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ABSTRACT,
Throughout the different Formula One seasons, it is seen that younger, less experienced, drivers lack pace
and performance compared to their peers. Training these drivers requires time, which, due to the
regulations, teams do not have. A leading misconception that affects the level of confidence and learning
abilities of the driver, is that the less experienced drivers are expected to perform at the same level as
experienced drivers.

This thesis has the aim of analyzing the abilities and performances of both drivers within a
Formula One team to redesign and redefine the driver training method. The focus of change and
improvement is to provide drivers real-time insights and feedback on their performance during a
simulator training session based on the data harvested from both drivers. By using a combination of the
fundamental principles of process mining and statistical analysis, data markers are created on the track.
Accordingly, an advice marker is created with which the real-time telemetry data is compared. Based on
the differences in telemetry, visual feedback is provided to the driver. Throughout the research, this
method of training has proven to be promising, drivers showed a significant increase in their overall
performance and simultaneously showed an increase in car control and confidence. Nonetheless, due to
the limitations, a statistical backbone is missing and more testing needs to be done to guarantee a
consistent outcome. For the performance assessment, a methodology process is developed to generalize
this training method among other teams and drivers.
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Chapter 1: Introduction
Motorsports has been a large part of the entertainment industry over the last century. While there is no
clear beginning of when automotive racing started, in the early 1890s the first combustion-engined cars
raced over a distance of 126 kilometers from Paris to the city of Rouen. This event is considered the birth
of automotive motor sports. In this day and age, 126 years later, this same industry has grown into a
multibillion-dollar industry. The pinnacles of the current motorized sports industry are, in the European
region, Formula One, and, in the American region, NASCAR. In addition to their contribution to the
entertainment industry, Formula One and NASCAR have made many contributions to research,
development, and innovation.

Formula 1 is an industry that heavily relies on data and data predictions. The more reliable these data
predictions are, the better the strategies become. Hence, it is safe to state that data forms the underlying
basis of each aspect within the championships. However, while reliable data is an important factor, it is
not the only crucial factor that plays a role within the different teams. Looking into the teams internally,
one can define multiple roles among the team members that all try to contribute to the performance of one
specific team member, the driver. In the current 2021 season of the Formula One Championship, there are
a total of ten teams, with every two drivers, making a total of 20 (“twenty”) drivers. While many teams
perform equally well with both drivers, there has been, more than once, some friction between two
different drivers within the same team in previous seasons of the championship. In the 2019 season, the
formula one team Red Bull Racing swapped their secondary driver, Pierre Gasly, mid-season due to
under-average performance compared to the first driver, Max Verstappen, in favor of Formula Two driver
Alexander Albon. While swapping drivers mid-season is very uncommon, due to the signed annual
contracts, it made a statement about driver performance and abilities being considered more important
than the data predictions. Red Bull Racing is not the only team to struggle with equalizing the
performance of both drivers. As each driver has a different career path and hence a unique way of driving,
it is hard to match another driver’s abilities to enhance the team performance. Training a driver based on
the performance of the other driver, might equalize the differences within a team and help the team
forward.

Within this thesis, the focus will be on improving and enhancing the skills of both drivers within a single
team. Considering this goal of the thesis, it is important to research the state-of-the-art. By studying the
state of the art, an overview of what already exists can be constructed. Building upon this state-of-the-art,
opportunities will show with regards to what can be done to improve this aspect of the drivers’
performance. Due to confidentiality, it is not possible to get insights into the exact training of the different
drivers. Hence, it is assumed that both drivers are trained individually, based on their skills and abilities.
Looking into the science concerning games built upon the principles of player ranking, we find many
pieces of research that cover the training of players. In a user study performed by Bugeja, Spina, &
Buhagiar (2017), the effect of using simulators for training novice drivers was tested using specified test
groups. Before the study began, the general notice was made that the skills required to become a good
motorsports driver are generally learned through practice. The telemetry-based feedback system (TeAR)
was developed to provide direct insights in auditory suggestions to drivers underlining the driver’s
mistakes they are currently making. This user study revealed that real-time data for improving the
performance of drivers during a simulator race is directly effective within a short period without
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repetition. In another study regarding the training of the military and the principles of learning, Gagne
(1962) extensively discussed the different ways specialized domain experts can be trained to be improved.
This study took into account all details required to be considered when wanting to train people. While
these principles are built upon the current training and improvements of soldiers in the military, the
principles cover a broad range of target groups and hence can be applied to other domains. Within the
next chapter about the background research, this state-of-the-art is more extensively discussed.

By usage of data mining principles on the performances and processes of two drivers within this same
team, statistical techniques will be implemented to predict the performance, visualize the differences
between the drivers, with regards to track position and performance of processes, and, finally, guide each
driver in real-time towards a better understanding of the actions required. Due to the limited amount of
public research on the performances of drivers within motorsports, additional research can help to
improve the industry. When trying to identify the gaps using events in the past, it is possible to sketch a
point of improvement with regards to this current situation. Referring back to the example given earlier in
the introduction; the example of Alexander Albon replacing Pierre Gasly during the 2019’s championship
was stated. While Albon had raced at Scuderia Toro Rosso throughout the first half of 2019 and hence had
experience driving in Formula One, driving alongside Max Verstappen with the high standards of the Red
Bull Racing team pressurizes the new driver to perform at best. Being aware of the driver style of Max
Verstappen to use as a reference for training and guidance purposes, can be beneficial in this situation.

1.1 Problem Statement
When adjusting the training of drivers, many aspects of the driver’s past and presence need to be taken
into consideration. As each driver has his unique way of driving, limiting this driving style to the
performance of the other driver might dispatch the abilities of the driver. Hence it is important to not want
to change the driver, but rather improve the driver on his abilities using guidelines set up by actual,
representative, data.

The research problem is, therefore, defined as the lack of pace and performance between drivers.
This lack of performance can be caused by either a lack of confidence or lack of knowledge on the
abilities of the car or themselves, irrespective of their previous experiences and training.

1.2 Research Questions
Based on the research problem, the following research question has been formulated:

● How can we enhance the overall driver performance within a team by use of the fundamental
principles of Process mining and Statistical analysis?

○ SUB 1: To what extent is it possible to recreate an artificial trackline built upon the basis
of the highest performances throughout the track?

○ SUB 2: How can this artificial trackline be translated into terms of required telemetry
changes to guide towards this trackline?

○ SUB 3: How can these telemetry changes be communicated to the driver in the most
effective manner?
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1.3 Research Approach & Thesis Structure
The approach used for this research is by applying CRISP-DM (Cross Industry Standard Process for Data
Mining) This approach is used to answer the research questions as denoted in section 1.2. CRISP-DM is a
generic model that is defined by six steps for development within the field of data mining. This cycle of
steps is depicted in Figure 1.a. Nonetheless, a deviation has been made from the actual CRISP-DM cycle.
This project does not meet the requirements to have a section for deployment. Hence, this phase in the
cycle is ignored.

Fig. 1.a: The CRISP-DM Development Cycle (Jensen, 2012) Fig 1.b: The Implementation of CRISP-DM in the context of
this thesis

Business understanding
Within this thesis, chapter one and chapter two are devoted to laying out the backbone of the research
project. Together these two chapters form the business understanding phase of the project. Additionally,
chapter four classifies these business understandings in terms of a division of tasks. Moreover, this
chapter denotes the requirements for a minimum valuable product (MVP).

Data Understanding & Preparation
The Data understanding phase, altogether with the data preparation phase, is discussed in the
methodology section, chapter three. Within this chapter, an analysis is done on how to interpret the data
and how to form the data in a way that it is valuable for the later stages of the development process.
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Modeling
Continuing within the cycle, the modeling phase is the part wherein data is translated into feedback. This
translation and its core principles are denoted and discussed to an extent in chapter five. Within this
section, the realization of the feedback is discussed as well.

Evaluation
The last phase applied within this thesis is the evaluation. Chapter six and chapter seven are devoted to
the analysis and evaluation of the project along with an evaluation of the corresponding results and
outcomes. After a conclusion is drawn and the final remarks for the continuation of the development are
mentioned.

To go in more in-depth on the outline of this thesis: First I will explore the state-of-the-art where I discuss
background information, similar research, and previous studies regarding the training of motorsports
drivers. Within this section, I will also elaborate on the inclusion and exclusion requirements. Then, to
prepare the experiments required for answering the main research question, I will go over the
methodology used to obtain, manage and process reliable data. Afterward, I will touch upon the
realization phase wherein I define the multiple ways of gathering, analyzing, visualizing, and
communicating data towards the target group, the drivers of motorsports. Subsequently, in the analysis
section, I will define the main experiment, analyze the collected data, and briefly evaluate the outcomes of
the experiments. Lastly, we continue the discussion and the limitations, wherein an attempt is done to
answer the sub-questions as defined in section 1.2. Lastly, I will discuss the conclusion and future work,
wherein I explain the possibilities with the application created, conclude the research and answer the main
research questions of this research.

To visualize this process and its corresponding phases, according to the CRISP-DM development cycle
and the requirements of the project, a diagram is made to represent the project plan. This visualization is
shown in figure 2.

Fig. 2: The flow of operations concerning project plan
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Chapter 2: Background Research
This section elaborates on intended methods to find background research correlated to the topic. Firstly,
the approach on how to gather articles and information is discussed with regards to the scope of the
project, and the direction of the research. Within this section, the corresponding inclusion and exclusion
criteria are stated. Secondly, the approach on how articles have been narrowed down to ensure a high
quality of information related to the corresponding topics discussed in the literature review. Thirdly, an
overview of existing environments for training motorsports is provided altogether with a section
describing the use of simulators when training professionals. Within the fourth section, the process mining
principles with their corresponding challenges will be discussed. Within this section, the potential
algorithms relevant for this thesis are discussed as well. The fifth section highlights the inclusion of
virtual systems as feedback systems and addresses and elaborates on the potential feedback systems.
Lastly, a section on gaps within the field of research is provided as a base for the ideation phase.

2.1 Approach
The approach used for this section of the thesis is the approach recommended by a study on systematic
literature reviews conducted by Wienen, Bukhsh, Vriezekol, and Wieringa (2017). Hence, within the
context of this exploration phase, it is important to set the scope as wide as possible. For this research, this
means covering domains deep inside and far outside of the field of motorsports. The internal domain used
in this chapter covers topics as varied as Formula One, with its corresponding training teams, Porsche
Supercup, NASCAR, and other related sports. The external domain used in this chapter covers topics as
varied as Education, Psychology, and Innovation & Development.

The approach, as proposed by Wienen et al. (2017), for answering the research question and subquestions
is as follows:

1) Start by defining the inclusion and exclusion criteria,
2) Define the query to interrogate the different databases at disposal,
3) Select the relevant databases and start querying,
4) Select the articles pertaining to the research topic.2.1.1 Inclusion and Exclusion Criteria

2.1.1.1 Database I/E Criteria

Include/Exclude condition

Include Only databases pertinent to our research

Include Databases that have either articles or numerical and
factual data

Include Databases related to other sports wherein overall team
performance is portrayed against the influence of
team players

Include Databases in any language
Table 1: Database I/E criteria
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The University of Twente has access to 108 databases.

2.1.1.2 Article I/E Criteria

Include/Exclude condition

Include Articles on different aspects of learning.

Include Articles written in Dutch

Include Articles written in English

Include Articles provided by motorsports team

Include Articles on “Training by the usage of simulations”

Include Non-Scientific articles on specifications of data

Include Articles on Aviation Simulation Training

Exclude Non-Scientific articles on facts designed with the
purpose of entertainment

Exclude Non-Scientific articles on comparisons between
formula one teams and/or drivers

Table 2: Article I/E Criteria

2.1.1.3 Source I/E Criteria

Include/Exclude condition

Include Interviews with motorsports domain professionals

Include Interviews with virtual reality domain professionals

Include Interviews with simulation-based training domain
professionals

Table 3: Source I/E Criteria

2.1.2 Source selection
After the first selection round, based on the search terms included in Appendix 1, a set of 1430 relevant
articles have been selected that match the inclusion and exclusion criteria. Based on the abstract, the
introduction, and the conclusion of these papers, the list of total articles has been narrowed down to
approximately 175 relevant articles. These articles have been addressed in the following literature review
on Simulators, Process mining, and Feedback systems.
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2.3 Training by usage Simulators
Research and coaching on training behavior have drastically been improved by the introduction of motion
simulators (Espié, Gauriat, & Duraz, 2005). Motion simulation started with flight simulators with the
main purpose to visualize and conceptualize the outcomes of different situations during a flight (Slob,
2008). Over the years, flight simulators within the field of aviation have broadly been developed and
implemented to not only visualize the possible situations that may occur, but also to train potential pilots
on situational awareness, plane handling, to perform maneuvers, and to perform procedures with a level
of expertise (Socha et al., 2016). In a meta-analysis of flight simulation research conducted by Hays,
Jacobs, Prince, and Salas (1992), the findings showed that the use of the combination of simulators with
basic aircraft training, lead to an improvement in training performance compared to traditional training
using only aircraft training procedures. Translating these principles into the field of automotive
technologies and motorsports opens opportunities for advanced training methods.

Within this section, the advantages and disadvantages of using driving simulators within the
automotive industry and motorsports with the purpose of training are discussed, substantiated by relevant
literature. This section is followed up in chapter 3, wherein a suitable configuration of a driving simulator
for this thesis is discussed.

2.3.1 The grounds for using motion systems and driving simulators as training
techniques
The usage of simulators can be applied in various fields of training. According to de Winter, van
Leeuwen, and Happee (2012), driving simulators offer various advantages, compared to the
implementation of the training within the real environment. As de Winter et al. (2012) mentioned, the
first, and most important advantage of using simulators is the possibility of encountering dangerous
driving conditions without being physically at risk. This offers the learning driver to explore the positive
or negative consequences of actions without leaving the driver vulnerable to potential harms (Slob, 2008).
Secondly, controllability of conditions, the reproducibility of scenarios, and the standardization of ground
rules built upon tests for the next line of advantages for using driving and motion simulators. Combining
these parameters in a dynamic scenario provides opportunities for controlling potential real-life scenarios
that may happen during a race (Wassink et al. 2006). Adjusting the parameters of the virtual scenario can,
according to Wassink et al (2006), enhance the reaction of the learning driver by standardizing
procedures, aiming at minimizing the impact of the change within the environment. These changes can
differ per configuration. In research conducted by Slob (2008), the effects and differences in the various
configurations are discussed concerning their degree of freedom (DoF), the visual element, and the
feedback element. Within this background research, the conclusion defined a set of criteria that need to be
taken into consideration when building the simulator. Within chapter 3, these differences and effects of
each configuration are discussed. Thirdly, de Winter et al. (2012) described the accuracy and ease of data
collection as another advantage, contributing to the reliability of the provided feedback, offering better
opportunities for providing better feedback and instructions. Based on all the aforementioned advantages,
Slob (2008) mentioned one other advantage, describing the potential reduction of costs compared to the
alternative (real) training solution.

Nevertheless, within the context of training motorsports drivers, a set of disadvantages can be
identified. According to de Winter et al. (2012), low-fidelity simulators may invoke unrealistic
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environments and therefore yield unrealistic driving behavior, leading toward invalidating research
outcomes. Another disadvantage is that the simulator needs to be effectively built to accurately mimic the
expected behavior within scenarios and will hence require many hours of building, calibration, and testing
(Balcerzak, & Kostu, 1988).

In short, learning from the applications and impact of motion simulators within the field of aviation
training, it can be stated that converting these principles into the field of motorsports can positively affect
the training of motorsport drivers. When configured correctly, a high-fidelity driving simulator may
replicate and build upon the scenarios that the driver needs assistance in. Due to the accuracy required for
training to be effective, a low fidelity motion simulator will not have enough impact to change driver
behavior.

2.4 Process mining
An underlying basis for improvement and enhancement of skills is the analysis of data. Van der Aalst et
al. (2012) have defined process mining as the technique to extract knowledge from event logs commonly
available in information systems. Hence, when willing to improve on the skills based on a set of
procedural processes, process mining principles can be used to build on. In a different study, Van der
Aalst (2012) has introduced three types of leading process mining categories: discovery, conformance,
and enhancement, each with their corresponding field of application. Analyzing the processes from a log
can be done using the discovery techniques (Rozinat, Alves de Medeiros, Günther, Weijters, & van der
Aalst, 2007). This analysis results in a process model based on an event log. In addition to the discovery
technique, conformance techniques are used to validate the relevancy of the event log relative to the
real-world situation. Conformance is therefore used to cancel and/or remove misconceptions within the
process data set. The third and last technique introduced by Van der Aalst (2012), is the enhancement
technique. This technique is used as an addition to existing process models with the purpose to improve,
extend or clarify conceptual statements on data (Bogarín, Cerezo, & Romero, 2017).

2.4.1 Techniques

Fig. 3. Process models generated by different process mining algorithms based on the same log file
(Rozinat et al. 2007).
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Within the process mining categories introduced in the previous section, different algorithms can be
defined: The Alpha Miner, the Heuristic Miner, the Alpha++ Miner, the Duplicates Genetics Miner, and
the Genetic Miner. Each of these algorithms has its corresponding characteristics, (dis)advantages, and
purposes.

The Alpha-miner [a] (Van der Aalst, Weijters, and Maruster, 2004) and the Alpha++-miner [c]
(Wen, Wang, & Sun, 2006) are discovery techniques that are aimed at discovering and reconstructing
causal relationships from a set of events. As described in the study conducted by Wen et al. (2006), both
these models are built upon the notion of mining non-free-choice constructs, where the process models
are represented by Petri nets. Within this same study, Wen et al. (2006) have defined two causal
dependencies between tasks that are of importance: Explicit and Implicit causal dependencies. As implicit
dependencies are difficult to map, the focus within process mining lies on explicit causal relations. While
the Alpha-type algorithms are basic algorithms yielding proper and adequate results, according to Van der
Aalst et al. (2012), and Weerapong, Porouhan, and Premchaiswadi (2012), Alpha-type mining algorithms
are vulnerable to noise, incompleteness, and redundancy with the risk of missing the unreachable loops.
Therefore, Alpha-type algorithms are bound to certain limitations and thus are considered an impractical
approach.

A technique built upon the basic principles of Alpha-type mining is the Heuristic mining [b]
algorithm. Instead of producing Petri Nets, Heuristic mining focuses on utilizing the frequency of events
within a certain event log, improving the efficiency of the log by discarding unwanted, infrequent,
behavior (Weijters, & Van der Aalst, 2003). However, as Van der Aalst (2012) described; due to the need
for larger event sets to ensure accuracy, this model can still produce inaccurate results.

According to Alves De Medeiros (2006), Genetic Mining Algorithms are a type of search
technique that mimics the process of evolution through a search space to find an end node. Every point in
space is hence called an individual, contributing to the overall finite set of individuals called a population.
The quality of an individual is hence determined by fitness measure, correlating directly to the prediction
of the optimal path through which the process needs to proceed. Candidate process models can be created
to support the optimal process model.

Conformance checking is the second category of the process mining principles, yielding the technique
that is used to compare event logs or resulting processes relative to the target model of an identical
process. Hence the aim of conformance checking is, according to Leemans, Fahland, & Van der Aalst
(2018), to verify a process model against reality.

Within the principles of Log-model conformance checking, the reality is assumed to be
represented by an event log. Hence, to compare a process model to an event log, qualities and
characteristics need to be defined to base the comparison on (Leemans et al.,2018). Examples of these
characteristics are Fitness, log-precision, generalization, and simplicity. Algorithms for measuring these
characteristics include token-based replay (Rozinat, & Van der Aalst, 2008), and Alignments (Adriansyah,
Munoz-Gama, Carmona, van Dongen, & Van der Aalst, 2012). As Bos (2021) discussed in a thesis, the
downside of using token-based replay on problematic models is the fitness could peak, causing
misconceptions.
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2.4.2 Challenges
While process mining gives elaborate insights into situations based on captured data, Van der Aalst (2012)
has introduced a set of two challenges that might occur during process mining. As Bos (2021) mentioned,
grounded on the study conducted by Van der Aalst (2012), proper, complete, event logs are essential for
the discovery phase. Having gaps in event logs, producing gaps in the data, leads towards potentially
skewed analysis results. Secondly, noise in these event logs can sketch different views of the situation and
therefore invalidate the results, and lower the reliability of the process mining process. To ensure high
reliability within the process mining results, noise needs to be filtered out to clean up the event log.

2.5 Feedback
Having in mind the ever-changing nature of technology and development, automotive technology has
rapidly been improving over the past decades (Gott & Hurter, 1981). Looking at the roots of these
improvements within technology, many overlapping areas are found of which one entails motorsports.
While motorsports are mostly seen as a source of entertainment to many, the field has introduced
outstanding technologies that have changed the course of the automotive industry drastically (Sano,
2014).

Although the automotive industry has been adopting many of the technologies developed within
motorsports, overarching organizations like the FIA and IndyCar have been pushing on reducing the
number of developments by introducing limits and restrictions to the number of new technologies
introduced (federation Internationale de l'automobile [FIA], 2021). Hence, training the drivers to be able
to properly operate the car, requires some guidelines and knowledge.

When willing to improve driver performance while remaining road safety, proper feedback is a major
topic that needs to be addressed. During an investigation on proper feedback, Koo et al. (2015) discovered
that improper feedback confuses leads to poorer driving performance and hence less safe circumstances
for the driver as well as surrounding individuals. Among the various types of feedback researched,
corrective feedback and the various fields and applications of this type of feedback are deemed most
important in the field of automotive engineering (van Houten, & Nau, 1983).

This section, there will be first explained the essence of receiving proper feedback when driving.
Afterward, three different approaches to giving feedback are discussed. These different approaches are
substantiated with relevant literature to pinpoint the approach when willing to interface this type of
feedback and a brief comparison between the corresponding type with the other types of feedback. At last,
an overview on the ideal approach in the context of this literature review on improving driver
performance is discussed to provide a starting point for incorporating feedback systems to support the
driver in his/her personal development.

2.5.1 The essence of proper corrective feedback when driving
Feedback aimed to move students from tasks to processing and from processing to regulating is the most
effective feedback (Hattie & Timperley, 2007). Hence, feedback in the context of development is focused
on improving the abilities of an individual based on applying improvements rooted in the experiences of
others. The pitfall of feedback is that receiving too much, and possibly irrelevant feedback, may, within a
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certain level, cause detraction from performance and therefore lead to a counterproductive side effect
(Hattie & Timperley, 2007). However, considering the importance of feedback on the learning process of
students, regardless of the field in which the learning process is taking place, it is crucial to provide
proper, concise feedback (Nelson & Schunn, 2009). Receiving proper and relevant feedback on
performance contributes to the overall experience of the driver. First of all, the implementation of the
feedback system used to communicate the feedback to the driver influences interpretation of the given
feedback (Voelkel, & Mello, 2015). In a study on the advantages of electronic audio feedback, Lunt and
Curran (2009), discovered that audio feedback was generally better understood compared to written
feedback. Nevertheless, while audio feedback enhances the overall learning curve, varying between the
types of feedback is of high importance. Different subjects require a different level of understanding. The
combination of the usage of different types of feedback enhances the overall learning quality (Nelson, &
Schunn, 2009).

Additionally, the customization of feedback according to the needs of the driver amplifies the
strengths and weaknesses of this specific driver within certain situations. According to Feng and Donmez
(2013), driver characteristics are good predictors of the type and severity of exhibited risky driving
behavior when constructing systems to give proper corrective feedback. Not only are the driver
characteristics important when constructing personalized feedback, taking into account the acceptance
and the preferred type of feedback plays an important role. The visualization and presentation of the
corresponding feedback determine whether or not the driver is going to open up to accept and embrace the
feedback (Anseel, & Lievens, 2009).

In summary, when willing to improve the performance of a driver by modifying the training
techniques, it is important to take into account the effect and interpretation of feedback on their learning
curve. When constructing an environment where drivers have to follow guidelines, the visualization and
communication of the corresponding feedback to the current situation, need to be tailored to the
preferences and best abilities of the driver in question.

2.5.2 Acoustic Feedback
The first approach that could be used to provide feedback to a driver is by using acoustic sources. Within
consumer cars, audio feedback, or “acoustic feedback”, is largely applied, e.g within the navigation, to
monitor telemetry information or to perform hands-free tasks (Pakkanen, Raisamo, & Surakka, 2014).

In a study on the effectiveness of acoustic feedback compared to written feedback among
students, Voelkel and Mello (2015) concluded that audio feedback is generally better feedback in terms of
student experiences. During this experiment, students mentioned a higher level of understanding and
involvement in the feedback compared to receiving written feedback. While this experiment conducted by
Voelkel and Mello (2015) is based on a different field of application, this same conclusion is drawn by
Lunt and Curran (2009) after their study on the advantages of electronic audio feedback in cars. Hence, it
is possible to associate the effectiveness of audio feedback with the application of acoustic feedback
within cars. Nevertheless, while acoustic feedback is generally well-received, within the context of an
automobile environment, driving a car requires physical and mental attention. Therefore, providing
acoustic feedback is possible, but only within certain boundaries. Exceeding these boundaries can result
in distracted driving and lower the driver’s driving performance while increasing the safety risks
(Pakkannen et al., 2014).
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In short, acoustic feedback is a very suitable option when it comes to providing feedback on basic
elements within a car. This increases the level of vigilance of the driver while it provides a way of
feedback without having to lose sight of the road.

2.5.3 Optical Feedback
As opposed to receiving feedback using acoustics, feedback can also be communicated using
visualizations and imagery. While it is recommended to use acoustic feedback only to provide basic
feedback to prevent distracted driving, visual feedback can be used in many forms to simplify the data as
much as possible while remaining the message clear and understandable.

According to two independent studies on the detailed effect of visual feedback conducted by
Adams, Gopher, and Lintern (1977) and Hoppe, Sadakata, and Desain (2006), visual feedback contributes
to the general development of motor learning, leading to a better understanding of the situation and hence
increasing the likelihood of interpreting the circumstance faster as well as with more reliability. By using
visual feedback in combination with gamification of data for training drivers, it is possible to gain more
detailed insight into the statistics of the current abilities of the driver and improve the general learning
experience of the driver. Also, using computer-generated visual feedback opens opportunities for creating
and preparing for scenarios that could happen with a statistical change of 1%. Leaving less room for
unprepared situations (Hoppe et al., 2006).

In the study conducted by Hoppe et al. (2006), a training environment is created to provide
insights on the performances of singers with the purpose to train them. Within this study, the effect of
certain computer tools has been researched on quantitative and qualitative feedback. Although the
real-time visualization application is used in a different field of study, the effectiveness of real-time
visualization leading to the improvements in the performance of the training of the subject in question can
be connected to the field of motorsports. By applying HCI design principles Kumar and Kim (2005),
made use of real-time visualizations of data to redesign the dashboard of an automobile to address the
problem of speeding. Using the redesigned dashboard, it is possible to convey the effect of visualizations
to the field of motorsports. Having in mind the main purpose of the mission of the study conducted by
Hoppe et al. (2006), the real-time visualization tools are used as a separate layer of providing effective
additional information and assistance when performing a task (Eberhard, 2021).

In essence, when kept simple and understandable, providing visual feedback on a driver’s
performance can effectively improve the driver’s learning curve. A better understanding of the situation
can be ensured due to interactivity and hence the judgment of handling situations is refined for the better.

2.5.4 Feedback based on Physical signaling
The last approach to provide feedback to individuals is by the use of physical signaling. Within the
application of performance improvements in the field of automotive technologies, force feedback is a
largely applied mechanism to simulate the effects of downforce on a driver working on a simulator. In an
unscientific discussion conducted by Baxter (2020) on the impact of Force Feedback on the driving
experience, it is discussed that using force feedback, mimics the real-world environment in which drivers
have to drive. While it is stated by Baxter (2020) that for training purposes, force feedback is not required,
however, having a resisting force, shaping the real-world situation, can prepare the driver for finding a
balance between applied force and corresponding effect. In an experiment on the ability to learn using
different learning techniques on preschool children, the effect of the principle “learning by example”
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conducted by Brown and Kane (1998) showed an increase in learning abilities when the students were
being forced into acting in a predefined manner using active feedback. Hence, by modifying the
counter-force applied according to the generated feedback, a driver can be led into the desired behavior

Another approach for providing physical feedback is by making use of haptic feedback. Haptic
feedback is the opportunity of using human senses to interact with the environment (Jafari, Adams, &
Tavakoli, 2016). This interaction can either be done in a Virtual environment or by using simple devices
to stimulate and recreate haptic environments. According to Crespo and Reinkensmeyer (2010), haptic
guidance improves the performance of a task by enforcing a desired pattern of kinematics. This guidance
can be provided in two types, “guidance-as-needed” and “fixed guidance”, both types allow users to
improve their abilities by experiencing large errors getting corrected by guidance. In an experiment on the
application of haptic feedback in an automobile environment conducted by Väänänen-Vainio-Mattila et
al., (2014), the qualitative showed increased support for road safety and social communication. Although
the user had a better experience due to the provided haptic feedback, the interpretation and learning curve
of handling a haptic feedback system is hard.

To summarize, haptic feedback provides a new dimension of receiving feedback. The principle
encourages the driver to develop by trial-and-error, introducing the driver to scenarios that need to be
handled while providing guidance based on activity. The downside of haptic feedback is that it is hard to
implement and hard to interpret.

Concluding from the literature review on feedback systems, it is safe to say that there is no one “ideal”
feedback mechanism to cover a problem statement. Within the general problem statement, distinctions
need to be made among the partitions of the problem statement. Observing the conditions per partition can
give insights into what feedback system to use to provide relevant and concise feedback.

Within the context of automotive engineering, it is seen that audio feedback can be used,
however, the implementations and applications of audio within this field are a limiting factor (Pakkannen
et al., 2014). Safety issues can arise when an overload of audio feedback is used, distracting or frustrating
the driver. Hence, to avoid this issue, one can make use of optical or physical feedback sources. This
approach gives opportunities to redesign not only the way data is communicated but also the way the data
is interpreted by the driver without causing too many distractions. Reinventing the learning environment
of the driver, by exposing him to predictive visualizations and haptic feedback, may help the driver to be
forced into learning desired behavior while retaining his/her core qualities (Nelson, & Schunn, 2009). The
performance improvements, therefore, are rooted in the notion of embracing feedback to improve
performance.

2.6 Research Gaps and opportunities
As stated in the introduction of this thesis, the amount of public research on the topic of improving the
performance of motorsport drivers is limited due to the confidentiality of the corresponding teams.
Throughout this background research, the goal was to find out what there is known with regards to the
technologies and applications that we could use. Due to the limitations, the only possibility to get
sufficient insights on how principles can be applied to improve the performance of drivers was by looking
at other areas of innovation, where these principles have already been integrated into daily practice.

Consequently, the research gap that could be identified is on how integrating process mining
techniques in simulators can be used as a basic tool for understanding the actions of drivers. Using this
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understanding, a new feedback system can be developed, built upon the result of the processes of different
drivers. Hence, these processes provide opportunities for explorative research on characteristics and
process differences between drivers that impact the performance of this certain driver. Addressing these
differences through visualizing the gains and losses as a consequence of the driver’s action per sector
type, lays the foundation for a new way of training, supported by machine learning principles.
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Chapter 3: Methodology
Exploiting the training of athletes within this level of expertise requires accurate data and reliable
background information. Without a proper background of what the athlete requires, the training might
miss the major point of improvement and hence lead to poor, unexpected results. Within this chapter, the
different possibilities for mimicking the environment, data harvesting, data analysis, and visualization are
explored to create the backbone of this project and therefore the backbone of the training.

3.1 Implementations of simulators
Simulator configurations differ in many ways with each their corresponding field of use. When focusing
on the training of drivers of one-seater cars, the configurations are endless, with the only difference being
the reliability and accuracy of the input. The overall configuration consists of a set of elements that one
would find in most everyday cars, e.g, a driving wheel, a wheelbase, a shifting system, and a set of pedals
for regulating the gas flow, the brake ratio, and the clutch. Additionally, as the environment is being
simulated in a graphical interface, no motion physics is taken into account when working with the
simulator. An option of enhancing the realism of the simulation, is, hence, to include a motion system
with a certain degree of freedom to translate the simulator motion physics into real-world motion physics.

3.1.1 Wheels & Wheelbases
Steering wheels are the main interface of the driver. On the current market, there are a set of different
steering wheels available for sim racing. While the functionality and type of steering wheels are
important, the choice depends on the wheelbase and the purpose of this steering wheel. Wheelbases are
categorized into three types: Belt-Driven, Gear-Driven, and Direct-Driven, which each have their
characteristics. When looking at wheelbases for scientific simulation, two aspects are important; Force
Feedback Realism, and Steering precision.

Gear/Belt Driven wheelbases
Within a guide on sim racing wheelbases, Mjolnir (2022)
described the Gear-driven and Belt driven wheelbases. Mjolnir
(2022) mentioned that both types of wheelbases work on a
similar principle: A motor is attached to a series of gears and/or a
belt. These gears/ the belt is connected to the wheel rim. The
motor is the element generating the Force Feedback which is
amplified with a factor defined by either the belt or the gears.
The disadvantage of using either of these principles is that the
gears and the belt absorb a part of the force feedback, meaning Fig. 4.: Gear driven wheelbase (Mjolnir, 2022)
that less feedback is provided to the driver. Additionally, the efficiency and accuracy are reduced due to
belt friction and additional pulleys or the gears have a risk of jumping when too much force is applied,
producing torque spikes.
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Direct Drive
As opposed to connecting the wheel rim to gear or a belt, the
directly driven wheelbases connect the wheel rim directly to the
motor shaft. As no amplification is implemented within directly
driven wheelbases, the motor must be significantly larger to
produce a sufficient amount of torque to create this effect of
Force Feedback. This means that, unlike in Belt and/or
Gear-driven wheelbases, the Force feedback and torque are not
lost in the connections, but rather sent directly into the hands of
the user. This leads to higher torque, stronger force feedback
with less loss, and due to the direct connection between
wheelbase and wheel rim, a higher frequency of data transmission. Fig.5.: Direct Driven Wheelbase
(Mjolnir, 2022)

Steering Wheels
Consequently, a broad set of different steering wheels is available on the market. While there is little to no
usage difference between the types of steering wheels, the functionality of each type of steering wheel is
tailored to the purpose of its use. The different steering wheel types have been categorized into three
categories: Rally, Formula, and Classics.

● Classics: Steering wheels mimicking the earlier motorsport wheels with no additional
functionality included above the required to be considered a game controller. These steering
wheels are simple in use and have no further purpose than steering. See Figure 6.1 for a visual
representation of Classic wheels.

● Rally: Rally wheels are optimized for SVGs that include rally racing and/or drifting. Due to the
build of these steering wheels, there is a defined maximum load of torque they can handle before
fracturing appears. The steering wheel often looks like conventional wheels that can be found in
cars and have a small set of functionality included. The aim of the steering wheel is that the driver
can use this wheel in combination with a handbrake and/or a conventional shifter, where the
driver is required to drive with only one hand on the wheel. Hence, the design allows the driver to
fully rotate the wheel in any direction with one hand only. See Figure 6.2 for a visual
representation of Rally wheels

● Formula: This type of wheel is focused on the one-seater cars where drivers are bound to keep
their hands on the steering wheel at all times. Hence, the wheel has a broad set of functionality.
The build of the steering wheel has to be resilient against high loads of torque and force feedback.
See Figure 6.3 for a visual representation of Formula wheels

Fig. 6.1: The Classic Wheel Fig. 6.2: The Rally Wheel Fig. 6.3: The Formula Wheel
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3.1.2 Shift Systems
Within Sim racing, there are two types of shifters: Hand controlled shifters and conventional shifters. The
hand-controlled shifters do not make use of a clutch, but rather have a dual-clutch system built within the
pedals located behind the steering wheel. The conventional shifter, on the contrary, make use of the third
foot pedal to the left, the clutch, in combination with a gear shifter to switch gears. In the era of the
standardized semi-automatic gearboxes within Formula 1, hand-controlled shifters have become the
standard for Formula 1 cars as well as for Formula 1 simulator racing. Nevertheless, the conventional
shifting method is largely used for rally racing, mimicking the real-life workings of rally cars.

3.1.3 Pedals
There are two options when it comes to pedals for a simulator setup, a hydraulic set, and a load cell set.
The main difference lies within the feel and the accuracy of the pedals. The hydraulic set mimics the feel
of an actual pedal set within formula one cars while the load cell deviates from this feeling and therefore
is less accurate. Nonetheless, both types of pedals work for research purposes as little to no real
differences will be seen.

3.1.2 Motion installations
Regarding the motion of simulators, there are a set of options wherein the degree of freedom varies.
Within a zero degree of freedom, the simulator is stationary and hence is called a Fixed Base simulator.
As it is a fixed base simulator, no force powers are felt, which might reduce the realism of the simulator in
research experiments.

Motion simulators with a higher degree of freedom, mimic the movements of a formula one car. The first
degree of freedom (2 DoF) translates the pitch and roll of the car into the rotation of the motion simulator.
A second-degree motion simulator (3DoF) translates the pitch, the roll, and the yaw of the car into this
rotation of the motion simulator, yielding a more realistic training environment. The third-degree motion
simulator (6DoF) translates all motions of the car into the motion simulator and hence yields the most
accurate and realistic environment for drivers to train.

3.1.4 Simulator Configuration
Based on the aforementioned information and the discussion with the responsible supervisor from the
EsportsLab, it is decided that the simulator should be configured as follows:

Wheel Base: Podium Wheel Base DD2 - Direct Driven
Steering Wheel: Clubsport Steering Wheel Formula V2.5 X + Quick Release
Pedal set: Clubsport Pedals V3 Inverted
Damper: Clubsport Pedals V3 Hydraulic Damper Kit + Brake Performance kit
Cockpit: RennSport Cockpit V2
Seat: Sparco Pro 2000 QRT Seat for RennSport Cockpit
Visual: Triple Monitor setup
Due to costs, no motion installation is configured, hence the simulator is a fixed base simulator.
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While this configuration does not mimic the actual environment wherein the drivers would drive on the
track, the configuration is close to equal the performance gained from a better installation. The Wheelbase
and the steering wheel do mimic an actual Formula One cockpit setup.

3.2 Dataset
The dataset used in this Graduation Project is harvested from the F1 2020 game developed by Electronic
Arts and Codemasters. This game is available on the Steam gaming platform. Using the simulator
described in the previous section, data of one session with the duration of 45 laps was harvested. All of
these timed laps were driven in the Mercedes F1 team’s car (W12). Within this section, the harvesting
process, the pre-processing, and the post-processing of the data have been described.

3.2.1 Data Harvesting & Pre-Processing
The Codemasters F1 2020 game is supported by an API that provides the possibilities for extracting game
data from a racing session. This list of data that can be obtained is structured in a set of packets that each
correlate to one section of the total dataset available. By interfacing this API over a UDP connection, it is
possible to obtain the different packages.

However, the dataset and the data packets contain relevant and irrelevant data for this research
project. Consulting the Codemasters API documentation, the contents of each packet are described. From
this content description, it is possible to denote the important packets required for the development of this
enhanced training and filter out the irrelevant data. Within the following table, the packets and the
corresponding description of the contents of the packets altogether with the relevancy of the data for this
research are described.

Packet Title Packet Description - Obtained from the Codemasters
Forum on UDP Specifications

Relevancy
[1-100][%]

Header Packet The UDP Packet header 22% *2

Motion Packet The motion packet gives physics data for all the cars
being driven. There is additional data for the car being
driven to be able to drive a motion platform setup.

16%

Session Packet The session packet includes details about the current
session in progress

28% *4

Lap Data Packet The lap data packet gives details of all the cars in the
session.

78% *

Event Data Packet This packet gives details of events that happen during a
session. The corresponding event strings are attached in
Appendix 2

11%

Participants Packet This is a list of participants in the race. If the vehicle is
controlled by AI, then the name will be the driver’s

0%
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name. If this is a multiplayer game, the names will be
the Steam Id on PC, or the LAN name if appropriate.

Car Setup Packet This packet details the car setups for each vehicle in the
session. Note that in multiplayer games, other player
cars will appear blank, you will only be able to see
your car setup and AI cars.

27%

Car Telemetry Packet This packet details telemetry for all the cars in the race.
It details various values that would be recorded on the
car such as speed, throttle application, DRS, etc.

73% *

Car Status Packet This packet details car statuses for all the cars in the
race. It includes values such as the damage readings on
the car.

10% *3

Final Classification
Packet

This packet details the final classification at the end of
the race, and the data will match with the post-race
results screen. This is especially useful for multiplayer
games where it is not always possible to send lap times
on the final frame because of network delay.

3%

Lobby Info Packet This packet details the players currently in a
multiplayer lobby. It details each player’s selected car,
any AI involved in the game, and also the ready status
of each of the participants.

0%

* If parameters are part of crucial information, which is defined as information required for the structure of, and therefore the
continuation of the project, this is denoted with an asterisk. Behind the Asterisk, the number of crucial parameters is denoted if
applicable.
*i The relevancy of this information is denoted in the number of useful parameters over the total amount of parameters in
percentages.
Table 2: The Data structure of the Codemasters F1 2020 API

Consulting the Codemasters API documentation again, it is seen that the frequency of updates per packet
differs. Within the F1 2020 game, it is possible to limit the frequency of updates to 10Hz, 20Hz, 40Hz,
and 60Hz. For the matter of limiting the amount of data and reducing the overall redundancy of the data,
the frequency of updates is set to 10[Hz] and a threshold on the relevancy parameter of the data packet is
introduced. Whenever the relevance of the data packet is below 50% and the data packet does not contain
crucial data, this packet is ignored in the UDP queue, and hence is not sent to, nor received by, the
application. Therefore, the packets that are sent and received are the following:

● Header Packet
● Session Packet
● Lap Data Packet
● Car Telemetry Packet
● Car Status Packet

The exact components and attributes that are defined within the specific packets, can be found in the
documentation of the F1 2020 UDP Specifications.
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3.2.1.1 Database Types
After the harvesting process, a database needs to be created to save the collected data. There are many
different solutions and options available for databases. However, as the rate of data is extremely high and
needs to be parsed to the database accurately, there are a set of three requirements defined for the
database.

1) The Database needs to be able to handle rapidly changing data efficiently
2) The Database must use flexible schemes
3) The Database’s scalability must be horizontal as the rate of newly added data is high

Based on these requirements, it is concluded that a Relational Database is not suitable for this project and
hence the NoSQL databases have the preference due to the speed and flexibility.

Multiple types of NoSQL databases can be used. However, as described in the previous section, one main
requirement for the saving of data is that all data that has been collected per update must be combined into
one record on the database and hence cannot be split over multiple records. Document-based NoSQL
databases provide this functionality of storing data that belongs together easily. A set of options is
available for Document-Based NoSQL Databases:

● MongoDB (Atlas)
● Amazon DynamoDB, as Supported by The F1 Community
● Google Cloud Firestore
● ArangoDB
● Etcetera…

Among the many options, Google Cloud Firestore, part of the Firebase Development Platform, provides
the option of a Freemium subscription. However, the limitations of this freemium subscription are a
maximum writing rate of 20.000 documents per day and a maximum reading rate of 50.000 documents
per day. For this research project, it is the best solution that has the lowest costs while it provides the most
value to the project due to all the additional features the Google Firebase Development Platform provides.

Nevertheless, MongoDB is a very suitable platform as well due to the higher maximum document
write/read rate per day, if the subscription costs were lower. For this research, the database choice is
Google Cloud Firestore.
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3.2.1.2 Collection Construction
Based on the incoming stream of data, the collection construction goes according to the packet structure
of the Codemasters API. The Collections are constructed based on Session ID, Lap number, and the
corresponding times with an interval of 1(“one”) second. The underlying document per collection
contains the following data fields:

● Actual Tyre Compound: The Tyre compound that is currently used
● Best Lap Num: The lap number of the best lap
● Best Lap Sector 1 Time: The sector 1 time of the fastest driven lap
● Best Lap Sector 2 Time: The sector 2 time of the fastest driven lap
● Best Lap Sector 3 Time: The sector 3 time of the fastest driven lap
● Best Lap Time: The time of the best driven time corresponding to the Sector 1,2,3 times
● Best Overall Sector 1 Time: The sector 1 time of the entire session
● Best Overall Sector 2 Time: The sector 2 time of the entire session
● Best Overall Sector 3 Time: The sector 3 time of the entire session
● Last Lap Time: The time of the previous lap
● Brake ratio:  The rate of Brakes that is applied
● Clutch ratio: The rate of Clutch  that is applied
● Current Lap Number: The current lap number
● Drs: Whether DRS is enabled
● Engine Damage: The rate of damage to the engine in percentages
● Engine Temp: The current engine temperature
● Front wing left damage: The current damage to the left-wing in percentages
● Front wing right damage: The current damage to the right-wing in percentages
● Gear: The current gear
● Gearbox Damage: The current damage to the gearbox in percentages
● Pitch: The pitch of the nose
● Yaw: The Yaw of the nose
● Roll: The roll of the nose
● Player index: The current position of the car on the track
● Rear wing Damage: The current damage to the rear wing in percentages
● Rev: The current amount of revolvements per second
● Rpm: The current RPM of the engine
● Sector1 Time: The current time of Sector 1
● Sector2 Time: The current time of Sector 2
● Session ID: The ID of the session
● Session Time: The current time in the overall session
● Speed: The current speed in Km/h
● Throttle: The rate of Throttle that is applied
● Total Lap Number: The total amount of laps to be driven
● Total Track Distance: The total distance of the lap in meters
● Track Distance: The current distance of the car on the track from the beginning of the lap
● TrackID: The ID of the track
● Tires Age in Laps: The current age of the tires in laps
● Wheel: The angle of the steering wheel
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3.2.2 Data Analysis & Learning
Based on the data denoted in section 3.2.1.2, different algorithms can be defined for understanding,
learning, and classifying the data. Focusing on Machine learning principles and Deep learning algorithms,
four specific algorithms can be used to efficiently learn the data. These algorithms include

● Active Deep Learning,
● Decision Tree algorithms,
● Boosting Algorithms

○ Gradient Boosting,
○ ADABoosting

However, while these algorithms do prove to be efficient for understanding the current construction of the
data gathered, these algorithms deem to get complex quickly. For this research, only a simple
classification method is required. An additional machine learning algorithm can be used in further studies
to not only visualize the feedback but also predict events.

Within the context of this research, the focus will be on the Normal Distribution and Linear
Regression and its application on the data set. The corresponding classification and the methods used are
described in section 5.2.

3.2.3 Data Visualisation
Within the previous chapter, different types of feedback have been discussed. From this analysis, it was
denoted that Visual feedback in combination with haptic feedback provided the highest value to the
drivers and hence is considered the most optimal way of providing feedback. However, as the scope of the
research does not allow the implementation of multiple feedback systems, the focus will remain on visual
feedback. Within this section, the different implementation options of visual feedback will be discussed.
The leading feedback system to be implemented is introduced in the next chapter.

3.2.3.1 Digital Visualisation
Visual feedback in a digital environment can be realized in many forms. Dashboards have proven over
time to be an optimal way of displaying information and data. The amount of data can be regulated and
the output can be personalized to match the needs of the driver. Tools that can be used for realizing a
dashboard include:

● Tableau Real-Time
● A Responsive ReactJs/Js Dashboard
● Python Dash
● Etcetera

However, the downside of using dashboards within the context of driving, especially in the field of
motorsports, forms a major distraction and therefore the use must either be eliminated as much as possible
or reduced to only a few parameters. Nonetheless, adding a screen to the simulator, where data will be
displayed and most importantly be changed throughout the track, might act as a major distraction.
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3.2.3.2 Physical Visualisation
When kept simple, physical visualization can be intuitive and, above all, helpful. Tools for creating a
physical visualization system include

● Raspberry pi with a simple LED GPIO interface
● Arduino for feedback by use of human-readable displays

The disadvantage of using a physical type of visualization is that the amount of data to be shown is
strictly limited.

3.3 Ethical Considerations

3.3.1 Ethical Reflection method
Considering the topic of this graduation project and its purpose as is discussed in the previous sections of
this chapter, many ethical dilemmas arise. In a conference proceeding on Game-Based Learning Earp,
Persico, Dagnino, and Passareli (2018) denoted the effects and impact of simulators on behavior and
physical and mental wellbeing. The correlated ethical dilemmas that were introduced included the
effectiveness of the simulation over time with regards to training, the impact of the cognitive load on the
primary functionality of the brain, and its physical footprint on the human body. In research conducted by
Sukhov (2019) a systematic distinction is made between the different types of Simulation video games
(SVGs), wherein the effects of educational Racing SVGs on behavior is considered to below.
Nonetheless, the effects of non-educational SVGs can cause a rise in dangerous driving and hence
increase the risk of harmful driving due to the unintentionally obtained skills within the SVG. While
tackling all of these ethical dilemmas benefits and improves the final product of this project, the scope of
this project does not provide a suitable timespan to cover most. Nevertheless, it is deemed important to at
least denote most, and attempt to tackle the most prominent dilemmas. As the ethical dilemma requires
correct ethical argumentation, the most suitable paper for discussing the correlated ethical dilemmas is by
using the Ethical Cycle as introduced by Van der Poel and Royakkers (2007).

Fig. 7.: The Ethical Cycle as introduced by Van der Poel and Royakkers (2007)

3.3.2 The Moral Problem Statement
Applying this systematic approach to obtain an ethically and morally acceptable action, the model
requires the construction of a moral problem statement. Considering the various dilemmas regarding
training using simulators, among which some introduced in the introduction of this chapter, the dilemma
questioning the effectiveness of simulator training as opposed to the time and physical risks required as an
input can be considered as a prominent moral problem. Hence the moral problem statement is defined as
follows:
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“Is the time and physical risk required to train a professional driver on a racing simulator to obtain a
new skill more suitable compared to training this same driver in a real-life environment?”

Evaluating this moral problem statement, is it safe to state that this problem statement does not only
include the effectiveness of the proposed training program but rather also takes into consideration the
amount of effort the driver must put into the program to learn this new skill. Moreover, this statement
questions the efficiency and the need for a virtual simulator compared to a real-life training program
wherein the driver can experience the actual circumstance with its corresponding effects.

3.3.3 Problem Analysis
To understand and attempt to answer the moral problem, the moral problem statement must be broken
down into sub-questions. The aforementioned statement will, therefore, be split into two parts. The first
question that needs to be answered is: “How much input does the driver need to put into the program to
make the program effective for learning a new skill?”. Answering this first question leads to the second
question that needs to be answered before a moral action can be performed. The second question,
therefore, is: “What are the advantages as opposed to the disadvantages for willing to use a simulator
over a real-life environment for training professional drivers?”

As mentioned in the introduction of this report, the learning process of drivers varies in many
ways. However, a general model can be used for guiding the learning process into a more efficient and
structured way of learning. In an experiment conducted by Abdulwahed and Nagy (2009) on skill learning
using Kolb’s experiential learning cycle, four stages of learning were denoted. (1) Concrete Experience,
(2) Reflective Observation, (3) Abstract Conceptualization, and (4) Active Experimentation. The results
of this experiment showed an increase in learning ability and a decrease in learning time by
approximately 75%. Within the simulator, these stages can be applied as well, optimizing the active
learning process of drivers based on experimentation and reflection on these experimentations. According
to the Dutch organization De Koninklijke Nederlandse Toeristenbond (ANWB), a student requires 35 up
to 45 driving lessons, with each a length of 60 minutes, on average before this student can successfully
obtain a driver’s license. Hence, it is possible to define an approximate total learning time of 40 hours to
learn the basics of a new skill. As motorsport drivers are experienced drivers and therefore do not need to
learn and understand the basic principles of car mechanics and control, this estimate can be downscaled to
approximately 10 hours of learning before a new (large) skill becomes a habit. Using the principles of
Kolb’s experiential learning in the context of the simulator opens possibilities for users to evaluate the
skill and their progress in real-time while they are training. Considering that the algorithm implemented in
the simulator is not learning the driver an entirely new skill but rather guides the learner through a set of
improvements on his current abilities, this average can be downscaled even further up till a repetitive
training of approximately 2.5 hours. Consequently, the total input of the user required to train a skill to
enhance his driving abilities based on guidelines, supported by data predictions gained by the driver’s
previous results, within the simulator, is approximately 2.5 hours of consecutive training, with or without
breaks.

Nevertheless, within the context of training motorsports drivers, a set of disadvantages can be
identified in section 2.3. Keeping this set of advantages and disadvantages in mind, ethical decisions can
be made.
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3.3.4 Options for Actions
The next phase within the Ethical Cycle as introduced by Van der Poel and Royakkers (2007) is the phase
wherein the discussion on potential options for actions for the moral problem statement starts. Within this
section, the (potential) measures for the corresponding ethical dilemmas are explained.

As indicated by the first question within the problem analysis, a vital point of interest is the
amount of screen time required from the driver to improve upon a skill depicted against its potential
health issues. While training for 2.5 hours consecutively might reduce the time required to train for a
specific skill, the learning efficiency rate might decrease and drop during these longer training periods
due to fatigue. This drop-in efficiency can hence lead to less intake of information and therefore work
backfire. As Kühnel, Zacher, de Bloom and Bledow(2016) denoted in their research on the benefits of
short breaks for an increase in productivity, consistent breaks are required for optimal performance and
work/learning efficiency, increasing the amount of information intake. Changing the training routines and
dividing sections of the training into smaller parts can therefore increase the learning efficiency.
Accordingly, a possible option for the action to overcome this ethical dilemma is to reduce the session
times to spread the work over several moments either within a day or throughout several days by
implementing session limiters on the simulator program. Using different models, e.g. the Pomodoro
model, to increase efficiency and productivity, the driver can learn in the fastest possible ways without the
risk of information fatigue and/or potential health issues.

Additionally, in the longer term, a solution for reducing the amount of screen time is to develop
the project on an actual formula one car so that the driver can benefit from the same feedback received in
the simulator in a real-life environment. Subsequently, this opens up opportunities for breaking down the
training sessions into simulator sessions and conventional on-track practice sessions, leading to a
reduction in screen-time and hence a reduction of potential health risks.
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3.3.5 Ethical Judgment
To broaden our understanding of the aforementioned ethical dilemma, an ethical analysis is conducted on
the overall content of the problem analysis, the options for actions, including the key moral principles. For
this purpose, a defined set of analysis tools have been used. Within the first section, the first tool is
described with its corresponding details and results. The first tool that is used is the Fleddermann Line
Drawing Tool. The Fleddermann Line Drawing depicts the negative and positive paradigms against each
other while depicting the different (defined) cases between these paradigms.

Problem Scenario: The driver is trained based on simulation, machine learning, and process mining to
enhance his performance in low-performance areas of the track in a racing simulator to later transfer his
knowledge into a real-life situation.

Positive Paradigm: The driver understands his errors in the simulator and adjusts his driving methods
accordingly by training and reflection to improve in a real-life situation.
Negative Paradigm: The driver does not understand the errors and hence does not improve upon his
current performance.

Statements:
1) The driver has a clear vision of what needs to be done to improve the driving performance in a

real-life situation,
2) The driver does not have a clear vision of the errors and hence does not know how to adjust his

performance,
3) The driver is aware of the errors but fails to correctly translate the errors into real-life

adjustments,
4) The simulation does not feel like a real-life situation and hence the driver lacks the motivation to

invest time and effort into the training,
5) The trainer gets clear insights and instructions on what the driver is doing wrong and translates

them for the driver into actions of the real-life environment,
6) The driver explores different situations that occur with a statistical chance of happening of 1%.

He trains himself to overcome the situation within the simulation

Fig. 8: The Line Diagram Tool by Fleddermann

Evaluating this line drawing, it is seen that the problem statement is skewed to the right side of the
spectrum, implying that, while the statement is questioning the level of positivity, the overall statement is
presumed to be on the positive side of the paradigm. The reason for this is that the problem statement is

33



questioning the solution chosen at the moment, is the better solution, which due to the wording, is leaning
towards a question with a positive answer.

Continuing on the aforementioned sub statements, we can start evaluating from the lowest integer
value up until the highest integer value: Statement 1 has been placed on the utter right side of the
spectrum. This implies that the driver understands his errors, knows how to tackle them in the simulation,
and successfully translates them into a real-life environment where he, again, knows and understands how
to overcome the issue to improve his performance. On the contrary, as scenarios can never be perfect in
any real-life environment, it is not possible to execute the changes to the full extent, leaving space for
some additional reviewing. Continuing to statement 2 and 4 it is seen that these statements are on the
other side of the spectrum, the NP side of the spectrum. The reason for statement 2 is that this statement is
implying that the driver knows he is making some major errors but fails to see what he is doing wrong
and what needs to be done to improve the current performance. The driver fails to correctly use the
application correctly and hence lacks the necessary insights required to evaluate and improve. While in
statement 4 the user cannot find the right motivation to use the simulation to find his errors and therefore
will not obtain the insights. Statement 3 is still leaning towards the negative side of the spectrum.
However, as opposed to statement 1, the driver is aware of his errors and successfully improves upon
these errors within the simulator, but fails to improve upon them in the real-life environment. Statement 5
is a statement that is located on the positive side of the spectrum. Although the message of the feedback is
received well, an external person is involved who needs to explain to the driver the errors, mistakes, and
the actions needed to be taken to overcome the issue. This does imply that the driver himself does not see
the errors but rather another person involved in the process does and needs to translate these errors for the
driver. Finalizing with statement 6, it is seen that this statement is perfectly in the middle of the spectrum,
this is due to the validity of the results. As the statistical chance is so low, the progress cannot be validated
and hence the driver will never know whether he performed an action correctly in the real-life
environment.

Considering the first sub-question of the problem analysis, we had defined multiple ways of
ensuring that drivers would not exceed the healthy amount of screen time per session. These, and
additional methods of preventing this to happen, have been included in the statements below. These
several options are set for analysis. The second tool used for deeper analysis is the model of Tromp et al.
(2011).

Problem Statement: Drivers experience a high rate of screen time whenever training in a simulator. This
rate can lead to health issues and unnecessary risks. A solution must be introduced to reduce this amount
of screen time and encourage the drivers to take a sufficient amount of breaks and perform physical
activity.

Options to reach the goals:
1) A time limit is placed on the simulator. After x minutes of activity, the simulation will pause, the

screen will lock, and will only unlock after a certain amount of time.
2) A Pomodoro timer-based application will provide the driver with an assignment to perform.

Every 25 minutes this timer will expire and the application will no longer give assignments to the
driver for 10 minutes. After 10 minutes the routine will restart and the driver can continue his
assignments for another 25 minutes.
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3) A LED indicating that it is time to take a break is placed on the simulator. A pressure sensor is
placed in the seat and whenever a driver sits for too long, the LED will turn on and will try to
seduce the driver to take a break.

4) A fresh beans coffee machine is placed near the simulator. The smell of the coffee beans has to
lure the driver and make him want to take more coffee breaks.

5) The trainer of the driver creates flexible planning based on the current situation of the driver
wherein he takes into account the need for breaks whenever the trainer spots signs of fatigue.

These 5 options are placed in the model of Tromp et al. (2011) to see how they influence the behavior of
the driver. A follow-up on the decision of why the option belongs in a specific category is provided below
the diagram.

Fig. 9: The Tromp diagram with the corresponding numbers of the options

Evaluating the diagram and the positions of the options, we see that we have two very strong options(2
and 1), forcing the driver to take mandatory breaks by not letting him train anymore. While one works
one more structured way, the other defines after a timespan that the driver has been seated enough and
hence it is time for a break. The solutions with regard to luring the driver out by seducing him with treats
are positioned in the lower-left corner. These imply that the driver has a need for a break and hence tries
to seduce the driver into a break. A fifth option is a persuasive option as the trainer is actively managing
the situation and the level of fatigue of the driver. With this information, the trainer can make the right
decision at the right time.

3.3.6 Reflection
The reflection phase of this ethical cycle is perhaps the most important phase of all. Within this cycle, it is
controlled whether all requirements have been fulfilled before the decision on the act can be made. If this
is not the case, the options for actions need to be recalled to improve for the better.

The design of a simulator training program can be successful if all these requirements and
thoughts are taken into account. In the end, the health of the driver, the stakeholders, the project members,
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and the environment are the most important things in the project. Hence decisions need to be made on
what is deemed to be correct given the aforementioned analysis.

After proceeding through the reflection phase, a morally acceptable action option can be chosen.
With the use of the Ethical Cycle, an attempt has been made to set a step toward an inclusive design.
Although there is little to change about the simulator, there is a lot to be changed to the program this
project is developing.
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Chapter 4: Requirements

4.1 Focus
While there remain many parameters, as denoted in section 3.2.1.2, to be optimized for maximum race
result, it is important to keep the focus of the project in mind. Recalling the initial research question, it is
noted that the project seeks to find an answer to the question whether we can optimize the race
performance by enhancing the drivers abilities and improve upon his paths through the track. Hence it can
be stated that the main parameters to be optimized are the Steering Wheel angle, the ratio of Throttle per
unit of time, and the ratio of Brake appliance per unit of time. These three parameters will be applied to
the Active learning algorithm to calculate the next best move and to flag this next best condition, based on
the included parameters, as the new optimal way through the track. This next best move will then be
translated into a visual representation, leading the driver through the different markers set by the learning
algorithm.

4.2 Design Decisions
Over the process of this research, some design decisions were made to efficiently and optimally calculate
and communicate the results of the learning algorithm to the driver. These decisions include assumption
on the ideal variables managed within the learning algorithm, the feedback receival and the common
understanding of the data. Another aspect that needs to be considered is the amount of variables
displayed to the driver during his/her performance.

Based on the focus of this research and the aforementioned parameters, the visualization type to
be implemented is digital visualization. As only three variables are managed over the entire course of the
track, these variables can be translated into percentages on the difference between the current and the
optimal situation. While this visualization is simple, the message to the driver should be clear and concise,
leaving little room for distractions and/or misinterpretation of the feedback. The variables displayed
within this visualization are the optimal difference between the optimal and current steering angle, the
difference between the optimal and current brake ratio, and the difference between the optimal and current
Throttle ratio.

Although mentioned in previous sections that physical feedback is more effective, the decision to
implement a digital dashboard is grounded on the limited scope of this project. Due to time constraints, it
was not possible to fully develop a working prototype. Therefore the solution was to implement a digital
dashboard to display the data. The corresponding language in which this dashboard is designed, is
Processing. Processing is chosen as the language is based on the Java programming language. This would
mean that the integration would become more feasible.

The design decisions with regards to the data, the learning model and the visualizations, are
elaborated in chapter 5.
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4.3 Requirements and Specification

4.3.1 Basic Requirements (Release v1.0)
For the first iteration within the development of this training a set of requirements is defined. These
requirements yield all the functionality that the application must fulfill. The set of requirements are split
into a set of Functional requirements and a set of non-functional requirements. Wherein the Functional
requirements focus on the capabilities and the features, whereas the non-functional requirements focus on
the user experience and the reliability of the application. The corresponding MoSCoW Analysis is added
as well.

Functional Requirements

Field Requirement Priority

Process Data Harvesting The system must retrieve the data of the
simulator in real time

Must Have

Data structure and coherence The system must format the data of each
individual recording into a set of data coherent
with the corresponding environment of the car
in the simulator

Must Have

Database The system must allow a user to get data
insights filtered on sessions

Should Have

Database The system must allow a user to get data
insights filtered on laps within a session

Should Have

Database The system must allow a user to get data
insights filtered on seconds within a lap per
session

Should Have

Datastream update The system must will update a real time
database according to the incoming stream of
data

Could Have

Datastream update The system will update a database according to
the incoming stream of data

Must Have

Data coherence The system must retrieve the total set of data
based on parameters

Must Have

Statistical Analysis The system must calculate the quickest lap
time and denote, from the corresponding data
points, the wheel angle, throttle and brake
ratio.

Must Have

Statistical Analysis The system must calculate the quickest sector Must Have
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on record per sector and denote, from the
corresponding data points, the wheel angle,
throttle and brake ratio.

Statistical Analysis The system must calculate the difference and
translate this difference into percentages

Should Have

Feedback & Visualization The system must provide visual feedback on
the differences between optimal and current.

Must Have

Feedback & Visualization The system must provide haptic feedback on
the differences between optimal and current

Must Have

……
Table 3.1: Functional Requirements

Non-Functional Requirements

Field Requirement Priority

Database security The data per session shall be secured in the
database using a hash-function

Could Have

Accountability & relevance The learning path shall be traceable over the
process of the usage

Should Have

Database Efficiency The database updates during a racing session
shall happen at most every 1 second. The
data in the meanwhile must be buffered on
the internal storage

Must Have

Database Efficiency The internal storage shall be emptied after
an update resulted in a success

Must Have

UDP connection The harvesting of data shall not listen for
longer than half a second. After this period,
the data packet is dropped and a timeout is
sent.

Should Have

……
Table 3.2: Non-Functional Requirements
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Chapter 5: Realization
The realization has been divided into three realms. Each realm corresponds to the research sub-questions
defined in chapter 1. The first realm discusses the data harvesting process and the preprocessing of the
corresponding data into a database. The second realm covers the understanding of the data using machine
learning and statistical analysis. The third realm describes the implementation of the feedback system
with its corresponding elements.

5.1 Data Harvesting & Preprocessing
Consulting the Codemasters API documentation on the integration of this API within a third-party
application, the guides on how to connect to this API are denoted. Within section 3.2, the different types
of data packets are described. Within this section, the relevancy of these packets is calculated which led to
a downscale in required packets to increase the overall efficiency of the data retrieved. To enhance the
overall efficiency and speed of the program the research on the Benchmarks game has been consulted.
This research yielded that C# is the language of choice for harvesting and processing data to cope with a
high-speed data rate.

To mimic a real-life situation, the racing simulator, as described in section 3.1.4, is used for
running the F1 2020 game. Within this game, the option for sharing telemetry is turned on. The harvesting
of data has three steps. The first step is the sending of data. As the API provides this functionality, there is
little control over the formatting of the data sent. The F12020 game handles the correct sending over a
UDP connection to an available client on the same network. For ensuring that the connectivity is over the
same network, a mobile hotspot is set up on the client-side and the racing simulator is connected to this
mobile hotspot. The second step is to retrieve the data on the client-side and process this into readable
data. This client side is specifically built and designed for this project and therefore we do have control
over the data and its corresponding formatting. The third step is to filter the relevant information and
parse this to a database. The scheme of how this system and its components interact is displayed in figure
10.

Figure 10: The ATS System
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When data is retrieved from the API, the client decodes the data stream and processes the data
into information objects. As denoted in section 3.2.1, the different data packets arrive asynchronously. To
merge arriving packets into one data object, an object buffer is created with a 7 millisecond lifespan.
Throughout the lifespan of this buffer, all retrieved data is combined into the same object and redundant
data is overwritten. These objects are then formatted into a C# directory to later be formatted into a JSON
object. A connection is made between the client and the Firebase database. Once the end of the lifespan of
a data buffer is reached, the JSON object gets parsed to the Firebase FireStore database. Accordingly,
Firestore responds with an approval message or an error. The error contains information and instructions
on how to proceed. The approval message validates the arrival of data into the database.

The database is divided into three collections. This structure is displayed in figure 11 The first
collection (“Collection 1”) contains all the gathered Test data based on the collection construction denoted
in section 3.2.1.2. On the contrary, the third collection (“Collection 3”) contains all the gathered Training
data. The second collection (“Collection 2”) contains real-time telemetry updates and therefore is updated
every 0.5 milliseconds based on the incoming stream of data from the Racing Simulator.

Figure 11: The JSON Data structure in FireStore

This flow of processes is called the automated transport system (ATS) and ensures the availability
of session data and real-time telemetry data in the database.
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5.2 Understanding & Learning
When constructing the model for understanding data, a breakdown of tasks is required. For the
implementation of the “Understanding & Learning” part within this research, the following division of
task categories has been made:

1) Retrieval of Data ⇒ Read Firebase
2) Simplification of data ⇒ Create data markers per condition X/Y*
3) Grouping of Data ⇒ Group on conditions X/Y
4) Construction of Summaries ⇒ Calculate summary** and averages Marker group
5) Classify Marker Groups (MG) ⇒ Within each group, classify value on Normal Distribution
6) Recreation of Trackline ⇒ Create ideal trackline from highest classification per MG

* X is defined as the distance ration, Y is defined as the time in lap
**The summary correlates to the Five number summary altogether with the standard deviation and mean

These task categories are followed by a set of tasks required for postprocessing and therefore translation
of the data into accurate (real-time) feedback.

1) Retrieval of Real Time Data ⇒ Read Real-time Firebase
2) Simplification of Data ⇒ Create data markers per condition X/Y
3) Ranking of Data ⇒ Ranking incoming data in relation to ideal trackline
4) Translation into feedback ⇒ Calculation of difference & Translation into change ratios

This part of the realization requires a strong object oriented structure and hence the Java Programming
Language is the language of use. Starting at the first set of categories, the first step is to retrieve data from
the database. The database therefore must consist of data, which is provided by the ATS system, as
described in section 5.1. Consulting the Firebase integration documentation, reading data is done by
obtaining the collections and retrieving the corresponding documents per collection. Within the
experiments, it is expected from the participants to first perform 8 laps under training circumstances. This
data is stored under the Training data collection as denoted in figure 11. This data is retrieved, according
to the Firebase integration documentation, from the database and parsed into data objects. Simultaneously,
the data is written to a locally based .txt file to ensure faster operations for the during the next retrieval
iteration.

The next step in the process is to simplify the retrieved data and to group the data together. The
parameters for simplifying data are the current timestamp in seconds on the track and the distance ratio in
percentages. The level of significance is in milliseconds for the timestamp and one decimal after the
comma for the distance. For instance, a distance of 47.892952 [%] is categorized as 47.9 [%], and a
timestamp of 23.1234 [s] is categorized as 23.1 [s]. A marker is created per categorized timestamp and
per categorized distance ratio. Within this marker, the corresponding data for this position on the track is
included. From these two types of markers, it is therefore possible to deduce the distance per timestamp,
The timestamp per distance, and the corresponding brake/throttle ratios, and the wheel angle.

The next step within the process of understanding & learning is to create the corresponding
summaries for defining the ideal telemetry set per marker. This is done only for the marker with the
distance ratio, as this marker defines the leading track line correlated to the telemetry. The summary
consists of the distance ratio, the mean wheel angle at this distance ratio, the mean throttle/brake ratio at
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this distance ratio and the modus of the gear at this distance ratio. After the mathematical summary has
been created, the markers get labeled with a classification. This classification is built upon the Normal
Distribution where the critical values are defined by the Z-Values derived from a distribution with a level
of significance of 0.05. Accordingly, the obtained Z-Value for a 𝞪 total = 0.05 are equal to:

𝞪upperTail = 0.025 ⇒ µ +  2σ
𝞪lowerTail = 0.025 ⇒  µ −  2σ

Yielding the following criteria for the classification:

Formula µ −  2σ µ −  σ µ µ +  σ µ +  2σ

Classifier Low MidLow Mid MidHigh High

For which is the calculated marker average per parameter of the marker and is the correspondingµ σ
standard deviation from this average.

After the dimensions of the classification have been defined and the markers have been classified, the
entire dataset, as retrieved from Firebase, gets classified on the basis of the aforementioned classification
criteria. Subsequently, the lower classified data markers get removed from the dataset, ensuring only
“Mid”, “MidHigh” or “High” classified markers and data points within the dataset. The next step is
therefore constructing a new trackline based on the highest classified data points. This recreated ideal
trackline is defined as the “Advised Trackline for maximum performance”. Throughout the entire session
this process is repeated, improving the ideal trackline per newly created or updated marker. Figure 12
visualizes the entire process into a schematic.
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Figure 12: The flow of generating the Learning Model

In the aforementioned task categories, the steps for postprocessing and translating current (real-time) data
points have been denoted. In the previous paragraph, it is implied that data from the real-time telemetry is
compared to the advised trackline. This is part of the conformance checking phase of the project. The first
step is to retrieve the data from the database. This process of retrieving data is identical to the prior
mentioned process for retrieving the session data. The only difference is that the structure, as denoted by
Figure 12, contains only one base layer of collections and documents. The update rate of the real-time
telemetry is 0.5 seconds. As mentioned in the paragraph before, the ranking of data goes according to the
classification. The difference between the advice and the current telemetry data per marker is noted and
parsed to the visualization tool. This visualization tool is discussed in the next section.

5.2.1 The Learning Curve
Throughout the research and the experiments the driver will face a certain learning curve that might
influence the results of the research. To overcome this learning curve and therefore to minimize the effect
of this learning curve, the participant is asked to drive 8 laps before the test. Throughout these laps, the
participant will expose the learning curve by means of increasing marker classifications. Once the system
recognizes a stabilization within the graphical representation of the participant’s output, the learning curve
gets identified as all the output before the stabilization. Accordingly, the data gets removed from the
training dataset, and the participant’s learning curve is eliminated. However, the markers classified as
Mid, MidHigh and High will remain in memory for the improvement of the ideal trackline.

5.3 Communication & Visualization
Displaying feedback is done through a simple visualization dashboard containing three main parameters
and 2 additional parameters as support. As mentioned within sector 3.2.3, the aim of the visualization is to
inform the driver without causing too much distraction. Hence the visualization must be simple and easy
to understand from out of the corners of the drivers eyes. Therefore a decision is made to only display
three necessary parameters with which the driver immediately can see what needs to be done. The criteria
for the visualizations are that the
colors must be distinguishable and the
information must be recognizable. For
the steering angle a two-sided
horizontal histogram is used to denote
the rate of change that needs to be
applied to the current steering angle.
The Brake and Throttle work
according to a vertical bar chart that
turns green when too little pressure is
applied and turns red when too much
pressure is applied. The visualization
tool is developed using the Processing
4.0 Beta 5 Library within a Java Figure 13: A snapshot of the visualization tool
Application. A snapshot of the application is provided in Figure 13.
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5.4 Conclusion
Within Figure 14, a total overview of the application and its interactions with other components is displayed. Within this scheme, the
communication lines between the different systems are denoted.

Figure 14: A total overview of the applications with all their corresponding attributes and components
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Chapter 6: Analysis
Within this section, the analysis on the results is conducted. Before this analysis can take place, an
experiment is set up with a certain number of participants. These experiments and their procedures are
described in more detail in section 6.1. The experimental setup is followed up by the visualization of the
obtained results from the experiments in section 6.2. The aim of this section is to understand the
theoretical result that the experiments yield based on the previously done research and the conducted
experiments.

6.1 Experiment setup
To properly evaluate the results, a predefined experiment structure is required to cover all required
segments of the experiment. A single experiment consists of two drivers, a potentially good driver and a
potentially worse driver. The better driver is asked to participate in the experiment first. Subsequently, the
worst driver is asked to participate in the experiment as second. Although not desired, it is important to
anticipate a situation wherein not all participants have an equal amount of knowledge on racing
simulators. Therefore, to reduce the effects of this knowledge gap, the experiments are divided into 5
sections:

1) Participant Briefing & installation
2) Training Session
3) Test Session
4) Survey
5) Open Discussion

6.1.1 Participant briefing and Installation
Considering that the aim of the research is to improve professional drivers, a minimal understanding of a
car, the research and both their components is required. When the experiment starts, the participant is
asked to give consent after reading, and accepting, the research background, the research aim and the
experiment procedure. During this section within the experiment, the participants are asked about their
knowledge on the topic, their level of knowledge on driving and whether the participant understands how
to operate a racing simulator. Afterwards, the participant is invited to take a seat within the simulator,
while the researcher explains the components, the functionality of the different buttons and the built-in
feedback systems.

When the participant has all his/her questions answered, the simulator is turned on and the
participant is asked to drive a minimum of 2 laps and a maximum of 6 laps around the circuit to get
familiarized with the game, the steering wheel including its functionalities and the circuit. Within section
5.2.1 the notion of a “learning curve” is denoted. During these initial laps, the side aim is to reduce the
learning effect and hence to start the training session with the most reliable data, maximizing the effect of
the training system on the participant’s abilities.

During these initial laps, no data is recorded and no visualizations/feedback are shown to the
participant. The aim of this section is only to let the participant get familiar with the system.
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6.1.2 Training Session
The second section of the experiment is the training session. Within this session, the aim is to feed the
learning model and understand the abilities of the driver. Based on these abilities, the learning system can
create advice, as described in section 5.2, and generate predictions to display during the Test session. The
participant is asked to take a seat behind the racing simulator and to drive 8 laps on the Zandvoort Circuit.
Throughout both training and test sessions, the car of choice is the Mercedes F1 team’s car (W12). During
these 8 laps, all data is collected according to the data harvesting and preprocessing principles as
described in section 5.1. No visualizations are shown to the participant but the learning system does
evaluate the incoming stream of data to minimize the learning effect and to maximize the reliability of the
advice.

After the driver has finished the set of 8 laps, the driver is given an opportunity to take a break to
regain strength. This break is mandatory, as otherwise the driver might experience exhaustion and/or sore
shoulders after the first session or during the second session.

6.1.3 Test Session
The third section of the experiment includes the test session. This test session is the next phase within the
experiment wherein the participant is exposed to the feedback system. If the participant is the better
driver, as denoted by the introduction of this section, the dataset only includes data on this participant. If
the participant is the second, and hence worse, driver of the experiment duo, the dataset includes all data
on the first driver in the experiment and the training data of the second driver.

The driver is again asked to drive 8 laps on the Zandvoort Circuit. As denoted by the 6.1.2, the
car of preference here is the Mercedes F1 team’s car (W12) as well. During the session, the setup includes
an additional screen on which the data visualizations can be seen that correspond to the advice generated
by the learning system and the current telemetry.

The researcher closely observes the behavior of the participant to deduce potential errors,
misunderstandings and/or issues during the session with regard to the feedback system. After the driver
has finished the set of 8 laps, the session is stopped. The driver is asked to pause the game and leave the
simulator.

6.1.4 Survey
After both sessions have been completed, the participant is asked to fill in a survey. Within this survey, the
participant is asked about his experiences, the benefits and limitations of the system and the potential
points of improvements.

6.1.5 Open Discussion
Once the participant has completed the survey, the participant is asked to participate in an open discussion
wherein the participant can elaborate on his experiences during the experiment and hence denote potential
points of errors. Throughout the discussion, the participant is asked a series of open questions about
potential ideas, improvements and the effectiveness of the overall system. During this interview, the
participant is allowed to freely comment and question the project and its purpose.

This open discussion is recorded to create a transcript of the interview. The participant is
informed about the removal of the recording and the use of the transcript for future development.
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6.2 Results
As mentioned in the previous section, each experiment consisted of two drivers and the experiment setup
is defined by 5 steps. For this research there was room to conduct three experiments. The analysis of the
experiments has been divided into four parts. The first part is on the harvesting of data and the reliability
of the created, ideal, trackline. Secondly, an analysis on the overall performance of drivers is done by
depicting the R-Squared values of the Test sessions against the R-Squared values of the Training Sessions
for every participant. Thirdly, the performance based on the brake ratio, the throttle ratio and the steering
angle is analyzed based on the initial training dataset and the test dataset. Lastly, a brief analysis on the
feedback system is done. This is done based on the responses of the survey.

6.2.1 Rate of data acquisition with effect on Trackline recreation
To visualize the power of big data and process mining, the effect of a high data acquisition rate is denoted
against the reliability of the created advised trackline. By displaying the amount of timestamp markers
created per lap, it is easily seen when and where the data packets have dropped. To overcome the amount
of dropped data, more data must be gathered. As depicted in figure 15.1, once the total number of laps
driven increases, the total coverage of the timestamps increase, leading to a higher accuracy per marker.
From this dataset, a generalized model can be constructed wherein each required timestamp is covered by
the total data set. From this generalization, a reconstruction of the trackline can be created. The newly
created trackline is therefore constructed by applying the learning model to deduce the optimal values per
marker. Wherein the harvesting system has to make sure that the sample size is large enough to cover
every potential, and desired, timestamp marker. From this reconstructed trackline, an advice is created.
This yields that more data means a higher reliability of the advice per marker.

Figure 15.1: The data markers coverage per timed lap, depicting the packet drops
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Figure 15.2: The total coverage after generalizing the data markers

6.2.2 Data Variation Change as indicator of method effectiveness
When the goal of a training is to improve multiple drivers, along the same progress line, the variation in
data is the most important factor. More variation means a larger difference in performance and therefore a
larger difference in abilities, confidence and skills. In this section of the analysis the focus is on the
overall performance of the drivers, rather than focussing on the skills, abilities and level of confidence of
these drivers. The analysis is based on the R Linear Regression model wherein the severity of variation
within the dataset is denoted in R-Squared. R-Squared is in the context of this research defined as the
statistical measure of how close the data fits to the generated regression line. If the data is closer to 1, the
data fits the model better and hence the total amount of variation is less. Resulting in improvements
throughout the training process. On the contrary, if the R-Squared value is closer to 0, the data does not fit
the model and hence the variation is significantly worse. Meaning that the training is not effective within
the model.

Considering the setup of the experiments, some data can be excluded from the analysis. For
instance, the data of lap one and lap two, often include the effects of the learning curve, as denoted in
chapter 5.2.1. Moreover, the datasets recorded per driver showed decreasing classification levels the
longer the session took. From this can be concluded that due to effects of fatigue and exhaustion, drivers
did perform less at the end of a session compared to the beginning of the session. For the reliability of the
analysis, only laps 3 and laps 5 are taken into account.
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Figure 16.1: The R-Squared value as a rate of variation
on Lap 3

Figure 16.2: The R-Squared value as a rate of variation
on Lap 5

Considering the focus of this part of the analysis, the independent variable is defined to be the session
type. Per type, it is looked at the difference in R-Squared values. The R-Squared is defined as the
depiction of the distance ratio against the amount of time on track. The regression line therefore is the
ideal line wherein the 100% distance ratio is reached in the most average amount of seconds. This
regression line is defined by the classification model as discussed in chapter 5.2.

When analyzing Figure 16.1, the most visible difference between the training and test data is that
there are less peaks and therefore less outliers within the datasets during the test session compared to the
training session. Moreover, the values seem closer to each other. This same phenomenon seems to be
present within Figure 16.2, where the analysis on lap 5 is depicted. When willing to prove this
observation statistically, the R-Squared value is calculated using the formula

𝑅2 =  1 −  𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 

This formula yields the following table of R-Squared values against the corresponding lap and session
type:

Lap 3 Lap 5

Training Session R2 = 0.977665 R2 = 0.979416

Test Session R2 = 0.992191 R2 = 0.988712
Table 4: R2 values for lap 3 and lap 5 for both session types

From this table it can be deduced that in any case the training session had less variety within the data
samples, although there is only the slightest difference. Nonetheless, This yields that the testing session
had an additional factor in play that caused this slight increase in overall performance. Having removed
the learning curve as denoted in section 5.2.1, increases the likelihood that the feedback system had an
positive effect on the drivers causing the drivers to be more aware of the situation.
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6.2.3 Car handling with and without feedback
The second performance analysis method is based on the telemetry data retrieved from the real-time
database and the ideal telemetry calculated by the learning system. Following the order of the tests, first
an introduction training is given to the drivers to eliminate any effect of the learning curve. Next, the
drivers are asked to drive the laps without feedback and after, the drivers are asked to drive the laps with
feedback according to the experiment outline as described in section 6.1. On the contrary to the previous
analysis deducted in section 6.2.2, the focus of this analysis is on finding and recognizing (potential)
improvements in the dataset recorded during the test session relative to the training session.

Before this analysis starts, it has to be denoted that the calculation of the ideal telemetry is based
on the averages of the telemetry retrieved from the highest classified markers, this notion is explained in
more detail in section 5.2. This means that, although the advised telemetry yields potentially more reliable
telemetry data, there still exists a margin of simplification towards an average over the marker. The more
data gets collected, the more accurate and reliable this telemetry data becomes.

To cover all aspects of the experiment results, a breakdown in areas of the analysis is required.
First, the proceedings of the overall performance of all drivers, as introduced in section 6.2.2, is discussed
by means of the differences in overall race pace. Secondly, the relation of this change in pace is depicted
against changes in the efficiency of the brake and throttle performance. Finally, the relation of this
difference in pace and performance is depicted against the efficiency of the use of the steering angle.

6.2.3.1 Differences in race pace among drivers per duo
Before the experiments started, the drivers were grouped based on their experiences with driving and
racing simulators. According to these groupings, driver duo’s were created. Each duo consisted of an
presumed experienced driver and a presumed inexperienced driver. The aim of this division between the
participants opened options for amplifying the effects of the training to gain the maximum insights as
possible during the analysis phase.

When looking at the overall race pace of the drivers (Figure 17), it is seen that almost all drivers
improve upon their average speed. Within this context, a higher average speed yields lower lap times and
hence a more efficient drive. Within figure 17 it is also seen that the rate of change is significantly higher
for the less experienced driver after training with the data of the experienced driver compared to the rate
of change for the experienced driver. This is due to the amplified feedback that is caused by the difference
of experience. While it must be noted that the following values are not statistical averages for a test over a
broad sample size, the effects of improvements are visible.

Driver name Avg Pace during
Training Session [km/h]

Avg Pace during Test
Session [km/h]

Difference rate in
percentages [%]

Player 1 199.14 197.59 -0.808

Player 4 174.58 178.43 +2.203

Player 2 199.80 200.79 +0.469

Player 5 179.71 186.79 +3.938
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Player 3 197.78 205.01 +3.659

Player 6 178.70 189.73 +6.174

Table 5: The difference is race pace denoted in percentages [%]

From table 5, it can be deduced that the rate of change of the inexperienced driver correlates to the rate of
change of the experienced driver. Meaning that if the experienced driver barely increases, the rate of
change for the inexperienced driver will be low due to the low quality of the data. If the experienced
driver improves a lot, the quality of the data is high and hence the inexperienced driver can benefit from
this set of highly classified data, meaning that the feedback would become more accurate and reliable.

Looking, in particular, at the best improving driver duo (duo 3; red), it can be seen that the
experienced driver improves a lot in terms of overall pace and performance, leading to a more significant
increase in the performance of the inexperienced driver.

Figure 17: The difference in race pace with and without feedback
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6.2.3.2 Difference in efficiency of Brake/Throttle use
Given the large difference in overall pace and driver performance of duo 3; red, analyzing the data of this
duo returns the best visible effect of the duo training program. In figure 18, the difference in brake and
throttle performance of player 6 has been depicted, wherein the distinction has been made between the
session type (training, test). During the training session, it is seen that there is much fluctuation in the
throttle. This leads to less time on maximum throttle and therefore less overall speed. These fluctuations
can be explained by the level of confidence of the driver. If the driver lacks confidence in the car, the
track and his abilities, the likelihood of cautious driving is higher, leading to a lower overall performance.
This same principle counts for the brake. Comparing the results of the training session to the test session,
it is seen that within the test session, the driver has much more confidence as there are less fluctuations in
the driver’s brake and throttle handlings. This implies that the driver has more understanding of the
situation and hence can better control the car to operate at maximum performance and transition smoother
between states, leading to less harsh changes. Moreover, it is seen that the driver is making less use of the
brakes and therefore makes more use of the friction of the engine to slow down, implying that more speed
and more pace is carried throughout the track, leading to a more efficient handling of the car.

Figure 18: The brake and throttle performance during the training and test sessions.
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6.2.3.3 Difference in efficiency of Steering wheel use
Looking at the use of the steering wheel by player 6 in figure 19, it can be seen that the case is very
similar to the case as discussed in the previous section (6.2.3.2). During the training session, the player
has a lot of fluctuation in the steering wheel throughout the lap. Within the context of the steering angle,
fluctuations mean the rate of corrections required to operate the car. Hence, more fluctuations imply more
corrections and therefore less control of the car and the situation. Comparing the results from the training
session and the test session, it is evident that the amount of fluctuations have decreased, implying that the
driver had more control over the car. Moreover, it is seen that the steering angles remain more consistent
over the track segments, meaning that the cornering gets longer, yielding more pace at the end of the
corner, yielding improved exits.

Figure 19: The steering angle during the training and test session

6.2.4 Effectiveness of the feedback system
During the evaluation part of the experiment, the focus was mainly on the use of the feedback application.
During this evaluation session, the participants were asked to provide feedback on the interaction with the
application and pinpoint out its strengths and weaknesses. This evaluation was done in two parts of which
the first part was a general survey on the experiences of the participants. The second part was in the form
of an open discussion wherein the participants were asked to brainstorm on potential improvements or to
provide further information on their feedback. Due to anonymization, the transcript of the open discussion
is not provided in this research. Nonetheless, the transcripts are saved in a database for further
development.

Analyzing the data from the survey, it is evident that the application is useful within a specific,
predefined, context. However, improvements are required to take place before this application can
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become a standard for training athletes. As denoted in chapter 2, the main concern of the feedback
application is the amount of attention it requires from the drivers. It was stated that the more attention the
application requires, the more distracted the drivers become. For this reason, as stated in section 5.3, the
application consisted of only three main parameters that can directly be translated into action the driver
must take, e.g. turning the steering angle x degrees. The survey yielded that this amount of parameters is
sufficient as the driver can directly interpret what he/she must do without getting unnecessarily distracted
by the data shown. According to participant player 1, the introduced parameters were the only parameters
required to operate the car. Moreover, player 1 stated that the feedback could easily be coupled to the
improvements shown by the lap time parameters. Comparing the understandability of the parameters to
the other drivers (Figure 20), it is seen that on average, the application requires some time and effort to
understand. However, all participants mentioned that after a one to two laps, the parameters were easily
understandable within the context of its use.

Figure 20: The amount of effort required by the participants to understand the dashboard

When looking at the distraction rate of the application in figure 21.1, 60% of the participants
denoted not to be distracted by it. The 40% that did denote getting distracted by the application,
mentioned that the distraction was mainly due to not understanding the parameters and the position of the
screen. For the experiments, the position of the screen was on the left lower side, right above the clutch.
However, as the simulator already contains three 27” inch screens, the act of looking at yet another screen
gets more difficult, yielding more distractions.
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Figure 21.1: The rate of participants feeling distracted by the application

Figure 21.2: The scaling of how distracted the participant was

Figure 21.3: The scale of how subtle the participants thought the information was
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Analyzing the usefulness of this application within its context, it is seen that most participants would like
to see improvements on the type of visualization. The general comment therefore can be made that the
interactive dashboard requires too much attention from the driver to be used well. During the open
discussions, the participants mentioned several opportunities for integrating this application within a VR
device or a potential game overlay to display the feedback in real time without having to use an additional
monitor. The current implementation therefore yielded a slightly above average rating when it comes to
usefulness with regard to the perception of the simulation and the environment as can be seen in figure 22.

Figure 22: The usefulness of the application
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Chapter 7: Discussion and Limitations
When willing to validate the results obtained during the experiments, it is of high importance to be
realistic about the effectiveness, the accuracy and the reliability of the system and the tests. Therefore a
disclaimer must be made. While the results, as introduced in section 6.2, seem promising and effective,
the results lack a statistical backbone. There have only been three iterations with six different drivers in
total, among them three drivers with little knowledge on driving and racing simulators. To ensure the
quality of the research and whether the feedback system based on process mining and machine
learning/statistics works, more statistical testing needs to be done.

Within this section the aim is to answer the sub questions as formulated in section 1.2 by
projecting the results obtained in section 6.2 onto the core of these questions. Section 7.1 evaluates the
recreation of the trackline wherein the basis for this recreation is the highest performed marker per
timestamp and per distance ratio on the track. Next, section 7.2 evaluates on subquestion 2 where the
result of the translation is depicted against the initial route over the track. Lastly, section 7.3 covers sub
question 3, wherein the communication part gets evaluated.

7.1 Recreation of the ideal track line
As denoted in section 6.2.1, the rate of reading and writing data is of high importance when willing to
recreate a track. When looking at the core of the first subquestion as mentioned in section 1.2, the aim is
to recreate a new trackline based on the highest performances over the track based on all the output of all
drivers. Translating this into technical terms, there is a broad set of data required that includes many
positive and negative outliers before an ideal trackline can be created. Although the writing and reading
data rate of the ATS system and the learning system was at its maximum throughout the experiments,
connection unreliabilities and congestion issues caused gaps within the data set, as depicted in figure 15.1.
Therefore a threshold value had to be calculated to maximize the efficiency of the database, due to the
read and write limits, to create as many as possible marker points, while keeping the number of packets
sent and received from the database at its minimum.

The corresponding research subquestion that belongs to this topic of the research is, as denoted in
section 1.2: “In what extent is it possible to recreate an artificial trackline built upon the basis of the
highest performances throughout the track?”. When trying to answer this research question, the results
that section 6.2.1 yielded showed that an approximate of 8 laps was required to fully cover every second
and every driver meter of the track. From the data collected through the racing simulator, it is possible to
reconstruct the events, with regard to every parameter of the car as provided by the Codemasters API, that
occurred during the moment on track. In this way a data collection can be created to artificially regenerate
the track and the position of the car on the track while having every parameter required or not required in
mind. Therefore, the extent in which it is possible to recreate the trackline is endless as long as the
database allows data to be captured.
The trackline that can be artificially created, can be modified using the classifications as introduced in
section 5.2, wherein the highest classifiers per distance ratio or per millisecond on the track can be
counted and bundled together with the average, or best, telemetry settings. In this way, the best possible
track line can be created as a backbone for the feedback system.
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7.2 Translation of data into feedback
The second question that needs to be answered before reliable feedback can be provided to the driver, is
the question on the translation of data into advises based on the current telemetry. The corresponding
research question to be answered is “How can this artificial trackline be translated into terms of required
telemetry changes to guide towards this trackline?”. Given the created trackline, as mentioned in the
previous section, the translation of current telemetry data and known telemetry data is simple. Once the
boundaries, the averages and the standard deviations of the normal distribution per marker of the
telemetry data is calculated by the learning model, a classification will happen to find the best possible
marker point with the highest significance, or Z-Value, on this normal distribution.

The translation needs to happen for three parameters only, as denoted by section 5.3. While these
three parameters are based on a series of calculations to determine which values of the parameters are
actually the value to display, these parameters are easily interpreted as single, rational values. These
values can then be translated into advises per marker, as created by the learning system, and automatically
be bound to represent the marker in terms of the telemetry settings.

As the disclaimer in the introduction of this section (section 6.3) denoted, the current translation
for the amount of data available looks promising, but the translation lacks statistical argumentation to
prove that this type of translation will work over time and remain to generate reliable information for the
drivers.

7.3 Projection of feedback to driver
The presentation of the feedback might be the most crucial part to evaluate during this research. As
denoted by almost all drivers, the type of feedback was not ideal and hence caused a lot of distraction.
Evaluating on the manner the feedback is currently presented, many aspects can be improved, among
which the conversion of the dashboard into a more integrated or more physical installation. In the long
run a digital dashboard would cause confusion to the driver and hence would not work.

Evaluating on the current visualization of the data, it is important to take into consideration the
parameters that need to be available to the driver. When looking at the corresponding research question,
the question yields: “How can these telemetry changes be communicated to the driver in the most
effective manner?”. The core of this question is on how data can be communicated efficiently without too
much distraction. Throughout the research, it was concluded that not all types of feedback were ideal
within the context of this application, e.g., acoustic feedback was labeled as useful for quick updates but
not for continuous feedback, as denoted in section 2.5.2. However, when looking at the survey results,
many drivers mentioned that there was some sense of audio interaction missing from the feedback system.
When asked what the potential use of this acoustic feedback could be, most participants denoted that
acoustic feedback would be more direct and less distracting compared to visual feedback.

As opposed to this statement, the participants did agree that for continuous feedback, visual
feedback would be better, provided that the manner of presenting this feedback was more subtle. As
denoted in section 6.2.4, a potential implementation of this feedback system would be an integration
within the F12020 game or a virtual reality overlay.
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7.4 Limitations
Having in mind the scope of this research, up until the current standing, the project seems promising and
yields great results. Considering that simulators are already widely used for training professional drivers,
an additional layer of training and, eventually, protection is seeming to be the way to conquer the
checkered flag. Defining the rate of change based on the current abilities of the drivers within the same
team is a unique angle for developing a new training program.

Considering the minimal requirements for setting up this research, many limitations have come to play
during the project. These limitations cover a broad list of items that need to be discussed when willing to
redo or expand this project. The actual research limitations will be discussed in the next section. The
items that this section will cover include:

● The availability of materials
● The budget cap
● Domain Experts
● The reliability of the UDP protocol
● The database limitations in contrast to the data collection size
● The limited researches on the Formula One Topic

Availability of materials
The main concern at the beginning of this project was the availability of materials. The validation of the
results required at least a basic type of racing simulator with which a racing environment could be
mimicked. This was deemed to be an issue as the racing simulators available were not easily accessible or
lacked realism. The corresponding companies that had a racing simulator available, were skeptical about
lending it for research purposes and preferred to keep the racing simulators at their own place. Due to the
long distance, this was not a feasible option for this project.

Budget Cap
Another option for getting our hands on the required materials for this research was by purchasing the
materials. Unfortunately the costs and time required for building a racing simulator seemed to be too high
for the purpose of this project. This issue was eventually solved by dr. G.W.J Bruinsma who offered his
help and the racing simulator he had available in the ESports Lab at the University of Twente. Later in the
project, a new racing simulator was purchased by the ESports Lab which was more reliable and more
accurate. This provided the research the required materials to proceed with the project.

Domain Experts
Throughout the research, it was hard to find domain experts to validate the results obtained. After long
discussions with dutch racing teams specialized within this domain, the communications took too much
time which would make it difficult to agree on a plan within the time available. Moreover, due to the
Covid-19 restrictions, the corresponding manufacturers did not agree on visiting the headquarters and
refused to provide professional drivers to participate in the research process. To overcome this issue, the
expertise of the people involved in the faculty of EEMCS and the people of the ESports Lab was used to
validate the results of this project.
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Reliability of UDP
The User Datagram Protocol (UDP) is an internet protocol that over time has proven to work well when
the bandwidth needs to be maximized. However, due to the unreliable nature of UDP, there was a risk of
packet loss and connectivity issues, leading to less complete datasets. Although a logical solution for this
would be to implement the Transmission Control Protocol (TCP), this would, in the context of this
research, not work. For this project and its corresponding implementation, the maximum bandwidth
available must be available with the least amount of delay possible. If this would not be the case, the data
might be outdated and therefore the relevancy of the data will drop. Another issue that might rise is the
delay in the real time display of the application.

Overcoming the packet loss risk was in this project done by maximizing the upload rate while
bundling the data in packets. In this way, if data packets were lost, very soon after a new complete set of
data would be sent. Also, more data was harvested than required, this decreased the possibility of missing
data.

Database Limitations in contrast to data collection size
The main limitation of this project was the used database. As mentioned in sections 3.2.1.1, a specific set
of databases were available. This was due to the read and write speeds and the efficiency of the data
storage. Firebase seemed to be the silver lining among the different databases due to its freemium
subscription and the, presumed, high freemium limits. Nonetheless, when harvesting data, this freemium
limit seemed to become the bottleneck of the project. A lap on the circuit Zandvoort contained
approximately 5.5 million data packets. Each of these packets was meant to be sent to the database.
However, the limits of firebase only allowed 20.000 document writes per day, which in the context of a
lap would mean that we could only record approximately 20 seconds of data per day. This would not even
equal one lap of data. As drivers expect a training session to last for at least 60 minutes, a massive
downscale in sent data had to be performed to maximize the use of the database. If this project was to be
reimplemented, the main change would be the database of use.

Limited Research on Motorsports and Formula One (Drivers)
Research within and among formula one teams is often confidential. Therefore, the amount of papers and
research available on public research data banks is close to zero. Throughout the project and during the
definition of the state of the art, it was almost impossible to find information on how teams have
developed themselves and how drivers are training for maximum performance. During the project, two
dutch motorsports teams were contacted to ask questions about how their processes looked like and what
their average training schedule looked like. Unfortunately, both teams broke contact and did not respond.
Throughout the phase of finding background information, only one paper on the topic of formula one was
found, within this paper, the researcher had research on race outcome predictions. Unfortunately, this was
not relevant for this research.
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Chapter 8: Conclusion and Future work
The aim of this thesis was to find an optimal way of enhancing driver performances by adjusting the
training according to gathered data on earlier achieved performances. This was done in a process of three
steps. The first step was to harvest data on performances of drivers within a team or cluster. This was
done using the Racing Simulator and principles of process mining. The data was stored in a database for
later analysis. The second step was to analyze the gathered data with the main purpose of learning the
track boundaries, the telemetry boundaries and understanding the abilities of the driver. This was done
using conformance checking, basic principles of statistics and linear regression. Lastly, the analysis on the
data retrieved from the learning model was translated into valuable feedback and displayed to the driver
through a feedback system.

Although no data from real formula one cars could be obtained, the ATS system showed that
harvesting process data from formula one simulators is doable and feasible. The corresponding data has
such a level of detail that a real life scenario could be recreated and mimicked from the information
gathered in the simulator. While having in mind the limitations of certain backend systems, e.g. the
database, an intelligent system is designed to harvest and store data. Simultaneously, real time telemetry
data was stored with the purpose of performing active conformance checking.

When analyzing the data gathered by the ATS system, several factors play a role to determine
whether a created marker is of high value. After this classification of data markers has been made, a
training set is created from the currently stored data with which the system trains itself to recognize
patterns. According to these created patterns, the system builds advises per second and per distance ratio
on the track and bundles this with the corresponding telemetry information. Moreover, the system reads
out the real time telemetry database to link the current behavior of the driver to a previously occurring
event or a generated marker to optimize the action, and eventually the performance, of the driver.

The results of the experiments conducted with three duo’s of drivers were promising. Almost all drivers
showed an increase in performance and a rise in confidence. Less fluctuations were observed at the
steering wheel, implying more control over the car and a higher understanding of the abilities of the car
and above all, the abilities of the driver. Additionally, more peaks in the use of the throttle were observed
while the use of the brakes decreased, resulting in more overall pace and performance. This was clearly
visible in figure 17. Nevertheless, while these results do imply an effective training concept, the statistical
backbone of the project is weak. More experiments must be conducted with a larger sample size to
guarantee the effectiveness of the training.

In conclusion, it is not yet possible to guarantee that this manner of training works. The initial concept of
the training method appeared to be effective and pervasive, however, the system lacks statistical coverage
to prove that this way of training athletes guarantees an improvement in performance.

8.1 Recommendations
It can be said that this training method shows potential as the results obtained look promising. However,
to improve the system to make it waterproof, some recommendations must be made. The main
recommendation to be made is the system where all participants seemed to have difficulties with; the
feedback system. As this feedback system is the main interface for the drivers to interact with, this system
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must be either optimized in a way that it does not form a distraction or the feedback system must be
implemented according to the feedback received from the participants. In further research, I would
recommend redesigning the feedback system in a way that it is more visible to the driver with less effort.
Furthermore, it is of high importance to keep the information even simpler so that the driver can see or
feel in a blink of the eye what is expected. Another recommendation that I deem important is the speed of
the database. While the database showed an impressive amount of speed and functionality, the system
lacked a bit behind due to the congestion errors that were present by default. The internet connection and
the database configuration seemed to be a bottleneck throughout the entire process. Perhaps in future
studies, a local database could be implemented to overcome these issues.

Additionally, the learning and analysis method is currently based on the normal distribution. While this
classification method seems to work for this context, it is not always reliable. If a car crashes along the
way, the entire lap gets classified als a low marker. Neglecting the time that a car is lacking in this
situation, the driver might still recover and increase his pace. This increase in pace is currently not
counted towards the final classification and hence the data is discarded. Having too much of these data
points might corrupt the data. To overcome this, a fully functioning deep learning algorithm can be
implemented to recognize events like crashes.

8.2 Future work
To exploit the effectiveness of this training method, these recommendations must be taken into account.
Improvements must be made to increase the reliability and the accuracy of the system. Moreover, by
conducting more user tests, a statistical and scientific backbone can be created for the training method.

Additionally, although the initial concept relied on machine learning and deep learning principles, the
final concept within the scope of this research barely made use of these concepts. For the time allowed to
work on this research, the best possible method to apply was linear regression. For future development of
this project, machine learning and/or deep learning could be exploited to better understand the obtained
data and perhaps give suggestions beforehand instead of in real time. In this way, the system allows the
driver to gain information about what is coming so that the driver can prepare himself to perform the
action. Also, by the use of machine learning, predictions can get more accurate and more reliable.

Lastly, the method of displaying information must be changed. As denoted in the recommendation
section, another manner of providing feedback must be implemented to gain the maximum result while
keeping the level of distraction low. The user must be able to see and interpret the information without
actively working on processing the data. Currently this is the main weakness of the training method. A
potential solution for this issue might be to implement either a virtual reality/augmented reality solution to
project the visuals onto the eyesight of the driver. Yet another solution would be to cooperate with the
manufacturers of the F1 game to implement the feedback system as part of the in-game overlay feedback.
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Appendices

Appendix 1: Search Terms
[Formatting → “Search Term (no. results; Usability scale 1-5)”]

General Search terms on the topic
Search Terms Engine Amount of results

"Formula One" "mining" Google Scholar 4.550

" Formula one" "Driver" Google Scholar 8.210

"Process mining"  ranking
games

Google Scholar 1.080

"Process mining" motorsport Google Scholar 103

"Process mining" games Google Scholar 3.550

"Process mining" Ranking Google Scholar 5.310

"Formula 1 drivers" Google Scholar 327

“driver training simulator” Google Scholar 73.200
Table 6: The search Terms

Search terms on Feedback Systems
“Audio feedback”, “Auditory feedback”, Visual Feedback”, “Physical Feedback”, “Cognitive feedback”,
“informal feedback”, “communicational feedback”, “Written feedback”, “VR”, “Simulator”, “Heads up
display”, “Educational Feedback”, “Corrective Feedback”, “Feedback”, “Driving”, “Distracted driving”,
“Haptic”, “Haptic Feedback”, “Improper feedback”, “ Visual feedback preservice teachers”, “car
feedback haptic”, “overload visual feedback”, “visualization”, “physical feedback steering wheel”,
“accepting feedback criticism”, “Overload of information”.

From these search terms, search queries can be derived:
- Audio Feedback OR Visual Feedback
- Audio Feedback OR Visual Feedback AND Corrective feedback
- Haptic Feedback AND overload of information
- Etcetera.
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Appendix 2: Packet data

Packet IDs

The packets IDs are as follows

Packet Name Value Description

Motion 0 Contains all motion data for player’s car – only sent while player is
in control

Session 1 Data about the session – track, time left

Lap Data 2 Data about all the lap times of cars in the session

Event 3 Various notable events that happen during a session

Participants 4 List of participants in the session, mostly relevant for multiplayer

Car Setups 5 Packet detailing car setups for cars in the race

Car Telemetry 6 Telemetry data for all cars

Car Status 7 Status data for all cars such as damage

Final Classification 8 Final classification confirmation at the end of a race

Lobby Info 9 Information about players in a multiplayer lobby
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Event String Codes

Event Code Description

Session Started “SSTA” Sent when the session starts

Session Ended “SEND” Sent when the session ends

Fastest Lap “FTLP” When a driver achieves the fastest lap

Retirement “RTMT” When a driver retires

DRS enabled “DRSE” Race control have enabled DRS

DRS disabled “DRSD” Race control have disabled DRS

Team mate in pits “TMPT” Your teammate has entered the pits

Checkered flag “CHQF” The checkered flag has been waived

Race Winner “RCWN” The race winner is announced

Penalty Issued “PENA” A penalty has been issued – details in event

Speed Trap Triggered “SPTP” Speed trap has been triggered by fastest speed

72


