
Thesis Computer Science

MBench: a benchmark suite
designed for database schema
migration

Shuhao Li

Supervisor:
dr.ir. Maurice van Keulen
dr. Faizan Ahmed
ir. Jorryt-Jan Dijkstra

April, 2022

Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

When I was looking for my graduation project, I was at the most lost time since I came
to this country.
This confusion is caused by a variety of reasons. On the one hand, I am a data science
student but gradually lost interest in machine learning and deep learning. On the other
hand, the autumn recruitment fair in my home country is approaching, but I still have not
decided on the future technical direction. In addition, the new crown epidemic is also one
of the reasons for this situation. Forced to stay at home, I started to think all day but it
was difficult to practice.
In fact, the graduation project I originally wanted to choose was not the one I have now
completed. When I first contacted Jorryt Dijkstra, he told me that the project had al-
ready been chosen by a student but that maybe I could design a benchmarking tool for the
field that the project applies to. This piqued my interest, I learned a lot about software
engineering during my undergraduate studies, but they haven’t been used in practice for
a long time.
However, things didn’t start well. At first I was at a loss as to what I was trying to ac-
complish. Thanks to Dijkstra for giving me tireless guidance in the beginning stages and
getting me started to get a general idea of the problem. I also thank him for some of the
questions he raised, each of which is critical now that I think about it.
Another person I would like to thank is my supervisor, Maurice van Keulen. Whenever I
ask a question, I always get a very serious and detailed answer from him. I am also very
grateful for his tolerance, understanding and patience with me, and I am still sorry for not
being able to attend a meeting on time because I overslept one day.
In addition, I would like to thank some people I have never met. Their research in the
field of schema transfer or benchmarking helped me a lot and enabled me to successfully
complete this master’s thesis.
Finally, I would also like to thank my classmates at the University of Twente and the
residents of the city of Enschede. I’m used to walking on the road thinking, and my face
is heavy when I’m lost in thought. At this time, passers-by often think that I am unhappy
and tell me to cheer up and thank them for making me feel the kindness of the world.
There are also many more people I want to thank, but forgive me for not being able to list
them all here.
Now, the time to leave the campus is approaching, and I am about to face a completely
different life. During the completion of this project, I also participated in the autumn
recruitment in my home country and got three offers. I hope I can make a choice that I
have no regrets.

MBench: a benchmark suite designed
for schema migration

Shuhao Li∗

April, 2022

Abstract

How to provide users with continuous network software services is the focus of
current computer field. As one of the keys to solving this problem, many researchers
have begun to explore how to transfer the database schema online and many tools
have been designed for this purpose. However, there is currently no tool for bench-
marking schema migration. Thus, a benchmarking tool designed for schema migration
is implemented. The SQL quries of this test tool is varied compared to traditional
benchmarks and benchmarking tools.
Benchmarking software or systems is necessary because it gives developers a better
grasp of how the software are performing and gives users greater confidence. However,
existing benchmarks provided by other researchers do not meet the needs of schema
migration tool developers and testers, such as including schema migrations that are
not comprehensive enough and do not implement the mixed state. Now there is a new
benchmarking tool not only meets the needs of these persons, but also helps organi-
zations that want to migrate schemas better plan their migrations.
The software was developed with modifications and additions of new features to an-
other benchmark suite. In the process of choosing which software should be based
on, a scoring mechanism is designed according to the requirements. Relying on this
scoring mechanism, multiple softwares are compared comprehensively and carefully.
Finally, OLTPBenchmark is selected. Besides, this master thesis also summarized the
requirements for schema migration benchmarks made by previous researchers, and
designed and implemented new benchmarks based on these requirements.
After further identifying the requirements and implementing the software, some ex-
periments were performed to test the performance of the tool. Experimental results
show that this tool can maintain good performance when running for a long time
and meets our requirements for schema migration benchmarking tools. Subsequently,
some experiments were conducted to test the tool in practical use. The results of these
experiments also provide insight into some of the schema migration tools.
In the discussion section, we further analyze the performance of this tool. Compared
to traditional benchmarking tools, its queries are variable during the workload ex-
ecution phase. Compared with schema migration tools used by researchers in other
schema migration fields, it is more extensible and provides multiple bench cases. Users
can easily implement their own benchmarks according to their needs. In addition, the
tool is currently the only benchmarking tool that implements the mixed state.
Keywords: benchmark, benchmark suite, databases, schema migration

∗Email: s.li-6@student.utwente.nl

3

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 2
1.3 Methodology . 3
1.4 Organization . 4

2 Background 5
2.1 Databases . 5
2.2 Relational Databases . 5
2.3 Database Manage System(DBMS) . 5
2.4 Structured Query Language . 6

2.4.1 DDL . 6
2.4.2 DML . 6
2.4.3 TCL . 6
2.4.4 DCL . 7

2.5 Database Transactions . 7
2.5.1 Transaction properties . 7
2.5.2 Multiversion concurrency control . 8
2.5.3 Lock . 8

2.6 Schema Migration . 9
2.7 Zero Downtime Schema Migration . 10
2.8 Database Test . 11
2.9 Benchmark . 12

2.9.1 TPC-C . 13
2.9.2 TPC-H . 14
2.9.3 Other benchmarks . 14

3 Literature review 15
3.1 Schema Evolution . 15
3.2 Online Schema Migration . 16

3.2.1 Third-party solutions . 16
3.2.2 Database vendor’s solution . 18
3.2.3 Complex/Simple schema changes . 19

3.3 Criteria . 20
3.4 Benchmark . 21

3.4.1 Benchmark for databases . 21
3.4.2 Metircs . 22
3.4.3 Guideline . 23
3.4.4 Benchmark for online schema migration 25

3.5 Summary . 26

4 Treatment design 27
4.1 Workload . 27

4.1.1 Requirement . 27
4.2 Choosing Tool and Benchmark . 28

4.2.1 Tool . 29
4.2.2 benchmark . 32
4.2.3 New requirements for online schema migration benchmark 33

4

4.3 Metrics . 34
4.3.1 Differences with database benchmark 34
4.3.2 Designing process . 34

5 Treatment implementation 37
5.1 Analysis of OLTPBenchmark . 37
5.2 Modifications of OLTPBenchmark . 37

5.2.1 Achieving continuity and inconsistency 37
5.2.2 Mixed state . 38
5.2.3 Completeness . 38
5.2.4 Rate control . 39
5.2.5 Extended configuration file . 39
5.2.6 Portability . 39
5.2.7 Metrics . 39

5.3 Benchmark Design and Implementation . 39
5.3.1 Why extensibility . 40
5.3.2 Simple changes . 40
5.3.3 Complex changes . 40

5.4 Summary . 43

6 Treatment evaluation 44
6.1 Unit Testing . 44
6.2 Performance Testing . 44
6.3 Requirements Implementation . 46

6.3.1 Continuity . 46
6.3.2 Inconsistency . 47
6.3.3 Mixed state . 47
6.3.4 Completeness . 48
6.3.5 Unit . 48

6.4 Testing of Database and Migration Tools . 48
6.5 Unsolved Problems . 52

7 Discussion 54
7.1 Result Analysis . 54
7.2 Future Work . 55

7.2.1 More schema migration benchmarks 55
7.2.2 More schema migration datasets . 55
7.2.3 Implementation of more complex changes 55
7.2.4 Optimization of OLTPBenchmark 55
7.2.5 Continuous Schema Migration . 56
7.2.6 Support for migration tools . 56
7.2.7 Real Multi-user test . 56
7.2.8 Strict consistency testing . 56

8 Conclusion 57
8.1 Contribution and Main Work . 57
8.2 Answers to the Research Questions . 58

8.2.1 Research question1 . 58
8.2.2 Research question2 . 58
8.2.3 Research question 3 . 59

5

8.2.4 Research question 4 . 59

6

1 Introduction

1.1 Motivation

With the advent of the information age, computers have played an increasingly impor-
tant role in people’s lives. A variety of computer systems provide people with a variety
of services, including work, entertainment and travel. These systems are not immutable
since development, and developers will update them according to user needs. For example,
an online shopping website may initially only save key information such as product prices
and descriptions in their databases. But with the development of the business, in order
to provide customers with better services, the company may keep some other information
like the lowest price recently. At this time, it is necessary to change the schema of the
databases.
Migrating the schema of the database will cause the database service to be temporarily
inaccessible. How to reduce the impact of temporary inaccessibility of databases caused
by database schema migration is a topic that some researchers have focused on in the
past six decades. In the past, schema migration often required temporarily shutting down
the service and waiting for the system upgrade to complete before allowing customers
to access it. However, this method has shortcomings. For commercial companies, every
minute of downtime means a loss of profit. For the government, it may cause inconve-
nience in public services. Based on this background, online computer system developers
began to find various ways to reduce the time that the system was offline, and a variety of
zero-downtime deployment technologies were gradually developed,such as PRISM[26] and
Facebook’s OSC[45] . These solutions solve the problem that the system must be shut
down for a long time to upgrade when the database structure changes. In recent years,
with the rise of cloud services, more and more companies have chosen to migrate their ser-
vices to cloud servers. Amazon, as one of the largest cloud service providers, also provides
DMS(Data migration services) to facilitate the migration of customers.
However, there exist no benchmarking tools and benchmarks for this area. Classic database
testing tools, such as Jmeter and Hammer DB, tend to pay more attention to the load ca-
pacity of the database, and use indicators such as throughput, response time and error
ratio to measure database performance. These tools measure the performance of the same
database on different storage devices. However, when the database’s schema is changed,
the situation is different. While paying attention to the above indicators, it should also
pay attention to the differences of above indicators before and after schema changes of
the database, that is, the impact of database structural changes on the load capacity, the
latency and other indicators of the database. Existing database testing tools lack atten-
tion to this aspect. Moreover, when database managers want to test the impact of these
changes, they usually need to do them in multiple steps: first let the database run normally
for a period of time, then use tools such as Liquibase to define the changes, and wait for
the changes to complete before passing the database test tool observe the performance
indicators during the migration process, which caused a certain degree of inconvenience.
In addition, the existing database testing tools also have other problems. For example,
some tools have weak visual analysis capabilities after the test is completed, the code and
programming style are old and the extensibility is insufficient, etc.

Same as the test tool, there are seldom benchmarks for database migration. Existing
well-known benchmarks such as TPC-C and TPC-H all define a system, and then simulate
the operation of this system to perform tests on the database. For example, the model
used by TPC-C is a large-scale commodity wholesale sales company, which has several

1

commodity warehouses distributed in different regions. The benchmark simulates the
company’s business system, and when the business expands, the company can add new
warehouses. However, none of these benchmarks takes into account the situation of schema
changes. Taking TPC-C as an example, the development of the company’s business is not
only an increase or decrease in the number of warehouses, but also a change in the database
structure. For a large shopping company like Amazon, the schema of the shopping-related
database will have many changes compared to when it was first established. With the
development of the company’s business, some new necessary columns are added, and some
redundant columns are deleted. This is something that sometimes happens in the real
development process. Therefore, we can see that it is very necessary and meaningful to
test the database’s ability to respond to changes. But according to the author’s knowledge,
there is no benchmark to do this.
Based on the above reasons, we believe that it is very important and realistic to develop
a new database testing tool for database schema changes and design a new benchmark.
Because database structure changes are exactly what will happen in the displayed business
system. But now there is few benchmark and test tool that can simulate and test schema
migration.

1.2 Research Question

The main purpose of this research is to design a benchmarking tool for schema migration.
Generally, developers can develop a tool in the following two ways. The first way is to build
the tool from scratch, and the other way is to develop it based on existing tools. Since the
second approach can save development time by avoiding duplication of effort, this study
will further modify existing tools and benchmarks rather than starting from scratch.
It is different from other benchmarking tools that focus on indicators such as database
capacity and latency. The benchmarking tool proposed in this thesis also pay attention to
the performance comparison before and after the schema change, the performance behavior
before and after schema changes and the performance of schema changes itself. Therefore,
some new indicators in this regard will be proposed to measure the performance of the
database.

In this master thesis, in order to better create a benchmark tool for zero-downtime
structure migration and evaluate it, the following research questions are proposed:

1. Which of the existing benchmarking tools can be more easily re-developed to adapt
to the scenario of schema change?

• What criteria should be met when selecting tools for secondary development?
• How should the tool be re-developed to make it meet the demand?

SW

2. In view of the database schema changes, what requirements must a benchmark and
benchmarking tool meet?

• What requirements can we get from the existing benchmarks and benchmarking
tools?

• What new requirements can be found in case of schema migration?

3. In case of schema migrations, what metric will allow us to better measure the per-
formance of the database?

2

4. How the quality of a benchmark can be measured?

1.3 Methodology

This section will introduce the methodology used in this thesis. The main purpose of this
thesis is to design and implement a benchmarking tool for schema migration. Because this
thesis needs to find a solution to the problem raised, the main problem of this thesis is a
design problem. For some research questions, because they ask for some knowledge and
some requirements are found in some literature. These questions are knowledge questions.
Therefore, the design science proposed by Wieringa to solve design problems and knowl-
edge problems will be used as the methodology of this thesis[64] . For design problem,
Wieringa introduced a method of how to design and implement systems or software and
introduced how to investigate the performance of the finished product. The methodology
is divided into five tasks, which are: problem investigation, implementation evaluation,
treatment design, treatment validation and treatment implementation. Figure 1 shows the
design science in the form of diagrams and these four steps show the life cycle of software
design and implementation.

Figure 1: Design science cycle in the book

Because the main goal of this thesis is to design a tool for benchmarking zero downtime
scheme migration. This research is a solution-oriented research. For this kind to research,
the treatment design, the treatment validation and treatment implementation steps are
applied. The main task of the treatment design step is to design the artifacts used to solve
the problem. For this step, since it asks knowledge of the world, so we can use the em-
pirical cycle used to solve knowledge questions to obtain the requirements. The empirical
cycle is showed in figure 2. In this thesis, because it is only used to solve some of the
subproblems like research question 2.1 and 3, only three steps named Research problem
analysis, Research and inference design and Data analysis in the circle will be used. This
thesis firstly judges whether the problem is a knowledge problem. It then summarizes
researches in related fields and analyzes the collected data and information and give the
answer to the question after the analysis. The main task of the treatment validation step
is to evaluate whether the designed software can solve the problem. In this thesis, we will
also apply the tool to compare the performance of different databases and migration tools
in the scenario of schema migration and assess whether the tool meets the requirements.

3

Figure 2: Design science cycle in the book

1.4 Organization

This chapter mainly introduces the organization of this thesis. The motivation and research
questions of the research are given in the introduction section. In the background chapters
that follow, some knowledge related to databases and database testing is provided. This
knowledge can help readers better understand the next content of the thesis. The third
section is a literature review. This chapter first summarizes the researches in the field of
schema migration, and then introduces some benchmark-related researches. After that,
the design, implementation, and evaluation of the treatment are sequentially introduced
according to the steps of design science. In Chapter 6, the experimental results in the
evaluation section are further analyzed and future work is also listed. Finally, the main
contributions and research questions of this thesis are summarized and answered in the
final chapter.

4

2 Background

2.1 Databases

In the field of computer science, a database is a place where data is digitally stored on a
computer in a certain order[8] . Before the advent of databases, data was mainly stored
on computers in the form of simple files. Using this method to store and read data is
logically simple, but it cannot shield the complexity of data access. In this context, the
database was born, which solved a series of problems such as data integrity, consistency
and security.
In 1960, Bachman designed an integrated database system, which maybe also the first
database management system[6] . By the mid-1960s, with the development of computers,
the speed and flexibility of computers began to spread and many general database systems
could be used. Many customers requested the development of a standardized language for
public services, the languages that was not developed for public service at the time have
became a nuisance for many customers. Bachman formed a database task group to solve
this problem. The database task group proposed this standard in 1971, also known as the
"CODASYL method"[24] . In 1970, out of dissatisfaction with the CODASYL method and
the lack of search engines in the IMS model, Codd wrote a series of papers outlining novel
methods for constructing databases[21, 22, 23] . His idea eventually evolved into a paper
called "Data Relation Model for Large Shared Databases", which described a new method
for storing data and processing large databases, which used tables with a fixed length
to store data. In 1974, Stonebraker and Wong were very interested in Codd’s research
and made a decision to study relational database systems. They successfully proved that
the relational model may be an effective and practical method for storing and processing
structured data[59] .

2.2 Relational Databases

Relational databases were proposed in the 1960s and became dominant in the 1980s[24]
, and it is still a popular database to this day. Relational databases organize data as a
set of tables with columns and rows. In a relational database, each row in the table has a
unique ID. The columns in the table store the attributes of the data. Each row of records
often has multiple attributes, and each attribute has its own value. Relational database
provides a convenient and flexible way to access structured data.
The relational database is based on the relational model. In this model, logical data struc-
tures such as data tables and views, and indexes are separated from the physical storage
structure of the data. In addition to the data is divided into logical and physical, operations
are also divided into logical operations and physical operations. Logical operations specify
what the application needs and physical operations determine how to access data[13] .
The relational model provides a standard way of querying and loading data for all appli-
cations, which has changed the inconvenience caused by each application using its own
unique data storage structure in the past. In the relational model, different data entities
types are stored in different tables, which is an intuitive, efficient and flexible way of storage.

2.3 Database Manage System(DBMS)

As a storage location for data, a database usually requires a program to comprehensively
manage it, and this program is called a database management system (DBMS). DBMS is
the interface between the database and the user, allowing users to retrieve, update and

5

manage the organization and optimization of information. The DBMS also helps to monitor
and control the database to support various management operations such as performance
monitoring, tuning, backup and recovery.
When used, people often refer to a database management system simply as a "database".
However, the two terms do not have the same meaning. A database can be any collection
of data, not just a collection of data stored on a computer, and a DBMS is software that
allows you to interact with the database.
All DBMSs have an underlying model that is used to structure how data is stored and
accessed. A relational database management system is a DBMS that adopts the relational
data model. In this model, data is organized into tables. In the RDBMS environment, it
is more formally called a relationship. In this thesis, the relational database management
system is also the DBMS we will mainly discuss.

2.4 Structured Query Language

Structured Query Language, abbreviated as SQL, is a language used to query and up-
date data and interact with the database. Users can complete functions such as query-
ing, modifying and deleting data through SQL and can also control access rights to the
database through SQL. Standard SQL is managed by the ANSI Standards Committee
and is therefore called ANSI SQL. Each DBMS also has its own implementation, such
as PL/SQL, Transact-SQL. SQL is divided into four categories, including data definition
language (DDL), data manipulation language (DML), transaction control language (TCL)
and data control language (DCL).

2.4.1 DDL

Data Definition Language (DDL) is the language responsible for data structure definition
and database object definition in the SQL language set. The main function of DDL is to
define database objects. The core commands of DDL are CREATE, ALTER, and DROP.
DDL enables users to create or delete tables, add and delete indexes, specify links between
tables and impose constraints between tables. Usually, using DDL to modify the database
is a very expensive operation because it will lead to the migration of the database schema
and further affect the DML language for data access.

2.4.2 DML

Data manipulation language (DML) is a programming statement used for database oper-
ations to run access to objects and data in the database. The main function of DML is
to access data, so its syntax is mainly to read and write databases. The core commands
of DML are INSERT, UPDATE, DELETE, and SELECT. These four commands are col-
lectively referred to as CRUD (Create, Read, Update, Delete), that is, add, read, modify,
and delete. Back-end developers often use the DML language to interact with the server
and read the data they want from the database. At the same time, DML commands are
often used with keywords such as WHERE and JOIN to achieve the purpose of reading
the desired data from the database.

2.4.3 TCL

Transaction Control Language (TCL) is used to manage transactions in the database.
These are used to manage changes made by DML statements. Transactions are an impor-
tant part of maintaining database consistency. All DML statements in the same transaction

6

are either executed or not executed at all. It also allows grouping of statements into log-
ical transactions. The core commands of TCL are COMMIT and ROLLBACK. The first
keyword is used to commit the transaction, and the second keyword is used to roll back
the transaction.

2.4.4 DCL

Data Control Language (DCL) is an instruction that can control data access rights. In
actual project development, it is very important to have access to different personnel ac-
cording to requirements. DCL can control a specific user account’s control over database
objects such as data tables, view tables, stored procedures and user-defined functions. The
core commands of DCL are GRANT and REVOKE. DCL mainly controls the user’s access
rights, so its instruction is not complicated. The rights that can be controlled by DCL
are: CONNECT, SELECT, INSERT, UPDATE, DELETE, EXECUTE, USAGE, REF-
ERENCES. According to different DBMS and different security entities, the permission
control supported is also different. For example, some databases such as SQLite do not
support DCL, but control the access rights of the database through the file system.

2.5 Database Transactions

Database transaction refers to a series of operations performed as a single logical unit of
work, either completely executed or not executed at all. A logical unit of work need to
guarantee four attributes called ACID (atomicity, consistency, isolation, and durability)
attributes, only in this way can it become a transaction. In order to ensure the correct
execution of transactions, different database management systems have different imple-
mentations.

2.5.1 Transaction properties

The guarantees provided by the transaction is often described as ACID. That is, atomicity,
consistency, isolation level, and durability.
In the ACID attributes of transaction processing, consistency is the basic attribute and
the other three attributes exist to ensure consistency. Consistency refers to the transition
of the system from one state that satisfies a predetermined constraints to another state
that satisfies the constraints. These constraints include uniqueness constraint, integrity
constraints and the correctness guaranteed by the isolation level, etc. Usually, when a
transaction fails, the database will roll back the transaction as a whole to ensure that the
data is always consistent.
Atomicity, simply means "all or nothing", all operations in a transaction are either done
or not done. So when an error occurs in the middle of the transaction execution, the
database needs to discard the previously executed write and roll back to the state before
the transaction is executed. The main purpose of this property is to prevent the failure of
failed transaction operations from affecting the data in the database. A classic example is
bank transfer. If the transfer is successful, then the account of customer A will be reduced
by 100 euros, and the account of customer B will be increased by 100 euros. Databases
usually use journaling to guarantee atomicity. Modifications to the data will be written in
the journal first, and when the transaction is committed, a commit record will be gener-
ated. When a crash occurs, if the commit record exists, it means that the transaction has
been completed. Thus the database should recover the data according to the records in
the journal. Otherwise, the transaction should be skipped.

7

However, atomicity does not completely guarantee consistency. In the case of multiple
transactions in parallel, even if the atomicity of each transaction is guaranteed, it may
still result in inconsistent data. For example, transaction 1 needs to transfer 100 euro to
account A: first read the value of account A, and then add 100 to this value. However, be-
tween these two operations, another transaction 2 modified the value of account A, adding
100 euro to it. Then the final result should be that A has increased by 200 euro. But
in fact, after transaction 1 was finally completed, account A only increased by 100 euro,
because the modification result of transaction 2 was overwritten by transaction. In order
to ensure consistency in the case of concurrent, isolation is introduced, that is, to ensure
that the data that each transaction can see is always consistent, just as if other concurrent
transactions do not exist. In terminology, the state after multiple transactions are executed
concurrently is equivalent to the state after their serial execution. The database uses a
variety of mechanisms to ensure isolation.
Durability ensures that after the transaction is successfully committed, the change opera-
tion of the data will be persisted to the disk, and there will be no data loss due to failure.
In a computer system, data is usually written to the memory first, and then written to the
hard disk at an appropriate time. Without durability, data that was not written to disk
would be lost in the event of a crash. Some database management systems represented by
MySQL use logs to guarantee durability. The redo log is divided into two parts: buffer and
file. When the transaction is committed, the redo log buffer will be flushed and recorded
in the redo log file. In this way, when the database crashes and restarts, it can read the
data in the redo log file and restore the database.

2.5.2 Multiversion concurrency control

Modern database management systems allow read and write operations to be executed
concurrently. However, the concurrency of multiple transactions may cause dirty reads,
non-repeatable reads and phantom reads and affect the consistency of the database. To
solve this problem, some databases have their own concurrency control mechanism. Multi-
version concurrency control is an advanced and widely used concurrency control method[7]
. In short, it assigns a unidirectionally increasing timestamp to a transaction and keeps a
version associated with the transaction timestamp for each modification. Read operations
read only the snapshot of the database before the transaction started. In this way, it
achieves a lock-free solution to the problem of read-write concurrency conflicts

2.5.3 Lock

Lock is a very important concept in data network transmission. It is is mainly to ensure
the integrity and consistency of the database data in the case of multiple users. In a
multi-user environment, because multiple transactions may read and update a record at
the same time, data inconsistency may occur. Locking a table, row, or other object in the
database will ensure that only the transaction holding the lock can operate on the object
at a time. Other transactions that want to read or modify the object will be blocked and
wait for the lock to be lifted. Locks make the execution order of concurrent transactions
linear and in this way avoid possible problems with concurrency.
For databases, there are many types of locks. A popular classification method is to divide
locks into shared locks and exclusive locks according to whether the locks are allowed to be
shared. For shared locks, when the transaction locks the data, other transactions can only
read the data and cannot do any modification operations. Only when the shared lock on

8

the data is released, other transactions can modify it. For exclusive locks, when the lock
is not released, read operations are also prohibited compared to shared locks. At the same
time, locks can also be divided into database locks, table locks, row locks, etc according to
different granularities.
Because the lock will block other operations except the current operation and operations
need to detect whether the object currently needs to be accessed has been locked, the use
of the lock is a very expensive operation. Some databases have also optimized locks. For
example, MySQL proposed and used an intention lock. When a record in the database is
locked by a row lock, the table where the record is located will be locked by the intention
lock at the same time. This method avoids the disadvantages of needing to scan the full
table to detect the row locks when there is a table lock that wants to lock the table to detect
the shortcomings of row locks, and reduces the impact of locks on database performance.
The lock mechanism is also an important reason that affects schema migration. For many
databases, when using DDL statements for schema migration, the database management
system will add table locks for the affected tables and the table lock will block DML
statements that want to query or modify the data.

2.6 Schema Migration

A database schema is a definition of the structure of a database[42] . It can be simply un-
derstood as a logical definition of database related objects, but also a collection of objects
in the database. This collection contains various objects such as: tables, views, stored
procedures, indexes, etc. Figure 3 shows the schema of the TPC-C benchmark. Generally,
developers and researchers classify databases as traditional relational databases and non-
relational databases. They are characterized by the need to define the database and table
structures in advance before using them. In this thesis, when talking about schema migra-
tion, we are only talking about traditional relational databases like MySQL and Oracle.
Non-relational databases such as MongoDB and Redis usually do not have a fixed table
schema[48] , so they are out of the scope of this thesis.
In addition, some databases that form a schema when reading data are also not within

the scope of this thesis, such as Hive. In traditional relational databases, the schema of
tables are forcibly determined when the data is loaded. If it is found that the data does
not conform to the schema during loading, it will be refused to load the data. Because
the data is checked against the schema when it is written to the database, this design is
sometimes referred to as the "schema on write"[38] . Hive takes a different time to form
a schema than traditional relational databases. In order to reduce the database loading
time, they choose to verify the data during query and set the value that does not meet the
query conditions to null. This mode is called "schema on read"[30] . Because this kind of
database does not determine the schema of the data when storing it, but only stores the
data, and adopts the method of setting the value that does not meet the query conditions
to null, it is also out of the scope of this thesis.
Statements that cause database schema changes are commonly referred to as Data Defi-
nition languages (DDL), while statements that manipulate the database, such as INSERT
and UPDATE, are called Data Manipulation Language (DML). For some databases, DDL
can cause table rebuilding and data transfer, resulting in blocking behavior. It is tem-
porarily impossible to query the data in the table being rebuilt, and the queryer needs
to wait for the DDL operation to complete before getting the correct result. Michael de
Jong run an experiment to compare the blocking behavior of MySQL and PostgreSQL
when performing different DDL[28] . In his example, PostgreSQL blocks all queries when
adding a column and specifying it as non-nullable. However, this experiment also found

9

Figure 3: Schema of TPC-C benchmark.
found at:http://maheshgadgilsblog.blogspot.com/2011/11/more-on-constrained-
tree-schema.html

that MySQL have a different behavior and it did not block the SELECT statement while
performing this operation. De Jong did not probe further into the reasons for the differ-
ence. In fact, MySQL introduced online DDL in version 5.5. This feature is based on
fast index creation feature and allows SELECT statements to be executed during DDL
operations. However, this feature is disabled for DML that only works on older tables. So
it doesn’t meet Michael de Jong’s requirement that the tools must support multi-version
data. From his experiments, we can conclude that when schema change occurs, databases
will block the current DML statement by applying a lock, which makes schema change
usually an expensive and complex operation.

2.7 Zero Downtime Schema Migration

MySQL’s reference manual reveals why schema migration blocks DML statements. For
the ALTER TABLE statement, MySQL will rebuild the table according to the specific
content of the statement, and insert the data of the original table into the rebuilt table. In
addition, MySQL treats each DDL statement as a transaction. For DDL statements, the
database uses table locks to lock the original table and block concurrent DML statements.
This is the reason that schema migration causes the performance of the database to drop
or even stop the service1. The domain that solves this problem is called zero-downtime
schema migration.
Zero downtime schema migration refers to changing the database schema under the con-

1https://dev.MySQL.com/doc/refman/5.7/en/

10

dition that the database can continue to provide services. In the past ten years, many
researchers have proposed their own solutions to the problem of continuous deployment.
we will discuss four approaches that have been proposed.

1. Approach 1 The first approach was proposed in the book Continuous Delivery:
Reliable Software Releases Through Build, Test, and Deployment Automation[37] .
It copies the database and records operations that affect the database data such
as update operations and delete operations during schema evolution. When the
database copy is complete, the recorded operations will be replayed until the old and
new database until the old and new versions of the database are in sync. And there
are two options at this time: switch the database to the new version or continue to
record the operation.

2. Approach 2 This approach involves rewriting the SQL so that it will be executed in
the new table as well as in the old table. Researchers have also developed a variety
of tools based on this approach. PRISM+ uses ICMOS and SMOS to rewrite the
query, so that the rewritten query can be executed on both the old and new data
tables[26] .

3. Approach 3 Some other tools such as Openark kit[47] and QuantumDB[29] use the
method of creating a new ghost table to achieve zero downtime schema migration.
When the DDL statement is applied, they will create a data table called the ghost
table that conforms to the changed schema, and transfer the data from the original
table to the ghost table. For data consistency, different tools have different imple-
mentations. For example, QuantumDB uses triggers, while Gh-ost uses subscription
database logs. Although a part of them also involves the rewriting of SQL, there
is a clear difference compared with Approach 2. Finally, when the data migration
is completed and the two tables reach the synchronized state, the old table can be
deleted.

4. Approach 4 This approach is called "Blue-Green deployment" and it is mainly used
in scenarios when database clusters are used. This method marks the database that
has not been changed in blue, and mark the database that has been changed and
reached the synchronization state in green. Like show in figure 4, When schema
changes are applied, we apply the changes to some database each time and the other
database still provides services normally. When the change is complete, the color of
the changed database is switched to green, and then some databases that are still
blue are selected and changed. Eventually, all databases will be converted to green
and the deployment is finished.

2.8 Database Test

Scientists believe that testing is an important part of the software development life cycle[39]
. Through sufficient and complete testing, we can reduce errors and find some special cases
that were not considered during the development process, and prevent these problems from
appearing in the production environment to further avoid huge losses. In this paper[39] ,
they compared three automated testing tools which are available in the market in some
aspect like usability, effectiveness and budget.
Many existing database testing tools usually test the following aspects of the database to
measure the performance of the database[58, 25, 36, 54] . First of all, the throughput of
the database is a very important metric for benchmarks. The TPC-C benchmark test uses

11

Figure 4: Blue-green deployment

tpcm as an indicator to measure the throughput capacity of the database. Tpcm describes
how many new order transactions the system can process every minute while performing
payment operations, order status query, shipping and inventory status query these four
transactions. Latency is another very important indicator of database performance. It
refers to the time it takes for the database to process the query. High latency can be
caused by various reasons, such as distance, propagation delay and internet connection
type. When the network delay is large, even if the database has a large throughput, the
user will suffer a high latency due to the network delay. High latency will cause the user
to get a response long after the request is initiated, resulting in a poor user experience.
Queries per second(QPS) and Transactions per second(TPS) are other two factors related
to the throughput. The average time consumed to execute a sql is also an indicator to
measure the database. In addition, the integrity, consistency and correctness of the data is
also very important. A good database must ensure that the data in the database will not
be easily changed or lost. Finally, some other indicators, such as lock-related indicators
and hit rate, can also measure the performance of the database.
In general, the types of database testing can be divided into five types: load test, benchmark
test, stress test and stability test.Different test types focus on different aspects of the test
object.
Load testing is used to check the system’s ability to work correctly when using a large
amount of data. And benchmarking can observe the behavior of the system under different
pressures, evaluate the capacity of the system, grasp what are the important changes and
observe how the system handles different data. The main task of the stress test is to obtain
the limit of the correct operation of the system and to check the ability of the system to
perform correctly under the instantaneous peak load. Finally for the stability test, it is to
run the system for a period of time under the condition of a certain business pressure on
the system to detect whether the system is stable.

2.9 Benchmark

Benchmark refers to a standardized test which is composed of an application scenario,
a data generator and a set of queries. The data generator is capable for generating the
data suitable for the scenario and can adjust the size of the data amount according to the
settings. And the queries should be representative for the scenario. In the database bench-

12

Figure 5: TPC-C test process
found at: https://commons.wikimedia.org/wiki/File:Sch%C3%A9maDatab%C3%A1zemetodyTPC−
C.png

mark test, in order to test the performance of different databases in different scenarios,
researchers have proposed and implemented different benchmarks.
According to different application areas, the existing benchmarks can be roughly divided
into three categories: OLTP, OLAP and OLAP+OLTP. OLTP is the main application of
traditional relational databases, mainly for basic and daily transaction processing, such as
bank transactions. OLAP is the main application of the data warehouse system. It sup-
ports complex analysis operations, focuses on decision support, and provides intuitive and
easy-to-understand query results. The first type of benchmarks include TPC-C, TPC-E,
AS3AP, etc. The second type of benchmarks are represented by SetQuery, TPC-H, and
TPC-DS. And the third type of benchmark is CH-benchmark, InMemBench and so on.

2.9.1 TPC-C

The model used in the TPC-C test is a large-scale commodity wholesale sales company
that has several commodity warehouses distributed in different regions. When the business
expands, the company will add new warehouses. Each warehouse is responsible for sup-
plying 10 points of sale, and each point of sale provides services to 3000 customers. In the
orders submitted by each customer, there are on average 10 products in each order. About
1% of the products in all orders are There is no inventory in the warehouse to which it
directly belongs and it must be supplied by warehouses in other regions. At the same time,
each warehouse must maintain inventory records of 100,000 products sold by the company.
Figure ?? shows the TPC-C test process.

13

TPC-C is mainly divided into five types of transactions, order creation, order pay-
ment, order query, order delivery and inventory query. These five transactions occur in a
certain proportion. The test finally measures the number of executions of order creation
transactions per minute. The unit is tpmC, tpm is the abbreviation of transactions per
minute.

2.9.2 TPC-H

The TPC-H benchmark simulates a commercial procurement application. Its database
model contains 8 tables, representing the objects or behaviors participating in the pro-
curement and ordering in the commercial field. The size of the data volume has a direct
impact on the query speed. The Scale Factor (SF) is used to describe the data volume in
TPC-H. 1 SF corresponds to 1 GB unit, and SF is 1, 10, 30, 100, 300, 1 from low to high.
000, 3 000, 10 000. The data volume corresponding to 1SF is only the total data volume
of 8 tables, excluding the space occupation such as indexes, and more space needs to be
reserved when preparing data. The performance test benchmark defines 22 complex query
(SELECT) statements and 2 update data statements (including INSERT and DELETE
operations). The size of the database is determined by Scale Facto, and the total data
size can range from 1GB to 100TB. The TPC-H benchmark uses the number of queries
executed per hour (QphH@size) as the metric.

2.9.3 Other benchmarks

In addition to these two classic benchmarks mentioned above, many other benchmarks
have been built for different databases or different system architectures. For example,
TATP is a benchmark used to test the performance of an in-memory database[65] . It
simulates the system of a telecommunication providers and it consists of 4 tables and 7
transactions. Most of its queries are fairly simple and are read-only. This is also the same
as our usual use of in-memory databases: caching frequently read hotspot data. Besides,
other benchmarks, such as the Yahoo Cloud Services Benchmark designed for distributed
cloud service systems also have their own characteristics[25] .

14

3 Literature review

In this section, we will review the literature that has been conducted. First, we will discuss
some researches related to schema migration and solutions to the problem of zero down-
time schema migration. Then, this section will review some researches that are significant
to the benchmarking field, concludes with a comparison of the different benchmarks and
discussing their advantages and disadvantages.
For the papers in the field of schema migration, some of them conduct theoretical research
on online schema transformation, while some papers proposes a solution strategy for online
schema transformation. There are also papers that implement their own tools based on
different resolution strategies.
For papers related to the benchmarking of schema migration, a paper by Moller provides
a review of researches in this area[44] . In addition to this, in some researches related
to solutions for zero downtime deployment, the researchers also describe the benchmarks
they used. Finally, benchmark design guidelines presented in some papers and books for
database testing also contribute to a better understanding of this subject.

3.1 Schema Evolution

There are many synonyms for schema migration. A similar word for "schema" is "database".
"migration" has richer synonyms, such as "reorganization", "evolution", "transformation",
"change" and "refactor". For some specific kinds of databases, some specific words also
have the same meaning as schema migration. For example, for object-oriented databases,
“objects change” also means schema migration.
The concept of schema migration was proposed very early. As mentioned in the GUIDE/SHARE
Report[32] in 1970 and the CODASYL Data Base Task Group Report in 1971[20] , an im-
portant responsibility of the database administrator is to select the appropriate point for
database reorganization and users should feel that the database is reorganized as little as
possible. In 1974, Fry from the University of Michigan conducted research on database
reorganization from the logical to the physical level[16] . He identified the main reasons
for government or commercial users to perform database reorganization and discussed the
complexities of database reorganization.
Sockut’s paper in 1979 summarized previous research[56] . The contribution of this pa-
per is mainly to define the database reorganization in more detail, classify the types of
reorganization according to different levels, introduce the strategy of reorganization and
summarize the semantics and languages for specification of logical reorganization proposed
by different researchers. In 1992, a bibliography of schema evolution research listed more
than fifty papers in this field, the vast majority of which were published after 1987[51] .
Among the fifty papers, some are related to relational databases and some are related to
object-oriented databases. In 1987, Dadam proposed a method to reduce the time and
space overhead of schema changes by not updating all data instances immediately when
the schema changes[27] . In 1990, McKenzie extended the conventional relational algebra
to support the evolution of a database’s schema[43] . In 1992, Roddick introduced an SQL
extension called SQL/SE which can handle schema changes in relational database and in
1993, he described an approach based on historical schema to achieve schema evolution[51]
.
In 1996, A paper by Hainaut described a common framework to cope with database
evolution[35] . In this paper, he analyzed the process of database evolution and pro-
posed that a good schema evolution framework should solve four problems. By addressing

15

these four problems, the framework can ensure data integrity and consistency, guarantee
data recovery in the event of a failure and at the same time ensure the framework’s ability
to handle different requirements. Based on this four problem, four strategies are propose
and they are showed in the following list.

1. The new schema and the old schema should be as similar as possible except for the
structure that must change. And after the new schema is created, the contents of
the old database should be transferred.

2. This strategy is backward database maintenance. To implement this strategy, the
authors proposed that a feasible approach is to map the evolution of the database to
changes in physical files and database structure.

3. This strategy is called database reverse engineering and it is consists of two phases
called data structure extraction and data structure conceptualization. In these two
phases, the engine restores different contents of the database respectively.

4. Anticipating design strategies require careful consideration of software stability.

Besides, Ronstrom’s paper lists a variety of schema evolution tools in the related work
chapter[52] . Kim implemented a way to address simple schema changes[40] . Lerner took
a different approach to this problem by implementing a special language that propagates
data from the old schema to the new schema[41] . There are also researchers who deal
with this problem by using user-defined conversion functions and migration functions[33] .

3.2 Online Schema Migration

In the 1970s, the UIDE/SHARE Report[32] in 1970 and the CODASYL Data Base Task
Group Report[20] mentioned that choosing the appropriate time for schema migration was
one of the important responsibilities of the database administrator. It is also mentioned
that for database administrators, the best time for schema migration is on weekends. In
1979 Sockut summed up four strategies for schema migration, two of which need to prevent
users from accessing the database, and the other two do not need to take the database
offline[56] . Since the 20th century, as computers and the internet have played an increas-
ingly important role in human social activities, people have begun to require computer
systems to be online 7*24 hours a day. As one of the conditions for realizing continu-
ous deployment, how to complete the migration of database schema without suspending
the production environment has gradually attracted attention. This research field is also
called online schema migration. In this thesis, not leaving the production environment (on-
line), specifically, means that read and write operations can be performed correctly when
schema migration occurs. Today, the results of related research on schema evolution have
been widely used in relational, object and document database products, among which the
online schema change capability has become a standard feature of OLTP databases and
mainstream relational databases have their own implementations. However, since these
implementations still have various shortcomings, some organizations and individuals also
developed their own online schema change tools.

3.2.1 Third-party solutions

Ronstrom’s 2003 paper is well known to researchers in the field of online schema migration[52]
. In this paper, he presents five steps to solve online schema migration problem which and
their variants are also adopted by several modern migration tools. The five-step process is

16

Figure 6: Steps of complex schema change[52]

shown in Figure 6 . As shown in Figure 6, in the first step, the DDL causing the schema
change is executed and the new table is created. And some triggers and foreign key con-
straints are added to the new table to ensure the data is up to date. And the second
step is the transformation of data. In this step, the data in the old table is scanned and
copied to the new table. After this step is completed, the new table can be accessed by
the database. The third step is to test the new table, and some test cases are executed on
the new schema. And the results of the test will affect the next step. If the test passes,
then in the fourth and fifth steps, all transactions will gradually run on the new schema,
and the old schema will be gradually discarded. If the test fails, the new schema will be
removed and rolled back to the old version. At the same time, in this paper, Ronstrom
also pointed out that due to the use of triggers to ensure data synchronization between the
old and new tables, when the new table and the old table are working at the same time,
users should pay attention to the problem of circular triggers and a possible solution is to
label the source of the data change.
Many other online schema migration tools have opted for the same approach as Ronstrom,
using triggers to keep data in sync between old and new schemas. And these tools also
take the multi-step solution proposed by Ronstrom. This kind of tools including pt-online-
schema-change[4] , Facebook OSC[1] , LHM[3] , oak-online-alter-table[2] . When using
these tools for online schema migration, after the DDL command is executed, a table with
the new schema will be created instead of changing the schema of the old table. This
table is generally called a shadow table or a ghost table. Since there is no data in this
table at this time, it is temporarily unavailable for access. After this step, the data will
be migrated from the old table to the new table. During the data transfer, the write op-
erations performed on the old table will also be synchronized to the shadow table through
triggers. After all the data has been transferred and the data has been synchronized, these
tools will switch the tables by renaming the shadow tables and bring the tables online.

17

QuantumDB takes the same approach, but improves upon other tools by adding support
for foreign key constraints[28] . When faced with foreign keys, other tools make foreign key
constraints temporarily unavailable or refuse to work, QuantumDB will ensure that the
constraints are not violated. Compared with other solutions to ensure data consistency,
Zhu not only uses triggers, but also uses PostgreSQL’s materialized views to ensure data
synchronization between old and new tables[66] .
However, some of the previously mentioned tools designed from multi-step solutions still
have some problems. First, since an additional ghost table needs to be created, the required
system resources will be doubled. The second is that using these tools requires waiting for
the database synchronization to complete before updating the front-end application, which
causes a delay in application update. To solve this problem, some tools rewrite the new
version queries to work on the old schema. However, this approach imposes limitations
on schema changes as both old and new version transactions must be both readable and
writable on the new schema. On the one hand, this limitation will lead developers to
compromise to meet this condition and adopt a schema that is not perfect. On the other
hand, there will be a gradual accumulation of technical burden, as this constraint is taken
into account with each update. For these reasons, some companies turn to NoSQL to solve
this problem.
There are also some problems caused by the use of triggers to ensure data synchronization.
The developers from Github listed six problems caused by triggers2. They are

1. Triggers will cause overhead, because in some databases, triggers are essentially a
stored procedure, and the stored procedure is only interpreted and not compiled.
When using ghost tables, every update to the data causes the stored procedure to
be interpreted, which is a big overhead on a busy table.

2. Using triggers can cause table locks and even database locks. When concurrent
queries compete for resources via locks, triggers also need to compete for their own
locks on ghost tables. The developers from Github have shown that this can lead to
near or full lock down.

3. Triggers cannot be paused, and there is no way to save resources by pausing execution
when the server is busy.

4. The ability to use triggers for concurrent migrations on multiple tables has not been
proven.

5. For databases with master-slave architecture, because row-based replication is gen-
erally performed between the master database and the slave database instead of
statement-based replication, triggers are not triggered by row-based replication.

6. Most current trigger-based tools cannot be used in a multi-server environment.

Out of consideration for these problems, the developers from Github chose to implement
their own solution based on logs rather than triggers.

3.2.2 Database vendor’s solution

To meet market demand, many databases also provide native support for online schema
migration. For example, by using Oracle’s DBMS REDEFINITION package, developers
can rename, add and delete columns in Oracle database tables without downtime. However,

2https://github.com/github/gh-ost/blob/master/doc/why-triggerless.md

18

unlike some previously mentioned solutions, they do not support the coexistence of multiple
schema versions.
Compared with Oracle, MySQL supports more kinds of DDL. MySQL has provided the
online schema change (Online DDL) feature since version 5.6, which allows most DDL
statements to be executed in parallel with DML. DDL execution is divided into three
stages: initialization, execution and commit table definition. This functionality is achieved
by using a new type of lock called a metadata lock(MDL). Taking creating a index as an
example, in the initialization phase, the database mainly analyzes the DDL statement and
determines the execution strategy, and will hold the shared MDL on the target table during
the process. In the execution stage after this, the exclusive MDL will be obtained, and
the preparations such as creating the rowlog will be completed after the transaction on the
current table ends. After that, the original exclusive MDL will be downgraded to shared
MDL to allow read and write operations to execute in parallel. Changes involving indexes
in new transactions are written to the end of the rowlog. The index building process will
also start at the same time. In the final commit table definition stage, the exclusive MDL
is obtained again, and the MDL is released after the metadata update is completed. At
this time, the process ends and the index is visible to the query.
However, the DDL process of applying a stand-alone database on a distributed database
is not feasible. Engineers from Google found that a huge problem was that distributed
databases needed to store multiple copies of the schema[49] . If the DDL process of a
stand-alone database continued, distributed locks were needed to ensure that no read or
write operations were performed during the loading of the new version schema, which was
extremely costly. And when the nodes in the cluster cannot sense each other, it becomes
an unachievable task. In response to this problem, at VLDB 2013, Google engineers gave a
new schema change process to solve this problem by adding two intermediate states which
are called delete only and write only. Only delete operations are performed on objects in
the delete only state and writes are supported on objects in the write only state and reads
are not allowed.
The plan of Google F1 contains two key points. Adding two intermediate states to the
first critical point ensures that the cluster has at most two recent metadata versions. The
second key point is to add the concept of lease to ensure that within a lease period, nodes
that do not get the latest version of the schema cannot submit transactions. As an initial
release, many other commercial databases have also improved upon Google’s proposal.
For examole, TiDB uses a component named PD to determine in real time whether all
nodes have completed the schema version update. If some nodes fail, they need to wait
for a lease period. OceanBase introduces ObServer, each ObServer has both storage and
computing functions and saves a copy of metadata, which can determine whether the
metadata versions of both ends are consistent during the task forwarding process.

3.2.3 Complex/Simple schema changes

Another major contribution of Ronstrom’s research is the concept of complex and simple
schema changes[52] . This change was also accepted and adopted by many researchers
[28, 66, 9] . A simple schema change refers to a schema change that can be executed
as a transaction, while a complex schema change refers to a long-running transaction.
For how to perform a complex schema change, Ronstrom believes that the SAGA model
can be used to solve this problem. According to this model, a complex schema change
is executed as a set of simple schema changes, or in other words, a set of transactions.
Since all schema changes can be classified into add and drop, any schema changes can be
rolled back by performing a reverse transaction. Also, because a complex schema change

19

consists of multiple add or delete transactions, undoing this change is also a long-running
transaction.
Zhu proposed a similar concept to Ronstrom in his paper. In this paper, a basic logic
operation unit called SMO is define[66] . This basic unit of operation is wrapped by the
ALTER command. Similarly, SMOs are divided into simple SMOs and complex SMOs.
More than half of SMOs are simple, such as renaming tables and attributes. Complex
SMO involves execution, rollback, etc. Unlike simple and complex schema changes, SMO
involves not only schema changes, but also data migration. By using SMO instead of
using DDL commands directly, Zhu believes that it is more convenient to execute complex
commands, and it will improve software reusability and extensibility, make rollback more
convenient, and divide complex operations into multiple simple steps.

3.3 Criteria

In this subsection, we review the criteria for tools used to evaluate online schema mi-
gration tools. Richter provides a detailed summary of the guidelines proposed by other
researchers[50] . These criteria proposed by multiple researchers are further divided into
four categories, which are functional, performance, correctness, and tolerance of errors.
According to Richter’s paper, there are five papers presenting criteria for implementing
online schema transfer tools. The authors of the first paper are Wevers et al[63] , in
which these researchers first formulated performance and functional criteria for the trans-
fer mechanism. Then, based on these requirements, they tested two popular databases and
a migration tool available on the market. The test results prove that none of the existing
tools can well maintain the ACID properties of the database and satisfy their proposed
criteria. Functionally, this requirement require that transactions be executed concurrently
with as little impact on latency and throughput as possible. Besides, the time of schema
migration, whether interruptible and recoverable and memory usage are also important
criteria.

Wevers et al were not the first researchers to propose criteria. In 2009, Sockut and
Iyer investigated and studied this issue[57] . They have separate requirements for online
migration applications and online migration strategies. They point out that even a short
period of downtime can cause huge financial losses for a company, so availability is one of
the important requirements for an application. For transfer strategies, similar to Wevers
et al, they argue that correctness, performance and ability to handle errors are important
aspects for evaluating strategies.

There are also some researches that offer their own implementations that also come
up with their own criteria. Sheng made demands on the correctness and reliability of
the migration tool, and he tested his own tool using the dataset provided by Curino[55] .
This dataset contains 170 pattern changes, 168 of which their tool can perform correctly.
Zhu pays more attention to the performance of the tool[66] . He designed different data
query and data update statements, including random selection, sequential selection, insert,
update, delete and scan. Finally, for ease of use, the tool should integrate with the system
with as few source code changes as possible.
Richter summarizes and reclassifies the criteria proposed by previous researchers[50] . He
divided all criteria into four categories, namely functional criteria, correctness criteria,
performance criteria, tolerance of errors criteria. The criteria contained in these four
categories and their descriptions are shown in Table 1 .

20

Category Criteria Description
Functional Expressivity All transformations can be performed online

Declarativity The user should not have to deal with specific implementation details
Composability The user can perform many transformations in one go
Concurrently active schemas Multiple schema versions can be active at the same time supporting the same data
Non-invasiveness The solution should not require major work to applications to support it
Aborting The solution should not abort running transactions

Correctness Transformation of data All data should be available in the new schema version
Transactional guarantees The solution should satisfy the ACID properties
Application migration A client should be able to continue querying the database with its current schema version
Referential integrity Foreign key constraints have to be enforced at all times
Schema isolation Clients should not be able to see any other schema version than their own
Consecutive migrations The solution verifies that no other transactions are updating the schema

Performance Performance degradation Performance degradation should be within limits depending on the use case
Space consumption The solution should not significantly fill up available storage space
Finite completion time The solution should perform the transformation in a finite time, preferably as fast as possible
Time to commit Data should not take too much time to transform after clients are already using the new version
Memory usage The solution should not take up more memory than is allocated to the system

Tolerance of errors Data recoverability The solution should have the means to reverse the transformation
New data reverse transformation New data should have a transformation back to the previous version
Transformation resilience Transformations can be aborted without inconsistencies, preferably restarting from a checkpoint
Successfully online The new schema version should only come online when it is successful

Table 1: Criteria summarized by Richter[50]

Functionality specifies the functions that the migration tool should have and the specific
requirements for those functions. Correctness specifies the result or intermediate state
that the data or system should achieve. Performance criteria evaluates the performance
the software should achieve. The last criterion makes demands on the behavior of software
in the face of systematic and human error.

3.4 Benchmark

3.4.1 Benchmark for databases

Database benchmarks help database administrators choose between different setups, hard-
ware and software[5] . The first standard benchmark for performance testing databases
is the Wisconsin benchmark. Before that, although some benchmarks can be used to
test database performance, they are application-specific. After implementing the DIRECT
database machine in 1981, researchers from the University of Wisconsin concluded that
there is currently no universal benchmark. For a more comprehensive comparison of this
data machine with INGRES, Oracle and other DBMS, the Wisconsin benchmark was de-
signed and implemented.
However, the Wisconsin benchmark still has many shortcomings. According to Anon et
al[31] , the Wisconsin benchmark does not perform well for datamation applications.
Therefore, they implemented three benchmarks, scan, sort and DebitCredit. The first
two benchmarks tested the input-output capabilities of the system. The last benchmark
has a more profound impact on later benchmarks, in which a metric for transactions per
second (TPS) is proposed. For the DebitCredit benchmark, TPS refers to the peak value
of transactions executed per second, with 95% of transactions requiring response times
within one second. Now, TPS is more widely considered as the number of transactions per
second. Due to the concept of TPS, this benchmark also became one of the most popular
benchmarks at that time.
Another major disadvantage of the Wisconsin benchmark is its inability to test database

21

performance in a multi-user environment[12] . This is a very serious disadvantage, because
in the real world, applications are often multi-user. Benchmarking in a single-user environ-
ment means that the database’s ability to process transactions and concurrency cannot be
tested. The industry quickly recognized the problem and soon several multi-user bench-
marks were implemented[11, 14]. Boral’s paper pointed out that only four basic database
operations are needed to test database performance and the main factors affecting the
throughput of concurrent systems are level of multiprogramming, degree of data sharing
and transaction mix[11] . Thus the vision proposed in 1983 was implemented, retaining
the relational structure proposed in the paper and modifying the benchmark for multi-user
scenarios. In addition, he divided metrics into three categories and described them in de-
tail.
The boom in database benchmarks has sparked a vicious competition called the Bench-
mark Wars[34] . When a vendor publishes benchmark results for its own product, if it
achieves better results than its competitors, the fairness of the test will be called into ques-
tion. If the grades are published by a relatively objective third party, the benchmark may
be discredited. The loser in the comparison may also make its product better than the
competitors by releasing an enhanced version or through a special configuration. Likewise,
winners will retaliate in the same way when losers post new results. This war has brought
many unnecessary losses to many companies. In this background, Omri Serlin established
the Transaction Processing Performance Council (TPC) in 1988 in consultation with 34
software and hardware suppliers. The main purpose of the TPC is to define benchmarks
in various fields. In addition, they also describes a method for calculating system prices
and reporting test results.
Since the establishment of TPC, the standards and procedures of benchmarking have been
gradually standardized. There are also more and more benchmarks emerging for different
segments. Since the establishment of TPC, the standards and procedures of benchmarking
have been gradually standardized. There are also more and more benchmarks emerging
for different segments. For example, there are TPC-C for OLTP systems and TPC-H for
OLAP systems released by TPC. There are also many benchmarks to test the different
capabilities of the database, such as SIBench[17] for testing snapshot isolation and The
Yahoo! Cloud Serving Benchmark (YCSB) which requires high system scalability[25] .
Finally, many companies and research institutes have also implemented multiple bench-
marks for different application domains, such as LinkBench[5] and Twitter[19] for social
applications, and Wikipedia[61] for knowledge websites.

3.4.2 Metircs

Metircs are used to compare the performance of various aspects of the database. Re-
searchers from the University of Wisconsin designed the first standard relational database
benchmark[10] , and in this paper, they also describe how to evaluate database perfor-
mance. Since the benchmark was run in single-user mode, they designed a strict sequential
mechanism. Under this mechanism, only one query is executed at a time, and this step
will be repeated many times and the average value will be taken. Elapsed time is the
main measure they finally selected. Elapsed time is the same as response time. For a
backend machine, it refers to the time it takes for the machine to receive a query and send
a response. The Wisconsin benchmark compares the performance of different databases
by calculating the total elapsed time spent by 100 queries. In 1993, David J. DeWitt
introduced three methods to measure the speedup, scaleup and sizeup characteristics of
the database. They require that when the number of processors increases, the database’s

22

query processing capacity should also increase proportionally.
The metrics presented in the paper by Anon et al. are extremely significant for how to
use benchmarks to evaluate the performance of databases[31] . In this paper, the metric
transactions per second is presented for the first time, which is still used by many OLTP
benchmarks to this day. In addition, the author of this paper also points out that the
cost performance is also very important for measuring a system. This concept has also
been adopted by the TPC committee and has become one of the important criteria for the
committee to evaluate the system. However, they also point out that the identification of
transactions is difficult because the benchmarks are not performing real transactions. At
the same time, there was no way to price the system at that time, so it was difficult to
really evaluate the cost performance of a system. Based on this situation, this paper also
defines in detail what spending should contain. Their view is that cost should be in units of
five years, including hardware and software purchase, installation, and maintenance costs,
excluding terminal costs, application development costs and operations costs.
Boral use three performance metric including queries-per-second, illustrative and response
time as system indicator[14] . Bitton gave a more detailed summary and classification of
the evaluation indicators[11] . She divides metrics into two categories: speed metrics and
utilization metrics. The first category of metrics measures the speed of the database, which
includes the database response time for stand-alone queries and throughput. The second
categories including the utilization of cpu, disk and communication lines.
The opinions of the above researchers have a profound impact on the metrics of the current
benchmark. TPC-C benchmark mainly have two indicators, namely the traffic indicator
(throughput, referred to as tpmC) and the price/performance (price/performance, referred
to as price/tpmC). TpmC describes how many new order transactions per minute the sys-
tem can process while executing other transactions. Armstrong used the same method
as Boral to classify metrics[5] . When designing Linkbench, he argued that the two most
important indicators used to measure the speed of the system are latency and throughput.
At the same time, for commercial systems, price/performance is also an indicator that
must be considered. In addition, he also listed the utilization metrics in detail, including
the following measurements:

1. CPU usage of user, system, idle and wait.

2. Number of I/O operations per second.

3. Bytes read and written per second.

4. Memory usage.

5. Persistent storage usage.

3.4.3 Guideline

Researchers from the University of Wisconsin proposed that a good benchmark must have
a sufficient amount of data. Benchmarks with too small amounts of data do not reflect
how real-world database management systems work. And data that is insufficient makes
it difficult to systematically test the database. For example, when the amount of data
generated by the join query is insufficient, it becomes difficult to analyze which factor
affects the response time. Designing database relationships is another important task
of designing benchmarks, which helps users better understand and expand benchmarks.
At the same time, before designing attributes, the designer must consider which aspects
of the database should be tested for performance. Another work by researchers from the

23

University of Wisconsin is to develop a collection of queries for testing relational databases,
which are:

1. Selection: The select queries must have various selectivity factors.

2. Projection: This kind of queries must have different percentages of duplicate at-
tribute.

3. Join query: Including simple join query and multi-join query.

4. Aggregate function: Benchmarks should test aggregate functions.

5. Update query: The update query here refers not only to the update of data, it
includes addition, deletion and modification.

In addition, since the use of indexes and the type of indexes can also have a significant
impact on performance, indexes should also be considered when conducting design bench-
marks.
The engineering database benchmark follows the design guidelines of the Wisconsin bench-
mark, uses a different database structure and is tested against an object-oriented database
and a relational database[18] . Nelson proposed a benchmark that can also test the bulk
function, batch processing capability and locking mechanism of the database[46] . In 1993,
Carolyn Turbyfill argued that existing benchmarks are not able to perform different work-
loads, so a scalable benchmark is necessary[60] . Thus, AS3AP is developed and it can
benchmarking a broad range of system.
Sawyer gave detailed guidance on the design and implementation of benchmarks. He be-
lieved that a benchmark mainly consists of load specifications and test specifications[53]
. Achieving the benchmark specification requires designers to analyze the requirements
of the benchmark. The first step is to determine the logic of the application, including
the proportion of each type of query in each transaction. He also introduced a method to
record the tps rate and it is shown in Figure 7.

Figure 7: A method used to record tps

In addition, he mentioned that batch work and error checking should be considered in
most benchmarks. For the other specification, Sawyer introduced the definition of each
measurement in detail and recommended the transaction response time percentile.
Gray summarize previous research on benchmarks in a book Database and Transaction
Processing Performance Handbook [34] . His point is that due to the complexity of the
real world, there is no easy way to benchmark all systems, and therefore, domain-specific
benchmarks are needed. For a domain-specific benchmark, it must satisfy the following
four criteria. The first is relevance, the operation it performs must be a classic operation

24

in the related domain. The second is portable, benchmarks must be easy to understand
and be able to implement and execute on a variety of hardware and systems. Then there is
the scalability, which requires that the load size of the benchmark can be adjusted accord-
ing to the needs of users. Finally, the benchmark should be simple and easy to understand.

3.4.4 Benchmark for online schema migration

Benchmarks for online schema change are a relatively new area of research, where so far
no benchmarks have emerged that satisfy all the criteria proposed by researchers. When
testing online migration tools, the vast majority of researchers chose to extend the TPC-C
benchmark, such as renaming some attributes or adding entirely new attributes. Some
researchers choose to expand on the Wikipedia benchmark, because this benchmark saves
multiple versions of the schema, so the data and schema changes come from real production
environments.
In 2020, Moller reviewed and summarized the benchmarks in the field of schema migration
and pointed out the shortcomings of these benchmarks[44] . The aspects of comparison
include data model, workload, data generator, data availability and metrics. The bench-
marks they found are Pantha Rei, Twente, STBenchmark, BigBench and Unibench, where
the first three of these five benchmarks are applied in the field of schema evolution and the
remaining two are just related to schema evolution. According to their observations, only
Pantha Rei of the five benchmarks both modeled real-world systems and used real-world
data, while other benchmark use data generator to generate distributed data. In this pa-
per, data are divided into three categories: structured, semi-structured and unstructured.
The comparison found that only BigBench and Unibench have all three categories of data
and the other three benchmarks in the field of schema migration have only one category
of data.
Moller also compared the statement types of the benchmarks. Among them, STBench-
mark has a special application field and is mainly used in mapping scenarios, while other
benchmarks belong to OLTP or OLAP. The last aspect of comparison is metrics, where
Pantha Rei tests the system’s robustness and adaptability and other benchmarks focus on
system performanceṄo benchmark can test both aspects at the same time. Based on their
observations, they also made their own requirements for benchmarking tools, which are
summarized derived from the four assessment aspects above.
Another hitherto unsolved problem in this area is an implementation called “mixed state”.
The definition of mixed state is given by de Jong, but it has been mentioned by other
researchers before. As mentioned in de Jong’s paper, supporting multiple versions of data
is one of the basic requirements of online migration tools[28] . This is because the actual
application is often multi-user, and the update of the application by the user will not be
completed at the same time in an instant. Therefore, during schema migration, there will
be a state in which the old and new version SQL access the database at the same time,
which is called a mixed state. Many tools cannot test their ability to handle multiple
versions of data because there are currently no benchmarks and benchmarking tools that
implement mixed states. This is also a major problem in this field of research.
In addition, because some databases have their own special DDL implementations, there
is no researcher to summarize and enumerate all DDLs. Researchers tend to design bench-
marks based on commonly used DDLs. For example, Wevers enumerated and classified
common DDLs and they divided all DDLs into five categories [63] . Curino et al also
enumerated the schema modification operators they used[?] . By comparison, it can be
found that there are similarities in the schema migration used in the two papers. And these

25

common DDLs are also frequently used when researchers are testing their online migration
tools.

3.5 Summary

The literature review section begins with a review of researches in the field of schema mi-
gration which provides a more comprehensive understanding of schema migration. On the
other hand, the difficulties encountered in designing schema migration tools mentioned in
some researches, as well as the deficiencies found by researchers when testing their migra-
tion tools, are also instructive for the design of our tools. For example, some researchers
mention that there is no tool to achieve mixed states. Therefore they cannot verify that
the tool supports the coexistence of multi-version data[28, 50, 9] . These papers help us
understand the needs of potential users.
The review of researches in the benchmark field is helpful for benchmark design. First, a
review of database benchmarks helps us realize how a benchmark should become popular.
Benchmark scenarios, metrics and some extra features all help here. For example, TPS is
an important reason for the popularity of Debit Credit. And the reason some benchmarks
are so popular in a particular domain is because they have fitting scenarios. Subsequent
reviews of metrics, guidelines and benchmarks in the field of schema migration describe
the design of the benchmarks in more detail. The first two tell us how to think about
benchmark scenarios, queries, data, and metrics. While the last part presents some of the
issues that benchmarks in the field of schema transfer should be aware of.

26

4 Treatment design

Designing a benchmark is actually designing two components of the benchmark: the work-
load component and the metrics component. For a benchmark for online schema migration,
the first components include the schema before and after the migration, the transactions
executed, and the queries contained in the transactions. Designing the metrics component
requires us to consider the environment in which the tests are performed. It mainly in-
cludes the indicators used, the time points when the indicators should be collected and how
to report the results. This chapter provides an overview of the benchmark design process.

4.1 Workload

4.1.1 Requirement

This subsection summarizes the guidelines for design benchmarks proposed by previous
researchers. There are three main sources of these guidelines. The first source is the
documents for the different benchmarks, which document the designing process of bench-
marks, requirements, models and how to report results, etc. The second type of source
is the researches in the benchmark domain. Many of them detail the design requirements
for benchmarks. Finally, there are also some requirements from researches in the field of
online schema migration, which also mention the requirements for benchmarks because
benchmarking the migration tool is an important part of proving the feasibility of the tool.
Some requirements have been briefly introduced in the literature review chapter of these
researches. This chapter will summarize and define these criteria based on the previous
contents.
The first requirement is that the benchmark must model multi-user online sessions. This
requirement was first proposed by Anon et al[31] , and is also listed as one of the essential
requirements in the documentation of many benchmarks designed by the TPC committee.
Single-user and serialized sessions are not suitable for today’s computer systems, so bench-
marks that only support single-users are no longer popular in the market. Support for
simulating multiple users has become an important requirement for database benchmarks.
Another requirement is that the system modeled by the benchmark must be a real-world
system or a simulation of a real-world system. A survey by Wang revealed a gap between
manual-based benchmarks and real-world benchmarks[62] . It is also mentioned in the
documentation of the TPC-C benchmark that the simulated transactions should occur in
a real OLTP environment.
The third requirement is that the variety of SQL statements used by the benchmark must
be complete. In Boral’s paper, benchmarking a database can be done with four basic
database operations[15] . SO a benchmark that initially meets this requirement should
include four types of query: select, delete, update and add. A more stringent requirement
is that these query statements should use different conditions, use keywords such as join,
group by, use nested queries, use aggregation functions and sorting, etc.
Another requirement is the variety of data types. Unlike Mark Lukas Moller who divide
data according to the degree of structure, we take a different view. In relational databases,
semi-structured data is usually stored with delimiters or a specific structure. The database
system usually only accesses and modifies it. There is no obvious difference between ma-
nipulating this kind of data and manipulating attributes such as text. It is the back-end
program that processes it further. Therefore, the definition of data variety here is that
the benchmark should include various types of attributes, including numbers, text, time,
boolean, etc.

27

Category Requirement Description
Scenario Requirements multi-user Benchmarks can simulate multiple users

real-word system Benchmarks must be modeled on real systems
SQL varity The types of SQL should be comprehensive

Data requirement data availability The original data must be available
data type varity The types of data should be comprehensive

Functional Requirements generality Benchmarks can be used for a variety of DBMS
independence Results are not affected by factors outside the test subjects.
intelligibility The benchmark should be easy to understand
error checking Benchmarks can check and count erroneous results

Table 2: Requirements for benchmarks

The fifth requirement is that the attributes and query statements of the benchmark must
be understandable. In Sawyer’s book , it is mentioned that the attributes and query state-
ments of benchmarks must be easy to understand, so as to help users better understand
and expand benchmarks[53] .
A requirement called data availability is also from Moller et al. According to them, the
data used by the benchmark is either real-world data that can be modified by the user, or
a data generator that can be set by the user. This helps users to further understand the
test data and benchmarks.
The next requirement came from Turbyfill, who argued that the benchmarks had to be
runnable on systems of all sizes[60] . This requires that the workload of the benchmark is
adjustable. This adjustment should not only be reflected in the total number of executed
transactions, the number of users, the amount of data and the upper limit of transactions
requested per second should be adjustable.
The portability requirements proposed by Jim Gary enable benchmarks to be executed on
systems with different hardware, different operating systems and different configurations.
To achieve this, benchmarks should be implemented taking into account the differences
between different systems, and adopt some solutions that can be cross-platform and cross-
database.
The next requirement is the independence of the results. According to the documentation
of the TPC-C benchmark, the results of the benchmark test should only be affected by
the system under test and the state of the system at that time, including the hardware,
software and configuration files of the system. This requirements ensures that benchmarks
can objectively report on the performance of the system.
Another requirement from the TPC-C document and Sawyer’s book is correctness or error
checking capability. This capability requires that database queries against benchmarks
return correct results and modification operations allow correct updates. In addition, the
benchmark should be able to judge the wrong operation of the database, record the error
when it occurs and report it after the test is completed.
In order to present the benchmark requirements we have summarized in a more intuitive
way, we categorize them and show them in Table 2. As shown in the figure, we divide all
the requirements into three categories.

4.2 Choosing Tool and Benchmark

Secondary development, in simple terms, is to make specific modifications and functional
extensions on the existing software to achieve the desired new functions. Generally, this

28

kind of development will not cause huge changes to the original architecture and the original
code can be reused, so it can greatly save manpower and time resources. As mentioned
earlier, the purpose of this thesis is to design a benchmark and a benchmarking tool for the
scenario of online schema migration. In this chapter, we will first choose the tools that will
be modified and then the benchmarks that will be based on. In the previous sub-chapter,
we have introduced the requirements of benchmarks, in this chapter we will also selecting
benchmarks base on the requirements listed in Table 2.

4.2.1 Tool

The selection of benchmarking tools will mainly refer to the following aspects:

1. The first aspect is document integrity. The secondary development of software re-
quires a good understanding of the software. Detailed documentation and com-
ments can help developers do this quickly. Conversely, a software that is not well-
documented will result in a lot of time spent understanding the source code, and
may even cause some bugs that are difficult to fix.

2. The second aspect is language friendliness. Developers often get better results when
they program software in languages they are familiar with. Some projects written
in niche programming languages will first increase the learning cost of developers,
resulting in an increase in development difficulty and development time. After the
development is completed, it is also not conducive to further modification of the
software because there are fewer developers familiar with the language.

3. The third aspect is functionality, which means how many functions the software pro-
vides. For example, some tools can only test the throughput of the databases, and
some software can also perform benchmark tests in addition to testing the through-
put. More features means more comprehensive database testing and maybe more
code that can be reused, so this is a very important aspect.

4. The forth aspect is generality. Since there are many relational databases, such as
Oracle, MySQL and PostgreSQL and there are some differences between them, gen-
erality is used to indicate how many different databases the tool support.

5. The fifth aspect is software extensibility. The secondary development of software
that does not have good extensibility may involve substantial modification of the
source code, which should be avoided from the perspective of software engineering.

6. The last aspect is benchmark diversity, which depends on how many benchmarks the
tool provided. For some tools that have already implemented some benchmarks, it is
easier to make modifications based on their original benchmark implementation than
to design and implement the benchmark from scratch. The more benchmark imple-
mentations the tool has, the more options there are in choosing which benchmark to
base on.

According to the above requirements, we selected a number of existing open source
software for comparison. Some software itself has the function of benchmarking, and some
software can perform performance test on the database. In particular, if a piece of software
satisfies a requirement, but the way it does so is too complex, we’ll point it out and give
it a evaluation.

29

The basis of selection is visually displayed in Table 3 and 4. We rate each feature of each
tool on a scale of one to five. The evaluation of the first four abilities mainly comes from
their GitHub homepage or official website documentation. In order to better evaluate the
latter two capabilities, we conducted a source code level inspection of the software.
Almost all tools provide detailed manuals, but none of them go into detail on how to add
a benchmark or extend functionality. Among them, only OLTPBenchmark briefly intro-
duced that it is possible to support more databases and add benchmarks by referring to
the existing code, which is the reason for the higher score of OLTPBenchmark.
The language-friendliness rating is based on The State of Developer Ecosystem 2021 pub-
lished by Jetbrain. In this report, Jetbrain announced the proportion of users of each
programming language. Programming languages ranked 1-5 in this report will receive five
points, and those ranked 6-12 will receive four points. Three points will be awarded to
other programming languages appearing in Jetbrain‘s report. Other languages are clas-
sified as "Others" usually receive a maximum of two points. A special case is TCL used
by HammerDB, because the language is popular in the database testing space, we give it
three points instead of two.
Since the purpose of this secondary development is to implement a benchmarking tool, a
important aspect of functionality is whether the software already has the ability to per-
form benchmarking. If the software can perform both benchmarking and stress testing or
stability testing, it will get five points, however none of the software does that. We give
three points to software that can perform database tests but cannot perform benchmark
tests. This is the reason why Jmeter only gets three points although it provides many
features to test the performance of the server.
The generality score depends primarily on whether multiple relational databases are sup-
ported. If multiple databases are supported, we will evaluate how they provide this capabil-
ity and deduct points for less convenient ones. HammerDB is one example of a deduction.
Although HammerDB supports a variety of databases, its generality is achieved by imple-
menting each benchmark for each database separately. This inconvenient implementation
increases the effort when adding new benchmarks.
For secondary development, software extensibility is a very important aspect, so when the
final score is summarized, the score of this ability will be multiplied by two and then counted
into the total score. We will also conduct a analysis of the capabilities of each software.
OLTPBenchmark achieves the highest score in this capability because its architecture al-
lows developers to easily add benchmarks to software through inheritance. The way of
extending H-Store is similar and also requires the implementation of abstract classes. But
it is slightly more troublesome than OLTPBenchmark because the latter has a richer level
of abstraction. The way of adding benchmarks for HammerDB and DatabaseBenchmark
is similar. The way of adding benchmarks to HammerDB and DBenchmark is similar.
Developers need to implement benchmarks and write specific files for different databases.
Jmeter itself does not provide benchmarking functions. If developers want to add new
testing functions, they need to implement subclasses that inherit from the abstract class
’AbstractJDBCTestElement’. Sysbench can add benchmarks by adding Lua scripts. The
remaining tools have less reusable code when adding benchmarks because of their relatively
simple architecture.
Benchmark diversity is scored based on a internal comparison among the nine tools, with
the tool supporting the highest number of benchmarks being awarded five points. Ham-
merDB received four points for providing multiple benchmarks, and Sysbench received
three points for providing the ability to perform benchmarks via user-supplied Lua scripts
and having ready-made scripts. The remaining tools that support only one benchmark

30

Tools document integrity language friendliness functionality
Benchbase(OLTPBenchmark) 4 5 4
Sysbench 3 4 4
HammerDB 3 3 4
dbbench 3 4 4
pgbench-tools 3 5 4
sql-bench 3 2 4
Database benchmark 3 4 4
Jmeter 3 5 3
H-Store 4 5 4

Table 3: score sheet 2

Tools generality software extensibility benchmark diversity
Benchbase(OLTPBenchmark) 5 5 5
Sysbench 3 3 3
HammerDB 4 4 4
dbbench 5 3 2
pgbench-tools 3 3 2
sql-bench 3 3 2
Database benchmark 5 4 3
Jmeter 5 3 1
H-Store 5 4 5

Table 4: score sheet 2

received two points.

The final results are shown in Table 5. We can see that OLTPBenchmark achieves
the highest overall score, and in addition to that, its score is also very prominent in every
ability. It provides very good software extensibility so that developers can expand the
functions of the software with less modification to the source code, which is in line with
the requirements of software engineering.

Tools Total score
Benchbase(OLTPBenchmark) 33
Sysbench 23
HammerDB 26
dbbench 24
pgbench-tools 23
sql-bench 20
Database benchmark 27
Jmeter 23
H-Store 31

Table 5: Total scores

31

Benchmarks Description
TPC-C The model used in the TPC-C test is a large wholesale commodity company.

Wikipedia The data for the Wikipedia benchmark is derived from real-world
data and maintains a record of schema changes.

Twitter A benchmark for social networking applications.
AuctionMark An OLTP workload modeling an online auction site.

SEATS The Stomebraker Electronic Airline Ticketing System benchmark models
an online ticketing service.

CH-benCHmark CH-benCHmark is a hybrid workload, which is a mix of TPC-C for OLTP
and TPC-H for OLAP.

LinkBench LinkBench is another social network database whose data source is
Facebook’s social graph data.

Table 6: Introduction to benchmarks

4.2.2 benchmark

OLTPBenchmark itself provides the implementation of fifteen benchmarks, covering lots
of current popular benchmarks. This advantage of OLTPBenchmark greatly facilitates our
choice of basic benchmarks. Modifications to existing benchmarks can save development
time on the one hand. On the other hand, because the original benchmark has been tested
by many users, this method can also increase the user’s confidence. Therefore, what follows
is an evaluation of some benchmarks selected from these fifteen benchmarks against the
requirements presented earlier. Some benchmarks were not considered because they were
not designed for relational databases. A brief description of each benchmark is given in
Table 6.
Since these seven benchmarks are all very popular benchmarks, Almost all of them meet

the ten requirements for benchmarks summarized above. However, we still remove some
benchmarks from candidates through comparison. The first benchmark to be abandoned
was Twitter, because it is similar to LinkBench in modeling social networking applications.
However, Twitter has relatively little data compared to LinkBench, making it harder to
gain a better understanding of the benchmark and make changes. However, LinkBench
also does not meet our requirements, because its data model is relatively simple, and
it has fewer types of data types and SQL statement types. The subsequent selection of
benchmarks is mainly based on the following criteria. The first is whether the benchmark’s
model is widely used and representative in the real world. The second is the popularity
of the benchmark. The last criteria is whether the benchmark can be easily changed and
applied in the field of online schema migration. We then divided the remaining benchmarks
into two categories based on their models. The first category is only Wikipedia, because
it models a knowledge system. The rest of the other benchmarks are based on some kind
of online trading system. In the second category of benchmarks, we choose TPC-C as
their representative. Firstly, the online transaction scenario simulated by the benchmark
is very classic, and e-commerce is one of the hottest areas of the internet. Secondly, this
benchmark is a famous database benchmark in the world, and lots of database vendor
have published its own TPC-C benchmark score. Finally, the benchmark is also easy to
be modified due to the large number of tables, data types and query types it has.
The choice between Wikipedia and TPC-C is mainly based on the following considerations.
The TPC-C benchmark has the upper hand in the three criteria presented above. However,
Wikipedia maintains multiple schema versions and their data and the schema migrations

32

that cause these schemas to differ have also occurred in production environments. Finally,
after careful consideration, we decided to combine the strengths of the two and modify the
TPC-C benchmark with reference to the schema migration that happened in Wikipedia.

4.2.3 New requirements for online schema migration benchmark

Compared with traditional benchmarks, benchmarks applied in the field of online schema
migration have some new requirements. However, no researchers have summarized these
requirements and some requirements are scattered in researches related to online migration
tools. Although Moller et al. compared and summarized five benchmarks in the field of
online schema migration and present their requirements for benchmarks in this field[44]
. The evaluation method they propose is not significantly different from the traditional
method of evaluating benchmarks in the database field. Jim Gary mentioned that due to
the wide variety of applications, it is difficult for general benchmarks to test the system
well and benchmarks for specific fields are becoming more and more popular. To fill this
gap, this subsection will identify some new requirements that apply to benchmarks in the
domain of online schema migration.
The first requirement is called continuity. In general, schema migration can be divided into
two categories. In some cases, schema migration will cause changes to the corresponding
DML statements. For example, after renaming a column, it is necessary to use the changed
name of this attribute to enable the query to be executed correctly. For this type of schema
migration, the query statements before and after the change must be executed continuously
or after waiting for a time set by the user. Currently, a popular implementation is to use
the functionality provided by benchmarking tools to execute multiple benchmarks consec-
utively. However, this inevitably leads to very brief pauses. The tool should minimize or
eliminate the pause time.
The second requirement is inconsistency. This is one of the basic requirements of bench-
marks in this field. Inconsistency requires that the benchmark must change from one
schema to a different schema. The inconsistency also includes that when the schema
would cause the DML statement to change, the query before and after schema migration
may also change. This requires the ability of the migration tool to handle multiple versions
of SQL.
The third requirement is that the benchmark must implement the mixed state. For real-
world applications, the requests made by the user do not all change at once. Therefore, the
database sometimes receives multiple versions of the query during schema migration. Im-
plementing the mixed state can simulate this scenario and test the ability of the database
to process multiple versions of data query at the same time. There are currently no bench-
marks and benchmarking tools that implement this requirement.
The fourth requirement is completeness. Databases can undergo a variety of schema mi-
grations. Taking MySQL as an example, it provides twenty-seven different online ddl
operations. To ensure completeness, benchmarks should provide the ability to test multi-
ple schema migrations.
The last requirement is that the designer should consider the units and rate at which
the query changes. Also taking TPC-C as an example, since it initiates requests to the
database in units of terminals, the version of queries issued by a terminal should be changed
at the same time. At the same time, the rate at which the terminal changes should also
be considered. For example, for a mobile application that has released a new version, the
number of users updated every day should generally follow a trend of rising first and then
falling.

33

4.3 Metrics

4.3.1 Differences with database benchmark

Metric is another important component of benchmark. In the literature review section
we have summarized the metrics used by traditional database benchmarks. These metrics
measure database utilization (including performance, stability, etc.) and price. However,
the situation is different when these metrics need to be applied to evaluate databases at
the time of schema migration.
The main reason for this difference is that the indicators are designed for different pur-
poses. In 5.3 we mentioned that inconsistency is one of the requirements for benchmarking
in the field of online schema migration. Therefore, benchmarks in the field should also be
able to measure the impact of such changes compared to traditional benchmark indicators.
This requires us to make certain modifications to the indicator to meet this requirement.
Another difference is the definition of "system" being tested by the benchmark. For tra-
ditional benchmarks, the system here should refer to the database and the hardware and
software that support the database. But for benchmarks in the field of online schema
migration, the "system" should be based on the original definition plus online migration
tools. Although some databases already provide the online schema migration function, it
is not considered as a basic function that must be provided. Therefore, database adminis-
trators often use schema migration tools when schema migration is required. Simply put,
testing online migration tools is also the goal of benchmarks in the field.

4.3.2 Designing process

The following content mainly introduces how we process the indicators according to the
above mentioned differences so that they can be better applied to the field of online schema
migration.
From the metrics, we can find that traditional database benchmarks focus on measuring
the overall performance and extreme performance of the database. Words such as "aver-
age," "maximum," and "minimum" are often used as adjectives for traditional benchmark
metrics. In contrast, benchmarks in the field of schema migration focus more on the pro-
cess of testing. Many researchers use line graphs to illustrate that their designs have little
impact on database performance. Words such as "average" rarely appear in researches in
this field. Therefore, this benchmark will also use line graph to present the changes in the
indicators. In addition to this, identifying the stages into which the whole process should
be divided is also of great help in analyzing changes. To achieve this, several important
time points are identified, which are the time when the online migration tool starts and
completes the migration and the time when the mix state starts and ends. The importance
of the latter has already been explained before. For the former, some online migration tools
will copy data in the background during migration, and this non-in-place copy will affect
database performance. Therefore, recording these two points in time has a unique mean-
ing: comparing the time when the migration tool completed the migration and observing
the impact of the tool on the metrics.
The criteria for online schema migration tools summarized by Nick Geral Richter can help
us design benchmarks for this field[50] . And the criteria is presented in Table 1. In the
previous content we mentioned that online migration tools used by users can have an im-
pact on the results of benchmark tests. Some of these requirements should be guaranteed
by the software itself, and they are not the benchmark’s responsibility to test whether the
requirements are correctly met. For the remaining requirements, Table 7 describes the

34

Criteria Strategies

Concurrency active schema In the mixed state, requests made by the terminal
should return correct results and not be blocked.

Transformation of data Querying the data after the migration is complete
must return correct results

Application migration For each terminal, subsequent requests should always
return correct results.

Performance degradation The performance change of the migration process will
be observed through the performance change curve.

Space consumption Monitor changes in storage space.

Finite completion time Observe the point in time when the schema migration tool
starts and completes the migration.

Meomory usage Monitor changes in memory

Table 7: Strategies

strategies for testing them.
Based on the strategies shown in Table 7, we made the following modifications to the

indicators. In order to measure whether the migration tool meets the first three require-
ments, the number of transactions completed per second must be counted to see if blocking
occurs. At the same time, the result returned by the database should also be checked to
verify that it was executed correctly. These indicators will be presented in the form of line
graphs. For the last four requirements, the changes of the corresponding indicators should
be recorded, and at the same time, important time points should be presented on the line
chart. These metrics include memory usage, storage space usage, transactions per second
(throughput), and average response time per second.
Although it doesn’t make much sense to average over the entire process of performing the
benchmark. This does not mean that calculating the average of the metric at each stage
is meaningless. Averaging the metrics for each stage can measure the performance of the
system at that stage, and comparing it with other stages can also observe the effect of
pattern transfer on performance. Based on this comparison, we design two metrics. The
first metric is called the schema migration process loss rate (P), which is used to measure
the performance degradation during the mode transfer process. The second, called the
schema migration result loss rate (R), measures the performance change before and after
schema migration. They are defined as follows:

P =
avbsm− avdsm

avbsm

R =
avbsm− avasm

avbsm

where avbsm is equal to average value of metrics before the schema migration, avdsm
is equal to average value of metrics during the schema migration and avasm is equal to
average value of metrics after the schema migration.
However, the above two metrics cannot be used for comparisons between migration tools
because they do not take into account the impact of migration time. A test tool can
improve its performance on these two metrics by limiting the data transfer rate, which
will increase the time for data migration to complete. However, this practice violates the
finite completion time criteria. We will use the following metrics when comparing the

35

throughput impact of different migration tools.

Q =
(tpsbsm− tpsdsm) ∗mt

C ∗ tpsdsm

where tpsbsm= tps before schema migration, tpsdsm= tps during schema migration,
mt=migration time and C is a constant value.

36

5 Treatment implementation

The next step after designing the treatment is to implement it according to the design. In
this chapter, we will first analyze the architecture and source code of OLTPBenchmark,
explore how it should be modified and then introduce how we can achieve the requirements
mentioned above.

5.1 Analysis of OLTPBenchmark

OLTPBenchmark is a benchmark suite developed in Java and users can use it to load
and execute multiple database benchmarks. Users use OLTPBenchmark for benchmarking
through the command line. The required parameters of the command include the bench-
mark to be used and the operation to be performed. Subsequently, OLTPBenchmark will
set the "workloadconfiguration" object according to the input parameters and the content
of the configuration file, including the database user name, password, benchmark, number
of terminals and batch size, etc. This settings object will be used later to generate the
"benchmarkmodule" object. At the same time, in order to provide the ability to execute
multiple benchmarks successively, OLTPBenchmark uses a list to store “benchmarkmod-
ule” objects. Finally, the tool will choose what to do next based on the "-b” parameter
provided in the command. OLTPBenchmark divides the execution of the benchmark into
four stages, which are database creation, data loading, workload execution and clearing in
order. Since the online schema migration benchmark does basically the same thing as the
database benchmark during the create database phase and load data phase. Next, we will
skip the above two stages and analysis how OLTPBenchmark performs the workload.
During the workload execution phase, OLTPBenchmark will complete the creation of work-
ers. The type of worker varies according to the selected benchmark, for example using the
TPC-C benchmark will create a “TPCCWorker”. The executework function in the Worker
object specifies how the benchmark executes a single transaction.
OLTPBenchmark uses scripts to create the database. Therefore, when the original schema
of the new benchmark differs from the one on which it is based, the developer needs to
modify or rewrite the script. Loader and worker objects are responsible for data loading
and workload execution respectively. Rewriting these two objects can change the operation
of the corresponding stage of the benchmark.

5.2 Modifications of OLTPBenchmark

In the previous chapters, we presented five requirements for the benchmark, which are
continuity, inconsistency, mixed state, completeness and rate control. This subsection be-
gins with an overview of how we modified the OLTPBenchmark to enable it to perform
benchmarks that meet these five requirements. It then introduces some additional modi-
fications that make it better applicable to the field of schema migration. Fig 8 shows the
class diagram of the modified core components of OLTPBenchmark.

5.2.1 Achieving continuity and inconsistency

The method we use to achieve inconsistency and continuity is called "replacement of pre-
pared statements". Originally, OLTPbenchmark used prepared statements to access the
database. Since traditional benchmarks do not involve DML changes, the string objects
used to generate the prepared statements are set to constants. However, simply setting the
prepared statement as a variable and substituting it when it needs to be changed doesn’t

37

Figure 8: Class diagram for the core modification

work well. This is because sometimes prepared statements are executed differently before
and after a change. For example, when adding a new column, the prepared statement
needs to set a different number of parameters. Handling this situation with lots of if/else
statements would make the code hard to read and hard to extend. We solve this problem
by centrally managing each worker’s prepared statements. All prepared statements used
by a worker are created, executed and changed in a class called “VaryBase” . This class
will determine the stage the worker is in to choose the appropriate execution method. In
this way, we achieve continuity and inconsistency of query statements.

5.2.2 Mixed state

Mixed state is implemented with the help of "VaryBase” class. Each worker has its own
unique “VaryBase” object, and the execution of prepared statements in a transaction is
changed from transaction control to managed by this object. Calling the “applyChange”
method of the object will complete the replacement of the prepared statement and change
the internal state, thereby changing the execution process of the prepared statement. Since
each worker has its own “VaryBase” object, and these objects do not affect each other, the
mixed state is achieved.

5.2.3 Completeness

There are two ways to accomplish the completeness requirement. The first is to design a
very complex benchmark that includes almost all types of schema migrations. However,
this is a complex, difficult and unsatisfactory work. We will explain the reasons in detail in
the later section. In view of the impracticality of including all types of schema migrations
and the variety of user needs, we decided to achieve this requirement in a way that provides
good extensibility for the tool. Therefore, users can add benchmarks according to their
needs. We believe that with our designed architecture, users can simply add their own

38

designed benchmarks applied in the field of online schema migration. Users can add new
benchmarks in the following ways. First, the new subclass of “VaryBase" class should be
implemented, and the user should implement the ”applyChange“ abstract method in it
to replace the prepared statement. Second, how to execute prepared statements affected
by schema migration should also be rewritten. Next, the tool will automatically call and
count the new methods designed by the user.

5.2.4 Rate control

OLTPBenchmark originally only provided rate control for a single worker, such as limiting
the number of transactions performed by a worker per minute, it did not provide any form
of overall control. Therefore, there is no way for the software to have overall control over
the rate at which the terminal changes. To solve this problem, the "ControlCenter" class
was designed and implemented. This class can query the state the worker should be in
and notify the worker when a query version change should occur. It is also responsible for
providing a schedule of terminal changes based on parameters given by the user.

5.2.5 Extended configuration file

The original configuration file of OLTPBenchmark can not meet our requirements, so it has
also been modified. First, since it does not contain some settings that apply to the schema
migration domain benchmark, we have expanded the content of the file. Some settings
such as the client’s change rate, schema migration type selection and schema migration
start conditions are added. This change also affected the configuration file loading process,
so we’ve optimized this process as well.

5.2.6 Portability

Portability is achieved through the use of custom scripts and design patterns. By writing
different scripts and files for different databases and using JDBC, the benchmark can
complete database creation, data loading and workload execution for multiple databases.
For example, for different databases, because they will be different in syntax, we prepare
the creation scripts for different databases and call them according to the selected database
type.

5.2.7 Metrics

OLTPBenchmark has provided a variety of functions to display the results, and we have fur-
ther implemented the software’s result analysis function based on these functions. OLTP-
Benchmark can report throughput and latency in milliseconds and dump the results. Based
on these results, we can perform statistics on the indicators according to the ideas and for-
mulas proposed above.

5.3 Benchmark Design and Implementation

This subsection first describes why an all-encompassing benchmark is not suitable for
schema migration scenarios. The multiple sub-benchmarks provided by the tool are then
introduced, including the schema migrations they perform and their purpose. We divide
schema changes into simple changes, which are usually caused by a single DDL statement,
and complex changes, which are caused by multiple. At the same time, since we believe
that an all-inclusive benchmark is not well suited for schema migration scenarios. We

39

used a number of sub-benchmarks, each of which simulated a kind of schema migration.
These sub-benchmarks are called benchmark cases. In addition, the transaction of new
orders plays a major transaction role in the TPC-C benchmark. An additional benefit of
modifying the "Orderline" table is that operations on this table include updates and inserts,
as well as selects. Therefore, making changes to this table provides a more comprehensive
measure of the performance impact of schema migration. We also modified the original
schema of the TPC-C benchmark, and the changed schema is shown in Figure 9.

5.3.1 Why extensibility

In previous chapters we mentioned that we achieve completeness by providing convenient
extension methods. The reasons for not using a benchmark that includes all kinds of
schema migrations are as follows:

1. An all-inclusive benchmark is difficult to implement and it can lead to very complex
situations. Usually a schema migration does not use a lot of DDL, so it is not
necessary to have a benchmark that tests all the DDLS simultaneously

2. Not all databases support simultaneous execution of multiple DDLs. An all-inclusive
benchmark may cause compatibility issues.

3. A large benchmark may result in poor testing of individual DDL. If a schema of
an infrequently used table is migrated, then the TPS will not change significantly
because the service is used less frequently. And if there’s a performance hit, it’s hard
to know which DDL caused it.

4. Good extensibility is necessary. On the one hand, only the user knows what they
want best, and on the other hand, changing the all-inclusive benchmark can be
cumbersome, assuming there are new DDLS in the future.

5.3.2 Simple changes

In this chapter, we present all benchmark cases that simulate simple changes. Since not all
schema migrations will be used in production, we design benchmarks only for frequently
used schema migrations. The principle for determining frequent use comes from Wikipedia,
which statistics schema migrations that have occurred in the database[61] . The statistical
result can be seen in Table 8. In addition, we follow MySQL’s classification method
and divide all schema migrations into six categories. However, since the last category of
Partitioning Operations is rarely used, we do not implement it.

5.3.3 Complex changes

In this chapter, some complex changes are introduced. Although according to the Medi-
awiki dataset and statistics on ING Bank’s Changeset provided by Richter[50] , the vast
majority of schema migrations that occur are simple. Some complex changes still happen
in production. The main content of this chapter covers the scenarios in which these com-
plex changes may occur and the changes in the schemas they cause.
Complex change 1
The first complex change scenario considers the structuring of semi-structured data. Ini-
tially, the shipping information is semi-structured, consisting of multiple types of informa-
tion and now it is divided into two columns for courier name and contact information.And
the delivery information column is dropped.

40

Figure 9: Original schema of the new benchmark

41

DDL number of usage percentage of usage
create table 24 8.9%
drop table 9 3.3%
rename table 3 1.1%
distribute table 0 0.0%
merge table 4 1.5%
copy table 6 2.2%
add column 104 38.7%
drop column 71 26.4%
rename column 43 16.0%
move column 1 0.4%
copy column 4 1.5%

Table 8: Statistical result of different DDL[61]

Index operation
creating an index Create a composite index on the three columns OL_id, OL_item and OL_order.
dropping an index Drop the composite index (S_warehouse, S_item) on the stock table.
adding a fulltext index Create a full-text index on the data column of the history table

Column operations

adding a column Create a new column in the orderline table called tax.
The type of this column is float and the value can be null.

dropping a column Delete the delivery_info column in the orderline table.
renaming a column Rename the amount column in the orderline table to the size column.
changing the column type Change the type of number column in orderline column to use a greater range of integers.
adding default values Set default value for delivery info column.

Foreign key operation

adding a foreign key constraint Add a foreign key constraint to the orderline table,
which requires that no constraints be established for this table when the database is initialized.

dropping a foreign key constraint Remove the foreign key constraint on the orderline table.
Table operation

renaming a table Rename orderline to orderitem.

42

Complex change 2
The scenario that this complex change takes into account is to change the primary key.
The primary key is an important attribute in a data table and changing it is a costly
operation that results in reindexing, data transfer and blocking. Therefore, in practice,
changing the primary key happens rarely. However, changing the primary key is a classic
schema migration and this thesis is still designed for it. Mostly composite primary keys
are used in TPC-C. Create a new column named item_new_id and use it to replace the
i_id column in the item table.
Complex change3
Add a new column called tax_rate to the orderline table. After that set the default value
of the tax column to 0.21. This scenario takes into account that after adding a property,
the default value of the property is sometimes set.
Complex change4
This complex scenario takes into account that all items in the same order are not necessar-
ily delivered at once by the same courier (like Amazon). Therefore, the courier information
is recorded in the orderline table. First create a column called carrier_id in the orderline
table, and then set the value of this column according to the data in the order table. Fi-
nally, the new shipping information will also be updated to the orderline table instead of
the order table. Finally, the courier id column in the order table needs to be removed.
Complex change5
Sometimes, with the increase of the company’s business volume, some data are required to
be pre-calculated and stored in the database so that users can quickly obtain or analyze
users when querying. Based on this, the average cost per order and the highest cost two
columns are created in the consumer table and index them. This change is mainly for
testing adding multiple columns at once.

5.4 Summary

In this section, we first analyzed the source code of OLTPBenchmark and figured out
the execution process of OLTPBenchmark. This further analysis is helpful for subsequent
modifications. Next, this section describes how the tool modifies OLTPBenchmark to
meet the new requirements presented in Section 4. The core modification to meet these
requirements is that the string used to create the “preparedStatement” is no longer de-
fined as a constant, but is obtained from a object named “varyBase”. This modification
enables ”preparedStatement“ to be replaced during benchmark execution. What follows
is an introduction to why the tool provides extensibility rather than implementing an all-
encompassing variety. Benchmarks for schema migration. Finally, this section lists and
describes the schema migration “benchcases” the tool has.

43

6 Treatment evaluation

The final step in the design science cycle is the evaluation of the treatment. In this chapter,
as one of the keys to verifying software functionality, unit testing will be performed to
test whether the tool behaves as expected and to detect possible bugs early. On this
basis, the software will be further analyzed and tested whether it meets the requirements
mentioned above. After the evaluation of the software is completed, we will also test
different databases and migration tools to evaluate them and explore the mechanisms of
different databases in the face of schema migration. Finally, the problems found during
testing will be listed and introduced.

6.1 Unit Testing

The developers of OLTPBenchmark have tested the software quite comprehensivly with
JUnit. However, the execution flow of some classes is modified during further development.
Thus, it is necessary to unit test the software with more cases. The main objects of unit
testing are the modified classes as well as the new classes.
Some use cases are designed to test the newly added classes. For example, the "Change-
Controller" class is mainly responsible for setting the time of worker change, determining
whether the worker needs to be changed, and recording some statistics. The main purpose
of unit testing the class is whether the functions of the class can get the correct result. The
worker class has also been modified, and now it needs to determine whether it needs to be
changed before executing the transaction. In addition to that, it needs to be able to get
the correct information about the changes. Therefore, the new test case needs to provide
more information than the previous test case. These similar changes occurred in unit tests
for some other classes. Some new test cases are also added for some of the classes that
have not been modified. The unit tests found no errors and all test cases passed without
a hitch.

6.2 Performance Testing

Performance testing of benchmarking tools focuses on their memory usage as well as their
CPU usage. In addition, it is also worth paying attention to whether it can guarantee the
same amount of workload under the premise of running for a long time. This is called
the consistency of benchmarking tools. In order to measure the performance of the above
aspects of the tool, several long-term experiments were designed.
To test the tool, the database management system used is MySQL and the version is 8.0.13.
The machine running the software is a machine with 8G RAM and and a dual-core CPU.
The maximum heap memory of the Java virtual machine is 2048MB, and the minimum
value of the new generation size is 1228MB. And the garbage collector used is G1. For the
benchmark, the key settings include that the number of terminals is 20 and the number of
warehouses is 100, and the benchmark run time is 6 hours. More specific settings are shown
in Figure 21. During this time, Jconsole will be used to monitor the performance of the tool.

During the loading phase, the tool determines the number of loading threads based on
the number of repositories. Assuming the number of warehouses is n, the tool will use
n+1 threads to load the data. The number of working processes is equal to the maximum
number of threads available at that time, and other threads will be added to the queue.
During the work phase, the number of threads is equal to the number of terminals.
The changes in heap and CPU usage are shown in Figure 10 and Figure 11, respectively.

44

The loading phase took a total of 2111 seconds, during which the heap memory usage was
between 50 and 100MB and the CPU usage was around 7 percent. During the execution
phase, the size of the heap memory increases significantly, however, the maximum value is
still less than 1000MB, which does not exceed the maximum heap size of the Java virtual
machine. And at this stage, the CPU usage fluctuates around 12%. These two results show
that for this machine, memory size and CPU are not the bottlenecks limiting the software.
In addition, during the software run, the garbage collector performed a total of 13248
young generation garbage collections, which took a total of 26.06 seconds. These 13248
garbage collections caused fluctuations in the number of requests in Figure 12. However,
since the number of old generation garbage collections is 0, garbage collection does not have
a serious impact on consistency. In addition, Figure 12 shows the number of transactions
per minute during the six hours. In this table, the throughput in the final phase of the
test dropped by about ten percent compared to the beginning. However, since the Java
virtual machine has never performed full gc, the reason for the decrease in the number of
transactions is the performance degradation caused by the computer running under high
stress for a long time. This drop is inevitable and not caused by the software itself

Figure 10: Heap space usage

The results of this experiment show that CPU and memory are not the bottlenecks
that limit software performance in this experiment. And each performance metrics is
relatively stable during operation and does not change significantly over time, so it meets
our consistency requirements.

45

Figure 11: Cpu usage

6.3 Requirements Implementation

In the foregoing, five new basic requirements for schema migration benchmarks are pre-
sented. These five requirements must be considered when designing the schema migration
domain benchmark, however, their implementation depends on the testing tools. Test tools
must have the ability to help designers achieve these five requirements. In this chapter,
whether the test tool has this capability will be examined.

6.3.1 Continuity

Continuity requires DML requests before and after schema migration to be issued contin-
uously. To verify this requirement, a small experiment was designed. At the 20th second
of the experiment, a new column was inserted into the order line table of the database.
At the 40th second, both clients of the benchmark were changed at the same time and the
DML was changed to the new version. Figure 13 shows the throughput of the database,
the blue line and orange line show transactions per second with add a column and no
change respectively. The results show that when the worker changes, the number of re-
quests processed by the database does not drop significantly compared to no change. The
key to the tool’s ability to do this is that it doesn’t create new workers and replace old
ones. It just replaces the preparedstatements of the transaction executed by the worker
that should change. Since the preparedstatements object should have been created when
the transaction was executed, changing the DML statement is not disruptive compared to
the original benchmark.

46

Figure 12: Transactions per minute

6.3.2 Inconsistency

Inconsistency requires that sometimes the tool must be able to issue different versions of
DML. In the previous chapter, we have explained how tools have this capability. In this
chapter, an experiment similar to the previous chapter is designed. Unlike the previous
experiments, no schema migration occurred at the twentieth minutes of this experiment.
Therefore, the tool will attempt to insert an unknown column of data into the order
line table. Since the database will check whether the SQL conforms to the schema, this
SQL request that does not conform to the schema will result in a SQLException. After
the experiment ended, the software’s log showed that no exceptions were recorded during
the first forty minutes of the run. After the 40th minute, SQLExceptions are thrown
continuously, these exceptions indicate that the tool is trying to insert unknown data
named ol_tax into the order line table of the database. A comparison of logs before
and after forty minutes of this experiment shows that the tool meets the requirements for
inconsistency.

6.3.3 Mixed state

Mixed state means that at some point the database will receive both the DML before and
after the schema migration. This ability can be verified by modifying the configuration
files used in the experiments in the previous chapter and logging the SQL statements.
Now, the two workers are not changed at the 40th second at the same time, but one at
the 40th second and one at the 60th second. By observing the logs, we found that there
are two different SQLs in the records from 40th seconds to 60th seconds. Therefore, the
tool has the ability to achieve mixed states. The reason for this capability is that the
tool centrally manages the strings used to generate preparedstatements. Each different
worker has an independent such center, so the worker has the ability to generate different
preparedstatements.

47

Figure 13: Transactions per second with add a column(blue) and no
change(orange). Schema migration happens at 20 seconds and workers change at
40 seconds.

6.3.4 Completeness

Currently the tool supports almost all simple changes, although it does not implement many
complex changes for the time being. For schema migration that does not affect DML, users
can use the "original" benchmark case. Other simple changes also have corresponding base
cases. Given the variety of components of complex changes, the tool addresses completeness
by providing extensibility. The tool not only makes it easy to add benchmark cases, it also
makes it easy to add new benchmarks. Chapter 6.2.3 has given a detailed introduction on
how to extend this tool.

6.3.5 Unit

This requirement requires that the requests issued by the same terminal are consistent
respectively before and after the change. Experiments in Section 7.3.2 have demonstrated
consistency before worker changes. Consistency after worker change can be verified by
performing a benchmark case of dropping a column. Execute the script to delete the
column before executing the workload, then the SQLException will not be thrown after
the 40th second as before the 40th second. The logs after the experiment demonstrate the
consistency.

6.4 Testing of Database and Migration Tools

The performance of transfer tools has been showed and compared several times by previous
researchers. It does not make much sense to repeat a study for a problem many times, so
only simple results are presented in this regard. Since this tool is the first to implement
mixed state, experiments will focus on the impact of mixed state on database schema mi-
gration and the ability of the migration tool to handle mixed state.
The purpose of the first experiment was to test the ability of the database itself to handle

48

schema migration. MySQL and Oracle explicitly state in their documentation that sup-
port for online schema migration is provided natively or via plugins. As one of the most
popular open source database at present, MySQL was chosen as the experimental object of
this experiment. Starting from version 5.6, MySQL provides the function of Online DDL.
Before that, DDL operations would cause table locks. In this experiment, MySQL 8.0.28
was used. The MySQL instance run on a virtual machine with 128G of NVMe SSD storage
and 2G of memory. And the test tool is run on a computer with 8G memory.
First, three experiments that did not involve any types of schema migration were per-
formed, and the experimental results of these experiments will be used as the basis for
comparison. The key configuration of the configuration files in these three experiments are
shown in Figure 22, 23 and 24. The ratio of the number of warehouses to the number of
terminals is usually 4:1 or 5:1, ratios higher than this can sometimes result in a lock table.
In order to test the online DDL function of MySQL, the test script we used is shown in
Figure 26. In the resulting plots, the time at which the schema transition started is uni-
formly marked with a red vertical line. The time when the schema migration of different
tools ends is marked with a vertical line of different colors.
The orange lines in Figure14, 15 and 16 show the experimental results of onlineDDL. In
the experiment with only 1 warehouses and with 10 warehouses , we can find that after the
schema migration is completed, the throughput of the database drops to zero and starts
to recover gradually until the worker change is completed (black line in 14 and pink line
in 15). The reason for this is that the new schema is not able to handle the old version
SQL. During the execution of the experiment, the console kept printing SQLException,
including the unknown columns or can’t find column in field list, etc. After the worker
was changed, because the new SQL conformed to the new schema, they could be processed
correctly and the throughput gradually recovered. The following experiments with 100
warehouses further verified this conclusion. Due to the increase in the amount of data, the
time of schema migration cost increased and finished after the first worker changed, so the
situation becomes that the old version schema cannot process the new version SQL, which
causes the throughput to drop near the black line. The console also started to continuously
print SQLException. However, since there are still workers constantly sending old version
SQL, the throughput does not drop to zero as in the previous experiments. It can be
concluded from this experiment that MySQL’s Online DDL function does not cause the
table to be locked and SQL that conform to the schema can still be executed correctly at
this time.
The other three experiments were used to test a third-party migration tool designed for
MySQL. The migration tool of choice was gh-ost and the results are showed in Figure 14,
15 and 16 with green lines. In this and previous experiments, since Gh-ost does not support
foreign key constraints, we used the modified benchmark without foreign key constraints.
The original composite primary key is deleted, the new primary key is an auto-incrementing
column and the original primary key is substitute with a composite index to increase query
speed. The changes in throughput in these graphs show the same trend as the experiments
of onlineDDL, SQLException is constantly being printed to the console during execution.
The result of the experiment with 100 warehouses was slightly different because Gh-ost did
not complete the migration during the 1 hour experiment. Therefore, all SQL is new ver-
sion that cannot be processed by the old schema. During the experiment, Gh-ost showed
that it was expected to take more than 12 hours to complete the migration. In the end, the
experiment was not completed. At the same time, the constantly printed SQLException
also shows that Gh-ost also does not have the ability to handle multi-version SQL. Finally,
the time taken by each migration tool to complete the migration is shown in Table 9.

49

util online ddl gh-ost
number of warehouses 1 10 100 1 10 100
number of terminals 1 2 20 1 2 20
migration time(seconds) 4 51 2202 72 284 not finished in 1 hour

Table 9: Migration time

In order to test the performance of Online DDL and Gh-ost without exceptions, we de-
signed another experiment using the add a column benchcase and make the schema migra-
tion complete before the worker is changed, so that the old and new version SQL conform
to the schema before and after migration. Figure 17 shows the results of this experiment.
The green and orange lines have remained stable and close to the blue line throughout
the experiment. By comparison, it can be found that MySQL’s Online DDL function does
not have a great impact on performance and can migrate the schema in a pretty short
time. Gh-ost took four times as long as OnlineDDL to complete the schema migration.
And Gh-ost also did not have a significant impact on the throughput of the database after
the begin of schema migration until the workers started changing. Based on the above
experimental results, the MySQL database itself has a good ability to complete the online
schema migration and the impact on the throughput is small when the online schema mi-
gration occurs. However, the multi-version SQL caused by the mixed state may generate
exceptions and cause the transaction to temporarily fail to complete, affecting the ability
of the database to process transactions.

Figure 14: Number of transactions per 5 seconds with migration using On-
lineDDL, using gh-ost and without any migration with 1 warehouse and 1 terminal

Figure 15: Number of transactions per 5 seconds with migration using On-
lineDDL, using gh-ost and without any migration with 10 warehouses and 2 termi-
nals

50

Figure 16: Number of transactions per 5 seconds with migration using On-
lineDDL, using gh-ost and without any migration with 100 warehouses and 20
terminals

Figure 17: Result of add a column experiment with 50 warehouses and 10 termi-
nals

There are not many online migration tools that claim to be capable of handling multiple
versions of SQL, Quantumdb is one of them. Quantumdb is an online schema migration
tool designed for PostgreSQL. It ensures data synchronization through triggers, supports
foreign key constraints, and has the ability to handle multiple versions of SQL and mixed
state. The version it was developed with is PostgreSQL 11. The version used in this
experiment was 13, but this did not cause any exceptions or errors. Three experiments
with similar configurations to the previous experiments were used for comparison. But the
maximum number of terminals is limited to 10, and the warehouse is 40. The changesets
used in the experiment are also shown in Figure 25. Since this testing tool was not originally
designed for any migration tools, testing Quantumdb resulted in some minor modifications
to the software. The principle of Quantumdb dealing with mixed state is to rewrite the
SQL through the version field in the parameter by using a custom database driver. This
requires that when the worker changes and reconnects to the database, the url used to
generate the database connection should also change. Another change is that Quantumdb
uses a custom driver which has not been published to the maven center, so users must add
it to dependencies and load the driver themselves. For the experimental results, we marked
the time when the migration started and ended with the red and green lines respectively.
At the same time, in order to better show the experimental results, we use the number of
transactions every five seconds as the y-axis.
The experimental results are presented in Figure 18 , 19 and 20. The orange line shows the
throughput with schema migration using QuamtumDB, and the blue line is the database
throughput without schema migration. During the experiment, the orange line never
dropped to 0 but was below the blue line most of the time. The experimental results
show that the changes in database throughput are relatively stable during the schema
migration process and no exceptions are printed in the console, although the throughput is

51

Figure 18: Number of transactions per 5 seconds with migration using Quan-
tumdb and without any migration with 1 warehouse and 1 terminal

Figure 19: Number of transactions per 5 seconds with migration using Quan-
tumdb and without any migration with 10 warehouse and 2 terminal

reduced compared to not performing any schema migration. The results of this experiment
demonstrate that Quantumdb can maintain multiple versions of data and can handle mixed
states, but this capability comes with a performance penalty. In addition, compared to
Online DDL, Quantumdb still takes a long time to complete the migration.

The above content mainly analyzes the throughput during the experiment. However, in
addition to recording the throughput of the database, this tool can also record the latency,
the number of different transactions and some other indicators of the database. Since these
metrics are less affected by pattern transfer, they are not analyzed.

6.5 Unsolved Problems

During the experiment, some unresolved problems also occurred, but these problems did
not have a decisive impact on the results of the experiment. In this chapter, we will
introduce these issues. The cause of the first problem is MySQL or gh-ost. In the process

Figure 20: Number of transactions per 5 seconds with migration using Quan-
tumdb and without any migration with 40 warehouse and 10 terminal

52

of a experiment, the machine running the database prompts that the storage space is full.
However, it should have been able to store this amount of data. During the inspection
process, it was not possible to locate which file caused this situation by using the scandisk
tool. The issue was resolved after uninstalling MySQL and reinstalling. This problem
should have arisen by accident as there is no previous description of this problem on the
web and it has not recurred. The cause of this problem remains to be explored.
The other two problems are caused by Quantumdb. The Quantumdb-provided driver
causes a reduction in throughput compared to using the Maven Center-provided driver
even without performing any schema migration. This will cause a roughly 20% performance
drop. During the migration process using Quantumdb, we observed that sometimes the
test tool will stay in the stage of waiting for the terminal to end for a long time and the
migration process of Quantumdb will also last for a long time, or even never end. This
problem did not occur when testing other schema migration tools. At the same time, this
problem also does not arise when the driver provided by Quantumdb is not used when it
does no need to deal with mixed state. Therefore, it is initially inferred that the problem
is caused by the driver. However, further diagnosis of the problem could not proceed due
to lack of more detailed information.

53

7 Discussion

7.1 Result Analysis

In this chapter, we will further analyze the results of previous experiments and experiments
and conduct further analysis of this benchmarking tool.
The results of the unit tests show that the tool’s functions and modules function as ex-
pected. However, the specific performance of the tool still requires more realistic and
persistent testing. Continued testing of up to six hours has demonstrated that the tool’s
performance remains stable over extended periods of time, albeit with a drop in the num-
ber of requests due to the performance degradation of the machine running the software.
During these six hours, the Java Virtual Machine did not experience full gc, nor did the
heap memory usage exceed the settings. These experimental results show that the tool has
the ability to benchmark over a longer period of time.
Subsequent experiments verified that the tool satisfies the new requirements. Compared
to traditional benchmarking tools, this tool provides the ability to benchmarking schema
migrations. Unlike traditional benchmarking tools, the query of this tool is variable dur-
ing the execution of the workload. This capability allows it to be used for benchmarking
schema migration. More than just comparing with traditional benchmarking tools, the tool
also has unique advantages over other testing tools designed or used by researchers in the
field of schema migration. Some previous researchers have used the ability of benchmark-
ing tools to execute multiple benchmarks consecutively to simulate query changes during
schema migration. However, this approach poses some problems. The first is that this
method has poor extensibility, users need to implement at least two benchmarks. While
parts of the code can be reused by copy-pasting, this again makes it difficult to modify
the underlying benchmark. Users need to find what needs to be modified in each derived
benchmark and modify them. This tool avoids this problem. On the one hand, code from
the base benchmark can be reused by derived benchmarks. On the other hand, the user
only needs to modify the code in the base benchmark instead of searching anywhere. In
addition to this, the tool also provides the ability to gradually change the worker’s query.
The previous tools could only change all the workers at once, instead of making individual
settings for each worker like this tool. Using this tool, users can make changes to workers
gradually. For example, there are 3 workers in total, and the user can set them to change
at 5, 10, and 15 minutes after the benchmark is executed. This capability also helps the
tool achieve the mixed state, where multiple versions of a query can be issued at the same
time. The tool is also currently the only benchmarking tool that implements the mixed
state. Finally, the tool already provides multiple schema migration benchmarks. These
benchmarks cover all simple changes and some commonly used complex changes. If these
benchmarks cannot meet the needs of users, its good extensibility also provides convenience
for users to customize their own schema migration benchmarks.
Finally, some experiments are also conducted to test some schema migration tools and
observe the performance of the tool in actual testing. The result shows that Online DDL
and Gh-ost do not have the ability to store multi-version data and handle multi-version
SQL while Quantumdb has. For the former, although DML is not blocked during schema
migration, the query is rejected and an exception is thrown because the new version SQL
does not conform to the old schema. The practical application of the tool performed well,
although some unsolved problems were found, but it was probably caused by the driver
provided by Quantumdb.
In short, this tool is the first schema migration benchmarking tool that implements mixed
state. Compared to other tools, it provides benchmarks covering multiple schema migra-

54

tions and provides good extensibility. In practical applications, the tool has also achieved
good performance. The results of various tests verify that the tool meets the requirements.

7.2 Future Work

7.2.1 More schema migration benchmarks

This tool not only provides good extensibility at the benchmark case level, but also provides
good extensibility for benchmarks. Users can easily add other benchmarks in the field of
schema migration to the tool according to their own wishes. In the process of writing this
tool, we also found some flaws in the TPC-C benchmark, such as the lack of statements
to query data by non-primary keys, which led to insufficient testing of non-primary key
indexes. Future work can further design benchmarks applied in the field of schema transfer,
and the good extensibility of this tool facilitates the implementation of benchmarks.

7.2.2 More schema migration datasets

Currently, the only publicly available dataset that contains schema information for different
versions of the database is wikipedia[61] . Richter also gave a statistics on changesets of
ING Bank[50] . However, these are far from enough. Sufficient and detailed data on schema
migrations that have occurred in production environments can help designers better design
benchmarks in the schema migration field. During the design process, which kind of schema
migration is commonly used becomes a difficult problem, especially for complex schema
migration. Finally, we chose to solve this problem by providing good extensibility. A
problem with all current datasets is that the descriptions are not detailed enough, they
often only tell you which schema migration happened how many times over a period of
time, but not which DDLs are executed together. If there are many companies in the future
that can provide data organized in a format like Liquibase’s changeset, it will greatly help
the design of the benchmark.

7.2.3 Implementation of more complex changes

A major difficulty in implementing complex changes is the need to make changes to the
original execution flow of TPC-C. The current architecture of the tool does not support
this feature. However, there are two ways to achieve this with this tool. The first is further
development of the tool, which abstracts the process of execution at a higher level. This
implementation is difficult and requires deep thinking about the software architecture. The
second implementation is to treat the benchmark with the new execution flow as a new
benchmark and add it to the tool. This way is easier, but makes the software bloated
with many such "new" benchmarks. We believe that the second solution is just a stopgap
measure. The first solution is the ultimate solution to this problem. However, how to
implement the first method is still under consideration.

7.2.4 Optimization of OLTPBenchmark

Although OLTPBenchmark meets our requirements quite well as a benchmarking tool, it
still has some flaws. When testing databases that are not local, the loading process tends
to take a long time. By comparison, we found that the time taken to perform the load
locally is much less than that of the remote. Further modularization of the software might
be a good solution, modularizing the loading process and executing it on the machine

55

that will be tested. In the actual test, we also execute the loading process on the tested
machine, which greatly saves time.

7.2.5 Continuous Schema Migration

Currently the tool only supports one schema migration. The reason for this result is not
a limitation of software functionality, but a limitation of the benchmark design. This tool
provides the ability to execute multiple benchmarks consecutively. However, since the
schema of the database has changed after the schema migration and all migrations are
performed on the schema before the change, this tool is temporarily unable to perform
benchmarks with more than two consecutive schema migrations. Future work could look
at more sophisticated design of the benchmark so that it can be executed continuously.

7.2.6 Support for migration tools

Currently, the main function of this tool is to benchmark data and collect and analyze test
results. As mentioned above, users often need to choose a schema migration tool when
performing schema migration. This software can help users to choose by integrating some
schema migration tools, which brings convenience to users. To achieve this functionality
requires scripting or implementing configuration classes for different migration tools. In
addition, we also hope to have a migration tool that can support multiple databases. Al-
most all migration tools currently only support a single database, which limits the software
to a certain extent.

7.2.7 Real Multi-user test

OLTPBenchmark can simulate multiple users accessing the database, however, this is a
simulation rather than real multiple users accessing the database through the network at
the same time. Executing multi-user tests can better simulate actual application scenarios
and make test results more accurate. A simple implementation of multi-user emulation
is to compile and execute the tool on multiple machines, and then send requests to the
database. A more rigorous multi-user simulation would require an additional coordination
center, which would complicate the management of the machines sending the requests and
the statistics of the test results. At present, the tool has not tried how to achieve this
function.

7.2.8 Strict consistency testing

At present, the tool does not test strictly for database consistency.The tool judges whether
the database has executed the query correctly by the return value of the execution result of
the database. Strict consistency testing should check the results returned by database query
statements to determine whether update and insert statements are executed correctly. This
requires a detailed record of the current data in the database. A possible solution is to log
the results returned by all database and query statements generated by the benchmark.
And after the workload is executed, all the returned results are checked through a script.
Checking in real-time can impact database performance, while deferred checking minimizes
this impact.

56

8 Conclusion

This section summarizes the contribution to science and the main work of this thesis.
And at the end of this section, the previously raised research questions will be listed and
answered.

8.1 Contribution and Main Work

The main purpose of this thesis is to design a benchmark and a testing tool for database
schema migration. In the process of designing and implementing this tool, this thesis also
made other contributions besides the tool itself. First, in the literature review chapter, the
researches in the field of schema migration are reviewed and summarized. In addition to
this, the section also summarizes the benchmark’s design guidelines, metrics and bench-
marks for schema migration. In the design phase of the benchmark and the tool, we first
summarizes the benchmark’s evaluation criteria and proposes new requirements for the
schema migration benchmark. This chapter also lists the differences between schema mi-
gration benchmarks and database benchmarks and proposes how to modify the traditional
benchmark indicators accordingly. Finally, the tool is currently the only benchmarking
tool that implements mixed state, and perhaps the first benchmarking tool for schema
migration.
The design of the benchmark is divided into two phases, the task of the first phase is to
design the workload. At this stage, multiple criteria from other benchmark documents or
related researches are listed. Based on these criteria, we choose to design a new bench-
mark for schema migration based on the TPC-C benchmark. In addition, we also listed
and analyzed multiple benchmarking tools and ranked these tools according to the needs
to select the most suitable tools for secondary development. The main task of the second
stage is to design the benchmark indicators. This thesis first summarizes the differences
in schema migration benchmarks and points out that these different traditional metrics
cannot measure performance well. Therefore, new evaluation methods are proposed.
During the implementation phase, the architecture of OLTPBenchmark is modified. This
modified architecture allows the SQL to vary according to the settings. In addition to this,
the mixed state mentioned in many papers has also been implemented for the first time.
Finally, this architecture also provides another level of extensibility for the tool.
Through the analysis of the experimental results, we concluded that although these tools
will affect the performance to a certain extent, there is no significant difference in the
impact of these tools on the database performance. Also of concern is their ability to
handle multiple versions of data, as this ability directly affects migration planning. For
tools without this capability, the timing of schema migration and the timing of backend
program updates should be carefully considered, and the SQL used should be carefully
designed. For a tool with this capability, consider whether the way it implements this
capability might cause other problems for the application. In addition to this, this thesis
demonstrates experimentally the problems that mixed states can cause, and points out
that designers of schema migration tools should consider these issues.
Finally, this thesis also mentions the shortcomings of existing work and research in the
future work chapter. The first is the inadequacy of this tool. It should further abstract
the transaction to provide better extensibility and provide more complex changes. The
second is the lack of data, more datasets of schema migration from the real world are very
necessary.

57

8.2 Answers to the Research Questions

The research questions of this thesis are:

1. Which of the existing benchmarking tools can be more easily re-developed to adapt
to the scenario of schema change?

• What criteria should be met when selecting tools for secondary development?

• How should the tool be re-developed to make it meet the demand?

2. In view of the database schema changes, what requirements must a benchmark and
benchmarking tool meet?

• What requirements can we get from the existing benchmarks and benchmarking
tools?

• What new requirements can be found in case of schema migration?

3. In case of schema migrations, what metric will allow us to better measure the per-
formance of the database?

4. How the quality of a benchmark can be measured?

8.2.1 Research question1

There is currently no benchmarking tool designed for schema migration. Researchers in
the field of schema migration tend to benchmark their designed tools by simply modifying
existing benchmarking tools based on their own needs. Such modifications are usually
relatively simple, not extensible and do not fully meet the requirements in Section 4.2.3.
However, the analysis in Section 4.2.1 shows that some existing tools have the potential
to be used to benchmark schema migration after further development. Compared with de-
veloping a tool from scratch, secondary development can save time and human resources.
Therefore, this thesis designed an evaluation system to scores the existing tools and selects
the most suitable tools for further development according to the scores. The evaluation
system focuses on the software’s documentation integrity, extensibility and the friendliness
of the programming language used, etc. All these properties are helpful for further devel-
opment of the software. The scores of each tool are shown in Table 5. In this comparison,
OLTPBenchmark got the highest total score. And it also scored very well in each of the
individual items. Thus, OLTPBenchmark was selected as the most suitable benchmarking
tool for further development. However, it still requires some modifications before it can be
used to benchmark schema migrations. For example, the SQL of the tool’s benchmark is
unchanged during the execution of the workload, which does not meet our requirements
in Section 4.2.3. Other modifications to meet the requirements are listed in Sections 5.2
and 6.3. The fifth chapter mainly introduces the implementation details, and the seventh
chapter analyzes whether the tool meets the requirements.

8.2.2 Research question2

Determining requirements is a very important step in the design science circle, and identi-
fying the test objects are also an important part of designing benchmarks. This research
question helped us determine how a benchmark and benchmarking tool should be measured
and what modifications should be made to them before they can be used to test schema
migrations. Some of the criteria is taken from the documentation of traditional database

58

benchmarks or from benchmark-related researches. These criteria are enumerated in Sec-
tion 4.1.1 and later help us choose a benchmark on which to base. In addition to this,
some new requirements for schema migration benchmarks are proposed, which are drawn
from researches in the field of schema migration and summarized in Section 4.2.3. The
new criteria such as continually, inconsistency, mixed state and completeness guide how
we should modify the traditional database benchmarks and tell us some of the functions
that the tool must have. In the implementation phase, due to the diversity of schema
migrations, it is not realistic to design a scenario and benchmark that includes all schema
migrations or to implement a benchmark for each schema migration. Since no one knows
their needs better than themselves, we solve this problem by providing users with good
extensibility. However, multiple benchmarks that model simple or complex changes are
still provided.

8.2.3 Research question 3

Metrics are another important component of benchmark and different metrics are needed
to test different systems. Section 2.4.2 summarizes and enumerates the metrics used by
previous database benchmarks. However, as one of the subdivisions of database bench-
marks, the metrics for schema migration benchmarks should be somewhat different from
database benchmarks. In Section 4.3, we analyze this difference, stating that the metrics
like throughout, latency and migration cost for schema migration benchmarks should focus
more on demonstrating the process, and the line graph provides a better presentation. In
addition, the criteria of the schema migration tool also have reference significance for the
design of indicators and some indicators are also obtained from the criteria. Finally, in
this chapter two important time points are identified and three formulas used to measure
the performance penalty are defined.

8.2.4 Research question 4

In section 6, the quality of the design proposal is evaluated. The results of unit testing
of the software demonstrate that the core components of the software behave as expected.
And The results of performance tests on the software show that the software itself does
not affect throughput when running for a long time. Logs of experiments conducted in
Section 6.3 demonstrate that the software meets the five newly proposed requirements for
schema migration benchmarking tools. In order to test the software more practically, we
also tested the database and schema migration tools with the software. The results of
the experiments are presented and discussed in Sections 6.4 and 7.1, respectively. During
experiments, some unsolved problems were discovered and they are enumerated in Section
6.5.

59

References

[1] Facebook online schema change. https://github.com/facebookincubator/
OnlineSchemaChange, 2010.

[2] Oak online alter table. https://shlomi-noach.github.io/openarkkit/
oak-online-alter-table.html, 2010.

[3] Large hadron migrator. https://github.com/soundcloud/lhml, 2012.

[4] Pt online schema change. https://www.percona.com/doc/percona-toolkit/3.0/
pt-online-schema-change.html, 2016.

[5] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan.
Linkbench: a database benchmark based on the facebook social graph. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pages
1185–1196, 2013.

[6] Charles W Bachman. » integrated data store–the information processing machine
that we need!«. Charles W. Bachman Papers (CBI 125), Box, 1, 1962.

[7] Philip A Bernstein and Nathan Goodman. Multiversion concurrency control—theory
and algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–483, 1983.

[8] Paul Beynon-Davies. Database systems. Bloomsbury Publishing, 2017.

[9] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J Abadi. Bullfrog: On-
line schema evolution via lazy evaluation. In Proceedings of the 2021 International
Conference on Management of Data, pages 194–206, 2021.

[10] Dina Bitton, David J DeWitt, and Carolyn Turbyfill. Benchmarking database systems-
a systematic approach. Technical report, University of Wisconsin-Madison Depart-
ment of Computer Sciences, 1983.

[11] Dina Bitton and Carolyn Turbyfill. Design and analysis of multi-user benchmarks for
database systems. Technical report, Cornell University, 1984.

[12] Dina Bitton and Carolyn Turbyfill. A Retrospective on the Wisconsin Benchmark,
page 422–441. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[13] Cristiana Bolchini, Fabio Salice, Fabio A Schreiber, and Letizia Tanca. Logical and
physical design issues for smart card databases. ACM Transactions on Information
Systems (TOIS), 21(3):254–285, 2003.

[14] Haran Boral and David J DeWitt. A methodology for database system performance
evaluation. SIGMOD Rec., 14(2):176–185, jun 1984.

[15] Haran Boral and David J DeWitt. A methodology for database system performance
evaluation. In Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’84, page 176–185, New York, NY, USA, 1984. Asso-
ciation for Computing Machinery.

[16] Alina Buzachis, Antonino Galletta, Antonio Celesti, Lorenzo Carnevale, and Massimo
Villari. Towards osmotic computing: a blue-green strategy for the fast re-deployment
of microservices. In 2019 IEEE Symposium on Computers and Communications
(ISCC), pages 1–6. IEEE, 2019.

60

https://github.com/facebookincubator/OnlineSchemaChange
https://github.com/facebookincubator/OnlineSchemaChange
https://shlomi-noach.github.io/openarkkit/oak-online-alter-table.html
https://shlomi-noach.github.io/openarkkit/oak-online-alter-table.html
https://github.com/soundcloud/lhml
https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html

[17] Michael J Cahill, Uwe Röhm, and Alan D Fekete. Serializable isolation for snapshot
databases. ACM Transactions on Database Systems (TODS), 34(4):1–42, 2009.

[18] RGG Cat Te Ll. The engineering database benchmark. 1991.

[19] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna Gummadi. Mea-
suring user influence in twitter: The million follower fallacy. In Proceedings of the
international AAAI conference on web and social media, volume 4, 2010.

[20] DBTG CODASYL. Codasyl data base task group report, conf. Data Sys. Languages,
ACM, New York, 1971.

[21] Edgar F Codd. A data base sublanguage founded on the relational calculus. In Pro-
ceedings of the 1971 ACM SIGFIDET (now SIGMOD) workshop on data description,
access and control, pages 35–68, 1971.

[22] Edgar F Codd. Further normalization of the data base relational model. Data base
systems, 6:33–64, 1972.

[23] Edgar F Codd et al. Relational completeness of data base sublanguages. Citeseer,
1972.

[24] CODASYL Development Committee et al. An information algebra-phase i report.
Comm. ACM, 5(4):190–204, 1962.

[25] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154, 2010.

[26] Carlo A Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Update rewriting
and integrity constraint maintenance in a schema evolution support system: Prism++.
Proceedings of the VLDB Endowment, 4(2):117–128, 2010.

[27] Peter Dadam and Jukka Teuhola. Managing schema versions in a time-versioned non-
first-normal-form relational database. In Datenbanksysteme in Büro, Technik und
Wissenschaft, pages 161–179. Springer, 1987.

[28] Michael de Jong, Arie van Deursen, and Anthony Cleve. Zero-downtime sql database
schema evolution for continuous deployment. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pages 143–152. IEEE, 2017.

[29] Michael de Jong, Arie van Deursen, and Anthony Cleve. Zero-downtime sql database
schema evolution for continuous deployment. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pages 143–152, 2017.

[30] Xin Luna Dong and Divesh Srivastava. Big data integration. In 2013 IEEE 29th
international conference on data engineering (ICDE), pages 1245–1248. IEEE, 2013.

[31] Anon et al, Dina Bitton, Mark Brown, Rick Catell, Stefano Ceri, Tim Chou, Dave
DeWitt, Dieter Gawlick, Hector Garcia-Molina, Bob Good, Jim Gray, Pete Homan,
Bob Jolls, Tony Lukes, Ed Lazowska, John Nauman, Mike Pong, Alfred Spector, Kent
Trieber, Harald Sammer, Omri Serlin, Mike Stonebraker, Andreas Reuter, and Peter
Weinberger. A measure of transaction processing power. Datamation, 31(7):112–118,
apr 1985.

61

[32] Gordon C Everest and Edgar H Sibley. Critique of the guide-share dbms require-
ments. In Proceedings of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on
Data Description, Access and Control, pages 93–112, 1971.

[33] Fabrizio Ferrandina, Thorsten Meyer, Roberto Zicari, Guy Ferran, and Joëlle Madec.
Schema and database evolution in the o˜ 2 object database system. In VLDB, vol-
ume 95, pages 170–181. Citeseer, 1995.

[34] Jim Gray. Database and transaction processing performance handbook., 1993.

[35] J-L Hainaut, Vincent Englebert, Jean Henrard, J-M Hick, and Didier Roland.
Database evolution: the db-main approach. In International Conference on Con-
ceptual Modeling, pages 112–131. Springer, 1994.

[36] Emily H Halili. Apache JMeter. Packt Publishing Birmingham, 2008.

[37] Jez Humble and David Farley. Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

[38] Slađana Janković, Snežana Mladenović, Stefan Zdravković, and Ana Uzelac. Schema
on read modeling approach implementation in big data analytics in traffic.

[39] Harpreet Kaur and Gagan Gupta. Comparative study of automated testing tools: se-
lenium, quick test professional and testcomplete. Int. Journal of Engineering Research
and Applications, 3(5):1739–1743, 2013.

[40] Won Kim and Hong-Tai Chou. Versions of schema for object-oriented databases.
In Proceedings of the 14th international conference on very large data bases, pages
148–159, 1988.

[41] Barbara Staudt Lerner and A Nico Habermann. Beyond schema evolution to database
reorganization. ACM SIGPLAN Notices, 25(10):67–76, 1990.

[42] Andy Maule, Wolfgang Emmerich, and David S Rosenblum. Impact analysis of
database schema changes. In Proceedings of the 30th international conference on
Software engineering, pages 451–460, 2008.

[43] Edwin McKenzie and Richard Snodgrass. Schema evolution and the relational algebra.
Information Systems, 15(2):207–232, 1990.

[44] Mark Lukas Möller, Stefanie Scherzinger, Meike Klettke, and Uta Störl. Why it is
time for yet another schema evolution benchmark. In International Conference on
Advanced Information Systems Engineering, pages 113–125. Springer, 2020.

[45] Iulian Neamtiu, J. Bardin, R. Uddin, Dien-Yen Lin, and P. Bhattacharya. Improving
cloud availability with on-the-fly schema updates. In COMAD, 2013.

[46] Neal Nelson. The neal nelson database benchmarktm: A benchmark based on the
realities of business., 1991.

[47] Shlomi Noach. Openark kit. common utilities for MySQL, 2015.

[48] Zachary Parker, Scott Poe, and Susan V Vrbsky. Comparing nosql mongodb to an sql
db. In Proceedings of the 51st ACM Southeast Conference, pages 1–6, 2013.

62

[49] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. Online,
asynchronous schema change in f1. Proceedings of the VLDB Endowment, 6(11):1045–
1056, 2013.

[50] Nick Geral Richter. Zero-downtime postgresql database schema migrations in a con-
tinuous deployment environment at ing. Master’s thesis, University of Twente, 2021.

[51] John F. Roddick. Schema evolution in database systems - an annotated bibliography.
SIGMOD record, 21(4):35–40, 1992.

[52] Mikael Ronstrom. On-line schema update for a telecom database. In Proceedings
of 16th International Conference on Data Engineering (Cat. No. 00CB37073), pages
329–338. IEEE, 2000.

[53] Tom Sawyer. Doing your own benchmark. In The Benchmark Handbook, 1991.

[54] S Shaw. Hammerdb: the open source oracle load test tool, 2012.

[55] Yangjun Sheng. Non-blocking Lazy Schema Changes in Multi-Version Database Man-
agement Systems. PhD thesis, Carnegie Mellon University Pittsburgh, PA, 2019.

[56] Gary H Sockut and Robert P Goldberg. Database reorganization—principles and
practice. ACM Computing Surveys (CSUR), 11(4):371–395, 1979.

[57] Gary H Sockut and Balakrishna R Iyer. Online reorganization of databases. ACM
Computing Surveys (CSUR), 41(3):1–136, 2009.

[58] Standard Specification and Transaction Processing Performance Council TPC. Tpc
benchmark tm h. 1993.

[59] Michael Stonebraker and Eugene Wong. Access control in a relational data base man-
agement system by query modification. In Proceedings of the 1974 annual conference-
Volume 1, pages 180–186, 1974.

[60] Carolyn Turbyfill, Cyril U Orji, and Dina Bitton. As3ap: An ansi sql standard
scaleable and portable benchmark for relational database systems., 1993.

[61] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia workload
analysis for decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[62] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. Synthesizing database pro-
grams for schema refactoring. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 286–300, 2019.

[63] Lesley Wevers, Marieke Huisman, and Maurice van Keulen. Lazy evaluation for con-
current oltp and bulk transactions. In Proceedings of the 20th International Database
Engineering & Applications Symposium, pages 115–124, 2016.

[64] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[65] A Wolski. Tatp benchmark description (version 1.0), 2009.

[66] Yu Zhu. Towards Automated Online Schema Evolution. University of California,
Berkeley, 2017.

63

Appendix

Figure 21: Configuration 1

64

Figure 22: Configuration 2

Figure 23: Configuration 3

65

Figure 24: Configuration 4

Figure 25: Changeset used by quantumdb

66

Figure 26: Script used for online ddl

67

	Introduction
	Motivation
	Research Question
	Methodology
	Organization

	Background
	Databases
	Relational Databases
	Database Manage System(DBMS)
	Structured Query Language
	DDL
	DML
	TCL
	DCL

	Database Transactions
	Transaction properties
	Multiversion concurrency control
	Lock

	Schema Migration
	Zero Downtime Schema Migration
	Database Test
	Benchmark
	TPC-C
	TPC-H
	Other benchmarks

	Literature review
	Schema Evolution
	Online Schema Migration
	Third-party solutions
	Database vendor's solution
	Complex/Simple schema changes

	Criteria
	Benchmark
	Benchmark for databases
	Metircs
	Guideline
	Benchmark for online schema migration

	Summary

	Treatment design
	Workload
	Requirement

	Choosing Tool and Benchmark
	Tool
	benchmark
	New requirements for online schema migration benchmark

	Metrics
	Differences with database benchmark
	Designing process

	Treatment implementation
	Analysis of OLTPBenchmark
	Modifications of OLTPBenchmark
	Achieving continuity and inconsistency
	Mixed state
	Completeness
	Rate control
	Extended configuration file
	Portability
	Metrics

	Benchmark Design and Implementation
	Why extensibility
	Simple changes
	Complex changes

	Summary

	Treatment evaluation
	Unit Testing
	Performance Testing
	Requirements Implementation
	Continuity
	Inconsistency
	Mixed state
	Completeness
	Unit

	Testing of Database and Migration Tools
	Unsolved Problems

	Discussion
	Result Analysis
	Future Work
	More schema migration benchmarks
	More schema migration datasets
	Implementation of more complex changes
	Optimization of OLTPBenchmark
	Continuous Schema Migration
	Support for migration tools
	Real Multi-user test
	Strict consistency testing

	Conclusion
	Contribution and Main Work
	Answers to the Research Questions
	Research question1
	Research question2
	Research question 3
	Research question 4

