the main loss helps answer RQ1 as it is a
direct indicator of spectral mismatch, and thus indirectly
prosodic mismatch. The capabilities of the main latent space
directly affect the resulting speech and its prosodic aspects.
The duration loss helps answer RQ2 as the predicted phone
durations are based on the samples of the prosodic latent space.

Entanglement score To generate speech samples that are
only diverse in prosody, and consistent in other (spectral) as-
pects, it is important to have a disentanglement between the
prosodic latent space and the content latent space. We measure
how entangled Zp and Zc are by calculating the mutual in-
formation between these Gaussian distributions. In this calcula-
tion, we use Kullback-Leibler divergence, where the main latent
space Zm is taken as the joint distribution. Both marginal dis-
tributions are spherical Gaussians, allowing us to significantly
simplify the calculation.

sent =I(Zp;Zc) (12)
=DKL(Zm∥ZpZc) (13)

=(µm − µp)
2 + (µm − µc)

2 (14)

The entanglement score helps us answer RQ2 as it sheds light
on the information the prosodic latent space captures.

Clustering score To find how well-clustered embeddings of
different emotions are in the prosodic latent space, we use a
clustering score. A high score indicates better clustering. For
this, we measure the intra-cluster distance and the inter-cluster
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distance. We denote the number of emotions by E, and the
prosodic latent space embeddings by x.

scluster =
dintracluster (Zp)

dintercluster (Zp)
=

1
E

∑E
i=1

1
Ni

∑Ni
j=1(xi,j − µi)

2

1
E

∑E
i=1(µi − µ)2

(15)
In the variance calculation, we keep the Zp dimensions to

see how well-clustered an individual dimension is. The cluster
score shows how well-structured the prosodic latent space is,
answering RQ2.

Quantitative listening test User tests give a subjective eval-
uation of the expressiveness and naturalness of the synthetic
speech. In the quantitative listening test, we find direct answers
to RQ1 and RQ3. We draw samples, using the same method,
from the latent spaces of our model and baselines. This way,
we can compare which system results in higher diversity in ex-
pressiveness. By varying the temperature in the sampling meth-
ods, we also answer how much diversity is gained by sampling
more, and how it affects the naturalness. Then, we can assess
how many samples need to be drawn, in which configurations,
to reach certain levels of diversity. This way, we can directly
show the trade-off between the cost of resources and the over-
all diversity. The rest of this section details the motivation and
question design of our listening test.

The listening test targets the following core questions.

1. How perceptually diverse in terms of expressiveness
and how natural are the synthesized samples from Ex-
pressTTS and GlowTTS for a given text and speaker
when taking samples across the three most prominent
prosody latent space dimensions?

2. Does adding new samples, attained by increasing the dis-
tance from earlier samples to the latent space mean, in-
fluence the overall naturalness and diversity of expres-
siveness for the whole set of samples?

We determine which versions we use for the ExpressTTS model
and the baseline based on prior observations from our other
evaluation methods. In a similar way, we determine which di-
mensions are the most prominent, by finding which dimensions
cluster emotions the best and which dimensions create the most
prosodic variations according to the variation plots.

The first major component is naturalness. For speech syn-
thesis, naturalness is commonly measured with a mean opinion
score (MOS) or a MUSHRA [30] test, which is then compared
with the baseline score of human speech. We use MUSHRA,
the MUlti Stimulus test with Hidden Reference and Anchor. It
is developed to evaluate multiple audio stimuli with accurate
and reliable results with a panel of only 20 listeners. Users
rate the property, for example, naturalness, on a scale from 0
to 100. Besides multiple test samples, a MUSHRA page in-
cludes a reference sample, a hidden version of this reference,
and two anchors. An example can be seen in Figure 13 in Ap-
pendix D. The anchors are used to scale the user’s ratings. For
the lower anchor, one chooses a sample that should consistently
receive a low score. For the upper anchor holds the inverse. For
naturalness, we use a human speech sample for both the upper
anchor and the reference. Ideally, this receives a score of 100.
No lower anchor is used as there is no robust candidate for it
[12]. The reference gives the user a sample to compare the test

stimuli with. The hidden reference is used to exclude listen-
ers from the analysis if they provide poor ratings for it. After
post-screening the listeners, we carry out the step-by-step sta-
tistical analysis guide from the MUSHRA specification [30]. It
includes exploratory data analysis and ANOVA.

For the second component, diversity in expressiveness, we
adapt the standard MUSHRA test. Our adaptations are usable
for similar research questions. Our goal is to measure expres-
siveness as perceivable and meaningful variations from neutral
speech. One cannot simply ask listeners to “rate the expres-
siveness” of speech samples; this leaves a lot of room for inter-
pretation for the listeners – making results less reliable and the
assessment procedure for listeners more tiresome. Instead, as-
sessors classify samples as speech classes with prosodic effect
and rate the intensity of the effects. Each category is treated sep-
arately in a MUSHRA screen. We use all speech classes from
Table 1, except for interpersonal attitude as [29] found it has a
recognition rate of under 50% for female speakers. For each
category, the user will choose a fitting subcategory, if any effect
is present. If they perceive no effect, they rate the intensity 0.
If they find an unspecified subcategory is more fitting, they can
add their own. For marked tonicity and syntactic phrasing, we
provide two possible interpretations instead of subcategories.
We use for both categories specific utterances that are syntacti-
cally ambiguous but are clarified through prosody.

With this method, we see for every sample which types of
expressiveness listeners recognize. We determine the diversity
of expressiveness by counting distinct subcategories present in
the groups of samples for every model, using a cut-off thresh-
old for intensity. Multiple thresholds can be used, such as 30
(poor), 50 (fair), 70 (good), and 90 (excellent) [30]. This way,
our systems can be compared in a more fine-grained manner.

The thoroughness of MUSHRA tests yields high statistical
significance, but it comes at the cost of assessment time. There-
fore we only evaluate two systems: one ExpressTTS version
and one baseline. We also limit sampling to three dimensions
for this reason. We evaluate the effects of scaling samples by us-
ing two sampling temperatures. We evaluate seven categories:
naturalness and six types of expressiveness. Including hidden
references and anchors, these parameters result in a MUSHRA
test of 14 screens with 14 sliders. According to [28] the esti-
mated assessment time is 20 minutes when split the workload
over two groups. While additional time is needed for choosing
subcategories, less time is necessary for the expressiveness in-
tensity sliders as the majority of sliders are expected to be on 0.
Samples are expected to be neutral for most categories, showing
at most a few types of expressiveness simultaneously.

7. Results
Training time The models have been trained for 5000 epochs.
Training took any version of ExpressTTS around 10 days on 4
NVIDIA A100 GPUs. The baselines both took 6 days in the
same setting. The runtime complexity for inference in bulk will
be reported as well.

7.1. Qualitative analysis

Prosodic variation plots During the training of the models,
we visualized the prosodic variations predicted for several fixed
training utterances. Figure 6 shows the output for model 1.4
switch, exploring the extremes of the 9 Zp dimensions. Note
that sample 0 is the most likely prosody, µp. The ground-truth
sample shows the extracted prosodic values from the recording
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Figure 6: Predicted posodic variations for one EmoV-DB training utterance and an EmoV-DB speaker. Used model 1.4 switch
at 5000 epochs. Sample 0 is the most likely prosody, µp. Any other samples represent extremes of the Zp dimensions at temperature
T = 2.

uttered by the correct speaker neutrally. This does not mean
our model samples should match exactly; here we aim to model
other emotions too. Besides, even with the same conditions –
text, speaker, and emotion – the speech output can still take
various forms.

We see diverse prosodic patterns arise, which mostly come
across as natural. For energy, the sampling seems to mainly ad-
just the scale. The spectral slope seems to be both scaled and
shifted. In the interpolated pitch, there is an obvious shift be-
tween samples, but we also see other patterns arise. Across sam-
ples, we see a difference in the pitch range, the shapes, and the
slopes. The voiced probabilities mostly change in scale only;
just several of the samples seem to add peaks. The emotion plot
suggests various emotions are predicted.

The phone durations vary per sample too, but it is not in-
cluded in this plot. All the aforementioned features have been
adjusted with the same alignment for this visualization.

Similar plots for other models are in Appendix B. For
them, we see similar effects.

Individual listening tests We use the following results to
shape initial ideas about the systems, and to guide other experi-

ments such as the user test.
We use one experiment with the base system on LJSpeech

only. It shows very natural output as the most likely output,
but also a few samples can be found with distinct yet natural
expressiveness. However, many samples had to be explored to
find these; around 80 samples were taken at random angles with
a temperature of around 4.

The other experiments are performed in a systematic man-
ner and on the composite EmoV-DB and LJSpeech corpus. Per
model and latent space, we cherrypicked 2 perceptually diverse
samples from 20 samples – attained by sampling the latent space
at random angles at distance Tσ from µ. The most likely sam-
ple µ is included as well. The means from the baselines al-
ready show the composite corpus gives less natural and smooth
output. Exploring Zm yields variation in pitch, energy, over-
all intonation, and more. Some samples even seem to model a
slightly different speaker. This is possible because the main
latent space controls all spectral information instead of only
prosody.

Of all models, version 1.4 has the most natural-sounding
µ sample. It sounds at least as natural as the baselines’ µ sam-
ples. Our other model versions have considerably worse natu-
ralness – meaning it could not train properly enough for just the
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(a) base (b) base adapted

(c) 1.4 (d) 1.4 switch

(e) 1.5 (f) 1.5 freeze

Figure 7: Main loss throughout epochs per model. Orange de-
picts the training subset, blue the validation subset. A smooth-
ing factor of 0.9 is used.

TTS task itself.
Using the composite corpus, none of the samples in any

configuration seems to convey a specific emotion. For all our
model versions we can however hear prosodic changes when
exploring Zp. Among those are whispering, less clear voiced
probabilities (i.e. slurring), or sharp changes in energy – which
may come across as somewhat aggressive.

When exploring Zm instead, we can still find prosodic
variations. In versions 1.5 and 1.5 switch, these main
latent samples do not come across as very natural. For versions
1.4 and 1.4 switch, on the other hand, these samples
sound as natural prosodic variation – something that we would
like to see modeled by Zp instead.

Latent space inspection We constructed latent spaces by re-
verse decoding samples from the EmoV-DB dataset via the
prosody decoder. Inspection shows emotions are reasonably
clustered. An example can be found in Appendix C. Admit-
tedly, emotion labels are part of the prosodic features, meaning
this information is already explicitly supplied to the prosody
decoder.

7.2. Quantitative analysis

While training, we calculated the model losses and the symmet-
ric entanglement score. As the baselines do not have a prosodic
latent space, there is no prosody loss plot, entanglement plot,
or cluster score for them.

(a) base (b) base adapted

(c) 1.4 (d) 1.4 switch

(e) 1.5 (f) 1.5 freeze

Figure 8: Duration loss throughout epochs per model. Or-
ange depicts the training subset, blue the validation subset. A
smoothing factor of 0.9 is used.

Losses For all losses and the entanglement score of any sys-
tem, we can see instability. All time series concerning the train-
ing subset show a wide range of values and sudden switches.
All plots in fact depict the smoothed3 time-series. The grayed-
out lines depict the unsmoothed series. It is important to note
this instability is seen for the baselines as well – admittedly in a
lighter form though. Earlier experimentation showed that simi-
lar plots for the base system trained on LJSpeech only do not
show this instability.

In the following analyses, we focus on the validation set.
Figure 7 shows the main loss converges around -0.10 for both
baselines, while all model variants converge around -0.13.
Model 1.5 even gets as low as -0.13, meaning it best mini-
mizes spectral mismatch.

In Figure 8, we see the duration loss converges around
0.34 and 0.36 for the base and base adapted respectively.
The models 1.4, 1.4 switch and 1.5 freeze converged
around 0.30, 0.28 and 0.26 respectively. Interestingly, version
1.5 does not seem converged yet and reports the lowest value
found in the higher epochs: it went consistently below 0.25.

As shown in Figure 9, the 1.5 and 1.5 freeze
prosody losses do not seem converged. Versions 1.4 and 1.4
switch arguably settled around -7.0 and -6.6. Versions 1.5
and 1.5 freeze reached -6.6 and -6.2 respectively, but they
might still decrease considerably with more epochs.

3The smoothing uses an exponential moving average with a factor
of 0.9
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Model Prosodic latent space dimensions

1.4 0.924 0.396 0.662 1.577 3.300 0.347 0.426 0.204 0.253
1.4 switch 1.906 0.343 0.175 4.158 0.770 0.143 0.208 0.971 0.214
1.5 0.382 1.220 1.224 0.967 4.152 0.350 0.407 0.811 0.222
1.5 freeze 1.719 0.449 0.576 0.531 1.649 0.242 1.154 0.558 0.308

Table 3: Cluster score for the prosodic latent space of every model. It measures emotion clustering per dimension. Values under 1
indicate low clustering: the variance within clusters is larger than the variance between clusters. Values over 1 indicate the inverse.

(a) 1.4 (b) 1.4 switch

(c) 1.5 (d) 1.5 freeze

Figure 9: Prosody loss throughout epochs per model. Or-
ange depicts the training subset, blue the validation subset. A
smoothing factor of 0.9 is used.

(a) 1.4 (b) 1.4 switch

(c) 1.5 (d) 1.5 freeze

Figure 10: Entanglement score sent throughout epochs per
model. Orange depicts the training subset, blue the validation
subset. A smoothing factor of 0.9 is used.

Entanglement score Figure 10 depicts the entanglement
scores. Versions 1.4 switch and 1.5 freeze seem
to have converged around 0.21 and 0.23 respectively. Both
validation set time-series are more stable than its 1.4 and
1.5 counterparts. In version 1.4, entanglement seems to
grow higher than 0.21, but the curvature could suggest total
convergence within several thousand epochs. For 1.5 the
future path is not easily predictable. It does seem it will stay
around 0.22. The most disentangled version is 1.4 switch.
Moreover, versions 1.4 and 1.5 both have a clear dip before
reaching 1000 epochs. This may be attributed to the fact
the initial prosodic and content latent space did not contain
strong patterns necessary for TTS yet, so they might have been
modeling very distinct patterns at first.

Cluster score Table 3 contains the cluster scores for the
prosodic latent spaces of our models. We see that for every
latent space most dimensions show low emotion clustering.
However, 1.4, 1.4 switch, and 1.5 all have at least one
dimension scoring over 3, clustering emotions well. Their
prosodic latent spaces thus retain emotional information. This
can also be claimed, but less strongly, about version 1.5
freeze.

Quantitative listening test Following our observations, we
use version 1.4 as the model. It shows the highest stability in
the quantitative analysis and the most natural-sounding samples
in the individual listening test. We focus on two Zp dimensions:
the fourth and the fifth. They are the best clustered, and they
show interesting variations in the qualitative prosodic variation
plot in Figure 11a in Appendix B. As a baseline, we use base.
Both baselines score similarly in the quantitative and qualitative
analysis, but base has a slightly better duration loss. Calculat-
ing the cluster score for Zm of base lead us to select the 20th
and 30th dimensions. For both model and base, we determine
T1 by reverse decoding the emotional samples and finding the
average distance to the latent space mean. As a second temper-
ature, we use T2 = 3T1. We use T1 = 0.75 and T2 = 2.25 for
the model, and T1 = 0.5 and T2 = 1.5 for the base. We refer to
the subset of samples taken at temperatures {0, T1, T2} as ‘all’,
and the samples taken temperatures {0, T1} as ‘small’.

We use two groups for the user study, each rating half of the
categories. Naturalness, interpersonal attitude, propositional
attitude, and marked tonicity are rated by 18 anonymous asses-
sors and the remaining categories by 16 assessors. Results are
collected via our customized webMUSHRA [23] questionnaire.

ANOVA analysis, Tukey HSD post-hoc tests, and indepen-
dent samples T-tests are used to test several hypotheses. In Ta-
ble 4, we see the model sounds less natural than the base at
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Category System Mean Model vs Base
Mean Diff.

Naturalness*

Base 45.61

-9.047Model 36.57
High anchor 75.89
Reference 97.79

Emotion

Base 16.77

5.188Model 21.96
Low anchor 55.25
Reference 59.50

Interpersonal
attitude

Base 12.47

-0.281
Model 12.19
Low anchor 32.05
High anchor 32.97
Reference 39.89

Propositional
attitude

Base 12.54

-2.211
Model 10.33
Low anchor 15.11
High anchor 50.03
Reference 56.84

Topical
emphasis

Base 20.72

-7.521Model 13.20
High anchor 79.84
Reference 82.53

Style

Base 17.74

5.347Model 23.08
Low anchor 54.25
Reference 83.72

Marked
tonicity

Base 34.70

-9.462Model 25.23
High anchor 50.79
Reference 52.63

Syntactic
phrasing

Base 38.15

-3.965Model 34.19
High anchor 96.19
Reference 95.84

Table 4: Intensity scores of the user study. For naturalness,
instead of intensity, naturalness is rated. T-tests determine
whether model has higher scores than base. Values in bold are
significant at the 0.05 level. Table 8 in Appendix D contains the
full table.

a statistically significant level. Though not statistically signif-
icant overall, we see that the model might provide worse ex-
pressive intensities than the base, except for emotion and style.
The model has significantly less intense topical emphasis and
marked tonicity than the base. Moreover, we notice that all of
the anchors and references consistently score higher than the
base and model; even the low anchor does.

As for expressive diversity, we count the distinct subcat-
egories found which are rated with an intensity of at least 1
out of 100. Table 5 shows that the model may have more di-
verse expressiveness than the base – except for topical empha-
sis, marked tonicity, and syntactic phrasing. None of the T-tests
were statistically significant at the 0.05 level.

Table 6 shows that sampling at an additional higher temper-
ature, i.e. scaling up, yields a significant increase in naturalness
for the base, and a significant decrease for the model. Table
5 shows that scaling up may diversify expressiveness. Only in
one setting – the category emotion with the model – we see that
this diversification is significant.

Category System Mean All vs Small Model vs Base
Mean Diff. Mean Diff.

Emotion Base 3.56 0.438 0.500Model 4.06 1.188

Interpersonal
attitude

Base 3.11 0.368 0.056Model 3.17 0.778

Propositional
attitude

Base 3.11 0.889 0.444Model 3.56 0.889

Topical
emphasis

Base 3.06 0.438 -0.187Model 2.88 0.438

Style Base 3.69 0.750 0.063Model 3.75 0.875

Marked
tonicity

Base 1.89 0.167 0.000Model 1.89 0.000

Syntactic
phrasing

Base 1.81 0.188 -1.250Model 1.69 0.125

Table 5: Expressive diversity results of the user study, i.e. the
count of unique subcategories a user annotated across all sam-
ples for a system. Firstly, T-tests determined whether sampling
at another temperature increases the subcategory diversity –
listed in the ‘All vs Small’ column. A second sequence of T-tests
determined whether the model has more unique subcategories
than the base. Values in bold are significant at the 0.05 level.
Table 7 in Appendix D contains the full table.

All vs Small
System Subset N Mean Mean Diff. Sig.

Base All 171 45.61 5.656 0.046Small 95 39.96

Model All 171 36.57 -6.18 0.023Small 95 42.75

Table 6: Naturalness scores of the user study at different subset
levels. Two T-tests determine whether sampling from two tem-
peratures (‘all’) increases naturalness as opposed to sampling
from only the lower temperature (‘small’). Values in bold are
significant at the 0.05 level.

8. Discussion
We found the following answers to the research questions.

Firstly, to answer RQ1, our findings suggest our model
ExpressTTS in all variations and the baselines can all pro-
duce prosodic variations. The individual listening tests however
show that the baselines can produce other variations than of the
prosodic kind, for example affecting the voice of the speaker.
We found that naturalness is compromised to produce varia-
tions for any of our systems. These subjective observations are
to be confirmed and further quantified by the MUSHRA listen-
ing tests. Moreover, we see that not the complete spectrum of
spectral diversity is captured by any of our systems, as the main
loss curve has been unstable for each of them. We compare
it with the stable main loss for the base system trained on only
LJSpeech, and we provide two non-exclusive explanations. The
instability can signal difficulty to produce the full range of ex-
pressive diversity in the spectrograms. Additionally, the insta-
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bility can simply be the result of two separate distributions pro-
duced by the two corpora EmoV-DB and LJSpeech. Nonethe-
less, ExpressTTS consistently generalizes better to unseen in-
domain utterances than the baselines. The user test shows that
in general the model shows higher expressive diversity than the
baseline, except for categories that operate on a very high local
level: topical emphasis, marked tonicity, and syntactic phras-
ing. However, none of these results were statistically signif-
icant. Moreover, the user study showed the model may have
more intense emotions and style than the base. Emotion and
style are both global effects. We conclude that for global ex-
pressive effects, our model can be preferred over the base.

Secondly, to answer RQ2, we find that our constructed la-
tent spaces retain emotion information and that sampling from
them produces prosodic variations. The prosodic latent space is
extremely good at matching prosodic variation, reaching a nega-
tive log-likelihood of around -6.8 on validation data. Moreover,
the prosodic latent space is nearly disentangled from the content
latent space; the mutual information comes down to only 0.21
nats or 0.14 bits of information. The entanglement score also
shows signs of instability, which can again be attributed to vari-
ation in the domain (EmoV-DB or LJSpeech) or expressiveness.
Moreover, across all of the losses, metrics, and the listening test
we see the instability grows more for our models when freezing
component(s) for the LJSpeech samples.

Lastly, to answer RQ3 we use the results from the user
test. We found that adding samples of a higher temperature
may increase the expressive diversity. While this cannot be
stated with statistical significance for most settings, we do see
a significant increase in emotion diversity when we use our
model. However, scaling up pays a price: it causes a significant
decrease in naturalness.

There are several limitations to our research. We do not
have a method that measures prosodic variations in a quantified
manner. Our prosodic variations plots are made per utterance,
providing a limited perspective. Our user study, while quanti-
fied, does have several limitations. We only use one speaker
of one gender, two dimensions, two temperatures, and two sys-
tems, meaning we cannot generalize the results to other speak-
ers, dimensions, or systems. Moreover, our panel size was too
small to reach statistically significant results for several cate-
gories. This is especially a concern with the expressive diver-
sity test, where we use an aggregated value over all samples.
Here, the number of data points is the number of users: 16 or
18. Moreover, several users noted that they experienced listener
fatigue to some extent. This can influence the quality of the re-
sults filled in during the later parts of the questionnaire.

9. Future work
We suggest several adaptations and additions to our research.

Firstly, we strongly suggest attaining a more stable cor-
pus, without domain mismatch. We hypothesize this can sig-
nificantly change the results. To clarify, we found that for our
model 1.4 some important prosodic variations were modeled
in the wrong place, the main latent space, instead. This can be
explained by an architectural choice which is handled in ver-
sion 1.5. As a consequence, version 1.5 relies more on the
richness of the emotional corpus, which is too small to make
an entirely stable model with. This architectural choice is a
literal trade-off between expressive diversity and model stabil-
ity, where the model stability issues forced us to evaluate with
model 1.4.

We provide further reasoning for this hypothesis. The base
model on a large neutral corpus, LJSpeech [5], does suggest
even emotional patterns can be captured, but not in an effi-
cient manner. As a small side experiment we fully trained Ex-
pressTTS on only the large-scale corpora LJSpeech, and the
preliminary results sound promising. We find similar prosodic
variation as with the base model on LJSpeech, with higher
sampling efficiency. We suggest further experimentation with
LJSpeech only or a slightly more expressive large-scale corpus
such as Blizzard [8]. We do trade in expressiveness to a degree
as these corpora are audiobooks.

Secondly, we suggest using the entanglement metric as a
loss to encourage latent space detanglement. The entanglement
metric can also be augmented with a asymmetric version which
measures how well Zc can predict Zp, and vice versa. This can
be estimated by training two feed-forward networks.

Thirdly, configurations and hyperparameters can be largely
varies. Important fields of focus are: prosodic latent space di-
mensionality, the prosody decoder architecture, the latent merge
architecture. Specifically, we would simplify the prosody de-
coder, as it now is as complex as the main decoder which cap-
tures more detailed variations.

Fourthly, we could our approach for the prosodic latent
space. We can add a global token, as a residual besides the
local prosody embeddings. This may encourage learning global
variations, such as emotion and style, separately from local vari-
ations, such as topical emphasis. Moreover, we can change our
sampling method to vary on a local level, by using different an-
gles and scales at different parts of the utterance. This way, we
may sample more local variations.

As a fifth point, we see improvements for the user study.
More listeners helps the statistical significance, and more
groups to spread the workload decreases listener fatigue. The
user study can be used to evaluate many more configurations,
such as more speakers, utterances, sample angles, sample tem-
peratures, systems, and latent spaces. It can also be used to
measure more phenomena, such as prosody transfer. Moreover,
nuance can be added to the expressive diversity analysis by con-
sidering expressive subcategories as only relevant from differ-
ent intensity thresholds, such as 20, 40, or 60. Alternatively, we
can implement a different metric for expressive diversity other
than a count, which could incorporate the intensity ratings as
weights.

As a sixth point, we refer to the quantitative prosodic vari-
ation plots we describe in Appendix F.

Lastly, it is important to directly evaluate the system with
an ASR system. For this, one needs to finish the whole ASR
pipeline: construct the whole corpus, train an ASR system and
a baseline, and measure Word-Error-Rate to see if it decreases.
One can then also vary the augmentation ratio of the constructed
corpus: the ratio of synthetic speech versus human speech.

10. Conclusions
While the lack of highly expressive data and domain mismatch
has led to unstable models and baseline, we find our model Ex-
pressTTS consistently generalizes better to unseen in-domain
data than the baseline GlowTTS. The best model, 1.4, gener-
ates speech with prosodic variation. The user study suggests
it produces more diverse expressiveness than the baseline. To
add, it creates significantly more intense emotion and style than
the baseline.

We conclude with directions to explore prosodic variations
with our model 1.4. Note that if one wants to model local ef-
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fects, one may consider using the baseline GlowTTS instead.
For global effects, especially emotion and style, we advise sys-
tematically sampling across the prosodic latent space dimen-
sions. We advise the fourth and fifth dimensions specifically,
and the temperatures 0.75 and 2.25. More temperatures can be
added, but note that increasing the temperature will decrease
naturalness. To more freely explore prosodic variations of any
kind, we suggest sampling across more dimensions. When re-
sources are not a concern, we suggest using many (random) an-
gles to cover the prosodic latent space even better.
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12. Appendix
A. Speech classes with prosodic effects

We explain the terms topical emphasis, marked tonicity, and
syntactic phrasing as defined in [29].

Topical emphasis can be placed in an utterance by empha-
sizing a topic through prosodic variation. For example, points
for topical emphasis in the utterance Yesterday I was walking
the dog in the park may be “Yesterday”, “I”, “dog”, and “park”.

Marked tonicity and syntactic phrasing are both used to dis-
ambiguate meaning in an utterance. Syntactically ambiguous
sentences can be clarified through tonicity (marked tonicity) or
pauses (syntactic phrasing). An example for marked tonicity is
They were milking cows.. The first interpretation is that “milk-
ing” is a verb, making “they” refer to persons. The second in-
terpretation, signaled through specific tonicity on the “milking”
word, signals “milking” is an adjective. In that case, “they”
refers to cows that are used for milking.

For syntactic phrasing, we use pauses to disambiguate
meaning. For example, the utterance For my dinner I will have
either pork or chicken and fries without extra punctuation car-
ries two possible meanings. Pausing before “and” signals that
the meal consists of fries, and next to that pork or chicken. Paus-
ing before “or” signals the choice is between pork without fries
and chicken with fries.
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B. Prosodic variations, single utterance

(a) 1.4

(b) 1.4 switch

Figure 11: Prosodic variations for one training utterance. The samples represent extremes of the Zp dimensions at temperature T = 2.
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(c) 1.5

(d) 1.5 switch

Figure 11: Prosodic variations for one training utterance. The samples represent extremes of the Zp dimensions at temperature T = 2.
(cont.)
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C. Prosodic latent space clusters

Figure 12: Prosodic latent space of 1.5 freeze, visualized using
PCA. Every point is a timeframe of an EmoV-DB training utter-
ance reverse decoded via the prosody decoder. Colour indicates
emotion label.
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D. Quantitative listening test
D.1. MUSHRA interface

Figure 13: An example of a webMUSHRA [23] screen. The assessor listens to multiple stimuli and ranks them. It includes a reference
sample, a hidden version of the reference, and an anchor.

D.2. Results
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N Mean 95% Confidence Model vs Base
Lower Upper Mean Difference Sig.

Naturalness*

Base 171 45.61 42.26 48.96

-9.047 <0.001Model 171 36.57 33.39 39.74
High anchor 19 75.89 64.40 87.39
Reference 38 97.79 95.71 99.87

Emotion

Base 144 16.77 13.02 20.52

5.188 0.247Model 144 21.96 18.10 25.81
Low anchor 16 55.25 41.83 68.67
Reference 32 59.50 49.55 69.45

Interpersonal
attitude

Base 171 12.47 9.45 15.48

-0.281 1.000
Model 171 12.19 9.22 15.15
Low anchor 19 32.05 15.57 48.53
High anchor 38 32.97 24.53 41.42
Reference 38 39.89 29.42 50.37

Propositional
attitude

Base 171 12.54 9.52 15.56

-2.211 0.897
Model 171 10.33 7.65 13.00
Low anchor 19 15.11 4.36 25.85
High anchor 38 50.03 38.20 61.85
Reference 38 56.84 45.39 68.30

Topical
emphasis

Base 144 20.72 17.44 24.00

-7.521 0.010Model 144 13.20 10.34 16.06
High anchor 32 79.84 68.67 91.02
Reference 32 82.53 74.96 90.10

Style

Base 144 17.74 14.13 21.35

5.347 0.236Model 144 23.08 19.25 26.92
Low anchor 16 54.25 35.06 73.44
Reference 32 83.72 73.14 94.30

Marked
tonicity

Base 171 34.70 30.18 39.21

-9.462 0.017Model 171 25.23 21.67 28.80
High anchor 19 50.79 30.69 70.89
Reference 38 52.63 38.49 66.77

Syntactic
phrasing

Base 144 38.15 34.74 41.56

-3.965 0.368Model 144 34.19 30.33 38.04
High anchor 16 96.19 89.99 102.39
Reference 32 95.84 93.35 98.34

Table 7: Expressive diversity results of the user study, i.e. the count of unique subcategories a user annotated across all samples for a
system. Firstly, T-tests determined whether sampling at another temperature increases the subcategory diversity – listed in the ‘All vs
Small’ column. A second sequence of T-tests determined whether the model has more unique subcategories than the base. Values in
bold are significant at the 0.05 level.
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Category System Subset N Mean 95% Confidence All vs Small Model All vs Base All
Lower Upper Mean Difference Sig. Mean Difference Sig.

Emotion
Base All 16 3.56 2.95 4.18 0.438 0.644

0.500 0.539Small 16 3.13 2.61 3.64

Model All 16 4.06 3.46 4.66 1.188 0.012Small 16 2.88 2.36 3.39

Interpersonal
attitude

Base All 18 3.11 2.48 3.75 0.368 0.438
0.056 0.999Small 18 2.56 2.13 2.98

Model All 18 3.17 2.57 3.76 0.778 0.160Small 18 2.39 1.87 2.90

Propositional
attitude

Base All 18 3.11 2.57 3.65 0.889 0.740
0.444 0.607Small 18 2.22 1.82 2.62

Model All 18 3.56 2.87 4.24 0.889 0.740Small 18 2.67 2.18 3.15

Topical
emphasis

Base All 16 3.06 2.57 3.56 0.438 0.392
-0.187 0.904Small 16 2.63 2.20 3.05

Model All 16 2.88 2.55 3.20 0.438 0.392Small 16 2.44 2.05 2.83

Style
Base All 16 3.69 3.15 4.23 0.750 0.142

0.063 0.998Small 16 2.94 2.58 3.30

Model All 16 3.75 3.09 4.41 0.875 0.064Small 16 2.88 2.40 3.35

Marked
tonicity

Base All 18 1.89 1.73 2.05 0.167 0.517
0.000 1.000Small 18 1.72 1.49 1.95

Model All 18 1.89 1.73 2.05 0.000 1.000Small 18 1.89 1.73 2.05

Syntactic
phrasing

Base All 16 1.81 1.60 2.03 0.188 0.682
-1.250 0.879Small 16 1.63 1.36 1.89

Model All 16 1.69 1.43 1.94 0.125 0.879Small 16 1.56 1.29 1.84
Table 8: Intensity scores of the user study. For naturalness, instead of intensity, naturalness is rated. T-tests determine whether model
has higher scores than base. Values in bold are significant at the 0.05 level.
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E. Model configuration

Listing 1: Configuration file of model 1.4

{
” t r a i n ” : {

” u s e c u d a ” : t r u e ,
” l o g i n t e r v a l ” : 20 ,
” s a v e i n t e r v a l e p o c h ” : 25 ,
” v i s i n t e r v a l ” : 25 ,
” seed ” : 1234 ,
” epochs ” : 5000 ,
” l e a r n i n g r a t e ” : 1e0 ,
” b e t a s ” : [ 0 . 9 , 0 . 9 8 ] ,
” eps ” : 1e −9 ,
” warmup s teps ” : 4000 ,
” s t a r t p r e t r a i n i n g ” : f a l s e ,
” s c h e d u l e r ” : ”noam ” ,
” b a t c h s i z e ” : 32 ,
” d d i ” : t r u e ,
” f p 1 6 r u n ” : f a l s e ,
” w i t h t e n s o r b o a r d ” : t r u e

} ,
” d a t a ” : {

” l o a d m e l f r o m d i s k ” : f a l s e ,
” l o a d e p f r o m d i s k ” : t r u e ,
”name ” : ” lemof ” ,
” t e x t c l e a n e r s ” : [ ” e n g l i s h c l e a n e r s m i n u s ” ] ,
” max wav value ” : 3 2 7 6 8 . 0 ,
” s a m p l i n g r a t e ” : 16000 ,
” f i l t e r l e n g t h ” : 1024 ,
” h o p l e n g t h ” : 256 ,
” w i n l e n g t h ” : 1024 ,
” n m e l c h a n n e l s ” : 80 ,
” n p c h a n n e l s ” : 4 ,
” mel fmin ” : 0 . 0 ,
” mel fmax ” : 8 0 0 0 . 0 ,
” p i t c h f m i n ” : 8 0 . 0 ,
” p i t c h f m a x ” : 5 0 0 . 0 ,
” a d d n o i s e ” : t r u e ,
” a d d b l a n k ” : t r u e ,
” c m u d i c t p a t h ” : ” g2p / c m u d i c t i o n a r y l e m o f ” ,
” en −uk ” : f a l s e ,
” e m o t i o n s ” : [ ” Amused ” , ” Angry ” , ” D i s g u s t e d ” , ” N e u t r a l ” , ” S l eep y ” ] ,
” e m o t i o n c o l o r s ” : [ ” o r a ng e ” , ” r e d ” , ” g r e e n ” , ” b l a c k ” , ” b l u e ” ]

} ,
” model ” : {

” h i d d e n c h a n n e l s ” : 192 ,
” f i l t e r c h a n n e l s ” : 768 ,
” f i l t e r c h a n n e l s d p ” : 192 ,
” g i n c h a n n e l s ” : 2 ,
” e i n c h a n n e l s ” : 2 ,
” k e r n e l s i z e ” : 3 ,
” p d r o p o u t ” : 0 . 1 ,
” n b l o c k s d e c ” : 12 ,
” n l a y e r s c o m m o n e n c ” : 4 ,
” n l a y e r s t e x t e n c ” : 2 ,
” n l a y e r s p r o s o d y e n c ” : 2 ,
” n l a y e r s m e r g e ” : 3 ,
” n h e a d s ” : 2 ,
” p d r o p o u t d e c ” : 0 . 0 5 ,
” d i l a t i o n r a t e ” : 1 ,
” k e r n e l s i z e d e c ” : 5 ,
” n b l o c k l a y e r s ” : 4 ,

” n s q z s p e c ” : 2 ,
” n s q z e p ” : 10 ,
” l a t e n t p c h a n n e l s ” : 9 ,
” p r e n e t ” : t r u e ,
” mean only ” : t r u e ,
” h i d d e n c h a n n e l s e n c ” : 192 ,
” h i d d e n c h a n n e l s d e c ” : 192 ,
” h i d d e n c h a n n e l s m e r g e ” : 192 ,
” window s ize ” : 4 ,
” l a t e n t m e r g e ” : ” t r a n s f o r m i n p u t ” ,
” n s p e a k e r s ” : 5 ,
” n e m o t i o n s ” : 5

}
}
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F. Elaboration of future work
Aggregated prosodic variation plots Our qualitative prosodic variation plots can be enriched with more results. One can aggregate
the prosodic variations found from sampling across multiple utterances and for multiple values of sampling temperature T . We can turn
to the novel visualization method of Ctrl-P [13]. An example and explanation can be found in Figure 14. Ctrl-P focused on disentangled
control pitch, energy, and durations, whereas we focus on exploration. We expect these plots to be more similar to the right subplot of
Figure 14.

Figure 14: Example of an aggregated prosodic variation plot, from [13]. It shows the influence of every latent space dimension on one
prosodic feature, in this case, pitch. The x-axis shows the value chosen for the dimension d, expressed as the shift from µd, measured
in σd. The pitch, or F0, is analyzed on a global level; it is averaged over timeframes for each utterance. Results are aggregated over
all utterances in the validation set. A point indicates the mean across the subset, and the whiskers one standard deviation.


