
Exploring the Implementation of
Network Architecture Search

(NAS) for TinyML Applications

Master Thesis Electrical Engineering -
Dependable Integrated Systems (DIS)

S. Nieuwenhuis

version 1.0

Supervisors:
Dr.Ir. S.H. Gerez

Dr.Ir. N. Alachiotis
Dr. C.G. Zeinstra

Enschede, March 2022

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Computer Architecture for Embedded Systems (CAES)

Datamanagement & Biometrics (DMB)



Abstract

The use of machine learning (ML) is ever increasing and finding its way in more and more
applications, including embedded devices with microcontrollers (MCU). The popularity of
inference on MCUs results from the low purchase cost and power requirements of microcon-
trollers. The deployment of neural networks is challenging, since microcontrollers are severely
limited by the available memory and storage. This is a problem, especially for the larger and
popular convolutional neural networks (CNN). In order to make them fit on a microcontroller,
neural networks can be reduced in size by means of quantizing the parameters, reducing pre-
cision in the process. Additionally, quantization affects the performance of network inference.
These aspects of NN quantization are worth studying to gain knowledge about the trade-off
between speed and accuracy.

Simultaneously, automated neural network design by means of neural architecture search
(NAS) has proven to be able to generate high-performance neural networks that are more
efficient than man-made networks. When given proper boundary conditions, NAS-generated
networks can be made to fit within the constraints of a microcontroller.

In this work, a NAS algorithm targeted specifically to microcontrollers is investigated with
quantization in mind. The novelty of this work is the inclusion of quantization levels as a con-
straint of a search algorithm to construct more complex networks that fit inside the memory
requirements of microcontrollers. TinyML implementations of classifiers for the MNIST, Fash-
ionMNIST and CIFAR10 datasets have been generated with this search algorithm. Although
the performance is not state-of-the-art, several networks, both human- and NAS-designed,
are outperformed on the MNIST dataset, where this work achieves 98.91% accuracy at a
footprint of 38.7 kB and a peak memory usage of 8.7 kB. On the FashionMNIST dataset, an
accuracy of 90.42% is achieved, CIFAR-10 reaches 60.66% accuracy. When combined with a
hardware support for datatypes smaller than 8-bit, inference time could halved compared to
mainstream microcontrollers today.
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Chapter 1

Introduction

Although the concepts of artificial intelligence (AI) and machine learning (ML) have been
around for a few decades, the advancements made in computing power and availability of
data in recent years have been the reason that deep neural networks (NN) are adopted for an
increasing number of applications. AI is deployed to more and more industrial applications
for automation and quality control for fabrication processes, but also to consumer products,
such as smartphones with voice assistants for hands-free use or face verification for secur-
ity. Platforms like these, that process data at the same location as where it is captured, are
referred to as edge platforms. Edge devices come in many shapes and sizes, with different
computational abilities and power requirements. Continuing with the examples above, smart-
phones and other handheld devices are limited in terms of power by the capacity of a battery
and the resulting power-efficient processor. Devices for industrial automation can be powered
from the grid and can therefore have more powerful computing hardware. Due to the large
differences in available computation power, not all edge platforms have until now been able to
execute AI applications. In order to enhance these less powerful devices with AI-driven func-
tionality, it is possible to send captured data to distant cloud servers that process the data
and send back the result. The differences between edge- and cloud computing is illustrated
in Figure 1.1 and a comparison of strong and weak points is provided with Table 1.1.

Figure 1.1: Difference between cloud- and edge computing [1]

Although cloud-based ML inference is a fitting solution when compute power is desired, there
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CHAPTER 1. INTRODUCTION

Table 1.1: Comparison of cloud and edge platforms for neural network inference

Cloud Edge

Lots of computational power and memory Limited computational power and memory

Network connection required No network connection required

High latency, high throughput Low latency, low throughput

are a few drawbacks. The need for an internet connection whenever the resources are required
is a prominent one, especially because the addition of wireless circuit to a product costs both
space and power. Another drawback of cloud-based inference is that the data to be computed,
such as voice commands or pictures for facial identification have to be uploaded to the cloud
server. This is a problem for sensitive data, especially in a time when online privacy and data
protection is a topic of relevance.

Figure 1.2: Memory requirements for different AI inference platforms and networks [2]

With enhancements on both the computational power and efficiency of processors, and ad-
vancements in ML algorithms, smartphones and other power-efficient devices are now able
to locally deploy AI applications. Naturally, as research progresses and new challenges are
sought after, developments of new ML platforms come to the surface, like microcontrollers
(MCU). Microcontrollers are small, cheap, and simple processors with a low power draw.
These properties make microcontrollers a popular choice for many embedded applications
and internet of things (IoT) solutions. Research has indicated that it is possible to deploy
relevant ML applications on microcontroller platforms, partly because neural networks are
becoming more and more efficient. This field of research has been named tinyML and has
gained a community that is concerned with the development of algorithms, software and hard-
ware solutions related to ML on low power devices. [13, 14, 15]. Figure 1.3 is an example of
a recent tinyML application that has been presented by STMicroelectronics in the shape of
a credit card with embedded finger print sensor, which can be powered wirelessly [3].

Implementing tinyML applications poses a new challenge, because the available resources
on microcontrollers are significantly reduced compared to other platforms. This limitation is
illustrated in Figure 1.2 by comparing the memory and storage of the three types of platforms
for ML. Whilst the amount of memory and storage between cloud and mobile platforms is a
factor 10 or lower, the difference between mobile and tiny platforms is a factor 104.

In general, the task of designing and optimizing a neural network already is a time-consuming

2 Exploring Network Architecture Search for TinyML



CHAPTER 1. INTRODUCTION 1.1. RESEARCH QUESTIONS

Figure 1.3: Schematic overview of the ST biometric system-on-card [3]

process that heavily relies on the experience of network architects. Add to this the restrictions
in available resources for microcontroller devices, and tinyML becomes a major investment
to develop a high-performance neural network targeted towards a specific application. As an
effort-saving measure or an alternative for lesser experienced developers it is possible to take
an existing network and retrain it for the intended use.

Driven by the desire to have networks ready to deploy for non-ML-experts, the topic of
automated neural network design, or AutoML has gained a lot of momentum in the past
years [16]. The research within AutoML is tasked with finding and optimizing design auto-
mation strategies, for instance hyperparameter optimization and neural architecture search
(NAS). NAS automates the design process of a neural network and is therefore interesting
for the tightly-constrained tinyML platforms. Given the proper constraints, NAS can result
in relatively complex networks for applications like computer vision and natural language
processing. By means of adding multiple objectives to NAS, a neural network can be found
within a certain memory bound, the inference of which should be able to be performed on
microcontrollers.

1.1 Research questions

The objective of this work comes from the difficulties of NN inference on tinyML platforms.
With the main difficulty being the restricted availability of memory and storage the motivation
behind this work, the objective of this work is to solve this problem by combining two tools:
NAS and low-precision quantization.

The problem that has to be researched relates to the possibilities of the combination of
compressing a neural network and automated network design for microcontrollers. This goal
has been formulated as the main research question:

“To what extent does weight quantization as a NAS constraint have an impact on the accur-
acy/performance trade-off when performing the inference of a TinyML network on a micro-
controller?”

To find an answer to this question, several areas of microcontrollers, NAS, and quantization

Exploring Network Architecture Search for TinyML 3
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will have to be explored and tested, which raises the following sub research questions:

• “With what precision can the run-time memory and storage requirements for neural
network inference be calculated during the execution of NAS?”

When adding constraints such as memory and storage to NAS, these parameters will
have to be calculated for each architecture. The precision of these calculations are of
importance in preventing problems with overflow during deployment on the microcon-
troller.

• “What are the consequences of including the quantization of neural network parameters
as part of a NAS algorithm to the complexity of the search space?”

The search space defines the types of architectures that can be created by the NAS
algorithm. Adding more elements to the search space, for example quantization, will
expand the number of network architectures that can be generated. Even though a larger
search space can lead to the generation of better performing network architectures, a
larger search space will take more time to explore. This question will answer on which
side of this trade-off the NAS algorithm with quantization will reside.

• “How are the accuracy and resource utilization of an image classification convolutional
neural network that has been implemented in a microcontroller using NAS?”

Verification of the NAS algorithm is essential for the answer to the research question.
The discovered architectures must adhere to the constraints implemented for memory
and storage, while the classification accuracy will be determining the quality of the NAS
algorithm.

• “How does a sub-byte quantized neural network compare to more conventionally quant-
ized network inference in terms of operations and inference time?”

The final part of the research is to determine the effect of sub-byte datatypes in NAS.
This last question should contribute an insight to the accuracy/performance trade-off
by providing an analysis of the possible improvements.

1.2 Contributions

The research questions cannot be answered with the results from a literature research alone.
In order to answer some parts of the questions, a NAS architecture will be implemented
with sub-byte quantization. A program that estimates the resource utilisation of a neural
network during inference is also required, since network architectures are tested on memory
and storage footprint to add multiple objectives to the NAS algorithm. With the answer to
the research question, this works contributes the following aspects:

• A multi-objective NAS algorithm with low precision quantization layers in the search
space to target the constrained resources available on tinyML platforms.

• A software package for NN inference analysis that aims to aid researchers and NAS
algorithms with testing the feasibility and performance of MCU inference.

4 Exploring Network Architecture Search for TinyML
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1.3 Structure of this report

In the remainder of this report, the contents are structured as follows. Chapter 2 gives the
reader the necessary background information to understand the differences and similarities
between conventional NN design and NAS network design. Other works relevant to the topics
presented in this work are discussed in Chapter 3. The findings and experiences gained from
that chapter are subsequently applied in Chapter 4, where the design decisions and design
process are presented. Additionally, the experiments that will be used to test several aspects
of the NAS design are introduced. The results of these experiments are presented in Chapter
5, followed by an analysis of these results. Finally, Chapter 6 is reserved for the discussion
of the results form the experiments and the literature from Chapters 2 and 3. At the end
of Chapter 6, a number of recommendations for future work on this topic is presented along
with potential improvements for this work.

Exploring Network Architecture Search for TinyML 5



Chapter 2

Background

In this chapter, background information is provided for the topics introduced in this work.
This information should give the reader the necessary knowledge to understand the concepts
and analysis.

2.1 Neural networks

Neural networks are computational filters that have been inspired by the inner workings of
a biological brain. A biological brain is built up with neurons: cells that carry information.
Neurons in the brain are connected to each other, with connections named axons. This section
points out the similarities and differences between the structure of a biological brain and a
fully connected neural network, after which convolutional neural networks are discussed.

2.1.1 Fully connected networks

The artificial neurons, commonly also referred to as nodes, in a neural network share the same
topology as a biological neuron. An illustration of a neural network node is given in Figure
2.1. Every node in a network has multiple inputs and an output, which are also referred
to as activations. This nomenclature comes from the biological brain cells, where different
cells are activated by inputs from other cells. The input axon of a brain cell is resembled by
the input of the node. The strengths of activations in a biological brain can differ between
nodes. To emulate this, neural network nodes contain a variable for each input: the weights.
Another variable, the bias, can shift the output activation of the node up or down, depending
on what is a better fit for the data. The output o of a cell is a weighted sum of all inputs
x with weight w. This output is offset by a bias b and followed by an activation function a
with nonlinear behaviour [17]. Computing the output of a neural network node is a set of
multiply accumulate calculations (MACC), see Equation 2.1. The more nodes, the higher the
complexity of a networks and thus the higher the number of MACCs.

o = a

(
I∑

i=1

wixi + b

)
(2.1)

6 Exploring Network Architecture Search for TinyML



CHAPTER 2. BACKGROUND 2.1. NEURAL NETWORKS

Nodes of a neural network can be combined as a vector, which forms a layer of nodes. Several
layers can be connected together, with the output and all I inputs of a node in a layer are
connected to all inputs and outputs of adjacent layers, as illustrated in Figure 2.2. Such a
network design is referred to as a feed forward fully connected network, since all nodes are
interconnected to each other and there are no loops in the network. The inputs of feed forward
neural networks do not depend on their own outputs.

Figure 2.1: A neural network node with I inputs and a bias

Neural networks are large filters with non-linear behaviour, built up by different layers of
interconnected nodes or neurons. For an outside observer only the input and output layer are
accessible. The other layers, referred to as hidden layers, reside inside of a black-box model.
The coefficients of these networks are configured by means of machine learning.

Figure 2.2: Illustration of a feed forward fully connected neural network with input, output
and hidden layers [4]

2.1.2 Convolutional layers

Another type of neural network layer is the convolution layer, which is found in convolutional
neural networks (CNN) such as the example in Figure 2.3. Convolutional filters, or kernels,
are widely used within image processing techniques and are implemented mostly for edge
and feature detection. Filtering with kernels is an effective method for feature detection, as
similar filters are used in other edge detectors.

In neural networks, the coefficients of a kernel are determined during training. By tuning
the kernel filters, a convolutional layer is able to recognize a certain feature. Multiple kernels

Exploring Network Architecture Search for TinyML 7



2.1. NEURAL NETWORKS CHAPTER 2. BACKGROUND

in a layer can be used to capture different features in that layer and by stacking multiple
convolutional layers, relations between the detected features can be captured. The outputs
of the convolutional layers contain a lot of information about the shape of the object given as
input. To do something with these shapes, convolutional neural networks often have one or
more fully connected layers to link these features to the different object classes at the output.

Figure 2.3: A convolutional classification network with two convolutional layers for feature
learning and three fully connected layers for classification [4]

A convolutional layer is computed by performing a discrete 3D convolution between K filter
kernels Fk and the input tensor I. The stride is the number of positions that the kernel will
move for every convolution equation. For instance, a stride of two implies that the kernel is
placed on every other position of the input. Assuming a stride of 1, this convolution can be
computed for every element in the output using Equation 2.2, for which Figure 2.4 provides
a reference for the notations of the different dimensions [18]. This results in an output tensor
O for every filter, thus in the end the output is K channels deep. Similar to fully connected
layers, convolutional layers are composed of a lot of MACCs, since a discrete convolution
operation also boils down to a weighted sum of the inputs. The weights are in this case the
kernel coefficients.

Figure 2.4: A single kernel convolution with notations for input, filter, and output.

O(p, q, k) =
C∑
c=0

S∑
s=0

R∑
r=0

I(p+ r − 1, q + s− 1, c) · Fk(r, s, c) (2.2)

2.1.3 Training and inference

The process of tuning the parameters in a neural network to fit the black-box model to a
certain dataset is called training. Neural networks can be trained with different methods,
although supervised learning is used most of the time. When the outputs of the network are
known during training, supervised learning can achieve accurate results, but if the outputs are
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not known, one is forced to move to the less accurate unsupervised learning. With supervised
learning, the desired outputs for the training dataset are provided. This dataset is comprised
of examples of the inputs that a network is expected to process during inference. An image
classification should for instance correctly identify the object in an input image. When all
training data of a dataset is passed through the network, an epoch is completed. Usually,
multiple passes of the training data and thus several epochs are required to train a neural
network.

When a network is feed forward, thus no loops exist in the network and inputs do not depend
their own outputs, the backpropagation method can be implemented. The first training
step is for the neural network to compute the output for the provided input image. With
backpropagation, the difference between the desired and actual outputs can be calculated and
be used to calculate the loss of the network.

Training is a highly computationally expensive task because a dataset usually contains a large
number of different input samples that are passed through the network for several epochs.
The CIFAR10 dataset does contain 60000 images for training, larger sets such as Imagenet
1.2 million [19, 20]. This implies that during training, the network is evaluated thousands
of times. However, since the nodes in a layer are only connected to nodes in other layers
and not to each other, the output activations of a single layer can be computed in parallel.
Parallel computation can speed up the training process significantly, which is why networks are
often trained on GPU compute arrays. The fact that the training process is computationally
intensive is not seen as a problem, because it is only supposed to be performed once.

The inference of the deployed application is less computationally demanding than training a
network, as only one set of input data is provided for every desired output and the weights
do not have to be tuned. However, the power draw for inference is more relevant. In many
cases the inference is performed continuously for a long duration and devices on the extreme
edge do not have the abundance of resources that the cloud environment has. This has driven
researchers to find more optimized platforms to fit different requirements for inference.

2.2 Network Architecture Search

Figure 2.5: The three basic building blocks of NAS algorithms [5]

Neural architecture search (NAS) is one of the automated neural network design paths of
AutoML. With NAS, neural networks can be designed with minimal inputs from the network
designer. Generally speaking, NAS algorithms are made up of three dimensions which are
visualised in Figure 2.5: search space, search strategy and performance estimation strategy
[21]. A short description of these dimensions is provided below, before Sections 2.2.1, 2.2.2,
and 2.2.3 discuss different implementation approaches.
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The search space is defined as the set of elements that can be used to construct network
architectures during the NAS process. The elements in the search space are selected with
the purpose of the desired network in mind. An image classification task, for example, can
be expected to have several types of convolutional layers in the search space. With a suiting
subset of all possible neural network elements in a search space, the search is performed more
efficiently as the scope of possibly created networks is smaller than it would be with a brute
force approach. A drawback of this method is that the search space is influenced by the
knowledge of the network architect. It it therefore less likely that novel architectures are
discovered than it would be with brute force.

The second NAS dimension, search strategy, is the method or algorithm that is used to
construct different network architectures from the elements available in the search space.
The difficulty in finding a good search strategy lies with the inefficiency of evaluating every
possibility in the search space.

Finally, performance estimation strategies are implemented to verify the performance of each
of the generated network architectures. The performance of an individual network can be
determined by verifying a network against unseen representative data, which implies that the
network needs to be trained. Training every generated network architecture is impractical,
given that the population can hold 1000 networks [22]. As a result of all those generated
networks, the duration of architecture searches is often measured in days or weeks on a
GPU[21, 6], even with optimized performance estimation strategies. It is with this motivation
that different strategies have been developed, each with the intention to give a accurate
estimation of the performance without fully training the networks.

2.2.1 Search Space

The definition of a NAS algorithm starts with the definition of the types of networks can be
constructed. What type of network results, starts at the search space, a collection elements
suited to generate neural networks. One should think of elements as different types of layers,
such as convolutional layers, fully connected layers or pooling layers. These layers can be
connected together in different configurations, but also contain parameters that define the
composition of a layer, such as the number of neurons or the kernel size, but also the type
of activation function that is coupled to a layer. So, besides the number and type of layers,
multiple parameters can be chosen for each layer. In an attempt to limit the number of
possible combinations, resulting in a faster execution of the search, certain structures can be
implemented in the search space. This will limit the number of possible architectures with
the benefit of a smarter selection process and a better search efficiency.

A search space is usually set up containing elements that are known to be suitable for the
application of the neural network. Setting up the search space with such method does limit the
types of architectures that can be created, reducing the complexity of the search algorithm.
This reduction in complexity comes with the risk that novel, optimally performing network
architectures cannot be created, because the search space is generally set up with common
NN knowledge as basis.

The most straightforward search space consists of elements that can be connected sequentially
together to form a neural network architecture. Different architectures can be generated by
varying the types of layers or the configuration of the layers between models. Such a search
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space is called a chain-structured search space. In such a search space, there is only one type
of connection between different layers, which reduces the possibilities of connections. The
number of and types of layers are not necessarily limited, although this is possible to further
reduce the size of the space. Figure 2.6 pictures an element of a chain-structured search space.

Figure 2.6: A sequential combination of network layers: an element from a chain-structured
search space

A more complex neural network can be achieved by defining small neural networks that can
be combined and reused. Such a search space is called a cell-based search space, with these
small networks embedded in cells, such as the one in Figure 2.7. An important difference with
the chain-structure is that no layers can be added, only the types of layers can be changed.
Layers inside a cell have to be predetermined by the designer and can be any layer that suits
the target application. The size of the search space is in this case influenced by the possible
types of layers in a cell. The manner in which these cells are connected, however, is commonly
predetermined for a specific network. An example of what a network generated form a cell-
based search space is ResNet, which is a network that exists of groups of layers with similar
architectures, connected to each other.

Figure 2.7: A complex combination of network layers: an element out of a block-structured
search space

Finally, there is a search space that is one large neural network containing multiple branches
between its layers, as illustrated in Figure 2.8. With this specific search space, the high-level
architecture of each generated network is the same. The networks differ in the contents of
the layers and the contents are selected with the different branches in the supernetwork. For
instance, a certain position in the network contains a convolutional layer. In the generated
architectures, this layer can differ in kernel size or number of filters, but it is always a convo-
lutional layer. This supernetwork contains all the layer configurations from the search space,
including connections, and can therefore be used with a one shot performance estimation.
This is elaborated upon in Section 2.2.3.
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Figure 2.8: A multi-branch supernetwork form which network architectures can be formed.
The different connections from one block to another illustrate different options for the layer
contents.

2.2.2 Search strategy

The outright optimal network is unknown and difficult to find when not implementing an
unbounded search space and brute force search method, looking at every possible network
architecture. This is infeasible due to the time required for such a search. The network
considered optimal with NAS is therefore located within the search space. The goal of the
search strategy is to facilitate a strategic path through the possibilities available in the search
space to find this best possible network in the search space.

Grid and random search algorithms are some obvious choices to start with any search problem.
The properties of these algorithms, however, make them a good example of the nuance that
needs to be found for the strategy in case of NAS. With a grid search algorithm, a grid
is mapped on top of the contents of the search space. The left search space in Figure 2.9
illustrates this principle with two parameters; one important and one unimportant. This grid
does not cover every solution, but takes probing points in the search space. The difficulty
with grid search lies in its efficiency, since every important parameter is tested with multiple
unimportant parameters. As a result, the same important parameter is tested multiple times.
For instance with the number of points in Figure 2.9, the nine experiments result in three
tested important parameters.

The number of inspected important parameters can be refined by increasing the number of
parameters in the grid search, though at the cost of more evaluation points. Another option
is to randomly explore the search space, which is illustrated in Figure 2.9 on the right-hand
side.

In order to reduce the number of duplicate evaluations of a point in the search space, a random
search algorithm can be implemented. While grid search evaluates different combinations of,
in the case of Figure 2.9, important and unimportant parameters, the same parameter is
used for a comparison in multiple instances. With a similar number of evaluation points as
grid search, a random search can cover a higher number of different parameter combinations
because no parameter is used more than once (for true random instances). This principle
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Figure 2.9: Illustration of grid (left) and random search (right) in a search space of two
parameters [6]

is illustrated in Figure 2.9 with the number of points in the blue scale for the important
parameter. From the same illustration, a trend is visible where low scores for the important
parameter have the same chance of being selected as high scores. This is not contributing
to the efficiency of the evaluation of the search space, since low scoring models are of no
interest for the result of NAS. Not evaluating low scoring network architectures would free
up computational resources for evaluating promising networks.

To further optimize the search algorithm, search strategies that can identify promising areas in
the search space and bias the search towards those areas have been designed. Examples of such
strategies are evolutionary search and reinforcement learning (RL). Evolutionary algorithms
have been inspired by evolution in nature. Over several generations an architecture changes
by means of mutations and the impact on performance is measured. The selection process is
according to survival of the fittest. Reinforcement learning deploys an AI algorithm to create
and evaluate network architectures. The performance of the created networks is determined
by a score. Based on this score, the AI learns what type of architectures work well and which
do not. More on the algorithm of these search strategies is explained in Sections 2.2.2 and
2.2.2 for RL and evolution respectively.

Even though evolution and RL are different algorithms, both can identify which search space
combinations are likely to produce well performing networks and which are not. For both
implementations it is important that the search starts at a wide variety of points in the
search space. If the search starts out too narrow, the outcome could be a network at a local
maximum in the space. In order to find the highest local maximum possible, as many of these
areas need to be evaluated as possible.

Reinforcement Learning

Reinforcement Learning (RL) is a form of decision making neural networks where a controller,
or agent, will evaluate different solutions from a design space. This controller selects a possible
solution to the problem to be solved and, in return, receives a score based on the success of
the solution. When this process is iterated, the agent will learn which of the solutions have
the highest contribution to solving the problem as the score in that case will increase. With
less successful decisions, a bad score is returned and will therefore less likely to be used.

When applied for NAS, the problem is defined as the contents of a network architecture that
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can achieve for instance the highest possible accuracy on a given dataset. The agent will then
assemble a network from the search space for each iteration of the search, before it is given
a score based on an estimation or evaluation, see Section 2.2.3. Depending on this score, the
agent will assemble similar networks or look in another combination in the search space for
the next iteration.

Figure 2.10: Block diagram of a NAS algorithm based on reinforcement learning

Evolutionary Algorithms

The idea behind evolutionary algorithms is rather straightforward. Similar to researchers that
evaluate and improve different versions of their hand-crafted networks, evolutionary search
is an iterative process that brings modifications to networks in an attempt to find the best
performing architecture. Figure 2.11 pictures how the algorithm starts with a population,
to which several architectures are added in the first step. These architectures are created
from the search space, often at random. Every iteration of the evolution algorithm, some of
the networks from the population are promoted to be parent networks. Each parent network
receives random mutations to form new networks, so-called child networks. These mutations
can be anything from adding or removing layers to or from the network to a change in the
size of, for example, the kernel of a specific convolutional layer. As a final step, the child
networks are evaluated, after which they are added to the population. To limit the size of
the ever expanding population, networks can be removed from the population.

Evolutionary algorithms select the networks that are removed from the population by means
of tournament selection. This implies that the network architectures with the lowest accuracy
are removed from the population, while the best performing networks are elected to be parent
networks and spawn new architectures for the population. A method like tournament selection
imposes a certain greediness in the search, as only the best performing networks are explored
and mutated. Greediness in the search strategy can land on a local maximum in the search
space, where there are no better networks to be created form a certain architecture, but a
different architecture performs better.

2.2.3 Performance Estimation Strategy

To determine the best network from the search space, each generated network has to be eval-
uated. The most straightforward method would be to fully train every network and take the
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Figure 2.11: Block diagram of a evolutionary NAS algorithm

one with the highest accuracy or any other metric that needs to be evaluated. Training, as
discussed in Section 2.1.3, is a computationally expensive task. When a search covers 100
architectures that each need 10 epochs to fully train, a total of 1000 epochs will be computed.
The NAS algorithm could complete faster when this evaluation of the networks is optim-
ized, rather than just training networks. To address this problem, performance estimation
strategies have been developed. Three of such strategies will be covered in this section.

One of the ways to reduce training time is limit the time necessary to train the networks gen-
erated by NAS. This can be achieved by training for instance with fewer epochs, lower input
dimensions or by reducing to a subset of the training dataset [5]. All of these optimizations
are reducing the data used for training the network and are therefore referred to as coarse
estimates. Coarse estimates with fewer epochs can be extended by predicting the learning
curve of a network. The coarse estimate and extrapolation methods are best implemented
with as little data as possible, leading to the largest reduction in time required for the execu-
tion of NAS The rougher the estimate, the less data that is available to base the performance
on. It is therefore that other methods are used.

Another method to reduce the training time of NAS is to use already optimized weights
across different architectures: weight inheritance. This inheritance gives new architectures a
jump start during training, since unmodified parts of the network have already been trained
instead of being randomly initialized. All parameters of the network are still trained, though
the inherited weights are only slightly optimized compared to training from scratch.

Weight inheritance can also be extended to the entire search space. This third performance
estimation strategy is referred to as weight sharing. The search is then started with training
one super network, containing the possible structures in the search space. Once this network
has been trained, parts of this network can be combined into net architectures, which then
do not have to be trained [5]. This gives a better estimate for the eventual performance of
an architecture than the low fidelity estimates and requires less retraining of parameters than
inheritance. The drawback is that the shared weights are not optimized for the rest of the
model.
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2.3 Quantization

The different kernels of each convolutional layer, as well as weights and activations for fully
connected layers concern variables that need to be stored somewhere in a memory of the de-
ployment platform. There can be millions of these variables in a network By default, machine
learning platforms such as TensorFlow and PyTorch use 32-bit floating point parameters to
store these variables. This achieves high-precision values that can be tuned precisely during
training, but take 4 bytes to store on a chip. Besides the footprint, hardware with a dedic-
ated FPU is required to efficiently work with these datatypes. Not all microcontrollers contain
an FPU to save on area and therefore cost and power consumption. Larger networks tend
to suffer less from quantization losses, because these networks often are over-parameterized
[23, 24]. A single quantization error therefore has a smaller effect than a similar error would
in a smaller, lesser parameterized network.

A real-valued parameter r is quantized to q by means of defining the number of levels 2n,
a scaling factor S, and zero-point Z. With these parameters, a value can be quantized as
described in Equation 2.3. The scaling factor reduces the range of values that can be repres-
ented in r to something that is possible for the number of levels that can be represented by
the n-bit integer. In order to catch the largest possible range of approximations, one can shift
the range that q represents, by assigning the zero-point Z. The method described in Equa-
tion 2.3 is an affine conversion. An affine quantization mapping preserves the capability for
the quantized parameters to be implemented with integer arithmetic instead of, for instance,
lookup tables [23].

q = int[n]
( r
S

)
+ Z (2.3)

In Table 2.1, a comparison of multiple methods to quantize a neural network is presented.
The first method is dynamic quantization, a scheme that calculates the quantization range
of a set of values dynamically during the inference of a model. The neural network is at this
point fully trained and deployed on a device. Dynamic quantization results in the lowest loss
of accuracy compared to the non-quantized model, because the range is calculated for each
input specifically [25, 26].

Table 2.1: Comparison of different neural network quantization schemes

Type Used when? Error gained

Dynamic
quantization

During inference minimal

Post-training
quantization

Between training
and inference

low for 8-bit and higher
large for sub-byte

Quantization-
aware training

During training low

The range of values that need to be quantized can also be calculated before deployment, this
is called static quantization. The advantage of static quantization is the lower computation
and memory overhead, since the range is computed before deployment and thus the quantized
values can be used. A disadvantage is that the quantized parameters are adapted to a range
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of input data rather than a single input as it would for dynamic quantization. This reduces
the precision of the network and can therefore result in accuracy losses. Static quantization
can be performed after the model has completed training. This is referred to as post-training
quantization (PTQ). Quantization can also be implemented during training, this is called
quantization-aware training (QAT). The process of PTQ is displayed in Figure 2.12. A neural
network is first fully trained by analyzing the predictions and adjusting the weights. When
the training is completed, the network is quantized to result the output network that can
be used for inference. Advantages are that any model can be converted and no additional
training needs to be performed. The loss of accuracy is also relatively low

Figure 2.12: Illustration of the post-training quantization process

This loss can be mitigated by quantization-aware training, a static quantization method that
computes the quantized values during training and includes them in the backpropagation
step of comparing and adjusting predictions. This is illustrated in Figure 2.13. In order
to feed the quantized values in the backpropagation algorithm, they are converted back to
floating point values during training. While these values are no longer quantized, they do
keep their relative quantization errors. The conversion Float −→ quantInt −→ Float does
include a rounding error because of the integer conversion in Equation 2.3. This floating
point representation of the quantized value is referred to as simulated or fake quantization.

Figure 2.13: Illustration of the quantization-aware training process

2.4 Microcontroller resources

Microcontrollers are simple processors that are deployed in many applications. These pro-
cessors have been designed to be cheap and efficient, hence the popularity. Compared to
mobile and embedded processors, microcontrollers are slower, but more importantly have a
lot less resources.

Although several microcontroller architectures exist, the most popular ones are created by
ARM. The 32-bit RISC architecture in these microcontrollers is popular for its relative speed.
Microcontrollers based on the ARM architectures come in many shapes and sizes, given

Exploring Network Architecture Search for TinyML 17



2.4. MICROCONTROLLER RESOURCES CHAPTER 2. BACKGROUND

that the designs are licensed to other manufacturers, such as STMicroelectronics. These
manufacturers can buy a licence to use one of the Cortex-M microcontroller cores and add
memories and I/O peripherals. The clock speeds vary between different architectures and
range between tens to hundreds of MHz, making microcontrollers are several factors less
powerful than embedded processors. Table 2.2 gives an indication of the on-chip resources
that microcontrollers pack by comparing different tiers of chips.

Table 2.2: On-chip computational resources of one embedded processor, the BCM2711 [8],
and three microcontroller examples, the mid-range RP2040 [9] and STM32F4 [10] and the
high-end STM32F7 [11].

Processor BCM2711 RP2040 STM32F446RE STM32F746NG

Core Cortex-A72 (x4) Cortex-M0+ (2x) Cortex-M4 Cortex-M7

Frequency 1500 MHz 133 MHz 180 MHz 216 MHz

Memory 2, 4, or 8 GB 264 kB 128 kB 340 kB

Storage 0 kB (SD-card) 0 kB (external) 512 kB 1 MB

Initially, the only ARM 32-bit microcontroller core was the Cortex-M3. Nowadays, there are
several skews, each with a specialisation. An overview of these skews and relevant features
are presented in Table 2.3. The low-power M0(+) cores support an older version of the
architecture, as well as little pipeline stages and extensions to the ISA, all focused on the lowest
possible power. The general-purpose M3 and M4 cores are very similar on an architecture and
pipeline level, though the M4 core is significantly more powerful for signal processing with
the inclusion of an FPU and DSP/SIMD instructions. The Cortex-M7 is the highest power
processor core, though all these features come at a cost of power efficiency and purchase cost.

Table 2.3: Comparison of ARM microcontroller cores with parameters relevant for the exe-
cution speed of floating point and quantized SIMD neural network inference [12].

Core Cortex-M0 Cortex-M0+ Cortex-M3 Cortex-M4 Cortex-M7

Architecture Armv6-M Armv6-M Armv7-M Armv7E-M Armv7E-M

Pipeline stages 2 3 3 3 6

FPU no no no yes yes

DSP/SIMD no no no yes yes

A common microcontroller architecture is built up of registers and peripherals, such as an
arithmetic logic unit (ALU). Because of the popularity of the ARM architecture for 32-bit
microcontrollers, this work will focus on these architectures. The supported datatypes are
bytes (8 bits), halfwords (16 bits) and words (32 bits) in memory. Instructions support these
as well, though the sub-word datatypes are zero extended in the 32-bit registers. Single
instruction multiple data (SIMD) instructions are instructions that, as the name implies, can
perform actions on more than one piece of data, enabling parallelization for computations
and data fetch operations.

2.4.1 Parallelisation

Within microcontrollers, parallelisation can be achieved on an instruction level in the instruc-
tion set architecture (ISA). One type of parallelism that is of interest here is single instruction
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multiple data (SIMD), where one instruction is used to move or compute multiple variables in
parallel. The extend of parallelistation is very limited to, for instance, FGPAs as the internal
databuses of microcontrollers have a limited width. In those cases, a maximum available
parallelisation level would be 4, given that the minimum supported datatype is a byte.

What mainstream microcontrollers lack the support of are the so-called sub-byte datatypes,
which consists of: nibble (4), crumb (2), or anything in between. Theoretically, using sub-byte
datatypes could increase the number of consecutively performed operations, but the hardware
is not readily available.

2.4.2 Memory and storage

Given that neural networks are not only complex to calculate but also have many parameters,
the most important resources for neural network inference are the memory and storage. Off-
chip memory and storage can be added and, although these come in larger capacities, the
extra chip takes space on a PCB and the external connection is slower than that of the on-chip
resources.

On-chip memories come in two variations: a volatile memory that functions like RAM and
the non-volatile memory stores for example the program. The volatile (SRAM) memory will
in this work be indicated by the term memory, whilst the term storage is used for the non-
volatile (NOR-Flash) memory. An estimation for the memory and storage usage of a neural
network architecture can be made with relative ease and is explained more in-depth in Section
4.2.

2.5 Inference libraries

As generated in PyTorch, neural networks are represented as graphs that show the connec-
tions between inputs and outputs. When exported, this graph is stored with the weights from
a network. The network cannot be deployed on a platform in this shape, as the scheduling of
the data needs to be coupled to the weights. There are several solutions for scheduling the
neural network graph, for instance TensorFlow Lite for microcontrollers specifically for micro-
controllers. Where these libraries schedule the neural network, the execution of the different
layers is handled by a different library on a lower abstraction level. For ARM microcontrollers
this abstraction layer is the Common Microcontroller Software Interface Standard (CMSIS).

2.5.1 Computing neural network layers

A popular implementation to compute a convolutional layer on processors and microcontrol-
lers is with a combination of the im2col transformation and generic matrix multiplication
(GEMM) algorithms [27, 28, 29]. This method is also used in the ARM CMSIS library.

The im2col step flattens the input image into an intermediate matrix. Each column of this
matrix holds the pixels that would overlap with the kernel for every position of the output
matrix. The intermediate matrix can then be multiplied with the kernel, flattened to a vector,
see Figure 2.14. Each convolution window is expanded to a column, which then forms the rows
of the matrix with the other columns. Flattening the input image is a bit more complicated,
since the dimension of the flattened input should be matching with the flattened kernel in
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order to be eligible for matrix multiplication. Combined with single instruction multiple data
(SIMD) instructions, matrix multiplications can be performed partly in parallel.

Figure 2.14: With the kernel flattened and the input transformed with im2col, the output
can be computed by means of matrix multiplication [7].

The computation of a fully connected layer can be represented by an input vector and a weight
matrix. In doing so, the GEMM algorithm can be used in similar fashion to a convolutional
layer.
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Chapter 3

Previous work

With some of the necessary background theories covered, other works in the area of NAS and
quantization for microcontrollers can be discussed. In this chapter, findings and results of
other works are presented and discussed to serve as a basis for the design choices in Chapter
4 and a baseline for the results in Chapter 5.

3.1 Neural Architecture Search

The work of Zoph et al. [30] implemented a cell-based search space by defining two types of
cells: a normal cell and a reduction cell. This search space has been given the name NASNet.
The contents of the cells are to be determined during the execution of the RL-based NAS
algorithm and are comprised from convolutional and nonlinear elements. The combination
of the final network is determined beforehand, but is a certain combination of reduction and
normal cells. This decision was based on the success of repeated patterns in NN algorithms
such as Inception [31], VGG [32], and ResNet [33] [30, 5]. A version NASNet designed for
CIFAR-10, got an error rate of 2.4% at 27.6M parameters, which was state-of-the-art at that
time, outperforming all other works. On ImageNet NASNet achieved 82.7% accuracy with
88.9M parameters. This performance is on par with the state-of-the-art, whilst requiring 56M
less parameters than other state-of-the-art works.

The study in [21] researched methods to bound the resource utilisation of NAS-generated
networks. This has been achieved by evaluating other constraints besides accuracy, resulting
in a multi-objective evolutionary algorithm. The resource utilisation and accuracy of the
generated networks are combined to find the pareto optimum networks. Pareto optimum
networks lie on the asymptote of the accuracy/resource utilisation trade-off, so a network
cannot achieve a higher accuracy without increasing resource utilisation. Other optimizations
that have been implemented were weight inheritance between parent and child networks. The
resulting LEMONADE network resulted an error between 4.57% and 2.58% on CIFAR-10,
with 0.5M and 13.1M parameters respectively.

Unsatisfied with the performance achieved by evolutionary networks implementing tourna-
ment selection, [22] modified the algorithm. Instead of promoting the best performing net-
works and removing the worst performing networks form the population, the contents of the
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population have been determined by age. This ageing evolution, named regularized evolu-
tion, reduces the greediness of tournament selection and results a wider exploration of the
search space. This resulted in an ImageNet accuracy of 82.8% with 86.7M parameters, which
outperformed the work of [30]. On CIFAR-10, the achieve test error is 3.34% with 3.2M
parameters.

3.2 Quantization

Inspired by ternary weight networks and binary neural networks, [23] proposed an integer
quantization scheme to compress and approximate neural networks that otherwise would
require floating point arithmetic. They managed to compress a network with a factor 4
by quantizing all weights and activations to 8-bit integers, whilst improving the inference
efficiency with optimizations from the ARM NEON library. For training the networks, [23]
implemented quantization-aware training to simulate the quantization losses during training.

The work of [34] found out that the large number of parameters that must be represented
in a per-layer quantization scheme negatively impacted the accuracy of a neural network.
Instead, they proposed a per-channel quantization scheme, where the scale and zero point
are computed for every convolution layer channel instead of for every layer. Additionally, a
mixed-precision method has been created to reduce the memory requirements of the neural
network to be deployed. With this scheme, an integer-only quantized version of MobilenetV1,
a CNN targeted towards mobile deployment, could run on a microcontroller with 512 kB of
memory and 2 MB storage. The accuracy achieved was 68%, which is an improvement of 8%
over 8-bit quantized networks.

The study [24] has written a whitepaper about quantization techniques for neural networks
that proposed the support for 4, 8, and 16 bit precision datatypes. The paper includes exper-
iments and recommendations on how to quantize NNs. They state that quantizing networks
to 8 bits invokes a 2% accuracy loss, regardless of whether the quantization is implemented
per-layer of per-channel. The recommendation is to use per-channel quantization, however,
since that yields higher precision of the quantized parameters. Quantization-aware training is
said to further improve accuracy losses, down to 2% for 8-bit quantization schemes. Sub-byte
quantization is also allowed with QAT, resulting between 2% and 10% for 4-bit networks.
Compared to floating point parameters, a speedup of a factor between 2 and 3 is observed,
which increased to a factor 10 when fixed point SIMD instructions are supported.

3.3 NAS and edge devices

The first NAS algorithm that implemented multi-objective constraints to target CNN in-
ference on MCUs is proposed in [35]. The sparse architecture search targeted very tight
constraints, such as a memory limit of 2 kB. This aggressive limit was met with the devel-
opment of a NAS algorithm and network pruning. On the MNIST dataset, an accuracy of
98.64% has been achieved, with a storage footprint of 2.77 kB and a memory requirement
of 1.96 kB. The NAS algorithm incorporated weight inheritance and a chain-structure search
space.

Besides memory and storage, [36] focused on the number of operations to improve inference
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time on MCU platforms. The result is a NAS algorithm according to the one shot principle by
training a supernetwork. When choosing network algorithms from the supernetwork, options
that exceed the memory and storage bounds are discarded. The final networks is quantized
to 8 bits.

Also [37] turns to NAS as a tool to design neural networks under tight constraints, targeting
medium-sized microcontrollers with a maximum of 64 kB memory or storage. They state
that the one shot search space limits the number of networks that can be evaluated, although
more complex datasets such as ImageNet can targeted. Compared to [35], more attention has
been given to how networks are executed on MCUs. With a granular, or chain-structured,
search space, an accuracy of 99.19% is achieved on the MNIST dataset, with a complexity of
28.5k MACCs. On a binary version of CIFAR-10 that is reduced to two output classes, an
accuracy of 86.49% is achieved with 384k MACCs.

Another work using the one-shot search space is [2], although the main contribution is a co-
design of network and inference runtime code. Interestingly, the search algorithm is split up
in two stages. The first of which determines the size of the input and the depth of the model,
all options that influence the size of the resulting network. This is different to the choice for
pareto-optimum networks from other work [21, 37].

3.4 Inference on microcontrollers

Researches at ARM [27] have developed a performance optimized library for neural network
inference on their microcontroller line-up. Software kernels have been implemented to most
importantly efficiently compute convolutional and fully connected layers. These kernels make
use of SIMD instructions that parallelise the loaded data by a factor two. The im2col kernel
cannot compute an entire convolutional layer in one go, limited by the available memory and
therefore computes the output in kernels of 2 by 2 pixels. Compared to a baseline using the
CMSIS-DSP library, this new CMSIS-NN runtime resulted an increase in throughput of 4.6
times of a small CNN targeting the CIFAR-10 dataset.

Capotondi et al. [38] have taken advantage of the open-source CMSIS-NN library and optim-
ized it to support mixed-precision datatypes of 8, 4, and 2 bits. This allowed them to store
more weights in the same footprint, though the convolution layer is computed analogue to the
works of [27]. Compared to a 8-bit quantized model, the accuracy achieved on MobilenetV1
is 8% higher in the same storage footprint. As expected, most of the latency originates form
the lack of SIMD operations on lower bit-width datatypes.
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Chapter 4

Method

The goal of this work is to investigate the inclusion of network quantization in a NAS algorithm
and its impact on the accuracy/performance trade-off during tinyML inference. Based on the
background knowledge and insights gained from previous works, a method to achieve this
goal has been set up. This chapter covers the method used to investigate four aspects of
this work, that will be used to answer the four sub research questions. Section 4.3 covers
the creation of a NAS algorithm targeted with the creation of a CNN for MCU inference.
How this NAS algorithm is aware of the resource constraints is discussed in Section 4.2.
The best-suited quantization method and how it is implemented with the NAS algorithm is
described in Section 4.4. Before that, however, Section 4.1 gives an introduction to the types
of applications, datasets and software used for this work.

4.1 Target application

Before starting the design, it is good practice to determine the target application. With
knowledge of the application, the datasets and their dimensions can be determined. For the
target platform, the constraints for memory and storage can be determined.

4.1.1 Datasets

Three datasets will be used to verify the operation and performance of this work, each with
a different level of complexity: MNIST [39], FashionMNIST [40], and CIFAR-10 [19]. These
datasets are relatively small and simple with 10 output classes compared to ImageNet for
instance, which is a dataset with 1000 classes. The required complexity for neural networks is
therefore expected to be low. Low complexity networks are better suited for MCU deployment
than more complex networks, given that the computational resources are restricted.

The MNIST dataset is a set of hand-written numbers, ranging from 0 to 9, intended for a
classification task. The numbers, plotted in Figure 4.1a are black on a white background.
This high contrast makes this a very simple dataset that is a good method to verify initial
performance and for visual debugging. The input resolution is 28 by 28 pixels and there is
only one channel for colours. The output is given in 10 categories for the numbers 0 to 9.

Inspired by MNIST, the FashionMNIST dataset has been developed with the intent to classify
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(a) MNIST

(b) FashionMNIST

(c) CIFAR-10

Figure 4.1: Example data for the datasets used in this work
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pieces of clothing. Some examples of images from the dataset have been visualised in Figure
4.1b. It is a bit more complex to solve than MNIST, because the images with pieces of
clothing are stored in grey scale, resulting in a lower contrast between the features and the
background. In- and output dimensions are similar to MNIST.

The CIFAR-10 dataset is a subset of CIFAR-100, a classification dataset with 100 categories
of objects. The types of objects are of a larger variety than the numbers of MNIST and
clothing of FashionMNIST, which makes the tasks more complex. Additionally, as can be
observed in Figure 4.1c, the images are stored in colour, which adds more layers to the input
and therefore more combinations of features for the network to explore. Images are stored
with a resolution of 32 by 32 pixels and 3 channels, for the RGB values.

4.1.2 Hardware

For the experiments in this work, a mid-range microcontroller form STMicroelectronics has
been selected. The STM32F446RE is equipped with an ARM Cortex M4 processor that
features the ARM DSP-related SIMD instructions. These instructions are taken advantage
of by the CMSIS-NN code library, supporting parallelization of two MACC operations and
loading two variables simultaneously from storage. The chip has 128 kB of memory and 512
kB of storage [41].

4.2 Memory and storage prediction

The prediction of the model size of a neural network is relatively straightforward. To start
the storage estimation, one first has to compute the total number of parameters in a network.
These parameters include the weights and biases, but not the activations. With all parameters
known, it is a matter of multiplying the number of parameters with the number of bits used to
represent each parameter as in Listing 4.1. Note that this is solely the storage space required
for the model weights and biases, not the code of the inference runtime.

f o r every l ay e r in the network:
count the weights in the l ay e r
count the b i a s e s in the l ay e r
t o t a l parameters = weights + b i a s e s
s t o rage requirement = t o t a l parameters ∗ b i t s to r ep r e s en t parameters

Listing 4.1: Algorithm to predict the storage requirements of a neural network.

The weights and biases of a model are read-only and can therefore be loaded from stor-
age into the registers directly. Flash memory (storage) access times are high compared to
SRAM memory. Since no write operations are required for the weights, clock cycles are saved
compared to reading and writing activations to storage. Activations are, with the opposite
motivation, stored in the memory. The interesting metric is the peak memory which, given
that the network is computed on a per-layer basis, is the maximum memory usage to compute
a layer of the network. This per-layer execution is used by the TensorFlow Lite for microcon-
trollers runtime. For every layer, the input resolution and channels are added to the output
resolution and channels, resulting in the number of parameters in memory per layer, as in
Listing 4.2. Multiplying these parameters with the number of representation bits results the
memory usage per layer [42].
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f o r every l ay e r in the network:
count the input a c t i v a t i o n s o f the l ay e r
count the output a c t i v a t i o n s o f the l ay e r
t o t a l a c t i v a t i o n s = input a c t i v a t i o n s + output a c t i v a t i o n s
memory usage = t o t a l a c t i v a t i o n s ∗ b i t s to r ep r e s en t a c t i v a t i o n s
i f (memory usage > than peak memory usage ) :

peak memory = memory usage

Listing 4.2: Algorithm to predict the peak memory usage of a neural network.

Neither of Listing 4.1 and 4.2 take the overhead introduced by any inference runtime envir-
onment into account.

4.3 Neural architecture search

The design choices made for the algorithm are discussed in this section, split in the three
pillars that define most NAS implementations. The block diagram in Figure 4.2 visualizes
how the different parts discussed in this section work together.

Figure 4.2: The process of network architecture search

4.3.1 Search space

Possible search space implementations have been discussed in Sections 2.2.1 and 3.1, these
options are chain-structured search spaces and cell-based search spaces. Cell-based search
spaces tend to result in networks that perform well on large datasets, at the cost of larger
networks than with chain-structured search spaces. The search space elements of a chain-
structure are less complex and more compact, given that they are individual layers instead
of micro architectures. To be more flexible with the search space, a chain-structure has been
chosen.

The search space consists, as most neural networks, of several convolutional layer options,
a pooling layer, and fully connected layer. The input dimensions of all these layers depend
on the output dimensions of the previous layer, except for when these layers are the first or
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the last layer in the network. In this exception, the first layer in the network has its input
dimensions defined by the dimensions of inputs from the dataset. The last layer is always a
fully connected layer with as many outputs as there are output classes in the dataset, this is
a necessary classification layer.

Keeping in mind that activation layers are used to introduce nonlinear behaviour between
layers, a layer is automatically followed up by an activation layer. This activation layer
always is a rectified linear unit (ReLU) layer, since it is an easy to compute and effective layer
that is used in most NNs. The ReLU operation returns a 0 for negative numbers and passes
through the input for other numbers, see Equation 4.1.

ReLU(x) =

{
x, x > 0

0, otherwise
(4.1)

The final layer is once again an exception, with its activation layer being a SoftMax layer.
This layer is common for classification algorithms and normalizes the outputs. Lesser bound
are the convolution layer kernel depths and fully connected layer output features; these are
assigned a value randomly. For convolutional layers, the depth is constrained depending on
the position in the network. Deeper position layers feature more channels than convolutional
layers earlier in the network.

Unique to this work, the quantization levels are also part of the search space. The motivation
behind this implementation is that it will result a balance between number of parameters and
precision of those parameters. When architectures created by NAS fit within the resources
of the target platform, the parameters of that network can be quantized to 8-bits, as is
conventional for most microcontrollers. Networks that would exceed the memory or storage
constraints would need a more aggressive quantization scheme. As found in [24], low precision
weights negatively affect the accuracy of a model because of a larger quantization error.
Keeping the quantization levels as high as possible should result in good performing neural
networks that fit on the target device.

Summarized, the elements in the search space are:

• 2D convolution layer with kernel sizes of 3 × 3, 5 × 5, or 7 × 7 pixels and a randomly
defined number of channels

• 2D max pooling layer with a size of 2 × 2 pixels

• Fully connected layer with a randomly defined number of features

• Quantization of convolution layer between 2 and 8 bits

• Quantization of fully connected layer between 2 and 8 bits

4.3.2 Search strategy

In the NAS algorithm of this work, the search strategy is an evolutionary algorithm. This
implies that, while the generation and comparison of networks in the search are determined
by means of evolution, the network parameters themselves are trained as one would train a
regular NN [43].
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Evolution is a slower process than reinforcement learning, but it has the advantage of being
faster to set up. Configuring the controller of a RL network is a precise and time-consuming
task. The choice has been made to base the search algorithm on evolution, since getting the
search up and running is preferred to the faster execution of RL. Time not spent on perfecting
a controller can be used to explore extensions of the search algorithm and the integration of
quantization-aware training.

With evolution, the choice is between tournament selection and regularized evolution [22].
From the works in Section 3.1, tournament selection more quickly reaches a maximum in the
search space. Therefore, tournament selection is to be used in this work.

whi le ( cur rent gene ra t i on < number o f g ene ra t i on s ) :

whi l e ( cur rent mutation < number o f mutations ) :
s e l e c t a parent network from the populat ion
copy the parent network
randomly s e l e c t an element from the search space
p lace the element in the new ch i l d network
p lace the ch i l d network in the populat ion

eva luate the ch i l d networks from the cur rent gene ra t i on

remove the lowest s c o r i ng models from the populat ion

Listing 4.3: Pseudo code of the tournament selection evolution algorithm

4.3.3 Performance estimation

The best performing network architecture is determined by choosing the model with the
highest scoring accuracy out of the population. However, this is not the only model parameter
that is evaluated during the performance estimation and evaluation step.

There are two constraints implemented with the NAS algorithm, these constraints are the
available memory and storage space. These are important constraints, as memory overflow
during inference must be avoided. Additionally, the size of the model should be within the
limits of the available storage. As larger networks tend to achieve better accuracy and the goal
of this work is to find a network that will fit within the memory and storage of a MCU, these
boundaries must be included. For these boundaries, storage and memory limits have been
set up, making the search algorithm a multi-objective NAS. During the network generation
phase, networks that exceed the boundaries are removed from the population with the intent
to satisfy the boundaries.

As a method to limit the time required to complete the NAS algorithm, low fidelity estimates
have been made of each network by training a network for a few epochs. This coarse estimate
for the network performance is further optimized by weight inheritance between parent and
child networks. By keeping the weights for all layers that have not been influenced by the
mutation. The child network then has some tuned parameters before the first epoch of
training, which can kick-start the training of this new architecture. Only the parameters of
the modified layers are defined randomly.
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4.4 Quantization strategy

As discussed in Section 4.3.2, the NAS algorithm of this work defines a search space that
requires networks to be trained after being generated. If a one shot search space would have
been chosen, the supermodel could be quantized after training had finished.

Because of the desire to include the quantization process with the NAS algorithm at a
point where the network would not be fully trained, the quantization strategy has to be
quantization-aware training. Network architectures can with QAT be trained for a few epochs
to get a performance validation of the quantization levels. An added benefit of using QAT,
as stated by the work of [24], is that it tends to yield lower accuracy losses than post training
quantization and handles low quantization levels better.

Brevitas is a framework for quantization-aware training PyTorch with support for any number
of bits to represent integer variables, this in contrast with the PyTorch and TensorFlow Lite
quantizers that support only 8-bit integers [44]. Although initially targeted towards FPGA
development, networks developed with Brevitas can also be exported to PyTorch and ONNX
formats that are suited for deployment on embedded devices and microcontrollers.

When creating a quantized neural network layer with Brevitas, information about the quant-
ization scheme is required in addition to the parameters needed for regular PyTorch layers. In
Listing 4.4, for example, the creation of a convolutional layer with 6 input channels, 16 output
channels, and a kernel of 5 by 5. Setting quantization parameters is done by assigning a type
of quantization with weight quant and a bit width with weight bit width. The imported
class Int8WeightPerTensorFloat is a structure of parameters that define how a parameter is
quantized. In this case an 8-bit integer weight that is computed for every channel in a layer,
scaled by a floating point value.

import torch . nn as nn
import b r e v i t a s . nn as qnn
from br ev i t a s . quant import Int8WeightPerTensorFloat as WeightQuant

layerPyTorch = nn .Conv2D(6 , 16 , 5)

l a y e rB r ev i t a s = qnn . QuantConv2D(6 , 16 , 5 ,
we i gh t b i t w id th=8,
weight quant=WeightQuant ,
r e tu rn quant t en so r=True )

Listing 4.4: Definitions of 2D convolution layers in PyTorch and Brevitas. For the latter,
additional parameters configuring QAT are required

4.5 Parametric network design

To streamline the process of modifying neural networks a parametric network class has been
created in PyTorch. With this class, it is both possible to quickly generate networks with
different architectures and conveniently modify layers. This goal can be achieved by creating
layers from scratch, however this network makes use of basic PyTorch layers for compatibility
and development time reasons. The layers are ordered in a modular fashion, in combinations
that are popular in other works.
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To achieve the modular structure, the networks is built up with dictionary objects in a 2-level
hierarchy. The block level dictionary contains a regularly occurring combination of layers.
A convolution module, for instance, always contains a 2D convolution layer with optionally
activation and/or pooling layers. The top level dictionary contains the blocks of layers and
provides a structure to forward data through the network. As illustration, Figure 4.3 shows
the basic LeNet network in this configuration.

Figure 4.3: LeNet architecture as an example for a neural network created with parametric
network design

4.5.1 Weight inheritance

With the evolution algorithm new network architectures are created by means of mutations;
modifications to architectures existing in the network pool. Such a mutation could be im-
plemented by using the parametric network design function, copying the architecture of a
network bar the parameters that are to be mutated. In principle, there is nothing wrong with
this method. In network architecture search however, this would require every model gener-
ated through mutations to be trained from scratch, which extends the time needed for the
algorithm to complete significantly. Mentioned in Section 4.3.3, weight inheritance between
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different architectures has a positive impact on the duration of network architecture search,
which is why the choice has been made to include weight inheritance between parent and
child networks.

The parametric network supports weight inheritance by means of network modification func-
tions. Examples of these functions are the insert layer() and remove layer methods, the
function of which can be derived from the names. By copying the complete model, so it’s
architecture and parameters, the trained parameters are retained and only the modified layers
need to be trained from scratch.

4.6 Experimental setup

Each of the simulations concerned architecture searches that have been performed with the
Python packages and versions from Table 4.1. These searches will be performed in duplex on
three different datasets, each of increasing complexity: MNIST [39], FashionMNIST [40], and
CIFAR10 [40].

Table 4.1: Software versions used

Software Version

Python 3.8.7

PyTorch 1.10.1

Brevitas 0.7.1

Because of the number of experiments, the choice has been made implement a narrow search
algorithm, which spans 10 generations. Every generation, 5 new networks are generated and
added to the population. In return, the 5 oldest networks are omitted at the end of every
generation. The performance evaluation spans 3 epochs in which the networks will be trained,
this should be enough to get an idea of the performance of the population.

Table 4.2: Parameter settings for the search algorithm

Parameter Value

Storage limit (kB) 512

Memory limit (kB) 128

Number of iterations (generations) 10

Network pool start size 10

Number of networks to be mutated each generation 5

Number of course training epochs 3

Learning rate (Adam optimizer) 0.005

4.6.1 Memory and storage analysis

The first of the experiments is created as a verification for the precision of the memory and
storage predictions performed as discussed in Section 4.2. It serves as a basis for the first sub
research question: “With what precision can the run-time memory and storage requirements
for neural network inference be calculated during the execution of NAS?”.
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This comparison will be made in the STM32CubeMX program, which is a configuration
tool for ST microcontrollers. This program comes with the X-CUBE-AI extension pack that
supports inference for TFLite, ONNX, and Keras models. TFLite models can be executed in
the TFLite for Microcontrollers runtime environment or with the STM32Cube.AI inference
engine. ONNX only supports the latter. The analysis tool provides the user with information
about the memory and storage footprints, as well as MACC operations and a graph of memory
usage for different layers. The results of this analysis tool will be compared to the predictions
made in the NAS algorihtm.

4.6.2 Quantization as part of a NAS search space

From the works discussed in Section 3.1 has been observed that the contents of the NAS
search space are of influence on the level of the result and the time required to reach those
results. The results should be sufficient to answer the second sub question: “What are the
consequences of including the quantization of neural network parameters as part of a NAS
algorithm to the complexity of the search space?”.

To verify whether the addition of quantization within the NAS algorithm does not result in
worse results, a comparative test will be performed on three cases:

• Floating-point networks that have been quantized to 8-bit integer when training was
finished. The bit width of 8 has been chosen since it is supported by the mainstream
methods to quantize in TFLite and PyTorch.

• Networks that have been trained quantization-aware with 8-bit integer parameters. This
provides a reference for QAT to the PTQ algorithm with a comparable level of quant-
ization.

• N-bit networks that have been quantized using QAT.

The accuracy, storage, and memory of these three implementations will be compared with
the goal to find out whether there are differences between the implementations.

4.6.3 NAS design of a CNN for tinyML

The third research question is about the performance of the NAS-generated neural networks:
“How are the accuracy and resource utilization of an image classification convolutional neural
network that has been implemented in a microcontroller using NAS?”. Three experiments,
each containing four runs, will be performed. One for each of the datasets mentioned in Section
4.1. Because the NAS is multi-objective and therefore has the constraints for memory and
storage, these experiments will provide the balance between the achievable accuracy and the
resource constraints.

4.6.4 Sub-byte SIMD prediction

The final subquestion is targeted towards finding the difference in inference time between
conventional (8-bit) quantization strategies and sub-byte quantization. This question will
be answered with both literature and a MCU simulation script, given that no mainstream
hardware that supports sub-byte data on an ISA-level. The ARM CMSIS-NN library will be

Exploring Network Architecture Search for TinyML 33



4.6. EXPERIMENTAL SETUP CHAPTER 4. METHOD

used as a basis, though extended with SIMD support for not only 2 8-bit MACCS, but also
4 4-bit and 8 2-bit MACCS. Similar for load/store operations.
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Chapter 5

Results

In this work, four experiments have been set up to answer the sub research questions stated in
Section 1.1. The experiments have been introduced in Chapter 4. In this chapter, the results
for each of these experiments will be presented, accompanied with a discussion to analyse the
outcomes. This chapter presents the results to the experiments introduced in Chapter 4 with
in sections with the following sturcture:

• Section 5.1: “With what precision can the run-time memory and storage requirements
for neural network inference be calculated during the execution of NAS?”

• Section 5.2: “What are the consequences of including the quantization of neural network
parameters as part of a NAS algorithm to the complexity of the search space?”

• Section 5.3: “How are the accuracy and resource utilization of an image classifica-
tion convolutional neural network that has been implemented in a microcontroller using
NAS?”

• Section 5.4: “How does a sub-byte quantized neural network compare to more conven-
tionally quantized network inference in terms of operations and inference time?”

5.1 Memory and storage analysis

The memory and storage requirements as predicted by the NAS algorithm are computed with
the runtime algorithm of TensorFlow Lite for Microcontrollers (TFLM) as example. The
exact overhead of this runtime is unknown and partially depends on the dimensions of the
neural network. Additionally, the STM32Cube.AI inference engine is used for comparison with
networks exported to the ONNX format. This runtime is optimized for STMicroelectronics
devices and implements a different method of executing the inference.

From Figure 5.1, this overhead is visible as the difference between the non-optimized PyTorch
(dark blue) and TFLite micro (light blue) bars. It appears as that the overhead introduced
by the TFLite micro runtime engine is in the order of 1 kB, something that is confirmed by
Table 5.1. The difference between the non-optimized PyTorch prediction and TFLite micro is
2.9 kB for the memory and 2.3 kB for the storage for inference of the model targeted towards
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MNIST. The figures for the CIFAR-10 network are similar; 2.6 kB and 2.3 kB for the memory
and storage respectively.

Figure 5.1: Memory and storage predictions from the NAS algorithm (blue), plotted with
the STM32Cube.AI analysis results (grey, yellow) and overhead-optimized predictions (light
blue, orange)

Table 5.1: Different implementations for memory and storage prediction for a LeNet-5 image
classifier network on the MNIST and CIFAR-10 datasets.

Format Runtime
MNIST CIFAR-10

Memory (kB) Storage (kB) Memory (kB) Storage (kB)

PyTorch
not optimized 16.6 173.5 30.4 242.2
optimized ONNX 12.5 192.0 26.3 260.7
optimized TFLite 19.3 175.8 33.2 244.5

ONNX STM32Cube.AI 10.4 191.7 28.4 261.1

TFLite TFLite micro 19.5 175.8 33.0 244.5

For the STM32Cube.AI inference engine, the results deviate more from the non-optimized
PyTorch prediction. The memory usage tends to be lower than the prediction by observing
the results in Figure 5.1. With 6.2 kB, this difference is about three times larger for MNIST
than for CIFAR-10 with 2.0 kB. Whether this difference between the datasets has anything
to do with the three colour channels in the CIFAR-10 dataset, as opposed to one with
MNIST, is something that is definitely interesting to look in to. The storage overhead of
the STM32Cube.AI runtime is for both the MNIST and the CIFAR-10 networks about 18
kB.

With the runtime overheads found from these experiments, a more accurate prediction can be
made for the memory utilisation and storage requirements for a TFLite runtime. These predic-
tions are plotted in Figure 5.1 in grey for TFLite and orange for ONNX and STM32Cube.AI.
With this optimization, TFLite runtime memory utilisation can be predicted with 0.2 kB
deviation. The storage requirements have no notable deviation from the TFLite runtime on
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both datasets.

The prediction accuracy for the STM32Cube.AI runtime is less accurate, with clear differ-
ences between the optimized prediction in orange and the yellow STM32Cube.AI generated
numbers. The inference engine of STMicroelectronics uses a scheduling of the network that
differs too much from the TFLite implementation that has been used to predict the PyTorch
generated numbers.

5.2 Quantization as part of a NAS search space

To compare the different quantization algorithms, the following three experiments have been
performed:

• Floating-point networks that have been quantized to 8-bit integer when training was
finished. The bit width of 8 has been chosen since it is supported by the mainstream
methods to quantize in TFLite and PyTorch.

• Networks that have been trained quantization-aware with 8-bit integer parameters. This
provides a reference for QAT to the PTQ algorithm with a comparable level of quant-
ization.

• N-bit networks that have been quantized using QAT.

In general, three trends for the three quantization methods in this experiment are emerging
in Figure 5.2. First of all, the memory requirements are very stable. Most of the datapoints
in Figure 5.2a are positioned on the same position in the x axis, though with improving
accuracy for networks form different generations. Overall, most of the quantization-aware
trained networks result in a lower memory usage than the post-training quantized networks.
With exception of the two outliers at 4 kB, it is appears that the 8-bit QAT networks are
significantly more memory-efficient with a 22% reduction, while only sacrificing 0.2% accuracy.

The PTQ-generated model scores the highest accuracy, although it achieves this by just 0.1%
and requires both more memory and storage to achieve this. It is reasonable to assume that
this result is a luck of the draw, with the other searches missing out on this specific network
architecture. In terms of storage, the plot in Figure 5.2b shows several datapoints for the
quantization-aware trained networks in the top-left corner, indicating high accuracy and low
network size. The accuracy/footprint trade-off of the sub-byte quantized network (grey) is
promising, scoring on par with the 8-bit QAT network (blue) at lower memory and on average
about equal storage requirements.

Finally, the plot in Figure 5.2c confirms the memory efficiency of the sub-byte quantized
network. Most of the datapoints in the lower-left area of the plot belong to this network,
indicating a low memory usage combined with low model footprint. Overall, the networks
with the different quantization levels and techniques show differences in spacial efficiency and
performance, though where one implementation is scoring better, others are more efficient in
resource utilisation.
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(a) (b)

(c)

Figure 5.2: Memory and storage requirements for post-training quantization (orange),
quantization- aware training (blue), and sub-byte QAT (grey). In (a), the accuracy/memory
trade-off on a MNIST classification is plotted. The same is plotted in (b), though with storage
over accuracy. The last plot, (c), visualizes the connection between memory usage and model
footprint for each of the quantization techniques.

5.3 NAS algorithm for tinyML

The third sub research question is about the capabilities of the NAS algorithm with respect
to the accuracy and resource utilisation in the context of a CNN suited for microcontroller
deployment. Three experiments have been performed, evaluating the NAS performance for
the three dataset introduced in Section 4.1. For each of these experiments, a search has
been performed with a duration of 10 generations with 5 newly created architectures per
generation. In combination with a start population of 10 networks, this brings the total
number of explored networks to 60. As a measure to reduce the execution time of the NAS
algorithm, these searches have been performed with a reduced training dataset and a limited
number of 5 epochs. The MNIST-derived datasets were evaluated with 10000 out of the
60000 training images, the CIFAR-10 dataset with 25000 out of the 50000, to accommodate
the added complexity of this dataset. Note that because of this smaller training set, the
results presented in this section might show a lower performance than other works. A better
benchmark is provided in Section 5.3.3.

38 Exploring Network Architecture Search for TinyML



CHAPTER 5. RESULTS 5.3. NAS ALGORITHM FOR TINYML

Each of the experiments covers four independent runs of the NAS algorithm, as a verification
of the repeatability of the search algorithm. The data presented for every experiment is
indicated by the name of the target dataset followed by an index indicating which run of the
experiment is represented.

5.3.1 Accuracy and network size

The relation between the accuracy and storage requirements, or network size, is of interest
because it can provide insights in the efficiency of a neural network. The point clouds in
Figure 5.3 plot the accuracies against the storage requirements of all networks in the search
experiments. In this case, the efficiency of the network architectures depends on the accuracy
storage trade-off. Higher performing networks with a smaller footprint are desired, to minim-
ize the resource utilisation of the MCU without sacrificing the accuracy of a network. From
this figure, the effects of tournament selection and the formation of a pareto-optimal region
can be deduced.

The trade-off between accuracy and the memory requirements of networks generated in this
work is less insightful and therefore not discussed in this section.

The effect of tournament selection can be identified by distribution of architectures towards
the top-left region of the plot areas, indicating that architectures that have a promising
accuracy performance trade-off are frequently selected for mutations. The worse performing
architectures are rarely used as a basis for mutations, resulting in a low density of networks
outside of the pareto-optimal region. This region is situated at the datapoints where, in this
specific case, the highest possible accuracy is achieved for a given storage requirement. In
other words, there is no network with a better accuracy for the model size of a pareto-optimal
network. For the MNIST and FashionMNIST networks in Figures 5.3a and 5.3b respectively,
there are well-defined pareto regions visible by the lines that cover the full range of the storage
axis. The positioning of the optimal regions for the different runs tend to differ, this is further
discussed in Section 5.3.2.

Figure 5.3c illustrates a problem with the experiments, since the pareto front is in most
runs defined for networks with a footprint up to 50 kB despite the abundance of network
datapoints with larger footprints. This could indicate that those networks are too large to
properly train within the search, as the many parameters take more iterations of the training
data before being tuned. Architectures with less parameters are trained more quickly than
the large networks, making them survive the tournament selection process.

5.3.2 Improvement per generation

The improvement in network performance from one generation to the next can indicate when
the highest scoring architectures are created during the search, and give insights in the de-
velopments of the network size and memory consumption. These developments have been
plotted in Figures 5.4, 5.5, and 5.6 for the MNIST, FashionMNIST, and CIFAR-10 datasets
respectively. Additionally, the memory and storage developments have been plotted, provid-
ing a basis to investigate the relation between those parameters and the accuracy during the
search. For every generation, the architectures with the highest accuracy have been plotted
and generation 0 indicates the initial population of randomly generated networks.
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(a) MNIST

(b) FashionMNIST

(c) CIFAR-10

Figure 5.3: Accuracy-storage trade-off for the networks targeted towards the three datasets.
The pareto fronts for the different runs have also been included.
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In Figure 5.4, one can see that MNIST 1 achieves a high accuracy at the start and then not
really improves much until later in the search. The other experiments are closer together and
show a growth of about 1% over the generations, with the used storage remaining relatively
constant until generation 9. MNIST 1 shows an earlier ans more steady growth, indicating
that at some point, larger network architectures could start to outperform the smaller ones.
Memory usage is relatively constant for measurements 1 and 3, with MNIST 2 and MNIST 4
fluctuating. Overall, the memory seems to be hardly influenced by the generation in which
the network is generated.

Figure 5.5a presents the generational improvements for the accuracy and storage of networks
for the FashionMNIST dataset. FashionMNIST 1 and FashionMNIST 4 score relatively good
within the first two generations and stay at a relatively constant level. At the end of the search
they improve in accuracy, especially in the fourth run of the experiment. That improvement
at the end comes from an increase in network size, which has been relatively low for the entire
search for all networks, except FashionMNIST 2. This experiment starts with a low accuracy,
similar to FashionMNIST 3, but shows the best generational improvements. The model size
increases for almost every network on the FashionMNIST dataset around generation 6. The
memory usage is again relatively constant throughout the experiments, as is visible in Figure
5.5b.

The fourth experiment on the CIFAR-10 dataset shows on average a higher model size than
the others, as can be observed in Figure 5.6. Others show the trend of the MNIST-derived
datasets, where the larger networks are created further in the search. The accuracy of ex-
periments 2 and 3 show a similar increasing trend with every generation. CIFAR10 1 never
manages to create a network better than the randomly generated start network, while the
fourth experiment has a low increase of accuracy over the generations. This could indicate
that, although the architectures are larger than other searches, larger networks need more
training data to achieve similar performance to smaller networks.

Figure 5.4: Generational behaviour of accuracy, memory and storage for the MNIST dataset
models. Measured for the best network at the end of each generation.

Based on the same data as Figures 5.4, 5.5, and 5.6, the mean and standard deviation have
been calculated for the different experiments. The four runs in each experiment do not yield
the same results, which can be contributed to the size of the search space in comparison to the
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Figure 5.5: Generational behaviour of accuracy, memory and storage for the FashionMNIST
dataset models. Measured for the best network at the end of each generation.

Figure 5.6: Generational behaviour of accuracy, memory and storage for the CIFAR-10 data-
set models. Measured from the best network at the end of each generation.

number of networks evaluated. Figure 5.8 presents the mean and standard deviation for the
accuracy in (a), memory in (b) and storage in plot (c) derived from the four runs in Figure
5.4. In an analogue manner, Figures 5.5 and 5.6 plot the same data, though for the MNIST
and CIFAR-10 datasets respectively.

At the start of every search, just the initial population has been evaluated. As these are
a few possibilities in a large space, the deviation between the networks is expected to be
relatively large compared to later in the search. Through the generations, the different runs
are expected to converge, since the tournament selection algorithm should direct the search
towards better performing architectures. This phenomena occurs for all datasets in some
shape or form, but is most prominent in Figure 5.5a. Until generation 9, the different runs
seem to converge, but then diverge a bit as evident by the larger deviation in the last two
generations. The CIFAR-10 experiment shows the least convergence between the different
runs as indicated by the constant deviation from the mean in Figure 5.6a.
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Over all three datasets, the memory seems the most constant parameter over the generations.
Although the mean in Figure 5.4b varies between about 6 and 8 kB, the deviation is constantly
following the mean.

For the CIFAR-10 experiment, the mean storage is slowly increasing for every generation. The
deviation of the runs in Figure 5.6c differs greatly, indicating that none of the runs converges
in terms of storage. The other experiments show a better trend of networks increasing in size
for a short while near the start of the search and a large increase near the end, for instance
in Figure 5.4c for the MNIST dataset.

Figure 5.7: Mean and standard deviation for accuracy (a), memory (b), and storage (c) of
the runs performed for the experiment on the MNIST dataset

Figure 5.8: Mean and standard deviation for accuracy (a), memory (b), and storage (c) of
the runs performed for the experiment on the FashionMNIST dataset

5.3.3 Full training dataset

The results provided so far were not performing very well in terms of accuracy, as the archi-
tectures have been trained on a reduced dataset in order to save time during the search. To
provide a benchmark to other works, the best network of the runs in the experiments have
been trained for an additional 5 epochs, now at the full set of train images. The results can be
observed in Figure 5.10 and seem to provide around 3.5% improvement for FashionMNIST,
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Figure 5.9: Mean and standard deviation for accuracy (a), memory (b), and storage (c) of
the runs performed for the experiment on the CIFAR-10 dataset

a very low 0.5% for MNIST. The improvement fluctuates between runs, but never with more
than a percent. The CIFAR-10 dataset shows a large improvement compared to the others,
with a maximum of 18%.

Figure 5.10: Improvements in accuracy for the best network of each NAS run when trained
on the full dataset

5.4 Inference

With the inference runtime simulation algorithm described in Section 4.6.4, an estimation
is given for the effects of sub-byte quantized data and higher parallelism implementation of
SIMD instructions. The required processor cycles are predicted based on the ARM CMSIS-
NN library, with the assumption that he library also supports sub-byte datatypes. The results
of the experiments with four different datatypes are provided in Table 5.2. Because of the
higher level of SIMD parallelism, the number of cycles requires is significantly lower for every
smaller datatype, Figure 5.11 shows a scale of the improvements in clock cycles.

When quantizing a neural network from 32-bit floating point to 8-bit fixed point integers,
memory and storage footprints will be about a factor 4 lower. It is not exactly 4 because
of the overhead that the runtime engine requires, as has been discussed in Section 5.1. This
scaling can be observed in Figure 5.11 and is about a factor 3 for storage with memory just
shy of a factor 3. This shows a linear relation between the number of bits used to represent a
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Table 5.2: Memory, storage, complexity and required processor cycles to compute a LeNet
network with floating point and several fixed-point datatypes.

Datatype float32 int8 int4 int2

Memory (kB) 20.50 7.38 5.19 4.09

Storage (kB) 184.81 61.20 40.60 30.30

Complexity (MACC) 281876 281876 281876 281876

Cycles 3905088 1161810 704297 475991

parameter and the factor with which the memory or storage requirements are reduced. From
the same figure it is possible to spot that the reduction in cycles required to compute the
inference is then not linear, rather exponential.

Figure 5.11: Reduction in memory, storage and processor cycles as a result of quantizing
float32 to fixed point integers of 2, 4, and 8 bits.

5.5 Discussion

To conclude the presentation of the results for this work, an overall discussion will be provided
in this section.

Starting with the first research question, Table 5.1 provided the insight that the computed
estimations for the memory and storage requirements of a LeNet network come close to
the computations made by the STM32Cube.AI network analyzer, but that the memory and
storage required for the runtime program is missing. This is no surprise, though it is difficult to
determine how large this overhead is exactly. With an analysis of the differences, an optimized
estimation can be made for the runtimes, resulting an estimation that has a deviation between
0.6% and 1% for the memory and no error for storage depending on the network for the TFLite
for Microcontrollers runtime. For the STM32Cube.AI runtime, the results are more network
dependent. This averages a 8% to 16% error for memory, with the storage estimation accurate
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from 0.1% to 0.2%, indicating that this method does not work for all cases. For larger neural
networks this error could be mitigated by the size of the network, but smaller networks would
benefit from a more sophisticated analysis of the runtime overhead.

Figure 5.2 provided the reader with a multitude of comparisons between differently quantized
versions of a NAS run with the aim to investigate the differences between them. Especially of
interest is the difference between post-training quantization and quantization-aware training,
given that the latter would be able to be included in the search space of a NAS algorithm. An
8-bit QAT network proved to hand in a little accuracy (0.2%) for an average 22% decrease
in memory usage. Extending QAT to sub-bytes has no difference in these measurements
compared to the 8-bit quantized model. There is a deviation between these models, as they
are products of a NAS algorithm and therefore not all identical, although the plots in Figure
5.2 paint a clear difference between the different clusters of networks.

For the MNIST dataset used for the quantization experiment, the deviation between different
networks is relatively small compared to the other datasets, as proven by the third set of
experiments. All experiments show a weakly converging behaviour between the different
runs, but at some point a strong divergence enters. This is illustrated in plot (a) of Figures
5.7, 5.8, and 5.9. Interestingly, the more complex CIFAR-10 experiment indicates that the
search is not really progressing towards a region of well performing networks in the search
space. This is confirmed by the pareto-optimum regions in Figure 5.3c which only cover
a small part of the networks. The MNIST-based experiments performed better, with high
accuracies and a low storage footprint. The pareto fronts of those experiments differ from run
to run, but cover a large part of Figures 5.3a and 5.3b. Finally, an interesting observation is
that larger networks tend to perform better near the end of each search, though the accuracy
does not necessarily beat smaller networks.

Although the results of the individual experiments do not show promising accuracies because
of the subset of training data used for evaluation, the networks can make significant improve-
ments when trained on the full dataset after the search. As illustrated in Figure 5.10, an
increase of 18% accuracy can be achieved depending on the dataset. It must me mentioned,
though, that the higher the initial accuracy is, the lower the performance gained by this
training step.

For the final research question, an analysis of the performance gains by sub-byte SIMD
inference has been examined with a predictive calculation. Where the memory and storage
tend to decrease by a linear fashion, the clock cycles required to infer a neural network reduces
exponentially.
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Conclusion and recommendations

6.1 Conclusion

At the start of this report, neural architecture search and quantization have been presented as
tools that promise to make the inference of convolutional neural networks possible on tinyML
devices, such as microcontrollers. The goal of this work is to verify that this statement is
true, and evaluate the added benefit of including the quantization of network parameters to
sub-byte datatypes. The main research question as introduced in Section 1.1, that will be
answered in this conclusion is: “To what extent does weight quantization as a NAS constraint
have an impact on the accuracy/performance trade-off when performing the inference of a
TinyML network on a microcontroller?”

The answer to this main research question will be given in four sub research questions. These
will be answered in Sections 6.1.1 until 6.1.4.

6.1.1 Memory and storage requirements

The answer to the first of the questions, “With what precision can the run-time memory
and storage requirements for neural network inference be calculated during the execution of
NAS?”, is best given by an evaluation of the two different criteria. As defined in Section 2.4,
the volatile memory or SRAM memory is referred to as memory. For the non-volatile or flash
memory, the term storage is used.

The proposed method of predicting the storage requirements of a network architecture by
counting the number of parameters and multiplying it with the number of bits that each
parameter is stored in, holds with one exception. This exception comes from the required
storage for the inference runtime engine. By compensating for this runtime overhead, the
TFLM engine storage requirement can in both cases in Section 5.1 be predicted with a preci-
sion of 0.1 kB. For the STM32Cube.AI runtime, the storage overhead scales with the size of
the model and is therefore more difficult to predict exactly.

A similar conclusion can be drawn for the peak memory utilisation. Although, it must be
taken into account that the memory utilisation is more dependent on how data is scheduled
by the inference engine. The scheduling of TFLM, which loads each layer in one go in memory
to compute the output, is used as a basis for the prediction algorithm. Unsurprisingly, this
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results in another close prediction when the runtime overhead is compensated for. For both
the networks in Figure 5.1, the peak memory utilisation can be predicted with 0.2 kB error,
resulting in a prediction error of less than 1%. Although the data scheduling used for the
STM32Cube.AI runtime is on a per-layer basis just like TFLM, the prediction is less accurate
as the memory usage scales with the size of the input data.

On a microcontroller with 128 kB memory and 512 kB storage, these predictions should be
sufficiently accurate, though caution should be taken when the peak memory utilisation is
close to the 128 kB boundary.

6.1.2 Quantization as part of NAS

Embedding the quantization within a NAS algorithm expands the contents of the search space,
To find out whether that has any effect on the resulting networks, the second sub question
is “What are the consequences of including the quantization of neural network parameters as
part of a NAS algorithm to the complexity of the search space?” The answer to this question
is given with a literature discussion, supported by a small experiment.

The different quantization schemes introduced in Section 2.3 are dynamic quantization, static
post-training quantization, and static quantization-aware training. Dynamic quantization is
not preferred for MCU inference because of its high computational overhead, even though the
loss of accuracy because of quantization losses is the lowest with this method. That leaves
both static quantization methods as options for this work.

Post-training quantization is a possible extension to the search space when a supernetwork is
trained according to the one shot performance estimation strategy. The supernetwork search
space has not been selected, in favour of a chain-structured search space. With this search
space and the low-fidelity performance estimation, newly generated networks require to be
trained. That makes it impossible to include a PTQ scheme into the NAS algorithm of this
work. Quantization-aware training can be exploited within this architecture search, since it
allows for the model to be trained after the evaluation. From the works in Section 3.2, QAT
additionally appears to yield lower quantization losses for sub-byte integer datatypes.

The experiment results in Figure 5.2 confirm the findings from the literature. The sub-byte
integer quantized network scores 0.1% lower on accuracy than the 8-bit quantized networks,
but yields the lowest memory and storage requirements as a result. Between the 8-bit QAT
and PTQ networks, the difference seems to be more on an architectural level than being
caused by the quantization schemes. The PTQ network is from a different architecture search
run than the QAT network. It is difficult to draw a proper conclusion from this, as more data
is required for a proper comparison.

6.1.3 Usage of NAS for tinyML

“How are the accuracy and resource utilization of an image classification convolutional neural
network that has been implemented in a microcontroller using NAS?” That is the question
that will be answered in this section, with the results of the three experiments in Section 5.3.

Considering these results standalone, the NAS algorithm discovers networks with increasingly
better accuracy over the generations for all of the tested datasets. Between different runs,
there is a lot of deviation between the results initially, but the different runs tend to converge
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over time. This is as expected, since the different runs have different start points and work
towards achieving the best possible performance. At some point, an increase in storage
requirement seems occur at the point where the accuracies of different runs start to diverge
again. There seems to be a point where large networks start to perform well, though the exact
position of this point and the eventual gains from the larger networks is unknown. Within
the resource limits of the specific microcontroller used in this work, the STM32F446RE, it is
possible to deploy a convolutional neural network performing at the level of other work.

Compared to NAS-generated networks from the other works in Section 3.3, it can be con-
cluded that the achieved accuracy on the MNIST dataset is in line with or exceeding other
NAS algorithms targeting microcontroller devices. For the CIFAR-10 and Fashion-MNIST
networks, no comparable data can be found in the other works discussed in Section 3.3. For
the more complex CIFAR-10 dataset, the NAS architecture in this work starts to meet its
limits, with an accuracy of about 60%. Despite that, the network is more of a challenge to run
on MCUs in general, with [37] performing an experiment on a binary version of CIFAR-10.
They achieved a significantly higher accuracy of 86.39%, though it is unknown is how this
would compare to regular CIFAR-10.

6.1.4 Sub-byte quantization performance

“How does a sub-byte quantized neural network compare to more conventionally quantized
network inference in terms of operations and inference time?”

Although quantizing to datatypes smaller than the trivial 8-bits can cut the model size and
peak memory usage in half or even lower, the lack of hardware support limits the performance
gains. Since there is no support for these datatypes in common microcontroller instruction
sets, data will have to be unpacked to single bytes, which introduces an overhead that has a
significant impact on throughput.

Assuming that a STM32-based MCU would support sub-byte datatypes, the results look
promising. The number of MACC operations between conventionally (8-bit) quantized net-
works and sub-byte quantzied networks should be the same, because they share the same
network architecture. The reductions in storage and memory requirements are similar to
software sub-byte execution, but the number of clock cycles required to compute the infer-
ence decreases exponentially. As a result, a 2-bit quantized network would require about half
of the processor cycles that a 8-bit quantized network would with a quarter of the memory
and storage footprint. The limiting factor here is the low speed of the Flash storage, which
takes in the STM32F446RE 6 times as long as a single MACC operation. When the hardware
will support it, aggressive quantization for microcontrollers could increase the speed at which
CNNs are computed, consuming less power while doing so.

6.2 Recommendations

6.2.1 Microcontroller instruction sets

Like most processors, the instruction set architecture (ISA) of most microcontrollers is 32-bit.
Usually, there is support for smaller datatypes, like 16 bits (halfwords) and bytes, but not
smaller than that. Boolean values are for example are packed in a whole byte.
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There are many instructions that accelerate digital signal processing (DSP) algorithms on
board of modern microcontrollers. As neural networks are black-box filters on the input data,
DSP instructions are applicable to network inference as well. Current ISA libraries for neural
network inference, such as CMSIS-NN [27], use an optimization to calculate convolution with
the im2col and GEMM algorithms.

A future research direction is to evaluate the performance benefits of microcontroller ISA
targeted towards sub-byte quantized neural network inference. Work has been done on the
creation of a mixed-precision version of the CMSIS-NN libraries [38].

The evaluation of neural network inference on a instruction set that supports SIMD instruc-
tions for sub-byte datatypes can open up some performance as the parallelism of computations
could theoretically be doubled or even quadrupled. In this case, it would be interesting to see
the performance improvements brought by the fact that data can be loaded and stored in a
higher level of parallelism as well.

6.2.2 NAS performance

As mentioned in Section 6.1.3, the performance of the CIFAR-10 network generated by the
NAS algorithm can be better. Besides that, the experiments in this work have been targeting
networks with a low input resolution, which leads to memory and storage requirements that
are too low to fully utilise the capabilities of higher-end microcontrollers.

A step beyond classification on CIFAR-10 would be to target more complex datasets with
higher resolution inputs and more output categories, such as ImageNet. Neural networks
computing classification algorithms on the ImageNet dataset have been transferred to tinyML
platforms in [2] with post-training quantization to 8 bits. Since there are not many other works
that have achieved this, it would be interesting to see whether more aggressive quantization
within the NAS algorithm, as implemented in this work, does have an impact.

6.2.3 Pruning

Quantization of the network parameters is not the only method to reduce the resource util-
isation of neural networks. The removal of nodes that have weights that are close to 0, a
process which is called pruning, is another option. Pruning has even been implemented for
some of the works in Section 3.3, such as [35, 37]. For the target MCU and datasets used in
the experiments of this work, the usefulness of pruning is difficult to quantify, because the
resource utilisation did not reach critical levels. It would interesting to see whether the effect
of pruning is more noticeable on larger datasets, perhaps in combination with the previous
recommendation given.

6.2.4 Memory management

As indicated by MCUNetV2 [42], the memory distribution of neural network inference is very
imbalanced, with a high peak usage in the first layers and a lower usage in later networks. A
better memory distribution over the inference process would not only make more efficient use
of the resources of the target device, it could also allow for layers or inputs that are larger
than the memory allows to be processed. This direction for future work does have more to
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do with the inference runtime environment than with the NAS algorithm itself, although the
method in which the memory usage is calculated would have to be revisited.
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