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Abstract

This thesis further develops the microscopic travel demand model Octavius by extending it with
the ability to impose equilibrium conditions. In order to do this, an extensive literature research
into microscopic travel demand modelling and equilibria is conducted. Then a mathematical
framework for sequential discrete choice models is analyzed with equilibrium conditions. For this
framework, existence conditions are analyzed and a relaxation of an existing uniqueness condition
is proven. Moreover, an efficient solution algorithm based on Monte Carlo simulation is developed
and implemented. This algorithm is validated and computationally tested. Finally, two case
studies are conducted to showcase the relevance of the developed theory and algorithm.

Keywords— Quantal response equilibrium, discrete choice model, random utility model, Logit-QRE,
microscopic travel demand model, best-response algorithm
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Chapter 1

Introduction

Since the 1950s, travel demand models have been used to support governing decisions. Knowing and
being able to predict travel demand has since then been an important tool for determining the required
infrastructure and public transport services to accommodate travel demand. However, with modern
problems, for example regarding sustainability and new forms of mobility, details such as the heterogeneity
of individuals and modelling interactions between individuals have become a relevant aspect of travel
demand models, resulting in a shift from macroscopic to microscopic travel demand models.

1.1 Octavius

At DAT.Mobility, the microscopic travel demand model, used for long-term strategic forecasting, is
Octavius. Octavius contains a population synthesizer, that generates a synthetic population consisting
of agents, representing people, with certain characteristics. To estimate the travel demand, these agents
move through a system of discrete choice models. The choice probabilities in each discrete choice model are
derived as a random utility model, more specifically a multinomial logit model. The modelled probabilities
are translated into individual choices using Statistical Noise Elimination Technique (SNET) [24]. The
discrete choice models currently included in Octavius can be grouped into three stages:

1. Tourgenerator: in the tourgenerator, all agents decide how many tours they undertake, along with
the number, purposes and order of the trips within each tour.

2. Destination choice: in the destination choice model, for each available mode, the agents decide
what destination they would choose for each tour (first and second tour and possibly a secondary
destination in the first tour) if they would use that mode.

3. Mode choice: in the mode choice model each agent chooses one of the available modes (and with
that also the corresponding set of destinations).

An elaborate description of the models currently included within Octavius is presented in [24]. After this
sequence of discrete choice models, apart from the timing of the trips and the route, a full activity-travel
pattern is determined.

1.2 Equilibria in travel demand models

Since the development of the user equilibrium by Wardrop in 1952 [48], equilibria have played an important
role in travel demand modelling, especially in modelling route assignment. The main motivation to impose
equilibria is that it has been shown to be a realistic method of modelling route assignment, for example
by Dixit and Denant-Boemont [13]. Another important reason is the stability of the model: if the model
satisfies a certain equilibrium condition, than it is stable. Moreover, if the equilibrium is unique, the
model is comparable to any other model satisfying the same equilibrium condition. Until the development
of microscopic and activity-based travel demand models, applying the notion of equilibria in other stages
than route assignment had not often been done. In microscopic and activity-based models often feedback
loops are used to determine an equilibrium for relations and interactions more detailed than only the route
assignment. An important example of this is MATSim [3]. MATSim is an open-source traffic simulation
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software package, that can be used to simulate travel demand, including route assignment, and that defines
an equilibrium which incorporates all aspects of the travel plans of agents. Many other travel demand
models use MATSim as a tool for route assignment, such as MITO [35] and CEMDAP [51]. Other models,
such as MobiTopp [49] use MATSim to attain an equilibrium between the destination, mode and route
choice.
Equilibrium conditions regarding route assignment are usually imposed since route assignment results in
congestion, increasing the travel times on which the initial choice of route was based. Other than this
obvious feedback relation, there are more possible applications of equilibria in travel demand models. An
example is the dependence of a choice on the influence it has on future opportunities, as incorporated by
Habib [20]: if a person decides to choose a certain mode, this might make some destinations unavailable.
In this way, the choice of mode influences the future opportunities of possible destinations. Another
example of an application of equilibria would be in shopping: shops that are busy at a certain time are
less attractive to visit, which could result in people changing their departure time to this shop. A final
example would be the availability of shared mobility without a reservation system, such as the Dutch “ov-
fietsen” (publicly available shared bicycles at most train stations in the Netherlands). The less of these
that are available, the higher the risk that once you arrive at the train station there are none available.
Hence, when more people choose this shared mobility as their mode, it may become less attractive, or
even unavailable.
Other than these realistic relations for which equilibria can be imposed, imposing equilibria can also be
used as a modelling technique. When using feedback loops to enforce capacity or availability constraints
it can be useful to analyze the stability and uniqueness of the outcome of the model with these feedback
loops. Another example is attraction constraints, which are very common in travel demand models.
An attraction constraint essentially ensures that the number of trips arriving at a destination matches
the expected number of trips arriving at that destination, given the number of jobs, shops and other
variables. These constraints could be modelled as a negative (positive) feedback loop if too many (few)
agents choose a certain destination. In that way it can be ensured that the attraction constraints are
satisfied. Analyzing these feedback loops using the notion of equilibria can then ensure that the model
with attraction constraints has a stable and unique solution.

1.3 Research goal

Based on the relevance of equilibria in travel demand modelling, the goal of the research is to extend
Octavius with the ability of imposing equilibrium conditions. In order to do this systematically, we
undertake four steps:

1. Perform an extensive literature research to investigate the possibility of integrating an existing travel
demand model that incorporates equilibrium conditions (such as MATSim) with Octavius.

2. Formulate the problem as a mathematical model.

3. Analyze the model theoretically, focusing on conditions for existence and uniqueness of solutions.

4. Determine and implement solution algorithms for the model and analyze the computational effort
required to find a solution.

1.4 Outline of the report

Chapter 2 discusses the results of the literature research. Chapter 3 describes the mathematical model,
together with some preliminary knowledge and notation of various mathematical fields. Chapter 4 concerns
existence and uniqueness conditions of quantal response equilibria. Chapter 5 presents the necessary theory
about systems of discrete choice models and how these relate to the uniqueness conditions. Chapter 6
describes and validates the solution algorithms, and presents a computational analysis of these algorithms.
Chapter 7 concerns the case studies that were conducted to show the practical use of the developed theory.
Finally, Chapter 8 concludes and discusses the research results and provides ideas for future research. In
Appendix A some additional theoretical background and preliminary knowledge is presented.
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Chapter 2

Literature research

This chapter describes the results of the literature research conducted in September 2021. The database of
Scopus was used for this literature research. The keywords searched were “Agent-based travel demand”,
“Activity-based travel demand” and “Travel demand microsimulator”. resulting in a total of 846 papers.
The database of MathSciNet was used as well, without resulting in any additional papers. Finally, the
Google search engine was used specifically for finding discussions on the current state and problems
with microscopic travel demand models. This chapter firstly presents a historical review of travel demand
models, describing the different aspects that constitute a travel demand model. Subsequently, this chapter
describes the current state of (microscopic) travel demand models. Finally, this chapter presents a list of
desired properties of strategic microscopic travel demand models, which are used to analyze the possibility
of integrating an existing travel demand model with Octavius to achieve the research goal.

2.1 Historical review

The classic trip-based travel demand model consists of four steps:

1. Trip generation

2. Trip distribution

3. Mode choice

4. Route assignment

Later, also the scheduling of the trip(s) was added to the travel demand model, but it is still mostly
referred to as the four-step travel demand model.

Trip generation

In the first step, trip generation, the total number of undertaken trips in a given time frame is determined.
The earliest trip generation model, at the Chicago Area Transportation Study (CATS) in the 1950s [29],
was build around the idea of the number of trips directly relating to the land use1 of a certain area. In
later years, more and more detail has been added to this phase of travel demand modelling. Nowadays,
purposes of trips are considered (e.g. work or shopping) and also distinctions in trip rates based on
demographic characteristics (e.g. gender, household size, car ownership) are made. On top of that, many
modern models, such as MITO [35] and MobiTopp [27], make clear distinctions between mandatory and
discretionary trips.

Trip distribution

In the trip distribution step, origins are matched with destinations for each trip, thus determining the
destination choices of travellers. This is traditionally done using a gravity model: the attractiveness of
choosing a certain destination decreases with increasing distance, with distance represented by travel time
or cost, whilst it increases with higher attractiveness, for example caused by a larger number of available

1Land use is a term describing the economic and cultural activities that are practiced at a certain place.
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shops. Reilly’s law of retail gravitation, presented in 1931 [40], was the first notion of such an analogy
between destination choice and gravity. In the analogy with Newton’s law of gravitation, the attractiveness
of a retail center becomes the mass. Correspondingly, Reilly defined the point of indifference, the point on
the line between two retail centers A and B where both retail centers are equally attractive. This point is
closer to A when B is larger and vice versa. The concept of gravity models is still to this day used in many
models in the trip distribution phase of travel demand modelling. Other trip distribution models include
utility based models, often logit models or other S-shaped utility models, such as for example Aurora [2].
Another method is the Fratar method, which is an iterative proportional fitting method. In a paper by
Heanue et al. [21] from 1966 the Fratar method is explained and compared to a gravity model.

Mode choice

In the early CATS there was already some form of mode choice model. Based on historic data they
attempted to predict the influence of increased car ownership and car use on transit use. Later, discrete
choice modelling has been the most prominent model for mode choice, mostly logit based models or other
S-shaped utility models. An example of a travel demand model using discrete choice modelling for the
mode choice is SIMBA MOBi [43].

Route assignment

Route assignment is a topic that has been researched to great extent. It is also often referred to as
traffic assignment or route choice modelling. In the route assignment phase each trip is assigned a route.
The first models in route assignment were so-called “all or nothing” assignments, where every traveller
takes the shortest route. It became apparent that this was not the most realistic method of assigning
routes, due to congestion effects. At first, heuristic methods were implemented to deal with this. Later,
formal mathematical foundations were laid, initiated by Wardrop’s first principle of route choice [48], or
user equilibrium (UE). The user equilibrium is the equivalent of a Nash equilibrium in the game of route
choice. In later studies, it was found that this definition of equilibrium is not necessarily the most realistic.
The main reason for this is that the user equilibrium assumes that all travelers have perfect knowledge
of the system, which in practice is often not the case. This led to the development of the stochastic user
equilibrium (SUE) by Daganzo and Sheffi in 1977 [12]. The stochastic user equilibrium assumes that
travelers do not always choose the optimal route, and it does so by adding noise (randomness) to the
utilities of the different options. In this way, there is a probability that a traveler chooses a non-optimal
route, but the probability of a traveler choosing a better route is always higher. It has been shown, for
example by Dixit and Denant-Boemont [13], that this is a more accurate representation of human behavior
in route choice modelling. Other than the introduction of equilibria, most of the improvements in route
assignment models in the last decades have been adding capacity constraints, storage constraints and
removing the stationary travel demand assumption. Currently, one of the most used route assignment
models is Dynamic Traffic Assignment (DTA), which the agent-based traffic assignment in MATSim is
based on. An elaborate review of route assignment models is presented by Bliemer et al. [7].

Trip scheduling

The developments of models concerning scheduling of trips dates back to the work of Vickrey [47], whose
departure time choice model, known as the Vickrey bottleneck model, describes a dynamic equilibrium
between departure times and road congestion. The Vickrey bottleneck model has been extended to allow
for multiple destinations, heterogeneous preferences in departure times and heterogeneous valuation of
travel time [25]. Most microscopic travel demand models use some form of heuristic or rule-based approach
for the timing of activities, for example TASHA [41]. The model MITO [35] uses the concept of a time
budget in scheduling the activities. On top of departure time choice and scheduling models, arrival time
choice is another method of determining the timing of trips.

2.2 Modern travel demand models

The first real deviation from the traditional four-step modelling paradigm was the tour-based model [8].
A disadvantage of the trip-based four-step model is that a trip chain, or tour, is not in general accurately
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modelled. It may occur that modes differ between a trip back and forth, and in the case of a tour with
multiple destinations, trip-based models are unable to accurately represent these tours (an A-B-C-A tour
for example is modelled as an A-B-A and A-C-A tour instead). This is illustrated in [9] and [24]. Tour-
based models take into account these complete trip chains and can hence accurately represent them.
In scientific literature, around the 2000s, a shift from trip- and tour-based models towards activity-based
models occurred. The main principle behind activity-based models is that travel demand is a result
from activity demand, and that hence the activity demand should be determined in order to predict the
travel demand. In these models, the demand of activities is determined and the traditional four steps of
the travel demand model are seen more as a scheduling problem to fit these activities. An advantage of
activity-based models is for example that purposes of trips and other detailed information can be modelled
more accurately. It quickly became apparent that activity-based models could provide great advantages
for environmental purposes, which was firstly recognized by Shiftan in 2000 [45]. In [39], Int Panis argues
the advantages of activity-based models for solving the air pollution epidemiology: due to the higher level
of detail in these models, exposure to air pollution can be modelled more precisely. For example, in Beckx
et al. [6] the total estimate of air pollution exposure is better, and at the same time they also enable the
disaggregation of exposure over different activity types. Moreover, environmental concerns and new forms
of mobility, such as autonomous vehicles and shared mobility, require governments to shift the focus from
expanding infrastructure to managing travel demand [15]. An elaborate discussion of the advantages of
activity-based model is presented by McNally and Rindt [32].
A recent trend is from activity-based models towards agent-based models. In agent-based models, the
behaviour of agents, which most of the time represent persons or households, is autonomous, meaning
that there is no strict (mathematical) model defining the behaviour of agents. In for example MATSim,
agents’ plans are sometimes randomly adjusted and subsequently evaluated (scored). In this way, agents
learn what better and worse plans are. In non agent-based models, agents make such choices based on
deterministic models, most of which fall into the following two categories:

1. Discrete choice modelling: a finite set of possible choices, from which each agent chooses one based
on a known probability distribution.

2. Rule-based methods: a set of rules, sometimes in the form of a decision tree, which determine the
choice of each agent.

Note that these non agent-based models, similar to agent-based models, still have a stochastic component
to them. However, the probability that agents make a certain decision is explicitly modelled by the
modeller. In the field of transportation engineering, the term agent-based is often used for any model
that incorporates some type of individual behaviour, however we prefer reserving the term for autonomous
behaviour since that is more in line with the definition of agent-based models as used in other scientific fields
such as computer science. Nguyen et al. [37] give an overview of existing microscopic traffic simulators,
categorized as fully agent-based, featuring agent technology and activity-based.
Other than the distinction between trip-, tour-, activity- and agent-based models there is another way
that we can categorize travel demand models, based on [37]:

1. Macroscopic: low level of detail; e.g. aggregated traffic flows.

2. Microscopic: high level of detail; entities such as individuals, household and vehicles modeled with
a high level of detail (e.g. demographic characteristics).

3. Mesoscopic: a mixture of macroscopic and microscopic; individuals are modeled but not with a high
level of detail in behaviour and interaction.

4. Nanoscopic: an extremely high level of detail. You could think of autonomous vehicles where aspects
such as gear shifting are modelled.

The nanoscopic level is as of yet not relevant for travel demand models. Since the term mesoscopic
is ambiguous we prefer to only use the terms microscopic and macroscopic. In the early stages of
travel demand modelling, macroscopic results (e.g. traffic flows, modal split) were enough to meet
the requirements for determining governing policies. However, in recent years a need for disaggregate
macroscopic results developed: macroscopic results disaggregated per purpose, or per demographic characteristic.
In [9] and [24] it is discussed why microscopic travel demand models are computationally advantageous
for obtaining disaggregate macroscopic results. On top of the computational disadvantages, macroscopic
models are unable to explicitly model interaction between persons and within or between households.
Moreover, macroscopic models are unable to take into account dependencies of choice probabilities on
earlier decisions (e.g. destination choice depending on trip purpose).
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2.3 Desired properties of a microscopic travel demand model

Now that the relevance of microscopic models is established, it is important to set up a list of desired
properties of such a model, since microscopic models come with a variety of problems that do not occur
in macroscopic models. Based on some discussions and comments in various papers, and mainly based on
the paper by Kagho et al. [23], we set up the following list of desired properties of a microscopic travel
demand model:

1. Realism: the results of the model should resemble observed mobility patterns such as trip length
frequencies, modal splits and traffic flows.

2. Comparability: in order to use the model for strategic decision making, comparability is crucial.
Comparability means that any minor change in input should lead to a minor change in output.
Moreover, the changes in output must be explainable by the changes in input. Two main checks are
required to verify comparability:

• Sensitivity analysis: evaluating effects of minor changes in input.

• Forecasting ability: testing the ability of the model to provide an accurate prognosis for a later
time, given that the required data for that later time is available.

In [23], Kagho et al. state that the latter of these has never been validated in microscopic models.
However, in [41], the TASHA model has successfully been validated for its forecasting ability.

3. Transparency: a model is transparent if:

• The effects of stochasticity in the model are accounted for.

• The model is reproducible: another researcher can, provided the necessary data is publicly
available, replicate the model and its outcomes.

The first property is often the focal point of the validations of travel demand models. Advanced calibration
techniques are used to make sure that on an aggregated level, such as traffic flows, the outcome of the model
is realistic. The second and third properties are what most models lack, which is also stated by Kagho et
al. There are a couple of reasons for this. One of them is that most models use some form of calibration
in order to replicate aggregate measures. And although this is not necessarily a bad methodology, it is
important to analyze the effects of using such a calibration technique on the forecasting ability (do changes
in input yield realistic changes in output). Moreover, from a scientific point of view, it is important to
account for the stochasticity of the outcome due to the calibration techniques. A final problem is that
not all models describe their calibration techniques in great detail, meaning that reproducibility is not
satisfied.
In general, agent-based models do not fit these requirements. Due to the lack of a (mathematical) model
behind the simulated choices, both comparability and transparency can not be guaranteed. Moreover, the
outcomes are highly stochastic, especially on an individual level.
Octavius aims to satisfy these three properties in the following way:

1. Behavioral models are estimated in the form of multinomial logit models. These models (sets
of parameters) are estimated using log-likelihood maximization on datasets containing observed
(tourfrequency, destination and mode) choices of travellers as the dependent discrete choice variable
amended with data on properties of both the chosen and non-chosen discrete alternatives and
properties of the traveller and their context as the independent variables. Only models that fit
sufficiently to the data (adjusted r squared values aimed to be as high as possible) are being used and
only parameters that are statistically significant2. The choice allocation technique used, SNET, is
proven to return the results closest to the modelled reality based on the probability distributions [24].
Combining these two facts we see that Octavius is able to replicate an average situation with high
accuracy.

2. The choice allocation technique SNET is also proven to compare two situations with as little change
in output as required to represent the change in input [24].

3. The causes of stochasticity in Octavius are limited, although an extensive research into the precise
effects of this has not yet been done. The model is reproducible: given that the same data is used
(and thus the same estimated parameters are derived), the results in Octavius will only differ due
to the known causes of stochasticity.

2With statistically significant here is meant that the parameters is larger than 0 (hence contributing to the
utility) with significance level 95%.
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The main reason that Octavius satisfies these properties is because Octavius is a framework built upon well-
known mathematical formulations and conditions. The population synthesizer satisfies maximum entropy
conditions, and the choice probabilities are derived under the assumption of random utility maximization.
On top of that the framework is modular; it consists of a sequence of well-defined discrete choice models,
which can easily be extended, replaced or removed. These properties make Octavius both comparable
(each outcome satisfies these conditions) and reproducible (there is no unpredictable heuristic or complex
method used). The use of SNET further increases the comparability of Octavius and ensures the realism
of the outcome.
Using agent-based technology or heuristics generally leads to losing the performance guarantees, especially
comparability and transparency. In the literature research, no existing travel demand model came up that
imposes equilibria whilst not using any of these methodologies. Hence, the conclusion of the literature
research is that there is to our knowledge no existing travel demand model which we can integrate with
Octavius to be able to impose equilibrium conditions whilst keeping the desired properties satisfied.
Therefore, the remainder of the research will focus on extending the sequential discrete choice model
based framework of Octavius with the ability to impose equilibrium conditions.
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Chapter 3

Mathematical framework

This chapter firstly discusses some preliminaries concerning discrete choice models and random utility
models. Moreover, an analysis of different equilibria is presented, including the quantal response equilibrium.
Using this theory, the general mathematical model which can be applied to Octavius is setup.

3.1 Preliminaries

3.1.1 Discrete Choice Model

Discrete choice models are models that describe the choices of certain entities, e.g. persons or firms, among
some discrete set of alternatives. There are three important characteristics the set of alternatives must
exhibit in order to fit within the framework of a discrete choice model:

1. The alternatives are mutually exclusive; choosing one alternative implies not choosing any of the
other alternatives.

2. The set of alternatives is exhaustive; all possible choices are included.

3. The set of alternatives is finite.

These necessary characteristics are not restrictive: as long as your choice options are finite, the first two
characteristics can be satisfied. Consider the first characteristic: if the choice set would consist of some
alternatives J = (1, . . . , J) and any possible combination of these alternatives, a new set of alternatives
can be constructed consisting of all possible combinations and the first characteristic is satisfied. Similarly,
if the set of alternatives is not exhaustive, a “dummy” alternative can be added representing all choices
that are not included, yielding an exhaustive alternative set. The final characteristic is restrictive: there
are certainly scenarios where the choice set is not finite (think for example of the amount of money to
invest in a certain stock). This characteristic distinguishes discrete choice models from regression models,
which allow for continuous (and thus infinite) choice options.

3.1.2 Random Utility Model

Usually, discrete choice models are derived under the assumption of utility-maximizing behavior. This is
a principle in behavioral sciences that assumes that any person aims to maximize their (expected) utility,
or reward, when making a decision. A model that derives the choice probabilities in this way, originating
from the work of Marschak [28], is called a Random Utility Model (RUM). It is important to note that
random utility models can be used to represent decision making that is not based on utility maximization.
The derivation ensures consistency with random utility maximization, rather than exclude the model from
being consistent with other forms of behavior. In principle, random utility models can simply be seen as
describing the relation of explanatory variables (such as demographic characteristics) to the choices made,
without specifying how the choice is made [46]. The basic principle is as follows: consider some decision-
maker i, the utility that this decision-maker obtains from choosing some alternative j equals Uij . However,
a researcher does not observe this exact utility. Depending on the type of data available, the researcher
observes some attributes xij of the alternatives (possibly different among different decision-makers) and
some attributes si of the decision-maker. Then, the researcher can set up a function Vij = V (xij , si),
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which is often called the representative utility. In general, Uij ̸= Vij , and hence some error terms ϵij
are introduced to capture the part of utility that the researcher can not observe. Hence the utility Uij

is decomposed as Uij = Vij + ϵij . There are many different models resulting from this notion of utility,
depending on the error distribution that is assumed. If a type I extreme value distribution1 is assumed,
the probability that the utility Uij for agent i and alternative j is larger than the utilities for all other
alternatives j′ follows the Logit formula:

Pij =
eVij/λi∑

j′∈J eVij′/λi
(3.1)

Another realistic error distribution that is often assumed is a Normal distribution, which results in the
Probit model. However, for this model no closed form solution exists.

3.1.3 Game Theory

As discussed in Chapter 1, equilibria have played a large role in traffic modelling. The focus initially was
on the problem of route choice and the effects congestion has on the route choice of agents. This led to the
introduction of the User Equilibrium by Wardrop in 1952 [48]. This is essentially the Nash Equilibrium
applied to the strategic interaction in the route choice problem. To formally define the different notions of
equilibria, consider a game Γ = (A, {∆i}ni=1, {Vi}ni=1), where A is the set of agents (1, . . . , n), ∆i represents
the set of strategies πi = (πij)j∈J for agent i and alternatives j ∈ J . Such a strategy is essentially a
probability distribution over the set of alternatives. Clearly, such a strategy πi must satisfy

∑
j∈J πij = 1.

πi is called a pure strategy if πij = 1 for some j and a mixed strategy otherwise. Vi = (Vij)j∈J is the
set of representative utilities for agent i. By π−i and V−i the strategies and utilities of all agents except
agent i are denoted.

Definition 3.1 (Nash Equilibrium). Let Γ = (A, {∆i}ni=1, {Vi}ni=1). A Nash Equilibrium (NE) is a set
of strategies {πi}ni=1 such that no agent can unilaterally improve their utility. Hence, a Nash Equilibrium
(NE) is a set of strategies π∗ such that

Vi(π
∗
i ,π

∗
−i) ≥ Vi(πi,π

∗
−i) ∀πi ∈ ∆i ∀i ∈ A

Definition 3.2 (User Equilibrium). A User Equilibrium (UE) is a solution to a route choice problem
such that no agent can unilaterally improve (decrease) their travel time.

The equivalence should be clear: in both the Nash and the User equilibrium, an agent can not improve
their utility by changing their strategy. Note that in modern models where the user equilibrium is applied,
most of the time some general cost is used to describe the utility of a route, which is only partially based
on travel time.

In 1977, Daganzo et al. [12] introduced the concept of the Stochastic User Equilibrium (SUE). This
concept of equilibrium relaxes the assumption that all agents always choose the best action (i.e. the
shortest route). Two main reasons why this is behaviorally applicable is because not all agents have
perfect information of all travel times, and moreover not all agents perceive the utility of a certain route
in the same way, leading to what seems random behavior. The concept of agents perceiving alternatives
in different ways is captured by the perceived utility.

Definition 3.3 (Perceived utility). Given a game Γ = (A, {∆i}ni=1, {Vi}ni=1) and some error terms ϵij
with possibly different distributions Qij for every combination of agent i and alternative j. We define the
game Γ̃ = (A, {∆i}ni=1, {Ui}ni=1) as the game with utilities:

Uij = Vij + ϵij ∀i ∈ A ∀j ∈ J (3.2)

Uij is referred to as the perceived utility of agent i for alternative j. Note that this definition of perceived
utility is exactly the same as the utility definition in random utility models (utility consisting of a random
and a representative part).

With this notion of perceived utility, the Stochastic User Equilibrium can be formally defined:

1The type I extreme value distribution, also referred to as Gumbel distribution is the probability distribution

with cumulative distribution function F (x;µ, λ) = e−e−(x−µ)/λ
.
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Definition 3.4 (Stochastic User Equilibrium ). A Stochastic User Equilibrium is a solution to a route
choice problem such that no agent can unilaterally improve their perceived travel time.

It has been shown, for example by Dixit and Denant-Boemont [13] that the SUE is behaviorally
more consistent in traffic equilibrium models, meaning that it can predict average traffic behavior and
variability in traffic behavior more accurately than the UE. In 1995, McKelvey and Palfrey [31] introduced
the Quantal Response Equilibrium (QRE), which is also based on the concept of perceived utility. In the
QRE model, similar to the SUE model, agents choose actions based on perceived utility. The QRE is
formally defined as:

Definition 3.5 (Quantal Response Equilibrium). Let Γ = (A, {∆i}ni=1, {Ui}ni=1) with utilities U as in
(3.2) where the error terms ϵij follow some distribution Qij . The Quantal Response Equilibrium (QRE)
is a set of mixed strategies {πi}ni=1 such that no agent can unilaterally improve their perceived utility.
Hence, a Quantal Response Equilibrium is a set of strategies π∗ such that

π∗
ij = P

(
Uij(π

∗) > Uij′(π
∗) ∀j′ ̸= j ∈ J

)
i.e. in equilibrium, the (mixed) strategy of an agent is exactly equal to the probability distribution of an
alternative having the maximal perceived utility.

Note that the QRE is a generalization of the SUE. Where the SUE was specifically designed to analyze
route choice problems, the QRE can be used in many different applications. The QRE essentially combines
the strategic context of Nash equilibria with the theory of random utility modelling, which makes the QRE
a perfect fit for Octavius.

3.2 Mathematical formulation

As discussed in Section 1.1, Octavius is a microscopic travel demand model, consisting of discrete choice
models, derived as random utility models. As such, Octavius can be represented as a system of discrete
choice models with agents, representing people, moving through this system and making choices according
to these choice models, using SNET for allocating these choices.

3.2.1 Notation

Define a system of discrete choice models as a tuple (A,M) where A is the set of agents (|A| = n) and
M the set of discrete choice models (|M| = M). For any model m ∈ M the (representative) utilities
and the set of alternatives are denoted with the superscript (m): V (m) and J (m). The corresponding

game is defined as Γ = (A, {∆i}ni=1, {{V
(m)
i }ni=1}m∈M) where the strategies in ∆i define a complete set of

probability distributions for all discrete choice models in the system. Note that the representative utilities
of a certain agent may be dependent on the strategies of other agents.

3.2.2 Graphical representation

To visualize these systems we define the following graphical representation for a system of discrete choice
models:

• The nodes of the network are the models m ∈ M.

• Directed solid edges: these indicate that an agent making a choice in a certain model implies the
next choice the agent makes is in the model at the other end of the edge. In the case where the
next model depends on which alternative is chosen, the subset of alternatives for which the arrow
holds is written on the arrow.

• Directed dashed edges: a directed dashed edge (mi,mk) is included if the utilities in model mk are
dependent on the outcome of model mi.

An example is provided in Figure 3.1
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Figure 3.1: Example of a graphical representation of a system of discrete choice models.

Figure 3.1 describes the choice of mode, destination, route and departure time. Both the destination
choice and route choice are dependent on which mode was chosen. After the departure time choice all
decisions are made and congestion effects can be determined. These effects are given as input to the mode,
destination, route and departure time choice using a feedback loop.

The only part of Octavius that does not necessarily fit this structure is the population synthesizer,
since this is not a random utility based model. However, this is also not the part of the model for which
we are interested in imposing equilibrium conditions. For the relevant parts for imposing equilibrium
conditions, the mathematical framework as presented above applies to Octavius. Hence, the remainder of
the research can be split up into three parts:

1. Analysis of existence and uniqueness conditions of quantal response equilibria.

2. Relating these existence and uniqueness conditions to systems of discrete choice models.

3. Determining, implementing and testing solution algorithms.
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Chapter 4

Existence and uniqueness of QRE

This section concerns existence and uniqueness conditions of the quantal response equilibrium. The
analysis largely follows from and builds upon the work by Melo [34]. The notation differs slightly due to
the explicit connection that is made with random utility models and the use of notation in accordance
with Train [46], as introduced in Chapter 3. Firstly, the general existence and uniqueness conditions of a
QRE are presented. Then, the special case of QRE in logit models is addressed. Subsequently, relaxations
of the uniqueness condition are presented. Some definitions and theorems regarding convex functions,
variational inequalities and matrices are included in Appendix A.

4.1 Existence

From the definition of the quantal response equilibrium (Definition 3.5), one can see that it is equivalent to
a fixed-point of the strategies and the utilities given these strategies. This notion of a fixed-point problem
provides a large set of tools to prove existence and uniqueness of the equilibrium. The following sufficient
conditions for a QRE to exist were presented by McKelvey and Palfrey [31]. Let Pi : RJ → ∆i with J
the set of alternatives and ∆i the set of mixed strategies be defined as

Pij = P
(
Uij ≥ Uij′ ∀j′ ∈ J

)
Hence Pi is a function that maps the representative utilities Vij(π) to a probability distribution, given the
error distributions Qij (recall that Vi represent the set of representative utilities of agent i for alternatives
J ).

Theorem 4.1. There exists a QRE if the following conditions hold:

(a) Pi is continuous on RJ .

(b) Pij is monotonically increasing in Vij.

(c) If ϵij are i.i.d., it holds that

Vij > Vik =⇒ Pij(Vi) > Pik(Vi) ∀i ∈ A ∀j, k ∈ J

(d) The error terms ϵij have a density Qij, for which the marginal distribution exists and E[ϵij ] = 0 for
all i, j.

Proof. Following [31]: A QRE is a fixed point of (P ◦V )(π), which is continuous on π ∈ ∆ since ϵ has a
density. Hence, by Brouwer’s fixed point theorem [10], P ◦ V has a fixed point.

The conditions for existence of a QRE are relatively straightforward: the error terms must have
some density such that the probability distribution Pi that results from the error terms is continuous.
And moreover, the probability of an alternative being chosen must be an increasing function of the
representative utility. Finally, if the error terms are i.i.d. it must be the case that a larger representative
utility implies a larger probability of being the largest perceived utility.
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4.2 Uniqueness

In 1980, Fisk [17] presented a proof of uniqueness of the Stochastic User Equilibrium, using equivalence
to and uniqueness of a convex optimization problem. Although his work was on the Stochastic User
Equilibrium in route assignment problems, this can be extended to quantal response equilibria in general
discrete choice models. This is due to the fact that although the Stochastic User Equilibrium is a specific
application of the QRE, mathematically, it is not less general. In 2021, Melo [34] proved uniqueness of
quantal response equilibria under well-defined conditions that are economically interpretable. Moreover,
the conditions presented are more general than the conditions found by using convex optimization and the
results, by for example Zhang [50], using contraction mapping theorems. The uniqueness proof by Melo
requires two general assumptions. Using these assumptions, an equivalence between a QRE in a game Γ
and a NE in a perturbed game ΓR can be established by exploiting theory on convex conjugates. Then,
using theory of Variational Inequalities the uniqueness condition of the NE and hence the QRE can be
obtained. Throughout this section the assumptions and the most important aspects of the proof by Melo
are described.

Assumptions

Throughout this section, we consider a game Γ = (A, {∆i}ni=1, {Ui}ni=1) with a set of alternatives J =
(1, . . . , J).

Assumption 4.1. The error terms ϵij for agent i and alternative j are drawn from an absolutely
continuous distribution with full support and zero mean and these distributions are independent among
the agents.

In general, requiring error terms to have an absolutely continuous distribution with full support is not
restrictive. For example, two popular random utility models, logit and probit, satisfy this requirement.
Requiring the distributions to have zero mean might appear to be restrictive, however as illustrated by
Train [46] (Section 2.5.1), only differences in utility matter, so a random utility model can always be
adjusted to having error terms with mean zero1. Requiring the error terms to be independent among
agents can definitely be restrictive. Consider for example people in the same household being modelled
with correlated error terms because it is expected that they will perceive utilities in a similar manner.

The second assumption uses the social surplus function:

Definition 4.1. The social surplus function, as introduced by McFadden [30], is a function ϕ of the
representative utilities V , given some error distribution Qij for error terms ϵij .

ϕi(Vi) = E
[
max
j∈J

{Vij + ϵij}
]

for each i ∈ A

Given some QRE π∗, ϕi(Vi(π
∗
−i)) defines the agent i’s expected utility in equilibrium: each alternative is

chosen with the probability that it is maximal, with the resulting utility being the expected utility of the
alternative, given that it is maximal. This exactly yields ϕi(Vi) as the expected utility.

Assuming that the error distribution satisfies Assumption 4.1, the social surplus function is a convex
function of V that is continuous and differentiable everywhere [42].

Theorem 4.2. Let ϕi be the social surplus function, defined in Definition 4.1. Then the QRE π∗
i for

each agent i ∈ A can be expressed as follows:

π∗
i (Vi) = ∇ϕi(Vi(π

∗
−i)) ∀i ∈ A

Proof. This follows directly from the Williams-Daly-Zachery Theorem (Rust [42], Theorem 3.1).

The intuition behind Theorem 4.2 is that

∇Vij (max
j∈J

Vij + ϵij) =

{
1 if j = argmaxj∈J Vij + ϵij

0 else

Hence ∇Vijϕi(Vi) is exactly the probability that Vij + ϵij > Vij′ + ϵij′ for all j′ ̸= j. Theorem 4.2 hence
describes the same fixed-point as the fixed-point in Definition 3.5 that defines the QRE.

1If a researcher would model an error term ϵij with mean nonzero, the researcher would implicitly increase or
decrease the representative utility of agent i for alternative j.
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Assumption 4.2. The Hessian of the social surplus function satisfies the following condition:

||∇2ϕi(Vi)||∞,1 ≤ L ∀i ∈ A for some L > 0

where the derivative is taken with respect to Vi, and ||A||∞,1 = max||v||1≤1 ||Av||1 with || · ||1 the standard
l1 norm.

Assumption 4.2 implies that agents’ choice probabilities change in a smooth way. ||∇2ϕi(Vi)||∞,1

essentially represents the variability in the expected payoff: if ||∇2ϕi(Vi)||∞,1 is small, the variability
caused by the error terms is relatively high and hence the derivative of the social surplus becomes constant
(changes in representative utility barely affect the expected maximum utility). If, on the other hand, the
error terms vanish, ||∇2ϕi(Vi)||∞,1 → ∞ since the probability of choosing the alternative with highest
representative utility Vij converges to 1, which causes the mixed second derivatives to go to infinity. Hence,
the choice probabilities of an agent do not change smoothly anymore.

Equivalence with a NE

Define R(π) as the convex conjugate function of ϕ:

Ri(πi) := sup
Vi

{⟨πi,Vi⟩ − ϕi(Vi)}

where ⟨x, y⟩ :=
∑

i xiyi. This convex conjugate function R can be used to define a perturbed game ΓR.

Definition 4.2. Corresponding to the game Γ = (A, {∆i}ni=1, {Ui}ni=1) define the perturbed game ΓR :=
(A, {∆i}ni=1, {Ûi}ni=1) with payoff functions Ûi(πi,π−i) := ⟨πi,Vi(π−i)⟩ −Ri(πi).

This payoff function can be interpreted as each agent maximizing their expected payoff minus Ri(πi)
which can be interpreted as a cost function quantifying the role of the error terms in agent i’s decision.
This is illustrated in Chiong et al [11]. Using Fenchel’s equality they obtain the following expression for
the convex conjugate.

Ri(πi) = −
∑
j

πijE[ϵij |Vij + ϵij > Vij′ + ϵij′ ∀j′ ̸= j ∈ J ]

which illustrates the interpretation of Ri(πi) quantifying the role of the error terms in the decision of
agent i. In [33], Melo proved differentiability of Ri. Using this result combined with Fenchel’s inequality
and the Baillon-Haddad Theorem, Melo established some important properties of the perturbed game ΓR.

Proposition 4.1. Suppose that Assumptions 4.1 and 4.2 hold. Then, for each agent i ∈ A

(a) ϕi(Vi) has a gradient-mapping that is Lipschitz continuous with constant L > 0.

(b) Ri(πi) is 1
L
-strongly convex and differentiable on int(∆i).

(c) Ûi(πi,π−i) is strictly 1
L
-strongly concave with respect to πi for all π−i ∈ ∆−i.

(d) ∇ϕi(Vi(π−i)) = argmaxπi∈∆i Ûi(πi,π−i) for every π−i ∈ ∆−i.

Proof. See Melo [34], Appendix A.4.

Using these properties the equivalence relation between the QRE in Γ and NE in ΓR can be formalized.

Proposition 4.2. Suppose Assumptions 4.1 and 4.2 hold. Then π∗ is a QRE of Γ if and only if π∗ is a
Nash Equilibrium of ΓR.

Proof. Following Melo [34], Appendix A.5: By Theorem 4.2 if π∗ is a QRE of Γ then

π∗
i = ∇ϕi(Vi(π

∗
−i)) ∀i ∈ A

Moreover, if π̃ is a NE of ΓR, by definition (Definition 3.1) for any player i π̃i maximizes Ûi(πi, π̃−i) and
hence

π̃i = arg max
πi∈∆i

Ûi(πi,π−i) ∀i ∈ A

Therefore we see that, by Proposition 4.1(d)

π∗
i = ∇ϕi(Vi(π

∗
−i)) = arg max

πi∈∆i

Ûi(πi,π
∗
−i) = π̃i ∀i ∈ A

and we conclude that if some set of strategies π is a QRE of Γ, then it must be a NE of ΓR and vice versa.

This proposition allows for using the knowledge on uniqueness of Nash equilibria to prove uniqueness
of the QRE.
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Uniqueness of NE

Definition 4.3. The payoff gradient of the game ΓR is the operator ∇Ûi : ∆i → RJ for all i ∈ A. We
use the following notation:

F (π) = −∇Û(π)

and
Fi(π) = −∇πiÛi(π) ∀i ∈ A

The next proposition establishes the equivalence of a NE (and thus a QRE) with a Variational
Inequality (VI) problem.

Proposition 4.3. Suppose Assumptions 4.1 and 4.2 hold. Then π∗ ∈ ∆ is a NE of ΓR if and only if π∗

satisfies:
⟨π − π∗, F (π∗)⟩ ≥ 0 for all π ∈ ∆ (4.1)

Proof. See Melo [34], Appendix A.6.

Intuitively Proposition 4.3 makes sense: Let π∗ be a Nash equilibrium of the game ΓR and consider
an agent i. If for some strategy πi ̸= π∗

i we have that for some alternative j πij > π∗
ij , (4.1) requires that

Fij(π
∗) = −∇πij Ûij ≥ 0. And hence the utility Û must be nonincreasing for increasing πij . The reverse

holds for πij < π∗
ij as well and we see that (4.1) resembles the definition of the Nash equilibrium.

Equation (4.1) is known as a Variational Inequality problem.

Definition 4.4 (Variational Inequality). Consider a function f : Y ⊆ X → X∗ where X∗ denotes the dual
space corresponding to X, then the variational inequality problem is the problem of finding the variables
x ∈ Y that solve

⟨f(x), y − x⟩ ≥ 0 ∀y ∈ Y (4.2)

Facchinei and Pang [14] proved that such a problem has a unique solution if the function f is either a
strongly monotone operator or a uniform block-P function:

Definition 4.5 (Strongly monotone). A function f : X → Rn is called strongly monotone if there exists
a µ > 0 such that:

(f(x)− f(x′))T (x− x′) ≥ µ||x− x′||22 for all x, x′ ∈ X (4.3)

Definition 4.6 (Uniform block P -function). A function f =
(
fi : X → Rk

)
i∈n

is called a uniform block

P -function with respect to X ⊆ Rk×n if there exists an η > 0 such that

max
i∈n

[fi(x)− fi(x
′)]T [xi − x′

i] > η||x− x′||22 for all x, x′ ∈ X (4.4)

Lemma 4.1. (Facchinei and Pang 2003 [14]) The VI problem (4.2) admits a unique solution under any
of the following conditions

(a) f is strongly monotone.

(b) f is a uniform block P-function with respect to X.

Proof. See Facchinei and Pang [14].

This means that in order to prove uniqueness of the NE in the game ΓR and hence uniqueness of the QRE
in the game Γ it suffices to prove that

F (π) = −∇Û(π)

is either a uniform block-P function or a strongly monotone operator. Since then the VI problem (4.1)
has a unique solution.

Definition 4.7 (Strategic influence). Given a game Γ = (A, {∆i}ni=1, {Ui}ni=1) the strategic influence δ
is defined as

δ := max{|Vij(πij ,π−i)− Vij(πij , π̃−i)|}
where the maximum is taken over all agents i, all pure strategies πi and all pairs π−i, π̃−i of opponents’
pure strategies such that only one agent i′ has πi′j ̸= π̃i′j for some j ∈ J . The interpretation of this value
δ is that it is the maximum impact that unilateral deviations have on agents’ payoffs. If this δ ≥ 0 is
finite, the game is said to be of bounded influence. In a game with no interaction, δ = 0.
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Lemma 4.2. Consider the game ΓR = (A, {∆i}ni=1, {Ûi}ni=1). Suppose that Assumptions 4.1 and 4.2
hold and that, additionally, L < 1

δ(n−1)
where δ is the strategic influence of the corresponding game

Γ = (A, {∆i}ni=1, {Ui}ni=1). Then F (π) is a uniform block P -function.

Proof. See Melo [34] Proposition 11.

Theorem 4.3. Consider a game Γ = (A, {∆i}ni=1, {Ui}ni=1) and let δ be the strategic influence of this
game. If Assumptions 4.1 and 4.2 hold, there exists a unique QRE if additionally the following condition
holds:

L <
1

δ(n− 1)
(4.5)

Proof. Following Melo [34], Appendix A.7: under Assumptions 4.1 and 4.2 and condition (4.5) by Lemma
4.2 F (π) is a uniform block P -function and hence by Lemma 4.1 and Proposition 4.3 ΓR has a unique NE
and thus Γ has a unique QRE by Proposition 4.2.

To illustrate the intuition behind these conditions and assumptions, in the next section the specific
case of a QRE in a game where error terms are distributed according to a type I extreme value distribution
is discussed, which is known as the Logit-QRE.

4.3 Logit-QRE

In the field of quantal response equilibria, the Logit-QRE is the main model used in the context of
experimental work [19]. The uniqueness of the Logit-QRE plays a significant role in the field of econometrics
in discrete games. For example in the work by Aradillas-López [1] the uniqueness of the Logit-QRE is
discussed. An example where application of the Logit-QRE has been shown to be useful is in contest
games2 [26].

Definition 4.8 (Logit-QRE). Consider a game Γ = (A, {∆i}ni=1, {Ui}ni=1) where the error terms ϵij follow
a type I extreme value distribution with cumulative distribution function Qi:

Qi(ϵij) = e−e
−(ϵij−µi)/λi

where λi > 0 is the scale parameter. In order to satisfy Assumption 4.1 we require E[ϵij ] = 0, and since the
expected value of the type I extreme value distribution equals E[ϵij ] = µi + λiγ with γ Euler’s constant3,
we define µi = −λiγ to obtain the distribution:

Qi(ϵij) = e−e
−ϵij/λi−γ

i.e. the type I extreme value distribution with mean zero and scale parameter λi. The standard deviation
of this distribution is λiπ√

6
. If we assume ϵij to be independent among agents and alternatives, the expected

maximum utility can be expressed in closed form as:

E
[
max
j∈J

{Vij + ϵij}
]
= λi log

(∑
j∈J

eVij(π−i)/λi

)
which is derived in Appendix ??. Differentiating this expression with respect to Vij yields the QRE of
this game (Theorem 4.2), which is called the Logit-QRE:

πij =
eVij(π−i)/λi∑

j′∈J eVij′ (π−i)/λi
for all i ∈ A, j ∈ J (4.6)

Note that this means that when λi → ∞ (when the variance of the error terms approaches infinity)
the choice probabilities for agent i converge to 1

J
. On the other hand, when λi → 0 (when the error terms

vanish) agent i chooses the alternative with maximum representative utility with probability 1. Hence the
Logit-QRE for λi → 0 is equivalent to the Nash Equilibrium. Unsurprisingly, the strategy (4.6) resembles
the familiar logit formula (3.1). Hence, in a game with no interaction, the Logit-QRE is equivalent to the
standard logit model from random utility theory. In general, the scale parameters λi = λ are assumed to
be equal for all agents i ∈ A.

2A contest game is a game in which players compete with costly efforts to win a scarce prize.
3Euler’s constant, or the Euler-Mascheroni constant is defined as γ = limn→∞

(
− logn+

∑n
k=1

1
k

)
≈ 0.577.
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Proposition 4.4. Consider a game with error terms as in (4.8) with scale parameter λ. Then the value
of L in Assumption 4.2 and thus in Theorem 4.3 equals 1

λ
.

Proof. See Melo [34], Section 3.1.

This implies, by Theorem 4.3, that a sufficient condition for uniqueness of the Logit-QRE is λ >
δ(n− 1).

Example 4.1. Consider the game with payoffs as defined in Table 4.1. Let λ → 0, then the agent chooses
the alternative with the highest expected utility with probability 1, L → ∞ and hence δ must equal zero
in order to guarantee a unique Logit-QRE. In this case, the QRE converges to the Nash Equilibrium, the
solutions that are bold in the figure. The condition δ = 0 is clearly violated in this example, and there are
multiple equilibria. Hence this is an example of when a violation of condition (4.5) results in a non-unique
equilibrium. If, on the other hand, λ → ∞, the variance in the error terms grows infinitely large, and the
representative utility becomes negligible, and hence each alternative is perceived equally favourable. So,
irregardless of the representative utilities V (and the value of δ), the QRE is ( 1

3
, 1
3
, 1
3
) for both agents,

and hence unique.

Agent 1 strategy
Agent 2 strategy

Option A Option B Option C
Option A 0, 0 25, 40 5, 10
Option B 40, 25 0, 0 5, 15
Option C 10, 5 15, 5 10, 10

Table 4.1: Example of a game, with in bold the Nash equilibria.

In this example, δ = 40 and hence λ > 40 is a sufficient condition for uniqueness of the Logit-QRE,
following Theorem 4.3.

We conclude the analysis of the Logit-QRE with an example of a prisoner’s dilemma and analyze the
(possible multiple) equilibria for different values of λ.

Example 4.2. Consider the prisoner’s dilemma as in Table 4.2 with δ > 1. Based on the introduced
theory, we would expect that if λ → 0 the QRE is not unique, since this game has two NE. Following
condition (4.5) we would expect that λ > δ would be necessary to guarantee a unique equilibrium. In
Figure 4.1 the different equilibria are shown for different values of λ. We see that for δ = 1.5, λ = 0.4
is high enough to have a unique equilibrium. For δ = 3, λ = 0.7 is high enough for both equilibria to
be the same. Hence, indeed higher δ requires a higher value of λ, but definitely not as high as condition
(4.5) would suggest. Furthermore, we see that as λ grows larger the unique QRE converges to ( 1

2
, 1
2
) in

both cases which we would expect, and when λ → 0 the QRE’s are the pure strategies for option A or B
(which are the Nash equilibria of the game for δ > 1).

Agent 1 strategy
Agent 2 strategy

Option A Option B
Option A δ, δ 0, 1
Option B 1, 0 1, 1

Table 4.2: Example of a prisoner’s dilemma
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(a) (b)

Figure 4.1: The QRE for different values of λ with in (a) δ = 1.5 and in (b) δ = 3.

4.4 Relaxations of the uniqueness conditions

Melo presented a relaxation of condition (4.5) in [34] as well, based on the concept of games of strategic
substitutes:

Definition 4.9 (Strategic substitutes). A game of strategic substitutes is a game Γ = (A, {∆i}ni=1, {Ui}ni=1)
where the set of alternatives is extended with an outside alternative j = 0. The utilities follow the following
linear structure for all i ∈ A and π−i ∈ ∆−i

Vij(π−i) =

{
κ
(1)
j − κ

(2)
j

∑
i′ ̸=i∈A πi′j if j = 1, . . . , J

0 if j = 0
(4.7)

An example of such a game is a public goods game:

Definition 4.10 (Public goods game). A public goods game is a game in which each player gets a certain
amount of tokens that the player may either put into a pot for a public good, or keep. The payoff is
determined by the number of tokens in a pot multiplied by a factor (between one and the number of
players), which is then evenly divided over the players that put tokens into that pot. The payoff for
keeping tokens is zero.

To abuse the linearity in payoffs for a less strict condition, the proof by Melo uses the concept of the
Game Jacobian:

Definition 4.11 (Game Jacobian). Consider a game Γ = (A, {∆i}ni=1, {Ûi}ni=1) with alternatives J . Let
F (π) = −∇Û(π). The Game Jacobian is defined as the nJ × nJ valued matrix ∇F with

∇πF (π) = −∇2
ππÛ(π) for all π ∈ ∆

In general we express
∇πF (π) = D(π) +W (π) for all π ∈ ∆

where D(π) is a block diagonal matrix with blocks ∇πiFi(π) := −∇2
πiπi

Ûi(π) for i ∈ A and W (π) is a

block matrix with blocks ∇πi′Fi(π) := −∇2
πiπi′

Ûi(π) for i ̸= i′ ∈ A and matrices with all entries zero on
the diagonal.

This Game Jacobian thus consists of n × n blocks of size J × J describing the precise interaction
between agents i and i′ (and vice versa) captured by W (π) and the second derivative of the utilities with
respect to their own strategy captured by D(π).

Lemma 4.3. In the game Γ = (A, {∆i}ni=1, {Ûi}ni=1) we have the following with F (π) := −∇Û(π)

(a) If ∇πF (π) is strongly positive definite, then F (π) is strongly monotone.

(b) If ∇πF (π) is a P -matrix, then F (π) is a uniform block P -function.

Proof. See Melo [34], Proposition 10.

Recall that the function F being strongly monotone or a uniform block P -function implies that the
underlying game has a unique QRE. Melo showed that for games of strategic substitutes, L < 1

δ
is a

sufficient condition for F (π) to be strongly monotone. In the remainder of this section a generalization
to any linear payoff game is presented.
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Relaxation to any linear payoff game

Definition 4.12 (Linear payoff game). A linear payoff game is a game Γ = (A, {∆i}ni=1, {Ui}ni=1) where
the representative utilities follow the following linear structure for all agents i ∈ A and opponents’
strategies π−i ∈ ∆−i:

Vij(π−i) = κ
(1)
ij −

∑
j′∈J

(
κ
(2)

ijj′

∑
i′ ̸=i∈A

πi′j′
)

for all j ∈ J (4.8)

To establish the relaxed uniqueness condition, we determine the Game Jacobian∇F for the corresponding
game ΓR as defined in Definition 4.2. Subsequently, we proof a sufficient condition for ∇F to be strongly
positive definite. Finally, we formally proof that this sufficient condition is also a sufficient condition for
uniqueness of the QRE in the game Γ. Throughout the lemmas and proofs we use preliminary results on
matrices that are presented in detail in Appendix A.

Lemma 4.4. Consider a linear payoff game Γ. The Game Jacobian of the corresponding perturbed game
ΓR can be written as

∇F (π) = D(π) +K(π)

with D(π) a block-diagonal matrix with blocks ∇πiFi(π) = −∇2
πiπi

Ûi(π) for i ∈ A and

K(π) :=


0 K1 . . . K1

K2 0
. . .

...
...

. . .
. . . Kn−1

Kn . . . Kn 0

 (4.9)

with 0 = [0]J×J and with

Ki :=


κ
(2)
i11 κ

(2)
i12 . . . κ

(2)
i1J

κ
(2)
i21 κ

(2)
i22

. . .
...

...
. . .

. . . κ
(2)
i,J−1,J

κ
(2)
iJ1 . . . κ

(2)
i,J,J−1 κ

(2)
iJJ

 (4.10)

Proof. Note that ∇F (π) is an nJ × nJ matrix consisting of n × n J × J matrices: a J × J matrix for
each agent-agent interaction. On the diagonal are the matrices ∇πiFi(π) = −∇πiπiÛi. These matrices
constitute the block diagonal matrix D(π).
Now we derive the matrix K: it consists of all blocks ∇πi′Fi(π) for i ̸= i′. Consider an arbitrary player i
and another arbitrary player i′. The block, Ki,i′ is a J × J matrix, consider an entry j, j′ of this matrix,
we have: (

∇πi′Fi(π)
)
j,j′

= −∇2
πijπi′j′

Ûi

= −∇πi′j′

(
κ
(1)
ij −

∑
j′∈J

(
κ
(2)

ijj′

∑
i′ ̸=i∈A

π̃i′j′
)
−∇Ri(πi)

)
∇Ri(πi) is a function of πi only so it vanishes. Moreover, κ

(1)
ij is a constant so it vanishes, too. Hence

Kii′ is a diagonal matrix with entries:

Kii′ :=


κ
(2)
i11 κ

(2)
i12 . . . κ

(2)
i1J

κ
(2)
i21 κ

(2)
i22

. . .
...

...
. . .

. . . κ
(2)
i,J−1,J

κ
(2)
iJ1 . . . κ

(2)
i,J,J−1 κ

(2)
iJJ


Note that Kii′ does not depend on i′ so we may write Ki := Kii′ for all agents i′ ̸= i. Now, if we let
0 = [0]J×J we have that

K(π) = K :=


0 K1 . . . K1

K2 0
. . .

...
...

. . .
. . . Kn−1

Kn . . . Kn 0


and it is clear to see that D(π) +K(π) = ∇F (π).
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To prove that ∇F (π) is strongly positive definite, we need to prove that ∇F (π)+∇F (π)T

2
≻ αI for some

α > 0 by definition of strongly positive definite (Definition A.3(c)). Since D(π) is block-diagonal and
K(π) is a block matrix (with same sized blocks as D(π)) with zero matrices on the diagonal we have

(D(π) +K(π))T = D(π)T +K(π)T

and hence we may write

∇F (π) +∇F (π)T

2
=

D(π) +D(π)T

2
+

K(π) +K(π)T

2

Lemma 4.5. D(π) as defined in Lemma 4.4 is 1
L
-strongly positive definite.

Proof. See Melo [34], Appendix A.3.

Lemma 4.6. Let λ∗ be the minimal eigenvalue of K+KT

2
with K defined as in Lemma 4.4. Then if

λ∗ + 1
L
> 0, the Game Jacobian ∇F (π) is strongly positive definite.

Proof. Let

λ∗ := λmin

(K +KT

2

)
Then we have

K +KT

2
≽ λ∗InJ

by Lemma A.1. Then, using Lemma 4.5 we have

∇πF (π) +∇πF (π)T

2
≻ 1

L
InJ + λ∗InJ = (λ∗ +

1

L
)InJ

and hence if 1
L
+ λ∗ > 0 ∇F (π) is strongly positive definite.

Theorem 4.4. If, on top of Assumptions 4.1 and 4.2 it also holds that Γ is a linear payoff game, condition
(4.5) in Theorem 4.3 can be relaxed to

λ∗ > − 1

L

with λ∗ as defined in Lemma 4.6.

Proof. If λ∗ > − 1
L

then by Lemma 4.6 the Game Jacobian ∇F (π) corresponding to the perturbed game
ΓR is strongly positive definite. Hence, by Lemma 4.3, F (π) is strongly monotone. Thus, by Lemma 4.1
the VI problem (4.1) has a unique solution. Finally, by Proposition 4.2, Γ has a unique QRE.

An interesting observation is that for games of strategic substitutes λ∗ = −δ and the sufficient condition
L < 1

δ
as found by Melo, follows from Theorem 4.4, too.

Although this result generalizes the work by Melo by allowing for both heterogeneous parameters and
interaction among different alternatives, the size of the matrix K may be very large for realistic situations,
since it depends on the number of agents. On top of this, in for example a destination choice model, the
number of alternatives may be 1000 or even more. It is possible to save time by using an algorithm like the
Lanczos algorithm, since only the smallest eigenvalue is relevant. However, for computational purposes,
it is beneficial to find some good bounds on these eigenvalues. Two of those bounds are presented in the
remainder of this chapter.

Theorem 4.5 (Gerschgorin circle theorem [18]). Let A be a complex n × n matrix with entries aij.
For i ∈ {1, . . . , n} let ri be the sum of the absolute values of the non-diagonal entries in the i-th row:
ri =

∑
j ̸=i |aij |. Define the disk D(aii, ri) ⊆ C. Then every eigenvalue of A lies within at least one of the

disks.

Proof. See Gershgorin [18].

Corollary 4.1. The eigenvalues of A must also lie within the disks corresponding to the columns of A.

Proof. See Gershgorin [18].
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In a negative linear payoff game a row of the K-matrix (indexed by agent i and alternative j, indicating
it is row number (i− 1)J + j) has sum:

rowsumij = (n− 1)
∑
j′∈J

|κijj′ |

A column of the K-matrix (indexed by agent i and alternative j, indicating it is column (i− 1)J + j)
has sum:

colsumij =
∑

i′ ̸=i∈A

∑
j′∈J

|κij′j |

Since the row sums equal the column sum for the symmetric matrix K+KT

2
we have that the uniqueness

condition is:

max
i∈A,j∈J

{n− 1

2

∑
j′∈J

|κijj′ |+
1

2

∑
i′ ̸=i∈A

∑
j′∈J

|κij′j |
}
<

1

L
(4.11)

In Corollary 4.2 it is shown that for games where the utility of some alternative only depends on
how many other agents choose that alternative (and thus not on how many times other alternatives are
chosen), the relaxation in Theorem 4.4 combined with the Gershgorin circle theorem will always give a less
strict condition than (4.5), the condition proven by Melo. For many games, this independence of other
alternatives is realistic, and thus this is a powerful result.

Corollary 4.2. Consider a linear payoff game with nonnegative parameters κ(2) where additionally κ
(2)

ijj′ =

0 if j ̸= j′, then the condition found by combining Theorem 4.4 and the Gershgorin circle theorem is always
less strict than the condition in Theorem 4.3.

Proof. Since κijj ≤ δ for all agents i and alternatives j we have from condition (4.11) that

max
i∈A,j∈J

{n− 1

2

∑
j′∈J

|κijj′ |+
1

2

∑
i′ ̸=i∈A

∑
j′∈J

|κij′j |
}

= max
i∈A,j∈J

{n− 1

2
|κijj |+

1

2

∑
i′ ̸=i∈A

|κijj |
}

≤ n− 1

2
δ +

n− 1

2
δ = (n− 1)δ

Resulting in the condition (4.5) if and only if all coefficients κ equal δ and a less strict condition otherwise.

Another Theorem regarding bounds on eigenvalues was presented and proven by Hoffman in [22]:

Theorem 4.6. For any real matrix A ∈ Rn×n define

Pi :=
∑
j

aij − (nmax
j ̸=i

aij)+

Qi :=
∑
j

aij − (nmin
j ̸=i

aij)−

Then for every real eigenvalue λ of A it holds that:

λ ∈
⋃
i

[Pi, Qi]

Proof. See [22].

Following this theorem mini Pi can be used as a lower bound for the eigenvalue (note that i denotes
a row number here not an agent). Again, denoting row (i− 1)J + j of the K-matrix by ij, and hence the

row of K+KT

2
by the row of K combined with the corresponding column of K divided by two, we obtain

the following value of P for row ij of K+KT

2
:

Pij =
rowsumij + colsumij

2
− nJ max

j′∈J
κijj′
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Hence the corresponding uniqueness condition is:

min
i∈A,j∈J

{n− 1

2

∑
j′∈J

|κijj′ |+
1

2

∑
i′ ̸=i∈A

∑
j′∈J

|κij′j | − nJ max
j′∈J

κijj′

}
> − 1

L
(4.13)

Consider a linear payoff game with all coefficients equal. Then the bound (4.13) is:

(n− 1)Jκ− nJκ > − 1

L
⇒ −Jκ > − 1

L
⇒ κ <

1

LJ

And, since in most cases J << n this is a less strict condition than (4.5) as well.
In a case study (Section 7.1) we show the use/relevance of both the general relaxation of the uniqueness

condition (Theorem 4.4) and the computationally more efficient bounds that may be used for this condition.

Relaxation to games with non-linear utility

In principle, the relaxation of the uniqueness condition is not restricted to games with linear utility. As
long as the second derivatives of the functions Ûi are well-defined, the Game Jacobian is well-defined, and
positive definiteness of the Game Jacobian can be verified via eigenvalue calculation.
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Chapter 5

Application to systems of discrete
choice models

The theory developed in Chapter 4 concerns games where the equilibrium is described by one (mixed)
strategy. This theory can immediately be applied in a situation with one discrete choice model in which
the utilities of the different alternatives for some agent depend on the choices of the other agents. However,
in a scenario where there are multiple sequential (or parallel) discrete choice models with different forms
of interaction between them the developed theory can not directly be applied. In this section the gap
between the one-stage game and a system of discrete choice model is bridged. First of all the necessary
assumptions to be able to analyze a system of discrete choice models as a one-stage game are presented.
Then the methodology to setup this game is presented. Finally, the evaluation of the uniqueness conditions
from Chapter 4 for systems of discrete choice models is presented.

5.1 Assumptions

Consider a system of discrete choice models (A,M) with alternative sets J (m) and modelsM = {m1, . . . ,mM}.

Assumption 5.1. If an agent makes a decision j ∈ J (mi) this necessarily implies the next decision the
agent makes is in some model mk. Note that the next model for some agent i does not have to be the same
as the next model for some other agent i′.

This assumption states that, given that an agent makes a certain decision, the next discrete choice
model that the agent makes a decision in, is known with probability 1. This movement through the system
does not have to be the same for all agents. One may for example define different mode choice models
for agents that own cars and agents that do not (since these groups of agents will have a different set of
alternatives).

Assumption 5.2. There exists an ordering m1, . . . ,mM of all models in M such that for all agents,
choices in mi are made prior to choices in models mk ∀k > i. Note that this ordering must be the same
for all agents.

Although this assumption seems restrictive, that is not necessarily the case: consider a situation where
some agents first choose their mode, and subsequently their destination, whereas other agents first choose
their destination ans subsequently their mode. One can setup the model as in Figure 5.1

Figure 5.1: Example of modelling a different order of choices among agents.
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This system now satisfies Assumption 5.2.

Assumption 5.3. The utilities of the agents in any discrete choice model are independent of their own
choices in previous and later models.

This may also seem restrictive: for example, the destination choice may depend heavily on the
previously chosen purpose of a trip: a person that goes grocery shopping is less likely to travel far than
a person that travels to work. This can be resolved by creating two different destination choice models:
one for grocery shopping trips, and one for work trips.

Assumption 5.4. The error terms ϵ that determine the perceived utilities U in each model, are identically
independently distributed among agents, alternatives and models following a type I extreme value distribution
with scale parameter λ.

This is an assumption that is relatively restrictive, but strictly necessary for the developed method for
analyzing a system of discrete choice models as a one-stage game.
All in all, a lot of restrictions can be overcome by restructuring the system of discrete choice models,
however the system of discrete choice model is restricted to be built from discrete choice models derived
from the same (logit) random utility model.

5.2 The corresponding game

Given that all of the assumptions hold, a system of discrete choice models can be transformed into a
game, meaning that it can be analyzed using the results from Chapter 4. Firstly, using the ordering from
Assumption 5.2 a system of discrete choice models can be transformed into a sequence of discrete choice
models. To illustrate this method, consider the example in Figure 5.2

Figure 5.2: Example of a system of discrete choice models.

This system can be transformed into a sequence of discrete choice models as depicted in Figure 5.3

Figure 5.3: The system from Figure 5.2 turned into a sequence of discrete choice models.

From this sequence, to recover the actual probability that an agent chooses to go by car to a certain
destination the following formula can be used

Pj1,j2 =
∑

j3∈J(m3)

Pj1,j2,j3 ∀j1, j2 ∈ J(m1) × J(m2)

where m1,m2 and m3 denote the mode choice, destination choice car and destination choice bicycle models
respectively.
To create such a sequence, Assumptions 5.1 and 5.2 are necessary. To create a game from this sequence,
in addition Assumptions 5.3 and 5.4 are necessary. In Theorem 5.1 the equivalence between a sequence
of discrete choice models and a game is formalized.

Theorem 5.1. Consider a system of discrete choice models (A,M) rewritten as a sequence satisfying
Assumptions 5.1, 5.2, 5.3 and 5.4. This model can be written as one game Γ = (A, {∆i}ni=1, {Ui}ni=1)

with Vij =
∑M

i=1 V
(mi)
ijmi

, i.e. the utilities of the sequence of alternatives can be added up and considered as

the utility of the complete choice of the combination of alternatives.
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Proof. For simplicity of notation, only the result for the scale parameter λ = 1 is shown. Consider any
system of discrete choice models, with representative utilities V (m) for each model and i.i.d. error terms
ϵ, ϵ′, ϵm, ϵ′m for all m ∈ M and for each agent i and alternative j ∈ J (m). Note that for any player i

P
(
V

(1)
ij1

+ · · ·+ V
(M)
ijM

+ ϵ > V
(1)

ij′1
+ · · ·+ V

(M)

ij′
M

+ ϵ′ ∀(j′1, . . . , j′M ) ̸= (j1, . . . , jM ) ∈ J (m1) × · · · × J (mM )
)

(5.1a)
by the logit formula

=
e
V

(1)
j1

+···+V
(M)
jM∑

(j′1,...j
′
M

)∈(J(1)×···×J(M)) e
V

(1)

j′1
+···+V

(M)

j′
M

(5.1b)

and that

ΠM
m=1P

(
V

(m)
jm

+ ϵm > V
(m)

j′m
+ ϵ′m

)
= ΠM

m=1
eV

(m)
jm∑

j′m∈J(m) e
V

(m)

j′m

(5.1c)

Note that the numerators in equation (5.1b) and (5.1c) are equivalent. To see that the denominators
are equivalent note that

∑
j′1∈J(1)

e
V

(1)

j′1 ∗
∑

j′2∈J(2)

e
V

(2)

j′2 =
∑

(j′1,j
′
2)∈(J(1),J(2))

e
V

(1)

j′1
+V

(2)

j′2 (5.1d)

Hence, the probability that the sum of utilities of a certain sequence of alternatives plus some error term is
larger than the sum of utilities of the other sequences of alternatives plus some error term, is exactly equal
to the probability that the utility of each alternative plus some error terms in this sequence of alternatives
is larger than the utilities of the other alternatives plus some error terms in that model. Hence, the
probability of a certain sequence of alternatives being chosen is exactly equal to the multiplied probabilities
of the individual alternatives being chosen, which is due to independence1 indeed the probability of the
combination of alternatives being chosen.

Concluding, any system of discrete choice models satisfying Assumptions 5.1, 5.2, 5.3 and 5.4 can be
transformed into a sequence of discrete choice models which in turn can be transformed into a game.

5.3 Uniqueness conditions

For systems of discrete choice models, verifying the uniqueness conditions requires some more effort than
for a single discrete choice model. The value of L in Theorem 4.3 remains the scale parameter λ as long
as the system of discrete choice models satisfies Assumptions 5.3 and 5.4 (Theorem 5.1). The number of
agents n is a known input variable. Hence, when using Theorem 4.3 for determining the uniqueness, it
remains to determine the value of the strategic influence δ. For a certain player i the strategic influence δi
can be calculated in the following manner: denote by J ∗ (J∗ := |J ∗|) the set of all possible combinations
of alternatives (jm1 , jm2 , . . . , jmM ) for a sequence of discrete choice models M. Furthermore, denote by
jm the alternative from model m in the combined alternative j ∈ J ∗. Then

δi := max
j,j′∈J∗

∑
m∈M

∑
m′∈M

κ
(2)

ijmj′
m′

(5.2)

where κijmj′
m′

denotes, as in Section 4.4, the linear coefficient of influence between alternatives jm and

jm′ . δ can be found by taking the maximum over these δi’s. An upper bound for the value of δ is hence

δ ≤ δ̃ :=
∑

m∈M

∑
m′∈M

max
i,j,j′

|κ(2)

ijmj′
m′

| (5.3)

which is the sum of the maximal coefficients between two models for all combinations of models.
If Theorem 4.3 is not sufficient to establish uniqueness of the solution, the relaxation from Theorem 4.4
can be investigated. However, since computing eigenvalues of a large matrix is computationally expensive,
an initial step would be checking the bounds found via the Gershgorin circle theorem and the Hoffman
bounds (Equations (4.11) and (4.13)). The K−matrix used in Theorem 4.4 is set up as a nJ∗ × nJ∗

1Note that this independence is only true because of Assumption 5.3.

25



matrix K with the same structure as the K−matrix in (4.9). However the entries of Ki are now defined
as:

(Ki)j,j′ =
∑

m∈M

∑
m′∈M

κ
(2)

ijmj′
m′

(5.4)

which is the sum of all coefficients between the different alternatives. Note that dependent on the type of
relations, most of these values of κ will be zero. For ease of notation define

κ∗
ijj′ :=

∑
m∈M

∑
m′∈M

κijmj′
m′

∀i ∈ A ∀j, j′ ∈ J ∗ × J ∗ (5.5)

This yields the following two sufficient conditions for uniqueness:

max
i∈A,j∈J

{n− 1

2

∑
j′∈J

|κ∗
ijj′ |+

1

2

∑
i′ ̸=i∈A

∑
j′∈J

|κ∗
ij′j |

}
<

1

L
(5.6)

or

min
i∈A,j∈J

{n− 1

2

∑
j′∈J

|κ∗
ijj′ |+

1

2

∑
i′ ̸=i∈A

∑
j′∈J

|κ∗
ij′j | − nJ max

j′∈J
κ∗
ijj′

}
> − 1

L
(5.7)

If neither of these conditions is satisfied, an additional method for checking uniqueness would be to

calculate or approximate the smallest eigenvalue of the K+KT

2
matrix.
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Chapter 6

Solution algorithms

A quantal response equilibrium can be calculated by applying a best-response algorithm, which is a similar
method to the well-known solution method for finding a fixed-point as stated in the Banach fixed-point
theorem [5]:

Theorem 6.1 (Banach fixed-point theorem). Let (X, d) be a non-empty metric space with a contraction
mapping T : X → X. Then T admits a unique fixed-point x∗ in X, furthermore, define the sequence
(xn)n∈N by xn = T (xn−1) with an arbitrary element x0 ∈ X. Then limn→∞ xn = x∗.

In Section 6.1 the best-response algorithm is introduced. In Section 6.2 a variant of this algorithm using
Monte Carlo simulation is introduced. Section 6.3 discusses the validation of this Monte Carlo algorithm,
and Section 6.4 discusses the possible computational benefits of this algorithm, as well as an analysis of
the dependencies of the runtime on the different input parameters.

6.1 Best-response algorithm

In [34], Melo presents an asynchronous best-response algorithm to find the unique QRE. The correctness
proof follows from Theorem 10 in Scutari et al. [44]. In the best-response algorithm, in each iteration, the
agents determine their strategy based on the outcome of the previous iteration. In the asynchronous version
of this algorithm not all agents update their strategy in each iteration. The essence of the synchronous
best-response algorithm is repetitively using the output of the algorithm as the input in the next iteration,
similar to the Banach fixed-point theorem.

Algorithm 1: Iterative (synchronous) best-response algorithm to solve QRE

1: Input: utility function Vi : ∆ → RJ for all agents i, scale parameter λ and an initial set of strategies
π0

2: Repeat until ||πn − πn−1||∞ < tol:

• V n = V (πn−1)

• Calculate πn

πn
ij =

exp
(
V n
ij (π

n−1)/λ
)∑

j′∈J exp
(
V n
ij′(π

n−1)/λ
) ∀(i, j) ∈ A× J

3: Return: πn

The computational complexity of this algorithm is O(nJ). The convergence condition used in this
algorithm is that the maximal difference in the probability that some agent chooses some alternative
changes with less than “tol”, which is a predetermined tolerance, over two iterations. From the definition
(Definition 3.5) a QRE is a point where, for some set of utilities, the strategy is exactly the same as
the probability distribution of any of the alternatives having the highest perceived utility. If ||πn −
πn−1||∞ <tol then the maximal difference between a strategy and the probability distribution over the
alternatives given that strategy is tol and hence the definition of QRE is (almost) satisfied. It is also
possible to use the same convergence condition with V instead of π, there are however two reasons to
prefer π:
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• The probability distribution (and similar, the strategy) always consists of values between 0 and 1
and sums up to 1 for each agent, whereas the absolute value of some utility Vij does not necessarily
have a meaning. The meaning is derived from the difference in utility between two alternatives.
Hence, using one tolerance tol could result in significantly different probability distributions, when
the absolute values of the utilities increase whilst the relative differences remain the same.

• When using SNET, the choice allocation technique used in Octavius, a population of agents is
grouped into segments, groups of agents with the same probability distribution. If such a segment
has a size s we know for that the average probability of choosing any alternative is 1

sJ
and we can

use this to determine an appropriate tolerance for the equilibrium probability distribution, to ensure
that running more iterations would not change the allocated choices.

A method to determine the initial strategies can for example be running the model as though the
interactions were not there, or using an educated guess for the average choices of agents.

6.2 Monte Carlo algorithm

In Chapter 5 the theory behind the equivalence of a system of discrete choice models and a game was
described. Using this theory, any system of discrete choice models can be transformed into a game, and
Algorithm 1 can be applied. However, this requires enumerating all possible combinations of alternatives,
which requires a large amount of memory in a situation with a large system of discrete choice models.
Hence, we propose to not enumerate the alternatives, but instead simulate the complete system model
by model. This means that some form of discrete simulation is necessary. The most common method
for using discrete simulation to approximate deterministic results is Monte Carlo simulation. In such a
model, discrete events are sampled using random sampling, and the desired measure (in this case, the
equilibrium probability distribution) is averaged over the iterations. An alternative method of sampling
discrete events that was developed for Octavius, SNET, could also be used, but after some initial tests,
it turned out that repeatedly running SNET with or without averaging, did not result in convergence
towards the solution found with the synchronous best-response algorithm, which was proven to be correct
in [34]. Therefore, we propose to use Monte Carlo simulation with averaging. This algorithm is presented
below:

Algorithm 2: Monte Carlo simulation to solve QRE

1: Input: utility function V
(m)
i : ∆(m) → RJ(m)

for all agents i, scale parameter λ and an initial set of

strategies π
(m)
0 for all models m ∈ M.

2: Repeat until ||π̄(m)
n − π̄

(m)
n−1||∞ <tol ∀m ∈ M

• for m ∈ M do

1. V (m) = V (π
(m)
n−1)

2. Calculate

π(m)
n =

(
exp

(
V

(m)
ij /λ

)∑
j′∈J (m) exp

(
V

(m)

ij′ /λ
))

(i,j)∈A×J (m)

3. Update π̄
(m)
n = 1

n
π

(m)
n + n−1

n
π̄n−1

4. Randomly sample a choice for each agent according to the probability distribution π
(m)
n .

3: Return: (π̄
(m)
n )m∈M

For a single discrete choice model, the running time is still O(nJ) since each calculation requires O(1)
time. However, in a situation with multiple discrete choice models, when enumerating the alternatives, the
computational complexity of the best-response algorithm is O(nΠm∈MJ(m)), whereas running the system
model per model has computational complexity O(n

∑
m∈M J(m)). Moreover, the amount of information

that needs to be stored is only one choice per agent per model, instead of a complete probability distribution
over the alternatives per agent per model, which saves a lot of memory usage.

6.3 Validation

To validate the Monte Carlo algorithm, we plot the absolute average difference (in probabilities) between
the Monte Carlo and the best-response algorithm for different tolerances between 0 and 0.001. We do this
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for models 1 and 2 as shown in Figure 6.1.

Figure 6.1: Models 1 and 2 used for validation.

The results are shown in Figure 6.2.

Figure 6.2: Average difference between the Monte Carlo and best-response algorithm plotted
against the tolerance.

There are three conclusions we draw from this analysis: First of all, the average difference between the
continuous and Monte Carlo best-response algorithm is relatively small (in most cases not more than two
times the tolerance). Moreover, we see, using linear trend lines, that a larger tolerance leads to a larger
difference, but with a small tolerance, still, the average difference may be relatively large. Finally, we see
that for the larger model (model 2) the average difference is slightly higher. In Figure 6.3 we present a
similar analysis, but now for a fixed tolerance of 0.001.
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Figure 6.3: Boxplot for the ratio between the difference and the tolerance for fixed tolerance 0.001.

In this boxplot, the box represents the range of 25-75% of the data points. The error bars represent
the minimal and maximal values, excluding outliers. Outliers are defined as anything more than 1.5 times
the length of the 25-75% box outside of the box.
Using the boxplot we see that indeed the average difference is smaller than 0.002 for a tolerance of 0.001.
Moreover, we see that a tolerance of 0.001 almost always guarantees that the probability distributions on
average differ not more than 0.01 from the unique solution.

6.4 Computational analysis

The computational analysis consists of two parts. Firstly, we present an analysis of the different input
parameters on the runtime. Secondly, we present a comparison of the runtimes of the Monte Carlo and
the best-response algorithm.

6.4.1 Effects of parameters on runtime

For this analysis, consider model 2 as introduced in Figure 6.1. We analyze the influence of the following
parameters on the runtime of the model:

1. n: The number of agents.

2. J : The number of alternatives.

3. tol: The tolerance.

4. S: The number of different property-combinations in the population (the heterogeneity).

5. δ(n− 1): The strength of the interaction.

The population, alternatives and parameters are uniformly randomly sampled: the population consists of 2
to 10000 agents, with 2 to 5 alternatives (per discrete choice model), 2 to 100 different properties (with the
population uniformly randomly divided over these properties). The discrete choice models are modelled
as logit models with scale parameter λ = 1, hence L = 1 in the uniqueness condition (4.5). Therefore,
we sampled the parameters describing the interaction (κ) uniformly between 0 and 1

n−1
, ensuring that

the uniqueness condition from Theorem 4.3 is satisfied. For testing the effect of each parameter on the
runtime we fix the other parameters to n = 1000, J = 5 ∗ 5, tol = 0.001, S = 5 and δ(n− 1) ≈ 1. The first
analysis is the influence of the tolerance, which is set randomly between 0 and 0.001.
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Figure 6.4: Number of iterations for different values of the tolerance. One particular run with
tolerance 1.04 ∗ 10−7 and 3867 iterations is omitted from the figure.

In Figure 6.4 we see that the number of iterations does increase for smaller tolerance.
The second parameter we analyze is the number of agents (n). Based on the computational complexity
of the model, we expect a linear dependency of the runtime on the number of agents.

Figure 6.5: Runtime results for different values of n.

Similar to the number of agents, we expect the runtime to be linearly dependent on the number of
alternatives as well. In Figure 6.6 we see that this is indeed the case.

Figure 6.6: Runtime results for different number of alternatives.

Another parameter that influences the runtime is the interaction; if there is no strategic interaction the
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model converges after two iterations, since in the second iteration nothing has changed and the convergence
criterion is satisfied. We expect that with stronger interaction, more iterations are required to meet the
convergence criterion. We sampled interactions to attain the value of δ(n − 1) between 0 and 1, where
close to 1 indicates that the uniqueness condition from Theorem 4.3 is almost violated, and close to 0
means that there is almost no interaction. Indeed we see that the number of iterations increases for larger
values of δ(n− 1).

Figure 6.7: Number of iterations for different values of δ(n− 1).

A final dependency we investigate is the dependency of the runtime on the heterogeneity of the
population: we do not calculate the utility and probability per agent, but instead per group of agents, or
segment, with similar characteristics. Hence, in terms of arithmetic operations, there should be a linear
dependency on the number of different sets of properties within a population. In Figure 6.8 we see that
there is indeed a linear dependency, however this dependency is less strong than the dependency on the
number of agents and number of alternatives. This is likely due to the fact that although within Octavius
calculations are performed per segment, for this specific equilibrium model we had to store all information
per agent and check convergence per agent.

Figure 6.8: Runtime results for different number of possible sets of properties existing within the
population.

6.4.2 Comparison Monte Carlo and best-response algorithm

Based on the results of the previous section, we know that there are three main factors influencing the
runtime: the number of agents, the number of alternatives and the strength of the interaction (δ(n− 1)).
Earlier in this section we derived that the difference between the computational complexity of the Monte
Carlo best-response algorithm lies mainly in the factors n and J . Hence, in Figure 6.9 the influence of
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nJ := n(ΠmJ(m)) on the runtime of these algorithms is shown for models 1 and 2 as introduced in Figure
6.1.

Figure 6.9: Runtime plotted against nJ . MC denotes the result from the Monte Carlo algorithm,
and BR the results from the best-response algorithm.

It is clear that the runtime of the best-response algorithm increases more rapidly with increasing nJ .
Moreover, where in the continuous best-response algorithm model 2 seems to perform worse than model
1 with the same amount of enumerated alternatives, the Monte Carlo algorithm does not seem to suffer
from a longer sequence of models (and scales similarly for the same amount of enumerated alternatives).
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Chapter 7

Case study

In this chapter we show the relevance of the results obtained in this research, both from a theoretical and
practical point of view. First of all, the relevance of the relaxations of the uniqueness conditions is studied
in games with linear payoff. We show a situation in which the uniqueness condition from Theorem 4.3
can be significantly relaxed by using Theorem 4.4. Secondly, we investigate the practical use of the Monte
Carlo algorithm by creating a feedback loop between Octavius and a route choice model and discuss the
possibilities of analyzing the uniqueness of the resulting solution.

7.1 Case study 1: The relaxed uniqueness condition

To show the relevance of the relaxed uniqueness condition, we present an analysis of uniqueness guarantees
in games of strategic substitutes, as introduced in Definition 4.9. However, we introduce heterogeneous
parameters, relaxing the assumption that the values of κ(1) and κ(2) are the same for all agents. In
Corollary 4.2 we already saw that the uniqueness condition from Theorem 4.4 is always as strict or less
strict as the condition from Theorem 4.3. We know that, with the uniqueness condition found by Melo
from this latter Theorem, we would have to ensure that δ = maxij κ

(2)
ij < 1

n−1
if we consider a logit model

with scale parameter 1. Hence we investigate for what values of δ the eigenvalue calculation still provides
a uniqueness guarantee, which we describe by a δ-factor: the extend to which we can increase the maximal
interaction whilst guaranteeing uniqueness. For example, if we guarantee uniqueness for a δ-factor of 10
this means that when maxij κ

(2)
ij < 10

n−1
we guarantee uniqueness. The analysis is based on uniformly

random sampling of the values of κ between 0 and the set maximum (δ-factor times 1
n−1

). We say that
the model guarantees uniqueness for a certain δ-factor, if at least 95/100 times of random sampling κ
values with this δ-factor yields a uniqueness guarantee.
We analyze the influence of three parameters on the maximal δ-factor: the number of agents, the number
of alternatives and the heterogeneity. The goal of this analysis is to see if increasing/decreasing any of
these variables leads to a substantially different maximal δ-factor for which uniqueness can be guaranteed.
The first result is obtained with 20 agents, consisting of 5 groups of 4 agents with the same parameters.
The number of alternatives ranges from 20 to 60. For this analysis we found that for 20 up to and including
40 alternatives, we could guarantee uniqueness for a δ-factor of up to 9. For 45 up to and including 60
alternatives, the guarantee was a δ-factor of 8.5.
For the second analysis we fix the number of agents to 40, the number of alternatives to 20 and vary the
heterogeneity between 2,5,10,20 and 40 different sets of parameters. Here we see larger differences between
the runs, which are plotted in Figure 7.1.
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Figure 7.1: Maximal δ-factor for various levels of heterogeneity.

Finally we analyze the effects of the number of agents on the maximal δ-factor. The results of this are
shown in Figure 7.2. Similar to the heterogeneity, there seems to be an increasing relation between the
maximal δ-factor and the number of agents. However for 35 up to 50 agents the maximal δ-factor is the
same.

Figure 7.2: Maximal δ-factor for increasing number of agents with 5 different sets of properties
and 20 alternatives.

It is clear that using the relaxed uniqueness condition allows for a stronger interaction between the
agents in the model. However we found that this uniqueness can only be verified using eigenvalue
calculation and not via the Gershgorin or Hoffman bound on the eigenvalue. When performing the
same tests for these bounds we found that in some cases we could have a maximal δ-factor of about 1.5 to
2 for these bounds, but in most cases they did not improve on the uniqueness condition as presented by
Melo. Hence, relaxing the uniqueness condition can be computationally expensive. However, increasing
the number of agents or the heterogeneity only seemed to increase the maximal δ-factor and increasing the
number of alternatives did not seem to decrease the maximal δ-factor too much. Hence, setting up a small
variant of the desired model and analyzing the uniqueness of the smaller variant to conclude something
about the uniqueness of the desired model may be a valid approach.

7.2 Case study 2: Route assignment

To test the practical relevance of the developed methodology and algorithm, we implement the algorithm
in the Octavius software in OmniTRANS. A microscopic, logit-based, route choice model does not exist
within the OmniTRANS software, hence we use static traffic assignment with volume averaging. The
volume averaging traffic assignment is a generalization of the Method of Successive Averages (MSA),
which is described in detail in [38], Section 10.5.4. The volume averaging traffic assignment is described
briefly in Chapter 3 of [36]. In essence, the method consists of repetitive all-or-nothing assignments
(assignments in which every traveler chooses the fastest route), and recalculating the costs of the routes.
In recalculating the costs, a bpr function is used. This bpr function describes the relation between the
actual travel time (T ), the “free flow” travel time (T0), the volume of cars on a road (V ) and the capacity
of that road (C). The formula describing this relation is

T = T0(1 + α(V/C)β) (7.1)
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where α and β are estimated parameters. A larger value of α results in significant delays for lower values
of V/C. β describes the rate at which the delay grows; a larger value of beta means a steeper bpr function.
The role of α and β is visualized in Figure 7.3

Figure 7.3: Bpr function for different values of α and β for T0 = 1.

This explicit function for the delay can help us in analyzing the uniqueness. The maximal increase
in travel time (and thus, the maximal interaction) on a road section caused by one other traveler equals
αT0

Cβ . However, the total increase in travel time for a certain destination depends both on the origin of the
trip of some agent and on the chosen route, making it more difficult to analyze this interaction explicitly.
Moreover, the value of α depends on the link type: a highway is less likely to be congested at a given
volume/capacity ratio than a road through the city. And the values of T0 and C differ per road section,
too. The value of β is from experience, according to the OmniTRANS manual, 4. In Appendix C the
values of α per link type that are normally used for route assignment with Octavius are shown. For our
results we multiplied the value of α by a certain factor (referred to as the α-factor) to increase/decrease
the congestion effects. Before we present the results, we present the model in detail.

With the route assignment model established, we set up the feedback loop. Since the population
synthesizer and the choices made by the agents in the tourgenerator and the destination choice for non-
car modes are, in Octavius, not affected by increasing car travel times, the results from these models are
assumed to be fixed. The other input consists of a bpr function per link type and fixed freight and external
demand; for this application, we only model the area in and around the city of Zwolle with Octavius, and
all other traffic passing through the city is assumed to be constant. Moreover, freight traffic is in general
not modelled using Octavius. In Figure 7.4 the system is visualized. Following Algorithm 2, we run the
models for destination choice mode car, mode choice and route choice in sequence. The output of an
iteration of this sequence is a new set of travel times, which is the input for the next iteration.

Figure 7.4: Figure depicting the implemented feedback loop.

The first iteration is set up as follows: the input is the same as in Figure 7.4, but there is an additional
input of “free flow” travel times, which are essentially the travel times in a situation where the demand
from Octavius is zero. Such a “free flow” travel time can be obtained by giving an empty population as
input for the traffic assignment model. After this first iteration, the model is run for up to 50 iterations
following the feedback loop.

36



The convergence criteria we analyze is the change in (running) average probability distribution over the
course of the iterations. To save computational time, we only considered the probability distribution for
the main destination choice (the destination choice for the main purpose in the first tour of each agent).
Although this is not the exact convergence criterion as presented in Algorithm 2, it should still work. If the
probabilities in one of the destination choice models have converged, this implies directly that the travel
times have converged, due to the fact that the travel times are the only variable in the utility functions
for the destination choice models in this feedback loop (the rest of the representative utilities remains
constant over the iterations). And, if the travel times have converged, then since the travel times are the
only variable in any of the choice models within Octavius in the feedback loop, all other choice models
should have converged as well. Another change from Algorithm 2 is that we analyze the convergence of
the probability distribution for segments, rather than agents. A segment s is a group of agents, which
have the same probability distribution in one choice model. It is clearly more efficient to only calculate
the probability distribution for each segment instead of each agent. Let S be the set of all segments and
denote by s ∈ S a segment. Denote by π̄n

sj the probability for segment s for alternative j averaged over
the first n iterations. The average difference in probability distribution is then defined as∑

sj |π̄
n
sj − π̄n−1

sj |
|S||J |

and the maximal difference by

max
s∈S,j∈J

{
|π̄n

sj − π̄n−1
sj |

}
In Figure 7.5 we plot both the average and maximal difference against the iterations.

Figure 7.5: Convergence behaviour of the feedback loop model with α-factor 0.25 and β = 2.

There is clear convergence in probability distributions. The average difference in probability distribution
is, after 50 iterations, around 1 ∗ 10−7 which is sufficient for guaranteeing that a QRE was found: by
definition (Definition 3.5), if the output is used as input and yields (almost) the same output again, a
fixed point is found.
The relatively large difference in probability distribution between the first and second iteration can be
explained best by looking at the results on a road section level. In Figure 7.6 a difference plot is shown
between the results with the running average probabilities after iteration 2 and iteration 1 (which is based
on free flow travel times).
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Figure 7.6: Difference plot on road section level between the second and the first (free flow)
iteration with α-factor 0.25 and β=2.

Other than some minor differences throughout the network, one area attracts attention: around the
Isala hospital, there is a large decrease in vehicles after iteration 2. The reason for this is that the expected
number of trips with purpose work to this location is around 6800, whilst the road capacity is only 3200
for the morning rush hour. Of course, in reality, hospital workers do not all arrive during the morning
rush hour, but in the assignment model a large percentage of these trips does (recall that Octavius does
not model the departure times). Exceeding the capacity of the road by this much results in congested
travel times of hundreds and possibly thousands of minutes, following the bpr functions (Figure 7.3). This
is also the main reason why we chose to use a relatively low α-factor and β value, to prevent the effects
arond this area to be even larger. And although this overshadows the general effects of taking into account
congestion, it does show that the model with feedback loop is capable of representing (extreme) congestion
effects.

In Figure 7.7 we look at the effect of taking into account congestion effects on the total vehicle hours,
which is the sum of all trips times the travel time of these trips (i.e. the total time spent by people in a
car in the modelled area on a given day).

Figure 7.7: Total vehicle hours over the iterations for the feedback loop model with α-factor=0.25,
β = 2.

The decrease in total vehicle hours is caused by two factors: a change in destination and a change in
mode choice. In Figure 7.8 the change in mode choice is illustrated for the model with β = 2 and α-factor
0.25: the number of trips by car decreases by about 0.55% between the first and 50th iteration.
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Figure 7.8: Mode choice results for β = 2, α-factor = 0.25.

Within the destination choice the changes were significantly larger:

• An increase of 6.45% in trips between 0.0 and 2.75 kilometres.

• An increase of 0.73% in trips between 2.75 and 5.5 kilometers.

• A decrease in longer distance trips, with the largest decreases in trips between 12.5 and 37.5
kilometres.

There are a couple of conclusions we can draw from this first attempt at implementing a feedback
loop within Octavius. First of all, the algorithm as developed (Algorithm 2) works and is also efficient
for a large scale model. Moreover, the effects of congestion have a significant effect on the choices agents
make: shorter distances are preferred and there is a slight modal shift towards other modes than car. And
although the extreme (unrealistic) congestion occurring at the Isala hospital had a large influence on the
results, this is also a showcase of the fact that the model can adjust for these congestion effects and finds
an equilibrium between the attraction of such a congested region, and the travel time towards the region.
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Chapter 8

Conclusion and discussion

8.1 Conclusion

The literature research provided a lot of insight into the most common and best practices in microscopic
travel demand modelling. The practical relevance of developing microscopic travel demand models was
confirmed by this literature research. Moreover, we found that, although many of the existing models
are successfully used and implemented, they are inherently different than the framework that Octavius is.
The main conclusion from the literature research is that Octavius provides a lot of advantages when it
comes to desired properties of strategic microscopic travel demand models. Therefore we concluded that
integrating an existing travel demand model to extend Octavius with the ability of imposing equilibrium
conditions may lead to losing these desired properties, and we specified our research goal to extending the
framework Octavius with the ability of imposing equilibrium conditions.
From a mathematical perspective, the research goal was to analyze systems of discrete choice models with
(strategic) interaction. The Quantal Response Equilibrium (QRE) fits this mathematical framework well,
due to it being consistent with random utility modelling, which the discrete choice models in Octavius
are derived from. We showed that the uniqueness conditions of the QRE, as presented by Melo [34],
can be relaxed, specifically for games with linear payoff. Furthermore we developed a list of assumptions
required for systems of discrete choice models to be analyzed using the uniqueness conditions. Finally
we developed, implemented and tested an efficient solution algorithm based on Monte Carlo simulation.
Computationally, the runtime of the algorithm depends linearly on the number of agents and number
of alternatives, and the number of iterations required depends on the tolerance and the strength of the
interaction. From the validation of the Monte Carlo algorithm we saw that a decreased tolerance leads to
a better performance, and that the implemented stopping criterion with this tolerance is an appropriate
measure for ensuring the deviation from the unique solution is within a certain range.
In a case study we showed that the techniques can be applied in a practical model, imposing equilibrium
conditions on the interaction between Octavius and a route choice model. Unfortunately, with the currently
developed theory, we can not prove uniqueness of the solution. However, the Monte Carlo algorithm
converged to a solution which satisfies the fixed-point conditions of the QRE. Concluding, for practical
implementations, some additional research into relaxing some of the assumptions regarding systems of
discrete choice models (as presented in Chapter 5) is necessary to proof uniqueness. However, the developed
theory and analyses provides a good basis for this and moreover already can give a good sense of whether
uniqueness is satisfied.

8.2 Discussion and recommendations

The theoretical results in this thesis are relatively general: the relaxed uniqueness conditions can be
applied in any game with perceived or perturbed utilities. Although most of the theory was developed
strictly for linear dependencies, non-linear dependencies can be analyzed using this theory as well. One
practical issue with the developed theory is the requirement of calculating the minimal eigenvalue of a
matrix that scales with both the number of agents and the number of alternatives, growing large quite
fast. Some well-known bounds on eigenvalue of matrices can be used to more efficiently determine the
uniqueness condition. However, we found in the case study (Section 7.1) that two of these bounds in
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general do not significantly improve on the more simple uniqueness condition as presented by Melo [34].
Therefore, a research into determining better bounds on these eigenvalues will likely prove useful. In the
case study we attempted to analyze the effects of increasing the number of agents and alternatives and
the heterogeneity of the population. There were definitely some effects which should be investigated in
further detail. Based on the first impressions of these effects, using a small-scaled version of a large model
to analyze uniqueness of that larger model can be appropriate.
The goal of the research, extending Octavius with the ability to impose equilibrium conditions, has
succeeded. However, the methodology for analyzing the uniqueness conditions for (large) systems of
discrete choice models requires quite some assumptions, which are for example not satisfied by most route
assignment models. Especially requiring all models to be logit models with the same scale parameter is
quite strict. Ideally, the uniqueness can be analyzed per interaction, instead of for the system as a whole.
This would significantly decrease the size of the matrix for which eigenvalues would have to be calculated
or approximated. This requires some further research.
The computational performance of the algorithm is relatively good. The Monte Carlo simulation is
efficient, and there are also some improvements that can still be made. The main issue, which is a general
issue for microscopic models, is the required amount of information that needs to be stored. An example
of an improvement would be storing the parts of the representative utilities that are constant over the
iterations to save computational time (by not recalculating them each and every iteration).
We are confident, based on the validation and the obtained results in the case study, that the Monte Carlo
simulation approximates the unique solution in any model that has a unique solution. However, a formal,
mathematical, analysis of this should still be done.
The capability of using equilibrium conditions as a modelling technique to add attraction, availability or
capacity constraints to Octavius has not been investigated in great detail. These are all constraints that
could be imposed using feedback loops, which can be analyzed with the developed theory and which can
be implemented using Monte Carlo simulation.
To make imposing equilibrium conditions more relevant, a microscopic departure time choice model should
be developed for Octavius. This could have resolved the problems occurring in the case study and created
a more realistic solution. In principle, a microscopic route assignment model would be advantageous as
well, especially for analyzing uniqueness, however this is less relevant.
A final investigation that might prove useful is quantifying the effects of using SNET instead of Monte
Carlo simulation for choice allocation during the iterative procedure. Since the output of SNET is less
stochastic than Monte Carlo, it might converge faster. The main problem is that since SNET is a recently
developed method at DAT.Mobility and unknown outside DAT.Mobility, there is no scientific research in
using it in a stochastic simulation setting for approximating deterministic results.

Concluding, with this thesis we extended the mathematical framework of Octavius with the notion
of quantal response equilibria. We relaxed uniqueness conditions for the quantal response equilibrium
and determined an efficient algorithm to compute the equilibrium. And although there are some possible
improvements and extensions, the developed methodology is already sufficiently tested and validated to
add feedback loops to Octavius where applicable.
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Appendix A

Preliminaries

This Appendix consists of some additional preliminary knowledge and theoretical background.

A.1 Convex functions

Definition A.1 (Notions of convexity). Let f : X ⊆ Rn → R be a continuously differentiable function.
Then f is said to be

a) convex over X iff
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ for any x, y ∈ X

b) strictly convex over X iff

f(y) > f(x) + ⟨∇f(x), y − x⟩ for any x, y ∈ X

c) σ-strongly convex over X with respect to a norm || · || iff

f(y) > f(x) + ⟨∇f(x), y − x⟩+ σ

2
||y − x||2 for any x, y ∈ X

Definition A.2 (Legendre-Fenchel conjugate). For a convex function f : X ⊆ Rn → R, f∗ : X∗ →
R ∪ {−∞,∞} is called the convex conjugate or Legendre-Fenchel conjugate function of f , where X∗

denotes the dual space corresponding to X:

f∗(x∗) := sup
x∈X

{⟨x∗, x⟩ − f(x)}

where ⟨x, y⟩ is defined as
∑

i xiyi.

Theorem A.1 (Fenchel’s (in)equality). For a function f and its convex conjugate f∗, Fenchel’s inequality
holds:

f(x) + f∗(y) ≥ ⟨x, y⟩
Suppose f is a differentiable convex function, then y = ∇f(x) if and only if

f(x) + f∗(y) = ⟨x, y⟩

which is known as Fenchel’s equality

Proof. First of all, note that Fenchel’s inequality holds trivially because of the definition of the conjugate.
Now for equality;
Because of convexity and differentiability we have

y = ∇f(x) ⇐⇒ f(z) ≥ f(x) + ⟨y, z − x⟩ ∀z

hence, by additivity
⇐⇒ f(z) ≥ f(x) + ⟨y, z⟩ − ⟨y, x⟩ ∀z
⇐⇒ ⟨y, x⟩ − f(x) ≥ ⟨y, z⟩ − f(z) ∀z
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⇐⇒ ⟨y, x⟩ − f(x) = sup
z
{⟨y, z⟩ − f(z)}

⇐⇒ ⟨y, x⟩ − f(x) = f∗(y)

and thus
⇐⇒ f(x) + f∗(y) = ⟨x, y⟩

Theorem A.2 (Baillon-Haddad Theorem [4]). The following statements are equivalent:

(i) f : X → R is convex and differentiable with gradient ∇f which is Lipschitz continuous with respect
to || · ||X with constant L > 0.

(ii) The convex conjugate f∗ : X∗ → (−∞,∞] is 1
L
-strongly convex with respect to the dual norm || · ||∗X

Proof. See [4].

A.2 Matrices

Definition A.3 (Positive definite). Let A ∈ Rn×n. The matrix A is said to be

a) Positive semidefinite, denoted by A ≽ 0 if and only if xTAx ≥ 0 for all x ∈ Rn

b) Positive definite, denoted by A ≻ 0 if and only if xTAx > 0 for all x ̸= 0 ∈ Rn

c) Strongly positive definite if and only if there exists an α > 0 such that A+AT

2
≻ αI

Lemma A.1. Let A ∈ Rn×n b a symmetric matrix and denote by λmin(A) the minimal eigenvalue of A,
then

A ≽ λmin(A)I ≻ αI

for any α < λmin(A).

Proof. Consider the matrix A − λmin(A)I. Any eigenvalue λ and corresponding eigenvector v of this
matrix must satisfy

(A− λmin(A)I)v = λv

Hence we have

Av − λmin(A)Iv = Av − λmin(A)v = λv

Av = (λ+ λmin(A))v

So λ+ λmin is an eigenvalue of A and thus

λ+ λmin ≥ λmin ⇒ λ ≥ 0

which holds for all eigenvalues of A− λmin(A)I. Hence, all eigenvalues of A− λmin(A)I are nonnegative
and thus

A− λmin(A)I ≽ 0

or, equivalently
A ≽ λmin(A)I

The second statement is trivial by noting that

βI ≻ 0

for any β > 0.

Definition A.4 (Block (diagonal) matrix). A block matrix is defined as a matrix M ∈ Rn×n partitioned
into q × q blocks Mij ∈ Rp×p (so pq = n) such that M = (Mij)i,j∈q×q = (mij)i,j∈n×n. A block diagonal
matrix is a matrix partitioned such that Mij = [0]p×p for all i ̸= j.

Definition A.5 (Fiedler and Plak 1962 [16]). A matrix M ∈ Rn×n is called a P -matrix if every principal
minor1 of M is positive.

1A principal minor of a matrix M is the determinant of a square submatrix of M obtained by deleting a set of
rows and a set of columns with the same indices.

46



We denote by I the identity matrix (with appropriate dimensions if not specifically defined).
The following definitions and properties hold for any vector x ∈ Rn and matrix A ∈ Rn×n:

1. ||x||2A := xTAx for A ≻ 0

2. ||x||I = ||x||2 =
√∑n

i=1 x
2
i (the standard Euclidean or l2-norm)

3. ||x||1 :=
∑n

i=1 |xi| (the standard l1-norm)

4. ||A||2 :=
√

ρ(ATA) where ρ(M) denotes the largest eigenvalue of a matrix M (spectral norm)

5. ||A||∞ := maxi

∑n
j=1 |[A]ij | (max row sum)

6. ||A||2 = ||AT ||2
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Appendix B

Derivation of social surplus for
logit

For player i Denote Xi = maxj∈J

{
Vij + ϵij} with Qi(ϵij) = e−e

−ϵij/λi−γ

the cdf of ϵij . Then

P(Xi ≤ x) = Πj∈JP(Vij + ϵij ≤ x)

by independence of the error terms amongst the alternatives. Taking the logarithm on both sides yields

logP(Xi ≤ x) = logΠj∈JP(Vij + ϵij ≤ x)

=
∑
j∈j

log
(
P(Vij + ϵij ≤ x)

)
=
∑
j∈J

log
(
P(ϵij ≤ x− Vij)

)
=
∑
j∈J

log
(
e−e

−(x−Vij)/λi−γ )
=
∑
j∈J

−e−(x−Vij)/λi−γ

= −e−x/λi−γ
∑
j∈J

eVij/λi

Let µ∗ = log
(∑

j∈J eVij/λi
)
, also known as the log-sum, then

P(Xi ≤ x) = e−e−x/λi−γ+µ∗

= e−e−(x−λiµ
∗)/λi−γ

and hence, Xi has a type I extreme value distribution with mean λi log
(∑

j∈J eVij/λi
)
which concludes

the derivation.
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Appendix C

Route assignment model

As explained in Section 7.2, the bpr function is described by parameters α and β, where the value of α
depends on the link type. Link types describe for example which modes are allowed to use a certain link,
and link types are relevant for congestion effects. You can imagine that congestion effects differ between
motorway roads and city roads with a cycleway. In Table C.1 the standard alpha values for the different
link types are presented. The abbreviation GOW, in Dutch gebiedsontsluitingsweg, describes a main road
that is used for leading traffic into and away a certain area. ETW, in Dutch erftoegangsweg, describes an
access road to a property.

Link type Maximum speed α
Highway 130 0.5
Highway 100 1.0
GOW 80 1.5
ETW 60/45 1.5
GOW 70 4.0

GOW city 50 4.0
GOW district 50 6.0
Industrial 30/50 6.0
ETW 30 8.0

Residence area 15 8.0
Parking lot 10 30

Ferry 10 30
Other 10 0

Table C.1: Alpha values used in the bpr function.
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