

MASTER THESIS – ELECTRICAL ENGINEERING

Exploring Energy Efficient

DSP Design for an Audio ASIC

K.T. Raben, BSc

Faculty of Electrical Engineering, Mathematics and Computer Science
Research Chair of Computer Architecture for Embedded Systems (CAES)

EXAMINATION COMMITTEE
Committee Chairman: dr. ir. S.H. Gerez
Daily Supervisor: H.H. Folmer, MSc

 External Member:

dr. ir. A.B.J. Kokkeler

April 7th 2022

Abstract

With more and more consumer audio products becoming portable, maximizing battery lifetime has be-

come extremely important. This drives the need for more energy-efficient Application Specific Integrated

Circuits (ASIC) with a focus on audio. Often these chips have a Digital Signal Processor (DSP) section

in their design to manipulate the audio signal before being amplified. Such a DSP typically implements

various signal processing algorithms. This thesis explores how certain architectural choices influence

the energy efficiency of such a DSP. A focus is laid on how the time-area trade off affects the energy

consumption of a Finite Impulse Response (FIR) filter implementation. Through the use of Clash[1],

a hardware description language with strong abstraction mechanisms, a method is presented where

the amount of parallelism in a processor-like architecture can be controlled by one argument, creating

a ”knob” to generate designs which possess the same functionality but do so in a varying number of

clock cycles. Through industry standard tools all the created designs are synthesized and the energy

consumption is simulated. The energy efficiency of the processor designs generated with the variable

parallelism are compared to a fully dedicated FIR filter implementation.

The results show that with a a fully parallel design a 85% reduction in energy consumption can be

achieved with respect to a design with only a single multiplier, but at the cost of 8 times the chip area

needed. By turning the ”knob” results are obtained for designs with more than one multiplier, but less

multipliers than the fully parallel design. From these results it can be seen that a significant decreases

in energy consumption occur for small increases in number of multipliers. A design with 2 multipliers

already reduces the energy consumption by 35%, while only increasing the chip area needed by 2%.

The results also show however that further increasing the amount of multipliers does not always result

in a decrease in energy consumption.

With obtaining the results it is also shown how the presented method can help an IC designer gain more

insight in navigating the design space from an energy consumption perspective. Using the proposed

method, the effect a specific architectural choice has on energy efficiency can be investigated.

CONTENTS

1 Introduction 1

2 Problem Definition 2

2.1 DSP algorithms for audio . 2

2.2 Implemented Algorithm . 2

2.3 Time-area trade-off . 2

2.4 Research Question . 2

3 Energy Efficient Design 3

3.1 Introduction . 3

3.2 Energy Efficiency on a Circuit Level . 3

3.2.1 Voltage Scaling . 4

3.2.2 Reducing the Average Switched Capacitance . 4

3.3 Energy Efficient Multiplication . 4

3.3.1 Partial Product Generation . 4

3.4 Power Analysis of Memory . 6

3.5 Energy Efficiency on an Algorithmic Level . 7

3.6 Energy Efficiency on Architectural Level . 7

3.6.1 Spatial Locality . 7

3.6.2 Regularity . 8

3.7 Conclusion . 8

4 FIR Designs with different time-area trade-offs 9

4.1 Introduction . 9

4.2 System Constraints . 9

4.2.1 List of Constraints . 9

4.2.2 Required FIR functionality . 10

4.2.3 Sample and Coefficient bit-width . 10

4.3 Fully Parallel FIR Design . 10

4.3.1 Variable Tap FIR Design . 11

4.3.2 Hardware Description of Fully Parallel FIR Design 11

4.4 Single Multiplier Design . 12

4.4.1 X Memory Adressing . 13

4.4.2 Instruction Set . 14

4.4.3 Hardware Description of Single Multiplier Design 15

4.5 n-multipliers Design . 18

4.5.1 Data and Coefficient memories . 18

4.5.2 Matching sample and coefficient data . 19

4.5.3 Hardware Description of n Multiplier Designs . 20

5 Method of Analysis 26

5.1 Generation of Hardware Description . 26

5.2 Logic Synthesis . 26

5.2.1 SRAM implementation . 27

5.2.2 Multiplier Generation . 27

5.3 RTL Testbench . 27

5.4 Samples, Coefficients, Programs and Expected Output Generation 28

i

5.5 Power Analysis . 28

5.6 Tool Overview . 28

5.7 Automatically Generating and Evaluating n-multiplier Designs 28

6 Results 30

6.1 Fully Parallel Design . 30

6.2 Single Multiplier Design . 32

6.3 Comparison Fully Parallel - Single Multiplier . 33

6.4 N Multiplier Design . 34

6.5 Comparison of Sinlge Multiplier, N-Multiplier and Fully Parallel Designs 38

6.6 Clock Gating . 39

6.7 Results Clock Gated Designs . 39

6.8 MAC Energy Consumption for Highly Parallel Designs . 41

7 Conclusion 44

8 Discussion and Future Work 45

References 47

A Clash Code 49

A.1 Fully Parallel Design . 49

A.1.1 Data Types . 49

A.1.2 Design and Testbench . 49

A.2 Single Multiplier Design . 51

A.2.1 Data Types . 51

A.2.2 Design and Testbench . 52

A.3 n-Multiplier Design . 55

A.3.1 Data Types . 55

A.3.2 Top Design and Testbench . 56

A.3.3 Barrel Shifter Stages . 61

B Clash Primitives 63

B.1 SRAM Primitive . 63

B.2 Clock Multiplexer Inline Primitive . 63

C Scripts for Stimuli Generation, Synthesis and Power Analysis 65

C.1 Matlab Stimuli Generation and Program Compiler . 65

C.1.1 n-Multiplier Design . 65

C.2 Shell Scripts for Generating all Haskell, Verilog and Synthesis files 68

C.2.1 Top Level Generate Script . 68

C.2.2 Script Controlling Synopsys Design Compiler, Synopsys Primetime and Modelsim 70

D Tables Containing Average Power and Total Cell Area Results 74

D.1 Designs without Clock Gating . 74

D.2 Designs with Clock Gating . 75

ii

1 INTRODUCTION

With the increase in popularity of wireless headphones and true wireless in-ear monitors there comes

a drive to create audio products that can function a long time on small batteries. To achieve this long

battery lifetime the energy consumption of the product must be brought down. This requirement results

in a desire for audio ICs with low energy consumption.

In audio IC’s, before a bitstream is converted to an analog signal, a manipulation of the stream is often

desired. High-performance audio ICs typically have specific digital hardware to handle a set of possible

manipulations. This hardware is required to be fast enough to handle the data-rates but should also

possess the flexibility such that it can be configured to perform several different signal processing func-

tions. Flexible hardware that serves such a purpose is called a Digital Signal Processor (DSP). It lies

between a traditional processor and dedicated hardware in terms of performance, energy efficiency and

programmability.

The DSP section of the chip can have a large impact on this total energy consumption and should there-

fore be designed with energy efficiency in mind. In designing this flexible hardware many architectural

choices have to be made which all have an influence on the total energy consumption of the hardware.

Gaining insight into the exact influence of a specific architectural choice is however a difficult task. This

work delves into the aspects of what makes an energy efficient DSP design and proposes a method to

easily make high-level architectural choices and observe the effect this choice has on energy efficiency.

In particular, this work investigates the architectural choice of how many calculations are done simulta-

neously and how that influences the energy efficiency of a DSP design. By using the proposed method,

more exact measurements can be made of how much efficiency is gained by performing more calcula-

tions at the same time and what the costs are in terms of chip area needed. This information can guide

the IC designer in creating an efficient, cost-effective hardware design.

Collaboration with Axign

This work is developed in collaboration with Axign, a fabless semiconductor company from Enschede.

Axign develops state-of-the-art class-D audio amplifier controllers. For future products, Axign would like

to include a energy efficient DSP as part of their amplifier controller IC.

Thesis Layout

The structure of this thesis is as follows: First, in chapter 2 the global research topic of energy efficient

DSP design will be refined in a concrete research question. Chapter 3 will elaborate on the theory in-

volved in creating energy efficient digital hardware. Keeping this knowledge in mind a method of creating

multiple design architectures is presented in chapter 4. For each design, the energy consumption is de-

termined through the method described in chapter 5. An overview of the results for the different designs

is given in chapter 6, after which a conclusion is presented in chapter 7.

1

2 PROBLEM DEFINITION

2.1 DSP algorithms for audio

The functionalities that an audio DSP should support naturally differ for each product, but common func-

tions are: Channel mixing, volume control, equalization, and interpolation/decimation of signals.

Most of the above-mentioned functionality is some combination of multiplication and addition of a set

of (delayed) samples. The algorithms behind many of these implementations are often Finite Impulse

Response (FIR) filters, Infinite Impulse Response (IIR) filters, a Least Mean Squares (LMS) calculation,

or the Fast Fourier Transform (FFT).

2.2 Implemented Algorithm

To limit the design space that needs to be explored this research is narrowed down to a single algorithm

to be implemented. Of the algorithmsmentioned in section 2.1, the FIR algorithm can be used to perform,

among other things, interpolation, decimation, and equalization. With respect to the IIR algorithm it is

less complex, as it is a system without feedback. The FFT and LMS algorithms are less often used. For

these reasons, the research focuses on creating an FIR filter implementation.

2.3 Time-area trade-off

To further limit the scope, the question is approached from a digital IC architecture perspective. All DSP

algorithms mentioned above are dominated by multiplier operations and memory access [2]. Therefore

this research will mainly revolve around the chosen structure of digital building blocks that implement

these operations, such as memory elements, multipliers and adders. For a FIR implementation changing

the number and structure of memory elements and multipliers results in varying the time-area trade-

off. Designs with a different time-area trade-off will take a different number of clock cycles to finish the

operation and can be implemented with a different amount of chip area. This thesis focuses on how that

trade-off affects energy efficiency.

2.4 Research Question

After constraining the larger question of how to design an energy efficient DSP the following research

question is formed:

”How does the time-area trade-off affect the energy efficiency of a streaming FIR filter ASIC implemen-

tation for audio purposes?”

2

3 ENERGY EFFICIENT DESIGN

3.1 Introduction

Energy efficient design can be approached from many different levels of abstraction. The total energy-

efficiency will depend on the choices made on all levels. But especially on how well the different levels

are attuned to each other. For instance, circuit level analysis may give insight into how the power con-

sumption of memory access is in proportion to that of a multiplier. This information can be used to find a

good combination of an algorithm and an architecture that can optimize for multiplications and memory

access in an energy-efficient manner.

This chapter will discuss the different levels mentioned above in more detail. The relevant aspects that

need to be considered in the DSPdesign are elaborated upon and aspects that fall outside of this research

scope are addressed.

3.2 Energy Efficiency on a Circuit Level

At the basis of digital CMOS circuitry lies the inverter shown in Figure 3.1. There are three major sources

of power dissipation in these circuits: A switching component Ps, a short-circuit component Psc and a

leakage component Pl. Equation 3.1 gives a description of these sources of dissipation[3].

Figure 3.1: CMOS circuitry for digital inverter [4]

Ptotal = Ps + Psc + Pl

= pt
(
CL · V 2

dd · fclk
)
+ Isc · Vdd + Ileakage · Vdd

(3.1)

Here Ileakage is the leakage current and mostly dependent on the chip process technology[5]. Isc is the
short-circuit current that occurs when switching. CL is the load capacitance that needs to be driven. pt
is the probability of a switch occurring between zero to one or vice versa.

Formodern CMOS technologies, the contributions ofPl andPsc are generally well below that ofPs[5][6][7].

Therefore, the focus of this work is mainly laid on the switching power dissipation.

3

3.2.1 Voltage Scaling

Looking at equation 3.1, a very effective method to reduce the switching power would be to lower the

supply voltage, since the power scales down quadratically with Vdd. However, decreasing the voltage

will increase the delay of the circuit [3]. Architectures that are tolerant to this increase in delay have been

an active area of research [8],[9]. Improvements in chip process technology further enable the reduction

of supply voltages.

3.2.2 Reducing the Average Switched Capacitance

When the supply voltage, the leakage power and the short-circuit power remain constant, power reduc-

tion can then be achieved by reducing the amount of capacitance that is being switched on average.

In equation 3.1 this is the term pt · CL · fclk. CL consists of the gate capacitance of subsequent inputs

attached to the output of the inverter, capacitance of the interconnect wires and diffusion capacitance on

the drains of the transistors of the inverter[10].

The gate and diffusion capacitance are determined by the chip process technology. Length of the inter-

connect wires and the number of gates is highly dependent on the chosen architecture. How often these

switch (pt) is then dependant on the executed algorithm (and of course the input signal).

3.3 Energy Efficient Multiplication

In almost all functionality of a DSP, multiplication plays a crucial role. The energy efficiency of the mul-

tiplier is therefore significant in the efficiency of the total DSP. There are many multiplier architectures,

and which architecture is most efficient differs per situation. Important factors that determine which ar-

chitecture is optimal are the bit-sizes of the input arguments and the required speed of the multiplier. To

give a brief introduction into multipliers and how they can differ two architectures are discussed below.

The most common multiplication method is the ”add and shift” algorithm, which is illustrated in figure

3.2. The total multiplication can be divided into two sets of operations: partial product generation and

addition.

Figure 3.2: ”Add and shift” multiplication algorithm.[11]

3.3.1 Partial Product Generation

The partial product generation of a classic ”add and shift” multiplier is rather straightforward. In figure 3.3

the structure can be seen. There is the multiplicand A and the multiplier B. The structure illustrates that

for a M-bits multiplicand and a N-bits multiplier, N partial products are generated and M·NAND gates are

needed.

Modified Booth Encoding A popular method that reduces the number of partial products that need

to be added is Modified Booth encoding. This method uses the phenomena in bitwise operations that

doubling and sign inversion require less logic and switching with respect to pure addition. In the classical

case only one bit of the multiplier is evaluated and determines whether the partial product that is gener-

ated is 1 ·multiplicand or 0 ·multiplicand. This is also illustrated in table 3.1. Here A partial products

are created.

4

Figure 3.3: Classic ”add shift” multiplier structure [11]

Ai Partial Product

0 0 ·multiplicand
1 1 ·multiplicand

Table 3.1: Partial Product generation for a classical ”add and shift” multiplier.

The process of Radix4 Booth encoding is illustrated in figure 3.4 for an 8 bit multiplier argument. The 8

bits are divided in overlapping sets of 3 bits. For the most right encoding a zero is padded.

Figure 3.4: Radix 4 Booth encoding of an 8 bit number. A zero is padded to the right[11].

The 8 bit representation has now been encoded to 4 3-bit representations. The partial product generation

from these 3-bit representations can be seen in table 3.2. Using this method multiplications with an N-bits

multiplier result in a maximum of
[
N+2
2

⌋
=

⌊
N
2 + 1

⌋
partial products for the Radix 4 case.

Instead of two possible partial products there are now five variants which complicates the generation

of these products. Multiplying the multiplicand with 2 and -1 are tasks that require less switching with

respect to multiple additions. Therefore the modified Booth encoding enables a significant reduction of

the partial products to be added while replacing the effort needed with operations that are more efficient,

such as the shifting of bits.

Applying a higher radix further reduces the number of partial products that need to be added. However,

it does introduce the need to produce odd multiples, which are less efficient to generate.

5

Ai+1 Ai Ai−1 Partial Product

0 0 0 0 ·multiplicand
0 0 1 +1 ·multiplicand
0 1 0 +1 ·multiplicand
0 1 1 +2 ·multiplicand
1 0 0 −2 ·multiplicand
1 0 1 −1 ·multiplicand
1 1 0 −1 ·multiplicand
1 1 1 0 ·multiplicand

Table 3.2: Partial Product generation for a Radix 4 Booth encoded ”add and shift” multiplier.

3.4 Power Analysis of Memory

On chip addressable memory typically consists of an array of SRAM cells. The structure of a single

bit SRAM cell can be seen in figure 3.5. When the word line (WL) is low the data in the cross-coupled

inverters is held. When the word line is high the cell can be read or written to. Both reading and writing

are performed through the bit lines[12].

Figure 3.5: Schematic layout of a single bit SRAM cell.[12]

Placing these cells in an array and adding control logic results in a structure as shown in figure 3.6. [13]

categorizes the energy consumption of such a structure in four categories:

• Input line dissipation: Caused by driving transitions on the input lines and input latches. Increases

with the word width of the memory.

• Word line dissipation: Caused by driving both the word select wires that enable a read/write and

the gates of the transistors in the cells. Increases with the word width of the memory.

• Bit line dissipation: Caused by driving the bit lines during a write or read. There are two bit lines

per column of SRAM cells. The total bit line dissipation increases with word width but also with the

amount of words in the memory as the wires will be longer and thus have a higher capacitance that

needs to be driven.

• Output line dissipation: Caused by driving transitions on the output lines. Increases with the

word width of the memory.

The address decoding is not taken into account with these categories. The total dissipation of demulti-

plexing an address line also increases with the number of words in the memory.

An important realization that comes from this analysis is that increasing the number of words in the

memory can increase the energy needed per read/write significantly. This is also shown in related work

[15],[16]. Both adding rows and columns increases the energy consumption per access, but only the

column increase delivers more bits per access.

These facts motivate the choice to keep the memories used as small as possible.

6

Figure 3.6: Schematic of a memory layout with 8 words of 6 bits. [14]

3.5 Energy Efficiency on an Algorithmic Level

The algorithmic level concerns the algorithms that are chosen to obtain the desired signal manipulation.

For example, when the goal is to lower the energy of low frequency content in a signal (a high pass

filter), different mathematical algorithms can be chosen to achieve that goal. The FIR and IIR algorithm

are examples of such algorithms, each with their own performance and mathematical description. As

discussed before, an important technique for reducing energy consumption is reducing the amount of

switching in the system. The algorithm that is executed can often bemanipulated to better fit the hardware

architecture and improve results. Re-ordering of multiplications and additions can for instance reduce

the number of operations that have to be executed[17]. Additionally, the possibility to execute operations

in parallel is highly dependent on the algorithm, especially when feedback is present[2].

3.6 Energy Efficiency on Architectural Level

Just as an algorithm can be adjusted to fit the architecture, this architecture can be adjusted to better fit

the implemented algorithm. When analyzing an architecture from an energy perspective focus is laid on

which operation is performed by which piece of hardware and how the different functional blocks interact.

Examples of choices that can be made are for instance different levels of parallelism, where intermediate

results are stored and how different areas of the design communicate with each other. The goal is again

to reduce the total amount of capacitance that is switched [18]. Two relevant aspects of an architecture

are spatial locality and regularity which are described below in more detail.

3.6.1 Spatial Locality

Spatial locality is a term which describes the degree that an algorithm has isolated clusters of opera-

tions with few interconnections between these clusters[17]. This effect is described in figure 3.7. Here

a three-stage biquad IIR is laid out with the local clusters encircled. [17] argues that to improve energy

efficiency, resource sharing between the local clusters should be avoided. This to keep the amount of

interconnects and bus multiplexing to a minimum and reduce the amount of switching.

This example focuses on the interconnects between computational units. Perhaps even more impor-

tant is to optimize an architecture with memories such that the majority of the data transfers take place

within the local clusters[6]. Global buses and large memories incur a large amount of capacitance to be

switched and thus typically result in a higher energy consumption.

7

Figure 3.7: Architecture for a three-stage biquad IIR filter. Three local clusters can be identified where

there are little interconnections with other clusters. [17]

3.6.2 Regularity

Regularity is the degree to which common patterns appear in an algorithm. Regularity enables the design

of less complex architectures. This reduces the amount of control overhead and thus additional switching

[17]. By identifying regularity in an algorithm the architecture that it is mapped on can be optimized to

reduce the amount of interconnections and multiplexers necessary[19].

3.7 Conclusion

Designing for low energy consumption is a multi-dimensional problem with many facets. The desired

DSP algorithm for this work (FIR) relies heavily on multiplication, addition, and memory access. These

operations and what aspects influences their energy usage give insight in how to optimize the architec-

ture for low energy consumption.

8

4 FIR DESIGNS WITH DIFFERENT TIME-AREA TRADE-

OFFS

4.1 Introduction

To investigate the energy efficiency for FIR architectures with different time-area balances multiple de-

signs are created. This chapter will first elaborate on the constraints and functionality that all these

designs will have to adhere to. Then different designs are presented which range in parallelism: First, a

fully parallel variable-tap FIR design. Then a design that uses only a single multiplier. Lastly, a method is

proposed which can systematically create designs with an arbitrary number of multipliers. Thus creating

the possibility to easily produce a range of designs. The result is a set of designs that computes the

output of an n-taps FIR filter in 1 clock cycle, 2 clock cycles etc. up until n clock cycles.

4.2 System Constraints

Because of the collaboration with Axign, many of the system constraints for this research are based on

the chip environment which is present in their products. A simplified overview of the audio system can be

seen in Figure 4.1. In this figure the system constraints listed below in Section 4.2.1 are also displayed.

Additionally, to reduce complexity a supply voltage is taken that is typical for the used IC technology.

Therefore the possible benefits of voltage scaling as mentioned in section 3.2.1 are not explored.

Figure 4.1: Simplified overview of the amplifier controller IC with the DSP as subsection. The controller

IC provides 32 bit wide samples and a clock frequency to the DSP.

4.2.1 List of Constraints

• The input sample frequency, fs is between 48kHz and 192kHz

• The DSP core runs on a master clock frequency of fclk = 1024 ∗ fs(48kHz) = 49, 152MHz

• The input samples are 32-bit wide.

• The TSMC 55nm process is taken as a guideline for the IC technology used.

• A supply voltage is used that is typical for that IC technology.

9

4.2.2 Required FIR functionality

The FIR algorithm that needs to be executed is given in Equation 4.1. The output is computed by multi-

plying N delayed samples (x[n− k]) of the input with N coefficients (ck) and summing the results.

u[n] =

N−1∑
k=0

ck · x[n− k] (4.1)

One of the goals of the audio IC is to convert a digital bitstream to an analog signal with little latency,

such that the chip can stream the audio near real-time. This goal also translates to the DSP, meaning

that in many applications the DSPmust finish processing the latest sample before a new sample arrives.

With the constraints on system clock frequency and sample frequency imposed by the Axign system the

simple timing diagram in Figure 4.2 is constructed. When a new sample arrives the system has a budget

of 256 clock cycles in which a new output must be computed. How much of that budget is used differs

per design. As typical FIR filter use case within the Axign IC a filter with around 100 delayed samples,

or taps is considered. This filter can for instance be part of an interpolation setup. However, more exotic

applications might require more taps. Being able to configure the number of taps used is a requirement

for all designs.

256 cycles 256 cycles 256 cycles

New sample available (𝑓𝑠 = 192𝑘𝐻𝑧)

0 5,208𝜇s 10,416𝜇s 15,625𝜇s

Figure 4.2: Timing illustration of the system displayed for the first three samples. New samples arrive

at a maximum frequency of 192 kHz, while the system clock frequency is 49,152 MHz. Since an output

sample must be available before the new sample arrives 256 clock cycles are available for the design to

do all the computations.

4.2.3 Sample and Coefficient bit-width

Nowadays, a 24-bit resolution has become a standard for hi-fi audio sources. For DSP operations without

significant quality loss, 32-bit arithmetic is typically required to have enough headroom[20]. Therefore all

proposed designs use 24-bit samples and 24-bit coefficients casted into 32 bit registers. Both samples

and coefficients are in a fixed point format with 1 integer bit and 31 fractional bits. A choice often made

in audio since the output sample is then a fraction of the maximum output amplitude the amplifier can

supply[20]. To reduce complexity, using floating-point arithmetic instead of fixed-point is a design choice

that is not considered in this work. Energy efficiency in a floating-point DSP is a good subject for future

research.

4.3 Fully Parallel FIR Design

A fully parallel design exploits the regularity aspect of an algorithm as mentioned in Section 3.6.2. By

taking the regularity of the FIR algorithm into account an implementation is created with the least amount

of overhead.

This design is rather straightforward as it consists of a delay line with a tap after each register. This

tap feeds into a multiplier where the delayed sample is multiplied by a coefficient. All results are then

accumulated by an adder tree and the output sample is ready. Since the design is fully parallel it needs

only a single clock cycle to do all computations for that sample. After that cycle the design will remain

idle until a new sample is fed in, which will trigger the delay line and move all the delayed samples one

register further down the line.

The fully parallel design is a dedicated piece of hardware, with almost no flexibility to perform any other

operation than FIR filtering.

10

4.3.1 Variable Tap FIR Design

The desired number of taps is not known beforehand. Amaximum of 256 taps is chosen, as this number

is a power of two and enough for many applications. The design is made configurable by adding the

possibility to inject the input sample at any tap and disabling the registers before that tap. This effectively

shortens the delay line that is operational to the desired length. This design is illustrated in Figure 4.3.

32x32
multiplier

Yn
reg

X
n

-1
 reg

32x32
multiplier

Yn
-1

 reg

X
2

 reg
32x32

multiplier

Y2
reg

X
1

 re
g

32x32
multiplier

Y1
reg

X
0

 reg

32x32
multiplier

Y0
reg

Sample in

Adder Tree

Sample out

Figure 4.3: Schematic overview of the proposed parallel FIR filter implementation with a variable number

of effective taps. The multiplexers enable the input sample to be injected at one of the taps. All registers

to the left of that point are not enabled, preventing unwanted data outputs.

4.3.2 Hardware Description of Fully Parallel FIR Design

For the translation of a design concept to a format the synthesis tool can interpret, Clash is chosen. Clash

(CAES Language for Synchronous Hardware) is a functional hardware description language that heavily

borrows its semantics from Haskell. Clash can generate both VHDL/Verilog RTL designs while providing

powerful abstraction mechanisms[1]. These abstraction mechanisms provide the ability to easily make

adjustments to the time/area trade-off in a design.

The first aspects that are defined in the Clash design are the data types. Below a code snippet is shown

defining the input samples, coefficients and output samples to be 32-bit wide in a signed fixed point

format with 31 fractional bits.

1 -- Define samples and coefficients to be 32 bit signed fixed point values with 31 fractional
bits

2 type Data_reg = SFixed 1 31
3 type Coeff_reg = SFixed 1 31
4 type Sin = SFixed 1 31
5 type Sout = SFixed 1 31
6 -- Define number of taps input
7 type Num_taps = Int
8 -- Define coefficient and data memory banks chosen to be 256 32-bit registers
9 type Mem_coeff = Vec 256 Coeff_reg

10 type Mem_data = Vec 256 Data_reg

With the created data types defined, the next step is to define the arithmetic from Figure 4.3. The code

below describes how the design should compute the new output and new state from the input and current

state. The fully parallel FIR design checks every clock cycle whether the externally supplied frame trigger

is high; When this is the case the new sample is injected into the tapped delay line and the taps and

11

coefficients are multiplied and added together, creating the output value. When the frame trigger is low,

the new state remains the same as the old state, effectively putting the design in an ’idle’ mode.

1 -- Top level function. Upon an external frame trigger (frame) the delay line is triggered and
a new sample (sin) is injected at the tap which is indicated by the Num_taps input

2 fir_acc :: (Mem_data, Mem_coeff) -> (Sin,Bool,Mem_coeff,Bool,Num_taps) -> ((Mem_data,
Mem_coeff), Sout)

3 fir_acc (regs, coeff_regs) (sin,tick,coeff,frame,num_taps) = case frame of
4 True -> ((regs', coeff), sout)
5 False -> ((regs, coeff), sout)
6 where
7 -- The regs' function shifts the delay line and inserts the new input at the correct

place
8 regs' = replace (length(regs)-num_taps) sin (fst(shiftOutFromN d1 regs))
9 -- The calc_out function is called upon to produce an output

10 sout = calc_out num_taps coeff_regs regs sin
11

12 -- The output is calculated with entire delay line and coefficient bank, but enable signals
should prevent unneccessary calculations from being done.

13 calc_out :: Num_taps -> Mem_coeff -> Mem_data -> Sin -> Sout
14 calc_out num_taps coeff regs sin = sum $ zipWith (*) coeff $ replace (length(regs)-num_taps -1)

sin regs

To transfer data from one clock cycle into the next a function is defined that implements a mealy machine

functionality. This function will take a clock signal, reset signal, enable signal and the arithmetic function

”fir_acc” from the snippet above. The function will create the registers as described in Figure 4.3. 256

registers are always implemented, but by disabling a subset of these registers a FIR filter with a variable

number of taps between 0 and 256 can be configured.

1 -- An adjusted version of the clash mealy machine function. mm and its subfunctions xregs and
yregs implement registers and define the default state, how the new state is calculated
and how the enable signals (cVec) connect to the registers.

2 mm clk rst f cVec i = o
3 where
4 (s', o) = unbundle $ (f <$> s <*> i)
5 (s1',s4') = unbundle s'
6 s = bundle (s1,s4)
7 s1 = xregs clk rst cVec s1'
8 s4 = yregs clk rst cVec s4'
9

10 -- the xregs function defines the X-registers used, it is made a seperate function to be able
to use the NOINLINE pragma, which will ensure that it becomes a seperate verilog entity

11 xregs clk rst cVec s1' = bundle $ zipWith (\en inp -> exposeClockResetEnable register clk rst
en 0 inp) cVec (unbundle s1')

12

13 -- the yregs function defines the Y-registers used, it is made a seperate function to be able
to use the NOINLINE pragma, which will ensure that it becomes a seperate verilog entity

14 yregs clk rst cVec s4' = bundle $ zipWith (\en inp -> exposeClockResetEnable register clk rst
en 0 inp) cVec (unbundle s4')

The full clash code can be found in Appendix A.1.

4.4 Single Multiplier Design

In contrast to the fully parallel design, where the time-area trade-off is set completely to minimal time

and maximum area, an architecture which is on the other side of the spectrum is also developed. This

architecture is more similar to that of a classic CPU and a simple schematic can be found in Figure 4.4.

Three memories are implemented. The ”X” memory for all the samples, the ”Y” memory for the coeffi-

cients and the ”P” memory for the instructions that control the system. All memories are 256 words deep.

The X and Y memory output their data in a register, after which that data is multiplied and accumulated

in a register. Only a single sample and coefficient can be multiplied per clock cycle. After all the multipli-

cations and accumulations are completed the value in the accumulation register can be propagated to

an output register and becomes available at the output of the system.

12

X
-M

EM

Y-M
EM

P
-M

EM

32x32 multiplier

Accumulation
Register

X reg Y reg

Out Reg

Sample in

Sample out

Adder

Figure 4.4: Basic schematic overview of the single multiplier design. Samples from the X-Mem and

coefficients from the Y-Mem get multiplied and accumulated. When all the needed multiplications are

accumulated, the data from the accumulation register is passed to the output register. Addressing and

output register propagation is controlled by instructions stored in the P-Mem.

4.4.1 X Memory Adressing

To select the correct delayed sample and coefficient combination the correct address needs to be se-

lected for the X and Y memories. For convolution algorithms such as FIR this combination is different

for every multiplication. Figure 4.5 illustrates the address combinations needed for the first 3 output

samples of a FIR filter with 5 taps. From this illustration two problems already become apparent when

a FIR program needs to run for an indefinite amount of time: 1. The writing of new samples into the

memory needs to be handled adequately, as the memory space is finite. 2. The number of unique X

and Y address combinations needed to run the FIR algorithm rises quadratically with the number of taps.

Meaning that if every instruction in the P-MEM stores one unique X and Y address combination, for a

100 taps FIR filter 1002 = 10000 instructions are needed, making the program memory very large and

energy inefficient.

X-MEM

0 X[n+2]

1 X[n+1]

2 X[n]

3 X[n-1]

4 X[n-2]

5 X[n-3]

6 X[n-4]

7 X[n-5]

8 X[n-6]

Y-MEM

0 c1

1 c2

2 c3

3 c4

4 c5

5 -

6 -

7 -

8 -U[n]

U[n+1]

U[n+2]

Figure 4.5: Illustration of the memory accesses needed to compute three outputs of a 5-tap FIR filter.

The convolving nature of the algorithm can be seen, as for every new output the samples needed from

the X-Mem shift one address upwards, but the Y-Mem addresses stay the same.

The solution for reducing the large number of instructions is a common technique used in processors

13

and uses the regularity of the FIR algorithm. All samples that are needed to calculate an output are

always successively stored in the memory. Therefore calculating the absolute address from adding a

base address and a relative address is a good solution for the data memory (X-MEM). The base address

is stored in registers in the design and can be increased when a new output sample should be calculated.

The relative address is still stored in the instruction. By applying this technique the number of needed

instructions for a continuous N -taps FIR filter is reduced to N . At the end of the N cycles the base

address is increased and the same program can be run again.

Another memory management technique applied to the X-MEM to enable efficient streaming behavior is

that a so called circular buffer is created. This means that when a the calculated absolute address would

fall outside of the possible range for the memory, say -1, the addressing wraps around and starts again

at the back of the memory.

For writing an incoming sample to the X-MEM, a write address is stored in a register. This address can

be increased by an instruction and wraps around when the address limit is reached.

4.4.2 Instruction Set

Aside from specifying the relative memory address discussed in the previous section the proposed in-

struction set can control the propagation of certain registers. A breakdown of a instruction can be found

in Table 4.1. The instruction set enables the correct handling of inputs and outputs at the correct clock

cycles and provides more flexibility than absolutely necessary for the FIR operation. For instance, pro-

grams can be written where consecutive instructions jump more than one address. This flexibility is not

needed for a FIR design as all memory locations needed for the tapped delay line are stored consecu-

tively and only a jump of a single address is used. This means that the design posses flexibility that is not

exploited in this work but can be interesting for future work where slightly other algorithms are mapped

onto the architecture.

of bits Function

1 Increase base address of X memory

1 Write data at the input to the X memory

1 End of program

log2(memory size) Relative memory pointer

1 Add multiplier output to accumulator

1 Propagate accumulator value to output register

Table 4.1: Breakdown of all the fields in the DSP instruction. The instruction set is build to enable a

straightforward FIR filter implementation, but by keeping the ability to specify any read address at any

clock cycle more complex operations are possible in future work.

When the end of program bit is high, the program counter will stop and the design will remain idle until

an external port signals that a new sample is available. This ”frame clock” will reset the program counter

to zero and the program will run again.

Incorporating the information of the adressing and instruction set section a more elaborate architecture

schematic can be made. This schematic can be found in Figure 4.6.

14

X
-M

EM

Y-M
EM

P
-M

EM

32x32 multiplier

Accumulation
Register

X reg Y reg

Out Reg

Sample in

Sample out

Adder

Memory initialisationFrame trigger

Program pointer

Xmem base addr

Xmem wr addr

In
stru

ctio
n

D
eco

d
er

A
d

d
ress

C
o

m
p

u
tatio

n

Figure 4.6: A more elaborate schematic of the single multiplier design. Here additional registers that

enable relative addressing are shown in green. Using the base address and relative address information

from the instruction absolute addresses are decoded. The frame trigger port can set the program pointer

to 0, restarting the program. The memories can also be written through an external port, enabling pro-

gramming of the design.

4.4.3 Hardware Description of Single Multiplier Design

The complete Clash code for the single multiplier design can be found in Appendix A.2. In this section

the most important sections are elaborated upon.

Data Types

The single multiplier design requires more complex Clash code as there is much more control hardware

needed. As with the fully parallel Clash description, first the data types are defined. The code snippet be-

low shows again the sample and coefficient formats, but now also the memory addresses and additional

registers needed to implement the design shown in Figure 4.6.

1 -- Define samples and coefficients to be 32 bit signed fixed point values with 31 fractional
bits

2 type Sin = SFixed 1 31
3 type Sout = SFixed 1 31
4 type Coeff = SFixed 1 31
5

6 -- Set types for internal registers
7 type Xreg = Sin
8 type Yreg = Coeff
9 type Acc_reg = SFixed 1 31

10 type Out_reg = Acc_reg
11

12 -- Base memory pointer
13 type XMem_addr = Unsigned 8
14 -- Y memory address

15

15 type YMem_addr = Unsigned 8
16 -- Program memory address, in this design this is equivalent to the program counter.
17 type PMem_addr = Unsigned 8

Instruction Set

The instruction set as described in section 4.4.2 is defined in the Clash design by the code below:

1 ---- INSTRUCTION SET -----
2 -- Base memory pointer increment instruction (+1 or +0)
3 type Xbase_inc = Bool
4 -- Write enable for Xmem
5 type Xwr_en = Bool
6 -- End of Program Boolean
7 type Prog_jump = Bool
8 -- Memory pointer (points to absolute Ymem location and relative Xmem location)
9 type Mem_pnt = Unsigned 8

10 -- Boolean that determines whether the data in the accumulation register will be passed to the
output

11 type Outp_instr = Bool
12 -- Boolean that determines whether the accumulation register should be updated
13 type Acc_en = Bool
14 -- Construction of the total instruction
15 type Instr = (Xbase_inc,Xwr_en,Prog_jump,Mem_pnt,Outp_instr,Acc_en)

Top Level Function

With the data types defined the desired functionality can be implemented. The ”dsp” function in the code

below is the top level entity of the design. Unlike the code for the fully parallel design the single multiplier

code does not use a mealy machine function but implements the registers in the same function as the

arithmetic. This can clearly be seen in the structure of the ”dsp6” function; It is a collection of registers

preceded by the functionality needed to compute the new value that will be clocked into that register. To

prevent cluttering, a substantial amount of the arithmetic has been defined in handling functions which

are called upon by the ”dsp” function. Several of these handling functions are elaborated in the sections

below.

1 -- Top function, here all subfunctions are combined into a single entity
2 dsp :: Clk -> Rst -> En -> En -> Sig Sin -> Sig Frame_trig -> Sig (Maybe (PMem_addr, Instr))

-> Sig (Maybe (YMem_addr, Coeff)) -> Sig (Maybe XMem_addr) -> Sig Sout
3 dsp clk rst en en_mac sin frame_trig p_in y_in ext_wr = sout
4 where
5 --Program counter section
6 prog_cnt' = prog_cnt_handle <$> prog_cnt <*> (get3rd <$> instr) <*> frame_trig
7 prog_cnt = (exposeClockResetEnable register clk rst en_mac) (0 :: PMem_addr) prog_cnt'
8 --X memory base pointer section
9 xbase_rd' = xbase_rd_handle <$> xbase_rd <*> (get1st <$> instr)

10 xbase_rd = (exposeClockResetEnable register clk rst en_mac) (0 :: XMem_addr) xbase_rd'
11 --X memory write pointer section
12 xpnt_wr' = xpnt_wr_handle <$> xpnt_wr <*> (get2nd <$> instr)
13 xpnt_wr = (exposeClockResetEnable register clk rst en_mac) (0 :: XMem_addr) xpnt_wr'
14 --Instruction is fetched from program memory
15 instr = pmem clk rst en prog_cnt p_in
16 --X register section, the xmem function handles both writing to and reading from the X

memory
17 xreg' = xmem clk rst en xbase_rd xpnt_wr instr sin ext_wr
18 xreg = (exposeClockResetEnable register clk rst en_mac) (0 :: Xreg) xreg'
19 --Y register section, the ymem function handles both writing to and reading from the Y

memory
20 yreg' = ymem clk rst en instr y_in
21 yreg = (exposeClockResetEnable register clk rst en_mac) (0 :: Yreg) yreg'
22 --Accumulator register section. Depending on the instruction the values in xreg and

yreg are multiplied and added to the accumulation.
23 acc_reg' = acc_handle <$> xreg <*> yreg <*> acc_reg <*> (get6th <$> instr) <*> (get5th

<$> instr)
24 acc_reg = (exposeClockResetEnable register clk rst en_mac) (0 :: Acc_reg) acc_reg'
25 --Output register section. Depending on the instruction the value in the accumulator

register is passed to the output register or not.

16

26 sout = (exposeClockResetEnable register clk rst en_mac) (0 :: Out_reg) sout'
27 sout' = calc_out <$> (get5th <$> instr) <*> sout <*> acc_reg

Program Counter

The program counter is used to control what instruction from the program memory is executed when.

Other than increasing every clock cycle the program counter is also manipulated to start or stop the entire

design from computing outputs. When the external frame trigger signal is high, indicating the arrival of

a new sample, the program counter is set to zero, effectively restarting the program. When the end of

program (prog_jump) bit of the instruction is high, the program counter is set to the last address of the

program memory. At this address an instruction is present which disables the accumulation and output

register from updating. When the last address of the program memory is reached the program counter

will not update until a new frame trigger is observed, effectively putting the hardware in an idle mode.

X, Y and P Memory

As mentioned in section 3.4, an SRAM design with latch cells is an implementation often used in the

industry. Often designs are available that have been optimized for minimal energy consumption. This

IP is typically supplied as a hard macro, which means the chip layout has already been fully determined

and optimized. Unfortunately, industry standard optimized SRAM IP blocks were not readily available.

To model the SRAM behaviour in this work a design is used constructed of cells from the standard library

of the used IC technology. This IP constructed from standard library cells is implemented through the

Synopsys Designware tool.

To incorporate this Designware SRAM IP in the Clash design a so-called primitive is constructed. This

primitive is a description of how the Clash tool should generate a Verilog description when a certain

function is called. In this case, the primitive is used for the asyncRAM function, resulting in a Verilog

instantiation of the Designware SRAM IP. The primitive description can be found in Appendix B.1.

The Clash code instantiating the memories can be seen below. The asyncRAM function, which is a

native Clash function, requires an input that indicates the address which should be read from, whether

there is a write input and if so, what the write address and value of that write input is. In the description for

the X memory (xmem) the calculation of the absolute read address from the base address and memory

pointer can be seen. In the single multiplier design underflow of the 8-bit unsigned address type is used

to make the address wrap around.

1 -- Instantiation of the program memory, the asyncRamPow2 function is used. This function is
native to Clash and implements an asynchronous read, synchronous write RAM.

2 -- The bit-depth of the program memory automatically scales with the defined instruction set.
The word depth is dependant on the size of the PMem_addr, which leads to a program memory
of 256 words.

3 pmem :: Clk -> Rst -> En -> Sig PMem_addr -> Sig (Maybe (PMem_addr,Instr)) -> Sig Instr
4 pmem clk rst en prog_cnt p_in = (exposeClockResetEnable asyncRamPow2 clk rst en) prog_cnt p_in
5

6 -- Instantiation of the X memory, here the absolute memory address for reading is derived from
the base address and the memory pointer section of the instruction.

7 -- The write handle function is called to obtain the absolute write address when a value
needs to be written to the X memory

8 xmem :: Clk -> Rst -> En -> Sig XMem_addr -> Sig XMem_addr -> Sig Instr -> Sig Sin -> Sig (
Maybe XMem_addr) -> Sig Xreg

9 xmem clk rst en baddr xpnt_wr instr sin ext_wr = (exposeClockResetEnable asyncRamPow2 clk rst
en) raddr wrinp

10 where
11 raddr = (-) <$> baddr <*> (get4th <$> instr) -- Relies on underflow to wrap around and

start at the bottom address when (baddr - mem_pnt) becomes negative
12 wrinp = wr_handle <$> (get2nd <$> instr) <*> xpnt_wr <*> sin <*> ext_wr -- writes sin

to memory when instruction tells it to or when external write is a (Just addr)
13

14 -- Instantiation of the Y memory. Like the X memory, the Y memory can be written to via an
external write port. That is however the only method to write to the Y memory.

15 -- The Y memory is not circular and does not use relative memory pointers, so the read address
is simply the memory pointer section from the instruction.

16 ymem :: Clk -> Rst -> En -> Sig Instr -> Sig (Maybe (YMem_addr, Coeff)) -> Sig Yreg
17 ymem clk rst en instr y_in = (exposeClockResetEnable asyncRamPow2 clk rst en) raddr y_in
18 where
19 raddr = get4th <$> instr

17

X Memory Base Pointer and Write Pointer

The base pointer contains the information of where a program should start in the X memory and can be

increased by the base_inc section of the instruction. Additionally, the pointer should wrap back to zero

when the address limit is reached. The write pointer indicates where a new sample should be written to

in the X memory and has a nearly identical behaviour to the base pointer. The only difference is that the

write pointer is increased when the Xwr_en section of the instruction is high instead.

Multiply-Accumulate Function

The computation of the new value in the accumulator register is given in the code snippet below:

1 -- MAC function:
2 -- When the Outp_instr part of the instruction is True the output of the accumulator is sent

to the output port and the accumulation register is set to 0.
3 -- When the acc_en section of the instruction is True, multiply the values in the X and Y

registers and add the result to the accumulator register
4 -- When the acc_en section of the instruction is False, do not update the value in the

accumulator register
5 acc_handle :: Xreg -> Yreg -> Acc_reg -> Acc_en -> Outp_instr -> Acc_reg
6 acc_handle xreg yreg _ _ True = (0 :: Acc_reg)
7 acc_handle xreg yreg acc_reg True _ = xreg * yreg + acc_reg
8 acc_handle _ _ acc_reg False _ = acc_reg

There are three possible situations depending on the instruction. When the Outp_instr section of the

instruction is True the value in the accumulator is propagated to the output register and the accumulator

register is reset to zero. When the accumulation is enabled by the Acc_en section of the instruction the

output of the multiplication of the values in the X and Y registers is added to the existing value in the

accumulation register. If the Acc_en section of the instruction is False the accumulation register retains

its previous value.

4.5 n-multipliers Design

Analyzing the energy efficiency of the fully parallel and single multiplier designs gives information about

two edge cases of the time-area trade off for a FIR filter design. This work also explores the design

space in between these two cases. An adjustable architecture is defined that can generate a design with

1 < n < 256 multipliers. A design with n multipliers also consists out of n sets of X and Y memories.

Additional controlling hardware and a barrel shifter are added to ensure the correct matching of samples

and coefficients and calculate the correct result. A schematic can be found in Figure 4.7. Effort has

been made to keep the control mechanisms in the designs close to the single multiplier architecture.

For instance, there is still only one memory pointer that now addresses n sets of memories instead

of a single set. This means that when n increases the design becomes more dedicated, where one

instruction always instructs n multiplications and programming other behaviour then a FIR filter becomes

more difficult.

4.5.1 Data and Coefficient memories

Instead of all samples and coefficients each being stored in a 256wordmemory, now all the data is divided

over nmemories with 256
n words each. The process of matching the right sample in the X memories with

the right coefficient in the Y memories becomes more intricate. Also the placing of new input samples in

the correct memory needs to be managed. The choice is made to store all the data interleaved in the

memories as is illustrated in Figure 4.8.

18

X
0

-M
EM

Y0
-M

EM

P
-M

EM

32x32 multiplier

Accumulation
Register

X0 reg Y0 reg

Out Reg

Sample in

Sample out

X
1

-M
EM

Y1
-M

EM

X
n

-M
EM

Yn
-M

EM

32x32 multiplier

X1 reg Y1 reg

Adder Tree

32x32 multiplier

Xn reg Yn reg

Barrel Shifter

X
ad

d
r

d
eco

d
er

Shift
counters

Figure 4.7: A schematic overview of the n-multipliers design. By adding an internal counter and a barrel

shifter that scale with the number of memories and multipliers the correct output is calculated. The

generalized template enables quick creation of many designs, each with a different level of parallelism.

X0-MEM

0 𝑠0

1 𝑠𝑛+1

2 𝑠2𝑛+1

3 𝑠3𝑛+1

X1-MEM

0 𝑠1

1 𝑠𝑛+2

2 𝑠2𝑛+2

3 𝑠3𝑛+2

X2-MEM

0 𝑠2

1 𝑠𝑛+3

2 𝑠2𝑛+3

3 𝑠3𝑛+3

Xn-MEM

0 𝑠𝑛

1 𝑠2𝑛

2 𝑠3𝑛

3 𝑠4𝑛

Y0-MEM

0 𝑐0

1 𝑐𝑛+1

2 𝑐2𝑛+1

3 𝑐3𝑛+1

Y1-MEM

0 𝑐1

1 𝑐𝑛+2

2 𝑐2𝑛+2

3 𝑐3𝑛+2

Y2-MEM

0 𝑐2

1 𝑐𝑛+3

2 𝑐2𝑛+3

3 𝑐3𝑛+3

Yn-MEM

0 𝑐𝑛

1 𝑐2𝑛

2 𝑐3𝑛

3 𝑐4𝑛

Figure 4.8: Illustration of the interleaved sample and coefficient storage over multiple memories. For

simplicity only the first 4 addresses of each memory are shown. In practice each memory contains a

number of words equal to 256
n , rounded upwards.

4.5.2 Matching sample and coefficient data

With the data stored interleaved in the memories and only a single memory pointer, additional control is

needed to propagate the matching sample and coefficient data to the input of the multipliers. Again mak-

19

ing use of the regularity of the FIR algorithm, a combination of a counter and a barrel shifter implement

the correct behavior. These components can be seen placed in Figure 4.7. The barrel shifter shifts entire

32-bit samples from the X memories to the left until the correct combination of sample and coefficient is

made.

4.5.3 Hardware Description of n Multiplier Designs

For generating a range of designs with a different amount of multipliers a shell script is written. This

script creates separate Clash files for each design and ensures that every design has a unique name.

This script can be found in Appendix C.2. The generated Clash code for n = 2 can be found in Appendix

A.3 and is elaborated upon in this section. Aside from the names of the modules and the type definition

”Num_mem” given in the code snippet below the Clash code for n = 2 is identical to that of every other

n.

1 type Num_mem=2

By making the memory sizes, amount of MAC hardware, memory pointers and barrel shifter size de-

pendant on this Num_mem type definition the ”knob” is created with which the time-area trade-off is

controlled.

Data Types

The type system of Clash enables the creation of types that have a dependency on other types. The

data types used for the n-multiplier designs are very similar to that of the single multiplier design, but the

memory addresses are now defined to fit d 256
n e addresses. The definition is shown in the code snippet

below, where the Index data type is used. When generating Verilog, Clash will translate the Index data

type to an unsigned number using the least amount of bits necessary. The program memory remains

the same size for every design, containing 256 words.

1 -- Base memory pointer, each memory will have 256/num_mem addresses, rounded upwards
2 type XMem_addr = Index (DivRU 256 Num_mem)
3 -- Y memory address, each memory will have 256/num_mem addresses, rounded upwards
4 type YMem_addr = Index (DivRU 256 Num_mem)
5 -- Program memory address, for every design a 256 word program memory is used.
6 type PMem_addr = Unsigned 8

Having variable-size memory pointers also means the memory pointer in the instruction becomes vari-

able, as defined in the code snippet below.

1 ---- INSTRUCTION SET -----
2 -- Base memory pointer increment instruction (+1 or +0)
3 type Xbase_inc = Bool
4 -- Write enable for Xmem
5 type Xwr_en = Bool
6 -- End of Program Boolean
7 type Prog_jump = Bool
8 -- Memory pointer (points to absolute Ymem location and relative Xmem location)
9 type Mem_pnt = Index (DivRU 256 Num_mem)

10 -- Boolean that determines whether the data in the accumulation register will be passed to the
output

11 type Outp_instr = Bool
12 -- Boolean that determines whether the accumulation register should be updated
13 type Acc_en = Bool
14 -- Construction of the total instruction
15 type Instr = (Xbase_inc,Xwr_en,Prog_jump,Mem_pnt,Outp_instr,Acc_en)

Reading the X memories

With multiple X memories but still one base address and one memory pointer addressing the correct

addresses in the X memories becomes more complex. As mentioned in Section 4.5.1, the data is stored

interleaved in the X memories. Because of this mapping and the delay line nature of the FIR algo-

rithm the required absolute addresses are always either baseaddress−memorypointer or baseaddress−

20

memorypointer−1. This fact is also shown in Figure 4.9, where the memory usage is shown for a design

with 3 memories and a 6 tap FIR filter implementation. To implement the desired behaviour a bit vector

of n bits is created. Each bit in this bit vector indicates whether that corresponding X memory should be

addressed with baseaddress −memorypointer or baseaddress −memorypointer − 1. The computation

of that bit vector is performed by the Clash code below. Every time a full FIR cycle is performed and an

output sample is computed a new memory select bit vector is computed.

1 --Handling function for the X memory address offset. The resulting vector indicates which
memories should be read at (base address - mem pointer) and which should be read at (base
address - mem pointer - 1).

2 -- The vector only changes when the Xbase_inc section of the instruction is True
3 -- Bitwise operations are used to incrementally shift in 0's until all bits in the vector

are 0's, then the vector resets to all 1's except for the first bit. example for num_mem =
4:

4 -- cycle1: (0 1 1 1,F)
5 -- cycle2: (0 0 1 1,F)
6 -- cycle3: (0 0 0 1,F)
7 -- cycle4: (0 0 0 0,T) -> By setting the second argument of the tuple to true the base

pointer is increased for next cycle
8 -- cycle5: (0 1 1 1,F) -> Cycle starts again but base pointer is now increased
9 f_mem_select_rd :: Vec Num_mem Bit -> Xbase_inc -> (Vec Num_mem Bit,Bool)

10 f_mem_select_rd vb_in (False) = (vb_in,False)
11 f_mem_select_rd vb_in (True) = (((0 :> Nil) ++ (tail vb_new)),(bitToBool (head vb_new)))
12 where
13 vb_new = map (or## (complement## (last vb_in))) shift
14 shift = fst(shiftOutFromN d1 vb_in)

21

X0-MEM

0 𝑠𝑖−6

1 𝑠𝑖−3

2 𝑠𝑖

3

X1-MEM

0 𝑠𝑖−5

1 𝑠𝑖−2

2

3

X2-MEM

0 𝑠𝑖−4

1 𝑠𝑖−1

2

3

X0-MEM

0 𝑠𝑖−6

1 𝑠𝑖−3

2 𝑠𝑖

3

X1-MEM

0 𝑠𝑖−5

1 𝑠𝑖−2

2 𝑠𝑖+1

3

X2-MEM

0 𝑠𝑖−4

1 𝑠𝑖−1

2

3

Clock Cycle 1
Clock Cycle 2

Memory Addressing needed to compute output sample 𝑦𝑖

Memory Addressing needed to compute output sample 𝑦𝑖+1

Clock Cycle 1
Clock Cycle 2

New sample arrives

Figure 4.9: Illustration of the memory addressing needed to compute two output samples of a 6 taps FIR

filter using a 3-multiplier design. In the figure it can be seen that every clock cycle the samples are taken

from a specific row (a) or the row before that (a− 1). Which of the three memories should be addressed

by row a or a − 1 changes every time a new sample is added to the memories. In this example, for

the computation of output sample yi two clock cycles are needed where the addresses per memory for

each clock cycle are a for memory X0, (a− 1) for memory X1 and (a− 1) for memory X2. When a new

sample arrives and output sample yi+1 needs to be computed, the addresses per memory change to a
for memory X0, a for memory X1 and (a − 1) for memory X2. To obtain the addressing behaviour as

described in this figure a decoding step is introduced which computes the correct read address for each

X memory from the base address, the memory pointer and a newly introduced counter.

The X memory base address is increased every n output samples. This is in contrast with the single

multiplier design, where this would happen every output sample.

With the memory select vector, the base address and the memory pointer section of the instruction the

absolute read addresses for the X memories can be computed. This is done in the Clash code below.

1 --Handling function used to generate absolute addresses for the X memories using the base
address, instruction and memory select bitvector

2 -- The f_add_base_mem_select handling function is mapped over the bitvector creating a
vector of Num_mem absolute adresses

3 -- The f_sub_base_mem_pnt handling function calculates base_addr - mem_pnt with overflow
handling

4 x_rd_addrs_handle :: XMem_addr -> Vec Num_mem Bit -> Instr -> Vec Num_mem XMem_addr
5 x_rd_addrs_handle xbase_rd mem_select instr = map (f_add_base_mem_select a) mem_select
6 where
7 a = f_sub_base_mem_pnt xbase_rd mem_pnt
8 mem_pnt = get4th instr
9

10 --Handling function to calculate absolute memory address for one memory by either passing
through (base_addr - mem_pnt) when the bit from the bitvector is zero or (base_addr -
mem_pnt - 1) when the bit in the bitvector is one. Additionally, handle proper wrap around
behaviour when (base address - mem_pnt) is zero.

11 f_add_base_mem_select :: XMem_addr -> Bit -> XMem_addr
12 f_add_base_mem_select xbase_rd 0 = xbase_rd

22

13 f_add_base_mem_select 0 1 = (maxBound::XMem_addr)
14 f_add_base_mem_select xbase_rd 1 = xbase_rd-1
15

16 --Handling function to calculate base address - memory pointer with overflow handling.
17 -- Subtracts the memory pointer part of the instruction from the base address and ensures

proper wrap around behaviour.
18 f_sub_base_mem_pnt :: XMem_addr -> Mem_pnt -> XMem_addr
19 f_sub_base_mem_pnt baddr mem_pnt
20 | baddr < mem_pnt = (maxBound :: XMem_addr) - (mem_pnt-baddr - 1)
21 | otherwise = baddr - mem_pnt

Writing to the X memory

A new sample that arrives must be written to one of the X memories. An internal counter is defined

that indicates which of the n X memories should be written to. This counter is increased every write

operation and will wrap around to zero once the maximum is reached. Additionally, when the maximum

of the internal counter is reached, the write pointer is increased. By implementing the writing in this

fashion the interleaved sample storage as shown in Figure 4.8 is achieved. The corresponding Clash

code for this behaviour is given below:

1 -- Write select counter which will indicate which memory to write new samples to
2 type Wr_sel = Index Num_mem

1 --Handling function for the computation of the X memory write select variable
2 -- When the Xwr_en section of the instruction is False, do not update write select variable
3 -- When the Xwr_en section of the instruction is True, increase the write select variable and

when the maximum is reached, set write select variable to zero and set the boolean in the
second part of the tuple to True to indicate that the write pointer should be increased.

4 f_mem_select_wr :: Wr_sel -> Xwr_en -> (Wr_sel,Bool)
5 f_mem_select_wr wr_sel False = (wr_sel,False)
6 f_mem_select_wr wr_sel True
7 | wr_sel == (maxBound::Wr_sel) = ((0 :: Wr_sel),True)
8 | otherwise = (wr_sel + 1,False)
9

10 --Handling function which creates a vector of Write instructions in the format required by the
asyncRam function.

11 -- When the Xwr_en section of the instruction is True create a num_mem wide vector with 1
element filled with the write address and new sample.

12 -- Which element in the vector contains the new sample is determined by the Wr_sel value,
using an imap to replace the value in the vector at a certain index.

13 x_wr_inps_handle :: XMem_addr -> Wr_sel -> Sin -> Xwr_en -> Vec Num_mem (Maybe (XMem_addr,Sin)
)

14 x_wr_inps_handle _ _ _ False = replicate (SNat @ Num_mem) Nothing
15 x_wr_inps_handle wr_base wr_sel sin True = f_rep_ind wr_sel (Just (wr_base,sin)) (replicate (

SNat @ Num_mem) Nothing)
16 where
17 f_rep_ind wr_sel a vec = imap (\i vec -> if i == wr_sel then a else Nothing) vec

Barrel Shifter

Abarrel shifter is implemented to shift the samples that are obtained from the Xmemories with the correct

coefficients from the Y memories. After every computation of an output sample and thus after every full

FIR cycle a counter is increased. This counter indicates how many ”places” the barrel shifter should shift

the samples from the X memories to match the correct coefficients.

The barrel shifter is implemented by multiple shifter stages and a shift counter. The structure can be

seen in Figure 4.10. Every stage shifts the samples by a power of two and is turned on or off by the shift

counter.

23

𝑋0 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7

𝑈0 𝑈1 𝑈2 𝑈3 𝑈4 𝑈5 𝑈6 𝑈7

𝒄𝟐 𝒄𝟏 𝒄𝟎

Shift Counter

Shift 1 place

Shift 2 places

Shift 4 places

Figure 4.10: Illustration of the barrel shifter implementation. Each shifter stage shifts the input sample

a power of two places to the right. The shift counter controls which of the stages perform a shift or not.

This structure enables 2stages possible shifts.

For an n-multiplier design a barrel shifter with log2(n) stages are needed and thus designs with a smaller

n only need fewer stages. To implement the structure in Clash a description is made for 8 barrel shifter

stages. With 8 stages the barrel shifter structure can be created for n ≤ 256. The description for stage

1 through 3 is given below.

1 -- Barrel shifter functions for DSP implementations with multiple memories. To be able to
combine different static barrel shifters multiples of the same function description are
necessary

2 -- but each one is called with a different SNat for the amount rotated. Since this requires a
different type for each function unique function names are needed.

3 -- the functions are instantiated by a line in a DSP_program file generated by Matlab
depending on the amount of barrel shifting needed.

4

5 -- Up to 8 unique barrel shifters are supported
6

7 vec_shft_1 :: KnownNat n => Bool -> (Vec n a1,SNat 0) -> (Vec n a1,SNat 1)
8 vec_shft_1 False (vec_in,pow) = (vec_in,addSNat pow d1)
9 vec_shft_1 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)

10 where
11 num_shft = d1
12

13 vec_shft_2 :: KnownNat n => Bool -> (Vec n a1,SNat 1) -> (Vec n a1,SNat 2)
14 vec_shft_2 False (vec_in,pow) = (vec_in,addSNat pow d1)
15 vec_shft_2 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
16 where
17 num_shft = d2
18

19 vec_shft_3 :: KnownNat n => Bool -> (Vec n a1,SNat 2) -> (Vec n a1,SNat 3)
20 vec_shft_3 False (vec_in,pow) = (vec_in,addSNat pow d1)
21 vec_shft_3 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
22 where
23 num_shft = d4

Since not all stages are needed for every design, a unique instantiation function is generated for every

n-multiplier design. The instantiation function for n = 2 is given below. This function can take the outputs
of the X memories and the shift counter variable and will produce a vector with the correctly shifted

samples.

1 -- Barrel shifter function generated by MATLAB, with log2(Num_mem) stages.

24

2 barrel_shift :: Vec Num_mem Xreg -> Shft_cnt -> Vec Num_mem Xreg
3 barrel_shift vec_in cnt = fst $ ((vec_shft_1 (shft_en !! 0))) (vec_in,d0)
4 where
5 shft_en = reverse (to_bool_vec cnt)
6

7 --Barrel shifter help function
8 to_bool_vec :: Shft_cnt -> Vec (CLog 2 Num_mem) Bool
9 to_bool_vec cnt = unpack (pack cnt) :: Vec (CLog 2 Num_mem) Bool

25

5 METHOD OF ANALYSIS

To evaluate all proposed designs an analysis method is set up which simulates each design and records

the energy consumption. A high level overview of this method is given in Figure 5.1. The goal is to obtain

an estimate of a design’s energy usage if this design would be manufactured on an IC.

The Clash hardware descriptions as shown in sections 4.4.3, 4.3.2 and 4.5.3 are synthesized to create

a Verilog description of the eventual IC hardware. A testbench is created to shape an environment com-

parable to the on-chip situation and provide representative inputs to the design. The design’s switching

behaviour is recorded and used to create an estimate of the power usage over time, from which the

energy consumption is derived.

Figure 5.1: High level overview of the method of analysis.

The following sections will elaborate on the different steps of the analysis process and how they are

implemented in the tools. This will lead to Figure 5.3 where a schematic overview of the used software

tools and how they interact is given.

5.1 Generation of Hardware Description

The Clash tool is instructed to generate Verilog HDL from the code described in sections 4.4.3, 4.3.2

and 4.5.3. Important to note here is that the primitive from appendix B.1 ensures that when the Verilog

RTL for the X,Y and P memories are generated the Designware memory IP is instantiated. This is the

memory constructed from standard library cells that is used to model SRAM in the designs.

5.2 Logic Synthesis

The synthesis process is the next step in creating an actual chip. For this, the synthesis tool requires the

Verilog RTL descriptions produced by Clash and a library file that contains all the possible components

that are available in that specific IC technology. The tool is controlled by a script that can set design con-

straints. The tool maps the functionality described in the RTL description to a netlist consisting of cells

that are possible to fabricate in that specific IC technology. This netlist is a more accurate description of

the eventual IC and is used as an improved model to perform power analysis.

Through the Europractice initiative the Design Compiler of Synopsys[21] is available. The Synopsys

toolset is industry proven software and a very large player in the IC EDA tool industry.

26

Preferably a library for the 55nm TSMC technology would be used, as this is the technology used by Ax-

ign. This library was however not readily available and thus the 65 UMC library is used. The assumption

is made that a representative comparison between the different designs can still be made. This assump-

tion is made because the 55nm technology is presented as a half node shrink of the 65nm process.

This implies that there are few changes aside from the size of the transistors. The assumption is made

that the lower energy consumption of the 55nm technology will apply to all designs equally. The exact

difference is a good subject for future studies.

Aside from delivering a more accurate IC model of the desired design, the synthesis tool also gives a

preliminary chip area report. Amore exact area indication would be available after the netlist would have

been placed and routed, but the preliminary report already gives a good indication of the size.

5.2.1 SRAM implementation

As discussed in section 3.4, on-chip SRAM is an extremely popular form of addressable memory and

is often highly optimized for minimal area and power usage. The SRAM is often provided in the form of

a hard macro. This means that this specific piece of the chip is already fully laid out and considered a

”black box” by the synthesis tools.

Because the SRAM is such a delicate and optimized design it is not included as a standard cell in the

UMC65nm library. Unfortunately, no representable SRAM IP was easily available. As an alternative

a piece of IP is used provided by the Synopsys DesignWare library. This IP generates a design from

standard library components that is functionally equivalent to typical SRAM, but benefits less from the

area and power optimizations. The consequence is that the results presented in this work are a less

accurate representation of industrial IC performance, but still relevant. A more detailed indication of the

resulting difference in energy and chip area is difficult to obtain with the limited time available, as energy

figures for the many different sizes of SRAM in the correct IC technology are not easily available, and

differ significantly not only per IC technology, but also per supplier.

5.2.2 Multiplier Generation

Section 3.3 discussed digital hardware architectures for performingmultiplication. In this work, the choice

and exact implementation of the multipliers is left to the Synopsys Design Compiler. The synthesis tool

builds the 32-bit multipliers from a combination of smaller multipliers and adders that are present in the

standard cell library. The tool performs several optimization runs to ensure timing is met and the least

amount of hardware is used. In future work, investigations could be conducted to gain insight in how

these multiplier optimization runs effect the energy efficiency.

5.3 RTL Testbench

A schematic of the testbench functionality can be seen in Figure 5.2.

Figure 5.2: Overview of the RTL testbench.

The RTL testbench must provide the FIR design with all the stimuli that it needs for correct operation.

Additionally, the testbench will ”program” the design when necessary such that coefficients and initial

memory values can be set. The testbench also compares the output samples of the design to expected

values, thus verifying the functional correctness of the design under verification. To obtain a fair compar-

ison between different implementations the testbench is kept almost identical for each design.

27

The testbench is designed in Clash, which is then compiled into verilog RTL. Both the design and the

testbench are loaded into ModelSim, the HDL simulator developed by Mentor Graphics[22]. ModelSim

will simulate the design in the testbench and monitor the switching behavior of the design under verifi-

cation. This switching behaviour will be written to a value change dump (vcd) file. To not take startup

behaviour into account the switching behavior is not recorded until the program, all coefficients and initial

values are loaded into the design.

5.4 Samples, Coefficients, Programs and Expected Output Generation

For every testbench/design input stimuli are generated, programs are compiled and expected outputs

are computed. In this work Matlab is chosen for this task because of the authors familiarity with the tool.

For the input signal random values are used to represent an audio bitstream. As mentioned in section

4.2.3 values between -1 and 1− 2−24 are generated with a precision of 24 bits. These values are used

for the input sample stream and coefficients. In the Matlab script the number of FIR taps and the number

of memories can be configured. The script then generates a set of instructions. All the generated data

is written to a haskell file in the correct format such that the Clash tool can interpret the data and create

a testbench.

5.5 Power Analysis

When the switching behavior of the design is obtained, Synopsys PrimeTime[23] is used to generate

a power report. The 65nm UMC technology library includes power models of all the used cells in the

synthesized netlist. This information, together with the switching behavior enables the tool to create a

report on the power usage. This report contains the average power consumption over multiple samples

and not the peak power consumption. When the total energy consumption (in Joules) over a certain time

is desired, the reported power consumption can then be obtained by multiplying the power figure with

that certain time. Similar to the Synopsys Design Compiler, this tool is controlled with a constraint file.

5.6 Tool Overview

In Figure 5.3 a schematic overview can be seen of all the tools used to obtain the reports on area and

power consumption of one design. The annotated arrows indicate what files each tool produces or

consumes.

5.7 Automatically Generating and Evaluating n-multiplier Designs

Using the generalized Clash design, input generation, synthesis script and power analysis scripts an

overarching script is written which will automatically generate the needed files for all desired n-multiplier

designs. This enables the user to set a range of parallel multipliers used, say 2 to 32, and perform the

power analysis method described above on all designs. All generalized scripts and the Clash design can

be found in Appendix C.

28

Matlab:
Input generation
Coefficient generation
Generate Initial values
Program compiler

Clash:
Compile design
Compile testbench

Haskell files (.hs)

Synopsys Design Compiler:
Synthesize Design
Provide chip area report

Design files (.v)

Modelsim:
Post-synthesis netlist stimulation
Record switching behaviour

Synopsys PrimeTime:
Report average power

Testbench (.v)

Design Netlist (.v)

Library file (.db)
Designware lib (.sldb)
Constraints file (.tcl)

UMC 65nm standard cell library (.v)

Design constraint file (.sdc)
Parasitics file (.spef) Switching activity file (.vcd)

Power Report

Area Report

Library file (.db)
Designware lib (.sldb)
Constraints file (.tcl)

Data generation script (.m) FIR design description (.hs)

Circuit Delay (.sdf)

Figure 5.3: Schematic overview of the tools used to obtain area and power consumption reports. The

arrow annotations indicate the type of file that is consumed by the corresponding tool.

29

6 RESULTS

The analysis method presented in section 5 is used to obtain the average power consumption of the

designs presented in section 4. All designs are stimulated by a testbench that initializes the designs and

configures a FIR filter with 100 taps. The average power consumption is determined over at least 100

consecutive input samples. The input samples arrive at a frequency of 192 KHz and the average power

consumption is computed over the entire runtime of the testbench, thus including both the consumption

when a design is actually computing a new output and when the design is idle.

By synthesizing a design an estimation of the needed chip area is also obtained. To gain further insight

into the energy consumption per function categories are defined in the Clash description. By annotating

sub-functions in the Clash description a structure is created that remains in place throughout the verilog

generation, the synthesis process, and power analysis. These categories are then also present in the

generated power reports and thus the energy consumption per category is determined.

6.1 Fully Parallel Design

The categories that are constructed in the fully parallel design are shown in Figure 6.1. By creating the

categories in this fashion an idea can be obtained for the energy consumption ratio between arithmetic

operations and memory access.

32x32
multiplier

Yn
reg

X
n

-1
 reg

32x32
multiplier

Yn
-1

 reg

X
2

 reg

32x32
multiplier

Y2
 reg

X
1

 reg

32x32
multiplier

Y1
 reg

X
0

 reg

32x32
multiplier

Y0
 reg

Sample in

Adder Tree

Sample out

xregs

yregs

MAC

Figure 6.1: A schematic overview of the fully parallel design with the analysis categories annotated.

The chip area results can be seen in Figure 6.2. From this bar graph, the dominant area contribution of

the MAC hardware can clearly be seen. This hardware encompasses all the 256 32-bit multipliers and

the adder tree that sums all the results. The power results shown in Figure 6.3 show that even though

the MAC category dominates the area figure, this is not the case for the energy consumption. Here it

can be seen that the memory elements have a more significant contribution. Interesting to note is that

the memory of the X registers and Y registers is almost equal, while the Y values do not change and

30

the X registers change every sample clock. This would imply that moving the data between registers is

insignificant with respect to driving the output from a power perspective.

Total Chip Area Fully Parallel Design

91481.76

88758.36

1738373.77
45915.84

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
hi

p
A

re
a

(u
m

2
)

106

yregs
xregs
MAC
remainder

Figure 6.2: Bar graph showing the total cell area of the fully parallel design. The different colours indicate

the contribution of specified subsections of the design. It can be seen that the total chip area is dominated

by the MAC hardware.

Average Power Consumption Fully Parallel Design

0.003090

0.003090

0.001470
0.000037

1
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

10 -3

yregs
xregs
MAC
remainder

Figure 6.3: Bar graph showing the average power usage of the fully parallel design. The average power

is computed over 120 samples. The design is configured for a 100 tap FIR filter and thus only 100

of the 256 multipliers are used effectively. The different colours indicate the contribution of specified

subsections of the design.

31

6.2 Single Multiplier Design

For the results of the single multiplier design more categories are defined. These categories are anno-

tated in the schematic in Figure 6.4. The program memory is a new addition to the categories.

X
-M

EM

Y-M
EM

P
-M

EM

32x32 multiplier

Accumulation
Register

X reg Y reg

Out Reg

Sample in

Sample out

Adder

pmem

xmem

ymem

MAC

Figure 6.4: Basic schematic overview of the single multiplier design as shown in section 4.4, now anno-

tated with the analysis categories.

First the chip area results are shown in Figure 6.5. In this figure there are no real surprises. Since there

is only one multiplier the contribution of the memories is relatively larger.

Total Chip Area Single Multiplier Design

95574.24

95641.56

60273.36
6795.00

1952.64

1
0

0.5

1

1.5

2

2.5

3

C
hi

p
A

re
a

(u
m

2
)

105

ymem
xmem
pmem
MAC
remainder

Figure 6.5: Bar graph showing the total cell area of the single multiplier design. The different colours

indicate the contribution of specified subsections of the design.

The average power consumption can be seen in Figure 6.6. From the figure it can be seen that the

32

chosen categories encompass the energy hungry sections quite well, as the ”remainder” contribution

is small. This shows that little energy consumption is unaccounted for. The second observation made

is that the average power is heavily dominated by the memories. This is not unexpected according to

the literature mentioned in section 3.4. However, as discussed in section 5.2.1 the ”SRAM” used in the

designs is not fully representative for industry standard SRAM. In a more accurate representation, the

energy consumption of the memories would likely be lower.

Average Power Consumption Single Multiplier Design

0.002950

0.002950

0.001830
0.000295
0.000078

1
0

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

10 -3

ymem
xmem
pmem
MAC
remainder

Figure 6.6: Bar graph showing the average power usage of the single multiplier design over 300 samples.

The different colours indicate the contribution of specified subsections of the design.

6.3 Comparison Fully Parallel - Single Multiplier

In Figure 6.7 the area results of the fully parallel and single multiplier design are compared. The fully

dedicated design is much larger, as is to be expected. From the figure it can be seen that both the

designs have roughly the same area occupied by memory. The difference is in the MAC section of the

fully parallel design, which is much larger.

33

Total Chip Area for the Fully Parallel and Single Multiplier Designs

Fully Parallel Single Multiplier
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
hi

p
A

re
a

(u
m

2
)

106

ymem
xmem
pmem
MAC
remainder

Figure 6.7: Bar graph showing the needed chip area for both the fully parallel and single multiplier

designs. The MAC section of the fully parallel requires much more area, as the fully parallel design has

256 multipliers compared to only one that is used in the single multiplier design.

Comparing the average power results in Figure 6.8 it can be seen that the total energy consumption

is quite similar. The single multiplier design consumes 5.4% more. Looking at the different categories

an interesting difference can be seen. While the memory elements consume roughly the same the

average MAC consumption is much smaller for the single multiplier design even though the amount of

multiplication operations is the same for both designs. This decrease in MAC consumption is however

more than fully offset by the consumption of the program memory.

Average Power Consumption of Fully Parallel and Single Multiplier Design

Fully Parallel Single Multiplier
0

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

10-3

ymem
xmem
pmem
MAC
remainder

Figure 6.8

6.4 N Multiplier Design

For the analysis of the N-multiplier designs the categories are annotated in Figure 6.9. For the single

multiplier design, categories are added for the Barrel Shifter, the X registers and Y registers.

Average Power Consumption

A bar graph for the average power for 32 designs with 2 ≥ n ≥ 33 can be seen in Figure 6.10. From this

bar graph a number of observations can be made.

34

X
0

-M
EM

Y0
-M

EM

P
-M

EM

32x32 multiplier

Accumulation
Register

X0 reg Y0 reg

Out Reg

Sample in

Sample out

X
1

-M
EM

Y1
-M

EM

X
n

-M
EM

Yn
-M

EM

32x32 multiplier

X1 reg Y1 reg

Adder Tree

32x32 multiplier

Xn reg Yn reg

Barrel Shifter

X
ad

d
r

d
eco

d
er

Shift
counterspmem

xmem

ymem

MAC

Barrel shifter

xregs

yregs

Figure 6.9: A schematic overview of the n-multipliers design with the analysis categories annotated.

Average Power Consumption n-multipliers Design for n Ranging 2 to 33

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of parallel multipliers and memories

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

A
ve

ra
ge

 P
ow

er
 (

W
)

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.10: Bar graph showing the average power usage of the the N-multipliers designs for 2 ≥ n ≥ 33.

First and foremost, the average power of the complete designs increases with n. For n = 2 the average

power consumption is very close to that of only a single multiplier and for n = 33 the consumption has

increased with around 10% with respect to the single multiplier design.

Second, the energy consumption of the X and Y memories shows no clear trend upward or downward.

Every design has nearly the same amount of total storage space, but from section 3.4 the expectation

rose that the energy consumption should decrease when the amount of words in each individual memory

would go down. This deviation from expectations could be explained by the standard-cell implementation

of the SRAM instead of a hard macro.

Third, the rise in total energy consumption can be attributed to the MAC, X registers and Y registers.

This trend is also clearly visible in Figure 6.11. In this figure the difference in energy consumption of

the different categories with respect to the single multiplier design is shown. This figure shows the trend

of whether a category increases or decreases its consumption with the increase of n. The increases

35

shown are curious, because while the amount of MAC hardware and the amount of registers increases,

the number of multiplications, additions and register updates is the same for all designs. In all cases a

100 taps FIR filter is implemented. For the MAC hardware the cause of this behavior may lie in the fact

that all multipliers feed into one adder tree. When an output of even one multiplier changes this causes

switching all throughout the adder tree. When a lot of multipliers change output at slightly different times

this will result in a lot of unnecessary updates in the adder tree, causing switching losses. This hypothesis

has not been verified. For the X and Y registers the cause may lie in the switching losses that still occur

even when the new register value is the same as the old value. As the amount of registers increases,

each register will have less new values, but the ”idle” switching loss may still be there. This hypothesis

drives the choice to implement clock gating, which is elaborated upon in sections 6.6 and 6.7.

Program Memory

Figure 6.11 also shows the decrease in energy consumption of the program memory. This decrease

can be explained by two factors: The first and most significant cause is that when memories with fewer

words are used, less bits are necessary for the memory pointer. This is why the drops in consumption

occur at powers of two, as that is the point where one bit less is needed. The P-Mem then becomes

smaller and the average power decreases. The second effect which is less visible but still present is the

decrease in amount of instructions needed to complete the program. The reducing program size can be

seen in Figure 6.12, where the 100 FIR tap program can be seen for different n. This behavior shows that
(for this standard cell ”SRAM” implementation of) the P-Mem word width affects the energy consumption

much more than the amount of memory accesses needed to run the program.

0 5 10 15 20 25 30 35

of parallel memories

-6

-4

-2

0

2

4

6

8

10

12

A
ve

ra
ge

 p
ow

er
 in

cr
ea

se
 (

W
)

10-4 Average power increase w.r.t. single multiplier design

ymem
xmem
pmem
MAC
yregs
xregs

Figure 6.11: Plot showing the increase/decrease in average power for four categories with respect to the

single multiplier design. From the plot the increase in consumption of the MAC hardware and decrease

for the P-Mem can clearly be seen.

36

0 5 10 15 20 25 30 35

Number of prallel multipliers and memories

5

10

15

20

25

30

35

40

45

50

55

N
um

be
r

of
 in

st
ru

ct
io

ns
 in

 p
ro

gr
am

Number of instructions in 100 tap FIR program

Figure 6.12: Plot showing the amount of instructions needed to execute a 100 tap FIR filter program for

2 ≥ n ≥ 33.

Area Results

The total cell area for the same designs are shown in Figure 6.13. The area results show little surprises.

As expected, the amount of area used by the MAC, X and Y registers increases. The total area of the

X and Y memory differs for every design and is lowest when n is a power of two. This is explained

by the choice to round the number of addresses of each X and Y memory upwards, as discussed in

section 4.5.1. When n is a power of two, 256
n becomes an integer value and no rounding is necessary,

thus producing less total memory space and consequently, less area. In that same fashion, when n is

a power of two the amount of addresses needed per memory precisely fit in the amount of bits used for

the address lines. Thus, less overhead is needed to address all memories.

Total Chip Area n-multipliers Design for n Ranging 2 to 33

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of parallel multipliers and memories

0

1

2

3

4

5

6

C
hi

p
A

re
a

(u
m

2
)

105

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.13: Bar graph showing the total cell area of the the N-multipliers designs for 2 ≥ n ≥ 33.

37

6.5 Comparison of Sinlge Multiplier, N-Multiplier and Fully Parallel Designs

Plotting all the area and power results of the previous sections in one bar graph Figure 6.14 and Figure

6.15 are created. The trend seen in the area results leaves little surprises. With increasing n, the total

area needed for the memory stays roughly the same while mainly the MAC hardware increases. Extrap-

olating this for beyond n = 33, the expectation is that at n = 256 the total area will be roughly that of the

fully parallel design.

Total Chip Area for the Single Multiplier Design, Fully Parallel Design and n-Multipliers Designs for n ranging 2 to 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Full

y P
ar

all
el

Number of parallel multipliers and memories

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
hi

p
A

re
a

(u
m

2
)

106

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.14: Bar graph showing the total cell area of the single multiplier design, the fully parallel design

and the n-multipliers design for 2 ≥ n ≥ 33. A table with the values of all the bars is given in appendix

D.1

For the average power results however the trend does not seem to advance towards the fully parallel

design. While the energy consumption of the memories stays roughly the same the energy consumption

of the MAC at n = 33 is already roughly the same as the fully parallel case. Extrapolating this graph for

a higher n will likely result in even more power consumption.

Average Power for all designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Fully Parallel

Number of parallel multipliers and memories

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

A
ve

ra
ge

 P
ow

er
 (

W
)

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.15: Bar graph showing the average power consumption of the single multiplier design, the fully

parallel design and the n-multipliers design for 2 ≥ n ≥ 33. A table with the values of all the subsection

is given in appendix D.1

38

6.6 Clock Gating

As mentioned in section 6.4, disabling the clock input for hardware that does not need to run can result

in a reduction in energy consumption. This clock gating is a well known technique that is widely used

in digital ASIC hardware. The basic principle is shown in Figure 6.16. When the input of a register is

preceded by a multiplexer that either passes a new value or the registers own output, a transformation

can be made. Instead of setting the previous output to the input of the register, the same control signal for

themultiplexer can be used to choose whether the clock to the register is passed or not. If not, the register

will not update and the output will remain the same. Only now, no energy is used to update the register

values. Synopsys Design Compiler can recognize the above mentioned situation and automatically

implement clock gating. An attempt was made to apply this functionality to the n-multiplier designs but

unfortunately this did not result in functioning designs. As an alternative the clock was manipulated within

the RTL design. A primitive was created that instructs Clash how to generate the desired Verilog RTL.

The specific primitive that is created simply takes a control signal and a clock signal as inputs to an AND

gate and outputs the ”gated” clock signal. The primitive description can be found in Appendix B.2. The

designs in this work possess the property that during most clock cycles, either all of the hardware needs

to be enabled or all the hardware can be disabled. Therefore a single clock gate is implemented that can

disable the entire design except for the control logic of the clock gate itself. The specific control signal

originates from a register in which the value is set to true by the external frame trigger and set to false by

reaching the end of a program. This results in a gated clock that turns on when a new sample arrives,

remains on for the duration of the program, and turns off directly after the last instruction of the program

is executed.

Figure 6.16: RTL schematic illustrating the clock gating transformation[24].

6.7 Results Clock Gated Designs

The average power results for n-multiplier designs with clock gating ranging from n = 1 till n = 33 can

be seen in Figure 6.17. The chip area results for the clock gated designs are not shown as they are very

similar to the results shown for the non clock gated designs in Figure 6.14. This is the case since only

the single clock gate is added, which uses very little chip area.

39

Average Power for all clock gated designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Fully Parallel

Number of parallel multipliers and memories

0

0.5

1

1.5

2

2.5

3

3.5
A

ve
ra

ge
 P

ow
er

 (
W

)
10 -3

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.17: Bar graph showing the average power consumption of the single multiplier design, the fully

parallel design and the n-multipliers design for 2 ≥ n ≥ 33. Clock gating is applied to all designs in this

figure. A table with the values of all the subsection is given in appendix D.2

The first observation that is made is that there is a clear reduction in consumption for all designs. The

designs in figure 6.17 range from 3.4 mW to 0.49 mW while the designs without clock gating as shown

in figure 6.15 never drop below 7.68 mW.

The second observation is that there are significant reductions in the average power consumption of the

X and Y memories where this was not the case for the designs without clock gating. Figure 6.18 shows

again the increase or decrease in energy consumption of different categories with respect to the single

multiplier design. A logarithmic trend can be seen in the X and Y memory categories. This trend is not

present in the designs without clock gating in Figure 6.14. This difference in the results shows that using

fewer words is not necessarily beneficial in the used DesignWare memory IP. The decrease in energy

consumption likely flows from the fact that all registers inside the X and Y memory are clocked while the

data of only one register is needed. Using more memories for fewer clock cycles is very beneficial since

the cumulative amount of register clocking is reduced.

40

0 5 10 15 20 25 30 35

of parallel memories

-1.5

-1

-0.5

0

0.5

1

1.5
A

ve
ra

ge
 p

ow
er

 in
cr

ea
se

 (
W

)

10-3 Average power increase w.r.t. single multiplier design (clock gated)

ymem
xmem
pmem
MAC
yregs
xregs

Figure 6.18: Plot showing the increase/decrease in average power for four categories with respect to the

single multiplier design. All designs have clock gating applied.

Figure 6.18 also shows that the increasing consumption of the X and Y registers that was discussed

in section 6.4 is no longer present. Additionally, the consumption of the program memory is no longer

dominated by the instruction bit-width but by the program length.

The only category that remains virtually unchanged is that of theMAC hardware. Since theMAC category

consists purely of combinational logic and no clocked hardware the lack of change by the introduction of

clock gating is not surprising.

6.8 MAC Energy Consumption for Highly Parallel Designs

To further investigate the energy consumption behaviour of the MAC category the average power of

designs for 1 ≥ n ≥ 110, 128 and 255 multipliers is given in Figure 6.19.

41

Average Power for all clock gated designs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

12
8

25
5

F
ul

ly
 P

ar
al

le
l

Number of parallel multipliers and memories

0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 P
ow

er
 (

W
)

10-3

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.19: Bar graph showing the average power consumption for designs with 1 ≥ n ≥ 110, 128 and

255 multipliers and the fully parallel design. All designs have clock gating applied.

The first observation made is the steep decrease in energy consumption at n = 100. This decrease can

partly be explained by the fact that a FIR filter with exactly 100 taps is executed. When the number of

multipliers in the designs is equal to or exceeds the number of taps that is executed the MAC hardware

is only used once. However, the decrease in energy consumption of the MAC category between n = 99
and n = 100 is much more significant with respect to the decrease between n = 49 and n = 50. In both

cases the number of cycles the MAC hardware is operational is reduced, between n = 49 and n = 50 it
is reduced from 3 cycles to 2, while between n = 99 and n = 100 it is reduced from 2 cycles to 1. The

exact cause for this specific deviation is not found. In future work an attempt can be made to further

investigate the behaviour by defining separate categories for the multipliers and adders or even looking

at the energy consumption of individual multipliers and adders.

Another observation that can be made is that there is a decrease in energy consumption at every n by

which 100 is divisible, such as n = 10, n = 20, n = 25, n = 50 and n = 100 as mentioned above. This

decrease can be explained by the fact that in the designs containing these number of multipliers all mul-

tipliers always contribute to the output and there are no cycles where only a fraction of the multipliers are

used. This effect of excess multipliers can also be seen at n = 128 and n = 255, where the number of

multipliers exceeds the number of taps in the implemented filter.

Unfortunately obtaining average power results for more designs did not deliver a better explanation for

the large increase in energy consumption of the MAC hardware with the increase in number of multipliers.

Also Figure 6.20, which shows the area results for the designs discussed, does not give any new insights.

The area results show a steady increase in MAC hardware, as is to be expected, but the rise in energy

consumption can not be attributed to increasing leakage dissipation of the larger hardware, as then the

decrease in energy consumption at n = 100 in Figure 6.19 would not be present. Figure 6.20 also shows
that the n-multiplier architecture with n = 255 would require more chip area compared to the fully parallel

design. This additional hardware is caused by the large amount of control hardware needed to address

all the memories, the large amount of X and Y registers needed and the large barrel shifter section.

42

Total Chip Area for All Clock Gated Designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
11

0

12
8

25
5

F
ul

ly
 P

ar
al

le
l

Number of parallel multipliers and memories

0

0.5

1

1.5

2

2.5

3

C
hi

p
A

re
a

(u
m

2
)

106

ymem
xmem
pmem
MAC
barrel shift
yregs
xregs
remainder

Figure 6.20: Bar graph showing the total cell area for designs with 1 ≥ n ≥ 110, 128 and 255 multipliers

and the fully parallel design. All designs have clock gating applied.

43

7 CONCLUSION

This work aimed to gain more insight into how architectural choices affect the energy-efficiency of digital

ASIC hardware in an audio setting. The focus was laid on the time-area trade-off in FIR implementations.

In section 3 an overview of relevant theory and literature on power consumption in digital hardware is

shown. In sections 4 a method was presented to systematically create designs with a different time-area

trade-off, introducing a single ”knob” that would adjust the amount of parallelism in a design. Analyzing

these designs with the method elaborated upon in section 5 the time-area design space can be explored

while focusing on energy efficiency. Section 4 also presented two designs for comparison: One with a

very flexible ”processor like” architecture with only a single multiplier and a fully parallel, fully dedicated

design of an FIR filter.

The first conclusion that can be drawn is that the proposed analysis method can give additional insight

into the energy consumption behaviour of a design. This is illustrated in section 6. Here it was identified

that when the amount of X and Y registers in the design was increased, the dynamic energy consumption

also increased even though the total amount of data passing through all X and Y registers was the same

for all designs. This identified the potential for using clock gating to reduce the dynamic power con-

sumption. Being able to investigate the energy consumption over multiple designs gave insight into the

trend and subsequently sparked the question of what might have caused this trend. The design change

following from this question improved the energy efficiency of all designs. This example shows that the

proposed method can be a tool for aiding the digital IC designer in navigating the energy efficiency design

space.

From the results presented in sections 6.7 and 6.8, where the energy consumption and required chip

area of designs with clock gating applied are discussed, an answer to the research question ”How does

the time-area trade-off affect the energy efficiency of a streaming FIR filter ASIC implementation for audio

purposes?” can be formulated. Starting with the edge cases of the trade-off, the fully parallel design and

the design with only a single multiplier, the beneficial effect of parallelism on energy efficiency can clearly

be seen. The fully parallel design has an energy consumption that is more than 85% lower compared to

the single multiplier design. This gain in energy efficiency comes at a cost of flexibility and chip area, as

the fully parallel design is 8 times as large. All designs with an 2 ≥ n ≥ 255 number of multipliers are

within these edge cases in terms of energy consumption. The largest gains in energy efficiency com-

pared to the single multiplier design are obtained for designs with a small n. At n = 2 a 37% decrease

in energy consumption is obtained while only increasing the total chip area by 2%. As n increases the

gain in energy efficiency reduces and for n > 20 the energy consumption often even increases again.

The cause of this increase can be attributed to the multipliers and adders, but the exact reason for the

energy consumption increase of this specific part of the design has not been found.

Important to note is that the results are obtained through simulations only and actual silicon performance

may differ. Especially the SRAM memory model constructed of standard library cells used in the designs

can differ significantly from the SRAM that is found in chips in industry.

44

8 DISCUSSION AND FUTURE WORK

In this work a number of assumptions and simplifications are made to benefit the research process. Of-

ten these choices are a result of either the limited availability of time or resources such as design tool

software. The assumptions and simplifications with the most expected influence on the results are dis-

cussed in this chapter.

By narrowing the research question in section 2 the assumption is made that the results for a FIR imple-

mentation give insight for a more complex DSP with more functionality. More complex DSP algorithms

still mainly consists of multiplications, additions andmemory access operations. But the relative contribu-

tion to energy consumption of these operations will vary from the FIR case. For instance, the introduction

of feedback will put more strain on the memories, as outputs need to be written back. Therefore, applying

the conclusions drawn in this work on other algorithms should be done with care.

The absence of more accurate SRAM models can have a great influence on the results presented in

this thesis as the energy consumption of most designs is dominated by that of the memories. Currently

a memory implementation using registers from the standard-cell library is used to model memory be-

haviour. Optimized hard-macro SRAM IP as is the industry standard is likely much more energy efficient.

Additionally, the change in energy consumption with respect to memory size will likely be different.

In section 4 the choice is made to explore the time-area trade-off by making the single multiplier ”pro-

cessor like” design more parallel. This resulted in that all designs kept the addressable memory layout.

An interesting topic for future research would be to ”fold” the fully parallel design, which uses a tapped

delay line, in time instead. Both techniques will result in designs that explore the time-area trade off, but

the ”folded” designs will use tapped delay lines instead of addressable memory.

Using a more abstract hardware description language such as Clash instead of low-level VHDL or Ver-

ilog can introduce a lack of understanding of exactly what hardware specifically is generated. This may

have introduced illogical and inefficient hardware structures which while functionally correct may hinder

optimal power performance.

Because of limited available libraries the 65nm UMC IC technology library was used instead of the 55nm

TSMC as is used by Axign. This changes the power figures as a smaller processing node generally has

less capacitance and thus less energy dissipation. Additionally, using the 65nm library from UMC instead

of the 65nm library from TSMC might have introduced more changes to the power behavior.

The synthesis toolset is proprietary software which introduces many optimization steps of which the

exact functionality is not well known. Additionally, there is limited available documentation. Tutorials

and guides for working with the tools are hard to come by. The synthesis process is an important step

to obtain an accurate model for the power behaviour if the design were to be produced on an IC. The

difficulties in working with and understanding the tools may have resulted in unnecessary inaccuracies

in the results presented in this work.

All power analysis and area results are extracted from a netlist that has not been through the layout

phase of IC design. The layout phase can introduce deviations in the power behavior because of spe-

cific placing, lengths of traces, clock tree layout etc.

45

Future Work

Below a list can be found of recommended subjects to investigate in future work, listed from highest

priority to lowest.

• The effect of using industry standard, optimized, hard-macro SRAM.

• The cause for the increase in MAC energy consumption for n-multiplier designs with a high n.

• The effect of ”folding” the tapped delay line to vary parallelism instead of expanding the processor

architecture with more multipliers.

• The expansion of the analysis method to other DSP functionalities aside from FIR filtering.

• The effect of using the 65 nm UMC IC technology instead of the 55 nm TSMC technology.

• The use of floating point samples/coefficients instead of the fixed point format.

• The energy efficiency of the multipliers and adder trees generated by the synthesis tools and how

this may be improved.

46

REFERENCES

[1] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “ClaSH: Structural Descriptions of

Synchronous Hardware Using Haskell,” in 13th Euromicro Conference on Digital System Design,

Architectures, Methods and Tools, DSD 2010, 1-3 September 2010, Lille, France (S. López, ed.),

pp. 714–721, IEEE Computer Society, 2010.

[2] W. Suntiamorntut, N. Gupta, L. E. M. Brackenbury, and J. Garside, Energy Efficient Functional Unit

for a Parallel Asynchronous DSP. PhD thesis, University of Manchester, 2005.

[3] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS digital design,” IEEE Journal

of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, 1992.

[4] T. Arslan, A. T. Erdogan, and D. H. Horrocks, “Low power design for DSP: methodologies and

techniques,” Microelectronics Journal, vol. 27, no. 8, pp. 731–744, 1996.

[5] H. Veendrick, Nanometer cmos ics. New York, NY: Springer Science+Business Media, LLC, 2017.

[6] P. J. Havinga and G. J. M. Smit, “Design techniques for low-power systems,” Journal of systems

architecture, vol. 46, no. 1, pp. 1–21, 2000. Publisher: Elsevier.

[7] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer

circuits,” IEEE Journal of Solid-State Circuits, vol. 19, pp. 468–473, Aug. 1984. Conference Name:

IEEE Journal of Solid-State Circuits.

[8] S. Jain, L. Lin, and M. Alioto, “Dynamically Adaptable Pipeline for Energy-Efficient Microarchitec-

tures Under Wide Voltage Scaling,” IEEE Journal of Solid-State Circuits, vol. 53, pp. 632–641, Feb.

2018. Conference Name: IEEE Journal of Solid-State Circuits.

[9] N. Ickes, G. Gammie, M. E. Sinangil, R. Rithe, J. Gu, A. Wang, H. Mair, S. Datla, B. Rong,

S. Honnavara-Prasad, L. Ho, G. Baldwin, D. Buss, A. P. Chandrakasan, and U. Ko, “A 28 nm 0.6 V

Low Power DSP for Mobile Applications,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 35–46,

Jan. 2012. Conference Name: IEEE Journal of Solid-State Circuits.

[10] T. D. Burd, “Energy-efficient processor system design,” Tech. Rep. UCB/ERL M01/13, EECS De-

partment, University of California, Berkeley, Mar. 2001.

[11] “ELCT706 Microelectronics: course notes on multipliers,” 2014. Published: eee.guc.edu.eg.

[12] A. Mason, “Memory Basics, Lecture Notes Ch 13.”

[13] M. Kamble and K. Ghose, “Analytical energy dissipation models for low power caches,” in Proceed-

ings of 1997 International Symposium on Low Power Electronics and Design, pp. 143–148, Aug.

1997.

[14] S. o. M.I.T. 6.004, “Lecture notes for Computation Structures,” 2017.

[15] R. Evans and P. Franzon, “Energy consumption modeling and optimization for SRAM’s,” IEEE Jour-

nal of Solid-State Circuits, vol. 30, pp. 571–579, May 1995. Conference Name: IEEE Journal of

Solid-State Circuits.

[16] A. Azizi-Mazreah, M. T. M. Shalmani, H. Barati, and A. Barati, “Delay and energy consumption anal-

ysis of conventional SRAM,” in Proc. Of World Academy of Science, Engineering and Technology,

vol. 27, Citeseer, 2008.

47

[17] J. Rabaey, L. Guerra, and R. Mehra, “Design guidance in the power dimension,” in 1995 Interna-

tional Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2837–2840 vol.5, May

1995. ISSN: 1520-6149.

[18] A. Abnous and J. Rabaey, “Ultra-low-power domain-specific multimedia processors,” in VLSI Signal

Processing, IX, pp. 461–470, Oct. 1996.

[19] R. Mehra and J. Rabaey, “Exploiting regularity for low-power design,” in Proceedings of International

Conference on Computer Aided Design, pp. 166–172, Nov. 1996.

[20] J. Tomarakos, “Relationship of DataWord Size to Dynamic Range and Signal Quality in DigitalAudio

Processing Applications,” tech. rep., Analog Devices.

[21] “Synopsys design compiler.” https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html. Accessed on 2022-02-10.

[22] “Modelsim hdl simulator.” https://eda.sw.siemens.com/en-US/ic/modelsim/. Accessed on

2022-02-10.

[23] “Synopsys primetime.” https://www.synopsys.com/support/training/signoff/
primetime1-fcd.html. Accessed on 2022-02-10.

[24] N. Koduri and K. Vittal, “Power analysis of clock gating at RTL.” https://www.design-reuse.com/ar-

ticles/23701/power-analysis-clock-gating-rtl.html. Accessed on 2022-02-10.

48

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.synopsys.com/support/training/signoff/primetime1-fcd.html
https://www.synopsys.com/support/training/signoff/primetime1-fcd.html

A CLASH CODE

A.1 Fully Parallel Design

A.1.1 Data Types

1 module Data_types_FIR_acc_10 where
2 import Clash.Prelude
3 import Clash.Explicit.Testbench
4

5 -- Define a clock domain with a 20 ns clock period (50 MHz)
6 createDomain vSystem{vName="Twenty", vPeriod=20000}
7

8 -- Define clock, reset, enable and data signals in the 50 MHz clock domain
9 type Clk = Clock "Twenty"

10 type Rst = Reset "Twenty"
11 type Sig = Signal "Twenty"
12 type En = Enable "Twenty"
13

14 -- Define samples and coefficients to be 32 bit signed fixed point values with 31 fractional
bits

15 type Data_reg = SFixed 1 31
16 type Coeff_reg = SFixed 1 31
17 type Sin = SFixed 1 31
18 type Sout = SFixed 1 31
19 -- Define number of taps input
20 type Num_taps = Int
21 -- Define coefficient and data memory banks chosen to be 256 32-bit registers
22 type Mem_coeff = Vec 256 Coeff_reg
23 type Mem_data = Vec 256 Data_reg

A.1.2 Design and Testbench

1 -- Code for fully parallel FIR design, version 10.
2 module FIR10 where
3 import Clash.Prelude
4 import Clash.Explicit.Testbench
5 import qualified Data.List as L
6 import Data_types_FIR_acc_10
7 import FIR_accelerator_10_test_vectors
8

9 -- Top level function. Upon an external frame trigger (frame) the delay line is triggered and
a new sample (sin) is injected at the tap which is indicated by the Num_taps input

10 fir_acc :: (Mem_data, Mem_coeff) -> (Sin,Bool,Mem_coeff,Bool,Num_taps) -> ((Mem_data,
Mem_coeff), Sout)

11 fir_acc (regs, coeff_regs) (sin,tick,coeff,frame,num_taps) = case frame of
12 True -> ((regs', coeff), sout)
13 False -> ((regs, coeff), sout)
14 where
15 -- The regs' function shifts the delay line and inserts the new input at the correct

place
16 regs' = replace (length(regs)-num_taps) sin (fst(shiftOutFromN d1 regs))
17 -- The calc_out function is called upon to produce an output
18 sout = calc_out num_taps coeff_regs regs sin
19

20 -- The output is calculated with entire delay line and coefficient bank, but enable signals
should prevent unneccessary calculations from being done.

21 calc_out :: Num_taps -> Mem_coeff -> Mem_data -> Sin -> Sout

49

22 calc_out num_taps coeff regs sin = sum $ zipWith (*) coeff $ replace (length(regs)-num_taps -1)
sin regs

23

24 -- An adjusted version of the clash mealy machine function. mm and its subfunctions xregs and
yregs implement registers and define the default state, how the new state is calculated
and how the enable signals (cVec) connect to the registers.

25 mm clk rst f cVec i = o
26 where
27 (s', o) = unbundle $ (f <$> s <*> i)
28 (s1',s4') = unbundle s'
29 s = bundle (s1,s4)
30 s1 = xregs clk rst cVec s1'
31 s4 = yregs clk rst cVec s4'
32

33 -- the xregs function defines the X-registers used, it is made a seperate function to be able
to use the NOINLINE pragma, which will ensure that it becomes a seperate verilog entity

34 xregs clk rst cVec s1' = bundle $ zipWith (\en inp -> exposeClockResetEnable register clk rst
en 0 inp) cVec (unbundle s1')

35

36 -- the yregs function defines the Y-registers used, it is made a seperate function to be able
to use the NOINLINE pragma, which will ensure that it becomes a seperate verilog entity

37 yregs clk rst cVec s4' = bundle $ zipWith (\en inp -> exposeClockResetEnable register clk rst
en 0 inp) cVec (unbundle s4')

38

39 -- Defining the topEntity, combining the sequential part as defined by the mm function with
the combinational functionality as is defined in fir_acc

40 topEntity :: Clk -> Rst -> Vec 256 En -> Sig (Sin,Bool,Mem_coeff,Bool,Num_taps) -> Sig (Sout)
41 topEntity clk rst = mm clk rst fir_acc
42

43 --By using the NOINLINE pragma, seperate verilog entities are created for the top entity, the
x registers, y regsiters and MAC hardware. This enables seperate power results per entity,
creating categories.

44 {-# NOINLINE xregs #-}
45 {-# NOINLINE yregs #-}
46 {-# NOINLINE calc_out #-}
47 {-# NOINLINE topEntity #-}
48

49 --To automate the synthesis process more easily, the port names and entity name of the
topEntity are explicitly defined

50 {-# ANN topEntity
51 (Synthesize
52 { t_name = "FIR10"
53 , t_inputs = [PortName "clk"
54 , PortName "rst"
55 , PortName "en"
56 , PortName "inp"]
57 , t_output = PortName "outp"
58 })
59 #-}
60

61 -- TESTBENCH SECTION --
62 -- The code below this line is for the testbench generation and therefore will not be

synthesized by the Synopsys tooling. The code below uses the test inputs as generated by
matlab and incluced in the file FIR_accelerator_10_test_vectors.hs

63

64 -- Appending generated input vectors with zeroes to fill up registers
65 coeff_vec_full = (replicate d156 0) ++ coeff_vec
66

67 -- Combining all inputs into one quintuple, as the mealy function expects only one argument as
input

68 in_vec_comb = zip_n <$> (map (f_comb_inp coeff_vec_full (99 :: Num_taps)) in_vec) <*>
frame_trig_vec

69 where
70 f_comb_inp x q (y,z) = (y,z,x,q)
71 zip_n (y,z,x,q) w = (y,z,x,w,q)
72

73 -- Desired output generation, uses the test vectors generated by MATLAB.
74 f_out_vec regs_init coeff sins = souts
75 where
76 sout regs = foldl1 (+) (zipWith (*) regs coeff)
77 regs' regs sin = fst(shiftInAt0 regs (sin:>Nil))
78 delay_line = scanl (regs') regs_init sins
79 souts = map sout (drop d1 delay_line)

50

80

81 -- Calculates the expected samples on the rate fs (fs = fclk/256)
82 out_vec_fs = f_out_vec (reverse (take d100 in_vec_hs)) coeff_vec (drop d100 in_vec_hs)
83

84 -- Function to upsample the expected outputs at fs to fclk, basically repeating every output
256 clock cycles.

85 f_out_vec_fclk out_vec_fs = (concat (map fs_to_fclk out_vec_fs))
86 where
87 fs_to_fclk sout = (replicate d256 (sout))
88

89 -- Calculating the expected output at fclk
90 out_vec_fclk = f_out_vec_fclk out_vec_fs
91

92 -- The testbench function which takes the inputs and expected output and compares that to the
results of the actual FIR accelerator.

93 testBench :: Signal "Twenty" Bool
94 testBench = done
95 where
96 testInput = stimuliGenerator clk rst in_vec_comb
97 expectOutput = outputVerifier' clk rst ((replicate d100 0) ++ (0:>Nil) ++ (drop d1

out_vec_fclk))
98 done = expectOutput (topEntity clk rst en testInput)
99 en = ((replicate d156 (toEnable (stimuliGenerator clk rst (False:>Nil)))) ++ (

replicate d100 (toEnable (stimuliGenerator clk rst (True:>Nil)))))
100 clk = tbClockGen @"Twenty" (not <$> done)
101 rst = resetGen @"Twenty"
102

103 {-# ANN topEntity
104 (TestBench 'testBench)
105 #-}

A.2 Single Multiplier Design

A.2.1 Data Types

1 module Data_types_DSP6 where
2 import Clash.Prelude
3 import Clash.Explicit.Testbench
4 import qualified Data.List as L
5

6 -- Define a clock domain with a 20 ns clock period (50 MHz)
7 createDomain vSystem{vName="Twenty", vPeriod=20000}
8

9 -- Define clock, reset, enable and data signals in the 50 MHz clock domain
10 type Clk = Clock "Twenty"
11 type Rst = Reset "Twenty"
12 type Sig = Signal "Twenty"
13 type En = Enable "Twenty"
14

15 -- Define boolean for indicating a new frame (sample) has arrived to reset program clock
16 type Frame_trig = Bool
17

18 -- Define samples and coefficients to be 32 bit signed fixed point values with 31 fractional
bits

19 type Sin = SFixed 1 31
20 type Sout = SFixed 1 31
21 type Coeff = SFixed 1 31
22

23 -- Set types for internal registers
24 type Xreg = Sin
25 type Yreg = Coeff
26 type Acc_reg = SFixed 1 31
27 type Out_reg = Acc_reg
28

29 -- Base memory pointer
30 type XMem_addr = Unsigned 8
31 -- Y memory address
32 type YMem_addr = Unsigned 8
33 -- Program memory address, in this design this is equivalent to the program counter.
34 type PMem_addr = Unsigned 8
35

51

36 ---- INSTRUCTION SET -----
37 -- Base memory pointer increment instruction (+1 or +0)
38 type Xbase_inc = Bool
39 -- Write enable for Xmem
40 type Xwr_en = Bool
41 -- End of Program Boolean
42 type Prog_jump = Bool
43 -- Memory pointer (points to absolute Ymem location and relative Xmem location)
44 type Mem_pnt = Unsigned 8
45 -- Boolean that determines whether the data in the accumulation register will be passed to the

output
46 type Outp_instr = Bool
47 -- Boolean that determines whether the accumulation register should be updated
48 type Acc_en = Bool
49 -- Construction of the total instruction
50 type Instr = (Xbase_inc,Xwr_en,Prog_jump,Mem_pnt,Outp_instr,Acc_en)

A.2.2 Design and Testbench

1 -- code for Single Multiplier DSP design, version 6
2 module DSP6 where
3 import Clash.Prelude
4 import Clash.Explicit.Testbench
5 import qualified Data.List as L
6 import Data_types_DSP6
7 import DSP6_program1
8

9 -- Top function, here all subfunctions are combined into a single entity
10 dsp :: Clk -> Rst -> En -> En -> Sig Sin -> Sig Frame_trig -> Sig (Maybe (PMem_addr, Instr))

-> Sig (Maybe (YMem_addr, Coeff)) -> Sig (Maybe XMem_addr) -> Sig Sout
11 dsp clk rst en en_mac sin frame_trig p_in y_in ext_wr = sout
12 where
13 --Program counter section
14 prog_cnt' = prog_cnt_handle <$> prog_cnt <*> (get3rd <$> instr) <*> frame_trig
15 prog_cnt = (exposeClockResetEnable register clk rst en_mac) (0 :: PMem_addr) prog_cnt'
16 --X memory base pointer section
17 xbase_rd' = xbase_rd_handle <$> xbase_rd <*> (get1st <$> instr)
18 xbase_rd = (exposeClockResetEnable register clk rst en_mac) (0 :: XMem_addr) xbase_rd'
19 --X memory write pointer section
20 xpnt_wr' = xpnt_wr_handle <$> xpnt_wr <*> (get2nd <$> instr)
21 xpnt_wr = (exposeClockResetEnable register clk rst en_mac) (0 :: XMem_addr) xpnt_wr'
22 --Instruction is fetched from program memory
23 instr = pmem clk rst en prog_cnt p_in
24 --X register section, the xmem function handles both writing to and reading from the X

memory
25 xreg' = xmem clk rst en xbase_rd xpnt_wr instr sin ext_wr
26 xreg = (exposeClockResetEnable register clk rst en_mac) (0 :: Xreg) xreg'
27 --Y register section, the ymem function handles both writing to and reading from the Y

memory
28 yreg' = ymem clk rst en instr y_in
29 yreg = (exposeClockResetEnable register clk rst en_mac) (0 :: Yreg) yreg'
30 --Accumulator register section. Depending on the instruction the values in xreg and

yreg are multiplied and added to the accumulation.
31 acc_reg' = acc_handle <$> xreg <*> yreg <*> acc_reg <*> (get6th <$> instr) <*> (get5th

<$> instr)
32 acc_reg = (exposeClockResetEnable register clk rst en_mac) (0 :: Acc_reg) acc_reg'
33 --Output register section. Depending on the instruction the value in the accumulator

register is passed to the output register or not.
34 sout = (exposeClockResetEnable register clk rst en_mac) (0 :: Out_reg) sout'
35 sout' = calc_out <$> (get5th <$> instr) <*> sout <*> acc_reg
36

37 -- Handling function for the program counter:
38 -- Set program counter to 0 when the frame trigger is high
39 -- Set program counter to last address of program memory (255) when the end of program (

Prog_jump) bit in the instruction is high
40 -- Once end of program is triggered and program counter is set to 255, keep program counter

at 255 to prevent further data manipulation until the new frame trigger arrives
41 prog_cnt_handle :: PMem_addr -> Prog_jump -> Frame_trig -> PMem_addr
42 prog_cnt_handle _ _ True = (0 :: PMem_addr)
43 prog_cnt_handle _ True False = (255 :: PMem_addr)
44 prog_cnt_handle 255 _ False = (255 :: PMem_addr)
45 prog_cnt_handle prog_cnt False False = prog_cnt + 1

52

46

47 -- Handling function for the X memory base pointer:
48 -- Increase base pointer when Xbase_inc in the instruction is True
49 -- When the base address reaches the maximum address, circle back to 0
50 xbase_rd_handle :: XMem_addr -> Bool -> XMem_addr
51 xbase_rd_handle baddr False = baddr
52 xbase_rd_handle baddr True
53 | baddr == (255 :: XMem_addr) = (0 :: XMem_addr)
54 | otherwise = baddr + 1
55

56 -- Handling function for the X memory write pointer, which has the identical behaviour as the
handling for the base pointer, but triggers on the Xwr_en part of the instruction instead

57 xpnt_wr_handle :: XMem_addr -> Bool -> XMem_addr
58 xpnt_wr_handle addr False = addr
59 xpnt_wr_handle addr True
60 | addr == (255 :: XMem_addr) = (0 :: XMem_addr)
61 | otherwise = addr + 1
62

63 -- Instantiation of the program memory, the asyncRamPow2 function is used. This function is
native to Clash and implements an asynchronous read, synchronous write RAM.

64 -- The bit-depth of the program memory automatically scales with the defined instruction set.
The word depth is dependant on the size of the PMem_addr, which leads to a program memory
of 256 words.

65 pmem :: Clk -> Rst -> En -> Sig PMem_addr -> Sig (Maybe (PMem_addr,Instr)) -> Sig Instr
66 pmem clk rst en prog_cnt p_in = (exposeClockResetEnable asyncRamPow2 clk rst en) prog_cnt p_in
67

68 -- Instantiation of the X memory, here the absolute memory address for reading is derived from
the base address and the memory pointer section of the instruction.

69 -- The write handle function is called to obtain the absolute write address when a value
needs to be written to the X memory

70 xmem :: Clk -> Rst -> En -> Sig XMem_addr -> Sig XMem_addr -> Sig Instr -> Sig Sin -> Sig (
Maybe XMem_addr) -> Sig Xreg

71 xmem clk rst en baddr xpnt_wr instr sin ext_wr = (exposeClockResetEnable asyncRamPow2 clk rst
en) raddr wrinp

72 where
73 raddr = (-) <$> baddr <*> (get4th <$> instr) -- Relies on underflow to wrap around and

start at the bottom address when (baddr - mem_pnt) becomes negative
74 wrinp = wr_handle <$> (get2nd <$> instr) <*> xpnt_wr <*> sin <*> ext_wr -- writes sin

to memory when instruction tells it to or when external write is a (Just addr)
75

76 -- Instantiation of the Y memory. Like the X memory, the Y memory can be written to via an
external write port. That is however the only method to write to the Y memory.

77 -- The Y memory is not circular and does not use relative memory pointers, so the read address
is simply the memory pointer section from the instruction.

78 ymem :: Clk -> Rst -> En -> Sig Instr -> Sig (Maybe (YMem_addr, Coeff)) -> Sig Yreg
79 ymem clk rst en instr y_in = (exposeClockResetEnable asyncRamPow2 clk rst en) raddr y_in
80 where
81 raddr = get4th <$> instr
82

83

84 -- Write handling function which:
85 -- Instructs X memory to write to the address specified by the external write port, which is

used when filling the memory at startup
86 -- When the Xwr_en part of the instruction is True, instruct X memory to write data from the

sin port to the write address pointer
87 -- When the above two scenarios do not apply, instruct the memory to not write
88 wr_handle :: Bool -> XMem_addr -> Sin -> Maybe XMem_addr -> Maybe (XMem_addr,Sin)
89 wr_handle _ _ sin (Just ext_addr) = Just (ext_addr,sin)
90 wr_handle False _ _ Nothing = Nothing
91 wr_handle True wr_addr sin Nothing = Just (wr_addr,sin)
92

93 -- MAC function:
94 -- When the Outp_instr part of the instruction is True the output of the accumulator is sent

to the output port and the accumulation register is set to 0.
95 -- When the acc_en section of the instruction is True, multiply the values in the X and Y

registers and add the result to the accumulator register
96 -- When the acc_en section of the instruction is False, do not update the value in the

accumulator register
97 acc_handle :: Xreg -> Yreg -> Acc_reg -> Acc_en -> Outp_instr -> Acc_reg
98 acc_handle xreg yreg _ _ True = (0 :: Acc_reg)
99 acc_handle xreg yreg acc_reg True _ = xreg * yreg + acc_reg

100 acc_handle _ _ acc_reg False _ = acc_reg
101

53

102 -- Handling function of output register:
103 -- When the Outp_instr section of the instruction is True, update the value in the output

register with the value in the accumulation register
104 -- When the Outp_instr section of the instruction is False, do not update the value of the

output register
105 calc_out :: Outp_instr -> Sout -> Acc_reg -> Sout
106 calc_out True _ acc_reg = acc_reg
107 calc_out False sout _ = sout
108

109 -- Help functions to extract specific sections from the instruction sextuple
110 get1st (a,_,_,_,_,_) = a
111 get2nd (_,a,_,_,_,_) = a
112 get3rd (_,_,a,_,_,_) = a
113 get4th (_,_,_,a,_,_) = a
114 get5th (_,_,_,_,a,_) = a
115 get6th (_,_,_,_,_,a) = a
116

117 get1st3 (a,_,_) = a
118

119 -- define dsp as topEntity
120 topEntity = dsp
121

122 --To automate the synthesis process more easily, the port names and entity name of the
topEntity are explicitly defined

123 {-# ANN topEntity
124 (Synthesize
125 { t_name = "DSP6"
126 , t_inputs = [PortName "clk"
127 , PortName "rst"
128 , PortName "en"
129 , PortName "en_mac"
130 , PortName "inp"
131 , PortName "frame_trig"
132 , PortName "p_in"
133 , PortName "y_in"
134 , PortName "ext_wr"
135]
136 , t_output = PortName "outp"
137 })
138 #-}
139

140 -- No inline certain functions to analyse power of those pieces seperately
141 {-# NOINLINE xmem #-}
142 {-# NOINLINE ymem #-}
143 {-# NOINLINE pmem #-}
144 {-# NOINLINE acc_handle #-}
145 {-# NOINLINE topEntity #-}
146

147 -- TESTBENCH SECTION --
148 -- The code below this line is for the testbench generation and therefore will not be

synthesized by the Synopsys tooling. The code below uses the test inputs as generated by
matlab and incluced in the file DSP6_program1.hs

149

150 -- Cast programming vectors generated by matlab in the correct format
151 p_in_vec = Just <$> (zip (iterate d256 (+1) (0 :: PMem_addr)) program1)
152 coeff_in_vec = Just <$> (zip (iterate d100 (+1) (0 :: YMem_addr)) coeff_vec)
153

154 -- Desired output generation, uses the test vectors generated by MATLAB.
155 f_out_vec regs_init coeff sins = souts
156 where
157 sout regs = foldl1 (+) (zipWith (*) regs coeff)
158 regs' regs sin = replace 0 sin (fst(shiftOutFromN d1 regs))
159 delay_line = scanl (regs') regs_init sins
160 souts = map sout (drop d1 delay_line)
161 out_vec_fs = f_out_vec regs_init coeff_vec in_vec_hs
162

163 -- Function to upsample the expected outputs at fs to fclk, basically repeating every output
256 clock cycles.

164 f_out_vec_fclk out_vec_fs = (replicate output_offset (0 :: Sout)) ++ (concat (map fs_to_fclk
out_vec_fs))

165 where
166 fs_to_fclk sout = (replicate d256 (sout))
167

54

168 -- Calculates the expected samples on the rate fs (fs = fclk/256)
169 out_vec_fclk = f_out_vec_fclk out_vec_fs
170

171 testBench :: Signal "Twenty" Bool
172 testBench = done
173 where
174 done = outputVerifier' clk rst out_vec_fclk (ignoreFor clk rst en d1 0 (topEntity

clk rst en en_mac testInput frame_trig p_in y_in ext_wr))
175 clk = tbClockGen @"Twenty" (not <$> done)
176 rst = resetGen @"Twenty"
177 en = tbEnableGen
178 en_mac = toEnable (stimuliGenerator clk rst ((replicate d256 False) ++ (True:>Nil)))
179 testInput = stimuliGenerator clk rst in_vec
180 p_in = stimuliGenerator clk rst p_in_vec
181 y_in = stimuliGenerator clk rst coeff_in_vec
182 ext_wr = stimuliGenerator clk rst ((Just <$> (iterate d256 (+1) (0 :: XMem_addr))) ++

(Nothing :> Nil))
183 frame_trig= stimuliGenerator clk rst frame_trig_vec
184

185

186 {-# ANN topEntity
187 (TestBench 'testBench)
188 #-}

A.3 n-Multiplier Design

A.3.1 Data Types

1 module Data_types_DSP13_num_mem_2 where
2 import Clash.Prelude
3 import Clash.Explicit.Testbench
4 import Clash.Promoted.Nat
5

6 --The Num_mem type is the "knob" that determines the amount of memories and multipliers.
7 type Num_mem=2
8

9 -- Define a clock domain with a 20 ns clock period (50 MHz)
10 createDomain vSystem{vName="Twenty", vPeriod=20000}
11

12 -- Define clock, reset, enable and data signals in the 50 MHz clock domain
13 type Clk = Clock "Twenty"
14 type Rst = Reset "Twenty"
15 type Sig = Signal "Twenty"
16 type En = Enable "Twenty"
17

18 -- Define boolean for indicating a new frame (sample) has arrived to reset program clock
19 type Frame_trig = Bool
20

21 -- Define samples and coefficients to be 32 bit signed fixed point values with 31 fractional
bits

22 type Sin = SFixed 1 31
23 type Sout = SFixed 1 31
24 type Coeff = SFixed 1 31
25

26 -- Set types for internal registers
27 type Xreg = Sin
28 type Yreg = Coeff
29 type Acc_reg = SFixed 1 31
30 type Out_reg = Acc_reg
31

32 -- Base memory pointer, each memory will have 256/num_mem addresses, rounded upwards
33 type XMem_addr = Index (DivRU 256 Num_mem)
34 -- Y memory address, each memory will have 256/num_mem addresses, rounded upwards
35 type YMem_addr = Index (DivRU 256 Num_mem)
36 -- Program memory address, for every design a 256 word program memory is used.
37 type PMem_addr = Unsigned 8
38

39 -- Shift counter which will instruct the barrel shifter how to match the correct sample and
coefficient

40 type Shft_cnt = Index Num_mem
41 -- Write select counter which will indicate which memory to write new samples to

55

42 type Wr_sel = Index Num_mem
43

44 ---- INSTRUCTION SET -----
45 -- Base memory pointer increment instruction (+1 or +0)
46 type Xbase_inc = Bool
47 -- Write enable for Xmem
48 type Xwr_en = Bool
49 -- End of Program Boolean
50 type Prog_jump = Bool
51 -- Memory pointer (points to absolute Ymem location and relative Xmem location)
52 type Mem_pnt = Index (DivRU 256 Num_mem)
53 -- Boolean that determines whether the data in the accumulation register will be passed to the

output
54 type Outp_instr = Bool
55 -- Boolean that determines whether the accumulation register should be updated
56 type Acc_en = Bool
57 -- Construction of the total instruction
58 type Instr = (Xbase_inc,Xwr_en,Prog_jump,Mem_pnt,Outp_instr,Acc_en)

A.3.2 Top Design and Testbench

1 import Clash.Prelude
2 import DSP13_program1_num_mem_2
3 import Data_types_DSP13_num_mem_2
4 import Clash.Explicit.Testbench
5 import Clash.Sized.Internal.BitVector
6 import Clash.Sized.Internal.Index
7 import qualified Data.List as L
8 import DSP_barrel_shifters
9 import qualified Clash.Explicit.Signal as E

10

11 -- Top function, here all subfunctions are combined into a single entity
12 dsp13 :: Clk -> Rst -> En -> En -> Sig Sin -> Sig Frame_trig -> Sig (Maybe (PMem_addr, Instr))

-> (Vec Num_mem (Sig (Maybe (YMem_addr, Coeff)))) -> Sig (Vec Num_mem (Maybe (XMem_addr,
Sin))) -> Sig Sout

13 dsp13 clk rst en en_mac sin frame_trig p_in y_ins ext_wr = sout
14 where
15 --Program counter section
16 prog_cnt' = prog_cnt_handle <$> prog_cnt <*> (get3rd <$> instr) <*> frame_trig
17 prog_cnt = (exposeClockResetEnable register clk rst en_mac) (0 :: PMem_addr) prog_cnt'
18 --Instruction is fetched from program memory
19 instr = pmem clk rst en prog_cnt p_in
20 --mem_slect_rd is a register containing num_mem amount of bits to indicate which memory

should be read at (base_address + mem_pnt) and which should be read at (base_address +
mem_pnt - 1)

21 mem_select_rd' = unbundle $ f_mem_select_rd <$> mem_select_rd <*> (get1st <$> instr)
22 mem_select_rd = (exposeClockResetEnable register clk rst en_mac) (fst(f_mem_select_rd (

replicate (SNat @Num_mem) (0 :: Bit)) True)) (fst mem_select_rd ')
23 --xbase_rd contains the base address for the x memory, every num_mem FIR cycles the base

address in increased by one.
24 -- (snd mem_select_rd ') is the boolean that indicates when the base address should be

increased
25 xbase_rd' = xaddr_handle <$> xbase_rd <*> (snd mem_select_rd ')
26 xbase_rd = (exposeClockResetEnable register clk rst en_mac) (0 :: XMem_addr) xbase_rd'
27 --mem_select_wr contains the information which of the num_mem X memories should be written

to when a new sample arrives
28 -- mem_select_wr increases by one every time a sample is written and when num_mem is

reached it is reset to zero
29 mem_select_wr' = unbundle $ f_mem_select_wr <$> mem_select_wr <*> (get2nd <$> instr)
30 mem_select_wr = (exposeClockResetEnable register clk rst en_mac) (0 :: Wr_sel) (fst

mem_select_wr ')
31 --xpnt_wr contains the absolute write address where in a X memory a new sample should be

written
32 -- xpnt_wr is increased by one every num_mem times a sample is written to the x memories
33 xpnt_wr' = xaddr_handle <$> xpnt_wr <*> (snd mem_select_wr ')
34 xpnt_wr = (exposeClockResetEnable register clk rst en_mac) (0 :: XMem_addr) xpnt_wr'
35 --x_rd_addrs is a vector of absolute X memory addresses. These addresses are either (base

address + memory pointer) or (base address + memory pointer + 1)
36 x_rd_addrs = unbundle $ x_rd_addrs_handle <$> xbase_rd <*> mem_select_rd <*> instr
37 --x_wr_inps is a vector of write instructions for the X memories. This vector contains the

information which X memory is written to and at what address.
38 x_wr_inps = x_wr_inps_handle <$> xpnt_wr <*> mem_select_wr <*> sin <*> (get2nd <$> instr)

56

39 --shft_cnt is a shift counter that is used to instruct the barrel shifter how to match the
samples from the X memory to the correct coefficients of the Y register

40 -- shft_cnt is increased when the base read address is increased, which happens every full
FIR cycle. When the maximum value is reached the value wraps around to zero.

41 shft_cnt' = f_shft_cnt_inc <$> shft_cnt <*> (get1st <$> instr)
42 shft_cnt = (exposeClockResetEnable register clk rst en_mac) (1 :: Shft_cnt) shft_cnt'
43 --The xmem_outs function interfaces with all the X memories. Mapping the read and write

instructions constructed in x_rd_addrs, x_wr_inps and ext_wr_handle to an absolute read/
write instruction per X memory.

44 xmem_outs = (\x_rd_addr x_wr_inp -> (xmem clk rst en) x_rd_addr x_wr_inp) <$> x_rd_addrs
<*> (unbundle (ext_wr_handle <$> x_wr_inps <*> ext_wr))

45 --xregs computes the new value in the x registers by taking the outputs of the X memory (
xmem_outs) and shifting the samples with the barrel shifter. Now the samples in the X
registers match with the coefficients in the Y registers.

46 xregs' = unbundle $ reverse <$> (barrel_shift <$> (bundle xmem_outs) <*> shft_cnt)
47 --The xregs function creates the X registers, it is made a seperate function to enable

seperate power analysis on that specific hardware.
48 xregs_i = xregs clk rst en_mac xregs'
49 --The Y registers are filled with values directly from the Y memory, without any barrel

shifting of the samples.
50 yregs' = (\yin -> ymem clk rst en (get4th <$> instr) yin) <$> y_ins
51 --The yregs function creates the Y registers, it is made a seperate function to enable

seperate power analysis on that specific hardware.
52 yregs_i = yregs clk rst en_mac yregs'
53 --acc_handle computes the output value, creating the num_mem multipliers and adder tree

hardware. The output of the MAC is stored in the acc_reg register.
54 -- Depending on the acc_en section of the instruction the output is propagated to the

accumulation register. When the outp_instr section is high, the accumulator register is
set to zero.

55 acc_reg' = acc_handle <$> (bundle xregs_i) <*> (bundle yregs_i) <*> acc_reg <*> (get6th <$
> instr) <*> (get5th <$> instr)

56 acc_reg = (exposeClockResetEnable register clk rst en_mac) (0 :: Acc_reg) acc_reg'
57 --Output register section. Depending on the instruction the value in the accumulator

register is passed to the output register or not.
58 sout = (exposeClockResetEnable register clk rst en_mac) (0 :: Out_reg) sout'
59 sout' = calc_out <$> (get5th <$> instr) <*> sout <*> acc_reg
60

61 -- Handling function for the program counter:
62 -- Set program counter to 0 when the frame trigger is high
63 -- Set program counter to last address of program memory (255) when the end of program (

Prog_jump) bit in the instruction is high
64 -- Once end of program is triggered and program counter is set to 255, keep program counter

at 255 to prevent further data manipulation until the new frame trigger arrives
65 prog_cnt_handle :: PMem_addr -> Prog_jump -> Frame_trig -> PMem_addr
66 prog_cnt_handle _ _ True = (0 :: PMem_addr)
67 prog_cnt_handle _ True False = (255 :: PMem_addr)
68 prog_cnt_handle 255 _ False = (255 :: PMem_addr)
69 prog_cnt_handle prog_cnt False False = prog_cnt + 1
70

71 --Creation of the vector of X registers by mapping the xreg function, through this hierarchy
of seperate functions power categories can be formed for both all the x registers together
and for every x register seperately.

72 xregs :: Clk -> Rst -> En -> Vec Num_mem (Sig Xreg) -> Vec Num_mem (Sig Xreg)
73 xregs clk rst en_mac xregs' = (xreg clk rst en_mac) <$> xregs'
74

75 --Creation of the vector of Y registers by mapping the yreg function, through this hierarchy
of seperate functions power categories can be formed for both all the y registers together
and for every y register seperately.

76 yregs :: Clk -> Rst -> En -> Vec Num_mem (Sig Yreg) -> Vec Num_mem (Sig Yreg)
77 yregs clk rst en_mac yregs' = (yreg clk rst en_mac) <$> yregs'
78

79 --Creation of a single X register
80 xreg :: Clk -> Rst -> En -> Sig Xreg -> Sig Xreg
81 xreg clk rst en_mac xreg' = (exposeClockResetEnable register clk rst en_mac) (0 :: Xreg) xreg'
82

83 --Creation of a single Y register
84 yreg :: Clk -> Rst -> En -> Sig Yreg -> Sig Yreg
85 yreg clk rst en_mac yreg' = (exposeClockResetEnable register clk rst en_mac) (0 :: Yreg) yreg'
86

87 --Handling function for the external write functionality of the X memory
88 -- When an external write input is present (when the design is programmed) set the write

input to the memories to that external input
89 -- When the external write input is not present (a vector of nothings), set the write input

57

to the memories to the computed write inputs. This is the behaviour during normal
operation

90 ext_wr_handle :: Vec Num_mem (Maybe (XMem_addr,Sin)) -> Vec Num_mem (Maybe (XMem_addr,Sin)) ->
Vec Num_mem (Maybe (XMem_addr,Sin))

91 ext_wr_handle x_wr_inps ext_wr
92 | ext_wr == (replicate (SNat @ Num_mem) Nothing) = x_wr_inps
93 | otherwise = ext_wr
94

95 --Handling function for the X memory address offset. The resulting vector indicates which
memories should be read at (base address - mem pointer) and which should be read at (base
address - mem pointer - 1).

96 -- The vector only changes when the Xbase_inc section of the instruction is True
97 -- Bitwise operations are used to incrementally shift in 0's until all bits in the vector

are 0's, then the vector resets to all 1's except for the first bit. example for num_mem =
4:

98 -- cycle1: (0 1 1 1,F)
99 -- cycle2: (0 0 1 1,F)

100 -- cycle3: (0 0 0 1,F)
101 -- cycle4: (0 0 0 0,T) -> By setting the second argument of the tuple to true the base

pointer is increased for next cycle
102 -- cycle5: (0 1 1 1,F) -> Cycle starts again but base pointer is now increased
103 f_mem_select_rd :: Vec Num_mem Bit -> Xbase_inc -> (Vec Num_mem Bit,Bool)
104 f_mem_select_rd vb_in (False) = (vb_in,False)
105 f_mem_select_rd vb_in (True) = (((0 :> Nil) ++ (tail vb_new)),(bitToBool (head vb_new)))
106 where
107 vb_new = map (or## (complement## (last vb_in))) shift
108 shift = fst(shiftOutFromN d1 vb_in)
109

110 --Handling function for the shift counter used by the barrel shifter
111 -- When the Xbase_inc section of the instruction is True increase the shift counter, when the

maximum is reached reset shift counter to zero.
112 f_shft_cnt_inc :: Shft_cnt -> Xbase_inc -> Shft_cnt
113 f_shft_cnt_inc shft_cnt False = shft_cnt
114 f_shft_cnt_inc shft_cnt True
115 | shft_cnt == (maxBound::Shft_cnt) = (0 :: Shft_cnt)
116 | otherwise = shft_cnt + 1
117

118 --Handling function used for both the X memory base read pointer and the X memory write
pointer. Increase when the relevant part of the instruction is True and handle overflow.

119 xaddr_handle :: XMem_addr -> Bool -> XMem_addr
120 xaddr_handle addr False = addr
121 xaddr_handle addr True
122 | addr == (maxBound::XMem_addr) = (0 :: XMem_addr)
123 | otherwise = addr + 1
124

125 --Handling function used to generate absolute addresses for the X memories using the base
address, instruction and memory select bitvector

126 -- The f_add_base_mem_select handling function is mapped over the bitvector creating a
vector of Num_mem absolute adresses

127 -- The f_sub_base_mem_pnt handling function calculates base_addr - mem_pnt with overflow
handling

128 x_rd_addrs_handle :: XMem_addr -> Vec Num_mem Bit -> Instr -> Vec Num_mem XMem_addr
129 x_rd_addrs_handle xbase_rd mem_select instr = map (f_add_base_mem_select a) mem_select
130 where
131 a = f_sub_base_mem_pnt xbase_rd mem_pnt
132 mem_pnt = get4th instr
133

134 --Handling function to calculate absolute memory address for one memory by either passing
through (base_addr - mem_pnt) when the bit from the bitvector is zero or (base_addr -
mem_pnt - 1) when the bit in the bitvector is one. Additionally, handle proper wrap around
behaviour when (base address - mem_pnt) is zero.

135 f_add_base_mem_select :: XMem_addr -> Bit -> XMem_addr
136 f_add_base_mem_select xbase_rd 0 = xbase_rd
137 f_add_base_mem_select 0 1 = (maxBound::XMem_addr)
138 f_add_base_mem_select xbase_rd 1 = xbase_rd-1
139

140 --Handling function to calculate base address - memory pointer with overflow handling.
141 -- Subtracts the memory pointer part of the instruction from the base address and ensures

proper wrap around behaviour.
142 f_sub_base_mem_pnt :: XMem_addr -> Mem_pnt -> XMem_addr
143 f_sub_base_mem_pnt baddr mem_pnt
144 | baddr < mem_pnt = (maxBound :: XMem_addr) - (mem_pnt-baddr - 1)
145 | otherwise = baddr - mem_pnt

58

146

147 --Handling function for the computation of the X memory write select variable
148 -- When the Xwr_en section of the instruction is False, do not update write select variable
149 -- When the Xwr_en section of the instruction is True, increase the write select variable and

when the maximum is reached, set write select variable to zero and set the boolean in the
second part of the tuple to True to indicate that the write pointer should be increased.

150 f_mem_select_wr :: Wr_sel -> Xwr_en -> (Wr_sel,Bool)
151 f_mem_select_wr wr_sel False = (wr_sel,False)
152 f_mem_select_wr wr_sel True
153 | wr_sel == (maxBound::Wr_sel) = ((0 :: Wr_sel),True)
154 | otherwise = (wr_sel + 1,False)
155

156 --Handling function which creates a vector of Write instructions in the format required by the
asyncRam function.

157 -- When the Xwr_en section of the instruction is True create a num_mem wide vector with 1
element filled with the write address and new sample.

158 -- Which element in the vector contains the new sample is determined by the Wr_sel value,
using an imap to replace the value in the vector at a certain index.

159 x_wr_inps_handle :: XMem_addr -> Wr_sel -> Sin -> Xwr_en -> Vec Num_mem (Maybe (XMem_addr,Sin)
)

160 x_wr_inps_handle _ _ _ False = replicate (SNat @ Num_mem) Nothing
161 x_wr_inps_handle wr_base wr_sel sin True = f_rep_ind wr_sel (Just (wr_base,sin)) (replicate (

SNat @ Num_mem) Nothing)
162 where
163 f_rep_ind wr_sel a vec = imap (\i vec -> if i == wr_sel then a else Nothing) vec
164

165 -- Instantiation of the program memory, the asyncRamPow2 function is used. This function is
native to Clash and implements an asynchronous read, synchronous write RAM.

166 -- The bit-depth of the program memory automatically scales with the defined instruction set.
The word depth is dependant on the size of the PMem_addr, which leads to a program memory
of 256 words.

167 pmem :: Clk -> Rst -> En -> Sig PMem_addr -> Sig (Maybe (PMem_addr,Instr)) -> Sig Instr
168 pmem clk rst en prog_cnt p_in = (exposeClockResetEnable asyncRamPow2 clk rst en) prog_cnt p_in
169

170 xmem :: Clk -> Rst -> En -> Sig XMem_addr -> Sig (Maybe (XMem_addr,Sin)) -> Sig Xreg
171 xmem clk rst en raddr wrinp = (exposeClockResetEnable asyncRam clk rst en (SNat @ (DivRU 256

Num_mem))) raddr wrinp
172

173 ymem :: Clk -> Rst -> En -> Sig Mem_pnt -> Sig (Maybe (YMem_addr, Coeff)) -> Sig Yreg
174 ymem clk rst en raddr y_in = (exposeClockResetEnable asyncRam clk rst en (SNat @ (DivRU 256

Num_mem))) raddr y_in
175

176 -- MAC function:
177 -- When the Outp_instr part of the instruction is True the output of the accumulator is sent

to the output port and the accumulation register is set to 0.
178 -- When the acc_en section of the instruction is True, multiply the values of each

corresponding X and Y register and sum all the results, then add this to the accumulation
register

179 -- When the acc_en section of the instruction is False, do not update the value in the
accumulator register

180 acc_handle :: Vec Num_mem Xreg -> Vec Num_mem Yreg -> Acc_reg -> Acc_en -> Outp_instr ->
Acc_reg

181 acc_handle xregs yregs _ _ True = (0 :: Acc_reg)
182 acc_handle xregs yregs acc_reg True _ = (sum (zipWith (*) xregs yregs)) + acc_reg
183 acc_handle _ _ acc_reg False _ = acc_reg
184

185

186 -- Handling function of output register:
187 -- When the Outp_instr section of the instruction is True, update the value in the output

register with the value in the accumulation register
188 -- When the Outp_instr section of the instruction is False, do not update the value of the

output register
189 calc_out :: Outp_instr -> Sout -> Acc_reg -> Sout
190 calc_out True _ acc_reg = acc_reg
191 calc_out False sout _ = sout
192

193 -- Barrel shifter function generated by MATLAB, with log2(Num_mem) stages.
194 barrel_shift :: Vec Num_mem Xreg -> Shft_cnt -> Vec Num_mem Xreg
195 barrel_shift vec_in cnt = fst $ ((vec_shft_1 (shft_en !! 0))) (vec_in,d0)
196 where
197 shft_en = reverse (to_bool_vec cnt)
198

199 --Barrel shifter help function

59

200 to_bool_vec :: Shft_cnt -> Vec (CLog 2 Num_mem) Bool
201 to_bool_vec cnt = unpack (pack cnt) :: Vec (CLog 2 Num_mem) Bool
202

203 -- Help functions to extract specific sections from the instruction sextuple
204 get1st (a,_,_,_,_,_) = a
205 get2nd (_,a,_,_,_,_) = a
206 get3rd (_,_,a,_,_,_) = a
207 get4th (_,_,_,a,_,_) = a
208 get5th (_,_,_,_,a,_) = a
209 get6th (_,_,_,_,_,a) = a
210

211 get1st3 (a,_,_) = a
212

213 -- define dsp13 as topEntity
214 topEntity = dsp13
215

216 --To automate the synthesis process more easily, the port names and entity name of the
topEntity are explicitly defined

217 {-# ANN topEntity
218 (Synthesize
219 { t_name = "DSP13_num_mem_2"
220 , t_inputs = [PortName "clk"
221 , PortName "rst"
222 , PortName "en"
223 , PortName "en_mac"
224 , PortName "inp"
225 , PortName "frame_trig"
226 , PortName "p_in"
227 , PortName "y_in"
228 , PortName "ext_wr"
229]
230 , t_output = PortName "outp"
231 })
232 #-}
233

234 -- No inline certain functions to analyse power of those pieces seperately
235 {-# NOINLINE xmem #-}
236 {-# NOINLINE ymem #-}
237 {-# NOINLINE pmem #-}
238 {-# NOINLINE acc_handle #-}
239 {-# NOINLINE xreg #-}
240 {-# NOINLINE yreg #-}
241 {-# NOINLINE x_rd_addrs_handle #-}
242 {-# NOINLINE x_wr_inps_handle #-}
243 {-# NOINLINE barrel_shift #-}
244 {-# NOINLINE topEntity #-}
245

246 -- TESTBENCH SECTION --
247 -- The code below this line is for the testbench generation and therefore will not be

synthesized by the Synopsys tooling. The code below uses the test inputs as generated by
matlab and incluced in the file DSP6_program1_num_mem_2.hs

248

249

250 -- Cast programming vectors generated by matlab in the correct format
251 p_in_vec = Just <$> (zip (iterate d256 (+1) (0 :: PMem_addr)) program1)
252

253 -- Desired output generation, uses the test vectors generated by MATLAB.
254 f_out_vec regs_init coeff sins = souts
255 where
256 sout regs = foldl1 (+) (zipWith (*) regs coeff)
257 regs' regs sin = replace 0 sin (fst(shiftOutFromN d1 regs))
258 delay_line = scanl (regs') regs_init sins
259 souts = map sout (drop d1 delay_line)
260 out_vec_fs = f_out_vec regs_init coeff_vec_hs in_vec_hs
261

262 -- Function to upsample the expected outputs at fs to fclk, basically repeating every output
256 clock cycles.

263 f_out_vec_fclk out_vec_fs = (replicate output_offset (0 :: Sout)) ++ (concat (map fs_to_fclk
out_vec_fs))

264 where
265 fs_to_fclk sout = (replicate d256 (sout))
266

267 -- Calculates the expected samples on the rate fs (fs = fclk/256)

60

268 out_vec_fclk = f_out_vec_fclk out_vec_fs
269

270 testBench :: Signal "Twenty" Bool
271 testBench = done
272 where
273 done = outputVerifier' clk rst out_vec_fclk (ignoreFor clk rst en d1 0 (topEntity

clk rst en en_mac testInput frame_trig p_in y_in ext_wr))
274 clk = tbClockGen @"Twenty" (not <$> done)
275 rst = resetGen @"Twenty"
276 en = tbEnableGen
277 en_mac = toEnable (stimuliGenerator clk rst ((replicate d259 False) ++ (True:>Nil)))
278 testInput = stimuliGenerator clk rst in_vec
279 p_in = stimuliGenerator clk rst ((Nothing :> Nil) ++ p_in_vec ++ (Nothing :> Nil))
280 y_in = unbundle $ stimuliGenerator clk rst (((replicate (SNat @Num_mem) Nothing):>

Nil) ++ coeff_vec ++ ((replicate (SNat @Num_mem) Nothing):> Nil)) ext_wr =
stimuliGenerator clk rst (((replicate (SNat @Num_mem) Nothing):> Nil) ++ ext_wr_vec ++ ((
replicate (SNat @Num_mem) Nothing):> Nil))

281 frame_trig= stimuliGenerator clk rst frame_trig_vec
282

283 {-# ANN topEntity
284 (TestBench 'testBench)
285 #-}

A.3.3 Barrel Shifter Stages

1 module DSP_barrel_shifters where
2 import Clash.Prelude
3 -- Barrel shifter functions for DSP implementations with multiple memories. To be able to

combine different static barrel shifters multiples of the same function description are
necessary

4 -- but each one is called with a different SNat for the amount rotated. Since this requires a
different type for each function unique function names are needed.

5 -- the functions are instantiated by a line in a DSP_program file generated by Matlab
depending on the amount of barrel shifting needed.

6

7 -- Up to 8 unique barrel shifters are supported
8

9 vec_shft_1 :: KnownNat n => Bool -> (Vec n a1,SNat 0) -> (Vec n a1,SNat 1)
10 vec_shft_1 False (vec_in,pow) = (vec_in,addSNat pow d1)
11 vec_shft_1 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
12 where
13 num_shft = d1
14

15 vec_shft_2 :: KnownNat n => Bool -> (Vec n a1,SNat 1) -> (Vec n a1,SNat 2)
16 vec_shft_2 False (vec_in,pow) = (vec_in,addSNat pow d1)
17 vec_shft_2 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
18 where
19 num_shft = d2
20

21 vec_shft_3 :: KnownNat n => Bool -> (Vec n a1,SNat 2) -> (Vec n a1,SNat 3)
22 vec_shft_3 False (vec_in,pow) = (vec_in,addSNat pow d1)
23 vec_shft_3 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
24 where
25 num_shft = d4
26

27 vec_shft_4 :: KnownNat n => Bool -> (Vec n a1,SNat 3) -> (Vec n a1,SNat 4)
28 vec_shft_4 False (vec_in,pow) = (vec_in,addSNat pow d1)
29 vec_shft_4 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
30 where
31 num_shft = d8
32

33 vec_shft_5 :: KnownNat n => Bool -> (Vec n a1,SNat 4) -> (Vec n a1,SNat 5)
34 vec_shft_5 False (vec_in,pow) = (vec_in,addSNat pow d1)
35 vec_shft_5 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
36 where
37 num_shft = d16
38

39 vec_shft_6 :: KnownNat n => Bool -> (Vec n a1,SNat 5) -> (Vec n a1,SNat 6)
40 vec_shft_6 False (vec_in,pow) = (vec_in,addSNat pow d1)
41 vec_shft_6 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
42 where
43 num_shft = d32

61

44

45 vec_shft_7 :: KnownNat n => Bool -> (Vec n a1,SNat 6) -> (Vec n a1,SNat 7)
46 vec_shft_7 False (vec_in,pow) = (vec_in,addSNat pow d1)
47 vec_shft_7 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
48 where
49 num_shft = d64
50

51 vec_shft_8 :: KnownNat n => Bool -> (Vec n a1,SNat 7) -> (Vec n a1,SNat 8)
52 vec_shft_8 False (vec_in,pow) = (vec_in,addSNat pow d1)
53 vec_shft_8 True (vec_in,pow) = (rotateLeftS vec_in num_shft, addSNat pow d1)
54 where
55 num_shft = d128

62

B CLASH PRIMITIVES

Primitives are instructions for Clash on how to implement a certain function in a HDL (Verilog in the cases

below). The primitive declaration at the top of a file indicates the arguments that are given to the Clash

function and how they correspond to Verilog arguments.

B.1 SRAM Primitive

1 [{ "BlackBox" :
2 { "name" : "Clash.Explicit.RAM.asyncRam#"
3 , "kind" : "Declaration"
4 , "type" :
5 "asyncRam#
6 :: (HasCallStack -- ARG[0]
7 , KnownDomain wdom wconf -- ARG[1]
8 , KnownDomain rdom rconf) -- ARG[2]
9 => Clock wdom -- ^ wclk, ARG[3]

10 -> Clock rdom -- ^ rclk, ARG[4]
11 -> Enable wdom -- ^ wen, ARG[5]
12 -> SNat n -- ^ sz, ARG[6]
13 -> Signal rdom Int -- ^ rd, ARG[7]
14 -> Signal wdom Bool -- ^ en, ARG[8]
15 -> Signal wdom Int -- ^ wr, ARG[9]
16 -> Signal wdom a -- ^ din, ARG[10]
17 -> Signal rdom a"
18 , "template" :
19 "// DesignWare SRAM instantiation
20 wire [$clog2(� LIT[6])-1:0] � GENSYM[rd_addr_int][0];
21 wire [$clog2(� LIT[6])-1:0] � GENSYM[wr_addr_int][1];
22 wire signed [63:0] � GENSYM[rd_addr_int_big][2];
23 wire signed [63:0] � GENSYM[wr_addr_int_big][3];
24

25 assign � SYM[2] = � ARG[7];
26 assign � SYM[3] = � ARG[9];
27

28 assign � SYM[0] = � SYM[2][$clog2(� LIT[6]) -1:0];
29 assign � SYM[1] = � SYM[3][$clog2(� LIT[6]) -1:0];
30 DW_ram_r_w_s_dff #(� SIZE[� TYPO], � LIT[6])
31 � GENSYM[U][4] (.clk(� ARG[3]), .rst_n(!rst), .cs_n(1'b0), .wr_n(! � ARG[8]), .rd_addr(� SYM[0]), .

wr_addr(� SYM[1]), .data_in(� ARG[10]), .data_out(� RESULT));
32 // DesignWare SRAM end"
33 }
34 }
35]

B.2 Clock Multiplexer Inline Primitive

1 --

2 {-# LANGUAGE QuasiQuotes #-}
3 module InlinePrimitive where
4

5 import Clash.Annotations.Primitive
6 import Clash.Prelude
7 import Data.String.Interpolate (i)

63

8 import Data.String.Interpolate.Util (unindent)
9

10 {-# ANN clkMux (InlinePrimitive [Verilog] $ unindent [i|
11 [{ "BlackBox" :
12 { "name" : "InlinePrimitive.clkMux"
13 , "kind": "Declaration"
14 , "template" :
15 "// begin InlinePrimitive clkMux:
16 assign � RESULT = � ARG[0] & � ARG[1];
17 // end InlinePrimitive clkMux"
18 }
19 }
20]
21 |]) #-}
22 {-# NOINLINE clkMux #-}
23 clkMux :: Signal dom Bool -> Clock dom -> Clock dom
24 clkMux _ (clk) = clk
25

26 --

64

C SCRIPTSFORSTIMULI GENERATION, SYNTHESISAND

POWER ANALYSIS

In this chapter scripts for generating programs, input stimuli, synthesize configurations and power analy-

sis configurations can be found. The scripts are given for the n-multiplier designs and are representative

for all designs discussed in this work.

C.1 Matlab Stimuli Generation and Program Compiler

C.1.1 n-Multiplier Design

1 addpath(genpath('programs_DSP13'));
2 %Program compiler DSP13 with larger inputs.
3

4 %% Create fixed point object for correct handling
5 clear all;
6 F = fimath('RoundingMethod', 'Floor', ...
7 'OverflowAction', 'Saturate', ...
8 'ProductMode', 'FullPrecision', ...
9 'SumMode', 'FullPrecision');

10

11 %% Set parameters
12 figIdx = 1;
13 enablePlots = false;
14 enableFileout = true;
15

16 %Set maximum memory size
17 mem_size = 256;
18 %Set number of taps for the FIR filter
19 num_taps = 100;
20 %Set number of samples that will be fed to the design
21 num_inputs = 300;
22 %When True, create random values with which to initialise the X memories
23 fill_xmem_rand = true;
24 %Set bit-width of samples
25 sample_size = 32;
26 %Set how many bits of the samples are maximally filled.
27 filled_bits_sin = 24;
28 %Set bit-width of samples
29 coeff_size = 32;
30 %Set how many bits of the coefficients are maximally filled.
31 filled_bits_coeff = 24;
32

33 %% Generate coefficients and inputs
34 %To prevent the maximum of 32 bit registers of being reached in the adder
35 %tree, do not set range to full possible range (which would be 1.0)
36 range_coeff = 0.0625;
37

38 %Uncomment next two lines to generate new coefficients
39 %coeff = -range_coeff + (range_coeff+range_coeff)*rand(num_taps ,1);
40 %coeff_file = coeff;
41 %load coefficients from file if no new coefficients are generated
42 load('coeff_file_23_2_22.mat');
43 coeff = coeff_file;
44

45 % Generate input

65

46 range_sin = 0.0625;
47 %Uncomment next two lines to generate new samples
48 %sin = -range_sin + (range_sin+range_sin)*rand(num_inputs ,1);
49 %sin_file = sin;
50 %load samples from file if no new samples are generated
51 load('sin_file_23_2_22.mat');
52 sin = sin_file;
53

54 %Uncomment next two lines to generate new initial values for the X memories
55 %sin_xmem_init_base = -range_sin + (range_sin+range_sin)*rand(mem_size ,1);
56 %sin_xmem_init_base_file = sin_xmem_init_base;
57 %load initial X memory values from file if no new initial samples are generated
58 load('sin_xmem_init_base_file_23_2_22.mat');
59 sin_xmem_init_base = sin_xmem_init_base_file;
60

61 %Set range of designs to generate programs for
62 for num_mem = 2 : 110
63

64 %When mem_size/num_mem is not a round number the amount of generated memory
65 %is rounded upwards, this extra memory is filled with zeros.
66 sin_xmem_init = [sin_xmem_init_base' zeros(1,(ceil(mem_size/num_mem))*num_mem-mem_size)];
67

68 %% Convert to fixed point
69 sin = fi(sin,1,32,31,F);
70 sin_xmem_init = fi(sin_xmem_init ,1,32,31,F);
71 coeff = fi(coeff,1,32,31,F);
72

73 %Create program index
74 prog_cnt = 1;
75

76 %% Adjusting constants and splitting up coefficients for multiple memory implementation
77 mem_pnt_max = ceil(num_taps/num_mem);
78 coeff_temp = [coeff; fi(zeros(num_mem-mod(num_taps,num_mem),1),1,32,31,F)];
79 coeff_split = reshape(coeff_temp,num_mem ,[]);
80

81 sin_xmem_init_temp = sin_xmem_init ';
82 sin_xmem_init_split = reshape(sin_xmem_init_temp,num_mem ,[]);
83

84 %% Writing the program
85 %write new sample (preamble)
86 Xbase_inc(prog_cnt) = "False";
87 Xwr_en(prog_cnt) = "True";
88 %Prog_jump(prog_cnt) = prog_jump;
89 Mem_pnt(prog_cnt) = (0);
90 Outp(prog_cnt) = "False";
91 Acc_en(prog_cnt) = "False";
92 prog_cnt = prog_cnt + 1;
93 %Load Xreg and Yreg, do not accumulate
94 Xbase_inc(prog_cnt) = "False";
95 Xwr_en(prog_cnt) = "False";
96 %Prog_jump(prog_cnt) = prog_jump;
97 Mem_pnt(prog_cnt) = (0);
98 Outp(prog_cnt) = "False";
99 Acc_en(prog_cnt) = "False";

100 prog_cnt = prog_cnt + 1;
101 preamble_length = prog_cnt;
102

103 %main loop
104 for i = prog_cnt : (preamble_length+mem_pnt_max -2)
105 Xbase_inc(prog_cnt) = "False";
106 Xwr_en(prog_cnt) = "False";
107 Mem_pnt(prog_cnt) = (i-preamble_length + 1);
108 Outp(prog_cnt) = "False";
109 Acc_en(prog_cnt) = "True";
110 prog_cnt = prog_cnt + 1;
111 end
112

113 %last accumulation
114 Xbase_inc(prog_cnt) = "False";
115 Xwr_en(prog_cnt) = "False";
116 Mem_pnt(prog_cnt) = (0);
117 Outp(prog_cnt) = "False";
118 Acc_en(prog_cnt) = "True";

66

119 prog_cnt = prog_cnt + 1;
120 %Writing to output register and increasing base pointer
121 Xbase_inc(prog_cnt) = "True";
122 Xwr_en(prog_cnt) = "False";
123 Mem_pnt(prog_cnt) = (0);
124 Outp(prog_cnt) = "True";
125 Acc_en(prog_cnt) = "False";
126 prog_cnt = prog_cnt + 1;
127

128 % Pad rest of program memory with "idle" instruction
129 for i = prog_cnt : mem_size
130 Xbase_inc(i) = "False";
131 Xwr_en(i) = "False";
132 %Prog_jump(i) = prog_jump;
133 Mem_pnt(i) = 0;
134 Outp(i) = "False";
135 Acc_en(i) = "False";
136 end
137

138 %Set End of Program bit, that instruction will be repeated in the design
139 Prog_jump = repelem("False",mem_size);
140 Prog_jump(prog_cnt) = "True";
141 program_length(num_mem) = prog_cnt;
142

143 %For debugging, add all instruction sections in one matrix.
144 program_matrix = [Xbase_inc' Xwr_en' Prog_jump' Mem_pnt' Outp' Acc_en'];
145

146 %% Write program, input vector, initial X data and coefficients to file
147 if enableFileout
148 fileID = fopen(sprintf('programs_DSP13/DSP13_program1_num_mem_%d.hs',num_mem),'w'); % / for

linux, programs_DSP13\\DSP13_program1_num_mem_%d.hs for windows
149 fprintf(fileID,'--FIR program for DSP13 with %d X and Y memories\n',num_mem);
150 fprintf(fileID,'module DSP13_program1_num_mem_%d where\n',num_mem);
151 fprintf(fileID,'import Clash.Prelude\n');
152 fprintf(fileID,'import Data_types_DSP13_num_mem_%d\n',num_mem);
153 fprintf(fileID,'import DSP_barrel_shifters\n');
154

155 fprintf(fileID,'program1 = (((%s :: Xbase_inc),(%s :: Xwr_en),(%s :: Prog_jump),(%d :: Mem_pnt
),(%s :: Outp_instr),(%s :: Acc_en)) :>',Xbase_inc(1),Xwr_en(1),Prog_jump(1),Mem_pnt(1),
Outp(1),Acc_en(1));

156 for i = 2 : length(Xbase_inc)
157 fprintf(fileID,'(%s,%s,%s,%d,%s,%s) :>',Xbase_inc(i),Xwr_en(i),Prog_jump(i),Mem_pnt(i),Outp(i)

,Acc_en(i));
158 end
159 fprintf(fileID,' Nil)\n');
160

161 fprintf(fileID,'in_vec = ');
162 fprintf(fileID,'(replicate d%d (0 :: Sin)) ++ ',mem_size);
163 fprintf(fileID,'(replicate d256 (%.31f :: Sin)) ++ ',sin(1));
164 fprintf(fileID,'(replicate d256 (%.31f)) ++ ', sin(2 :end));
165 fprintf(fileID,'(Nil)\n');
166

167 fprintf(fileID,'coeff_vec = (');
168 for i = 1 : size(coeff_split ,2)
169 fprintf(fileID,'(');
170 for j = 1 : num_mem
171 fprintf(fileID,'Just ((%d :: YMem_addr),(%.31f::Coeff)):>',(i-1),coeff_split(j,i));
172 end
173 fprintf(fileID,'Nil):>');
174 end
175 fprintf(fileID,'Nil)\n');
176

177 fprintf(fileID,'ext_wr_vec = (');
178 for i = 1 : size(sin_xmem_init_split ,2)
179 fprintf(fileID,'(');
180 for j = 1 : num_mem
181 fprintf(fileID,'Just ((%d :: XMem_addr),(%.31f::Sin)):>',(i-1),sin_xmem_init_split(j,i));
182 end
183 fprintf(fileID,'Nil):>');
184 end
185 fprintf(fileID,'Nil)\n');
186

187

67

188 fprintf(fileID,'frame_trig_vec = ');
189 fprintf(fileID,'(replicate d256 False) ++ ');
190 fprintf(fileID,'concat (replicate d%d ((True :> Nil) ++ (replicate d255 False)))\n',

num_inputs);
191

192 fprintf(fileID,'out_vec = ');
193 fprintf(fileID,'(replicate d256 (0 :: Sout)) ++ ');
194 fprintf(fileID,'(replicate d256 (%.31f :: Sout)) ++ ',sout_des(1));
195 fprintf(fileID,'(replicate d256 (%.31f)) ++ ', sout_des(2 :end));
196 fprintf(fileID,'(Nil)\n');
197

198 fprintf(fileID,'regs_init = ');
199 if fill_xmem_rand
200 fprintf(fileID,'(');
201 reversed_regs = flip(sin_xmem_init);
202 fprintf(fileID,'(%.31f :: Sin):>',reversed_regs(1:length(coeff)));
203 fprintf(fileID,'Nil)\n');
204 else
205 fprintf(fileID,'(replicate d%d (0 :: Sin))\n',length(coeff));
206 end
207 fprintf(fileID,'in_vec_hs = ');
208 fprintf(fileID,'(%.31f :: Sin):>',sin(1));
209 fprintf(fileID,'(%.31f):>',sin(2 :end));
210 fprintf(fileID,'(Nil)\n');
211

212 fprintf(fileID,'output_offset = d%d\n',(mem_size+prog_cnt));
213

214 fprintf(fileID,'coeff_vec_hs = (');
215 fprintf(fileID,'(%.31f::Coeff):>',coeff);
216 fprintf(fileID,'Nil)\n');
217

218 %% Write needed barrel shifter instantiation
219 fileID_2 = fopen(sprintf('programs_DSP13/DSP13_barrel_shift_num_mem_%d.hs',num_mem),'w'); % \\

for windows, / for linux
220 fprintf(fileID_2,'\n--Barrel shifter instantiation and help function\n');
221 fprintf(fileID_2,'to_bool_vec :: Shft_cnt -> Vec (CLog 2 Num_mem) Bool\n');
222 fprintf(fileID_2,'to_bool_vec cnt = unpack (pack cnt) :: Vec (CLog 2 Num_mem) Bool\n\n');
223

224 fprintf(fileID_2,'barrel_shift :: Vec Num_mem Xreg -> Shft_cnt -> Vec Num_mem Xreg\n');
225 fprintf(fileID_2,'barrel_shift vec_in cnt = fst $ (');
226 for i = ceil(log2(num_mem)) : (-1) : 2
227 fprintf(fileID_2,'(vec_shft_%d (shft_en !! %d)) . ',i,i-1);
228 end
229 fprintf(fileID_2,'(vec_shft_1 (shft_en !! 0))) (vec_in,d0)\n');
230 fprintf(fileID_2,' where\n');
231 fprintf(fileID_2,' shft_en = reverse (to_bool_vec cnt)\n');
232

233 fprintf(fileID_2,'{-# NOINLINE barrel_shift #-}\n');
234

235 end
236 end
237 %% Plot number of instructions in program for different designs.
238 if enablePlots
239 plot_prog_size_f = figure(figIdx);
240 figIdx + 1;
241 plot(2:33,program_length(2:33),'-o')
242 title('Number of instructions in 100 tap FIR program');
243 xlabel('Number of prallel multipliers and memories');
244 ylabel('Number of instructions in program');
245 set(plot_prog_size_f,'Units','Inches');
246 pos = get(plot_prog_size_f,'Position');
247 set(plot_prog_size_f,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3),

pos(4)])
248 print(plot_prog_size_f,'plot_prog_size','-dpdf','-r0')
249

250 end

C.2 Shell Scripts for Generating all Haskell, Verilog and Synthesis files

C.2.1 Top Level Generate Script

68

1 #!/bin/bash
2

3 #Set range of designs to generate
4 MIN_NUM_MEM=2
5 MAX_NUM_MEM=33
6

7 #copy barrel shifter file and RAM primitive to haskell folder
8 cp DSP_barrel_shifters.hs ./generated_haskell/
9 cp Clash_Explicit_RAM.primitives ./generated_haskell/

10

11 cd ./synthesize_folder
12

13 #Create power_reports directory if it does not yet exist
14 if (test -d power_reports)
15 then
16 :
17 else
18 mkdir power_reports
19 fi
20

21 cd ..
22

23 #Main loop, for every index create all needed Haskell files with unique module and topentity
names.

24 #Additionally, create Synopsys design compiler configuration scripts and Synopsys PrimeTime
configuration script

25 #Lastly, create a shell script which when run will call upon every Synthesis and Power
analysis script and remove large files afterwards

26 for ((NUM_MEM=${MIN_NUM_MEM}; NUM_MEM<=${MAX_NUM_MEM}; NUM_MEM++))
27 do
28 echo "module Data_types_DSP13_num_mem_${NUM_MEM} where" > "./generated_haskell/

Data_types_DSP13_num_mem_${NUM_MEM}.hs"
29 echo "import Clash.Prelude" >> "./generated_haskell/Data_types_DSP13_num_mem_${NUM_MEM}.hs

"
30 echo "import Clash.Explicit.Testbench" >> "./generated_haskell/Data_types_DSP13_num_mem_${

NUM_MEM}.hs"
31 echo "import Clash.Promoted.Nat" >> "./generated_haskell/Data_types_DSP13_num_mem_${

NUM_MEM}.hs"
32 echo "type Num_mem=${NUM_MEM}" >> "./generated_haskell/Data_types_DSP13_num_mem_${NUM_MEM

}.hs"
33 cat Data_types_DSP13_num_mem_.hs >> "./generated_haskell/Data_types_DSP13_num_mem_${

NUM_MEM}.hs"
34

35 echo "module DSP13_num_mem_${NUM_MEM} where" > "./generated_haskell/DSP13_num_mem_${
NUM_MEM}.hs"

36 echo "import Clash.Prelude" > "./generated_haskell/DSP13_num_mem_${NUM_MEM}.hs"
37 echo "import DSP13_program1_num_mem_${NUM_MEM}" >> "./generated_haskell/DSP13_num_mem_${

NUM_MEM}.hs"
38 echo "import Data_types_DSP13_num_mem_${NUM_MEM}" >> "./generated_haskell/DSP13_num_mem_${

NUM_MEM}.hs"
39 cat DSP13_num_mem_.hs >> "./generated_haskell/DSP13_num_mem_${NUM_MEM}.hs"
40 cat ./generated_haskell/DSP13_barrel_shift_num_mem_${NUM_MEM}.hs >> "./generated_haskell/

DSP13_num_mem_${NUM_MEM}.hs"
41 cat << eof >> "./generated_haskell/DSP13_num_mem_${NUM_MEM}.hs"
42 {-# ANN topEntity
43 (Synthesize
44 { t_name = "DSP13_num_mem_${NUM_MEM}"
45 , t_inputs = [PortName "clk"
46 , PortName "rst"
47 , PortName "en"
48 , PortName "en_mac"
49 , PortName "inp"
50 , PortName "frame_trig"
51 , PortName "p_in"
52 , PortName "y_in"
53 , PortName "ext_wr"
54]
55 , t_output = PortName "outp"
56 })
57 #-}
58 eof
59

60

69

61 cd ./generated_haskell
62 #Call upon Clash to generate verilog files of the design
63 stack exec --resolver=lts-18.21 --package clash-ghc -- clash DSP13_num_mem_${NUM_MEM}.hs --

verilog -fclash-hdldir verilog_num_mem_${NUM_MEM}
64 cd ..
65 cd ./synthesize_folder
66 #Check if Synthesis folder for specific num_mem exists and create it if it does not.
67 if (test -d Synthesis_DSP13_num_mem_${NUM_MEM})
68 then
69 :
70 else
71 mkdir Synthesis_DSP13_num_mem_${NUM_MEM}
72 fi
73 cd ./Synthesis_DSP13_num_mem_${NUM_MEM}
74 #Create include folder if does not yet exist
75 if (test -d include)
76 then
77 :
78 else
79 mkdir include
80 fi
81 cd ..
82 cd ..
83 #Copy generated verilog files to correct folders
84 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}.v ./

synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
85 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}

_acc_handle.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
86 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}_pmem

.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
87 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}_xmem

.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
88 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}_ymem

.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
89 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}

_barrel_shift.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
90 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}_xreg

.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
91 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}_yreg

.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
92 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}

_x_rd_addrs_handle.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
93 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.topEntity/DSP13_num_mem_${NUM_MEM}

_x_wr_inps_handle.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
94 cp ./generated_haskell/verilog_num_mem_${NUM_MEM}/Main.testBench/testBench.v ./

synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
95 cp uk65lscllmvbbr_sdf30.v ./synthesize_folder/Synthesis_DSP13_num_mem_${NUM_MEM}/include
96

97 #Create synthesis and power analysis shell script with correct num_mem index
98 echo "DESIGN_NAME=\"DSP13_num_mem_${NUM_MEM}\"" > ./synthesize_folder/

Synthesis_DSP13_num_mem_${NUM_MEM}/generate_primepower_design_DSP13_num_mem_${NUM_MEM}
99 cat generate_primepower_design_DSP13_num_mem_ >> ./synthesize_folder/Synthesis_DSP13_num_mem_$

{NUM_MEM}/generate_primepower_design_DSP13_num_mem_${NUM_MEM}
100

101 done
102 #After loop is finished create top level script which calls upon all the generated shell

scripts which will synthesize the designs and do power analysis, after which the synout
and modelsim directory are removed to conserve disk space.

103 cat << eof > "./synthesize_folder/run_all_power_reports"
104 for ((NUM_MEM=${MIN_NUM_MEM}; NUM_MEM<=${MAX_NUM_MEM}; NUM_MEM++))
105 do
106 cd Synthesis_DSP13_num_mem_\${NUM_MEM}
107 . generate_primepower_design_DSP13_num_mem_\${NUM_MEM}
108 rm -r ./SynOut
109 rm -r ./modelsim
110 cd ..
111 done
112

113 eof

C.2.2 Script Controlling Synopsys Design Compiler, Synopsys Primetime and Modelsim

70

1 # check for output directory and create it if necessary
2 if (test -d SynOut)
3 then
4 :
5 else
6 mkdir SynOut
7 fi
8

9 if (test -d Reports)
10 then
11 :
12 else
13 mkdir Reports
14 fi
15

16 if (test -d modelsim)
17 then
18 :
19 else
20 mkdir modelsim
21 fi
22

23 #create synopsys .dc file
24 cat << eof > .synopsys_dc.setup
25 set_app_var target_library "uk65lscllmvbbr_120c25_tc_ccs.db"
26

27 set_app_var synthetic_library "dw_foundation.sldb"
28 set_app_var link_library "* \$target_library \$synthetic_library"
29 set_app_var search_path "/local/opt/Technology/UMC/UMC_65nm/_G-01-LOGIC_MIXED_MODE65N -

LL_LOW_K_UMC-IP/G-9LT-LOGIC_MIXED_MODE65N -LL_LOW_K_UMK65LSCLLMVBBR -LIBRARY_TAPE_OUT_KIT -
Ver.B03_P.B/UMK65LSCLLMVBBR_B03_TAPEOUTKIT/synopsys/ccs/"

30

31 #paths to the source files (.vhdl/.v)
32 lappend search_path /home/s1568426/synthesize_folder/Synthesis_${DESIGN_NAME}/include
33 lappend search_path /home/s1568426/synthesize_folder/Synthesis_${DESIGN_NAME}/SynOut
34 lappend search_path /home/s1568426/synthesize_folder/Synthesis_${DESIGN_NAME}
35 set_app_var designer "Raben"
36 eof
37

38 source /opt/Synopsys/local/setenv_syn_O -2018.06.sh
39 ### Synthesize the design using Synopsys Design Compiler
40 dc_shell-t << eof > SynOut/log_syn_$DESIGN_NAME
41 remove_design -all
42 set DESIGN_NAME $DESIGN_NAME
43 set CLK "clk"
44 # set the clock in ns (as per the library sepcifications of UMC65nm)
45 set clk_pr 20
46

47 analyze -format verilog include/${DESIGN_NAME}.v
48 analyze -format verilog include/${DESIGN_NAME}_acc_handle.v
49 analyze -format verilog include/${DESIGN_NAME}_pmem.v
50 analyze -format verilog include/${DESIGN_NAME}_xmem.v
51 analyze -format verilog include/${DESIGN_NAME}_ymem.v
52 analyze -format verilog include/${DESIGN_NAME}_barrel_shift.v
53 analyze -format verilog include/${DESIGN_NAME}_xreg.v
54 analyze -format verilog include/${DESIGN_NAME}_yreg.v
55 analyze -format verilog include/${DESIGN_NAME}_x_rd_addrs_handle.v
56 analyze -format verilog include/${DESIGN_NAME}_x_wr_inps_handle.v
57

58

59 elaborate ${DESIGN_NAME}
60

61 if { ! [link] } {
62 puts "Error: Failed to link 'Design'."
63 exit 1
64 }
65

66 check_design
67 create_clock \${CLK} -period \${clk_pr}
68 # Working out a proper clock tree was not possible in the available time-frame, instead

the clock is set to ideal (no propagation delay).
69 set_ideal_network -no_propagate {\${CLK}}
70

71

71 uniquify -force
72

73 compile_ultra -no_autoungroup
74

75 change_names -rules verilog -hierarchy
76

77 # Write output files
78 write -format ddc -hierarchy -output SynOut/${DESIGN_NAME}.mapped.ddc
79 write -f verilog -hierarchy -output SynOut/${DESIGN_NAME}.mapped.v
80 write_sdf -version 3.0 SynOut/${DESIGN_NAME}.mapped.sdf
81 write_sdc -nosplit SynOut/${DESIGN_NAME}.mapped.sdc
82 write_parasitics -output SynOut/${DESIGN_NAME}.mapped.spef
83

84 # Report Area and Power
85 report_area -hierarchy > ../power_reports/${DESIGN_NAME}_area.rpt
86 report_power > Reports/${DESIGN_NAME}_power0.rpt
87 report_power -hierarchy > Reports/${DESIGN_NAME}_power1.rpt
88

89 # Report constraint violations
90 report_constraints -all_viol > Reports/all_violations.rpt
91

92 puts "Synthesis Done and Successfull for $DESIGN_NAME !"
93 exit
94 eof
95

96 cd modelsim
97 vmap -c
98 cd ..
99 ### Use command line modelsim to stimulate the design and record switching behaviour

100 eval vsim -c << eof > modelsim_log
101 project new ./modelsim ${DESIGN_NAME}
102 project addfile ../SynOut/${DESIGN_NAME}.mapped.v
103 project addfile ../include/testBench.v
104 project addfile ../include/uk65lscllmvbbr_sdf30.v
105 project compileall
106

107 vsim +notimingchecks -noglitch work.testBench -novopt -sdftyp {/testBench/${DESIGN_NAME}_c\
$MaintestBench_app_arg=/home/s1568426/synthesize_folder/Synthesis_${DESIGN_NAME}/SynOut/${
DESIGN_NAME}.mapped.sdf}

108

109 run 5120 ns
110 vcd file ${DESIGN_NAME}.vcd
111 vcd add /testBench/${DESIGN_NAME}_c\\\$MaintestBench_app_arg/*
112 run -all
113 eof
114

115 module load synopsys/prime/S-2021.06-SP2
116 cat << eof > primepower_script_${DESIGN_NAME}.tcl
117

118 set power_enable_analysis TRUE
119 set DESIGN_NAME $DESIGN_NAME
120 if {\$power_enable_timing_analysis == false} {set_app_var power_enable_timing_analysis

true}
121 set power_analysis_mode averaged
122

123 ###
124 # link design
125 ###
126 set target_library "uk65lscllmvbbr_120c25_tc_ccs.db"
127 set synthetic_library "dw_foundation.sldb"
128 set search_path "/local/opt/Technology/UMC/UMC_65nm/_G-01-LOGIC_MIXED_MODE65N -

LL_LOW_K_UMC-IP/G-9LT-LOGIC_MIXED_MODE65N -LL_LOW_K_UMK65LSCLLMVBBR -LIBRARY_TAPE_OUT_KIT -
Ver.B03_P.B/UMK65LSCLLMVBBR_B03_TAPEOUTKIT/synopsys/ccs/"

129 set link_library "* \$target_library \$synthetic_library"
130

131 read_verilog ./SynOut/${DESIGN_NAME}.mapped.v
132 current_design $DESIGN_NAME
133 link
134

135

136 ###
137 # set transition time / annotate parasitics
138 ###

72

139 read_sdc ./SynOut/${DESIGN_NAME}.mapped.sdc
140 #set_disable_timing [get_lib_pins ssc_core_typ/*/G]
141 read_parasitics ./SynOut/${DESIGN_NAME}.mapped.spef
142

143 ###
144 # check/update/report timing
145 ###
146 check_timing
147 update_timing
148 report_timing
149

150 ###
151 # read switching activity file
152 ###
153 read_vcd -strip_path testBench/${DESIGN_NAME}_c\\\$MaintestBench_app_arg "/home/s1568426/

synthesize_folder/Synthesis_${DESIGN_NAME}/modelsim/${DESIGN_NAME}.vcd"
154

155 ###
156 # check/update/report power
157 ###
158 check_power -verbose
159 update_power
160 report_power -verbose
161

162 report_power -verbose > ../power_reports/${DESIGN_NAME}_avg_primepower0.rpt
163 report_power -hierarchy -levels 1 -verbose > ../power_reports/${DESIGN_NAME}

_avg_primepower1.rpt
164

165

166 quit
167 eof
168

169 pt_shell -f primepower_script_${DESIGN_NAME}.tcl

73

D TABLESCONTAININGAVERAGEPOWERANDTOTAL

CELL AREA RESULTS

D.1 Designs without Clock Gating

multipliers 1 2 3 4 5 6 7 8 9 10 11 12

ymem 0.0029500 0.0029200 0.0029400 0.0029120 0.0029600 0.0029390 0.0029470 0.0029120 0.0029700 0.0029600 0.0030030 0.0030000

xmem 0.0029500 0.0029400 0.0029550 0.0029230 0.0029650 0.0029460 0.0029580 0.0029280 0.0029790 0.0029700 0.0030140 0.0030120

pmem 0.0018300 0.0017300 0.0017300 0.0016400 0.0016400 0.0016400 0.0016400 0.0015500 0.0015500 0.0015500 0.0015500 0.0015500

MAC 0.0002950 0.0004070 0.0004900 0.0005210 0.0005840 0.0006340 0.0006920 0.0006970 0.0007000 0.0006810 0.0007500 0.0007810

barrel shift 0.0000000 0.0000042 0.0000034 0.0000031 0.0000038 0.0000036 0.0000038 0.0000050 0.0000066 0.0000071 0.0000076 0.0000092

yregs 0.0000000 0.0000309 0.0000441 0.0000555 0.0000669 0.0000786 0.0000902 0.0001013 0.0001155 0.0001275 0.0001381 0.0001490

xregs 0.0000000 0.0000336 0.0000449 0.0000553 0.0000668 0.0000783 0.0000862 0.0001019 0.0001104 0.0001216 0.0001342 0.0001452

remainder 0.0000780 0.0000333 0.0000416 0.0000381 0.0000395 0.0000365 0.0000368 0.0000348 0.0000365 0.0000298 0.0000361 0.0000397

multipliers 13 14 15 16 17 18 19 20 21 22 23 24

ymem 0.0029640 0.0030240 0.0030750 0.0029120 0.0030940 0.0030780 0.0030210 0.0029600 0.0031080 0.0029920 0.0031280 0.0030000

xmem 0.0029640 0.0030380 0.0030750 0.0029120 0.0030940 0.0030780 0.0030330 0.0029600 0.0031080 0.0030140 0.0031510 0.0030000

pmem 0.0015500 0.0015500 0.0015500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500

MAC 0.0007750 0.0008130 0.0007880 0.0008420 0.0008270 0.0008660 0.0009260 0.0008470 0.0008540 0.0008970 0.0009130 0.0009380

barrel shift 0.0000083 0.0000091 0.0000062 0.0000081 0.0000113 0.0000099 0.0000133 0.0000127 0.0000116 0.0000121 0.0000102 0.0000137

yregs 0.0001615 0.0001735 0.0001835 0.0001964 0.0002065 0.0002180 0.0002301 0.0002392 0.0002513 0.0002630 0.0002753 0.0002871

xregs 0.0001554 0.0001684 0.0001768 0.0001891 0.0002012 0.0002131 0.0002255 0.0002373 0.0002475 0.0002589 0.0002696 0.0002823

remainder 0.0000328 0.0000370 0.0000305 0.0000524 0.0000480 0.0000370 0.0000491 0.0000438 0.0000436 0.0000490 0.0000479 0.0000599

multipliers 25 26 27 28 29 30 31 32 33 Fully Parallel

ymem 0.0031250 0.0029640 0.0030780 0.0031920 0.0029580 0.0030600 0.0031620 0.0029120 0.0030030 0.0030900

xmem 0.0031250 0.0029640 0.0030780 0.0031920 0.0029860 0.0030890 0.0031900 0.0029183 0.0030098 0.0030900

pmem 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0013600 0.0013600 0.0000000

MAC 0.0009080 0.0009390 0.0009490 0.0009670 0.0010400 0.0010300 0.0010900 0.0011300 0.0014100 0.0014700

barrel shift 0.0000085 0.0000115 0.0000155 0.0000125 0.0000148 0.0000139 0.0000123 0.0000124 0.0000129 0.0000000

yregs 0.0002968 0.0003083 0.0003194 0.0003323 0.0003435 0.0003551 0.0003683 0.0003788 0.0003830 0.0000000

xregs 0.0002925 0.0003047 0.0003164 0.0003277 0.0003395 0.0003510 0.0003627 0.0003744 0.0004154 0.0000000

remainder 0.0000562 0.0000385 0.0000377 0.0000385 0.0000482 0.0000510 0.0000467 0.0000471 0.0000509 0.0000370

Table D.1: Average power consumption (W) values corresponding to the designs without clock gating

presented in Figure 6.15.

multipliers 1 2 3 4 5 6 7 8 9 10

ymem 95574.24220 95063.76220 95982.48210 95258.88200 96661.80200 96071.40240 96687.36210 95382.36240 97433.28180 97041.60200

xmem 95641.56220 95063.76220 95981.76210 95258.88200 96661.80200 96070.32240 96687.36210 95376.96240 97433.28180 97041.60200

pmem 60273.36140 56640.24130 56589.12130 53661.24120 53661.24120 53665.56120 53625.60120 50748.48110 50753.52110 50753.16110

MAC 6795.00010 13527.72010 20297.88020 26973.00030 33787.80030 40481.64040 47363.76050 54006.48050 63437.76010 69960.24010

barrel shift 0.00000 221.40000 424.80000 846.00000 1304.28000 1896.84000 2629.08000 3286.44000 3794.40000 4210.20000

yregs 0.00000 693.36000 1040.04000 1386.72000 1733.40000 2080.08000 2507.76000 2773.44000 3223.80000 3469.32000

xregs 0.00000 693.36000 1040.04000 1386.72000 1734.12000 2080.08000 2508.84000 2775.60000 3223.80000 3471.12000

remainder 1952.63997 1620.36003 1874.16011 1875.24024 2087.64049 2234.87960 2363.40010 2351.87964 2552.04065 2694.60070

multipliers 11 12 13 14 15 16 17 18 19 20

ymem 98552.52220 98651.52240 97119.36260 99600.48280 101190.60150 96048.00160 102258.00170 101250.00180 99703.44190 97777.08200

xmem 98552.52220 98651.52240 97119.36260 99600.48280 101190.60150 96048.00160 102234.60170 101228.04180 99642.96190 97733.88200

pmem 50755.32110 50750.64110 50755.68110 50708.16110 50761.44110 48338.28110 48366.00110 48366.72110 48326.40110 48329.28110

MAC 76791.60020 81847.80050 90524.88030 97194.60030 103988.88040 110904.12040 125807.03990 132395.39990 139032.72000 145805.76010

barrel shift 4628.16000 4177.80000 5470.20000 5891.40000 6307.56000 6733.08000 8917.92010 9446.40010 9949.68010 10578.24010

yregs 3816.00000 4161.24000 4658.76000 4868.64000 5374.44000 5564.16000 5893.56000 6240.24000 6586.92000 6933.60000

xregs 3823.56000 4170.60000 4670.64000 4856.40000 5374.44000 5552.64000 5893.56000 6240.24000 6586.92000 6933.60000

remainder 2790.00016 2933.63982 3035.87917 3205.79925 3303.00132 3246.48161 3443.76179 3608.64153 3714.12107 3848.04085

multipliers 21 22 23 24 25 26 27 28 29 30

ymem 102660.48210 99290.52220 103799.16230 99177.12240 103336.20250 98205.12260 101982.24270 105759.36280 98480.52290 101876.40300

xmem 102619.44210 99221.76220 103731.84230 99169.92240 103302.00250 98130.60260 101894.76270 105668.64280 98417.88290 101811.60300

pmem 48323.52110 48328.92110 48332.16110 48332.16110 48324.96110 48332.88110 48325.32110 48326.04110 48331.08110 48326.76110

MAC 152454.60010 159177.96010 165938.04010 172211.04020 185129.27980 191855.15980 198518.75990 204593.75990 214898.75970 220795.55970

barrel shift 11006.64010 11517.48010 12059.28010 12550.68010 13097.52010 13607.28010 14149.44010 14673.60010 15176.16010 15690.60010

yregs 7280.28000 7626.96000 7973.64000 8321.40000 8667.00000 9016.56000 9360.36000 9707.04000 10053.72000 10400.40000

xregs 7281.72000 7627.68000 7973.64000 8323.56000 8667.00000 9013.68000 9360.36000 9707.04000 10053.72000 10400.40000

remainder 3979.80087 4066.20067 4188.24071 4337.28033 4462.56038 4577.03991 4701.95986 4810.67986 5010.47951 5114.87949

multipliers 31 32 33 Fully Parallel

ymem 105262.92310 95649.48320 98734.68330 91481.76170

xmem 105205.32310 95604.48320 98715.24330 88758.36160

pmem 48336.48110 45317.16100 45365.04100 0.00000

MAC 228889.07970 236843.27960 264176.27840 1738373.77500

barrel shift 16183.80010 16687.80010 20843.28010 0.00000

yregs 10747.08000 11093.76000 11440.44000 0.00000

xregs 10747.08000 11093.76000 11440.44000 0.00000

remainder 5241.95941 5053.31839 5228.27838 45915.84182

Table D.2: Total cell area values corresponding to the designs without clock gating presented in Figure

6.14.

74

D.2 Designs with Clock Gating

multipliers 1 2 3 4 5 6 7 8 9 10 11 12

ymem 0.0029500 0.0029200 0.0029400 0.0029120 0.0029600 0.0029390 0.0029470 0.0029120 0.0029700 0.0029600 0.0030030 0.0030000

xmem 0.0029500 0.0029400 0.0029550 0.0029230 0.0029650 0.0029460 0.0029580 0.0029280 0.0029790 0.0029700 0.0030140 0.0030120

pmem 0.0018300 0.0017300 0.0017300 0.0016400 0.0016400 0.0016400 0.0016400 0.0015500 0.0015500 0.0015500 0.0015500 0.0015500

MAC 0.0002950 0.0004070 0.0004900 0.0005210 0.0005840 0.0006340 0.0006920 0.0006970 0.0007000 0.0006810 0.0007500 0.0007810

barrel shift 0.0000000 0.0000042 0.0000034 0.0000031 0.0000038 0.0000036 0.0000038 0.0000050 0.0000066 0.0000071 0.0000076 0.0000092

yregs 0.0000000 0.0000309 0.0000441 0.0000555 0.0000669 0.0000786 0.0000902 0.0001013 0.0001155 0.0001275 0.0001381 0.0001490

xregs 0.0000000 0.0000336 0.0000449 0.0000553 0.0000668 0.0000783 0.0000862 0.0001019 0.0001104 0.0001216 0.0001342 0.0001452

remainder 0.0000780 0.0000333 0.0000416 0.0000381 0.0000395 0.0000365 0.0000368 0.0000348 0.0000365 0.0000298 0.0000361 0.0000397

multipliers 13 14 15 16 17 18 19 20 21 22 23 24

ymem 0.0029640 0.0030240 0.0030750 0.0029120 0.0030940 0.0030780 0.0030210 0.0029600 0.0031080 0.0029920 0.0031280 0.0030000

xmem 0.0029640 0.0030380 0.0030750 0.0029120 0.0030940 0.0030780 0.0030330 0.0029600 0.0031080 0.0030140 0.0031510 0.0030000

pmem 0.0015500 0.0015500 0.0015500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500

MAC 0.0007750 0.0008130 0.0007880 0.0008420 0.0008270 0.0008660 0.0009260 0.0008470 0.0008540 0.0008970 0.0009130 0.0009380

barrel shift 0.0000083 0.0000091 0.0000062 0.0000081 0.0000113 0.0000099 0.0000133 0.0000127 0.0000116 0.0000121 0.0000102 0.0000137

yregs 0.0001615 0.0001735 0.0001835 0.0001964 0.0002065 0.0002180 0.0002301 0.0002392 0.0002513 0.0002630 0.0002753 0.0002871

xregs 0.0001554 0.0001684 0.0001768 0.0001891 0.0002012 0.0002131 0.0002255 0.0002373 0.0002475 0.0002589 0.0002696 0.0002823

remainder 0.0000328 0.0000370 0.0000305 0.0000524 0.0000480 0.0000370 0.0000491 0.0000438 0.0000436 0.0000490 0.0000479 0.0000599

multipliers 25 26 27 28 29 30 31 32 33 Fully Parallel

ymem 0.0031250 0.0029640 0.0030780 0.0031920 0.0029580 0.0030600 0.0031620 0.0029120 0.0030030 0.0030900

xmem 0.0031250 0.0029640 0.0030780 0.0031920 0.0029860 0.0030890 0.0031900 0.0029183 0.0030098 0.0030900

pmem 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0014500 0.0013600 0.0013600 0.0000000

MAC 0.0009080 0.0009390 0.0009490 0.0009670 0.0010400 0.0010300 0.0010900 0.0011300 0.0014100 0.0014700

barrel shift 0.0000085 0.0000115 0.0000155 0.0000125 0.0000148 0.0000139 0.0000123 0.0000124 0.0000129 0.0000000

yregs 0.0002968 0.0003083 0.0003194 0.0003323 0.0003435 0.0003551 0.0003683 0.0003788 0.0003830 0.0000000

xregs 0.0002925 0.0003047 0.0003164 0.0003277 0.0003395 0.0003510 0.0003627 0.0003744 0.0004154 0.0000000

remainder 0.0000562 0.0000385 0.0000377 0.0000385 0.0000482 0.0000510 0.0000467 0.0000471 0.0000509 0.0000370

Table D.3: Average power consumption (W) values corresponding to the clock gated designs presented

in Figure 6.17.

75

	Introduction
	Problem Definition
	DSP algorithms for audio
	Implemented Algorithm
	Time-area trade-off
	Research Question

	Energy Efficient Design
	Introduction
	Energy Efficiency on a Circuit Level
	Voltage Scaling
	Reducing the Average Switched Capacitance

	Energy Efficient Multiplication
	Partial Product Generation

	Power Analysis of Memory
	Energy Efficiency on an Algorithmic Level
	Energy Efficiency on Architectural Level
	Spatial Locality
	Regularity

	Conclusion

	FIR Designs with different time-area trade-offs
	Introduction
	System Constraints
	List of Constraints
	Required FIR functionality
	Sample and Coefficient bit-width

	Fully Parallel FIR Design
	Variable Tap FIR Design
	Hardware Description of Fully Parallel FIR Design

	Single Multiplier Design
	X Memory Adressing
	Instruction Set
	Hardware Description of Single Multiplier Design

	n-multipliers Design
	Data and Coefficient memories
	Matching sample and coefficient data
	Hardware Description of n Multiplier Designs

	Method of Analysis
	Generation of Hardware Description
	Logic Synthesis
	SRAM implementation
	Multiplier Generation

	RTL Testbench
	Samples, Coefficients, Programs and Expected Output Generation
	Power Analysis
	Tool Overview
	Automatically Generating and Evaluating n-multiplier Designs

	Results
	Fully Parallel Design
	Single Multiplier Design
	Comparison Fully Parallel - Single Multiplier
	N Multiplier Design
	Comparison of Sinlge Multiplier, N-Multiplier and Fully Parallel Designs
	Clock Gating
	Results Clock Gated Designs
	MAC Energy Consumption for Highly Parallel Designs

	Conclusion
	Discussion and Future Work
	References
	Clash Code
	Fully Parallel Design
	Data Types
	Design and Testbench

	Single Multiplier Design
	Data Types
	Design and Testbench

	n-Multiplier Design
	Data Types
	Top Design and Testbench
	Barrel Shifter Stages

	Clash Primitives
	SRAM Primitive
	Clock Multiplexer Inline Primitive

	Scripts for Stimuli Generation, Synthesis and Power Analysis
	Matlab Stimuli Generation and Program Compiler
	n-Multiplier Design

	Shell Scripts for Generating all Haskell, Verilog and Synthesis files
	Top Level Generate Script
	Script Controlling Synopsys Design Compiler, Synopsys Primetime and Modelsim

	Tables Containing Average Power and Total Cell Area Results
	Designs without Clock Gating
	Designs with Clock Gating

