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Management summary

The Autonomous Indoor Drone Applications research group (AIDA), is a collaboration between re-
searchers from the University of Twente and the Aerobotic Tech Team Twente (A3T). This research
group investigates various topics concerning indoor applications for UAVs. One of those topics is finding
the means to deploy UAVs for fast and frequent cycle counts. During cycle counts, the goal is to check
whether the physical inventory meets what is stated in the inventory records. When the physical inven-
tory does not meet the stated inventory of a location, then a location’s inventory record is considered
inaccurate. Two main reasons why inventory counting is important are:

1. It gives the warehouse operator the possibility to update the inventory record such that it meets
the physical inventory when inaccuracies are encountered during the count.

2. Inventory counting information gives the warehouse operator an estimate of the overall inventory
record accuracy (OIRA).

Warehouses that are operated for 24 hours, 7 days a week, have limited time to execute cycle counts.
This time is limited since it is required that the warehouse is not operated during the cycle counts in
terms of safety. Therefore, cycle counts can only be operated during, e.g., short breaks of the personnel,
which is around 15 to 20 minutes per break. This limited amount of available cycle counting time in-
creases the importance of the decision which locations to count per cycle counting moment in comparison
to overnight cycle counts, where it is possible to count the whole or large parts of the warehouse. This
brings us to the following main research question:

“How to design a generic (operational) cycle counting method for a single UAV with time restricted
counting intervals?”

We conducted a literature review to find insights into often used existing cycle counting policies. Here
we found six main types of cycle counting policies. Each of these types focus on a specific part of the
cycle count and have their own prioritisation rules for selecting certain items over others during a cycle
count. For example, the ABC cycle counting policy prioritises items based on the cost of an inaccuracy
and opportunity based cycle counting prioritises based on the ease of counting. From this literature
review, we also found that certain cycle counting policies, assume a certain correlation for the occur-
rence of a mismatch between an inventory record and its physical inventory, based on certain warehouse
characteristics (e.g., the transaction-based cycle counting). These cycle counting policies have found to
be effective if this correlation is present in the warehouse.

Based on the findings of the literature review, we propose a cycle counting method that tries to learn the
correlation between inventory record parameters and the occurrence of inaccurate records. The method
predicts the chance that the status of a location is inaccurate and tries to construct a route such that the
sum of the predicted chances of visited locations is maximised. The model is a greedy heuristic where
we select the location that gives us the most prediction value per unit time cost. This time cost is the
sum of additional travel time to add the location to the existing route and the scan time per location.
This additional travel time is calculated using a cheapest insertion algorithm and the predictions about
the chance that the location inventory record status is inaccurate, are made by a neural network.

We made a simulated warehouse based on a case study of Bolk logistics, where each day transactions
are simulated. These transactions change the parameter values of the inventory records of each location.
Based on these values, each day inaccuracies are simulated. After each simulated day, one cycle count
is executed. For each cycle count a route is constructed using our proposed method. The route always
starts and ends at the docking station (DS) of the UAV.
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We used the simulated warehouse to conduct five types of experiments. The first type of experiments
investigates various rules for selecting the first location (seed location) during the construction of the
cycle counting route. During the second type of experiments, three methods for predicting the chance
that the status of a location is inaccurate are compared to each other. During the third type of ex-
periments a learning period is introduced, where various exploration and exploitation techniques are
compared to each other. This learning period starts at the introduction of an UAV to a new warehouse
and is used to improve the quality of the neural network predictions. The fourth type of experiments
investigates the effect of the length of this learning period. Finally, a sensitivity analysis is conducted for
various parameter settings. For each setting we compared the performance of our proposed method to
a location-based (also known as progress-based) benchmark policy and a random sampling benchmark
policy. From these experiments we conclude the following:

1. The selected seed location highly influences the direction of the constructed cycle counting route
and which location neighbourhoods are visited. Especially, for locations further from the DS an
appropriate seed location rule is required such that the locations are visited.

2. Using a neural network for predicting the chance that a location’s inventory record is inaccurate,
tends to give better predictions on the long-term in comparison to linear and logistic regression.

3. For all (except UCB-1) exploration-exploitation methods the OIRA drop during the learning phase,
but the prediction errors after the learning phase are lower in comparison to not using a learning
phase. For the UCB-1 method the OIRA increases during the learning phase but the prediction
errors after the learning phase are not lower in comparison to not using a learning phase.

4. Using a special learning phase can help to increase the prediction performance of the neural network
on the long-term. However, the cost of a gain of OIRA performance is high and the gain decreases
over time.

5. (a) The proposed cycle counting method gives a comparable result in terms of OIRA perfor-
mance to a benchmark location-based cycle counting policy for each of the sensitivity analysis
experiments, but it significantly outperforms a pure random sampling policy.

(b) The proposed cycle counting method significantly outperforms the location-based benchmark
policy in terms of estimating the OIRA of the warehouse. It even tends to slightly outperform
the random sampling policy in terms of estimating the OIRA.

Based on these findings, we conclude that our cycle counting method is able to learn the failure
behaviour of a warehouse and to construct cycle counting routes based on these predictions. The perfor-
mance of the model after the learning phase is comparable to our location-based benchmark policy. For
example, we found that for counting intervals between 10-20 minutes the method found a comparable
amount of inaccurate inventory records and had comparable OIRA results.

Unfortunaly, our more complex proposed model is not able to outperform the simple benchmark policy
in terms of our objective to find as much as possible inaccuracies. We expect that the most important
reasons why this is the case are the lack of spread in our simulated failure rate and the combination
between the assumption that an inaccuracy stays inaccurate until it is visited and the definition of our
objective function that does not take the length of an inaccuracy into account. Also, we treated each
inaccuracy as equal. In practice, the severity of various inaccuracies are different.

Based on the previous paragraph and some other research limitations and findings, we propose four
main research topics for future research. These topics are the objective function (1), the failure function
(2), construction of the routes (3) and score models for the learning phase (4).

1. Redefine the objective function such that the length of an inaccuracy is penalised. Also the allo-
cation of a cost factor to the inaccuracies makes the model more applicable in practice, due to the
severity of an inaccuracy.

2. Testing the proposed cycle counting method in practice can overcome the big research limitation
of the failure rate function as described above. We expect that this will also make it harder for the
Neural network to learn the failure behaviour of the warehouse and this can increase the necessity
of a learning phase.

3. We proposed five seed customer rules such that locations further down the aisles are selected. The
seed customer initialises the direction in which a cycle counting route is constructed. During the



construction of the cycle counting route we want to maximise our objective by adding locations with
the highest score-cost ratio. If the seed customer directs to a neighbourhood with low predictions,
then our model can construct a route where our objective is far from optimised. We propose to
research the effect of constructing multiple routes per cycle counting moment, where the route with
the highest objective value is executed.

4. During the learning phase, each cycle count moment we assign a score to each location using
an exploration-exploitation technique. By doing this, we assume that a location’s failure rate
depends only on the warehouse location. However, the failure rate of the warehouse depends on
multiple parameter values, where the contribution of a certain parameter value to the failure rate is
simulated constant. The location’s parameter values change due to transactions in the warehouse
and therefore the failure rate of the location also changes. Therefore, we propose to construct
an exploration-exploitation model that predicts scores based on parameter values instead of the
warehouse location, such that it is possible to reduce the model’s uncertainty about the effect of the
parameter values instead of calculating an uncertainty score based on its location in the warehouse.
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Chapter 1

Introduction

In this chapter, we introduce Bolk logistics and the AIDA research group. This research is conducted on
behalf of the AIDA research group. Bolk logistics is the company that provided a real-life case on which
we implemented and tested findings of this research. An introduction on these parties is given Section
1.1. Next, we will give a context description about inventory counting in Section 1.2. Further, we will
give a motivation for the necessity of this research in Section 1.3. Thereafter, we describe the problem
that we want to solve with this research in Section 1.4. In Section 1.5 we describe the main research
questions and additional research questions. For each of these additional research questions, we need an
answer to be able to answer the main research question.

1.1 Stakeholders

In this section, we first introduce AIDA research group, the research group on behalf of which this
research is conducted. Second, we introduce Bolk logistics, the company which provided a case on which
we implemented and validated our proposed solution for our research problem. AIDA research group
and Bolk logistics are consecutive introduced in Section 1.1.1 and Section 1.1.2.

1.1.1 The AIDA research group

The AIDA research group stands for Autonomous Indoor Drone Applications (AIDA) research group
to which we will further refer to as AIDA. This group is a collaboration between Aerobotic Tech Team
Twente (A3T) and researchers from the University of Twente. As the name suggests, this research group
investigates the use of UAVs for different indoor applications. One of these indoor applications that they
are investigating is to apply UAVs as a tool for inventory counting.

1.1.2 Bolk logistics

The story of Bolk logistics transport company (also known as Bolk logistics) began in 1934 with the
establishment of the Looms & Bolk company [8]. Meanwhile, Bolk logistics has become a company with
diverse activities, clients, and collaborations. Bolk logistics provides added value in multiple aspects of
transport. The core business ranged from exceptional transport to transshipment to trailer transport.
Bolk transports by road and by water.

In this research, we will focus on the warehouse of Bolk logistics, which is located in the harbour of
Hengelo. This specific warehouse functions as a transit warehouse for pallet goods of consumable salt.
This consumable salt is manufactured at a nearby plant which is located within a range of 2 kilome-
ters of the warehouse. Bolk logistics provides logistic services for this manufacturer. These services are
transportation to the warehouse, unloading, storage, and loading of the pallet goods.

1.2 Context description

Inventory counting is an important part of inventory management. Inventory counting is often done
in order to check whether the physical stock matches the bookkeeping stock [36]. When the physical
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stock does not match the bookkeeping stock, we consider this as an error. There are various inventory
counting strategies. Some organisations choose to count their whole stock at certain times of the year.
Other organisations choose to go for rolling stock takes where only a part of the inventory is counted per
stock take, but these stock takes are executed more often in comparison to a full stock take.

Errors that are encountered during an inventory count could have happened during the whole interval
of two consecutive inventory counts. A relatively large interval (e.g., months or years) makes it more
difficult to find the cause of the error in comparison with an interval of, e.g., days or a weeks. In other
words, the longer the time between consecutive counts, the longer the error exposure time, and thus the
higher the number of expected candidates for the cause of the error [11].

As we will elaborate on further in Section 1.3, in this research we will focus on time restrictions. Dur-
ing our research we decided to focus on rolling stock takes, because the time required to do a full stock
take is most of the times larger than the available time. For example, in the case of Bolk logistics the
available time to do a stock count is around 15 minutes, while a full stock count takes more than 3 days.
An often used method for rolling stock takes is cycle counting. Cycle counting is a sampling method
where a part of a population is selected and measured [11]. This is called a sample of the population. Two
important inferences can be made from these samples. The first is that the inventory record accuracy of
the sampled items approximates the accuracy of the whole population of inventory records. The second
inference concerns the type of errors found in the inventory records from the sample and their causes.
Trying to find the underlying causes of errors is also known as sleuthing [11]. The power of finding these
underlying causes is that corrective measurements could be made to prevent these errors from happening.

Classic cycle counting is executed by humans [11]. This is done by manually writing down product
codes, by scanning barcodes, or by scanning RFID tags. The latter two could already be seen as a step
towards semi-automation of cycle counting. A downside of a manual count is that it is subject to mental
fatigue [16]. This could lead to loss of attention or inaccuracy. This loss of attention in combination
with the use of forklifts and ladders could cause dangerous situations.

In literature we encountered emerging research into other execution techniques such as robots [50]
and Unmanned Aerial Vehicles (UAVs) [16] [51]. These techniques focus on automation of the cycle
counting process and make use of the established barcode sytem and/or RFID tag system. There are
multiple differences between a barcode system and a RFID tag system, with both its advantages and
disadvantages. However, they share a common character, both are made to be easily read by a computer,
but are hard to read by a human.

1.3 Research motivation

As described in Section 1.2, we referred to examples of research into other execution techniques for cycle
counting. In our research we will focus on UAVs. Flytbase Inc. [16] and Verity AG [51] both show that
it is possible to count inventory with a UAV. In other words, it is shown that it is technical feasible to
apply UAVs for the automation of inventory counting.

AIDA is also investigating means to deploy UAVs for fast and frequent cycle counts. Together with
Bolk logistics they want to deploy a pilot study at the facility of Bolk logistics in Hengelo. So, at first,
AIDA wants to realise automated inventory counting with UAVs for one of the warehouses of Bolk
logistics. In the further future, the goal is to enroll the automated inventory counting with UAVs to
multiple warehouses of Bolk logistics and also other logistic organisations. AIDA group eventually wants
to provide the automated UAV inventory counting as a service. Therefore, we should try to find a generic
solution for the problem which we will explain in Section 1.4.

To explain the necessity of this research, we have to understand the operational steps of an inventory
counting process. To get an understanding of this counting process, we split the process into five steps.
However, we first want to state that this is not a claim that in practice every inventory count follows
these steps in the presented order. In Figure 1.1, we give a visualisation of the five inventory counting
steps. During the first step, we will collect the current inventory records. In other words, we have to
collect a list of the locations where each item is stored and the corresponding quantities of these items.
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During the second step, we will select which items we will count during a specific cycle count and when
we will plan when we will execute this cycle count. The third step is to determine the route we have to
take to count the selected items for the cycle count. During the fourth step we will execute the count.
In other words, we will follow the predefined route to the selected items and we will check whether the
inventory record is accurate or inaccurate per item. The final step is the processing of the collected
information. In case of a found error, we could correct the inventory record and we could conduct some
sleuthing if we want to find the cause of the error.
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(d) Execution of the scheduled inventory
count
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(e) Processing the results

Figure 1.1: Five typical operational cycle counting steps

As we briefly described in Section 1.2, and we elaborate on further in our literature study in Chapter
2, there are multiple ways to do inventory counting. However, in all of these methods we have to make
the decisions which items we will count and at which moment in time we will execute these counts
(Figure 1.1b). These two general decisions influence the performance of our inventory count. When the
total available counting time decreases, the importance of these two decisions increases, which is also
concluded in the master thesis of Veneman [50].

When we want to implement cycle counting with UAVs, we assume that the UAVs could only fly when
the warehouse is not operated. The available time to fly could therefore be limited since we encountered
that the available time that a warehouse is not operated could be limited. For example, the warehouse
of Bolk Logistics is operated 24 hours a day for 7 days a week. This warehouse is not operated during
short breaks of the personnel, which is around 15 to 20 minutes per break. Therefore research is required
on inventory counting methods that could perform under time restrictions. This need for research into
these time restrictions is also supported by the conclusions of Veneman [50] and Wijffels et al. [52]. In
their research, they mention that certain methods would work better under time restrictions. However,
they did not vary with time restrictions in their experimentation.

To conclude this section, the technology is ready to apply UAVs for automated inventory counting
[16] [51]. However, more research is required on the selection of which items to count at which moment
in time (step 2 Figure 1.1b). This is especially important in time-restricted scenarios [50]. Also, AIDA
wants to apply automated inventory counting with UAVs as a service. Therefore, a generic solution for
our problem is required, which we will discuss in Section 1.4.
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1.4 Problem description

As described in Section 1.3, it is technically feasible to apply UAVs for automated inventory counting.
However, we did not encounter anything about optimization of the inventory counting performance,
while using UAVs. We will explain what we mean with inventory counting performance in this section.
But first we will look into the overall goal of inventory counting.

Inventory counting is used as a tool to check whether the physical inventory meets the inventory
that is stated in the inventory records [11]. We say that a location’s inventory record is accurate if
it matches the physical inventory (or is within predefined acceptable tolerances), otherwise we state
that the inventory record is inaccurate. A high overall inventory record accuracy is desired, since many
decisions are made based on the inventory records. By making these decisions (e.g., production planning
or determining lead times for customer orders) it is assumed that the inventory that is stated on the
inventory records is accurate. We could calculate the overall inventory record accuracy (OIRA) for a
given warehouse by using Equation 1.1.

Overall inventory record accuracy (%) =
amount of accurate records

total amount of records
× 100% (1.1)

So we would say that a high OIRA is desired. We can achieve or maintain a certain level of OIRA by
eliminating inaccurate records. We can do this by locating the inaccurate record and by taking corrective
measures to make the record accurate. For example, if we want to achieve and or maintain an OIRA
of 99% then only a maximum of 1% of the total amount of records is allowed to be inaccurate. One of
the challenges is that we do not exactly know the total amount of inaccurate records. Only when we
stop operations and we would take a full stock count (where we assume no counting mistakes), then we
would have this information. And even if we had this information, then still this information becomes
inaccurate when we start operating this warehouse again.

However, when we locate an inaccurate inventory record during an inventory count and we take
corrective measures to make this record accurate, then the amount of inaccurate records will be lower.
To maintain or increase our level of OIRA we have to balance between the amount of inaccurate records
found and the amount of records that become inaccurate in a certain amount of time. The relationship
between the amount of inaccurate records found, the amount of new inaccurate records, and the OIRA
could be presented as follows:

(1) Inaccurate records found < New inaccurate records OIRA ↓
(2) Inaccurate records found > New inaccurate records OIRA ↑
(3) Inaccurate records found = New inaccurate records OIRA→

Now we know these relationships between corrective measures and inaccurate records in terms of
OIRA, we can discuss the inventory counting performance as stated in the beginning of this section.
As stated above, we can only correct an inaccurate inventory record when we find one. Only when we
correct an inaccurate record this will give us a positive effect on the OIRA following the logic of the
relationship described in the above paragraph. Therefore, we can express the performance of an inven-
tory count in terms of the ability to find inaccurate records. We can make this ability measurable by,
for example, counting the total amount of found inaccurate inventory records given a certain amount of
time or measuring the time spend to find a given amount of inaccurate records or we can divide the total
amount of inaccurate records found by the total amount of records counted. Independently of which of
these three indicators we choose, the performance depends mainly on the choice of which items we count
during the inventory count.

In Section 1.3, we encountered in literature that determining which items to count at which moment
in time is an important step of the cycle counting process. Other steps are also important and can be
optimized as well. For example, with the third step, determine the flying route the UAV is going to
take, we can probably save some time as well. However, before we can determine a route, we first have
to define the locations we are going to visit. Next to that, we can not find an inaccurate record for a
specific item, if we do not choose to count it, but we can still find it if the route is not optimized.

4



To conclude, we can optimize the performance of the cycle counting procedure by making the deci-
sion of which item to count at which moment in time. The better the performance of the cycle counting
procedure, the less time is required to find a certain amount of inaccurate records. Hence, we will spend
less time on counting to improve or maintain our OIRA. Next to that, if we can achieve a high perfor-
mance it will make the inventory counting solution with UAVs of AIDA more competitive towards other
organisations that provide the same kind of solution.

1.5 Research questions

Based on the information from Section 1.3 and Section 1.4, we define our main research question as
follows:

“How to design a generic (operational) cycle counting method for a single UAV with time restricted
counting intervals?”

Next to the main research question, we define multiple smaller research questions. These research
questions are used as input to give an answer to the main research question. We want to answer our
main research question in a structured way. We will do this by giving an overview of the smaller research
questions structured per chapter. At the end of each chapter we will give an answer to the research
question(s) that correspond to that specific chapter. The research questions are structured such that we
have to answer them consecutively. This is neccessary because an answer to previous research questions
will be required as input to be able to give an answer to the main research question itself.

In Chapter 2, we start by looking into the literature to find suitable techniques, which we can ap-
ply for the selection of which items to count at which moment in time for our cycle count. Therefore,
we will look into existing classical cycle counting methods, but we will also look into methods where the
UAV can learn or make decisions based on counting experience. At the end of the chapter we should
have a list of possible cycle counting techniques and we should have an overview of decision making
techniques. The research questions that we therefore need to answers in Chapter 2 are:

1. Which main techniques for cycle counting are available?

(a) Which inputs are required by these cycle counting techniques?

(b) What are the advantages and disadvantages of these cycle counting techniques?

(c) Which of these cycle counting techniques are applicable to inventory counting with an UAV?

2. How to select samples based on historic experience?

To get an understanding of the origin of inaccuracies between inventory records and physical inventory,
we have to understand the record-keeping process of a warehouse. As mentioned earlier, Bolk logistics
provides support to our research. For example, we use transaction data provided by Bolk logistics for
a case study. By investigating Bolk’s record-keeping processes, we get insight in how they keep track
of their inventory. In this way, we get insights in how a record-keeping process is organised and we
get an understanding of how to interpret the transaction data. In this research we assume that the
record-keeping process and transactions of Bolk logistics are representative for other warehouses as well.
Therefore, in Chapter 3 we need to answer the following research question:

3. How is a typical record-keeping process organised?

In Chapter 3 we identify the current situation at Bolk logistics and how their record-keeping process looks
like and in Chapter 2 we found cycle counting and decision making techniques. With this information, we
can develop a cycle counting method for UAVs in Chapter 4. Therefore we should answer the following
research questions:

4. How should the cycle counting sample selection look like in a continuous learning environment?

5. How to evaluate the performance of the proposed method?

5



In Chapter 3 we identified the current record keeping process of Bolk logistics and we proposed a generic
cycle counting method in Chapter 4. To evaluate our proposed method we want to run some experiments.
To do so, we should set up an experimentation environment. As described above Bolk logistics provided
data for a pilot study. Therefore, we should give an answer to the following research question in Chapter
5:

6. How can we set up an experimentation environment to assess the proposed cycle counting method
using Bolk logistics as a pilot study?

In Chapter 5 we define and set up experimentation. In Chapter 6, we run various experiments to evaluate
the performance of our proposed cycle counting method and we present the results of these experiments.
Therefore, we should answer the following research questions:

7. How well can the proposed cycle counting method perform in time restricted scenarios for different
error behaviours?

8. How does the performance of the proposed cycle counting method compare to other cycle counting
techniques?

After we evaluated the various cycle counting technique, we conclude our research in Chapter 7. Next to
that, we will give in Chapter 7 an extensive discussion on our research and give some recommendations
for further research. In Figure 1.2 we present an overview of the topics of the chapters.

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
Literature review
on possible cycle
counting and
decision making
techniques

→ Analysis
of the
pilot
study
company

→ Design a
generic cycle
counting
method
applicable to
UAVs

→ Design and
setup of an
experimental
environment

→ Experiments with
proposed cycle
counting method in
experimental
environment

→ Research
conclusion,
Discussion, and
further research
recommendations

Figure 1.2: Overview of the research layout
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Chapter 2

Literature study

In this Chapter, multiple cycle counting techniques are described. In Section 2.1 classical cycle counting
techniques are described. Here the principles and the prerequisites of these cycle counting techniques
are described. In Section 2.2, we describe what a learning problem is and what the difference is between
online learning and offline learning. Next tot that, we present an offline supervised learning model
for cycle counting based on historical data and an online learning model (k-armed Bandit problem).
In Section 2.3 we dive deeper into policy learning for a specific type of learning problem, namely the
sequential decision problem.

2.1 Fixed cycle counting policies

According to Brooks and Wilson, all cycle counting techniques are the same, with one exception: the
method used to select a sample from its population [11]. To clarify this statement, it should be clear what
is meant by a sample. A sample is a selection of certain members of a population. For example, when
a sample with sample size 10 is taken from a population of 100 members (m), then ten members of the
population are selected using the rules of the selected cycle counting technique. In Figure 2.1 an example
of a sample is given. Here the sample selection rules of the random sampling technique are used, which
are described in Section 2.1.1. In random sampling, the chance of an item being selected is equal for each
member of the population. In other cycle counting methods, preference rules are implemented. These
preference rules give some members of the population a higher chance of being selected in comparison to
others. An example of such a preference rule is to give priority to items with a high total annual usage
dollars in comparison to items with lower total annual usage dollars [43]. Such a preference rule makes
that each method will select different members of its population (m) for the sample.

m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m

Figure 2.1: Random sample: sample size n = 10, population size m = 100, sample candidates sc = 100

According to Rossetti, Collins, and Kurgund [43], Brooks and Wilson [11], and Wijffels et al. [52]
there are six main cycle counting policies. These six cycle counting policies are Random sampling, ABC
cycle counting, Process control cycle counting, Opportunity based cycle counting, transaction based cycle
counting, and location based cycle counting. These six cycle counting policies are described below.

2.1.1 Random sampling

In random sampling, a random sample from the population of inventory records is generated and the
associated items are counted [43]. In random sampling the opportunity to be selected for the sample for
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every member of the population is equal. There are two counting techniques that use random samples of
parts: the constant population technique and the diminishing population technique [11]. The difference
between the two could best be illustrated with an example. Consider the example of having a box with
1000 bolts. These 1000 bolts are the population. Each time we take a sample of 50 bolts to count. With
the constant population technique the bolts are placed in the same box after counting. So, the next
time we take a sample of 50 bolts there is a chance that the same bolts are selected to count. With the
diminishing counting technique the 50 counted bolts are placed in a second box after they are counted.
So the chance that the same bolts are selected for the next sample is zero. After all items from the first
box are counted the same procedure is executed for the second box. The difference between these two
techniques is also shown in Figure 2.2a and Figure 2.2b.

(a) Constant population [11, Figure 7.4a] (b) Diminishing population [11, Figure 7.4b]

Figure 2.2: population counting techniques

2.1.2 ABC cycle counting

Cost class Part numbers (% of total) Euros spent (% of total) Times counted
A 20 80 4
B 30 15 2
C 50 5 1

TOTAL 100 100

Table 2.1: example of an ABC classification based on percentage of total annual usage euros

ABC cycle counting is a special variant of random sample counting. The special thing behind ABC
cycle counting is that it separates the population in different classes, where it is assumed that the
importance of items is different among classes. In ABC cycle counting the population is stratified
according to a Pareto analysis into three categories. The categories can be determined based on, for
example, the total annual usage dollars, the frequency of issue, the length of the lead-time, or criticality
of the product [43]. An example of an ABC classification based on the percentage of total annual usage
euros is shown in Table 2.1. The idea of this separation is to assign different count frequencies to the
classes, where items in class A should have a higher count frequency than items in class B and class C
and items in class B should have a higher count frequency than class C.

2.1.3 Process control cycle counting

Process control cycle counting comes with two prerequisites [11]:

1. Inventory records must have piece count by multiple location capability.
In other words, it should be possible to store information about the amount of items that are stored
per location.

2. An inventory record listing of all quantities in all locations for all parts is available to the cycle
counter.
In other words, the counter knows the amount of items that should be in each location. So there
is no blind count.

Process control cycle counting is a method that involves only counting items based on how easy the items
could be checked [52]. This involves the location where the items are stored, ease of counting the items,
and obvious errors [11].
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During the cycle count it is checked whether every part number is placed in every location. How-
ever, when it comes to actual counting, only the easy parts are counted. Typically, these will be parts
that are either low in quantity or packaged in ways that facilitate fast and easy counting [11].

Take, for example, a box with bolts. When the inventory record states that a thousand bolts are
placed in this box, then it is checked whether this box is available at the stated location and if it looks
like that there are thousand bolts. This is called an eyeball assessment. If it appears that there are
thousand bolts, no physical count is made (a skip). When it appears that this is not the case (an obvious
error), then the items need to be counted. For determining the inventory record accuracy, only items
that are counted are considered in the calculation.

2.1.4 Opportunity based cycle counting

Items are count when there is a special opportunity. Many of these special opportunities are described
in literature. A special opportunity is for example, counting during restocking of an item or when an
item is reordered [52]. These counts are called opportunity counts because stock attendants capture
them during their normal receiving and issuing of inventory, essentially capturing a free cycle count [11].
Another advantage of this is the often low amount of initial stock before restocking, which could save a
lot of counting time.

2.1.5 Transaction based cycle counting

Transaction based cycle counting could be described as counting after a set number of transactions for
a product [52]. Transaction based cycle counting comes as well with a prerequisite:

1. A transaction history file of all transactions for all items is available. In other words, the amount
of times an item transaction took place should be known.

This method is especially effective for parts with a lot of transactions in a relative short amount of
time. The amount of transactions on these parts makes it difficult to determine the cause of error when
many transactions occur between counts. For example, if 100 transactions occurred between cycle counts,
there would be 100 error candidates. This would make successful sleuthing difficult if not impossible [11].

Selecting a sample based on the amount of transactions of an item could help to limit the amount
of error candidates. Take for example a population m of 100 items as shown in Figure 2.3. Only items
that have more than five transactions could be selected for the sample. In Figure 2.3, a one represents
an item with five or more transactions and a zero represents an item with less than five transactions.
Counting the numbers one in Figure 2.3 results in 32 candidates for the sample (sc). When the sample
size n equals 10, then 10 items are randomly selected from the list of 32 sample candidates sc.

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1
0 1 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 1 1 1
0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 1 0 0
1 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1

Figure 2.3: Transaction based sample: sample size n = 10, population size m = 100, sample candidates
sc = 32

2.1.6 Location based cycle counting

Location based cycle counting indicates a zone of products to be counted. Items that are placed together
are counted at the same moment [52]. For example, counting all the items in a specific rack, aisle, or

9



zone. The main advantage of location based cycle counting it is counting items that are placed together.
This method is especially efficient as it is counting as many items as possible in a given amount of time.
In Figure 2.4, an example of selecting a sample from a population is given based on the location of the
items. The selection rule in this example, is to only select items that are placed in zone 2.

Aisle

1 2 3 4 5 6 7 8 9 10

m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m
m m m m m m m m m m

Zone 1 Zone 2 Zone 3

Figure 2.4: Location based sample: sample size n = 10, population size m = 100, sample candidates
sc = 40

2.1.7 Conclusion

Based on this literature review, we can answer the first set of research questions:

1. Which main techniques for cycle counting are available?

(a) Which inputs are required by these cycle counting techniques?

(b) What are the advantages and disadvantages of these cycle counting techniques?

(c) Which of these cycle counting techniques are applicable to inventory counting with an UAV?

In literature, we found six main cycle counting techniques. These techniques do not come with strict
guidelines, but are described more as a general rules on how to select a sample from a population. For
example, the ABC cycle counting technique, proposes to separate the population into multiple classes.
There are multiple separation rules on how to determine these classes. Which rule performs the best de-
pends on what the situation and what the goal is. This also holds for the other cycle counting techniques.

The difference between random sampling and the other five mentioned cycle counting techniques is that
the five methods all make use of certain priority rules. For example, the transaction based cycle counting
technique gives priority to items with a lot of transactions. This technique assumes that the higher the
amount of transactions, the higher the chance that the records are inaccurate. This assumption could
be true in practice, but does not particularly have to be the case. Lets assume a situation where this
correlation is true, then this cycle counting technique is likely to be effective in finding inaccurate records
and would outperform other cycle counting techniques such as random sampling, which do not account
for this correlation. In a situation where this correlation is not true, it is possible that this transaction
based cycle counting technique performs worse than random sampling. If errors are equally distributed
over the population, then random sampling is likely to perform better.

The performance of a cycle counting technique could be described in terms of total found inaccura-
cies within a given amount of time or the ratio between total found inaccuracies and total items counted
[52]. Beforehand, it is hard to determine which priority rules will perform best. An experienced ware-
house manager who understands the causes of the inaccuracies of his or her warehouse, could probably
make an educated guess about on which correlations a cycle counting technique should be based such
that it would perform well. However, even with this experience it often takes a lot of trial and error [52].
In other words, there is not a generic cycle counting technique that is superior in performance compared
to the other cycle counting techniques.

The selection of an inventory cycle counting technique that has good performance for a given ware-
house is difficult. However, the results of a well implemented cycle counting technique are promising.
For example, the book of Brooks and Wilson [11] shows multiple examples of companies that reached an
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inventory record accuracy above 95 per cent after implementation of a cycle counting technique, while
beforehand the accuracies were often below 80 per cent.

We think that opportunity based and process control cycle counting are not suitable for inventory
counting with an UAV. These techniques make use of human assessments, such as the eyeball assessment
or spotting an opportunity to combine certain tasks with inventory counting. The ABC cycle counting is
less suitable for constructing a generic inventory counting model for an UAV, that focuses on eliminating
inaccuracies in the warehouse inventory records. For making cycle counting routes the inventory record
data needs to be separated into classes ABC and the model has to prioritize class A locations over class
B and C, but the question is to what extent class A must be prioritised above class B and class B over
class C.

Random sampling takes a random sample from the population. We think that this is not very effi-
cient for eliminating inaccuracies in the warehouse, but we think it is the best technique for estimating
the overall inventory accuracy of the warehouse, since it does not focus on a specific zone of the ware-
house or on locations that are most likely to be inaccurate. Therefore, it is expected to give the best
representative sample of the warehouse accuracy.

Location-based inventory counting focuses on the distance between locations, such that it can visit
as much as possible locations during a cycle count. Equally to random sampling, location-based sam-
pling does not focus on the likelihood that locations are inaccurate, but more locations are visited per
cycle count. Therefore, we expect to find more inaccuracies with the location-based inventory counting
method in comparison to random sampling, simply because more locations are visited. The transaction-
based cycle counting method prioritises to visit locations which are more likely to have an inaccuracy in
the inventory record. When the amount of visited locations is equal to location-based we expect that the
performance of the transaction-based method is better in terms of finding as much as possible inaccu-
rate records. However, we expect that the location-based method visit more locations in comparison to
transaction-based. Therefore, we expect that there is a trade-off between the amount of locations visited
and the likelihood that the inventory record status of a location is inaccurate.

2.2 Learning policies

We have to make the decision on which items we count at which moment in time. As described in Section
1.4, we want to count items that have an inaccurate inventory record. We want to count these items,
because we can find inaccurate records if we decide to count them. We can also encounter the inaccurate
records during operations, but this is something that we try to prevent by doing the inventory counts,
such that it does not negatively effect operations.

So, we have to make the decision which items we count such that we find inaccurate records. Be-
forehand, we do not know if an inventory record is accurate or inaccurate. Hence, we need to make a
decision under uncertainty [42]. However, as described in the sections 1.4, 2.1 and 2.1.7 we believe that
there is a correlation between operations and error behaviour. In other words, we believe that the chance
of having an inaccurate inventory record differs among items.

We want to make predictions about the chance of being inaccurate. In other words, we want to get
a probabilistic understanding about the relationship between operations in the warehouse and error
behaviour. Next to that, we try to collect new information about this relationship to improve our un-
derstanding. According to Powell and Ryzhov [42], a problem where you want to get and improve a
probabilistic understanding about a relationship or function is called a learning problem.

In this section, we first explain in Section 2.2.1 what a learning problem is. Next to that, we use
an example to show the difference between a learning problem, deterministic optimisation and stochastic
optimisation. Thereafter, in Section 2.2.2, we discuss the difference between two learning approaches,
online learning and offline learning. In addition, we provide an offline learning model for deriving cycle
counting policies from data in Section 2.2.3. Eventually, in Section 2.2.4, we provide an online learning
model. This online learning model is the (multi-)armed bandit problem, which is a frequently researched
topic in optimal learning [42].
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2.2.1 Deterministic optimisation vs stochastic optimisation vs learning

We now discuss an example to explain what we mean with a learning problem and to show what the
difference is compared to deterministic optimization and stochastic optimization. Table 2.2 shows three
sub-tables (Table 2.2a, Table 2.2b, and Table 2.2c). In each of these three tables there are four choices.
Our objective is to choose the item that is most likely to be inaccurate.

Item Value
1. inaccurate
2. accurate
3. accurate
4. accurate

(a) Deterministic optimization

Item P(inaccurate)
1. 60%
2. 48%
3. 40%
4. 30%

(b) Stochastic optimization

Initial First Updated Second Updated
Item P(inaccurate) Observation P(inaccurate) Observation P(inaccurate)

1. 60% accurate 40% 50%
2. 48% 48% inaccurate 60%
3. 40% 40% 40%
4. 30% 30% 30%

(c) Learning

Table 2.2: (a) It is known which items are (in)accurate, (b) for each item it is known what the chance is
of being inaccurate, and (c) for each item we update our belief (the chance that the item is inaccurate)
of an item after an observation of that item

As is shown in Table 2.2a, we know that the first item is inaccurate, and the other three items are
accurate. So, our best choice is to choose item 1. This choice is straightforward, since we know the
actual values of the four items and only one item is inaccurate. In deterministic optimisation we assume
that we know the actual values of our parameters without any uncertainty. In this example, it is easy to
select which item we choose to count, but complexity can increase, when the total amount of inaccurate
items increases. Each of these items come with corresponding coordinates and travel times between these
coordinates. The complexity lies in selecting items and creating a route with selected items such that as
much as possible inaccurate items are visited given a certain restricted amount of time.

In Table 2.2b, the same four items are shown. However, in stochastic optimisation we are not certain
about our parameters, but we assume that we know the probability distribution of this uncertainty. For
this example, the difference between deterministic optimisation as shown in Table 2.2a and stochastic
optimisation as shown in Table 2.2b, is that for stochastic optimisation the labelled value (in)accurate is
replaced by the chance that a certain item is inaccurate. Recall that our objective is to choose the item
that is most likely to be inaccurate. As could be retrieved from Table 2.2b, the item that is most likely
to be inaccurate is item 1. This does not mean that when we select item 1, that it will be inaccurate
when we check the item. It can be the case that item 1 is accurate and the item with the lowest chance
of being inaccurate (item 4) is inaccurate. Then afterwards we could say it was better to check item
4 instead of item 1. However, we do not know beforehand if it is accurate or inaccurate. Therefore,
in stochastic optimisation we want to maximize our chance of selecting an item that is inaccurate and
therefore we decided to select item 1.

In the first two examples, we knew the labelled value of the items or we knew the chance that a
certain item is inaccurate or not. In a learning problem, we do not know the labelled values of the items
and we also do not know the chance that a certain item is inaccurate. However, we can have a initial
understanding of the chance that items are inaccurate. In Table 2.2c we took the values of the chances of
the stochastic optimisation example as our initial values. In a learning problem we call these initial values
our belief state. In Section 2.3, we explain what we mean by a belief state. For now we just assume that
a belief state is a certain moment in time where we have a certain understanding of our parameters. In
the case of our example, our initial understanding is the initial chance that a certain item is inaccurate.
Based on our belief state we make our first decision. We would like to maximize our chance of selecting
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an item that is inaccurate and thus we select item 1. We selected item 1, but we observed during our
check that the item was accurate (Column 3 Table 2.2c). As stated at the beginning of this paragraph,
in a learning problem we do not know the exact chance that a certain item is inaccurate. We observed
that item 1 was accurate. In other words, we learned from our observation that item 1 was accurate. In
a learning problem we use this information to update our belief about item 1, but also about features
that are related to the observation of item 1. In other words, we can update what we observe, which can
be more than only the inventory record status. In our example, we only observe the record status for
item 1, so we only have to update the chance of being inaccurate for item 1. After updating (column 4
Table 2.2c), the chance of being inaccurate changed from 60% to 40% for item 1. In our new belief state
(column 4 Table 2.2c), item 2 has the highest chance of being inaccurate, thus for our next observation
we decide to select item 2. During our observation we found out that the item was inaccurate. So, again
we update our understanding of the probabilities of being inaccurate. This results in the belief state
shown in column 6 Table 2.2c.

So, the main difference between deterministic optimisation, stochastic optimisation and a learning
problem is that in deterministic optimisation we know the values of our parameters. In stochastic
optimisation we do not know the values of our parameters, but we know the probability distributions of
these parameters and we do not update them after observations. In a learning problem, the values of our
parameters are uncertain and the our understanding of the probability distributions is also uncertain.
Therefore, in a learning problem we try to learn from observations to get a better understanding of the
probability distributions of our parameters.

2.2.2 Online and offline learning

In literature we encountered that learning problems are often approached as either an online learning
problem or an offline learning problem [41] [42] [52]. However, how the two concepts are interpreted in
literature is sometimes conflicting. In this section we discuss the difference between online and offline
learning and how we interpret these two concepts.

We could compare an offline learning setting to a setting where we have a budget to run N ex-
periments, either in a simulation or a real-life environment. After we conducted these N experiments,
we could use what we learned from these experiments to make the (according to our information) best
decision possible [42]. In offline learning we are only interested on the performance of our final decision.
Typical offline learning problems are for example, the testing of alternatives in a lab or in a simulation
model. For example, when we have to visit 50 items for an inventory count in a warehouse and we want
to know the shortest path to visit all of these 50 items, then we evaluate a lot of possible routes. However,
eventually we are only interested in the route with the shortest path and we only follow this route for our
inventory count. In other words, we first want to run some experiments and learn from these experiments
to decide what our best solution is before we implement it into practice. Powell and Ryzhov [42] calls
this distinct separation between experiments and implementation the information collection phase and
the implementation phase. The first phase is the information collection phase, this is the phase where
we are running experiments to learn, without regard to how well we are doing. After we finished the
information collection phase, we continue with the implementation phase. During the implementation
phase we use what we have learned to make our final design or choice, for which real costs are incurred.

Online learning could be compared to making decisions while running in the field [42]. In other
words, we combine the information collection phase and the implementation phase such that we learn
and implement at the same time. Recall, the example where we had to visit 50 items. In online learning
we make a route and execute the route to check whether it was a good route or not. When it was a
bad route, we actually spend the amount of time executing this route. Therefore, in online learning in
contrast to offline learning, we care about intermediate results and not only about the best result.

2.2.3 Counting policy based on supervised learning

A more modern technique compared to the classical cycle counting techniques is cycle counting based on
supervised learning [50]. Supervised learning or supervised machine learning is a type of machine learn-
ing [18]. This type of machine learning uses a known dataset with historical data. This dataset should
consist of input variables (A) and response variables (B). The response variable (B) is the output that
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you want the model to predict. In case of cycle counting, this could be a prediction whether an inventory
record is accurate or inaccurate. The input variables (A), are variables on which the prediction is based.
These could for example be, shelf life or the amount of transactions. In supervised learning mostly
the historical dataset is split into a training set and a test set. The training set is then used to train
the machine learning algorithm and the test set is used to evaluate the performance of the trained model.

Gitau [18] seperates supervised learning algorithms in two categories of algorithms. These are re-
gression algorithms and classification algorithms. The main difference between the outcome of the two
types of algorithms could be explained with the example above. In the example above two values for
the response variable (B) where given. These where accurate inventory records and inaccurate inventory
records. A classification algorithm outputs a discrete label. In other words, the output of a classifica-
tion algoritm is either the label accurate inventory record or the label inaccurate inventory record. A
regression algorithm on the other hand outputs a numerical value. In case of the example, the prediction
result could be seen as the likelihood that a certain inventory record is accurate or inaccurate.

We consider the counting policy based on supervised learning, as offline learning. We consider this
as offline learning, because there is a clear separation between the information collection phase and the
information implementation phase. We will first start by collecting labelled data from practice. However,
we derive this data from practice, we do not act while collecting this data. After, we collected enough
data, we run our models on our collected data. We first start by training our models to get a good fit
with the training data and then we test it on our testdata. Eventually, we only want to know what the
best model is and from that model we will derive policies, which we could implement into practice.

Conclusion

Advantages:

• The model is updated when new counting data becomes available. Therefore, the model is able to
adapt to changes in causes of inaccuracies.

• No expertise on which errors cause inventory record inaccuracies is required.

• Weights are assigned to features. These weights could help to identify error causes. When an error
cause is known, it could be solved and eliminated, which could reduce the amount of errors over
time.

Disadvantages:

• It requires historical data. To perform well it is data hungry.

• The amount of items that could be scanned in a given period of time is lower than location based
cycle counting [50]. So the ratio inaccurate records found to the total amount counted has to be
higher than location based.

2.2.4 Bandit problem

A k-armed bandit problem (k-AB) (also known as multi-armed bandit problem (MAB)) is a problem
where we have k alternatives (arms) [29]. Each alternative has a different reward with an unknown
probability distribution. The idea is that one of each of the alternatives has the best expected reward.
Our goal is to find this alternative by repeated trials of the k arms. Each time we try an arm, we get
to know something about the probability distribution of the reward of the arm we try. The more we try
a specific arm the better our estimate of the real probability distribution of the reward. We call trying
the arm for which we expect the best reward, given our current information, exploitation. However, we
also have to play the other arms to get more information about the probability distributions of the other
arms. We call this exploration. Each time we are going to try an arm we have to make the decision if
we are going to explore or exploit. The balance between exploration and exploitation is the key trade-off
for traditional k-armed bandit problems [5].

Within offline learning there is also a balance between exploration and exploitation, however in on-
line learning this balance is more crucial. In online learning, every experiment that we conduct is also
resulting in real costs. As described in Section 2.2.2, the intermediate results are more important in
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online learning than in offline learning.

In a k-AB problem we want to know which of the k arms has the best expected reward. To learn
which arm has the best expected reward, we have to play one of the k alternatives. Playing one of
the arms at time t cost (Ct) us a certain amount of our total budget (Bt). Each time we play, we get
a certain reward after playing (Rt+1). When we could add our direct reward to our budget, then the
transition function of our budget from time t to time t+ 1 could be presented as given in Equation 2.1.
So, the total times we could play depends on our initial budget, the cost of playing and our reward. A
bad reward could limit our amount of learning possibilities. However, this does not mean that it was a
bad decision. It could be useful to learn that a certain alternative k has a bad reward, because when
we have no information about a certain alternative than we could not say anything about the expected
reward of the alternative. However, when we already knew that it was a bad alternative, because we
already measured the alternative frequently, then we could say it was not that useful to measure the
alternative again. In a learning problem we call this usefulness the value of information.

Bt+1 = Bt − Ct +Rt+1 (2.1)

Stationary rewards vs non-stationary rewards

In a classic k-AB problem the distributions of the rewards are considered stationary [5]. In other
words, we assume that the distribution of the rewards does not change over time. If we encounter
that the distribution of the rewards changes over time then we consider the distribution of the rewards
non-stationary. The reason why we prefer stationary distributions is because we can make multiple
observations and based on these observations we could say something about the expected reward for
a next observation. When we have to deal with a reward distribution that changes (non-stationary)
then our previous observations might not be reflecting the truth about the current state of the reward
distribution [45].

2.3 Sequential decision problem

An example of a sequential decision problem is the Bandit problem given in Subsection 2.2.4 [24]. A
sequential decision problem is a problem where we have to perform an action (e.g., a decision) in each
state (e.g., moment in time), such that we find a good policy to meet our objective (e.g., minimisation of
costs) [40]. In literature, we found a lot of different vocabulary and approaches for a sequential decision
problem [40]. Powell [40] provides a framework to help us to make a decision on which type of approach
we can take for our problem. In this section we will further introduce sequential decision problems and
the corresponding framework of Powell [40]. Next to that, we will give a general formulation of our
counting policy problem in terms of a sequential decision problem and we argue why our problem can
be considered a sequential decision problem.

Elements of a sequential decision problem

A sequential decision problem consists of six elements [40]. We introduce these six elements one by one:

• State: this represents what we know at time t before we take an action. It is the minimally
dimensioned function of history that is necessary and sufficient to compute decision function xt.
Mathematical representation: St

• Actions: this represents the decision1 x we will make at time t.
Mathematical representation: xt

• policy : this represents the policy π on which we make the decision xt.
Mathematical representation: Xπ

t (St)

• Exogenous information: this is variable information that we start to observe at time t = 0 (e.g.,
price, demand). We use the convention that any variable that is indexed by t is known at time t.
Mathematical representation: Wt

1In other communities decision x is also referred to as a discrete action a or continuous controls u.
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Rt It Kt

Resource/physical state Information state Knowledge/belief state

We could present the sequence that states (St), actions (xt), and exogenous information (Wt)
evolves over time t as follows:

(S0, x0,W1, S1, x1,W2, . . . , St, xt,Wt+1, . . . , ST )

• Transition function: the function that describes the evolution of the system from t to t+ 1
Mathematical representation: St+1 = SM (St, xt,Wt+1)

• Objective function: We assume that we have a function that can be presented as a cost2 function
(C). This function may depend on the state St and the decision xt. As an objective we want to
find the policy π that minimizes the expected cost over a finite period of length T .
Mathematical representation cost function: C(St, xt)

Mathematical representation objective function: minπ∈Π Eπ
∑T
t=0 C (St, X

π
t (St))

Classes of policies

A policy is a mapping on how we make a decision (action) in a certain state [40]. E.g., we have four
alternatives from which we want to select the one with the lowest cost. Then we can define a cost
function that describes the cost of each alternative. Since we want to select the alternative with the
lowest cost, we select the alternative that has the lowest value resulting from the cost function. Here the
cost function is not the policy, but the function makes it possible for us to select the cheapest alternative.
According to Powell the combination of such a function and the decision is called a policy. Where Powell
defines four classes of policies. These four classes are:

• Policy function approximations (PFAs)

• Cost function approximations (CFAs)

• Value function approximations (VFAs)

• Look-ahead policies (LAPs)

PFAs
A PFA represents some analytic function that does not involve solving an optimization problem. Exam-
ples of PFAs:

• (s,S) inventory model, where we learn the order up to level S and the reorder point s

• The direction at a particular intersection (routing logic), where we learn to go left, right or straight
ahead

CFAs
CFAs are used in problems where a simple myopic policy can produce good results. A myopic policy is a
policy that tries to maximises the immediate reward. CFA is an approximation of a cost function where
your decision is made on the minimum outcome for the cost in a certain state. examples of CFAs:

• Shortest Path from a to b [41], calculate possible routes using a cost function and select the shortest
path. We can learn this route, such that next time we have to go from a to b that we do not have
to recalculate this route.

2A reward (R), or utility function is also used, but we assume that we can write these functions in terms of a cost function
(C). E.g., max reward function: max

∑
R (St, Xπ

t (St)) = min
∑
−R (St, Xπ

t (St)) → −R(St, Xπ
t (St)) = C(St, Xπ

t (St))
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VFAs
VFAs are policies that try to make a prediction on the future based on the values of the post-decision
state. An often used method for VFA is linear regression. The difference with PFA and CFA is that
VFA looks at the decision that is made, PFA and CFA only look at the state that we are in. Next to
that VFA is often used in situations where we have a lot of dimensions, the relationships are not as clear
or easy as in a simple shortest path problem.

LAPs
The simplest look-ahead policy involves optimizing deterministically over a horizon H. In other words a
look-ahead policy makes a forecast of the future/ what is coming next. Based on that forecast, decisions
are made. For example, planning of capacity.

Hybrid policies
In addition to the four classes of policies, we can also combine these classes of policies. For example we
could combine a LAP with a PFA. In case of a combination of these four classes, we call the policy a
hybrid policy.
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Chapter 3

Use case - Bolk logistics

This chapter discusses the company Bolk logistics, which collaborated with this research to perform a
case study. In this chapter we first discuss some facts about the current inventory counts and the material
handling at Bolk logistics in Section 3.1. Second, we introduce the dataset that Bolk provided for this
research in Section 3.2. Next to that, we discuss how the dataset is modified such that it can be used
to verify our proposed procedure of Chapter 4. We need to understand the material handling process
of Bolk, such that we can understand the transaction dataset and retrieve the required data from the
dataset. This is necessary since the dataset contains information of the whole warehouse (Bulk storage,
(un)loading area, VNA buffer locations (IN and OUT), and VNA storage locations), but we want to
clean the dataset such that we are eventually left with all transaction data concerning the VNA storage.
The result of this chapter is a dataset that contains all VNA storage transaction data and is modified
such that it can be used in Chapter 5 as simulated transaction data.

3.1 Bolk Logistics

As introduced in Section 1.1, we will focus in this research on the transit warehouse of Bolk logistics that
is located in the harbour of Hengelo. In this warehouse, all kind of salt related products for the consumer
market are stored. These products come from a near manufacturer and come to the warehouse as full
pallet loads. So, in the warehouse only full pallet loads are stored. In the warehouse of Bolk logistics
there are two types of storage. The first type is the Bulk storage and the second type is very narrow
aisle (VNA) racking, where most of the items are stored in Bulk storage. In this section we first discuss
some facts about one historic inventory count of the year 2020, such that we get some insight in their
current inventory counting process. Thereafter we present the inventorying process of Bolk logistics.
According to Brooks and Wilson [11] the inventorying process consist of two parts, the management of
physical movements in the warehouse and the record-keeping of transactions. Below we present both
parts seperately.

3.1.1 Inventory counting

Every year, Bolk conducts a stock count of the whole warehouse. This stock count is estimated to take
around 64 hours for the whole warehouse. In the last stock count, 3.5 days were spend by two employees
(56 hours) on manually counting items stored in the VNA. The VNA is 12.5 metres high. During the
inventory count, one employee goes up in a cherry picker to write down the barcodes, while the other
employee operates the cherry picker. The stock count for the Bulk storage is approximated to take 1 day
for 1 employee (8 hours).

Based on an interview with two employees of Bolk Logistics, the capacity of the warehouse is deter-
mined to be around 15000 pallets. From this capacity it is estimated that 40% of this capacity is VNA
racks and 60% Bulk storage. So, the capacity of the VNA is around 6000 pallets and the Bulk storage is
9000 pallets. The most optimistic mean counting time per pallet per employee for each of the two storage
methods can be calculated by assuming that at the moment of counting the warehouse was full. We
assume this, because we do not know the amount of inventory at the counting moment. The optimistic
mean counting time can then be calculated by dividing the capacity by the amount of time spend per
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employee. Note that in case of VNA, the total amount of counting hours per employee is equal to 28
hours. An overview of the current inventory counting statistics could be found in Table 3.1.

Total counting % of goods % counting capacity Mean counting time
hours hours (No. pallets) per pallet per employee

VNA 56 40% 87.50% 6000 16.8 sec
Bulk 8 60% 12.50% 9000 3.2 sec
Total 64 100% 100% 15000 8.64 sec

Table 3.1: Inventory counting statistics Bolk Logistics

As could be derived from Table 3.1, 87.5% of the total time spend on inventory counting is spend on
counting only 40% of the pallet goods. There are three main reasons why the inventory counting time
for the VNA racks is higher in comparison to the Bulk storage. The first reason is that two employees
are required, where only one employee can count inventory. The second reason is that in Bulk storage
in principle the same products are stored together per location, while there are much more VNA rack
locations where in every location a different product can be stored. The third reason is the accessibility
of the pallets. In the Bulk storage, pallets are easy to access and no tool such as a cherry picker is
required. In the VNA racks, the pallets are much more difficult to access. The racks are 12.5 metres
high and a cherry picker is required to see which product is stored at a specific location. In Figure 3.1a
and 3.1b a picture of the Bulk storage and the VNA rack storage is shown.

(a) Bulk storage (b) VNA rack storage

Figure 3.1: Storage methods used by Bolk logistics.

3.1.2 Material handling

The management of the physical movement of goods in a warehouse is also called material handling.
According to Massey [31], material handling is a method that describes the movement within the scope
of a building. In this part we present the material handling for the warehouse of Bolk logistics in Hengelo.
To be more precise, we focus on the possible movement steps from arrival to departure of each pallet in
the warehouse.

The process starts with an arrival of a pallet at an inbound dock. At the inbound dock the pallet
is unloaded and placed at an unloading area. From the unloading area a forklift moves the pallet either
to the Bulk storage or the VNA storage. The choice between Bulk or VNA storage is made by the
warehouse management system. This system tells the forklift operator at which location a pallet must
be stored. When the pallet needs to go to the Bulk storage it is placed directly at the appointed Bulk
storage location. For the VNA storage the pallet is first placed at an ingoing buffer location (IN) at the
beginning of the aisle in which the pallet needs to be stored. An extra step is necessary, because a special
forklift which can operate in the VNA aisles is required. This special forklift picks the pallet from this
buffer location (IN) and moves it to the appointed location.
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A pallet stays at the appointed storage location until it needs to be shipped or placed at another
location. When it needs to be shipped and it is stored at a VNA aisle, the pallet is moved from the VNA
aisle to an outgoing buffer location (OUT) at the end of the aisle. From this buffer location (OUT) the
pallet is moved to the loading area of an outbound dock. Finally, the pallet is loaded from the loading
area into a truck at the outbound dock. For the Bulk storage there is no buffer outgoing zone. A pallet
goes directly from the Bulk storage to the loading area of the outbound dock.

The decision to store a pallet either at the VNA or Bulk storage can be represented in the follow-
ing rule of thumb. Large batches of the same product with a low throughput time are stored at the Bulk
storage, and small batches with long throughput time, are stored at the VNA storage. In Bulk storage,
pallets from the same batch are stacked together. When at a Bulk storage location the amount of pallets
decreases it is possible that the remaining pallets are moved from the Bulk storage to the VNA storage.
In this case each pallet is moved from the Bulk location to the buffer location for the appointed VNA
aisle. A flowchart of the described possible paths for a pallet is given in Figure 3.2.

Figure 3.2: Material handling process

3.1.3 Record-keeping process

The material handling is how the physical pallets flow through the warehouse. In record-keeping, each
physical movement within the warehouse is seen as a transaction. In other words, the transaction is a
mirrored representation of the physical movement [11], where each transaction is represented as either an
ingoing or outgoing transaction. Each location has ingoing and outgoing transactions, where an outgoing
transaction from one location is the ingoing transaction for the other location.

The Warehouse management system of Bolk keeps track of the inventory at each location given in
Figure 3.2. In other words, the system keeps track of the inventory at each individual Bulk storage
location, VNA storage location, (un)loading area, and buffer location. To keep track of this, Bolk uses
transaction data (Section 3.2) that is gathered during operations of the warehouse. Each individual
movement is kept track of by scanning (or entering) both the location barcode and the pallet goods
barcode.

3.2 Transaction dataset

In this section we describe the dataset that we use as input for our simulated warehouse of Chapter 5.
This section is organised as following. First we discuss the data collection. Therafter, we present some
statistics about the data set. Finally, we discuss how we adjusted the received dataset to the dataset as
used in our simulated warehouse.

3.2.1 Data collection

From Bolk logistics, we received a dataset containing all transactions in the warehouse of the year 2019.
This dataset consist of 978886 input rows of data. This dataset, is provided in excel format (.xlsx) and
is retrieved from their warehouse management system.
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3.2.2 Data exploration

The dataset consists of 978886 rows. Each row has 10 inputs. These inputs are Pallet ID, date, time of
the day, warehouse hall number, location number, operator, last warehouse hall number, last location
number, article number, batch number. In the dataset there are 341777 unique pallet ID numbers, In
other words, 341777 different pallets are moved through the warehouse in the year 2019 with an average
of 2,86 transactions per pallet.

The warehouse is operated 24 hours for 7 days a week. Only with Christmas the warehouse is not
operated. In Figure 3.3, an overview of the weighted average amount of transactions (per week) for each
day of the year is given. As can be seen in the graph, the weighted average of transactions per day is
between 1900 and 3500. Except at the end of the graph, where the amount of transactions drops to
around 1250. This can be explained by the fact that the warehouse is closed during Christmas which
gives two days without any transactions. But those days count for the weighted average of the week.

Figure 3.3: Amount of transactions per day of the year (weekly weighted average)

We can separate the locations into five categories. Namely, the Bulk storage, the VNA storage,
unloading area, loading area, and other. In Figure 3.4, the distribution of the amount of transactions
per each of the individual areas is given.

Figure 3.4: Distribution of amount of transactions per area

3.2.3 Data preparation

In our research we made a simulated warehouse based on the VNA rack storage of the warehouse of
Bolk logistics in Chapter 5. This simulated warehouse uses the transaction data of each day of the above
described data set to simulate transactions between consecutive cycle counting moments t. We refer to
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the status whether or not a pallet is located at a location as the location balance. By backward reasoning
we determined the initial balances. The initial balance is the balance of a location at the start of each
simulation (t = 0). During each simulation we update the balances of each location between each cycle
count moment t by using one day of transaction data. To be able to simulate transactions between
cycle counting moments t we had to adjust the dataset with VNA transactions. Below, we first describe
how we distinguished ingoing and outgoing transaction. Next we describe how we determined the initial
balances, thereafter we describe some small required modifications to the transaction dataset.

Distinguish ingoing and outgoing transactions

In the dataset, each transaction has two location labels. Location label Loknr and location label
V orig Loknr. Loknr can be considered as the location it was going to and V orig Loknr as the lo-
cation it was coming from. We filtered all the row of transactions where either Loknr or V orig Loknr
had the value of a VNA storage location. We converted this filtered dataset to a dataset with only
one location label, but with a special input label type of transaction. This value for this label is either
outgoing transaction or ingoing transaction.

Initial balances

In our simulation we will compare the balances of the WMS of Bolk with our simulated warehouse. In
our model we use all ingoing and outgoing transactions from and to a specific VNA location. From our
dataset we extracted the initial balance of each location at the beginning of 2019 by using some rules of
thumb. In this section we will briefly discuss how we determined the initial balances and which rules we
used.

In our dataset for each transaction we have multiple inputs. Two of those inputs are current loca-
tion and last location. If a VNA location is noted in the input field currentlocation, then we say it is
an ingoing transaction for that location. If a VNA location is noted at the lastlocation, we say it is an
outgoing transaction for that location. In this way we determined the amount of ingoing transactions
and the amount of outgoing transactions per location.

Two other inputs, which are given in the transaction data, are the date and timestamp of the transaction.
Using those inputs and the inputs described above we could determine per location whether the first
transaction per location was an ingoing or outgoing transaction. We could do this, because we know
that at least 0 pallets are present at the location and at most 1 pallet is present at the location. So, if
the first transaction for each of the locations was an outgoing transaction we know our initial balance
should have been 1. If the first transaction for each of the locations was an ingoing transaction, we know
our initial balance should have been 0.

For more than 95% of all locations it was possible to use the above reasoning to determine the ini-
tial balance. For 265 locations it was not possible to determine the initial balance, because the amount
of ingoing and outgoing transactions for those locations were zero. Bolk gave possible reasons for most
of these locations. The reasons that were given were that certain locations must be left empty because
it is not possible to place a pallet due to the limited height (height = 8) at certain locations or the
location must be kept empty such that it could be used as safety passage (Aisle = 20). By analysing
the 265 locations we found indeed that 123 of the 265 locations were located in aisle 20 and from the
remaining 142 locations, 112 locations were locations at height 8. Based on the likelihood that these
locations should be left empty we will set the initial balance of those locations to zero.

Next to the initial balance at the beginning of 2019 we also looked at the end and in between bal-
ances after each transaction of 2019. We did this by adding one to the initial balance for all ingoing
transactions and subtracting one for all outgoing transactions from the initial balance. Then at each
moment of the year the balance should either be zero or one. We found that for 5702 of the 5760 locations
this was true. However, for 58 of those locations the end or intermediate balance was negative. Since
it is not possible to have a negative balance we looked into all the individual transactions of these 58
locations. By analysing these transactions we found that for each of the locations there were multiple
outgoing transactions in a row without an ingoing transaction in between and vice versa. This caused
the negative balance or the too high balance, as could be seen for three of those locations in Appendix A.
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we corrected the wrong balances, by either swapping time stamps of ingoing and outgoing transactions
or by deleting some transactions such that the balance per location was always 0 or 1.

Other modifications

Now we discuss small modifications made to the data set. Most of these modifications were necessary to
ease the programming of the simulation model. The made modifications to the transaction dataset are:

• After each count moment t, one day of transactions is simulated. Therefore, we extracted the day
of the year number (range 1 − 365) from the date label datum. This makes it easier to loop over
the day numbers.

• The operator input is given as string value. The implemented learning model requires numerical
inputs. Therefore, we changed each unique operator string value to a numerical input value.

• Each individual location is presented as unique location code. From this location code we extracted
at which place on shelf, on which shelf height of which Bay number in which lane of racks a location
is located. This is required for the distance calculation model presented in Section 5.4.

• The UAV travels through aisles, while pallets are stored in lane of racks. For the VNA storage of
Bolk, each aisle consists of two lane of racks. Therefore, we assigned an unique aisle number to
each pair of lane of racks.

More information about location codes and the assignment of aisles to specific lane of rack numbers is
given in Section 5.4.
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Chapter 4

Solution approach

In this chapter we present an inventory cycle counting model for UAVs, which is able to learn and make
decisions based on observations. In Section 4.1, we start with a short recap of the found design challenges
and our research goal. Next, we describe the assumptions we made in our modelling approach in Section
4.2. Thereafter, we provide the mathematical formulation of our problem as an integer linear program
(ILP) in Section 4.3. This mathematical model has as objective to maximise the sum of the predicted
chance of being inaccurate of locations visited each cycle count. In Section 4.4, we propose a step-by-step
heuristic approach that constructs cycle counting routes, which focuses on maximising this objective.
Thereafter, we propose an addition to the cycle counting model in Section 4.5. This addition focuses on
the learning model which makes the predictions about the chance that a location is inaccurate. Next,
we discuss the performance indicators, which can be used to measure the performance of the proposed
model in Section 4.6.

4.1 Design challenges

In this research we want to design a generic cycle counting proceduce for a single UAV, which can per-
form under time restricted counting intervals. As described in Chapter 1, we assume that the failure
behaviour of the warehouse is correlated to certain parameters of the operations in the warehouse. In
Section 5.2, this failure behaviour will be discussed in detail. In Chapter 1 we also define the goal of cycle
counting as searching for inaccuracies and the elimination of these inaccuracies to achieve and maintain
a certain level of OIRA.

In Chapter 2 we discussed six main cycle counting techniques, which all but one came with their own
priority rule. We concluded in Section 2.1 that this priority rule is effective when the by the priority
rule assumed, correlation with the failure behaviour is true. Next to that, we found that a priority rule
that is based on a correlation which is not true, is likely to perform worse in comparison to not using a
priority rule (e.g. random sampling).

There is no general priority rule that works the best for every warehouse, as it depends on the fail-
ure behaviour of the warehouse. So, if we want to design a generic cycle counting method for a single
UAV, then the method should be capable of learning the failure behaviour and establishing priority rules
based on this learned failure behaviour.

Learning the failure behaviour does not automatically make the performance of the cycle counting method
better. The method needs to make efficient decisions on which locations to visit during each cycle count.
This can be done by an optimisation model, which optimises the visited inaccurate locations based on the
likelihood of being inaccurate. This optimisation model has to use the learned information (likelihood of
being inaccurate) as input. To be able to optimise as well as possible, we need to understand the failure
behaviour as good as possible. This means that we have to learn the failure behaviour, to get the best
performance on the long term, but on the short term we have to visit as much as possible inaccurate
locations. In practice this means that we have to balance between exploring (learning) and exploiting
(visiting inaccurate locations).
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4.2 Assumptions

In this section we state the assumptions we made in our model. These assumptions are made to eliminate
uncertainties which are not known and are not the main focus of this research. We made assumptions
for three main subjects of our model, these are assumptions about time cost, assumptions about failure
behaviour, and assumptions about the layout of the warehouse.

The first set of assumptions are about the amount of time certain tasks take for an UAV to execute
these tasks and the amount of time an UAV get to execute these tasks. These assumptions are the
following:

• The flight time is deterministic. The distance to be travelled is linear with the travelling time. We
assume a constant flight speed without considering acceleration and deceleration.

• The scanning time per location is fixed.

• The available counting time per counting moment is fixed.

The second list of assumptions are about the failure behaviour of the warehouse. Inaccuracies can
occur during operations, but they can also be encountered during operations. However, we assume that
inaccuracies occur during operations, but they can only be resolved after being found in a cycle count.
Therefore we assume the following:

• When an inventory record becomes inaccurate it stays inaccurate until it is visited during an
inventory count. After being visited the inventory record becomes accurate.

• The failure rate for each location depends on the value of each individual parameter for that
location. The parameters are information about transactions and information about the location.
At each time moment t, the failure rate is calculated based on the values of these parameters (see
Section 5.2 for more details).

The final set of assumptions are made about the layout of the warehouses. Our goal is to make a generic
model that is applicable to multiple warehouses. However, we made some assumptions about the layout.
We did this to keep the distance calculations of Section 5.4 as easy as possible. These assumptions are
the following:

• An UAV could only enter and exit an aisle via the bottom entry/exit

• The warehouse consists of multiple aisles with identical width and height and an identical number
of storage locations.

• Each storage location has the same width and height

• Inventory at each location is at most 1 item (Full) and at least 0 items (empty).

As mentioned above, the last set of assumptions are necessary, because of the distance calculation
model we provide in Section 5.4. For example, when the width of each bay or the height of each shelf
is not homogeneous, it is not possible to calculate the distance from each location to another location
as given in Section 5.4. The choice to only allow the UAV to enter via the bottom entry of each aisle is
made to reduce the complexity of the distance calculations (in comparison to e.g., flying over the shelves
or multiple entry points) since distance calculation is not the main focus of this research. It is possible
to extent our proposed cycle counting method by replacing the distance calculation model for a different
more extended distance calculation model without having to adjust the rest of the proposed model.

Next to that, we made the assumption that inventory at each location is either one (full) or zero
(empty). Having multiple items per location increases the modelling complexity. For example, mul-
tiple batch numbers, article numbers, and operators per location cause having multiple input values for
each inventory record parameter. Our proposed learning method assumes that exactly one value is given
for each selected learning parameter. Using multiple values per input parameter causes a calculation
error. However it is possible to overcome such an error. This can be done by making the data suitable
for our proposed learning method using data preparation techniques. For example, by replacing each
combination of multiple inputs per parameter, to one unique numeric value. Then this unique value can
be used as input for the learning method.
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4.3 Mathematical model

In this section we present an integer linear program (ILP) of our cycle counting problem. We based the
routing constraints of our ILP on a mixed-integer linear program (MILP) proposed by Anbuudayasankar,
Ganesh, and Mohandas [3], which is a MILP for a vehicle routing problem with simultaneous delivery and
pick-up with maximum route-length . Our objective is visit those locations, such that we maximise the
sum of the predicted chance of being inaccurate per cycle count moment (Equation 4.1). The prediction
values are considered input parameters for our ILP and are given by the learning model described in
Section 4.4.2. Below we define the input parameters, the decision variable, the objective function and
the constraints.

Parameter Definition
Ri Predicted chance of being inaccurate for location i
yij Counting time cost to travel from location i to j
STPL Scanning time per location
ACT Available counting time

Decision variable Definition

Xij

{
1 If UAV travels from i to j
0 Otherwise

Objective function

max

N∑
i=0

N∑
j=0

Ri ×Xij (4.1)

Constraints

N∑
i=0

Xij ≤ 1 ∀j (4.2)

N∑
i=0

Xij −
N∑
i=0

Xji = 0 ∀j (4.3)

N∑
j=0

X0j = 1 (4.4)

N∑
i=0

N∑
j=0

(Xij × yij +Xij × STPL) ≤ ACT ∀j (4.5)

Xij ∈ {0, 1} (4.6)

As described above, Equation 4.1 is the objective function which we want to maximise each cycle counting
moment. Constraint 4.2 ensures that each location is visited at most once. If a location is visited by the
UAV, then the location gets counted. Therefore we want the UAV to visit each location at most once
per cycle count. Constraint 4.3 ensures that if the UAV arrives at location j, then it should also depart
from location j. This restriction connects the locations and ensures that we get a consecutive route.
Constraint 4.4 ensures that the UAV departs from the DS (i = 0). So, the combination of Constraint
4.3 and 4.4 ensures that the UAV always departs from and arrives at the DS. Constraint 4.5 ensures
that the total travel- and scantime of the cycle count route does not exceed the available counting time.
Constraint 4.6 ensures that the decision variable Xij is either zero or one, since it is only possible to
travel from i to j or not to travel from i to j.
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4.4 Inventory cycle counting method

In a warehouse the total amount of locations is often large. For example, in the case of the VNA of Bolk
logistics there are 5760 possible locations n, which can be visited in random order. When we want to
compute all possible routes to connect these locations, then there are N ! possible routes [2]. We consider
it computational unfeasible to compute all these possible routes to optimise our model such that we find
an optimal route. The mathematical model of Section 4.3 has a time restriction which limits the length
of the cycle count route. However, the amount of possible routes is still very large. Take for example the
VNA of Bolk logistics where a cycle count route consist of 100 locations, then the amount of possible
routes are 5760!/(5760 − 100)! [15]. The total amount of possibilities is too large to compute them all,
such that we find an optimal value for our ILP. Therefore, we propose a heuristic approach, which limits
the amount of possibilities.

We define each moment that the UAV counts the inventory as cycle counting moment t. Each cycle
counting moment t a route needs to be constructed along selected locations. Each moment t the UAV
starts at the DS. Starting from the DS locations are added one at a time until a full cycle counting
route is constructed. This cycle counting route is then executed and information collected during this
cycle count is then used as input information for the next cycle count. In Figure 4.1, the steps of our
proposed heuristic approach are shown. Below we describe these steps for making a cycle counting route.

For every location i ∈ I it is calculated what the minimum cost is to include the location to the cycle
counting route (1). Next to that, a reward score of visiting the location is calculated (2). Then a first
location is selected based on a predefined rule that focuses on a special character of the location (3). The
first location that is selected based on a special character is called the seed customer [34]. After selecting
the seed customer we calculate for each location i ∈ I, which is not the seed customer, the minimal cost
to include the location into the route (4). This cost consist of travelling and scanning time. Thereafter,
we add the location with the highest score-cost ratio given that the cost to include the location to the
route is not more than the available counting time (5). We keep on adding locations to the route until
there is no more available counting time (ACT) left. In the following sections we discuss each of the five
steps in more detail.

1. Calculate
initial cost

5. Plan location
with highest

score/cost ratio

Cycle count
moment

Execute
cycle count

2. Calculate
score value

3. Seed
customer

No

Time

 left?

4. Calculate
additional cost

Yes

Figure 4.1: Inventory cycle counting method heuristic steps

4.4.1 Step 1: calculate initial cost

For each location i ∈ I we calculate the travelling time from the DS to location i and back from location
i to the DS. The exact distance calculations used in our simulation model of Chapter 5 are given in
Section 5.4. The total initial cost per location is the sum of the travelling calculated travelling time and
the scanning time per location (STPL).

4.4.2 Step 2: calculate score value

The mathematical model has as objective to maximise the sum of the predicted chance of being inaccu-
rate of locations visited each cycle count. Therefore, we require a prediction model. In our problem we
consider the inventory record status of each location as the dependent variable, which we want to predict.
This status is either accurate or inaccurate. We want to predict the chance that the status is accurate
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or inaccurate. Therefore, we approach the problem as a regression problem and not as a classification
problem [17].

Since we have two status labels, we can choose to use a continuous or discrete regression approach.
Both regression approaches assume the labels to be a numeric value. Therefore, we assign the value 0 to
label accurate and 1 to label inaccurate. In a continuous approach, it is assumed that the status value
can be every value in a specific range. In a discrete approach, it is assumed that there are a specific
amount of status values. In case of using a continuous approach for our predictions, we can consider each
continuous estimation value in the range 0 and 1 as the chance of being inaccurate for each location. In
case of a discrete approach, there are two status values (0 and 1). For each of these two values a chance
is calculated that the status is either 0 or 1. Then the chance of being inaccurate is the chance that the
status variable has value 1.

There are multiple machine learning techniques which can be used for our regression problem such
as linear regression, logistic regression, support vector machines (SVM) and neural networks (NN). We
found that linear regression and SVM’s are often used for predicting continuous variables [39] and logistic
regression is often used for a discrete approach [9]. For NN’s, we found that NN’s are used for both
kind of approaches, but that it depends on the configuration of the NN. For example, it is possible to
configure a single node NN as a linear regression model [6], but also as a logistic regression model [1].

So, a NN can be used for both a discrete and continuous approach. Next to that, we found that
NN’s tend to outperform SVM’s, logistic and linear regression at comparable prediction tasks [32] [28],
given that there is as much training and computational power as possible. Given these above arguments,
we decided to use a NN. However, in Chapter 6, we compare the performance of a few of the mentioned
regression models by using our simulation model of Chapter 5.

In the remainder of this section we discuss details about the NN. First we briefly discuss the elements of
a NN. Thereafter, we describe how the neural network is implemented and (re)trained.

A typical neural network consist of multiple layers. These are an input layer, hidden layer(s) and
an output layer [46]. Each layer consist of multiple neurons. These layers of neurons are connected
through channels. A channel can be considered as a weight, where the values of each neuron is mul-
tiplied with the weight of the channel. The sum of the multiplications of activated neurons are input
values for the neurons of the next layer. This is often referred to as forward propagation. Whether or
not a neuron is activated, and thus the value is propagated, depends on the activation function. An
activation function can be seen as whether or not a certain threshold is met. There are multiple type
of activation functions, but typically the type of activation function is equal per type of layer. Eventu-
ally all input data is propagated through the network. In our case outputs of the output layer will be
predictions about the probability that the inventory record status is either 0 (accurate) or 1 (inaccurate).

We briefly discussed the NN above, now we explain how the NN is implemented in our proposed method.
At the beginning of each cycle count moment we use the NN to predict the chance of being inaccurate for
each location (1). We do this by inputting for each location the parameter information of the location.
These predictions are considered the prediction score and are used in step 3 and step 5 of this heuristic
to construct a cycle counting route (2). After each cycle count, we retrieve the status label (accurate or
inaccurate) from the locations we visited (3). We combine this status label with the input parameters.
After each cycle count all new count information is then added to the train data set. This train data set
is used to retrain the neural network for the next cycle count (4). We do this, because we expect to get
better predictions about the chance of being inaccurate when the amount of train data increases. The
next cycle count moment we make predictions with the retrained NN. This implementation of the NN is
also shown in Figure 4.2.
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2. Construct route

3. Execute count

1. Predict

4. Update/train

Figure 4.2: Implementation of the learning model in cycle counting process

4.4.3 Step 3: seed customer

We initialise each cycle counting route by selecting a seed customer. The seed customer is the first
customer that is inserted to the route [23]. Commonly used seed customers in sequential vehicle routing
problems (VRP) are farthest unrouted customer, customer with earliest deadline or earliest latest allowed
arrival. For our problem we can not directly implement these seed customer rules, but based on these
rules we propose the following rules for selecting a routes seed customer:

1. select location with the highest prediction score

2. select location where prediction score times the initial cost is the highest.

3. select top 10 locations with highest prediction score. Multiply these locations with the initial cost
and select location with the highest value.

4. select top 50 locations with highest prediction score. Multiply these locations with the initial cost
and select location with the highest value.

5. Randomly select a location from the locations list

6. Select location with the highest prediction score divided by the cost

Rule number 1 makes sure that the location with the highest prediction score is visited regarding the
cost to visit the location. This can be a location close to the DS or a location far away from the DS. Rule
number 2 selects the location where the multiplication of score and cost is the highest. In other words,
the rule prefers to select locations far away from the DS when prediction values are comparable. Rule
number 3 and 4 are a combination of rule 1 and 2. The rule selects the set of locations with the highest
prediction value, but prefers to select a location from this set which is further away from the DS. Rule
number 5 does not prioritise based on initial cost or prediction values, it just selects a random location
from the locations list. Rule number 6 focuses on the ratio score divided by cost and therefore tends to
select locations close to the DS. In Chapter 6, we compare the performance of using each of these seed
customer rules in multiple simulated environments.

4.4.4 Step 4: calculate additional cost

In step 1, we calculated the initial travel time cost for each location i ∈ I. In step 1 there is one routing
option, to travel from the DS to location i and back. In step 4, we have an existing route such as for
example shown in Figure 4.3a. When we want add an extra location to our existing sample of size n
(e.g. Figure 4.3b), then we (n + 1)! options for constructing the route for the UAV. When the sample
size increases the amount of options become too large to compute exact.

Therefore, we propose the use of heuristics for the construction of the route. We propose to use an
insertion heuristic, which is a special category of construction heuristics [27]. The advantage of using an
insertion heuristics in our problem in comparison to e.g., nearest neighbour is that it always calculates
the cost of a fully connected route. This is advantageous, because we want to keep adding locations to
the route as long as we meet Constraint 4.5 of our mathematical model.

An insertion heuristic starts with an existing tour consisting of multiple connected locations (e.g., Fig-
ure 4.3a). An insertion heuristic defines a rule between which two connected locations a new location
should be added to the route. We propose to use the nearest insertion algorithm or for models with
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DS

(a) Current route

DS

(b) Select new location

Figure 4.3: Nearest insertion example: existing route with 3 locations. Starting from and ending at the
docking station

more complex cost models the cheapest insertion algorithm. We propose these heuristics since we want
to minimise the additional cost of adding a location i ∈ I which is not in the existing route. Due to
our made assumptions about flight and scanning time (Section 4.2) the nearest insertion and cheapest
insertion heuristic will give the same result for placing the location in the route, since the flight time
is assumed linear with the distance. Therefore, we select the heuristic with the least computational
complexity, which is the nearest insertion [27].

We illustrate the working of the nearest insertion heuristic by using the example shown in Figure 4.3. we
select a new location (white node), which we want to add to our tour. In the figure, four grey nodes are
shown which are connected by four arrows. The nearest insertion heuristic evaluates between which two
connected nodes the new node must be placed, such that the additional routing distance (in comparison
to the route with four nodes) is minimised. In Figure 4.4 we illustrated the four options for how the new
tour with five nodes can look like.

As result from the nearest insertion heuristic we get the minimum additional travel distance for each
location i ∈ i. Since we assume the travel time to be linear with the travel distance, we can calculate
the additional travelling time. This gives us the total additional cost, which is the sum of the travelling
time and the scanning time.

DS

(a) Option 1

DS

(b) Option 2

DS

(c) Option 3

DS

(d) Option 4

Figure 4.4: Nearest insertion example: 4 options for adding new location to the route

4.4.5 Step 5: plan location with highest score/cost ratio

Each cycle count moment we start at the DS and we determine a seed customer based on our seed
customer rule of step 3. This results in a seed tour between the DS and the seed customer. In step 5 we
add locations to this tour sequentially. Step 4 and step 5 are recurrent consecutive steps after adding a
location to the tour. This is required since the additional cost to add a location to a tour changes. It
depends on the closest two consecutive locations of the tour, which can change when locations are added
to the tour.

The location which we add to our tour is the location which has the highest score-cost ratio and adding
this location does not violate the ACT constraint 4.5. In this way, we want to maximise our objective
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as defined in Section 4.3. This is a greedy approach where we select the location that gives us the most
value (Ri) per unit cost (time) [19]. We keep on adding locations to our tour until it is not possible to
add any more locations without violating the constraints.

4.5 Model addition: learning period

As described in Section 4.3, our objective is to find as much as possible inaccurate locations such that
we get an as good as possible OIRA performance over time. We do this by trying to construct cycle
counting routes that maximise the sum of the chance of being inaccurate. In this section, we first discuss
the importance of the quality of these predictions and the cost of learning. Thereafter, we propose to
combine the predictions of the learning model of step 2 of the proposed heuristic with score values given
by algorithms that are designed for Bandit problems for a limited period, which we call the learning
period. We propose this learning period to increase the quality of the predictions. We propose to
implement this learning period at the introduction of an UAV to a new warehouse, since quality of
predictions is expected to be the worst at the start.

4.5.1 The importance of good predictions

When an UAV is assigned to a new warehouse the UAV has no understanding of the failure behaviour
of the warehouse it is assigned to. To get an understanding of the failure behaviour, the UAV has to
execute cycle counts to collect counting information. The counting information of each cycle count can
be used to learn about the failure behaviour. We expect that in the beginning where the amount of
counting data is scarce that the predictions are not very accurate. These predictions are a certain belief
of how failures are correlated to certain warehouse parameters. As mentioned in Section 4.1, a priority
rule is effective when the by the priority rule assumed correlation with the failure behaviour is true. In
other words, when our prediction model assumes a wrong failure behaviour, then our model proposed in
Section 4.3 is not very effective. So, the effectiveness of our model depends on how well we can predict
the chance of being inaccurate for each location.

4.5.2 The cost of learning

Learning does not mean that we always select locations from which we think that they are likely to be
inaccurate. It can be vice versa that we decide to visit a location from which we think it is unlikely to be
inaccurate but we want to get information from this location. So, we say that during learning our goal is
not only to eliminate as much as possible inaccuracies, but to gather as much as possible understanding
of the failure behaviour of the warehouse as well.

When we let an UAV focus on learning during a cycle count instead of a focus on eliminating inac-
curacies, then there is a direct cost of warehouse accuracy. During learning the objective is not to
maximise the sum of the PcI, but to reduce uncertainty in the predictions. This can cause a drop in
OIRA. We think it is not desirable that the OIRA in a warehouse drops sharply or to drop below a certain
threshold, since many warehouse operations use the inventory record information as input. Therefore, we
have to keep the performance of our cycle count in mind, while we learn about the failure behaviour. In
other words, learning comes with direct costs, but making these costs can be beneficial on the long-term.
It is important to determine the length of a learning period where the benefits of learning outweigh the
costs of performance.

A learning curve can be used to visualise this trade-off between the increase in prediction quality and
the length of the learning period (Figure 4.5). A learning curve is a correlation between performance on
a task and the number of attempts or time spend on the task [49]. The time spend on learning decreases
the available counting time that can be spend on exploiting. Therefore, we want to switch from a fo-
cus on learning phase to a focus on exploiting, when the time cost to increase one unit in performance
becomes too high. For example, when we want to get the best OIRA performance after a year of cycle
counting. Then we have to balance the time we spend on learning and the time we spend on performance
(eliminating as much as possible inaccuracies), such that we get the best OIRA at the end of the year.
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4.5.3 Learning period

Here, we discuss the learning period, which we further refer to as phase I. We call the period after phase
I, phase II. During phase II cycle count routes are constructed as described in Section 4.4. The heuristic
proposed in Section 4.4 consists of five steps. During phase I, we adjust the score value calculation of
step 2, while the rest of the five steps heuristic approach is equal to Section 4.4.

The performance of the learning models proposed in Section 4.4.2 depend on the way these models
are compiled (1), fitted (2), and the input data on which they are fitted (3). The third factor is directly
influenced by historic cycle counts. The diversity and the amount of data that is inputted into the learn-
ing models influences the quality of the predictions. When the UAV is assigned to a new warehouse,
then it starts without any counting data. At such a moment, the proposed learning methods are not
likely to give good predictions, because it has (almost) no data to train on. In the basic heuristic (only
phase II), we would decide which locations to visit by using these predictions as score value. In other
words, we decide to use these low quality predictions for a pure exploitation strategy (decisions based
on current best information) [7].

Above we discussed the effect of the quality of the predictions and the cost of learning. The discussed
trade-off has similarities with the trade-off between exploration and exploitation in a Bandit problem,
which we discussed in Section 2.2.4. In Bandit literature, multiple techniques are discussed that can
be used to balance exploration and exploitation. The effectiveness of these techniques depend on the
origin of the Bandit problem. The possible reward for visiting a location (accurate or inaccurate) in our
problem can be compared to a special type of Bandit, namely the Bernoulli Bandit [30]. In a Bernoulli
Bandit problem the player receives a binary reward (0 (no reward) or 1 (reward)) for playing an arm.

We propose to use techniques used for Bernoulli Bandits to calculate the score value per location during
phase I. Three of those possible techniques are Thompson sampling, UCB-1, and ε-greedy [53]. In Chap-
ter 6, we compare the introduction of a phase I, where either of these three techniques is implemented,
to not using these techniques (directly start with phase II). Next to that, we use the technique that
performs the most promising for determining an advise for the length of phase I based on the trade-off
between the cost of learning and the reward of having good predictions.

During phase I, we implement and use these Bandit techniques the same way as we implement the
learning model as shown in Figure 4.2 (Step 2). During phase I, we propose to let the learning model of
phase II update, train, and predict such that it is possible to evaluate the development of predictions of
the learning model to counting data gathered during phase I. We use the prediction score given by the
selected Bandit technique to determine which data is gathered during each cycle count.

4.6 Performance indicators

In this chapter we developed a generic method for cycle counting with UAVs. In this chapter we focused
on the balance between learning and the performance of each cycle count. Since this is a generic model,
we want to provide multiple performance indicators such that it can be used to focus on different types
of performances of our proposed method. We first discuss our key performance indicators (KPIs), which
focuses on the overall effect of the cycle counts on the warehouse performance and on our objective of
Section 4.3. Thereafter, we discuss some other important performance indicators, that focus on specific
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aspects of the cycle count performance. Lastly, we provide some performance indicators that focus on
the learning performance of our model.

4.6.1 Key performance indicators

Our main overall performance indicator for the warehouse is the OIRA, which we discussed in Chapter
1 and is shown in Equation 1.1. The OIRA represents the exact accuracy of the warehouse at a certain
moment in time t. Therefore, we can also put in a time element t as given in Equation 4.7, such that we
can keep track of the OIRA over a time period from t = 0 until t = T where T equals the length of the
total time span which we measure.

OIRA(t) =
Amount of accurate locations(t)

Total amount of locations
× 100% (4.7)

In a simulated environment we can perfectly measure the OIRA. Since we need the status (accurate
or inaccurate) of each location at each moment t. When we execute our proposed method in practice,
then we only get status information about locations we visited at each moment t. Therefore, we propose
an OIRA score based on historic measurements (MOIRA) and an OIRA score based on predictions of the
learning model (POIRA). The MOIRA is the ratio accurate locations found and total locations count,
over a certain time period ∆t. So, if we want for example the MOIRA between t = 5 and t = 10 then we
divide the amount of counted locations with status accurate by the total amount of locations counted
as given in Equation 4.8.

MOIRA(∆t) =
Accurate locations counted(∆t)

Total locations counted(∆t)
× 100% (4.8)

The POIRA is equal to 1 minus the predicted fraction of inaccurate locations. The numerator of the
fraction is calculated as the sum of the predicted chances of locations having the inventory record status
inaccurate (E[P(inaccuracy)]). These predictions are given by the learning model of Section 4.4.2. The
denominator of the fraction is equal to the total amount of locations in the warehouse. The POIRA at
moment t can be calculated as given in Equation 4.9.

POIRA(t) = 1−
∑N
i=0 E[P(inaccuracy)i](t)

Total amount of locations
× 100% (4.9)

We discussed three performance indicators for the accuracy performance of the warehouse. Each of
the three indicators can be used in a simulated (offline) environment and the latter two can be used in
an online environment, since the latter two do not require perfect information about the status of each
location at each moment.

Above we presented KPIs for measuring the accuracy of the warehouse, which is influenced by the
cycle counts. However, the presented KPIs do not tell much about the performance of the proposed
cycle count method per individual cycle counts. The objective of our mathematical model in Section 4.3
is to maximise the sum of the predicted amount of inaccuracies visited per cycle count (Equation 4.1).
We use this objective function as our main KPI for measuring the performance of each individual cycle
count. Next to that, we want to measure the amount of actual inaccuracies found per cycle count, such
that we can calculate an error rate between actual performance of the cycle count and predicted per-
formance. With this error rate we can evaluate the ability of the learning model to make good predictions.

In other words, we propose one KPI for measuring the actual performance of each cycle count, one
KPI for the expected performance of each cycle count, and one KPI for measuring how well our expec-
tations meet reality. These three KPIs are consecutive amount of inaccuracies found per cycle count
moment (FpM), expected amount of inaccuracies to be found per cycle count moment (E[FpM ]), and
the relative error between expected and actual amount of inaccuracies found (RE[FpM ])[20]. This
RE[FpM ] can be calculated as given in Equation 4.10.

RE[FpM ] =
E[FpM ]− FpM

FpM
(4.10)
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4.6.2 Performance indicators

In the previous section we presented KPIs for measuring the performance of the cycle counts. These KPIs
focus on the general performance of the cycle counting method. In this section, we present performance
indicators that focus on the performance of a certain aspect of the cycle count method. We made a
split between performance indicators for measuring the cycle counting performance and performance
indicators for measuring the learning performance. We first discuss the cycle counting performance
indicators (CPIs) and thereafter the learning performance indicators (LPIs).

Cycle count performance indicators

Whether or not finding 10 inaccuracies during a cycle count is a good performance depends on multiple
factors. Such as the total amount of locations it can count during a cycle count, the total amount and
the spread of inaccurate locations present in the warehouse. During experimentation these factors are
situation dependent. In Chapter 5, we made a simulation model where these factors are adjustable. In
Chapter 6, we run multiple experiments to get an understanding of the performance of the proposed
method for various situations.

One of the things which we want to investigate during the experiments is the effect of changing the
time settings (available counting time, travel time cost or location counting time cost). This can in-
fluence the score-cost ratio to visit a location and this can influence the size of the cycle count route,
which we expect not to be directly visible by only measuring the FpM . Therefore, we propose the CPI
amount of locations counted per cycle count moment CpM and the ratio amount of inaccuracies found
per amount counted each cycle count moment (FpCr) as given in Equation 4.11.

FpCr =
FpM

CpM
(4.11)

Learning performance indicators

The KPI RMSE between the EFpM and the E[FpM ] give indications about how well the learning
model can predict the amount of inaccuracies it is going to find. This can be measured during both
online and offline learning. During offline learning we know the exact OIRA and the chance that a
location has the status inaccurate (P (inaccuracy)) (Equation 5.3). Since we know the exact OIRA,
we can also measure the mean absolute deviation (MAD) between the OIRA and POIRA as given in
Equation 4.12.

MAD(POIRA) =

∑T
t=0 |OIRA(t)− POIRA(t)|

T
(4.12)

This MAD gives us insight in how well the prediction model can predict the accuracy of the warehouse.
In online learning the exact OIRA is unknown, but it is possible to calculate the POIRA and/or the
MOIRA. A comparison between the MAD for the learning model with a MAD for the measurements
(Equation 4.13) during offline experiments can give us insight in whether the POIRA or MOIRA will
give the best estimate of the OIRA during online learning.

MAD(MOIRA) =

∑T
t=0 |OIRA(t)−MOIRA(t)|

T
(4.13)

We propose to use one more performance indicator that focuses on the error between individual
location prediction value E[P (inaccuracy)] and the actual P (inaccuracy). This is calculated by taking
the root of the sum of the individual squared errors between P (inaccuracy)i and E[P (inaccuracy)]i and
dividing this by the total amount of locations in the warehouse I as given in Equation 4.14 [38].

RMSE(P (inaccuracy)) =

√∑I
i=0(P (inaccuracy)i − E[P (inaccuracy)]i)2

I
(4.14)

The RMSE gives the average performance of the individual location predictions in the warehouse,
while the MAD (Equation 4.12) gives insight in the learning model’s ability to predict the accuracy of
the warehouse. In other words, the RMSE analysis the performance of the learning model on macro
level (per location), while the MAD focuses on the performance of the learning model on micro level (the
warehouse) [26].
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Chapter 5

Simulation model

In this chapter, we describe the simulation model, which is used to test our proposed cycle counting
method of Chapter 4. We used the Spyder editor to make our simulation model as a Python 3.8 coded
model. Our simulation model is based on the data provided by Bolk logistics, described in Chapter 3.
The simulation model is a simplified representation of a warehouse that is operated for 24 hours a day
and 7 days a week. The simulation model will simulate inventory inaccuracies and transactions between
each counting moment. After each counting moment the simulation model processes the counting infor-
mation of the locations selected by the cycle counting method of Chapter 4.

In Section 5.1, we describe the layout of the simulated warehouse and we describe the operations of
the simulated warehouse. In Section 5.2 we describe how and when inaccuracies occur in the simulated
warehouse in Section 5.3. Thereafter, we describe the use of a warm-up period to initialise the model.
In Section 5.4 we explain how the travelling time to visit the selected locations is calculated.

5.1 Simulated warehouse

In Chapter 3, we described the inventory counting and the operations of the warehouse of Bolk logistics.
In our simulated warehouse we use Bolk logistics as our use case. We based our layout on the layout
of the VNA rack storage at Bolk logistics. We do this such that, we can use the processed historical
transaction data from this warehouse, which is described in Section 3.2. It is possible to change the
layout of the warehouse as long as the layout is within the dimensions of the warehouse of Bolk (e.g.,
reducing the amount of aisles). However, in this chapter we only discuss the layout based on the VNA
storage of Bolk logistics.

The layout of our simulated warehouse is as follows. We have 6 identical aisles. In each aisle there
is a lane of pallet racks on the left hand side and on the right hand side. Each lane of pallet racks has
a depth of 20 identical bays. Each bay has a height of 8 shelves, and at each shelf there are 3 pallet
locations. This gives us a total of 5760 possible locations for a pallet. Next to the pallet locations, we
have one location for the UAV. This location is the start and end point of the UAV for each cycle count.
We call this location the docking station and it is placed at the bottom of a lane of pallet racks. In
Section 5.4 we describe the routing through this simulated warehouse.

As mentioned before, the warehouse is operated 24 hours a day and 7 days a week. During opera-
tions certain pallets are moved from a certain location to another location. In the simulation we only
keep track of the movement of the pallets located in the racks. Per location, we keep track of the last
transaction that corresponded to the location. Each transaction contains information about multiple
parameters. Examples of parameters are, the operator and article number. A snapshot of this table in
the Python simulation is given in Figure 5.1.
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Figure 5.1: Simulated warehouse: location information table

Depending on the amount of parameters that is kept track of we get a table with the amount of
locations as rows and the amount of parameters as columns. Next to the transaction parameters, also
information about the location and about previous cycle counts is kept track of in this table. This is
information, such as aisle number, rack number, last moment counted and amount of counts. A part
of this parameter information is used to generate a chance of failure. How we generate this chance of
failure is discussed in Section 5.2. We only want to mention here that all the parameter information is
related to the chance of an inaccuracies for each location. In this way the chance of being inaccurate will
be different for each location, because we link the transaction and location information to the chance of
failure.

5.2 Simulating inaccuracies

In this section we discuss how the inaccuracies in the warehouse are simulated. We want to simulate
inaccuracies that are representative to errors that occur in real life situations. Therefore we start this
section with an investigation on multiple type of errors that could cause an inaccuracy. Thereafter, we
discuss the selection of five parameters and we link them to the found error causes. Finally, we discuss
the failure rate function and the calculation of the chance of failure given the selected parameters.

5.2.1 Categories of errors

Kang and Gershwin [25] have categorised the causes of these errors into four categories. These four
categories are stock loss, transaction errors, inaccessible inventory, and incorrect product identification.

With stock loss we mean the loss of items that were accurate at the moment it was placed in the
warehouse, but somehow got lost over time. Typical examples of stock loss are theft of items, expired
shelf life, unauthorised consumption or damaged products [10] [25]. In other words, with stock loss we
mean the loss of stock, which we do not detect getting lost and therefore we can not update our inventory
record.

Transaction errors are errors that happen during a transaction. What we mean with a transaction
is each registered movement of an item. Typically, this could be during inbound or outbound shipments
or internally in a warehouse. Typical examples of transaction errors are scanning errors, errors in in-
bound or outbound inventory records [25] [52].

Next to the transaction errors and stock loss there can exist inaccessible inventory. Inaccessible items
are items that are present in the warehouse, but are not available because they can not be found [25].
Typical examples of inaccessible inventory are consumers who take a product and place it back at the
wrong location, or employees placing products at the wrong location during replenishment [10].

The final category is the incorrect product identification. In other words, the labels on the items are
not correct. Scanning these labels will change the inventory level of the wrong products. This could for
example happen with inbound products from a manufacturer who used the wrong label [25].
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5.2.2 Parameter selection

In our simulation model we make no separation between types of inaccuracies. We only simulate whether
the inventory record status of a location is either accurate or inaccurate. However, we want to link the
parameters that we select to at least one of the four categories described above. In our model we select
five parameters, but it is possible to increase or decrease the amount of parameters. Increasing the
amount of parameters makes the model more complex, which makes it harder for the model to learn the
failure behaviour, while decreasing the amount of parameters will make it easier to learn.

The first parameter that we selected is the balance status. We refer to balance as whether or not
something is stored at a location. We believe that a location is more prone to theft when there is inven-
tory at a location in comparison to not having inventory at the location. Therefore, we link the chance
of having stock loss to the balance status of the inventory record.

The second and third parameter that we select are the operator and shift number. The operator has to
execute scanning steps and the movement of pallets during operations. We believe that certain operators
make more mistakes than others during operations. Next to that, we believe that the performance of
humans is different during different moments of the day, due to for example fatigue. Therefore, we link
the different values of the operator and shift number to transaction errors and inaccessible inventory,
which both can be caused due to errors during operations.

The fourth and fifth parameter are the height and bay number of the pallet location. We believe that
placing a pallet at certain heights and certain bays is more difficult than other, which can increase the
chance of a damaged product in comparison to a better accessible location. Further in this section we
refer to these parameters as a specific parameter number u, where each value represents a parameter as
given below.

• u = 1 = Balance

• u = 2 = Operator

• u = 3 = Shift number

• u = 4 = Height

• u = 5 = Bay number

5.2.3 Inaccuracy function

We now discuss the location failure rate function. We define the location failure rate λ as the amount of
failures that occur per day (24 hours) at each location. We assume that failures at each location occur
at random moments over time and that the failure rate depend on u individual parameters u. Each
parameter u has its own failure rate λuv for each parameter value v. Here, we assume that failures follow
an exponential failure distribution [21]. By assuming that the failure rate of a location is exponentially
distributed we can sum the individual parameter value failure rates λuv, such that we get the location
failure rate λ as given in Equation 5.1.

λ = λ1v + λ2v + λ3v...+ λuv (5.1)

As mentioned in Section 5.2.2, we select five parameters u. However, it is possible to increase or
decrease the number of parameters for the failure rate function. From historic failure data it is possible
to calculate an estimate of λuv for each value v of these five parameters u [22]. This can be done by
dividing the sum of the failures that belong to parameter value v by the amount of days. This would
give us the individual parameter value failure rate λuv. Nevertheless, we expect that assigning a failure
to a parameter value will be a challenge.

We do not have failure data available. Next to that, we want to be able to adjust the failure rate
for various simulations. Especially, we want to be able to increase or decrease the effect of a certain
parameter u. By splitting the parameter value failure rate λuv into a parameter weight au and a param-
eter value variable xuv, we do not have to adjust each λuv to chance the effect of a parameter. Here,
the weight au represents the maximum amount a parameter u can contribute to the location failure rate
and xuv represents how much is contributed based on parameter value v. We divide the contribution of
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a parameter value into high, medium, and low. We assign value 1 to label high and a value between 0
and 1 is assigned to label medium and low, where the value for label medium is bigger than for label
low. Therefore, we can also write Equation 5.1 as Equation 5.2.

λ = a1 ∗ x1v + a2 ∗ x2v + a3 ∗ x3v...+ au ∗ xuv (5.2)

We define the sum of the weights au over every parameter u as the maximum possible failure rate.
This is the case when the contribution of each parameter value xuv of a location is labelled high. As
mentioned before, the weight au represents the maximum effect of a certain parameter to the failure rate
and it depends on the contribution of a parameter value how strong this effect is. To illustrate this we
provide an example for shift number. The shift number has possible values v = 1, v = 2, and v = 3 and
we set the weight value to 0.05. We assign for shift number 1 a contribution value of 1 (label high), shift
number 2 a contribution score of 0.1 (low) and shift 3 a contribution score of 0.5 (medium). Then the
contribution to the failure rate for v = 1 is equal to 0.05, for v = 2 the contribution is 0.005, and for
v = 3 it is equal to 0.025. As can be seen the effect of the parameter shift number to the failure rate is
10 times as high for v = 1 in comparison with v = 2. In this way it is also possible that parameters with
a lower weight au can have a higher contribution to the failure rate depending on the parameter value
score xuv.

Above, we described the calculation of the individual location failure rate λ. In our simulation model
the value of λ depends on the parameter values v at time moment t. It depends on time moment t,
because after each count moment t we simulate transactions and those transactions influence the param-
eter values. When each individual value of λ(t) is known, we can calculate the chance of an inaccuracy
over a certain time period [33]. When we set t = tbegin as the start moment of the time period and
t = tend as the end of the period, then we can calculate the chance of an inaccuracy (P (inaccuracy)) as
given in Equation 5.3. This equation represents the chance that at least one inaccuracy occurs during
the period. Where the product of (1−λ(t)) over each period t, represents the chance that no inaccuracy
occurs during these periods.

P (inaccuracy) = 1− (1− λ(tbegin))× (1− λ(tbegin + 1))× ...× (1− λ(tend − 1))× (1− λ(tend)) (5.3)

In our model, we get for each individual location a failure rate λ(t) at time t. Each count moment
t, we draw for each location a random number between 0 and 1. When the random number is less or
equal to the failure rate, then we set the location inventory record status to inaccurate. As mentioned
in Chapter 4 the record status stays inaccurate until it is visited during a cycle count. After a visit the
location record status becomes accurate and one time period t later the chance of an inaccuracy is equal
to the equation given in Equation 5.3. We want to note here, that the NN of Step 2 Section 4.4 tries to
predict this P (inaccuracy) for each location. Therefore, next to the five selected parameters of Section
5.2.2, the NN also considers last count moment per location.

5.3 Warm-up period

We are simulating inaccuracies in a warehouse. At the beginning there are no inaccuracies. With the
combination of the transaction data and the inaccuracy function, we want to simulate those inaccuracies
such that there is a correlation between the parameters of the location (transaction) data, and being
accurate or inaccurate.

So, the inaccuracies occur when we let our model run. There should be a representative amount of
inaccuracies in our simulated warehouse before we let our learning model train. Otherwise our learning
model will only encounter accurate records for the first couple of runs. This is not desirable since our
learning model will think that all parameters encountered in the beginning will be good parameters to
estimate that a record is accurate. While it can be that we simulate those parameters as indicators for
being an inaccuracy.

When inaccuracies occur and no corrections are made, the model’s OIRA drops. By setting a threshold
for the OIRA, for example 90%, we can determine a warm-up period. A warm-up period is a period
where the model runs, but we do not collect any information during this period to process [47]. The idea
is that we let the model run, until desired conditions are met by the model. In our case we define the

38



warm-up period as the period until we reach our desired starting OIRA.

When we simulate 365 days and each period t has a length of 1 day, then we have 365 periods t.
Then we can determine our warm-up period by starting at period t = 0, where we do not execute cycle
counting but we simulate transactions and inaccuracies. After each period t the OIRA declines. We
determine the warm-up period as the length of the time between t = 0 and the first period where the
OIRA is equal to or lower than our threshold. In Figure 5.2 it is illustrated how the warm-up period is
determined. Every period t on the left side of the vertical dashed line is part of the warm-up period and
every period on the right side of the vertical dashed line we use to test our cycle counting method on.
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Figure 5.2: Example: Determine warm-up period

5.4 Distance model

In Section 4.3, we already discussed the time restrictions per cycle count moment. Here we recap these
restrictions and we further elaborate on these restrictions. The amount of locations (n) that an UAV
can visit during a cycle count, depends on the following four factors:

1. The available counting time (ACT )

2. The traveling time between selected locations (yij)

3. The scanning time per location (STPL)

4. Battery capacity of UAV (between charges)

In this research we are seeking for a sample selection policy that could perform under time restrictions.
These time restrictions are counting intervals of 15 minutes or less. From benchmarking publically
accessible information from two other companies (Ware [48] and Arox [50]) that use UAVs for inventory
counting, we found that the battery capacity of 15 to 20 minutes is used. Therefore, we assume that
the battery life of the UAV should not be a restricting factor. So, the amount of locations n we could
select for our sample depends on the factors 1, 2, and 3. We consider ACT and STPL as fixed input
parameters and are not dependent on which locations are selected. Nevertheless, The Yij is dependent
on the set of selected locations (Xij). The relation between the ACT , the Yij , the amount of locations
selected n, and the STPL is presented in constraint 4.5 of the mathematical model of Section 4.3.

The TTBSL is dependent on the selected locations. We will use a model that determines the total
travelling distance between the selected locations and from and back to the docking station. The to-
tal distance travelled is split into horizontal movement and vertical movement. We will first start by
explaining consecutively the horizontal movement calculations, the vertical movement calculations and
combined calculations. Thereafter, we will provide a few simple examples. For these examples, step by
step calculations can be found in Appendix B. Finally, we will use these examples to verify the distance
calculations in our Python model.

Horizontal movement

We assume that there are an given amount of Aisles. As shown in Figure 5.3, each aisle contains two
lanes of pallet racks (one on the left and one on the right). Next to that, each aisle has one entry point
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at the bottom. To go to the next aisle the UAV has to use the bottom entrance and could only exit via
this bottom entrance. In other words, it is only possible to go from one aisle to another aisle via the
bottom, an UAV could not fly over the racks or fly through an empty shelf. The UAV always starts and
finishes its cycle count at the docking station. Therefore, we include this distance in our calculation. We
calculate the total horizontal movement as follows:

1. Start at the docking station (DS)

2. Determine the most left aisle, which need to be visited

3. Determine distance from docking station DS to most left aisle

4. For each aisle determine the furthest pallet location that need to be visited (This is the location
with the highest bay B and location on shelf LoS number on that bay)

5. Determine the horizontal distance to be travelled per aisle. (Two times the distance to the furthest
pallet location (back and forth))

6. Calculate the total sum over all the horizontal distances travelled per aisle

7. Determine most right aisle that need to be visited

8. Determine distance most left aisle to most right aisle

9. Determine distance most right aisle to DS

10. Calculate the total horizontal distance travelled. ( The sum over the distances determined at 3, 6,
8, and 9 )

In our simulated warehouse, there are 6 VNA aisles (Ai), with 12 lanes of pallet racks (LoRn). Each
lane of pallet racks has a depth of 20 bays (B). Each bay has a height (h) of 8 shelves and at each
shelf there are 3 pallet locations (LoS). In other words, we could say that the horizontal depth per
aisle is equal to 60 pallets. As stated in the introduction of this section, we will provide some example
calculations later in this section, but first we will explain the vertical movement.

1 2 3 4 5 6 7 8 9 10 11 12

20 m m m m m m m m m m m m
19 m m m m m m m m m m m m
18 m m m m m m m m m m m m
17 m m m m m m m m m m m m
16 m m m m m m m m m m m m
15 m m m m m m m m m m m m
14 m m m m m m m m m m m m
13 m m m m m m m m m m m m
12 m m m m m m m m m m m m
11 m m m m m m m m m m m m
10 m m m m m m m m m m m m
9 m m m m m m m m m m m m
8 m m m m m m m m m m m m
7 m m m m m m m m m m m m
6 m m m m m m m m m m m m
5 m m m m m m m m m m m m
4 m m m m m m m m m m m m
3 m m m m m m m m m m m m
2 m m m m m m m m m m m m
1 m m m m m m m m m m m m

DS

Figure 5.3: Distance calculation model: Amount of aisles = 6, amount lanes of pallet racks = 12, amount
of bays per rack = 20, height (amount of shelfs per bay) = 8, Locations per shelf = 3, Docking station
location (Pallet rack lane number) = 6
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Vertical movement

Next to the horizontal movement through the aisles, the UAV also has to fly in vertical direction. The
displacement in height for the UAV is neccessary to reach the shelf on which the pallet is placed. In
Figure 5.4 a front view of one of the twelve racks of Figure 5.3 is given. We calculate the total vertical
movement in terms of difference in shelf height. We do this as following:

1. Start with starting height 1 (height of docking station)

2. Retrieve height of first location of the horizontal movement route. (Rule of thumb: this is the
location with the lowest Aisle number and lowest bay number for that aisle (if there are multiple
then this is sorted based on location on shelf and if necessary on the lowest height))

3. Calculate absolute height difference between start and first location

4. Retrieve next location of horizontal movement route and check if aisle number is equal to last
location

If aisle number is equal:

- Calculate absolute height difference between retrieved and last location.

Else:

- Calculate absolute height difference between docking station and retrieved location

- Calculate absolute height difference between previous location and docking station.

5. Repeat step 4 until last item is reached

6. Calculate absolute height difference between last item and docking station

7. The horizontal movement is the sum of all of the absolute height differences

As already stated in Section 5.4, there are six VNA aisles with pallet racks. Each of these racks have
a height of 8 shelves / 12.5 metres in total. We assume that we will fly at shelf height to scan the pallet
location. So the maximum difference between two consecutive scanning locations is 7 (Shelf8−Shelf1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 m m m m m m m m m m m m m m m m m m m m
7 m m m m m m m m m m m m m m m m m m m m
6 m m m m m m m m m m m m m m m m m m m m
5 m m m m m m m m m m m m m m m m m m m m
4 m m m m m m m m m m m m m m m m m m m m
3 m m m m m m m m m m m m m m m m m m m m
2 m m m m m m m m m m m m m m m m m m m m
1 m m m m m m m m m m m m m m m m m m m m

Figure 5.4: Distance calculation model (vertical representation): amount of bays = 20, amount of
locations per shelf = 3, height per bay = 8, docking station height = 1

Total movement: combining vertical and horizontal movement

The total distance an UAV has to fly is the combination of vertical and horizontal movement. We ex-
pressed the horizontal movement in terms of pallet locations and the vertical movement in terms of shelf
height. In case of Bolk logistics, these distances are in practice not equal. The width of a shelf of Bolk
logistics is around 2.70m on which three euro-pallets fit. The horizontal distance between consecutive
pallet locations is around 90cm. The height of Bolk’s bays are around 12.5m, which makes the distance
between each of the eight shelves around 156cm.

We want to provide a general model and not a Bolk specific model. Therefore, in our calculation
examples we say that a unit of vertical movement is equal to a unit of horizontal movement. However,
it is possible to adjust this ratio by multiplying the horizontal and vertical movement with a desired
ratio (e.g., for Bolk 0.90 and 1.56). When the ratios are equal, visiting a location directly on the left
or the right of a certain location takes the same travelling time as visiting a location directly above or
beneath that certain location. Next to that, we assume that it is not possible for an UAV to fly diagonal.
However, in practice an UAV might be able to fly diagonal. We do not use diagonal movement since we
only want to approximate the total movement and it is not the main scope of this research to optimise
the routing. Therefore, we calculate the total movement as the sum of the vertical movement and the
horizontal movement.
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Calculation examples

For each of our examples we place the docking station DS at lane of racks number LoRn = 6.

Example 1

In our first example we visit 4 locations all at height h = 1 and location on shelf LoS = 3. All 4
locations are in Aisle 1. The corresponding route is presented in Figure 5.5. When we use the horizontal
and vertical movement rules described above, then we find a total movement of 122 for example 1. An
extensive calculation can be found in Appendix B.1.
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Figure 5.5: Example 1: 4 locations visited in most left aisle

Example 2

In example 2 we visit 8 locations divided over 2 different aisles. In this example we keep the height for
each location equal to 1 and location on the shelf equal to 3. Four of the locations are placed in Aisle 1
and four are placed in Aisle 6. The corresponding route is presented in Figure 5.6. Applying the logic
above we find a total movement of 210. Extensive calculations can be found in Appendix B.2.
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Figure 5.6: Example 2: 8 locations visited divided over aisle 1 and aisle 6

Example 3

In example 3 we visit 15 locations divided over all 6 aisles. In this example we keep height 1 and location
on shelf = 3. The corresponding route and locations is presented in Figure 5.7. The total movement in
this example is equal to 528. Extensive calculations are given in Appendix B.3.
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Figure 5.7: Example 3: 15 locations visited, divided over all six aisles

Example 4

We take our first example where we visited 4 locations in the same aisle (Figure 5.5. We keep the
horizontal movement route, but we adjust the height of the locations. The vertical route is presented in
Figure 5.8. (Note: we keep the location on shelf = 3). The total movement of this example including
vertical movement is equal to 142. In Appendix B.4 we provide the step-by-step calculations for this
example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 m m m m m m m m m m m m m m m m m m m m
7 m m m m m m m m m m m m m m m m m m m m
6 m m m m m m m m m m m m m m m m m m m m
5 m m m m m m m m m m m m m m m m m m m m
4 m m m m m m m m m m m m m m m m m m m m
3 m m m m m m m m m m m m m m m m m m m m
2 m m m m m m m m m m m m m m m m m m m m
1 m m m m m m m m m m m m m m m m m m m m

Figure 5.8: Distance calculation model: Amount of aisles Ai = 12, amount of racks per aisle RpA = 20,
Docking station location DS = 6

Verification of implementation in Python model

The above given examples are used to verify the distance calculations in our simulated warehouse model.
Before we can do this we have to translate the selected sample locations of our examples to locationcode.
This is necessary, because our model uses the locationcode as an unique identifier to process all trans-
actions and cycle count information. In Table 5.1 an explanation is shown how to construct a location
code based on rack, bay, place on shelf, and height as inputs. Since the UAV will fly through aisles and
not through racks we also have to assign racks to aisle numbers. This is presented in Table 5.2.

Location code A xx00y 0z
Symbol A xx 00 y 0 z

Definition Rack Bay Place on shelf Height
Low L(=1) 1 1 1
High A(=12) 20 3 8

Table 5.1: Explanation of location code
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Aisle Rack
6 A,B
5 C,D
4 E, F
3 G, H
2 I, J
1 K, L

Table 5.2: Link aisles to racks

In Appendix B, we provide for each example the results given by our coded model. As can be seen
in this appendix, the results given by the coded model are equal to the results given by our manual
calculations. Therefore, we further assume that our distance model is correctly implemented in our
coded model.
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Chapter 6

Experiments

In this chapter, we present the experiment results of the proposed cycle counting method of Chapter 4.
We executed five types of experiments in our simulated environment from Chapter 5. In the simulation
model it is possible to adjust multiple settings such as the size of the warehouse. In Section 6.1, we
discuss the main experiment settings and at the end of the section we propose four base models. Every
experiment the main settings are equal to the selected base model unless explicitly mentioned otherwise.
In Section 6.2 we present per experiment type which base models are used and we present per experiment
which specific adjustments are made to the settings of the base model.

In Section 6.3, we present the results of the experiments described in Section 6.2, where each type
of experiments consist of multiple experiments. The five types of experiments researches the following:

1. The effect of the seed (first selected) location of each cycle count moment

2. The performance of the learning model using the neural network in comparison to two other
regression based learning methods.

3. The effect of adding a learning period, using the proposed exploration and exploitation balance
methods, on the (learning) performance of the algorithm.

4. The effect of the length of phase I (learning period) to the overall and learning performance.

5. Sensitivity analysis: the effect of parameter settings on the performance of the proposed method
in comparison to a traditional cylce counting method.

6.1 Experiment settings

In this section we first discuss the general settings. These are settings of the learning model (6.1.1), the
failure rate (6.1.2), the warehouse layouts (6.1.3) and time settings (6.1.4). For the learning model and
the time settings we use the same settings for each experiment unless explicitly stated otherwise in the
experiment description. For the warehouse layout we constructed three different environments and for
the failure rate we made two different settings. From this we constructed four base models in Section
6.1.5. Thereafter, in Section 6.2 we discuss per experiment type which experiments we conduct using
which base model and the experiment specific settings.

6.1.1 Neural network settings

For each of the base models of Section 6.1.5 we use the same learning model. This learning model is a
neural network (NN). We used the Python library Keras to built our NN [44]. This NN model consist
of an input layer, two hidden layers and one output layer. A summary of our model is shown in Figure
6.1. In Keras our NN model is called a ”Sequential” model and the type of layers that we used is called
a ”Dense”. The output shape of a Dense layer is equal to the amount of neurons of that layer. For
both hidden layers, we used the Sigmoid activation function. For the output layer of the NN we use
the Softmax activation function. These activation functions are selected after some tests with a small
test and training dataset. During these tests the most common used activation functions for the hidden
layers and output layers are compared [13].
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dense: Dense
input:

output:

(None,6)

(None,2)

dense_1: Dense
input:

output:

(None,2)

(None,32)

dense_2: Dense
input:

output:

(None,32)

(None,2)

(a) NN: connection of layers

Layer Type Output Shape Param # Activation

Input (none,6)
Hidden Dense (none,2) 14 Sigmoid
Hidden Dense (none,32) 96 Sigmoid
Output Dense (none,2) 66 Softmax

Total parameters: 178
Trainable parameters: 178

(b) Sequential neural network model

Figure 6.1: Neural network basic model

During the compile stage of the NN one should select a loss function and an optimiser function. These
are selected by running some tests (with the same dataset as for selecting the activation functions) with
often used loss and optimiser functions [37]. The selected loss function is the Sparse Categorical Crossen-
tropy and the optimiser function is the Adam optimizer with learning rate 0.01 [12].

After each cycle count the model is fit to cycle data gathered during previous cycle counts. How-
ever, first the data is shuffled and split into a train and test data set (80:20). This split into a train and
test data set is executed to calculate a validation loss value during the fitting of the model [14]. During
the fitting of the model to the data a callback function ”Early stopping” monitors this validation loss.
This callback function prevents the model to overfit to the train data. During fitting the train data is
split into multiple batches of a predefined batch size. In our model we set the batch size to 480. For
example, we have a training set consist of 1920 entries, then we get four different training batches. The
amount of times we go over these batches is defined as the amount of epochs. We set the amount of
epochs to 500, this means that the model is fitted at most 500 times over each of the four batches. How-
ever, after each epoch the validation loss is calculated. If a model is over fitted to the train data during
consecutive epochs, the validation loss will increase. The callback function ”Early stopping” keeps track
of how often the validation loss increases after consecutive epochs. The callback function has a certain
threshold ”Patience”, which defines how often the validation loss of two consecutive epochs is allowed to
increase. If this threshold is met, the callback function will stop the fitting of the model and will restore
the best weights for the channels of the NN that correspond to the epoch with the lowest validation
loss (Restore best weights=True). The code of the implementation of this NN model, for making the
predictions E[P (inaccuracy)], is given in Appendix C.

6.1.2 Failure rate settings

During the experiments we compare two different settings for the failure rate. As discussed in Section
5.2, the failure rate λi is equal to the sum of the individual parameter value failure rate λuv (Equation
5.1). Each λuv, consist of a weight au and a parameter value variable xuv. As mentioned, in Section
5.2, the effect of xuv is either high, medium, or low. In table 6.1, we present the parameter weights au
for the two failure rates. Next to that, we present the value for the label low, medium, and low. The
difference between failure rate setting 1 and 2 is that for setting 1 the effect of each parameter u is equal
if the parameter value v has the same label, while for setting 2 this is not the case. Next to that, the
difference between values for the status low, medium, and high are much higher for setting 2.

a1 a2 a3 a4 a5 Low Medium High
Setting 1 0.001 0.001 0.001 0.001 0.001 0.05 0.5 1
Setting 2 0.0001 0.00005 0.00005 0.00515 0.00515 0.0005 0.01 1

Table 6.1: Two type of failure rate settings
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6.1.3 Physical environments

During the experiments we want to compare different warehouse layouts. Here we describe the three
warehouse environments which we used. First, we briefly describe the physical dimensions and charac-
teristics of each environment. Thereafter we present the dimensions of each environment in Table 6.2.
A physical representation of the layout of the environments is given in Figure 6.2.

1 2 3 4 5 6 7 8 9 10 11 12
20 m m m m m m m m m m m m
19 m m m m m m m m m m m m
18 m m m m m m m m m m m m
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15 m m m m m m m m m m m m
14 m m m m m m m m m m m m
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12 m m m m m m m m m m m m
11 m m m m m m m m m m m m
10 m m m m m m m m m m m m
9 m m m m m m m m m m m m
8 m m m m m m m m m m m m
7 m m m m m m m m m m m m
6 m m m m m m m m m m m m
5 m m m m m m m m m m m m
4 m m m m m m m m m m m m
3 m m m m m m m m m m m m
2 m m m m m m m m m m m m
1 m m m m m m m m m m m m

DS

(a) Environment 1
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9 m m m m m m m m m m m m
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5 m m m m m m m m m m m m
4 m m m m m m m m m m m m
3 m m m m m m m m m m m m
2 m m m m m m m m m m m m
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(b) Environment 2
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(c) Environment 3

Figure 6.2: Layout of environments

Environment 1

Environment 1 is based on the size of the VNA storage of Bolk logistics. It is the largest of the three
environments. It has six long identical aisles, entry and exit is only possible via the bottom of each aisle.
The docking station is placed at the bottom of the third aisle.

Environment 2

Environment 2 is smaller in comparison to environment 1. It has the same amount of aisles as environment
1, but the length of each aisle of environment 2 is half the length of the aisle length of environment 1.
The docking station is placed at the bottom of the third aisle.

Environment 3

Environment 3 is also smaller in comparison to environment 1. The amount of locations is equal to the
amount of locations from environment 2. However, the length of each aisle in environment 3 is the same
as in environment 1, but the amount of aisles is reduced from six to three aisles. The docking station is
placed at the bottom of the second aisle.

Environment 1 Environment 2 Environment 3
No. of aisles 6 6 3

No. of lane of racks 12 12 6
No. of bays 20 10 20

No. of shelves per bay 8 8 8
No. of locations per shelf 3 3 3
Total amount of locations 5760 2880 2880

Table 6.2: Dimensions of experimental environments

6.1.4 Time settings

During the experiments we use the same time settings for each of the environments. The time settings
are the scanning time per location (STPL), the travel time factor, the available counting time (ACT)
and the threshold value for the warm-up period. The travel time factor is the amount of time that it
takes to execute one unit of calculated distance (5.4). The time settings are shown in Table 6.3
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Setting Value
Scanning time 6s

Flying time factor 1
Available counting time 900s

Start OIRA level 90%

Table 6.3: Settings of experimental environments

6.1.5 Base model settings

we conducted experiments using four base models (A,B,C,D). Each of the base models use the same
neural network and time settings. Base model A and B have the same layout (environment 1), but their
simulated failure rate is different (1 and 2). Base model C and D have the same failure rate settings (1)
as base model A, but the warehouse size (amount of locations) of model C and D are half the size of
model A. The only difference between base model C and D is the shape of the warehouse (environment
2 and 3). An overview of the base model settings is given in 6.4

Base model Environment Failure rate
A 1 1
B 1 2
C 2 1
D 3 1

Table 6.4: Base model settings

6.2 Individual experiment settings

In this section we discuss the individual experiment settings per experiment type. Per experiment type
it is mentioned which base model is used and which experiment specific settings are changed.

6.2.1 Seed customer

At each count moment the UAV starts at the docking station (DS). As mentioned in Step 3 of Section
4.4, the first selected location has a high effect on which locations are likely to be selected next. Having
a first location further away from the DS can overcome that only routes close to the DS are constructed.
Since, after selecting the seed customer the algorythm selects a location for a count moment based on
the ratio score divided by the additional location counting cost.

In step 3 of our proposed inventory cycle counting method, we propose five different rules for select-
ing a seed customer. We test each of these five seed customer rules in each base model. Next to that,
we compare these five seed customer rules to selecting the seed customer the same way as locations are
added to the route in Step 5 (Seed customer rule 6). This results in 24 experiments, as shown in Table
6.5. The goal of these experiments is to find which seed customer rule gives the best result in terms of
OIRA performance.

Exp No. Model Seed rule Exp No. Model Seed rule Exp No. Model Seed rule
1 A 3 9 B 5 17 C 2
2 A 4 10 B 1 18 C 6
3 A 5 11 B 2 19 D 3
4 A 1 12 B 6 20 D 4
5 A 2 13 C 3 21 D 5
6 A 6 14 C 4 22 D 1
7 B 3 15 C 5 23 D 2
8 B 4 16 C 1 24 D 6

Table 6.5: List of experiments: seed customer rule
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6.2.2 Benchmark learning models

During the second type of experiments we want to get an insight in how well our NN performs in
comparison to two other learning methods. We compare the neural network (NN) to two other methods,
which can predict the chance of being inaccurate. These two methods are linear regression (LiRe) and
logistic regression (LoRe). We do this by swapping the NN model for the other learning methods. In
Table 6.6 an overview of the experiment settings are shown. The linear regression and logistic regression
models are built using the Python library Keras and are based on [6] and [1]. Our goal is to get an
insight of the performance of the NN in comparison to two other regression methods in terms of OIRA
performance and the prediction performance. The code for the linear regression and the logistic regression
model configuration are shown in Appendix

Exp No. Base model Score method Exp No. Base model Score method
25 A Neural network 28 B Neural network
26 A Linear regression 29 B Linear regression
27 A Logistic regression 30 B Logistic regression

Table 6.6: List of experiments: benchmarking learning methods

6.2.3 Introduction of phase I

The third type of experiments compares the use of three exploration-exploitation techniques during phase
I. During these experiments we set the length of phase I to 90 days (after the warm-up period). The
learning techniques are mentioned in Section 4.5.3. The three techniques that are selected are UCB-1,
ε-greedy, and Thompson sampling. The UCB-1 technique focuses on the amount of times a location is
counted. The UCB-1 score consist of a prediction value of the NN and ads an upper bound value based
on the amount a location is counted ni at cycle count moment t (

√
2 log(t)/nj). The ε-greedy technique

splits the cycle count into an exploration part and an exploitation part. After adding a location to the
cycle count route the remaining time of the ACT reduces. We refer to the time that is available after
adding n locations to the route as remaining ACT (R(ACT )n), where R(ACT )n is equal to ACT for
n = 0. The ε-greedy technique start with exploration part (R(ACT )n ≥ (1 − ε) × ACT ) and shifts to
the exploitation part after adding a certain amount of locations (R(ACT ) ≥ (1 − ε) × ACT ). During
exploration the technique assigns a random score value to each location and during the exploitation part
the score values per location are given by the NN. The last technique focuses on the outcome of historical
cycle counts. The Thompson sampling method calculates a score by using the beta distribution where
the times the location status was found accurate (β) and the times it was found inaccurate (α) is used
as input. In Table 6.7 we present the experiment specific settings.

Exp No. Base model Score method Exp No. Base model Score method
31 A UCB-1 37 B UCB-1
32 A Thompson 38 B Thompson
33 A ε-greedy (ε = 0.3) 39 B ε-greedy (ε = 0.3)
34 A ε-greedy (ε = 0.6) 40 B ε-greedy (ε = 0.6)
35 A ε-greedy (ε = 1) 41 B ε-greedy (ε = 1)
36 A No phase I 42 B No phase I

Table 6.7: List of experiments: introduction of phase I

6.2.4 Length of phase I

After selecting the best technique for phase I, we want to get insights on the effect of the length of
phase I. Therefore, we select base model A and B, which both have different failure rate settings. The
experiment specific settings are shown in Table 6.8.
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Exp No. Base model Length phase I Exp No. Base model Length phase I
43 A 0 50 B 0
44 A 30 51 B 30
45 A 60 52 B 60
46 A 90 53 B 90
47 A 120 54 B 120
48 A 150 55 B 150
49 A 180 56 B 180

Table 6.8: List of experiments: length of phase I

6.2.5 Sensitivity analysis

During the last set of experiments we compare the performance of the proposed cycle counting method
to two traditional cycle counting methods, which we call the benchmark policies. The first policy tries
to eliminate as much as possible inaccuracies, by visiting as much as possible locations per cycle count.
The second policy focuses on the quality of MOIRA, by taking random samples from the warehouse.
During the experiments we change the settings of some of the adjustable parameters. The parameters
which are changed, have the most effect on the performance of the cycle counting methods according to
our believe. Below, we first discuss the benchmark polices, thereafter we discuss per parameter which
experiments we conduct. We only use the second type of benchmark policies for the last experiments to
compare the POIRA and MOIRA of our proposed method to the MOIRA of the two benchmark policies.

Benchmark policies

The first benchmark policy can be compared to the location based cycle counting method described in
Section 2.1 and is also referred to as progress-based cycle counting [4]. This cycle counting method starts
at the most left aisle and counts every consecutive location in this aisle until every location in the aisle
is counted. After counting each location in an aisle, the next aisle is counted until every location in the
warehouse is counted. After counting every location in the warehouse, the UAV starts counting again at
the most left aisle. In the list of experiments we refer to this benchmark policy with the letter B and for
our proposed cycle counting method we assign the letter P.

The second benchmark policy can be compared to random sampling. In Chapter 2, we found that
random sampling is often used for estimating the overall warehouse accuracy. The second benchmark
policy takes a randomly selected set of locations from the list of VNA locations. It does not consider
the distances between consecutive locations. Every round each location has the same chance of being
selected for the cycle count. We refer to this random sampling benchmark policy with the letter R. We
only use this second type of benchmark policies for the last experiments to compare the performance of
our proposed method in terms of estimating the warehouse accuracy.

Scanning time and flying time factor

Locations are added to a cycle counting route based on the highest score-cost ratio. The cost factor
of this ratio consist of the fixed scanning time and the additional time to visit the location. By either
adjusting the fixed scanning time or the flying time factor, the cost factor of the ratio changes. We want
to get an insight in whether the model performs better or worse in comparison to the benchmark policy
when adjusting these values. The exact experiment settings are shown in Table 6.9
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Exp No. Base model Scan time Flying time factor Method
57 A 3 1 P
58 A 3 1 B
59 A 6 1 P
60 A 6 1 B
61 A 12 1 P
62 A 12 1 B
63 A 6 0.5 P
64 A 6 0.5 B
65 A 6 1 P
66 A 6 1 B
67 A 6 2 P
68 A 6 2 B

Table 6.9: Sensitivity analysis: scan time and flying time factor settings

Available counting time

The available counting time influences the total amount of locations that can be visited during each cycle
count. We want to get an insight in whether the model performs better or worse in comparison to the
benchmark policy when the amount of location counted per count moment increases or decreases. The
exact experiment settings are shown in Table 6.10.

Exp No. Base model ACT Method Exp No. Base model ACT Method
69 A 10 P 72 A 15 B
70 A 10 B 73 A 20 P
71 A 15 P 74 A 20 B

Table 6.10: Sensitivity analysis: available counting time settings

Failure rate weights

The height of the failure rate weights influence the total amount of failures that occur per cycle count
moment. As mentioned in 1.4, the direction of the OIRA depends on the balance between inaccurate
records found and the amount of new inaccurate that occur. We want to get an insight in whether the
model performs better or worse in comparison to the benchmark policy when the amount of failures that
occur per cycle count moment increases or decreases. The exact experiment settings are shown in Table
6.11.

Exp No. Base model au Method Exp No. Base model au Method
75 A 0.0005 P 78 A 0.001 B
76 A 0.0005 B 79 A 0.002 P
77 A 0.001 P 80 A 0.002 B

Table 6.11: Sensitivity analysis: failure rate weight settings

Layout

During this set of experiments we want to get an insight in whether the shape of the warehouse influences
the performance of the proposed model in comparison to the benchmark model. Next to that, we run
two experiments per base model to compare the effect with and without the phase I settings determined
during the third and fourth type of experiments. The exact experiment settings are shown in Table 6.12.
The value T depends on the determined length for phase I.

Exp No. Base model Len. phase I Method Exp No. Base model Len. phase I Method
81 C 0 P 84 D 0 P
82 C T P 85 D T P
83 C 0 B 86 D 0 B

Table 6.12: Sensitivity analysis: layout settings
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OIRA estimations

During the last experiments we want to get an insight in how well the proposed model can estimate
the actual OIRA in comparison to both benchmark policies (B & R). For each of these models we want
to compare the monthly moving average of the MOIRA and for the proposed model also the monthly
moving average POIRA, to the actual OIRA. The exact experiment settings are shown in Table 6.13.

Exp No. Base model Method Exp No. Base model Method
87 A P 90 B P
88 A B 91 B B
89 A R 92 B R

Table 6.13: Sensitivity analysis: failure rate weight settings

6.3 Experimental results

In this section we present the results of each of the five different types of experiments mentioned at the
begin of this chapter. For each experiment we present the OIRA result in a graph. In these graphs, we
present the OIRA in terms of the monthly moving average of the OIRA (MMA(OIRA)). We use the
MMA to smooth the curves and filter out the noise, such that we see the general development of the
OIRA over time [35]. This also makes it easier to compare experiments among each other. Next to the
graphs we present tables with (key) performance indicators (Section 4.6). These performance indicators
give an indication how well the model performs on certain aspects. In these tables abbreviations are
used for the performance indicators. In Table 6.14 an explanation is given per abbreviation. The OIRA
graph and the corresponding performance indicators table have the same cycle counting time range (e.g.,
range 100-350).

Abbreviation Explanation
Exp. Experiment number
Found Total amount of inaccuracies found during the whole cycle counting horizon.
Predicted Total amount of inaccuracies predicted to find during the whole cycle counting horizon.
Count Total amount of locations counted during the whole cycle counting horizon.
Found/count Ratio amount of inaccuracies found per counted location
OIRA Average OIRA over the whole cycle counting horizon
POIRA Average POIRA over the whole cycle counting horizon
MAD Average of the individual absolute deviations between OIRA and POIRA (Equation 4.12)
RE Average of the individual relative errors between inaccuracies found and predicted to find (Equation 4.10)
RMSE Average of the individual RMSE per count moment (Equation 4.14)

Table 6.14: Abbreviations used in performance indicator tables

6.3.1 Seed customer

Here, we present the results for the experiments regarding seed customer rules. In consecutive, Figure
6.3, Figure 6.4, Figure 6.5, and Figure 6.6 we present the results for the experiments conducted with Base
Model A, Base Model B, Base Model C, and Base Model D. In each of the figures, the MMA(OIRA) is
shown (a), and a table with performance indicator results (b). The performance indicators are calculated
over the whole length of the cycle counting period. This counting period starts after the warm-up period
up to and including counting day 365.
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(a)

Exp. Found Predicted Count Found/count OIRA

1 4389 4524 30624 0.143 0.920

2 4342 4366 30687 0.141 0.920

3 4295 4096 30869 0.139 0.912

4 4380 4293 30907 0.142 0.918

5 4330 4347 30395 0.142 0.917

6 3664 3561 31960 0.115 0.847

(b)

Figure 6.3: Experiment results: seed customer: Base model A
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(a)

Exp. Found Predicted Count Found/count OIRA

7 3455 4238 30064 0.115 0.933

8 3411 4359 29965 0.114 0.932

9 3409 4059 30132 0.113 0.927

10 3428 4456 30204 0.113 0.933

11 3485 4232 29530 0.118 0.930

12 2751 3231 30869 0.089 0.888

(b)

Figure 6.4: Experiment results: seed customer: Base model B
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(a)

Exp. Found Predicted Count Found/count OIRA

13 2696 2714 33129 0.081 0.953

14 2681 2883 33033 0.081 0.954

15 2657 2732 33212 0.080 0.951

16 2712 2894 33248 0.082 0.954

17 2694 2892 32926 0.082 0.953

18 2644 2644 33471 0.079 0.944

(b)

Figure 6.5: Experiment results: seed customer: Base model C
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(a)

Exp. Found Predicted Count Found/count OIRA

19 2485 2648 32347 0.077 0.955

20 2492 2794 32157 0.077 0.957

21 2465 2726 32214 0.077 0.953

22 2485 2793 32202 0.077 0.957

23 2492 2622 32070 0.078 0.955

24 2195 2198 32872 0.067 0.918

(b)

Figure 6.6: Experiment results: seed customer: Base model D

Looking at the OIRA graphs, we see that the performance of the experiments without seed customer
rule (Experiments 6,12,18 and 24), perform considerably worse in comparison to the experiments with
special seed customer rules. By looking at the KPIs total amount of inaccuracies found and the average
OIRA for the experiments with special seed customer rules, we see that the random seed customer rule
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performs the worst on each of the four base models regarding both selected KPIs. For the four other seed
customer rules (Top 10, Top 50, Max[Score], and Max[Score*cost]) it is less clear which rule performs
the best compared among each other.

From the OIRA graphs and the performance indicator table we can not see the effect of the four seed
customer rules on the selection of locations in the warehouse. In Table 6.15, we provide the total times
counted and the average failure length merged per five consecutive bays for base model A for these four
seed customer rules. The average failure length are the average of the time length of failures that remain
after the last counting day. By analysing Table 6.15 we found that the last five bays were the least time
visited when we use seed customer rule 1 (exp 4) and most of the time visited when using seed customer
rule 2 (exp 5). This also reflects the average failure length for the last five bays.

For the remaining experiments we select seed customer rule 5, because during the the third and fourth
type of experiments we use other methods for calculating a score value. We want to make sure that
locations further down the aisle are also selected during experiments with the other score calculation
methods.

Bay Exp 1 Exp 2 Exp 4 Exp 5

1-5 9471 8588 9506 8980

6-10 8092 7910 8260 7542

11-15 6976 7450 7185 7071

16-20 6193 6846 6064 6908

All 30732 30794 31015 30501

(a)

Bay Exp 1 Exp 2 Exp 4 Exp 5

1-5 16.2 19.2 14.8 17.7

6-10 18.7 18.4 18.5 19.5

11-15 17.5 18.7 20.7 20.6

16-20 22.0 22.9 23.5 21.1

All 18.6 19.8 19.6 19.7

(b)

Table 6.15: Experiment results: seed customer: Base model A: total times counted per set of bays (a)
and average length of failure per set of bays (b)

6.3.2 Benchmark learning models

We used seed customer rule 5 to conduct the second type of experiments. During the second type
of experiments we compared the performance of using three different learning models for making the
predictions E[P(inaccuracy)]. In the proposed model these predictions are used as score value (for the
score-cost ratio), and for predicting the OIRA (POIRA). In Figure 6.7 and 6.8 we present the results of
the experiments. The performance indicators are calculated over the period after the warm-up period,
up to and including counting day 365.
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(a)

Exp. Found Predicted Count Found/count OIRA

25 4345 4381 30860 0.141 0.917

26 4333 4190 31065 0.139 0.916

27 4330 4347 30395 0.142 0.917

Exp. POIRA MAD RE RMSE

25 0.920 0.027 0.347 0.050

26 0.906 0.018 0.288 0.043

27 0.920 0.011 0.365 0.034

(b)

Figure 6.7: Experiment results: benchmarking learning models: Base model A

First, we discuss the results in terms of how well it can find inaccurate inventory records. Thereafter,
we discuss the quality of the predictions. For Base model A, using linear regression gives the best per-
formance by looking at the total found and the OIRA. However, in the OIRA graph we see that the NN
line is above the linear regression and logistic regression line during the last 100 days. The NN has more
trainable parameters in comparison to the linear and logistic regression models. We expect that due to
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(a)

Exp. Found Predicted Count Found/count OIRA

28 3362 3348 29566 0.114 0.927

29 3443 3435 29883 0.115 0.930

30 3485 4232 29530 0.118 0.930

Exp. POIRA MAD RE RMSE

28 0.943 0.028 0.553 0.111

29 0.925 0.019 0.497 0.104

30 0.926 0.014 0.958 0.101

(b)

Figure 6.8: Experiment results: benchmarking learning models: Base model B

the the amount of parameters that the NN requires more training to provide good predictions, but with
enough training that it can give better predictions. For Base model B, we found that the NN found
in total the most inaccuracies and maintained the highest average OIRA (equal to logistic regression).
However, looking at the OIRA graph, we see that the NN is not as dominant during the last 100 counting
days as is the case for base model A.

Now we discuss the prediction performance of the three learning models. By looking for both Base
model A as Base model B, we see that the POIRA of each of the learning models is relatively close to
the OIRA of the experiments. By looking at the MAD, the average of the individual absolute deviation
between OIRA and POIRA, we see that for both models the NN performs the best for predicting the
accuracy of the warehouse. The relative error represents the relative deviation between amount found
and amount expected to find during each cycle count. We see that for the NN that for both models the
error is the highest. We further looked into the data and found that the NN tends to overpredict the
amount of inaccuracies it is going to find. This is supported by the fact that the heuristic model wants
to maximise the sum of the expected amounts. When we look at the average RMSE we see that the NN
performs better in comparison to the other two methods.

In other words, the NN performs the best on predicting the P(inaccuracy) of all warehouse locations,
but it performs the worst on predicting the amount it is going to find per cycle count moment. We
expect that the amount of outliers in terms of prediction error are higher for logistic regression and
linear regression in comparison to the NN, but that the height of the outliers are higher for the NN.

6.3.3 Introduction of phase I

During the third type of experiments, we looked into the effect of implementing various methods for
phase I (learning phase). We set the length of phase I to 90 days. In this section we present the results
over the whole period (phase I and phase II) and we present the results for the period 210 to 350 for
base model A and the period 220 to 350 for base model B. We selected these periods, since the decline in
OIRA due to phase I, for each of the methods has disappeared as can be seen in Figure 6.9 and Figure
6.10. Note that Found(II), Predicted(II), and OIRA(II) are calculated from the start of phase II which
is cycle counting day 170 for base model A and day 180 for base model B.
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Exp. Found Found(II) Pred.(II) OIRA(I) OIRA(II)

31 4330 2866 2832 0.910 0.923

32 4282 3090 2921 0.878 0.923

33 4285 3212 2862 0.874 0.919

34 4218 3386 2976 0.861 0.916

35 4249 3575 3280 0.844 0.910

36 4330 2888 2946 0.904 0.924

(b)
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(c)

Exp. OIRA POIRA MAD Found Pred. RE RMSE

31 0.924 0.926 0.0059 2058 2039 0.226 0.028

32 0.926 0.925 0.0048 2074 2033 0.212 0.027

33 0.924 0.928 0.0054 2076 1960 0.241 0.027

34 0.925 0.928 0.0055 2066 1893 0.227 0.026

35 0.922 0.923 0.0057 2048 1967 0.241 0.029

36 0.924 0.925 0.0059 2060 2117 0.295 0.028

(d)

Figure 6.9: Experiment results: introduction of phase I: Base model A
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Exp. Found Found(II) Pred.(II) OIRA(I) OIRA(II)

37 3393 2276 3156 0.919 0.939

38 3334 2395 2784 0.903 0.935

39 3403 2532 3123 0.901 0.933

40 3348 2692 2898 0.885 0.930

41 3258 2735 2783 0.874 0.924

42 3499 2365 3011 0.918 0.935

(b)
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(c)

Exp. OIRA POIRA MAD Found Pred. RE RMSE

37 0.940 0.922 0.0194 1640 2330 1.509 0.094

38 0.938 0.924 0.0139 1709 1996 0.617 0.104

39 0.939 0.926 0.0122 1709 2247 0.764 0.089

40 0.939 0.936 0.0078 1717 2011 0.602 0.087

41 0.937 0.863 0.0745 1753 1923 0.481 0.091

42 0.935 0.926 0.0112 1690 2165 1.067 0.093

(d)

Figure 6.10: Experiment results: introduction of phase I: Base model B

In Figure 6.9a, and Figure 6.10a we see a drop in OIRA for four out of the five score methods in
comparison to not using a score method during phase I. Only for the UCB-1 method the development
of the OIRA during phase I is comparable to not using a score method. Also the average OIRA during
phase II is comparable to each other. In Figure 6.9c, and Figure 6.10c, we see no clear best trained
model for either base model A or base model B.

The goal of using a phase I is to increase the quality of the predictions. For base model A we see
lower error rates MAD, RE, and RMSE in comparison to base model B. For base model A, experiment
32 tends to perform the best by comparing the error rates. For base model B the fluctuation in error
rates are higher in comparison to base model A. By looking at the error scores MAD and RMSE we see
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that experiment 40 tend to be the best trained model. Since the effect of learning is more clear for base
model B, we choose for the next set of experiments to use Epsilon = 0.6 for calculating the score value
during phase I.

6.3.4 Length of phase I

During the fourth set of experiments we compared the effect of the length of phase I on the quality of
the predictions. In Figure 6.11 and Figure 6.12 we present the results of the various experiments. For
both base model A and base model B we analysed the performance over the entire cycle count (plot (a)
and table (b)) and the performance over the last 100 days (plot (c) and table (d)).

The OIRA graphs over the whole cycle counting length show that the decline in OIRA performance
continues when the length of phase I increases. In both Table 6.11d as Table 6.12d, we see the lowest
error rates and the highest average OIRA performance for the last 100 days. Therefore we choose to set
the length of phase I to 120 days during the sensitivity analysis.
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(a)

Exp. Found Found(II) Pred. Pred.(II) Count OIRA

43 4330 4330 4347 4347 30395 0.917

44 4372 4051 4054 3732 30511 0.915

45 4297 3705 3969 3422 30457 0.908

46 4218 3386 3748 2976 30335 0.899

47 4180 3062 3734 2717 30345 0.887

48 4128 2660 3598 2300 30335 0.874

49 4063 2310 3654 2098 30245 0.860

(b)
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(c)

Exp. OIRA POIRA MAD Found Pred. RE RMSE

43 0.924 0.925 0.0061 1487 1504 0.283 0.028

44 0.923 0.926 0.0057 1486 1448 0.241 0.026

45 0.923 0.926 0.005 1463 1495 0.257 0.024

46 0.924 0.926 0.0053 1472 1389 0.238 0.026

47 0.926 0.930 0.0049 1479 1403 0.171 0.025

48 0.922 0.929 0.0077 1595 1418 0.207 0.027

49 0.891 0.907 0.0167 2183 1983 0.229 0.046

(d)

Figure 6.11: Experiment results: length phase I: Base model A
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50 3499 3499 4232 4232 29637 0.930

51 3431 3147 4244 3925 29633 0.929

52 3427 2870 3730 3175 29495 0.924

53 3348 2538 3571 2791 29322 0.917

54 3212 2166 3202 2211 29215 0.909

55 3223 1948 3185 1970 29205 0.898

56 3059 1509 3041 1564 29069 0.890
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50 0.935 0.923 0.0137 1195 1626 1.162 0.092

51 0.937 0.921 0.0161 1239 1700 1.052 0.093

52 0.938 0.933 0.0087 1223 1423 0.71 0.090

53 0.940 0.934 0.009 1235 1465 0.622 0.087

54 0.940 0.940 0.0043 1169 1251 0.539 0.086

55 0.932 0.934 0.0064 1514 1611 0.684 0.098

56 0.911 0.921 0.0143 1579 1599 0.647 0.136

(d)

Figure 6.12: Experiment results: length phase I: Base model B

6.3.5 Sensitivity analysis

In this section we present the results of the sensitivity analysis. In each experiment we used the seed
customer rule and the phase I scoring method, which we selected based on the previous set of experiments.
For each of the experiments we analyse the performance of the model for the last 100 counting days,
expect for the last set of experiments where we compare the OIRA estimates of the entire cycle counting
period. For each of the experiments we set the length of phase I to 120 days except for the last set of
experiments where we do not use a phase I.

Scanning time and flying time factor

In Figure 6.13, we show the results of our proposed method in comparison to a benchmark policy for
various settings of the scan time. Here it can be seen that the experiment results of the benchmark
policy are comparable to the results of our proposed method, given the same experimental settings.
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Exp. Found Predicted Count Found/count OIRA

57 1541 1531 17913 0.086 0.951

58 1533 N/A 16588 0.092 0.952

59 1479 1403 10833 0.137 0.926

60 1468 N/A 10344 0.142 0.924

61 1513 1217 5921 0.256 0.872

62 1381 N/A 5892 0.234 0.875

(b)

Figure 6.13: Experiment results: sensitivity analysis: scan time

In Figure 6.14, we show the results of our proposed method in comparison to a benchmark policy for
various settings of the flying time factor time. Here it can be seen that the experiment results of the
benchmark policy are comparable to the results of our proposed method, given the same experimental
settings.
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(a)

Exp. Found Predicted Count Found/count OIRA

63 1513 1521 12666 0.119 0.937

64 1552 N/A 12375 0.125 0.935

65 1479 1403 10833 0.137 0.926

66 1468 N/A 10344 0.142 0.924

67 1471 1339 8312 0.177 0.901

68 1494 N/A 7518 0.199 0.899

(b)

Figure 6.14: Experiment results: sensitivity analysis: flying time factor

Available counting time

In Figure 6.15, we show the results of our proposed method in comparison to a benchmark policy for
various settings of the available counting time. Here it can be seen that the experiment results of the
benchmark policy are comparable to the results of our proposed method, given the same experimental
settings.
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69 1457 1203 7013 0.208 0.883

70 1372 N/A 6515 0.211 0.885

71 1479 1403 10833 0.137 0.926

72 1468 N/A 10344 0.142 0.924

73 1515 1520 14584 0.104 0.943

74 1541 N/A 14139 0.109 0.941

(b)

Figure 6.15: Experiment results: sensitivity analysis: available counting time

Failure rate weights

In Figure 6.16, we show the results of our proposed method in comparison to a benchmark policy for
various settings of the failure rate weights. Here it can be seen that the experiment results of the
benchmark policy are comparable to the results of our proposed method, given the same experimental
settings.
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Exp. Found Predicted Count Found/count OIRA

75 747 801 10792 0.069 0.960

76 753 N/A 10326 0.073 0.960

77 1479 1403 10833 0.137 0.926

78 1468 N/A 10344 0.142 0.924

79 2708 2497 10896 0.249 0.855

80 2729 N/A 10338 0.264 0.858

(b)

Figure 6.16: Experiment results: sensitivity analysis: failure rate weights

Layout

In Figure 6.17 and Figure 6.18, we show the results of our proposed method in comparison to a benchmark
policy for various settings of the warehouse layout. Here it can be seen that the experiment results of the
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benchmark policy are comparable to the results of our proposed method, given the same experimental
settings.
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82 899 834 11165 0.081 0.954
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(b)

Figure 6.17: Experiment results: sensitivity analysis: warehouse layout (Base model C)
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84 792 801 10941 0.072 0.959

85 776 822 10897 0.071 0.961

86 800 N/A 10388 0.077 0.959

(b)

Figure 6.18: Experiment results: sensitivity analysis: warehouse layout (Base model D)

OIRA estimations

In Figure 6.19 and Figure 6.20, we show the results of our proposed method in comparison to the
progress-based (B) and random benchmark policy (R) in terms of how well the models can forecast the
actual OIRA. For both benchmark policies we calculated the monthly moving average of the MOIRA and
compared this to the actual OIRA. For our proposed method we calculated the monthly moving average
of both the MOIRA and the POIRA. For progress-based (B) and our proposed method we see in both
Figure 6.19 and Figure 6.20, that the MOIRA does not perform well in terms of predicting the OIRA.
For the random sampling method (R) we found that the MOIRA is much closer to the actual OIRA.
Also the POIRA predictions of the proposed method are close to the actual OIRA. By looking at the
MAD(MOIRA) of each of the experiments we see that the random sampling (R) performs much better
in comparison to the other two methods. The MAD(POIRA) values of the proposed method are on the
other hand much lower than those of the MOIRA. Next to that, MAD(POIRA) values are comparable
to the MAD(OIRA) values of the random sampling benchmark (R).
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Exp. Found OIRA MAD(MOIRA) MAD(POIRA)

87 4330 0.917 0.0627 0.00630

88 4325 0.920 0.0708 N/A

89 2049 0.745 0.00997 N/A

(d)

Figure 6.19: Experiment results: sensitivity analysis base model A: (a) proposed method, (b) benchmark
B, (c) benchmark R, and (d) KPI results experiments
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Exp. Found OIRA MAD(MOIRA) MAD(POIRA)

90 3499 0.930 0.0478 0.00909

91 3463 0.932 0.0568 N/A

92 1410 0.815 0.00973 N/A

(d)

Figure 6.20: Experiment results: sensitivity analysis base model B: (a) proposed method, (b) benchmark
B, (c) benchmark R, and (d) KPI results experiments
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Chapter 7

Conclusion, discussion, and
recommendations

7.1 Conclusion

This research is initialised by Bolk logistics and AIDA research group as part of a larger research for
setting up an autonomous UAV solution for cycle counting. This research focused on the autonomous
construction of cycle counting routes, where the performance of the cycle counts are taken into account.
Therefore, we defined our main research question as:

“How to design a generic (operational) cycle counting method for a single UAV with time
restricted counting intervals?”

The performance of cycle counts can be expressed in terms of the ability of finding inaccurate inventory
records (1), or the ability to give good estimates of the warehouse accuracy (2). In our research we
defined the performance in terms of the ability to find inaccurate records, but we took the latter into
account.

We conducted a literature review where we found insights into often used existing cycle counting policies.
Here we found that the performance of a cycle count depends on the trade-off between the amount of
locations visited per cycle count moment and the likelihood that the inventory record status is inac-
curate per location. Next to that, we found that some of these policies required knowledge about the
failure behaviour of the warehouse to be able to get a good cycle counting performance, while at the
introduction of an UAV to a new warehouse, the UAV has no understanding of this failure behaviour.
To be able to deploy an autonomous UAV to a warehouse, a learning model is required, such that it gets
this understanding.

A learning model can be implemented into the cycle counting process by using historic cycle count-
ing data to train and test the learning model. This data can consist of multiple input parameters such
as inputs about the storage locations, the stored goods and the transactions. The more types of input
parameters the richer the data. Next to the input parameters, a learning model requires output labels to
train and test. So, the historic cycle counting data should be labelled whether or not an inventory record
status was accurate. To make predictions about the chance that the status of a location is inaccurate,
the learning model requires the same type of input parameter data, such that it can predict the chances
based on the current status of the warehouse.

We proposed a cycle counting method with the objective to maximise the sum of the predicted chance of
being inaccurate of locations visited each cycle count. The proposed method is a 5 step greedy heuristic,
that selects locations based on the highest score-cost ratio (score = E[P(inaccuracy)], cost = additional
travel time + scantime). We made a simulated warehouse based on the warehouse layout and historic
transaction data of Bolk logistics.

We tested our proposed cycle counting method in the simulated warehouse. Here we conducted experi-

62



ments with various seed customer rules (1), multiple learning models (2), various methods for calculating
the score value of the score-cost ratio during the learning phase (3), the length of the learning phase (4),
and we conducted a sensitivity analysis (5), where we altered various simulation model settings. During
the first four type of experiments, we compared the results of various model settings among each other,
while during the fifth type of experiments we compared the results of two benchmark cycle counting
policies found in Chapter 2.

From these experiments, we concluded the following:

1. The selected seed location highly influences the direction of the constructed cycle counting route
and which location neighbourhoods are visited. Especially, for locations further from the DS an
appropriate seed location rule is required such that the locations are visited.

2. Using a neural network for predicting the chance that a location’s inventory record is inaccurate,
tends to give better predictions on the long-term in comparison to linear and logistic regression.

3. For all (except UCB-1) exploration-exploitation methods the OIRA drop during the learning phase,
but the prediction errors after the learning phase are lower in comparison to not using a learning
phase. For the UCB-1 method the OIRA increases during the learning phase but the prediction
errors after the learning phase are not lower in comparison to not using a learning phase.

4. Using a special learning phase can help to increase the prediction performance of the neural network
on the long-term. However, the cost of a gain of OIRA performance is high and the gain decreases
over time.

5. (a) The proposed cycle counting method gives a comparable result in terms of OIRA perfor-
mance to a benchmark location-based cycle counting policy for each of the sensitivity analysis
experiments, but it significantly outperforms a pure random sampling policy.

(b) The proposed cycle counting method significantly outperforms the location-based benchmark
policy in terms of estimating the OIRA of the warehouse. It even tends to slightly outperform
the random sampling policy in terms of estimating the OIRA.

7.2 Discussion and further research recommendations

Unfortunately, our more complex proposed model is not able to outperform the simple progress-based
benchmark policy in terms of our objective to find as many as possible inaccuracies as defined in this
research. We expect that the two most important reasons why the benchmark gives comparable results
are: the simulated failure rate (1), and the definition of our objective function (2). Below, we first provide
some arguments for each of the two reasons. Thereafter, we provide some suggestions for further research.

For Base model A, C, and D we used the same failure rate settings (Setting 1). After analysing Base
model A, we found that during each cycle count day around 95% of all locations have a failure rate
between 0.22% and 0.45% (Appendix D.2). The chance that those locations are still accurate after 50
days is between 80 and 90 per cent (Appendix D.1). Where 50 days is the approximate required time for
the location-based benchmark policy to count every location. This lack of spread makes it less beneficial
to visit certain locations more often than other locations, while this is the fundamental idea behind our
proposed model.

For Base model B we had different failure rate settings (Setting 2). In Appendix D.3 and D.4, the
distribution of this failure rate is shown and a table is presented for the chance that a location status
is accurate after not being count for n consecutive cycle counting periods given a certain failure rate
λ. As is shown in Appendix D.3, there is a clear spread in low failure rate, medium failure rate and
high failure rate locations. The size of the high failure rate group is around 5% of all locations and the
medium group is around 35%. Here we found that our proposed model benefits from visiting certain
locations more often than others. However, the performance does not seem to be better compared to our
benchmark. We analysed some experiments of Base model B (without a learning period). We focused
on the remaining inaccuracies after the last count moment. The last moment since these locations where
count is on average 45 days, where more than 40% of the remaining failures are not count during the
last 50 counting days and more than 15% is not count during the last 70 days, while more than 95% of
these location have a high or medium failure rate.
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Our objective is to visit as much as possible inaccurate locations. We assume that an inaccurate location
stays inaccurate until the location is visited. In progress-based cycle counting we visit each location once
and after we visited each location, we start again. Eventually, we always find the inaccurate records, no
matter how long the period is since the failure occurred.

Based on the previous paragraphs and some other research limitations and findings, we propose four
main research topics for future research. These topics are the objective function (1), the failure rate
function (2), construction of the routes (3) and score models for the learning phase (4). Below, per
research topic we discuss some recommendations for further research:

Objective function

• We propose to redefine the objective function such that the length of an inaccuracy is penalised.

• We propose to allocate a cost factor to the inaccuracies which takes the severity of an inaccuracy
into account. This makes the model more applicable in practice.

Failure function

• Testing the proposed cycle counting method in practice can overcome the limitation of our simulated
failure rate function. Our failure rate function is simulated as a linear sum of individual parameter
values, which are not correlated. We expect that in practice the failure function is more complex
and can contain correlations. This will make it harder for the Neural network to learn the failure
behaviour of the warehouse and this can increase the necessity of a learning phase. This also
overcomes our problem of creating a representative failure rate.

Route construction

• We proposed five seed customer rules such that locations further down the aisles are selected. The
seed customer initialises the direction in which a cycle counting route is constructed. During the
construction of the cycle counting route we want to maximise our objective by adding locations with
the highest score-cost ratio. If the seed customer directs to a neighbourhood with low predictions,
then our model can construct a route where our objective is far from optimised. We propose to
research the effect of constructing multiple routes per cycle counting moment, where the route with
the highest objective value is executed.

• We propose to research the effect of a minimum and maximum for the interval of two consecutive
counts of a location.

Learning phase

• During the learning phase, each cycle count moment we assign a score to each location using
an exploration-exploitation technique. By doing this, we assume that a location’s failure rate
depends only on the warehouse location. However, the failure rate of the warehouse depends on
multiple parameter values, where the contribution of a certain parameter value to the failure rate is
simulated constant. The location’s parameter values change due to transactions in the warehouse
and therefore the failure rate of the location also changes. Therefore, we propose to construct
an exploration-exploitation model that predicts scores based on parameter values instead of the
warehouse location, such that it is possible to reduce the model’s uncertainty about the effect of the
parameter values instead of calculating an uncertainty score based on its location in the warehouse.
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Appendix A

Initial balance correction examples

Time Type Balance
0 Initial balance 1
14 Out 0
14 In 1
32 Out 0
35 In 1
64 Out 0
65 In 1
70 Out 0
78 Out -1
81 In 0
106 Out -1
107 In 0
115 Out -1
115 In 0
130 Out -1
132 In 0
169 Out -1
174 In 0
185 Out -1
190 In 0
309 Out -1
311 In 0
352 Out -1
356 In 0
365 Out -1

Table A.1: All ingoing and outgoing transactions with balance location: H 09001 03
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Time Type Balance
0 Initial balance 1
16 Out 0
17 In 1
42 Out 0
44 In 1
127 Out 0
127 In 1
130 Out 0
236 Out -1
236 In 0
246 Out -1
249 In 0
275 Out -1
279 In 0
282 Out -1
282 In 0
283 Out -1
316 Out -2
316 In -1
318 Out -2
318 In -1
325 Out -2
326 In -1
339 Out -2
344 In -1

Table A.2: All ingoing and outgoing transactions with balance location: D 01003 01
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Time Type Balance
0 Initial balance 1
8 Out 0
14 In 1
24 Out 0
30 In 1
63 Out 0
64 In 1
86 Out 0
88 In 1
113 Out 0
115 In 1
129 Out 0
135 In 1
228 Out 0
228 In 1
235 Out 0
237 In 1
249 Out 0
251 In 1
260 Out 0
262 In 1
275 Out 0
279 In 1
281 Out 0
282 In 1
282 Out 0
284 Out -1
285 In 0
290 Out -1
297 Out -2
299 In -1
326 Out -2
331 In -1

Table A.3: All ingoing and outgoing transactions with balance location: D 01003 02
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Appendix B

Distance model verification examples

B.1 Example 1

Manual calculations

Horizontal movement:

1. most left aisle = 1

2. Distance DS most left aisle = 7

3. Furthest pallet location = 54 (Bay 18, Location on shelf 3)

4. Distance moved in aisle = 108 (2 times furthest pallet)

5. Distance last aisle to DS = 7 (only one aisle visited)

6. total horizontal movement = 7 + 108 + 7 = 122

Vertical movement:
No vertical movement.

Total movement:
There is no vertical movement. So the total movement is equal to the horizontal movement, which is 122.

Result Python model
We used the Python indices from Table B.1 as input for our sample distance calculations (Figure B.1).
In Figure B.2 the result of the calculation is shown. The model calculated that the length of the sample
route is 122, which is equal to our example calculation above.

Sample no. Location code Python index no.
1 K 02003 01 4841
2 L 12003 01 5561
3 K 14003 01 5129
4 L 18003 01 5705

Table B.1: Bolk location codes example 1
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Figure B.1: Example 1: input

Figure B.2: Example 1: result

B.2 Example 2

Manual calculations

Horizontal movement:

1. most left aisle = 1

2. Distance DS most left aisle = 7

3. Furthest pallet location aisle 1 = 54 (Bay 18, Location on shelf 3)

4. Distance moved in aisle 1= 108 (2 times furthest pallet)

5. next aisle = 6

6. Distance to next aisle = 15 ((6− 1) ∗ 3)

7. Furthest pallet location aisle 6 = 36 (Bay 12, Location on shelf 3)

8. Distance moved in aisle 6 = 72 (2 times furthest pallet)

9. Distance last aisle to DS = 8

10. total horizontal movement = 7 + 108 + 15 + 72 + 8 = 210

Vertical movement:
No vertical movement.

Total movement:
There is no vertical movement. So the total movement is equal to the horizontal movement, which is 210.

Result Python model
We used the Python indices from Table B.2 as input for our sample distance calculations (Figure B.3).
In Figure B.4 the result of the calculation is shown. The model calculated that the length of the sample
route is 210, which is equal to our example calculation above.
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Sample no. Location code Python index no.
1 K 02003 01 4841
2 L 12003 01 5561
3 K 14003 01 5129
4 L 18003 01 5705
5 A 02003 01 41
6 B 03003 01 545
7 A 07003 01 161
8 B 12003 01 761

Table B.2: Bolk location codes example 2

Figure B.3: Example 2: input

Figure B.4: Example 2: result

B.3 Example 3

Manual calculations

Horizontal movement:

1. most left aisle = 1

2. Distance DS most left aisle = 7

3. Furthest pallet location aisle 1 = 54 (Bay 18, Location on shelf 3)

4. Distance moved in aisle 1= 108 (2 times furthest pallet)

5. next aisle = 2

6. Furthest pallet location aisle 2 = 24 (Bay 8, Location on shelf 3)

7. Distance moved in aisle 2 = 48 (2 times furthest pallet)

8. next aisle = 3

9. Furthest pallet location aisle 3 = 60 (Bay 20, Location on shelf 3)

10. Distance moved in aisle 3 = 120 (2 times furthest pallet)

11. next aisle = 4
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12. Furthest pallet location aisle 4 = 51 (Bay 17, Location on shelf 3)

13. Distance moved in aisle 4 = 102 (2 times furthest pallet)

14. next aisle = 5

15. Furthest pallet location aisle 5 = 24 (Bay 8, Location on shelf 3)

16. Distance moved in aisle 5 = 48 (2 times furthest pallet)

17. next aisle = 6

18. Furthest pallet location aisle 6 = 36 (Bay 12, Location on shelf 3)

19. Distance moved in aisle 6 = 72 (2 times furthest pallet)

20. Distance to first aisle to last aisle = 15 ((6− 1) ∗ 3)

21. Distance last aisle to DS = 8

22. total horizontal movement = 7 + 108 + 48 + 120 + 102 + 48 + 72 + 15 + 8 = 528

Vertical movement:
No vertical movement.

Total movement:
There is no vertical movement. So the total movement is equal to the horizontal movement, which is 528.

Result Python model
We used the Python indices from Table B.3 as input for our sample distance calculations (Figure B.5).
In Figure B.6 the result of the calculation is shown. The model calculated that the length of the sample
route is 528, which is equal to our example calculation above.

Sample no. Location code Python index no.
1 K 02003 01 4841
2 L 12003 01 5561
3 K 14003 01 5129
4 L 18003 01 5705
5 I 04003 01 3929
6 J 08003 01 4505
7 G 20003 01 3353
8 E 01003 01 1937
9 F 16003 01 2777
10 E 17003 01 2321
11 C 08003 01 1145
12 A 02003 01 41
13 B 03003 01 545
14 A 07003 01 161
15 B 12003 01 761

Table B.3: Bolk location codes example 3
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Figure B.5: Example 3: input

Figure B.6: Example 3: result

B.4 Example 4

Manual calculations

Horizontal movement:

1. most left aisle = 1

2. Distance DS most left aisle = 7

3. Furthest pallet location = 54 (Bay 18, Location on shelf 3)

4. Distance moved in aisle = 108 (2 times furthest pallet)

5. Distance last aisle to DS = 7 (only one aisle visited)

6. total horizontal movement = 7 + 108 + 7 = 122

Vertical movement:

1. Starting height = 1 (DS)

2. Height first location = 4 (Rack 2, Bay 2)

3. Height second location = 8 (Rack 1, Bay 12)

4. Height third location = 2 (Rack 2, Bay 14)

5. Height fourth location = 5 (Rack 1, Bay 18)

6. Difference DS and first location = 3

7. Difference first and second location = 4
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8. Difference second and third location = 6

9. Difference third and fourth location = 3

10. Difference fourth (last) location and DS = 4

11. total vertical movement = 3 + 4 + 6 + 3 + 4 = 20

Total movement:
The total movement is the sum of the vertical movement and the horizontal movement. So the total
movement is 20 + 122 = 142 .

Result Python model
We used the Python indices from Table B.4 as input for our sample distance calculations (Figure B.7).
In Figure B.8 the result of the calculation is shown. The model calculated that the length of the sample
route is 142, which is equal to our example calculation above.

Sample no. Location code Python index no.
1 K 02003 04 4844
2 L 12003 08 5568
3 K 14003 02 5130
4 L 18003 05 5709

Table B.4: Bolk location codes example 4

Figure B.7: Example 4: input

Figure B.8: Example 4: result
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Appendix C

Code for implementation of the
neural network model using Keras
library

def PredictInaccChance ( TrainData Df , A l lLoc In fo Df ) :
#Random s h u f f l e the t r a i n dataframe
np . random . s h u f f l e ( TrainData Df . va lue s )
#parameters : 1 = a r t i c l e , 2 = operator , 3= s h i f t number , 4 = Height , 5= Bay number 6 = ba lance
TrainDataDf = TrainData Df . sample ( f r a c =0.8 , random state= 25)
TestDataDf = TrainData Df . drop ( TrainDataDf . index )

i f NoInputsNeu == 6 :
#Make numpy formats x and y from the TrainData Df
TrainSet x = np . column stack ( ( TrainDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 0 , 1 ] ] ,

TrainDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 1 , 1 ] ] ,
TrainDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 2 , 1 ] ] ,
TrainDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 3 , 1 ] ] ,
TrainDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 4 , 1 ] ] ,
TrainDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 5 , 1 ] ] ,
TrainDataDf . TimeSinceLastCount . va lue s ) )

TestSet x = np . column stack ( ( TestDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 0 , 1 ] ] ,
TestDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 1 , 1 ] ] ,
TestDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 2 , 1 ] ] ,
TestDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 3 , 1 ] ] ,
TestDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 4 , 1 ] ] ,
TestDataDf . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 5 , 1 ] ] ,
TestDataDf . TimeSinceLastCount . va lue s ) )

#Make p r e d i c t i o n s a r r a y
PredictArray = np . column stack ( ( Al lLoc In fo Df . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 0 , 2 ] ] ,

A l lLoc In fo Df . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 1 , 2 ] ] ,
A l lLoc In fo Df . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 2 , 2 ] ] ,
A l lLoc In fo Df . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 3 , 2 ] ] ,
A l lLoc In fo Df . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 4 , 2 ] ] ,
A l lLoc In fo Df . i l o c [ : , Se lectedNeuralNetworkParameters . i a t [ 5 , 2 ] ] ,
A l lLoc In fo Df . T ime s ince la s t Count . va lue s ) )

#Make numpy formats x and y from the TrainData Df
TrainSet y = TrainDataDf . Status . va lue s
TestSet y = TestDataDf . Status . va lue s
m o n i t o r v a l l o s s = keras . c a l l b a c k s . Ear lyStopping ( monitor= ' v a l l o s s ' , pa t i ence = 50 , r e s t o r e b e s t w e i g h t s=True )

i f NeuralNetworkTensor == 1 :
#Make the neura l network model
model = keras . Sequent i a l ( [
keras . l a y e r s . Dense (2 , input shape =((NoInputsNeu +1) ,) , a c t i v a t i o n= ' s igmoid ' ) ,
keras . l a y e r s . Dense (32 , a c t i v a t i o n= ' s igmoid ' ) ,
keras . l a y e r s . Dense (2 , a c t i v a t i o n= ' softmax ' )
] )

#compi le the neura l network model
model . compile ( opt imize r= keras . op t im i z e r s .Adam( 0 . 0 1 ) ,

l o s s=keras . l o s s e s . Spar seCategor i ca lCros sent ropy ( f r o m l o g i t s=Fal se ) ,
met r i c s =[ ' accuracy ' ] )

#Fit the model to the t r a i n data s e t
model . f i t ( Tra inSet x , Tra inSet y , b a t c h s i z e =480 , epochs= 500 , verbose =0,
c a l l b a c k s =[ m o n i t o r v a l l o s s ] , v a l i d a t i o n d a t a =(TestSet x , TestSet y ) )

#Make p r e d i c t i o n s
Pred i c t i on sA l lLoc s = np . round( model . p r e d i c t ( PredictArray ) , 3 )
return Pred i c t i on sA l lLoc s
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Appendix D

Failure rate distribution and chance
of status accurate after n days

D.1 Chance of location status accurate after n days given cer-
tain failure rate λ

λ

Days 0.00225 0.00250 0.00275 0.00300 0.00325 0.00350 0.00375 0.00400 0.00425 0.00450 0.00475 0.00500

1 0.998 0.998 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.995 0.995

2 0.996 0.995 0.995 0.994 0.994 0.993 0.993 0.992 0.992 0.991 0.991 0.99

3 0.993 0.993 0.992 0.991 0.99 0.99 0.989 0.988 0.987 0.987 0.986 0.985

4 0.991 0.99 0.989 0.988 0.987 0.986 0.985 0.984 0.983 0.982 0.981 0.98

5 0.989 0.988 0.986 0.985 0.984 0.983 0.981 0.98 0.979 0.978 0.976 0.975

6 0.987 0.985 0.984 0.982 0.981 0.979 0.978 0.976 0.975 0.973 0.972 0.97

7 0.984 0.983 0.981 0.979 0.977 0.976 0.974 0.972 0.971 0.969 0.967 0.966

8 0.982 0.98 0.978 0.976 0.974 0.972 0.97 0.968 0.967 0.965 0.963 0.961

9 0.98 0.978 0.976 0.973 0.971 0.969 0.967 0.965 0.962 0.96 0.958 0.956

10 0.978 0.975 0.973 0.97 0.968 0.966 0.963 0.961 0.958 0.956 0.954 0.951

15 0.967 0.963 0.96 0.956 0.952 0.949 0.945 0.942 0.938 0.935 0.931 0.928

20 0.956 0.951 0.946 0.942 0.937 0.932 0.928 0.923 0.918 0.914 0.909 0.905

25 0.945 0.939 0.933 0.928 0.922 0.916 0.91 0.905 0.899 0.893 0.888 0.882

30 0.935 0.928 0.921 0.914 0.907 0.9 0.893 0.887 0.88 0.873 0.867 0.86

35 0.924 0.916 0.908 0.9 0.892 0.885 0.877 0.869 0.862 0.854 0.846 0.839

40 0.914 0.905 0.896 0.887 0.878 0.869 0.86 0.852 0.843 0.835 0.827 0.818

45 0.904 0.893 0.883 0.874 0.864 0.854 0.844 0.835 0.826 0.816 0.807 0.798

50 0.893 0.882 0.871 0.861 0.85 0.839 0.829 0.818 0.808 0.798 0.788 0.778

Table D.1: Chance of location status accurate after n days given certain failure rate λ
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D.2 Distribution of λ for Base model A failure rate setting 1

Figure D.1: Distribution of λ for Base model A failure rate setting 1

D.3 Distribution of λ for Base model B failure rate setting 2

Figure D.2: Distribution of λ for Base model B failure rate setting 2
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D.4 Chance of location status accurate after n days given cer-
tain failure rate λ

λ

Days 0.0002 0.0005 0.0052 0.0055 0.0105

1 0.9998 0.9995 0.9948 0.9945 0.9895

2 0.9995 0.9990 0.9895 0.989 0.9791

3 0.9993 0.9985 0.9843 0.9836 0.9688

4 0.9990 0.9980 0.9792 0.9782 0.9587

5 0.9988 0.9975 0.9740 0.9728 0.9486

6 0.9985 0.9970 0.9689 0.9675 0.9386

7 0.9983 0.9965 0.9638 0.9621 0.9288

8 0.9980 0.9960 0.9588 0.9568 0.9190

9 0.9978 0.9955 0.9537 0.9516 0.9094

10 0.9975 0.9950 0.9487 0.9463 0.8998

15 0.9963 0.9925 0.9241 0.9206 0.8536

20 0.9950 0.9900 0.9001 0.8956 0.8097

25 0.9938 0.9876 0.8767 0.8712 0.7681

30 0.9925 0.9851 0.8539 0.8475 0.7286

35 0.9913 0.9826 0.8317 0.8245 0.6911

40 0.9900 0.9802 0.8101 0.8020 0.6556

45 0.9888 0.9777 0.7891 0.7802 0.6219

50 0.9876 0.9753 0.7686 0.7590 0.5899

Table D.2: Chance of location status accurate after n days given certain failure rate λ
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