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ABSTRACT

In some applications, the external forces acting on a system might be required (e.g. for the
purposes of force control). It might, however, be difficult to implement a force sensor on the
interaction surface or it may be too costly to do so. In this report, estimation of the external
forces acting on a 2DOF manipulator with flexure hinges is considered. The estimation of the
external forces is based on the system dynamics and the actuator inputs of the system. The
joints of the manipulator are based on flexures, which reduce the uncertainties due to friction
and hysteresis. Nevertheless, the estimation process is complicated by the non-linear nature of
the 2DOFmanipulator. An estimation method is developed based on linearized Kalman filtering,
whereby a linearized dynamic model of the system is derived and applied to a Kalman filter, and
the remaining Kalman filter parameters are set based on the expected disturbances caused by
errors in the identification of the system’s parameters.

The method is first evaluated on a double pendulum model through simulations. The double
pendulum is a simpler system in comparison, but has key similarities with the 2DOF manipula-
tor. From testing simulations, it is found that the accuracy of the model used by the linearized
Kalman filter has a significant influence on the quality of the estimates. Any difference in the dy-
namic behavior of the real system with respect to the model will result in fictitious forces being
estimated. This cannot be avoided by considering the modelling errors when setting the pa-
rameters of the Kalman filter. Despite the importance of the model’s accuracy, neglecting the
non-linear behavior in the model does not have a significant influence on the estimated external
forces.

The method is then tested on an existing setup of the 2DOF manipulator. The results are agree-
able, although an estimation error appears to be present based on the sensor measurements.
The magnitude of the estimation errors are in general less than 10% of the magnitude of the
applied external forces. Estimation errors also occur when only actuator forces are applied,
again with a magnitude of at most 10% of the actuator forces. It is observed that disturbances
not measured by the sensors, such as friction and hysteresis, act on the system. It is diffi-
cult to determine exactly to what extent the estimation errors are caused by these unmeasured
disturbances using the current setup.
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1 INTRODUCTION

1.1 Problem definition

To control the behaviour of various complex systems accurately, the external forces acting on
these systems are required. These external forces can generally be measured with force sen-
sors. However, it might be difficult to implement a force sensor on the interaction surface of
the system or it may be too costly to do so. Consequently, estimation of the external forces
on a system might be preferred over measuring them with force sensors. In the current study,
estimation of the external forces acting on the end-effector of a 2DOF manipulator with flexure
hinges is considered. The 2DOF manipulator is shown in figure 1.1.

The estimation of the external forces can be based on the system dynamics, the actuator inputs
of the system, and the displacement measured by encoders. Since care was taken in the design
process of the 2DOF manipulator to reduce the effects of uncertainties in the dynamic behavior
of the system, estimating the external forces based on its dynamic behavior may be promising.
An essential part of the design is the use of flexure hinges, which reduce the effects of friction
and hysteresis, and the uncertainties caused by them. Nevertheless, the estimation process is
complicated by the non-linear dynamics of the 2DOF manipulator.

This report focuses on developing and testing a method to estimate external forces based on
system dynamics, actuator inputs, andmeasured displacements. Themethodwill be tested on a
double pendulummodel in simulations, as well as on the real 2DOFmanipulator in experiments.

(a) Schematic sketch [1] (b) Photo

Figure 1.1: 2DOF manipulator
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1.2 2DOF manipulator background

External force estimation will be applied to the 2DOF manipulator system depicted in figure 1.1.
The conceptual design of this system was developed by Hoitzing [2], and it was improved and
detailed further by Folkersma [1]. Relevant sections of their work will be briefly summarized
next.

The goal of their work was to design a planar XY positioning mechanism to be used in a vacuum
with high accuracy and repeatability. A key part of this process was the use of flexure hinges
as opposed to friction-based components (such as bearings). Friction based components may
contaminate the surroundings in the vacuum due to the the evaporation of lubricants. Further-
more, these components are subject to non-deterministic effects such as friction, wear, play,
and hysteresis. These problems may be overcome by using flexure-based hinges.

The framework of the 2DOF manipulator consists of beams connected by flexure hinges, indi-
cated by bi and hi respectively in figure 1.1a. The 2DOF manipulator consists of two parallel
arms and a separate single arm. Most parts of the system consist of thin plates, which ensures
a lightweight and stiff mechanism. To prevent internal stresses and ensure a deterministic be-
havior of the system, the mechanism has been designed to be exactly constrained. In their
work, this is achieved by applying constraint analyses to the conceptual designs. Together, the
arms exactly constrain all DOFs of the end-effector except the translational movement in x- and
y-direction.

The single arm with beams b5 and b6 is included to prevent requiring to attach an actuator to
beams b1 or b2 to actuate the system. Instead, the actuators and encoders are attached to
beams b4 and b6, reducing the negative effect of their masses added to the mechanism. The
placement of the actuators and encoders is illustrated in figure 1.2. The encoders measure a
(translational) distance along a circular path perpendicular to beams b4 and b6 at a distance
renc = 0.251m from hinges h6 and h9. Similarly, the actuators exert a translational force along
the circular path perpendicular to beams b4 and b6 at a distance ract = 0.235m. The cables
connected to the actuators and encoders are routed such that effects of hysteresis and friction
caused by the cables when the system is in motion are minimized.

Figure 1.2: Top view of 2DOF manipulator with encoders, actuators and cables [1]
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The beams are connected using flexure hinges, indicated with hi in figure 1.1a. Flexures are
compliant elements which can achieve a limited displacement or rotation due to elastic deforma-
tion. The advantage of flexures is that they reduce the effects of drawbacks like friction, wear,
play and hysteresis compared to other guidance mechanisms. A downside of using flexures,
however, is their small range of motion. The flexure hinges used in the 2DOF manipulator are
cross-hinges consisting of five leaf springs. An example of such a flexure hinge can be seen
in figure 1.4. This constrains all but one of the degrees of freedom, namely the rotation about
the z axis, making it function as a hinge. The maximum deflection for each of the individual
flexure hinges in the 2DOF manipulator are 20°. The resulting workspace of the end-effector is
100× 100mm.

To be able to validate the estimated external forces, the 2DOF manipulator setup includes a
construction with two force sensors. Each sensor is used to measure forces in direction of one
of the system’s degrees of freedom: one in x- and y-direction as indicated in figure 1.2. The
sensors are mounted vertically in a construction secured on a rail. The rail allows the construc-
tion with sensors to move through the workspace of the end-effector in y-direction. A small
protrusion connected to the end-effector is able to provide contact with the force sensors. In
this way, forces exerted on the end-effector via the construction with sensors can be measured.
A photo of the sensor setup is shown in figure 1.3.

The exact constraint design of the 2DOF manipulator and the use of flexure hinges decrease
non-deterministic effects in its dynamic behavior. Because of its predictable dynamic behav-
ior, applying external force estimation to the 2DOF manipulator is promising. Using the force
sensors included in the setup, data can be measured to validate the estimated external forces.

Figure 1.3: Photo of the sensor setup Figure 1.4: View of a cross-hinge [1]

1.3 Report outline

This thesis describes the application of external force estimation to a 2DOF manipulator. Chap-
ter 2 will start with an overview of available methods to estimate external forces acting on a
system. One of these methods, the linearized Kalman filter, will be chosen and discussed in
more detail. Chapter 3 discusses the testing of the estimation method on a double pendulum
in simulations. A model of a double pendulum will be defined, which will be used to test the
performance of the chosen force estimation method in different conditions. In chapter 4, the
chosen estimation method will be applied to the 2DOF manipulator. Its performance will be
tested in experiments on an existing setup.
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2 ESTIMATION METHODS

This chapter will discuss the choice of which estimation method will be used to estimate the
external forces acting on the 2DOF manipulator. The chapter will start with an overview of the
available estimation methods. After that, the chosen method will be discussed in more detail.

2.1 Overview

This section will give an overview of available methods to estimate external forces acting on
a system. This overview is based on the work from Chien et al. [3], and Radke and Gao [4].
Chien et al. describe progress in development of state observers over the years, and Radke
and Gao show a recent performance comparison of some observer-based force estimation
methods. Disturbance observers or state observers are commonly used for external force es-
timation. State observers are systems that provide an estimate of the internal state of a given
real system from measurements of the input and output of the real system. Multiple methods
have been developed over the years, which rely on different principles. Different options may
be appropriate for applications, depending on the particular problem. The choice of estimation
method can depend on the dynamic structure of the plant, the sensors required, the available
plant knowledge, and the practical implementation of the observer.

The generalized momentum approach (GMA) [5] is a model-based force estimation method.
It features an alternate expression for the inertia term of the equation of motion based on the
generalized momentum. As a result, it has the advantage that neither the inverse of the inertia
matrix nor acceleration data is required for its implementation. The GMA method is widely used
for its intuitive design and reliable performance. However, the method is found to be sensitive
to modeling errors in practice. It is found that there may be cases where a false collision is de-
tected, caused by uncertainties in the dynamic model. To deal with this, it is suggested to exper-
imentally determine a threshold torque below which the detected collision torques are ignored.
This limits the method’s capability of detecting small collisions. Furthermore, the observer gain
needs to be high for accurate estimations. This makes the GMA sensitive to measurement
noise. Another downside is that this method requires a velocity sensor.

Another method discussed is the extended state observer (ESO) [6]. In the ESO, the external
forces are estimated by augmenting the state vector to include the external forces acting on
the system as an additional state. The ESO is a model-based method, where the estimated
augmented state vector is adjusted based on measurements of position (and possibly velocity)
as feedback. One drawback of the ESO compared to GMA is that its calculation involves the
inverse of the inertia matrix, which may lead to a significant computational load. The other draw-
back is that the ESO may introduce a phase lag if the number of (augmented) state variables
is too large.

The key principle of these observers is the use of input and output data along with plant in-
formation to estimate the states of a system. The mentioned observers do not inherently take
the presence of disturbances in the measurement signals into account, however. More mod-
ern observers formulate the estimation problem with the disturbances acting on the system in
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mind. These methods minimize a cost function based on mathematical assumptions about
disturbances. One example of such a modern method is the Kalman filter [7], which is model-
based as well. It assumes that the disturbances acting on the system are stochastic, zero mean,
and Gaussian, with known process and measurement noise covariances. It uses a series of
measurements observed over time, including statistical noise and other inaccuracies, and pro-
duces estimates of unknown variables that tend to be more accurate than those based on a
single measurement alone. This is achieved by estimating a joint probability distribution over
the variables for each timeframe.

Another modern method is the H∞ filter. This method also optimizes a cost function based
on an assumption about the disturbance. Using infinity norms, the H∞ estimator minimizes the
worst-case energy gain from noise inputs to the estimation error. The estimator is guaranteed to
be optimal under a user defined upper bound. The noise acting on the system is unknown, but
not necessarily random or stochastic. This is an advantage with respect to Kalman filter, as the
disturbances acting on the 2DOF manipulator are not necessarily Gaussian. Disadvantages of
theH∞ filter include the level of mathematical understanding needed to apply them successfully
and the need for a good model of the system.

In this report, external force estimation will be achieved by implementing a method based on
Kalman filtering. Kalman filtering is preferred since it is a simple yet sophisticated estimation
method, since it incorporates the disturbances acting on the system in its estimations. It is
relatively simple to implement, and its widespread applicability would allow the method to be
applied to other systems as well. For the Kalman filtering based method to work, an accurate
dynamic model of the system will be required. Since care was taken in the design process of
the 2DOF manipulator that non-deterministic effects in its dynamic behavior are minimized, this
requirement seems feasible. One thing to note is that the ’basic’ Kalman filter is only applicable
to linear systems, while the 2DOF manipulator is a non-linear system. Fortunately, variations
of the Kalman filter are available, which are capable of dealing with non-linear systems. In the
following sections, the Kalman filter and some of its variations will be discussed in more detail.

2.2 Kalman filtering

This section discusses the working principles of Kalman filtering on the basis of the discrete time
Kalman filter. This section is based on the insightful paper by Faragher [8], and more in-depth
information about Kalman filters from the book by Crassidis and Junkins [9].

The Kalman filter is a celebrated and popular data fusion algorithm in the field of information
processing. It has a wide field of applications, where it can be used to combine multiple sources
of uncertain information about a system to smooth noisy data or provide estimates of parameters
of interest. A great example of this is where the real state of a mechatronic system is desired
to be known, but where the measurements are distorted by noise and the dynamic model of
the system is imperfect. The Kalman filter is capable of combining these two types of uncertain
information (model and measurements), and finding the state of the system that is most likely
based on both types of information.

At its core, the Kalman filter makes use of probability theory. It is assumed that both the mea-
surements and the model are distorted by zero-mean Gaussian white-noise. This is indicated
in the truth model as

xk+1 = Adxk +Bduk + Γdwk

yk = Cdxk + vk

wk ∼ N (0,Qd) ,

vk ∼ N (0,Rd) ,
(2.1)

where Ad, Bd, Cd, Dd, and Γd represent discrete-time state-space matrices of the system, xk

the state vector, uk the input vector, yk the output vector, vk measurement noise, wk process
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noise, Qd and Rd covariance matrices of the process noise and measurement noise respec-
tively.

(2.1) can be recognized as the familiar state-space equations extended by two sources of noise
wk and vk. The process noise wk represents actors on the system that are not included in
the model, such as unpredictable influences or modelling errors. The measurement noise vk
represents the error caused by noise in the sensors, e.g. noise caused by the electronics in
the sensor itself. By assuming the measurement and modelling noise are Gaussian distributed
noises, both will have some covariance that can be determined through experiments or assump-
tions. An optimal estimate of the states is then found by combining the probability distributions
of the model-based estimate and the sensor measurements.

Based on the state-space model of the system as in (2.1), the discrete time Kalman filter is
constructed as

Update stage:

Propagation stage:

x̂+
k = x̂−

k +Kk

[
yk −Cdx̂

−
k

]
P+
k = [I −KkCd]P

−
k

x̂−
k+1 = Adx̂

+
k +Bduk

P−
k+1 = AdP

+
k AT

d + ΓQΓT

(2.2)

Kk = P−
k CT

d

[
CdP

−
k CT

d +R
]−1 (2.3)

x̂ (t0) = x̂0

P0 = E
(
[x0 − x̂0] [x0 − x̂0]

T
) (2.4)

In these equations, yk represents the measured states, x̂k represents estimates of the state
vector, and Pk represents the covariance matrix of the state estimate. The superscripts ’+’ and
’-’ are used to differentiate between the variables derived in the update stage and propagation
stage respectively. The variables with the superscript ’-’, derived in the propagation stage,
represent the state estimate/covariance based on the model of the system. The variables with
the superscript ’+’, derived in the update stage, represent the optimal estimate and its covariance
matrix.

The functionality of the Kalman filter can be interpreted as a cycle split into two stages: an
update stage and a propagation stage. In the propagation stage (the final stage of the cycle),
an estimate for the states at the next timestep is found based on the model of the system. This
can be recognized by the similarity of the equation for x̂−

k+1 with a discrete time state-space
model. This is achieved by supplying the known input uk applied to the system, and the optimal
estimate of the states x̂+

k (found in the update stage) to the model of the system. The covariance
of this estimate P−

k+1 is calculated as well, based on the covariance of the optimal estimate P+
k

and the covariance of the process noise Q.

Then, at the start of the next timestep, the optimal estimate for the states x̂+
k is found by finding

the best compromise between the measured states yk and the best estimate for the states
based on the model x̂−

k (found in the previous propagation stage). This compromise is found
by combining the probability distributions of the measurements yk and estimated states based
on the model x̂−

k .

These two stages are consecutively repeated, resulting in an optimal estimate of the state vector
for each iteration. For the first iteration, the estimate for the state and its covariance should be
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initialized, as indicated in (2.4). As mentioned, the Kalman filter inherently assumes that both
types of noise included in the truth model are Gaussian distributed, zero-mean white noise.
This is a fundamental assumption in using the Kalman filter, but may not be entirely accurate
for the 2DOF manipulator. For example, the measurements will be influenced by quantization
noise, which is not white. Another example is the possible positions the system can be in. In
reality, the end-effector will never be able to reach positions outside of its limited workspace.
In a Gaussian distribution, however, values up to infinity are possible in principle. This would
imply that in the truth model, there is a chance that the positions may be outside of the real
workspace of the 2DOF manipulator. Nevertheless, the Kalman filter is a powerful and elegant
tool to deal with systems where uncertainties are involved.

One thing to note is that the Kalman filter estimates the state x of the system, whereas estimates
of the external forces are desired. In general, the state vector of a mechatronic system consists
of the system’s positions and velocities. Notably, these do not include the external forces acting
on the system. So, by using the Kalman filter as is, the external forces would not be estimated.
This can be remedied by applying an augmented state-space model in the Kalman filter instead.
Herein, the state vector is augmented with the variables which are desired to be estimated. As
an example, Roveda [10] uses this method to estimate the external forces and the stiffness of
springs using an extended Kalman filter. For external force estimation, the augmented state
vector becomes,

xaug =

[
x

Fext

]
, (2.5)

with x the non-augmented state vector of the system, and Fext the external forces to be esti-
mated.

2.3 Kalman filtering on non-linear systems

While the 2DOF manipulator considered in this report is a non-linear system, the discrete time
Kalman filter discussed in section 2.2 can only be applied to linear systems. Variations of the
Kalman filter that can be applied to non-linear systems are available. Variations that will be
considered are the extended Kalman filter (EKF) and the linearized Kalman filter (LKF) [9].
Although these are capable of operating on non-linear systems, the working principles of these
variations are the same as the Kalman filter described in section 2.2.

In both the EKF and LKF variants of the Kalman filter, the (non-linear) model of the system is
linearized at some nominal state by applying a first-order Taylor series expansion. For a system
of non-linear equations,

ẋ = f(x,u)

y = g(x,u) ,
(2.6)

first-order Taylor series expansion can be applied as,

˙̃x = f(x0,u0) +
∂f

∂x

∣∣∣∣x=x0
u=u0

x̃+
∂f

∂u

∣∣∣∣x=x0
u=u0

ũ

ỹ = g(x0,u0) +
∂g

∂x

∣∣∣∣x=x0
u=u0

x̃+
∂g

∂u

∣∣∣∣x=x0
u=u0

ũ,

(2.7)
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with x0 and u0 the nominal state and input vector, and with x̃ and ũ defined as,

ũ = u− u0 , x̃ = x− x0. (2.8)

Each of the partial derivatives in (2.7) can be found as,

∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xm...
...

∂fn
∂x1

. . . ∂fn
∂xm

 , (2.9)

where fi represents the i’th row of the system of non-linear equations f(x,u), and xi represents
the i’th element of the vector x.

The resulting system of linear equations can be applied to the Kalman filter described in section
2.2. For the EKF, the linear model is updated each iteration, where the nominal state and input
vectors x0 and u0 are chosen as the current optimal state estimate and current input. This is
based on the fundamental assumption that the true state of the system is sufficiently close to
the optimal state estimate. If that is the case, the linearized model approximates the behavior of
the non-linear system at its current state well. However, since the model needs to be updated
constantly, the computational burden is greater compared to the discrete time Kalman filter.

The LKF works similarly to the EKF, the only difference being that the nominal state and input
vectors x0 and u0 at which the model is linearized are chosen once beforehand. As opposed
to with the EKF, the nominal state and input are not updated for the LKF. In general, the LKF is
less accurate than the EKF since the nominal state is usually not as close to the true state of
the system. However, the computational burden is far less since the model does not need to
be updated at each iteration. Furthermore, the Kalman gain Kk can even be predetermined in
experiments and stored, further reducing computational burden.

The LKF will be utilized to estimate the external forces acting on the 2DOF manipulator in this
report, because it is expected that the range by which the states will vary is small. The angular
deflection of the hinges of the system will not exceed 20°, and the working space of the end-
effector is only 100× 100mm. With a smart choice for the nominal state and input vector, these
will not differ much from the true state of the system. Thus, it is expected that the LKF will
sufficiently approximate the dynamic behavior of the system. Then, the LKF is preferred since
it has a smaller computational burden and is easier to implement.
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3 DOUBLE PENDULUM

In this chapter, the performance of the LKF will be tested in simulations by applying it to a double
pendulum model. This will allow the LKF to be tested in a completely controlled environment.
A model of a double pendulum will be significantly less complex than the model of the real
system, but will still have some key similarities. Thereby the results of the performance tests
on the double pendulum will give an impression of the performance to be expected from the
LKF applied to the 2DOF manipulator. At the same time, these procedures will not become too
complicated.

This chapter will start by giving an overview of the similarities and differences between a double
pendulum and the 2DOF manipulator. Then, a model of the double pendulum will be derived.
This model will be linearized and discretized such that it can be applied in the LKF. After finding
a model, methods of setting up the LKF are suggested and applied to the double pendulum.
Finally, the performance of the LKF set up using these methods is tested in simulations. By
varying each of the LKF’s parameters, the validity of the methods by which the LKF parameters
were set is tested in simulations as well.

3.1 Double pendulum compared to the 2DOF manipulator

The goal in this chapter is to establish (and test the LKF on) a model of a system which approx-
imates the dynamic behavior of the 2DOF manipulator, while being significantly less complex.
To this end, the model of an ideal double pendulum will be used. The ideal double pendulum
consists of two weightless rotating rigid beams with point masses connected at their ends. The
beams are connected to each other and the fixed world by ideal springs and dampers, rep-
resenting the flexure hinges of the 2DOF manipulator. Similar to the 2DOF manipulator, the
double pendulum will operate in the horizontal plane. As such, the effects of gravity can be ne-
glected. The double pendulum and 2DOF manipulator can be seen side-by-side in figure 3.1.
In figure 3.1b, Li represent the length of the arms, mi the mass connected at the end of each
arm, θi the (relative) angular displacement of each arm, and ki and di respectively the stiffness
and damping linked to the degrees of freedom θi.

12



(a) 2DOF manipulator [1] (b) Double pendulum

Figure 3.1: Sketch of a double pendulum and 2DOF manipulator

If the single arm or parallel arms of the 2DOFmanipulator would be inspected independent of the
rest of the setup, their dynamic behavior would be almost identical to the double pendulum. The
arms have two rotational degrees of freedom, each effectuated by flexure hinges connecting
the beams. Similarly, the double pendulum has two rotational degrees of freedom, with each
of its hinges affected by a stiffness and damping representing the flexure hinges. Despite that
the parallel arms consist of two sets of arms, their combined dynamic behavior is still similar to
a double pendulum. The parallel arms are connected such that their rotational deflections are
always the same. As a result, their dynamic parameters (masses, stiffness of hinges, etc.) can
effectively be combined. Furthermore, since the end-effector and beam b7 do not rotate, these
do not add complex dynamic behavior to the setup. Instead, these simply add an additional
mass term to the rotations of the lower and upper arms.
The greatest difference between the dynamic behavior of the double pendulum and the 2DOF
manipulator is caused by the kinematic relation between the parallel arms and single arm of the
2DOF manipulator. Contrary to the kinematic relation between each of the parallel arms, these
are not constructed such that their rotational displacements are identical at all times. As such,
their (non-linear) dynamic behavior is not ’in-sync’, and their dynamic parameters cannot simply
be combined. Although the parallel and single arms individually already behave non-linearly,
this adds even more non-linear behavior to the 2DOF manipulator as a whole. This behavior is
not included in the double pendulum model.
Furthermore, the double pendulum model assumes that the beams are rigid and the flexure
hinges can be represented by ideal springs and dampers. Although the beams of the 2DOF
manipulators are designed to be stiff, they are not perfectly rigid. This behavior, although small,
is neglected in the double pendulum model. Additionally, the flexure hinges do not behave
identical to ideal springs and dampers [2]. When the flexure hinges are deflected, they are
subject to parasitic motion as well as a variable stiffness. This behavior is also not included in
the double pendulum model. The effects of hysteresis, which may be caused by the cables of
the actuators and encoders, is also not included in the double pendulum model.
Despite these differences in the dynamic behavior, the double pendulum is a good approximate
of the 2DOF manipulator. Some of the most important aspects of the non-linear behavior of the
2DOF manipulator are included in the double pendulum model. Some aspects of its dynamic
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behavior are neglected, but most of these have a relatively small contribution. The biggest
difference is that the 2DOF manipulator has more complex behavior included by the relative
movement of the parallel and single arms. To recapitulate, the assumptions made for modelling
the double pendulum are listed below.

• Each link consists of a weightless, rigid rod with a point mass connected at the end.

• The links are connected by ideal springs and dampers.

• The links are in nominal position when fully vertical.

• The double pendulum is not influenced by gravity.

3.2 Modelling

3.2.1 Equations of motion

The equations of motion of the double pendulum in figure 3.1b will be derived using the Euler-
Lagrange equation,

τi =
d

dt

[
∂L

∂θ̇i

]
− ∂L

∂θi
(3.1a)

L = Ek − Ep (3.1b)

with L the Lagrangian, Ek the total kinetic energy of the system, Ep the total potential energy
of the system, θi the degrees of freedom of the double pendulum, and τi the torque applied to
each degree of freedom.
Then, an expression for the Lagrangian L needs to be determined. To start, an expression for
the total kinetic energy of the system Ek will be found. In general, the total kinetic energy of
a system includes rotational and translational kinetic energies. The double pendulum consists
of two point masses, however, which inherently have zero inertia. Thus, only the translational
kinetic energy needs to be considered. To this end, the kinematics relating the translational
displacements and velocities of themasses to the degrees of freedomwill be determined. These
can be found as,

x1 = sin (θ1)L1

ẋ1 = cos (θ1)L1θ̇1

y1 = cos (θ1)L1

ẏ1 = − sin (θ1)L1θ̇1

x2 = sin (θ1)L1 + sin (θ1 + θ2)L2

ẋ2 = cos (θ1)L1θ̇1 + cos (θ1 + θ2)L2

[
θ̇1 + θ̇2

]
y2 = cos (θ1)L1 + cos (θ1 + θ2)L2

ẏ2 = − sin (θ1)L1θ̇1 − sin (θ1 + θ2)L2

[
θ̇1 + θ̇2

]
.

(3.2)

The total kinetic energy of the system consists of the kinetic energies of both masses. An ex-
pression can be found by substituting the kinematic relations (3.2) into the classical expression
for the kinetic energy as,

Ek = Ek1 + Ek2

=
1

2
m1ẋ

2
1 +

1

2
m1ẏ

2
1 +

1

2
m2ẋ

2
2 +

1

2
m2ẏ

2
2

=

[
1

2
[m1 +m2]L

2
1 +

1

2
m2L

2
2 +m2L1L2 cos (θ2)

]
θ̇21 +

1

2
m2L

2
2θ̇

2
2

+
[
m2L

2
2 +m2L1L2 cos (θ2)

]
θ̇1θ̇2.

(3.3)
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Then, an expression for the total potential energy of the system should be found. Since the
assumption was made that the double pendulum is not influenced by gravity, the only factors
contributing to the total potential energy of the system are the springs. The total potential energy
of the system can be found from the classical expression for the energy stored in springs as,

Ep = Ep1 + Ep2

=
1

2
k1θ

2
1 +

1

2
k2θ

2
2.

(3.4)

Substituting (3.3) and (3.4) into (3.1b) gives an expression for the Lagrangian,

L =

[
1

2
[m1 +m2]L

2
1 +

1

2
m2L

2
2 +m2L1L2 cos (θ2)

]
θ̇21 +

1

2
m2L

2
2θ̇

2
2

+
[
m2L

2
2 +m2L1L2 cos (θ2)

]
θ̇1θ̇2 −

1

2
k1θ

2
1 −

1

2
k2θ

2
2.

(3.5)

The equations of motion can be found by substituting (3.5) into (3.1a) and solving. The resulting
expression for each τi becomes,

τ1 =
d

dt

[
∂L

∂θ̇1

]
− ∂L

∂θ1

=
[
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (θ2)

]
θ̈1 +

[
m2L

2
2 +m2L1L2 cos (θ2)

]
θ̈2

−m2L1L2 sin (θ2)
[
2θ̇1θ̇2 + θ̇22

]
+ k1θ1

(3.6a)

τ2 =
d

dt

[
∂L

∂θ̇2

]
− ∂L

∂θ2

=
[
m2L

2
2 +m2L1L2 cos (θ2)

]
θ̈1 +m2L

2
2θ̈2 +m2L1L2 sin (θ2) θ̇21 + k2θ2.

(3.6b)

So far, the forces caused by the dampers d1 and d2 have not been included in the equations of
motion. Unfortunately, including forces caused by damping is not a straightforward task using
Lagrangian mechanics. It is noted that these damping terms are included such that the resulting
model is stable, not to accurately represent some real system. As a pragmatic solution, the
damping forces are added to the equations of motion (3.6) in their conventional form: diθ̇i. This
approach is much more convenient, and should be sufficiently accurate for the purposes of
testing.

Lastly, the torques τi in the equations of motion are split into input torques τin,i and external
torques τext,i such that these can be distinguished. The resulting equations of motion in matrix
form become,
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τin + τext = M(θ) θ̈ +C
(
θ̇,θ

)
θ̇ +Kθ (3.7a)

M(θ) =

[
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (θ2) m2L

2
2 +m2L1L2 cos (θ2)

m2L
2
2 +m2L1L2 cos (θ2) m2L

2
2

]
(3.7b)

C
(
θ̇,θ

)
=

[
−2m2L1L2 sin (θ2) θ̇2 + d1 −m2L1L2 sin (θ2) θ̇2

m2L1L2 sin (θ2) θ̇1 d2

]
(3.7c)

K =

[
k1 0
0 k2

]
(3.7d)

θ =

[
θ1
θ2

]
, θ̇ =

[
θ̇1
θ̇2

]
, θ̈ =

[
θ̈1
θ̈2

]
, τ =

[
τ1
τ2

]
(3.7e)

3.2.2 Augmented state-space model

The LKF works based on a state-space model, and thus the equations of motion (3.7) need to
be converted to state-space form,

ẋ = Ax+Bu

y = Cx,
(3.8)

with x the state vector, ẋ its derivative with respect to time, y the output vector, u the input
vector, and A, B, C state-space matrices.

In accordance with the 2DOF manipulator, which only has position sensors, the output vector
consists of the displacements θ. Furthermore, since the LKF is used to find an estimate the state
x of the system, the state vector should be augmented to include the external torques on the
double pendulum. The resulting state-, output-, and input-vector of the augmented state-space
model become,

x =

 θ

θ̇
τext

 , ẋ =

 θ̇

θ̈
τ̇ext

 , y =
[
θ
]

, u =
[
τin
]

(3.9)

The state-space matrices A, B, and C can be found by writing expressions for each of the
elements in the ẋ and y vectors as a function of x and u. Most of these are trivial to find,
except for τ̇ext and θ̈. Unfortunately, it is not possible to find an expression for τ̇ext, since the
external torques are unknown. It can be assumed that these are not a function of the state- and
input-vector, however. As such, the corresponding rows of the A and B matrices will be set to
zero.

An expression for the accelerations θ̈ can be found by rewriting the equations of motion (3.7)
as,

θ̈ = M−1(θ) τin +M−1(θ) τext −M−1(θ)C
(
θ̇,θ

)
θ̇ −M−1(θ)Kθ. (3.10)
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All matrices in (3.10) are known except the inverse of the inertia matrixM−1. The inertia matrix
is a 2× 2 matrix, which means its inverse can be found analytically as,

M−1(θ) =
1

M11M22 −M12M21

[
M22 −M12

−M21 M11

]

=

 m2L2
2

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(θ2)

− m2L2
2+m2L1L2 cos(θ2)

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(θ2)

− m2L2
2+m2L1L2 cos(θ2)

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(θ2)

[m1+m2]L2
1+m2L2

2+2m2L1L2 cos(θ2)
[m1m2+m2

2]L2
1L

2
2−m2

2L
2
1L

2
2 cos(θ2)

 ,

(3.11)

where Mij represents the element (i, j) of the inertia matrix M .

Then, the augmented state-space model becomes,

ẋ =

 0 I 0

−M−1(θ)K −M−1(θ)C
(
θ̇,θ

)
M−1(θ)

0 0 0

x+

 0
M−1(θ)

0

u

y =
[
I 0 0

]
x.

(3.12)

3.2.3 Linearization

To be able to apply the augmented state-spacemodel (3.12) to the LKF, it needs to be linearized.
This will be achieved by applying first-order Taylor series expansion as shown in section 2.3.
The augmented state-space model can be written according to (2.6) as,

ẋ = f(x,u)

y = g(x) .
(3.13)

The nominal state- and input-vector x0 and u0 should be chosen such that they are as close as
possible to the true state- and input-vector at any time. These will be set as,

x0 = 0 , u0 = 0, (3.14)

which represents the double pendulum when it is in its nominal position, with zero velocity,
external torque, and input force. This is the optimal choice, since the expected range of each
of these states and inputs is centered around zero. Thus, the expected value of each state and
input is 0.

With this choice for the nominal state and input vector, some of the terms in (2.7) become much
simpler. Applying these values for x0 and u0 to (3.12) and (2.8) gives,

f(x0,u0) = 0

g(x0) = 0,
(3.15)

x̃ = x

ũ = u.
(3.16)

Then, (2.7) applied to the augmented state-space model of the double pendulum becomes,
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˜̇x =
∂f

∂x

∣∣∣∣x=x0
u=u0

x+
∂f

∂u

∣∣∣∣x=x0
u=u0

u

ỹ =
∂g

∂x

∣∣∣∣
x=x0

x,

(3.17)

with the partial derivatives,

∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂x6...
...

∂f6
∂x1

. . . ∂f6
∂x6

 ,
∂f

∂u
=


∂f1
∂u1

∂f1
∂u2...

∂f6
∂u1

∂f6
∂u2

 ,
∂g

∂x
=

[
∂g1
∂x1
∂g2
∂x1

. . .
∂g1
∂x6
∂g2
∂x6

]
. (3.18)

What remains is to find expressions for the partial derivatives. Fortunately, a significant number
of the equations fi and gi is already linear. This means the partial derivatives of these equations
can simply be read from the matrices in (3.12). The partial derivatives to which this applies are,

∂f1
∂x

=
[
0 0 1 0 0 0

]
∂f2
∂x

=
[
0 0 0 1 0 0

]
∂f5
∂x

=
[
0 0 0 0 0 0

]
∂f6
∂x

=
[
0 0 0 0 0 0

]

∂f1
∂u

=
[
0 0

]
∂f2
∂u

=
[
0 0

]
∂f5
∂u

=
[
0 0

]
∂f6
∂u

=
[
0 0

]
,

(3.19)

∂g

∂x
=
[
I 0 0

]
. (3.20)

The only non-linear functions of which the partial derivatives need to be found are f3 and f4,
which correspond to the rewritten equations of motion (3.10). These functions can be written
as,

f3 = −
[
M−1K

]
11
x1 −

[
M−1K

]
12
x2 −

[
M−1C

]
11
x3 −

[
M−1C

]
12
x4

+
[
M−1

]
11
x5 +

[
M−1

]
12
x6 +

[
M−1

]
11
u1 +

[
M−1

]
12
u2

= − m2L
2
2[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

k1x1 +
m2L

2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

k2x2

− m2L
2
2d1[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3 +
m2

2L1L
3
2 sin (x2) + 1

2m
2
2L

2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x23

+
2m2

2L1L
3
2 sin (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3x4 +
m2L

2
2d2 +m2L1L2d2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x4

+
m2

2L1L
3
2 sin (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x24 +
m2L

2
2[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x5

− m2L
2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x6 +
m2L

2
2[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

u1

− m2L
2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

u2,

(3.21a)
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f4 = −
[
M−1K

]
21
x1 −

[
M−1K

]
22
x2 −

[
M−1C

]
21
x3 −

[
M−1C

]
22
x4

+
[
M−1

]
21
x5 +

[
M−1

]
22
x6 +

[
M−1

]
21
u1 +

[
M−1

]
22
u2

=
m2L

2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

k1x1 −
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

k2x2

− 2m2
2L1L

3
2 sin (x2) +m2

2L
2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3x4

+
m2L

2
2d1[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3 +
m2L1L2d1 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3

−
[
m1m2 +m2

2

]
L3
1L2 sin (x2) +m2

2L1L
3
2 sin (x2) +m2

2L
2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x23

− [m1 +m2]L
2
1d2 +m2L

2
2d2[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x4 −
2m2L1L2d2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x4

−
m2

2L1L
3
2 sin (x2) + 1

2m
2
2L

2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x24 −
m2L

2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x5

+
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x6 −
m2L

2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

u1

+
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

u2,

(3.21b)

where the notation [X]ij represents the (i, j)’th element of a matrix X, and the matrix products
M−1K and M−1C can be expressed as,

M−1K =

 m2L2
2

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(x2)

k1 − m2L2
2+m2L1L2 cos(x2)

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(x2)

k2

− m2L2
2+m2L1L2 cos(x2)

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(x2)

k1
[m1+m2]L2

1+m2L2
2+2m2L1L2 cos(x2)

[m1m2+m2
2]L2

1L
2
2−m2

2L
2
1L

2
2 cos(x2)

k2

 (3.22a)

[
M−1C

]
11

=
m2L

2
2d1 −m2

2L1L
3
2 sin (x2)x3 − 1

2m
2
2L

2
1L

2
2 sin (2x2)x3 − 2m2

2L1L
3
2 sin (x2)x4[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

(3.22b)

[
M−1C

]
12

= −m2L
2
2d2 +m2L1L2d2 cos (x2) +m2

2L1L
3
2 sin (x2)x4[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

(3.22c)

[
M−1C

]
21

=
1[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

·

[
−m2L

2
2d1 −m2L1L2d1 cos (x2)

+
[
m1m2 +m2

2

]
L3
1L2 sin (x2)x3 +m2

2L1L
3
2 sin (x2)x3 +m2

2L
2
1L

2
2 sin (2x2)x3

+ 2m2
2L1L

3
2 sin (x2)x4 +m2

2L
2
1L

2
2 sin (2x2)x4

]
(3.22d)

[
M−1C

]
22

=
1[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

·

[
[m1 +m2]L

2
1d2 +m2L

2
2d2

+ 2m2L1L2d2 cos (x2) +m2
2L1L

3
2 sin (x2)x4 +

1

2
m2

2L
2
1L

2
2 sin (2x2)x4

]
.

(3.22e)
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Then, the partial derivatives of f3 and f4 can be found with respect to each state xi and input ui.
Due to the size of the resulting expressions, these have been listed in appendix A. Substituting
x0 = 0 and u0 = 0 into these expressions gives,

∂f3
∂x1

∣∣∣∣x=x0
u=u0

= − k1
m1L2

1

∂f3
∂x2

∣∣∣∣x=x0
u=u0

=
[L1 + L2] k2
m1L2

1L2

∂f3
∂x3

∣∣∣∣x=x0
u=u0

= − d1
m1L2

1

∂f3
∂x4

∣∣∣∣x=x0
u=u0

=
[L1 + L2] d2
m1L2

1L2

∂f3
∂x5

∣∣∣∣x=x0
u=u0

=
1

m1L2
1

∂f3
∂x6

∣∣∣∣x=x0
u=u0

= −L1 + L2

m1L2
1L2

∂f3
∂u1

∣∣∣∣x=x0
u=u0

=
1

m1L2
1

∂f3
∂u2

∣∣∣∣x=x0
u=u0

= −L1 + L2

m1L2
1L2

∂f4
∂x1

∣∣∣∣x=x0
u=u0

=
[L1 + L2] k1
m1L2

1L2

∂f4
∂x2

∣∣∣∣x=x0
u=u0

= − k2
m2L2

2

− [L1 + L2]
2 k2

m1L2
1L

2
2

∂f4
∂x3

∣∣∣∣x=x0
u=u0

=
[L1 + L2] d1
m1L2

1L2

∂f4
∂x4

∣∣∣∣x=x0
u=u0

= − d2
m2L2

2

− [L1 + L2]
2 d2

m1L2
1L

2
2

∂f4
∂x5

∣∣∣∣x=x0
u=u0

= −L1 + L2

m1L2
1L2

∂f4
∂x6

∣∣∣∣x=x0
u=u0

=
1

m2L2
2

+
[L1 + L2]

2

m1L2
1L

2
2

∂f4
∂u1

∣∣∣∣x=x0
u=u0

= −L1 + L2

m1L2
1L2

∂f4
∂u2

∣∣∣∣x=x0
u=u0

=
1

m2L2
2

+
[L1 + L2]

2

m1L2
1L

2
2

.

(3.23)

Finally, the linearized system can be found by substituting (3.19), (3.20), and (3.23) into (3.17).
This linearized system can easily be written as a state-space system such as (3.8). The state-
space matrices of this linearized augmented-state model of the double pendulum then become,

Alin =


0 0 1 0 0 0
0 0 0 1 0 0

− k1
m1L

2
1

[L1+L2]k2
m1L

2
1L2

− d1
m1L

2
1

[L1+L2]d2
m1L

2
1L2

1

m1L
2
1

− L1+L2
m1L

2
1L2

[L1+L2]k1
m1L

2
1L2

− k2
m2L

2
2
− [L1+L2]

2k2
m1L

2
1L

2
2

[L1+L2]d1
m1L

2
1L2

− d2
m2L

2
2
− [L1+L2]

2d2
m1L

2
1L

2
2

− L1+L2
m1L

2
1L2

1

m2L
2
2
+

[L1+L2]
2

m1L
2
1L

2
2

0 0 0 0 0 0
0 0 0 0 0 0

 ,

Blin =



0 0
0 0
1

m1L2
1

− L1+L2

m1L2
1L2

− L1+L2

m1L2
1L2

1
m2L2

2
+ [L1+L2]

2

m1L2
1L

2
2

0 0
0 0


,

Clin =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

(3.24)

3.2.4 Discretization

The LKF as defined in section 2.3 operates on a discrete-time model. Thus, the (continuous-
time) model derived previously should be converted to a state-space model in discrete-time
as,
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xk+1 = Adxk +Bduk,

yk = Cdxk,
(3.25)

where the subscript k represents the time at which the signal is evaluated as k · Ts.

The state-space model will be discretized using the forward Euler method, where the derivatives
of the states are estimated as,

ẋ ≈ xk+1 − xk

Ts
. (3.26)

The discrete-time equivalent of a continuous-time state-space model (3.8) can be found by
substituting (3.26), and converting all continuous vectors to discrete vectors. Rewriting the
result to the standard discrete state-space form as in (3.25) gives,

xk+1 − xk

Ts
= Axk +Buk,

yk = Cxk,
=⇒

xk+1 = (I + TsA)xk + TsBuk,

yk = Cxk.
(3.27)

This gives expressions by which the discrete-time state-space matrices can be found from the
continuous-time state-space matrices:

Ad = (I + TsA) ,

Bd = TsB,

Cd = C.

(3.28)

Then, the discrete-time state-space matrices of the (linearized, augmented-state) double pen-
dulum model can be found by substituting the continuous state-space matrices (3.8) into (3.28).
The resulting matrices are:

Ad =


1 0 Ts 0 0 0
0 1 0 Ts 0 0

− k1Ts

m1L
2
1

[L1+L2]k2Ts

m1L
2
1L2

1− d1Ts

m1L
2
1

[L1+L2]d2Ts

m1L
2
1L2

Ts
m1L

2
1

− [L1+L2]Ts

m1L
2
1L2

[L1+L2]k1Ts

m1L
2
1L2

− k2Ts

m2L
2
2
− [L1+L2]

2k2Ts

m1L
2
1L

2
2

[L1+L2]d1Ts

m1L
2
1L2

1− d2Ts

m2L
2
2
− [L1+L2]

2d2Ts

m1L
2
1L

2
2

− [L1+L2]Ts

m1L
2
1L2

Ts
m2L

2
2
+

[L1+L2]
2Ts

m1L
2
1L

2
2

0 0 0 0 1 0
0 0 0 0 0 1

 ,

Bd =



0 0
0 0
Ts

m1L2
1

− [L1+L2]Ts

m1L2
1L2

− [L1+L2]Ts

m1L2
1L2

Ts

m2L2
2
+ [L1+L2]

2Ts

m1L2
1L

2
2

0 0
0 0


,

Cd =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

(3.29)
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3.3 Implementing the linearized Kalman filter

To implement the LKF its parameters need to be set, namely the process noise covariance
matrix Qd, the process noise transfer matrix Γd, the measurement noise covariance matrix
Rd, the initial state-estimate x̂0, and the initial state-estimate covariance matrix P0. One of
the advantages of testing the LKF on a fully controlled environment is that the optimal values
for these parameters can be found, such that the LKF can be tested in ideal circumstances.
This is especially true for the initial state-estimate x0 and its covariance matrix P0. The initial
states of the system are exactly known, so the initial estimate can be set to the true values if
desired. Since this initial estimate is guaranteed to be 100% accurate, the initial state-estimate
covariance matrix P0 can even be set to zero.

Then, the measurement noise covariance matrix Rd should be set such that the measurement
noise vk is accurately included. It is assumed that there is no cross-correlation between the
noise acting on each of the sensors, which gives:

Rd =

[
σ2
v1 0
0 σ2

v2

]
(3.30)

with σ2
vi the variance of the measurement noise of sensor i.

The measurement noise will be split into two parts as,

vk = vquant,k + vrest,k, (3.31)

with vquant,k noise caused by quantization, and vrest,k any remaining contributions. It is assumed
that there is no correlation between the quantization noise and the remaining contributions. As
such, the variance of the total measurement noise σ2

vi can be found by adding the variance of
the quantization noise σ2

quant,vi and the variance of the remaining contributions σ2
rest,vi:

σ2
vi = σ2

quant,vi + σ2
rest,vi. (3.32)

Quantization noise is caused by the (finite) resolution of the encoders. This will cause an error,
as the real value will be rounded up or down to the closest incremental step. Suppose the
distance between each increment of the encoder is denc. Given an encoder reading, the real
displacement value can be assumed to lie somewhere within a range of denc of that value.
Furthermore, each position within that range for the real value is equally probable. Thus, it is
assumed that the error caused by quantization has a uniform distribution with a range denc. For
a uniform distribution between two points a and b, the variance can be calculated as,

σ2 =
[b− a]2

12
. (3.33)

Substituting denc into (3.33) gives an approximate for the variance of the quantization noise:

σ2
quant,vi =

d2enc
12

. (3.34)

It should be noted that while the quantization noise has a uniform distribution, the measurement
noise in the LKF is assumed to be Gaussian. Thus, it can be expected that applying the variance
calculated using (3.34) will not give a fully accurate representation of the quantization noise.

The measurement noise caused by the remaining contributions is exactly known in the simu-
lations. These will be included using a ’band-limited white noise’ block. This block generates
normally distributed random numbers, and its variance σ2

rest,vi can be chosen by the user. Thus,
the variance σ2

rest,vi can be set to the true value if desired.
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What remains is to include the process noisewk accurately. This noise represents any distortion
in xk+1 caused by errors in the model used by the LKF. The errors that will be included in wk in
this chapter are the parameter identification errors, and the change of the external torques. To
this end, the process noise wk will be split as,

wk =

[
wpar,k

wF,k

]
, (3.35)

with wpar,k the noise caused by errors in the parameters, and wF,k noise caused by changes in
the external torques.

It is assumed that there is no correlation between the noise caused by errors in the parameters
wpar,k and the noise caused by changes in the external torques wF,k. Thus, the covariance
matrix of the total process noise Qd can be written as,

Qd =

[
Qd,par 0

0 Qd,F

]
, (3.36)

with Qd,par the covariance matrix of wpar,k, and Qd,F the covariance matrix of wF,k.

Although the external torques are probably not constant, they are represented as constant states
in the model of the system. This can be recognized from the state-space equations in section
3.2.4. The relevant state-space equation is repeated in (3.37).

τext,k+1 = τext,k (3.37)

Naturally, this is not accurate. Since the change of the external torques is not included in the
model, it will be represented by the noise wF,k instead. The covariance matrix of this noise
should then be determined based on the expected change of the external torques for each time
step. It is assumed that there is no correlation between the change in external torques on each
arm. This gives for the covariance matrix of the noise wF,k,

Qd,F =

[
σ2
F,w1 0

0 σ2
F,w2

]
, (3.38)

with σ2
F,wi the variance of the noise caused by changes in the external torque acting on beam i.

For the simulations in this chapter, the external torques are known exactly beforehand. Then,
the variances σ2

F,wi can be calculated at the start of each simulation. This will be achieved by
analyzing the change in the external torques for each time step within some range of the external
torque signals. The range chosen should be the most ’dynamic’ range in the external torque
signals. Otherwise, the possible amount by which the external torques can change between
each time step may be underestimated. The variances σ2

F,wi can then be found as,

σ2
F,wi = var(∆τext,i) , (3.39)

with ∆τext,i The vector containing the change in the external torque on beam i between each
time step over the given range.

Next, the noise wpar,k will be discussed. This noise represents the errors caused by wrongly
identified parameters. These are more complicated to include, as these errors depend on the
states. For example, if the stiffness of a spring was not identified correctly, the error this causes
in a model will be greater the more this spring is deflected. In Kalman filters, the noise is not a
function of the states, however. As an approximation, the covariance matrix of the noise wpar,k

will be found based on data gathered from simulations using the setup shown in figure 3.2.
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Real	system

System	with	errors

Figure 3.2: Simulink model to derive covariance matrix of wpar,k

Suppose the range between which the states and inputs vary are known, as well as the error
range of the parameters. Then, random state- and input-vectors and a model based on random
’wrong’ parameters can be generated within their respective ranges. Using the setup shown
in figure 3.2, the errors caused by this ’wrong’ model can be found for the randomly generated
state- and input-vectors. This process can be repeated a number of times, where for each
simulation a new ’wrong’ model and a new set of random state- and input-vectors are generated.
If this process is repeated sufficient times, an approximate of the variance ofwpar,k for the given
ranges of the states, inputs, and parameter errors can be found based on the generated data.
It is noted that the only state-space equations where the model’s parameters are present are
those for the velocities θ̇i. Thus, these will be the only non-zero elements of the output signal
of the system in figure 3.2. Then, the covariance matrix Qd,par can be found as,

Qd,par =

[
var(ex3) 0

0 var(ex4)

]
, (3.40)

with exi the error data collected in all simulations for state xi.

The range between which the model’s parameters can differ from their real values are known,
and the range between which the states and inputs vary can be found from simulations as well.
This method does assume that the probability that some state xk occurs is uniformly distributed,
however. In reality this is probably not true. Nevertheless, this method gives an approximate
for the covariance matrix of wpar,k.

It should be noted that not all errors in the model have been accounted for in the process noise
wk. For one, the effects of linearizing the model were not taken into account. While the real
double pendulum is not linear, the LKF will operate based on a linearized model. The further
the states and inputs are from the nominal state- and input-vectors (3.14), the larger the error
caused by the linearization will be. As discussed before, the non-linearity of the system is as-
sumed to be very small within the ranges the double pendulum will operate. Another neglected
aspect that may cause process errors in the 2DOF manipulator is the noise in the actuators.

Finally, the process noise transfer matrix Γ can be found. This matrix relates each element of
the noise vector wk to the states xk+1. The noise caused by parameter errors wpar,k relates
specifically to x3,k+1 and x4,k+1, which corresponds to the velocities. The noise caused by the
change in external torques wF,k relates specifically to x5,k+1 and x6,k+1, which corresponds to
the external torques. Then, the process noise transfer matrix Γ becomes,
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Γ =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.41)

3.4 Simulation setup

In this section, the simulation setup for testing the LKF on the double pendulum will be dis-
cussed. The goal of these simulations is to find the performance that can be expected for the
real system in a controlled environment. As such, it will be attempted tomimic the circumstances
of the 2DOF manipulator realistically.

The equation of motion (3.7) of the double pendulum will be used as the plant model in the
simulations. This choice was made because the double pendulum has key similarities with the
2DOFmanipulator, while also being less complex. The input of the plant are the torques applied
to the system. These can be split in two parts: the known actuator torques, and the unknown
external torques. The output of the plant is the angular displacement of the beams. Based on
this output, a sensor measurement signal will be created by adding white noise and applying
quantization. This should give a somewhat realistic representation of the real measurement
signal. The plant and its input and output signals as implemented in Simulink are illustrated in
figure 3.3.

Noise	(v)

1 1

Plant

y_meas
u_k torques_total q y_meas

Figure 3.3: Implementation of the double pendulum model in Simulink

The implementation of the LKF in Simulink as discussed in section 3.3 is shown in figure 3.4.
This Simulink model is in accordance with the definition of the Kalman filter 2.2 to 2.4, where
the linearized and discretized augmented-state model derived in section 3.2.4 was used. The
input signal uk in the figure consists only of the known actuator forces, the external torques
applied as input to the plant in figure 3.3 are not included in this signal. As such, the external
torques are not ’known’ by the LKF. The input signal ymeas represents the measurement signal
as in figure 3.3. That is, it corresponds to the angular positions of the beams distorted by white
noise and quantization.
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Figure 3.4: Implementation of the Kalman filter in Simulink
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3.5 Simulations

Simulation conditions

The LKF has been tested in simulations under multiple conditions, with e.g. different actuator
torque signals, external torque signals, and parameter errors. However, to make sure the results
shown in the following sections can be compared, the conditions in which these were executed
have been kept the same for the largest part. This includes the parameters of the plant, the
actuator torques, external torques, and the noise signals. The general values used for these
parameters will be discussed in this section. In the following sections, it will be indicated if any
of the parameters are changed from these general values.

The magnitudes of the actuator and external torques are chosen such that the resulting ranges
of the angular deflection are about 10°, because the 2DOF manipulator will have a similar range
of motion. This will result in a comparable error caused by excluding the non-linearities in the
model. The actuator torques will consist of two low frequency sinusoids, and the external torque
signals will be built up by some low frequency sinusoids, an offset and a step at some point in
time. To be precise, the actuator torque signals and the offset and frequency components of
the external torque signals (so excluding the steps) are chosen as,

τact,1 = 3 sin (0.16t) + 3 sin (0.48t) ,
τact,2 = 3 sin (0.1t) + 3 sin (0.66t) ,
τext,1 = 3 + 3 cos (0.15t) + 0.4 cos (1.1t) ,
τext,2 = 3 + 3 cos (0.1t) + 0.3 cos (0.9t) .

(3.42)

Besides the initial step in the external torque (caused by the offset and cosines), there is an
additional step added to the external torque on each of the arms. On the first arm, this external
torque is applied at t = 2.5s with a magnitude of −5.4N . On the second arm, this external
torque is applied at t = 5s with a magnitude of 3.6N . The actuator and external torque signals
are illustrated in figure 3.5. Choosing the torque signals in this way tests the performance of the
LKF for low frequent external torques as well as steps. Moreover, the steps will induce higher
frequency oscillations in the positions, which might be a challenge for the LKF as well.

Parameter Value
σ2
meas,1 10−8

σ2
meas,2 10−8

dres 10−3 m

Ts 10−4 s

m1 1.5 kg

m2 0.9 kg

L1 0.4m

L2 0.3m

k1 110 Nm/rad

k2 130 Nm/rad

d1 0.1 Nm · s/rad

d2 0.1 Nm · s/rad

Table 3.1: Simulation parameters for testing methods of setting LKF parameters

To set the sub-matrix Qd,F as in (3.38), the external torque signals should be analyzed as
indicated in section 3.3. The ranges where the change in the external torque signals for each
time step are analyzed are shown in figure 3.6. These are the ranges where the signal is most
’dynamic’, beside the steps. The steps are excluded because these could give an unreasonably
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Figure 3.5: Actuator and external torque signals applied to double pendulum

high expected change in the external torque per time step (up to infinity, depending on the
range).
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Figure 3.6: Measured displacement of the arms and the white noise applied

The remaining parameters used in the simulations are listed in table 3.1. These ensure that the
conditions for these simulations are comparable but slightly worse than the conditions in which
the experiments on the 2DOF manipulator will be executed. The measurement noise is slightly
greater, the encoder resolution is slightly lower, and the sample time is higher. In figure 3.7,
the resulting measurement signal can be seen, which will be used by the LKF. Figure 3.7 also
shows the white noise that was applied to the measurement signal. In the following sections,
the results of estimating the external force based on this signal will be discussed for different
conditions.
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Figure 3.7: Measured displacement of the arms and the white noise applied

Although the initial state of the double pendulum is known exactly, it is deliberately set to the
wrong value to test the effect of an error in the initial estimate x0. To indicate the uncertainty in
the initial error, the initial state-estimate covariance matrix P0 is set to a high value as well. The
error in the initial estimate and initial state-estimate covariance matrix are chosen as,

x̂0 = x0 +



−1
−2
−0.1
0.15
2
−1

 , P0 = 0.1 · I6×6. (3.43)

3.5.1 Simulations without parameter errors

To start, the LKF will be tested in simulations where there are no errors in the parameters.
Then, the model used by the LKF should be (almost) identical to the plant. The simulations in
this section should therefore give the best results that can be expected from the LKF.

Simulation results: LKF parameters set according to section 3.3

The results of running a simulation with the LKF parameters set exactly as indicated in section
3.3 are shown in figure 3.8.
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Figure 3.8: Estimated external torques and estimation errors, parameters set as in 3.3

It can be seen that the resulting estimated torques converge to the real values of the external
torques very well. The estimation errors oscillate slightly, which is caused by a delay in the
estimates with respect to the real torques. This can be explained by the manner in which the
external torques are included in the state-space model. The external torques are constant in
the model, and the change in torques is represented by the noise wF,k. Then, the estimated
torques will only be adjusted when enough data suggests that the true value of the torques has
changed with respect to estimates at previous time steps, causing a delay.

The estimation error for each arm also spikes when a torque step is applied to the other arm.
However, any estimation errors are corrected very quickly. Furthermore, the effects of neglect-
ing the non-linear behavior of the double pendulum are barely noticeable. Despite that the
torque estimates are based on a linear model, the LKF performance is very satisfactory in ideal
circumstances.

Simulation results: scaled process noise covariance submatrix Qd,F

This subsection will compare the performance of the LKF for different values of the process
covariance submatrix Qd,F , which relates to the noise representing the changes in the external
torqueswF,k. The results for differentQd,F are tested by scaling the values found using section
3.3. It is noted that the process covariance submatrix Qd,par is set to zero in these simulations,
since there are no parameter errors included in these simulations.

Figure 3.9 shows the result of scalingQd,F by a factor of 10−3. The estimated torques no longer
follow the real torques fast enough. This makes sense, as the variance of the noisewF,k, which
represents the changes in external torque, was reduced. Effectively, the equation for τk+1 in the
state-space model was marked as more reliable. This equation represents the external torques
as a constant, however. As a result, the LKF will not allow the estimated external torques to be
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adjusted as quickly as before. Even more, if Qd,F would be set to zero, the estimated external
torques would remain constant. Obviously this would not be an improvement to the performance
of the LKF.
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Figure 3.9: Estimated external torques and estimation errors, Qd,F scaled by 10−3

Figure 3.10 shows the result of scalingQd,F by a factor of 103. This action has introduced more
noise into the estimated external torques, which is not an improvement to the performance of
the LKF either. By increasing the process covariance submatrix Qd,F , the equation for τk+1 in
the state-space model was marked as less reliable. While this allows the estimated external
torques to be adjusted faster, this also makes the LKF rely more on the (noisy) measurement
data.
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Figure 3.10: Estimated external torques and estimation errors, Qd,F scaled by 103

In conclusion, the values found for Qd,F using section 3.3 seem valid in ideal conditions. Qd,F

can be scaled to adjust the performance of the LKF if desired. The trade-off would be faster
tracking of the external torque estimates at the cost of introducing more noise.

Simulation results: scaled measurement noise covariance matrix Rd

In this section, the influence of varying the measurement noise covariance matrix Rd on the
performance of the EKF is tested. The results for different Rd are tested by scaling the values
found using section 3.3. Figure 3.11 shows the estimated torques found by scalingRd by 10−3,
and figure 3.12 shows the estimated torques found by scaling Rd by 103.
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Figure 3.11: Estimated external torques and estimation errors, Rd scaled by 10−3

0 5 10 15 20
-10

-5

0

5

10
Real VS estimated external torque arm 1 (Nm)

Estimated
Real

0 5 10 15 20
-2

0

2

4

6
Estimation error external torque arm 1 (Nm)

0 5 10 15 20
4

5

6

7

8

9

10
Real VS estimated external torque arm 2 (Nm)

Estimated
Real

0 5 10 15 20
-4

-3

-2

-1

0

1

2
Estimation error external torque arm 2 (Nm)

Figure 3.12: Estimated external torques and estimation errors, Rd scaled by 103
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Figures 3.11 and 3.12 show almost exactly the same results as in figures 3.9 and 3.10, where
Qd,F was scaled by the same amounts. These covariance matrices indicate the reliability of
the measurements and model respectively. What can be seen is that their absolute values are
not necessarily too important. The relative values of these matrices are what mostly dictates
the performance of the LKF. Based on their relative size, the LKF will rely more on either the
measurement data or the model for its estimated states. Hence, scaling Rd by 103 or Qd,F by
10−3 gives similar results, since this gives the same change in their relative sizes. The submatrix
Qd,par may also play a role, but not in these simulations as it was set to zero.

Simulation results: non-zero process noise covariance submatrix Qd,par

This subsection will test the performance of the LKF when the value of the process noise co-
variance submatrix Qd,par is not set to zero. In the previous simulations, this matrix was set in
accordance with section 3.3. Since there were no errors in the parameters in these simulations,
so far this resulted in Qd,par = 0. In this section, Qd,par will be given non-zero values despite
that there are still no parameter errors included in the simulation. In doing so, the possible
negative effects of including Qd,par are investigated.

To start, figure 3.13 shows the results of setting Qd,par as if there were 10% parameter er-
rors. Compared to figure 3.8, the estimated torques follow the real external torques significantly
slower. By including a non-zero Qd,par, the state-space equations for the velocities θ̇k+1 will be
interpreted by the LKF as less reliable. As a result, the estimate for the states will rely more on
the measurements as well as the other state-space equations. The estimated torques cannot
directly be found from measurements, however. Instead, the LKF will base its estimates for the
torques more on the state-space equations for τk+1. As discussed previously, these equations
do not account for a possible change in the external torques. As a result, the estimated torques
will track the real values significantly slower.

To illustrate the cause of the reduced performance, equation 3.44 shows the values used for
Qd,par and Qd,F in figure 3.13. While Qd,F was intentionally set to allow the estimated external
torques to vary, Qd,par has significantly higher values. Because the values in Qd,F are low in
comparison, the LKF will rely more on the corresponding state-space equation: τk+1 = τk.
Again, this prevents the external torque estimates to be adjusted quickly.

Qpar = 10−5 ·
[
0.0466 0

0 0.4720

]
, QF = 10−5 ·

[
0.0023 0

0 0.0008

]
(3.44)

In an attempt to solve this problem, the process noise submatrix Qd,F is scaled up. The results
for scaling Qd,F by 100, 1000, and 10000 are shown in figures 3.14, 3.15, and 3.16. As ex-
pected, the estimated external torques track the real values significantly faster as a result of the
scaling. On the other hand, the amount of noise in the estimates increases as well.

In conclusion, by adding non-zero values for Qd,par, the performance of the LKF has dete-
riorated. This may still be necessary when the model actually has errors in its parameters,
however. These simulations have also shown that it may be detrimental to overestimate the
inaccuracy of the model. Furthermore, the simulations have also shown that care should be
that the values for Qd,F are (significantly) larger than those of Qd,par. Otherwise the risk exists
that the estimates for the external torques are not allowed to be adjusted sufficiently fast.
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Figure 3.13: Estimated external torques and estimation errors, Qpar set for 10% parameter
errors
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Figure 3.14: Estimated external torques and estimation errors, QF scaled by 102
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Figure 3.15: Estimated external torques and estimation errors, QF scaled by 103
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Figure 3.16: Estimated external torques and estimation errors, QF scaled by 104
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3.5.2 Simulations with 10% parameter errors

In this section, the performance of the LKF will be tested when parameter errors are introduced.
This will be achieved by generating a model based on randomly adjusted parameters. Values
for the parameters are randomly generated within a range of 10% of the real parameter values
(as used by the plant). These parameters are then applied to the state-space model defined
in section 3.2.4, and the resulting ’wrong’ model will be applied to the LKF as described in
section 2.2. To be able to compare the results of each simulation in this section, the values for
the parameters were randomly generated once and loaded each simulation thereafter. Different
sets of randomized parameters have also been tried for the same conditions, which gave similar
results. The randomly generated error factors used in these simulations for the parameters are
shown in table 3.2.

Parameter Error factor
m1 1.0180
m2 1.0517
k1 0.9513
k2 0.9702
d1 0.9279
d2 0.9760

Table 3.2: Factor by which the parameters differ from their real values

To start, the performance of the LKF is tested when its parameters are set according to section
3.3, but with Qd,F scaled by 103 to allow the estimated external torques to be adjusted fast
enough (as discussed in section 3.5.1). The resulting estimates are shown in figure 3.17.
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Figure 3.17: Estimated external torques with 10% parameter errors
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Clearly, the parameter errors have deteriorated the performance of the LKF. After each torque
step the estimated torques oscillate around their real values, and a constant deviation from the
real values can also be recognized. These errors showing up in the estimated external torques
can be explained. In this simulation, the LKF is based on a model with wrong parameters. As
a result, the external torques estimated by the LKF do not represent the external torques that,
when applied to the real system, would lead to the measured displacements. Instead, these
external torques represent those that would lead to these displacements when applied to the
system represented by the erroneous model. As a result, the estimates show ’fictitious’ external
torques, caused by the difference in the dynamic behavior of the real system with respect to the
system represented by the erroneous model.

This is further illustrated in figure 3.18, where the actuator torques were set to zero, and only the
steps in the external torque signals remain. Beside the oscillations in the estimated torques, a
constant estimation error can be recognized after the steps. This constant error can be attributed
to the error in the stiffness parameters ki used by the LKF. As can be seen from table 3.2, the
values of the stiffness parameters used by the LKF are lower than the real values. As a result,
the LKF underestimates the external torques. The oscillations can be attributed to errors in
the parameters as well: the modelled system has different resonance frequencies than the real
system. Hence, ’fictitious’ external torques are estimated because of the difference in their
dynamic behavior. To illustrate this, figure 3.19 compares the Bode plots of the model with true
parameters and the model with erroneous parameters.
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Figure 3.18: Estimated external torques with only steps in τext acting on the system

If the actuator torques are reintroduced in the simulation, the estimates of the external torques
deteriorate further. This is illustrated in figure 3.20. The system is excited by the actuators, but
the LKF attributes some of the dynamic response this causes to the external torques. Again,
this is caused by the erroneous model used by the LKF.
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Figure 3.19: Bode plots of the double pendulum model with true and erroneous parameters
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Figure 3.20: Estimated external torques with steps and actuator torques

It may be attempted to improve the estimates by increasing the scaling ofQd,par, indicating that
the equation of motion are less reliable. As discussed in section 3.5.1, Qd,F should then be
scaled as well as otherwise the external torque estimates will respond too slowly to changes.
The results of scaling Qd by 10 and 100 are shown in figures 3.21 and 3.22. Unfortunately, the
only effect of scaling the process noise covariance matrixQd is that the estimates become more
noisy. Besides the increased amount of noise, the same estimation errors can be recognized.
Again, this is caused by the change in relative size between the covariance matrices Rd and
Qd. The LKF will rely more on the measurements for its estimates, making the results more
noisy.
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Figure 3.21: Estimated external torques and estimation errors, Qd scaled by 10
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Figure 3.22: Estimated external torques and estimation errors, Qd scaled by 100
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Then, it may be wondered whether including non-zero values forQd,par has helped at all. Figure
3.23 shows the results for setting Qd,par to zero. The estimated torques are almost identical to
those found with the original values forQd,par shown in figure 3.17. To illustrate the differences,
table 3.3 shows the mean value of the absolute error of the estimated states in both cases.
Additionally, the table shows the mean of the absolute estimation errors for when the entire Q
matrix was scaled by 0.1. Table 3.3 and figure 3.23 show that including Qd,par barely makes a
difference.

States Qd,par Qd,par = 0 0.1 ·Qd

θ1 4.99 · 10−5 4.34 · 10−5 5.20 · 10−5

θ2 6.57 · 10−5 5.95 · 10−5 6.46 · 10−5

θ̇1 5.9 · 10−3 4.2 · 10−3 5.5 · 10−3

θ̇2 12.3 · 10−3 9.1 · 10−3 9.8 · 10−3

τext,1 0.271 0.257 0.273

τext,2 0.258 0.274 0.256

Table 3.3: Means of the absolute estimation errors
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Figure 3.23: Estimated external torques and estimation errors, Qd,par set to 0

In conclusion, any errors in the model will deteriorate the estimation of the external torques,
because any unexpected dynamic behavior (caused by using a wrong model) will be attributed
to the external torques. Unfortunately, this problem cannot be solved by including Qd,par. The
model is the only source based on which the external torques can be estimated, since there
is no feedback from a sensor. As such, it is critical that the model represents the real system
accurately.
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3.5.3 Simulation with 10% parameter errors and velocity sensors

In the previous section, the impact of errors in the model’s parameters were investigated. The
parameter errors deteriorate the quality of the estimates, and they cannot be improved signifi-
cantly by tuning the LKF parameters. This section investigates if the estimates can be improved
if a velocity sensor would be included in the setup.

The velocity sensors are included in the same way as the position sensors: they are influenced
by white noise and quantization. The measurement covariance matrix is adjusted to include the
measured velocities in the same fashion as the position sensors in section 3.3. The state-space
matrix Cd has also been adjusted to include the velocities. The updated matrices become,

Rd =


σ2
quant,v1 + σ2

rest,v1 0 0 0

0 σ2
quant,v2 + σ2

rest,v2 0 0

0 0 σ2
quant,v3 + σ2

rest,v3 0

0 0 0 σ2
quant,v4 + σ2

rest,v4

 ,

Cd =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 .

(3.45)
Besides the changes to Rd and Cd, the LKF parameters are set according to section 3.3 as
usual. The resulting estimated torques are shown in figure 3.24. By adding velocity sensors,
the estimated velocities have become much less noisy. As a result, the estimated external
torques have become less noisy as well. Unfortunately, the same estimation errors caused by
using an inaccurate model still remain.
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Figure 3.24: Estimated external torques and estimation error, with velocity sensors
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3.6 Discussion: double pendulum testing

In this chapter methods for setting up the LKF parameters were suggested in section 3.3, and
tested in section 3.5. The performance of the LKF was tested on a double pendulum in ideal
circumstances, as well as with the presence of parameter errors in the model used in the LKF.

The methods used to set the LKF parameters discussed in section 3.3 lead to good results in
ideal circumstances. Care must be taken that the values for the submatrix Qd,F are larger than
those of submatrixQd,par. Otherwise, the external torque estimates may not be adjusted quickly
enough by the LKF. It was also found that the performance of the LKF heavily depends on the
correctness of the model used. When parameter errors are present, the LKF will include ’ficti-
tious’ forces in its estimates, caused by the difference in the dynamic behavior of the modelled
system with respect to the real system. There is no solution that makes the detrimental effects
of parameter errors disappear. Including the process noise wpar,k barely made any difference,
and adding a velocity sensor did not significantly improve the estimates either. The model plays
a very important role to the performance of the LKF, since this is the only source based on which
the external torques are estimated.

The effects of neglecting the non-linear behavior of the double pendulum in the model used by
the LKF were not significant. In ideal circumstances, though without including the non-linear
dynamic behavior, the LKF still showed excellent performance. Based on the results in this
chapter, applying a LKF to the 2DOF manipulator seems promising, although the performance
will heavily depend on the accuracy of the model.
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4 2DOF MANIPULATOR

In this chapter, the performance of the LKF will be tested in experiments on a real 2DOF manip-
ulator system. As opposed to the double pendulum in chapter 3, the 2DOF manipulator will be
tested in real world conditions. The 2DOF manipulator is a real system, where unknown noise
sources and undetermined dynamic effects may play a role. While the dynamic behavior of the
double pendulum was known exactly, this cannot be stated for the 2DOF manipulator.
The chapter will start by summarizing important properties of the 2DOF manipulator setup.
Then, a model of the 2DOF manipulator is found based on the work of Aarts [11]. This includes
a derivation of the equations of motion and the identification of the system’s parameters. Next,
the LKF parameters are set based on the model and data measured from experiments. Finally,
the LKF is tested on the real 2DOF manipulator setup in different conditions.

4.1 2DOF manipulator overview

To recapitulate, the 2DOF manipulator discussed in section 1.2 consists of a set of parallel
arms and a single arm which are made up of beams connected by flexure hinges. A schematic
overview of the 2DOF manipulator is shown in figure 4.1. In the figure, the flexure hinges are
numbered 1-11 and the beams are indicated with the letters A-G. The center of the end-effector
is indicated with ’eff’, and its workspace is shown by a red dashed outline as well. The encoders
and actuators are fixed to beams C and A at a distance renc = 0.251m and ract = 0.235m
respectively. These measure distance/exert force along the circular path perpendicular to the
beams, indicated with black arrows. Table 4.1 shows the coordinates of the hinges and end-
effector when the system is in its nominal position [1].

Figure 4.1: Schematic overview [1]

Hinge x-position (m) y-position (m)
1 0.27988 0.14908
2 0.16427 0.06801
3 0.08093 0.19738
4 0.54385 0.12809
5 0.12031 0.54114
6 0.20365 0.41177
7 0.12031 0.54114
8 0.20365 0.41177
9 0.48029 0.40561
10 0.44167 0.33531
11 0.35833 0.46468
eff 0.4 0.4

Table 4.1: Hinge coordinates nominal position
[1]
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4.2 Modelling

The system identification and modelling process on the 2DOF manipulator in this section was
performed by Aarts [11]. The results have not been published, but were exchanged in private
correspondence. Since these were not published, the process is repeated in this section.

4.2.1 Overview of the generalized coordinate approach

This section contains a brief overview of the method used to define the equations of motion,
the generalized coordinate approach [12]. In this method, the dynamics are evaluated from the
perspective of each individual body, and then reflected to a set of independent coordinates q
equal to the number of degrees of freedom. A set of generalized coordinates x is defined, which
describe the positions and orientations of the individual bodies. The relation between these
generalized coordinates x and the independent coordinates q are defined by the geometric
transfer function

x = F(q). (4.1)

Expressions for the velocities and accelerations of the generalized coordinates as a function of
the independent coordinates q are found from the time derivative of (4.1), which become

ẋ = F ,q(q) q̇,

ẍ = F ,q(q) q̈ + (F ,qq(q) q̇) q̇,
(4.2)

where the Jacobian F ,q(q) can be found as

F ,q(q) =


∂F1(q)
∂q1

. . . ∂F1(q)
∂qndof

...
...

∂Fnx(q)
∂q1

. . . ∂Fnx(q)
∂qndof

 , (4.3)

and the product (F ,qq(q) q̇) q̇ can be found as

(F ,qq(q) q̇) q̇ =

 q̇TF1,qq(q) q̇
...

q̇TFnx,qq(q) q̇

 , (4.4a)

F i,qq(q) =


∂2Fi(q)
∂q1∂q1

. . . ∂2Fi(q)
∂q1∂qndof

...
...

∂2Fi(q)
∂qndof

∂q1
. . . ∂2Fi(q)

∂qndof
∂qndof

 . (4.4b)

The forces acting on each body in the system, expressed in terms of x, ẋ, and ẍ, can than be
transformed by substituting (4.1) and (4.2). In doing so, expressions for the forces acting on
each individual body are found in terms of the independent coordinates q. These forces can
then be reflected to the independent coordinates by applying,

Fq = FT
,q(q)Fx, (4.5)
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where Fx represents the forces acting on the generalized coordinates, and Fq represents the
same forces reflected to the independent coordinates. Similar to a transmission ratio, F ,q(q)
defines the relation between the velocities q̇ and ẋ as well as the forces Fx and Fq.

This method can be used to define the forces acting on a multi-body system relatively straight-
forwardly, and find the equations of motion based on these definitions by applying the transfor-
mations described above.

4.2.2 Simplified system representation

To simplify the modelling and identification process, the 2DOF manipulator as shown in figure
4.1 can be adjusted such that a simpler, dynamically equivalent system is found. This process
was performed by Aarts [11]. The parallel arms are connected such that their rotational deflec-
tions are always equal. As a result, their dynamic parameters (masses, stiffness of hinges, etc.)
can effectively be combined. Even more, their dynamic parameters cannot be distinguished in
the identification process. This can be utilized to find a simplified representation of the sys-
tem. The parallel arms can be combined into one (dynamically equivalent) single arm. To this
end, beams E, G, and F, and the flexure hinges 3, 5, 7, and 11 are neglected. Instead, their
dynamic behavior will be represented by the remaining parallel arm. Similarly, the hinge 8 is
neglected. Since hinge 6 and 8 operate on the same rotation, these cannot be distinguished in
the identification. Instead, these will combined into a single stiffness parameter.

Additionally, the positions of the remaining arms can be shifted such that these converge on the
same point on the end-effector. This step does not change the kinematic relation between the
arms, but does simplify the derivation of the kinematic relations. These simplification steps are
illustrated in figure 4.2. The nominal positions of the system’s hinges in the simplified represen-
tation are shown in table 4.2, where these have been expressed with respect to the nominal
position of the end-effector.

(a) Removing parallel arm and shifting (b) Result

Figure 4.2: Shifting the arms
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Hinge x-position (m) y-position (m)
2 -0.2774 -0.2673
6 -0.2380 0.0765
10 0 0
1 -0.2004 -0.2565
4 0.0636 -0.2775
9 0 0

Table 4.2: Nominal position of hinges after shifting

The inertia properties of the system will be represented using the lumped mass representation
[13]. In this idealization, concentrated masses are placed at the end nodes of each body. It can
be applied on the condition that the total mass and inertia of the bodies remain the same, and
the resulting center of mass coincides with the original. This is illustrated in figure 4.3. Note that
an additional negative inertia is included on the right such that the total inertia is equivalent.

Figure 4.3: Illustration of the lumped mass representation

Using the lumped mass representation, it is assumed that the body is rigid between its nodes.
Furthermore, dynamical coupling between the translational and rotational motions are neglected.
This leads to a purely diagonal inertia matrix. The representation may be less accurate as a
result, but using this representation has computational advantages.

In the simplified representation of the 2DOFmanipulator, themasses of the beams will be evenly
split between its two nodes similar to figure 4.3. The centers of gravity will then be ’placed’ in
the correct location automatically in the identification process resulting from the identified values
for mA, mB, mC , mD, and meff . The result of applying the lumped mass representation to the
system is illustrated in figure 4.4. Each of the inertias in the lumped mass representation can
be expressed in terms of the original mass parameters as,

m1 =
mA

2
,

m2 = mC ,

m4 =
mA +mB

2
,

m6 = mC +mD,

m10 = mD +
mB

2
+meff ,

JA = −1

6
mAL

2
A,

JB = −1

6
mBL

2
B,

JC = −2

6
mCL

2
C ,

JD = −2

6
mDL

2
D.

(4.6)

Note that the masses mC and mD are not halved in (4.6), such that these represent the weight
of only one the parallel beams.
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Figure 4.4: 2DOF manipulator in lumped mass representation

The flexure hinges will be represented in the model as ideal spring elements located at each of
the hinges. Furthermore, ideal damper elements will be included in hinges 1 and 2 representing
the friction induced by cables connected to the actuators and encoders. These are illustrated in
figure 4.5, where ki represents a compliance connected to hinge i, and di represents damping
connected to hinge i. Note that the compliances connected to beams C and D are doubled,
such that those ki represent the stiffness of the flexure hinge in one of the parallel arms.

Figure 4.5: 2DOF manipulator with modelled springs and dampers

4.2.3 Kinematic analysis

To derive a dynamic model of the system, a kinematic analysis is required. This process was
performed by Aarts [11]. The system is illustrated with relevant parameters in figure 4.6. In this
figure, Li represents the length of beam i, θi represents the angular deflection with respect to
the x-axis of beam i, renc represents the distance at which the encoders are attached to the
beams, and xenc and yenc represent the displacement of the encoders along that radius. Note
that all angles are defined positive in counter-clockwise direction.
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Figure 4.6: System with kinematic parameters

Parameter Value (unit)
LA 0.2648 (m)
LB 0.2847 (m)
LC 0.346 (m)
LD 0.25 (m)
renc 0.251 (m)
ract 0.235 (m)

θA,nom -0.0793 (rad)
θB,nom 1.7959 (rad)
θC,nom 1.4567 (rad)
θD,nom -0.3108 (rad)

Table 4.3: Parameters of the 2DOF
manipulator

The generalized coordinates x of the system correspond to the displacements of each the (mov-
ing) inertias in the lumped mass representation:

x =
[
θA θB θC θD x4 y4 x6 y6 x10 y10

]T
. (4.7)

The independent coordinates q are chosen as the encoder displacements:

q =

[
xenc
yenc

]
. (4.8)

Choosing the independent coordinates this way is convenient, as this will allow the use of the
encoder readings without the need for a transformation later on.

Based on the nominal positions of the hinges in table 4.2, the length of the beams Li and their
nominal angles θi,nom can be calculated. The resulting values are shown in table 4.3. With these
parameters, all kinematic relations required to define the geometric transfer function F(q) can
be determined. To start, the angular deflections of beams x1 and y1 can be found as,

θA = θy1,nom +
yenc
renc

,

θC = θx1,nom − xenc
renc

.
(4.9)

Expressions for the positions of hinges 4 and 6 can subsequently be found as,

x4 = x1 + LA cos (θA) ,
y4 = y1 + LA sin (θA) ,
x6 = x2 + LC cos (θC) ,
y6 = y2 + LC sin (θC) ,

(4.10)
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where x1, x2, y1, and y2 correspond to the constant position of these hinges shown in table 4.2.

Expressions for the angles θB and θD are found by introducing the triangle shown in figure 4.7.
The length Ls and angle θs of the side of the triangle between nodes 4 and 6 can be found as,

Ls =

√
[x4 − x6]

2 + [y4 − y6]
2

θs = tan−1

(
y4 − y6
x4 − x6

) (4.11)

Figure 4.7: Triangle defined to find θB and θD

Using the cosine rule and (4.11), the inner angles of the triangle αB and αD can be found as,

αB = cos−1

(
L2
D + L2

s − L2
B

2LDLs

)
,

αD = cos−1

(
L2
B + L2

s − L2
D

2LBLs

)
.

(4.12)

In turn, these can be used to find expressions for the angles θB and θD:

θB = π + θs − αD,

θD = θs + αB.
(4.13)

Lastly, expressions for the positions of hinge 10 can be found by combining (4.10) and (4.13):

x10 = x6 + LD cos(θD) ,
y10 = y6 + LD sin(θD) .

(4.14)

Then, an expression for all generalized coordinates x is found as a function of the independent
coordinates q. Together, these relations represent the geometric transfer function F(q), which
is found by substituting the kinematic relations found into
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x = F(q) =
[
θA θB θC θD x4 y4 x6 y6 x10 y10

]T
. (4.15)

However, the generalized coordinates x only include the positions and orientations of the bod-
ies. In order to include springs and dampers in the dynamic model, the deformation coordinates
ε are defined as,

ε =



ε1
ε2
ε4
ε6
ε9
ε10

 , (4.16)

where εi represents the angular deflection of hinge i from its nominal angle.

Similar to before, a geometric transfer function E(q) can be defined to express these deformation
coordinates in terms of the independent coordinates. The deflection of each hinge can be found
from (4.9) and (4.13) as:

ε = E(q) =



θA − θA,nom

θC − θC,nom

θB − θB,nom − θA + θA,nom

θD − θD,nom − θC + θC,nom

−θB + θB,nom

−θD + θD,nom

 . (4.17)

Finally, the time derivatives of the geometric transfer functionsF(q) and E(q) as defined in (4.2)
should be found as well. Unfortunately the geometric transfer functions consist of complicated
expressions, and their time derivatives are significantly more complicated. Finding expressions
for the time derivatives analytically would be a time consuming and error prone process. Instead,
expressions for the time derivatives are found using Matlab’s symbolic toolbox. This is achieved
by defining a symbolic variable in Matlab for each generalized coordinate and independent
coordinate, and defining the geometric transfer functions as shown in this section. The time
derivatives can then be calculated in Matlab as shown in (4.2) to (4.4) using the commands
’jacobian’ and ’hessian’.

4.2.4 Equations of motion

The equations of motion of the simplified system described in section 4.2.2 will be found using
the generalized coordinate approach as in section 4.2.1. This process was performed by Aarts
[11]. First, the inertia, damping, and spring forces will be defined with respect to the individual
bodies and hinge-points. These will then be transformed such that the forces reflected on the
independent coordinates q are found. These can be combined to find the equations of motion as
reflected on the independent coordinates. As a final step, the equations of motion are reflected
to the end-effector position. This way, the external forces acting on the end-effector do not need
to be transformed later on.

The inertia forces reflected on the individual bodies Fm,x can be expressed as

Fm,x = Mẍ, (4.18)

52



with ẍ the acceleration of the generalized coordinates (4.7)

ẍ =
[
θ̈A θ̈B θ̈C θ̈D ẍ4 ÿ4 ẍ6 ÿ6 ẍ10 ÿ10

]T
, (4.19)

and M the inertia matrix corresponding to these accelerations

M = diag(JA, JB, JC , JD,m4,m4,m6,m6,m10,m10) . (4.20)

Substituting expressions for the accelerations ẍ given in (4.2) and reflecting the forces to the
independent coordinates using (4.5) gives

Fm,q = FT
,qMF ,qq̈ +FT

,qM (F ,qq̇) q̇, (4.21)

with Fm,q the inertia forces of the bodies reflected on the independent coordinates q.

The spring and damper forces can be expressed with respect to the individual hinge rotations
ε. The spring forces reflected on the individual hinges Fk,ε can be expressed as

Fk,ε = Kε, (4.22)

with the hinge rotations ε and the stiffness matrix K defined as

ε =
[
ε1 ε2 ε4 ε6 ε9 ε10

]T
, K =



k1 0 0 0 0 0
0 2k2 0 0 0 0
0 0 k4 0 0 0
0 0 0 2k6 0 0
0 0 0 0 k9 0
0 0 0 0 0 2k10

 . (4.23)

Substituting the geometric transfer function E(q) given in (4.17) and reflecting the forces to the
independent coordinates using (4.5) gives

Fk,q = ET
,qKE(q), (4.24)

with Fk,q the spring forces of the hinges reflected on the independent coordinates q, and E ,q the
Jacobian of E(q) as defined in (4.3).

The damping forces reflected on the individual hinges Fd,ε can be expressed as

Fd,ε = Dε̇, (4.25)

with ε̇ the velocities of the deflection coordinates (4.16)

ε̇ =
[
ε̇1 ε̇2 ε̇4 ε̇6 ε̇9 ε̇10

]T
, (4.26)

and D the damping matrix corresponding to these velocities
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D =



d1 0 0 0 0 0
0 d2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (4.27)

Substituting (4.2) and reflecting the forces to the independent coordinates using (4.5) gives

Fd,q = ET
,qDE ,qq̇. (4.28)

The equations of motion expressed from the perspective of the independent coordinates q can
then be found by taking the sum of all forces:

Fin,q + Fext,q = Fm,q + Fd,q + Fk,q

= FT
,qMF ,qq̈ +FT

,qM (F ,qq̇) q̇ + ET
,qDE ,qq̇ + ET

,qKE ,
(4.29)

with Fin,q the actuator forces reflected on the independent coordinates, and Fext,q the external
forces reflected on the independent coordinates.

The actuator forces in (4.29) are those reflected on the independent coordinates, while these
will be available as reflected on the actuator positions. So, these need to be transformed before
they can be used. This is a simple transformation, since the independent coordinates (encoder
positions) and actuator positions are connected to the same angular deflection at different radii.
The actuator torques can be reflected to the independent coordinates by applying

Fin,q =
ract
renc

Fin,act. (4.30)

with Fin,act the actuator forces reflected on the actuator positions, and Fin,q the same actuator
forces reflected on the independent coordinates.

To use the equations of motion (4.29) found by Aarts [11], they should be adjusted. The external
forces incorporated in the equation of motion represent those reflected on the independent
coordinates. However, the external forces reflected on the end-effector position are desired
to be estimated in the end. Therefore, the equations of motion should be transformed such
that they are expressed with respect to the end-effector position. This can be achieved by
transforming all forces using (4.5). For this transformation, the Jacobian expressing the end-
effector velocities in terms of the velocities of the independent coordinates is required. A relation
between these velocities is already incorporated in the Jacobian of (4.15):

ẋ = F ,q(q) q̇, (4.31)

for which an expression was determined using Matlab’s symbolic toolbox. The submatrix of
F ,q(q) relevant to this transformation is defined as

ẋeff = Feff,q(q) q̇, (4.32)

with ẋeff the end-effector velocities
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ẋeff =

[
ẋ10
ẏ10

]
. (4.33)

The Jacobian required for the transformation can be found from (4.32) by rewriting as

q̇ = F−1
eff,q(q) ẋeff . (4.34)

The forces in the equations of motion can then be reflected to the end-effector position by
applying F−1

eff,q(q) to (4.5) as

Feff = F−T
eff,q(q)Fq, (4.35)

with Fq a force reflected on the independent coordinates, and Feff that same force reflected on
the end-effector position.

Applying this transformation to the equation of motion (4.29) gives

Fext,eff = F−T
eff,q

[
FT

,qMF ,qq̈ +FT
,qM (F ,qq̇) q̇ + ET

,qDE ,qq̇ + ET
,qKE − ract

renc
Fin,act

]
(4.36)

where Fext,eff represents the external forces reflected on the end-effector position.

During simulations, it was found that calculating the inverse F−T
eff,q was difficult for Matlab’s

symbolic toolbox, requiring significant time to solve. An alternative approach to calculate this
transformation matrix is given in appendix B, which circumvents the need to calculate a matrix
inverse.

4.2.5 Identification

The 2DOF manipulator system parameters were identified by Aarts [11]. This was achieved by
applying linear least squares regression based on the model derived in previous sections and
data collected by Heerze [14]. The values found for the parameters are listed in table 4.4.

Parameter Identified value (unit)
mA 0.497547523949 (kg)
mB 0.581336378956 (kg)
mC 0.144416464957 (kg)
mD 0.572295408988 (kg)
meff -0.503277438841 (kg)
k1 3.963719549131 (Nm/rad)
k2 3.492090967745 (Nm/rad)
k4 1.278892975362 (Nm/rad)
k6 1.506895042708 (Nm/rad)
k9 -1.909866894848 (Nm/rad)
k10 -0.824908122655 (Nm/rad)
d1 0.130875094160 (Nm · s/rad)
d2 0.072239449199 (Nm · s/rad)

Table 4.4: Identified parameters of 2DOF manipulator
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4.2.6 Linearization

To be able to write the system in state-space form, the equation of motion (4.36) needs to
be rewritten such that it becomes an expression for q̈. This would require the inverse of the
matrixF−T

eff,qF
T
,qMF ,q to be calculated. Unfortunately, Matlab’s symbolic toolbox has difficulties

calculating this inverse, which is caused by this matrix being such a large and complicated
expression.
However, the equation of motion will also need to be linearized in order to apply it to the LKF. To
prevent Matlab from having to compute the inverse of the mentionedmatrix in symbolic form, the
equation of motion can first be linearized, and rewritten such that q̈ is on the left hand side of the
equation thereafter. Thereby, Matlab would only need to calculate the inverse of a non-symbolic
2× 2 matrix.
The equations of motion will be linearized by applying first-order Taylor expansion as discussed
in section 2.3. For readability, the equation of motion (4.36) will be denoted in this section as

Fext,eff = F (Q) , (4.37)

with Q defined as

Q =


q
q̇
q̈

Fin,act

 . (4.38)

Applying first-order Taylor approximation at an operating point Q0 gives

Flin (Q) = F |Q=Q0
+

∂F

∂Q

∣∣∣∣
Q=Q0

(Q−Q0) . (4.39)

Although the equation of motion F (Q) consists of complicated symbolic expressions, Matlab’s
symbolic toolbox is capable of calculating the partial derivatives in (4.39) without problems.
Next, the linearized equation of motion is rewritten such that it can be applied in a state-space
model. (4.39) can be rewritten to group the constant terms as

Flin (Q) =

[
F |Q=Q0

− ∂F

∂Q

∣∣∣∣
Q=Q0

Q0

]
+

∂F

∂Q

∣∣∣∣
Q=Q0

Q. (4.40)

Substituting (4.38) back gives for the non-linear term

∂F

∂Q

∣∣∣∣
Q=Q0

Q =
∂F

∂q̈

∣∣∣∣
Q=Q0

q̈ +
∂F

∂q̇

∣∣∣∣
Q=Q0

q̇ +
∂F

∂q

∣∣∣∣
Q=Q0

q +
∂F

∂Fin,act

∣∣∣∣
Q=Q0

Fin,act. (4.41)

Given their relation to the accelerations q̈, velocities q̇, and displacements q of the system, these
partial derivatives can be interpreted as the linearized inertia, damping, and stifness matrices:

Mlin =
∂F

∂q̈

∣∣∣∣
Q=Q0

,

Dlin =
∂F

∂q̇

∣∣∣∣
Q=Q0

,

Klin =
∂F

∂q

∣∣∣∣
Q=Q0

.

(4.42)
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Furthermore, the remaining terms of the linearized equation of motion (4.40) are defined as

F0 =

[
F |Q=Q0

− ∂F

∂Q

∣∣∣∣
Q=Q0

Q0

]
,

Ulin =
∂F

∂Fin,act

∣∣∣∣
Q=Q0

.

(4.43)

Substituting the definitions (4.42) and (4.43) into (4.40) gives the linearized equation of motion

Fext,eff (q̈, q̇, q) = F0 +Mlinq̈ +Dlinq̇ +Klinq +UlinFin,act. (4.44)

Finally, the linearized equation of motion can be rewritten such that q̈ is on the left hand side:

q̈ = M−1
linFext,eff −M−1

linF0 −M−1
linDlinq̇ −M−1

linKlinq −M−1
linUlinFin,act. (4.45)

Since Mlin was linearized, Matlab can easily calculate its inverse.

The operating point Q0 at which the 2DOF manipulator will be linearized is set as

Q0 = 0. (4.46)

This represents the 2DOF manipulator when it is in its nominal position, with zero velocity,
acceleration, and input force. This is the optimal choice, since the expected range of each of
these variables is centered around zero. This has the additional benefit that the constant term
F0 becomes zero, which simplifies representing the equation of motion as a state-space system.
The final linearized equation of motion then becomes

q̈ = M−1
linFext,eff −M−1

linDlinq̇ −M−1
linKlinq −M−1

linUlinFin,act. (4.47)

4.2.7 Discrete-time augmented state-space model

Similar to section 3.2.2, the linearized equation of motion (4.47) can be rewritten to a state-space
model

ẋ = Ax+Bu,

y = Cx.
(4.48)

The output vector will consist of the encoder displacements q, and the input vector will consist
of the actuator forces Fin,act. Furthermore, since the LKF will be used to find an estimate the
state x of the system, the state vector should be augmented to include the external forces. The
resulting state-, output-, and input-vector of the augmented state-space model become

x =

 q
q̇

Fext,eff

 , ẋ =

 q̇
q̈

Ḟext,eff

 , y =
[
q
]

, u =
[
Fin,act

]
. (4.49)

Based on the linearized equation of motion, the augmented state-space matrices can then be
written as
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A =

 0 I 0

−M−1
linKlin −M−1

linDlin M−1
lin

0 0 0

 ,

B =

 0

−M−1
linUlin

0

 ,

C =
[
I 0 0

]
.

(4.50)

In order to utilize the state-space matrices in the LKF, they should be converted to discrete time.
This can be achieved by applying (3.28), which gives:

Ad =

 I Ts · I 0

−Ts ·M−1
linKlin I − Ts ·M−1

linDlin Ts ·M−1
lin

0 0 I

 ,

Bd =

 0

−Ts ·M−1
linUlin

0

 ,

Cd =
[
I 0 0

]
.

(4.51)

These state-space matrices can be applied to the LKF. The methods used to derive the state-
space model in this chapter are validated using the double pendulum model in appendix C.

4.3 Setting LKF parameters

With a model of the 2DOF manipulator available, the LKF can be set up for use. The methods
used to set the LKF parameters for the double pendulum in section 3.3 will be applied to the
2DOF manipulator where possible as well. This process will be discussed next.

The noise covariance matrix Rd will include the measurement noise and quantization noise
similarly to section 3.3. The encoders have a resolution of 5 · 10−8m. Then, the variance of the
quantization noise σ2

quant,vi can be approximated as

σ2
quant,vi =

[
5 · 10−8

]2
12

. (4.52)

The variance of the measurement noise can be found by analyzing data measured while the
system is completely at rest. The variance of the measurement noise σ2

rest,vi of each encoder
is found based on the data shown in figure 4.8. The measurement noise covariance matrix Rd

then becomes

Rd =

[
σquant,v1 + σ2

meas,v1 0

0 σquant,v2 + σ2
meas,v2

]
= 10−10 ·

[
0.0162 0

0 0.2621

]
.

(4.53)
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Figure 4.8: Measurement noise

The process covarianceQd,par caused by errors in parameters will be found similarly to section
3.3 as well. It will be approximated by running multiple simulations with the system shown in
figure 3.2. The ’real’ system will be the state-space model represented by the state matrices in
(4.51). The ’wrong’ system will be generated in each simulation by randomizing the parameters
in table 4.4 within a range of 10%, and applying these parameters to the state matrices in (4.51)
as well.

Similarly, the state- and input-vectors will be generated from random values within a range. The
range of each state and input is found by investigating the data gathered from experiments. For
all data sets, the maximum value of each of the states and inputs is noted. The largest values
of all data sets will be used as the ranges. Since there are no velocity sensors, the maximum
values of the velocities will be approximated from the encoder data as

vx ≈ xk+1 − xk
Ts

vy ≈ yk+1 − yk
Ts

(4.54)

Using (4.54) may give a distorted approximation of the velocities due to the presence of mea-
surement and quantization noise, however. To reduce these effects, the xk and yk in (4.54) are
replaced by the mean of a small range (0.01s) of the encoder data.

State/input +−Range
x1 0.05

x2 0.05

x3 0.12

x4 0.12

x5 13

x6 13

u1 10

u2 10

Table 4.5: Assumed range of the states and inputs

The ranges used for each of the states and inputs are given in table 4.5. The resulting values
for Qd,par after running 100 simulations as described above become

59



Qd,par = 10−7 ·
[
0.0414 0

0 0.1998

]
. (4.55)

The process covariance Qd,F caused by change in external torques is found in the same way
as in section 3.3, based on data measured with the force sensors in experiments. To ensure
that the LKF will be able to respond quickly enough to impulses, data will be used where the
force measured changes quickly. The data that will be used is shown in figure 4.9.
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Figure 4.9: Force sensor data range used to find QF

The resulting covariance matrix Qd,F becomes

Qd,F = 10−5 ·
[
2.23 0
0 2.23

]
. (4.56)

In section 3.5, it was found that the elements of Qd,F should be significantly greater than those
of Qd,par. Conveniently, this is already the case.

Finally, the initial estimated states x0 and the initial estimate covariance matrix P0 need to be
set. The initial estimated states are simply set to the nominal position of the 2DOF manipulator,
with external forces of 0. The initial estimate’s covariance matrix P0 is arbitrarily set very large,
to indicate the uncertainty of the initial estimate. The exact values applied are

x0 =



0
0
0
0
0
0

 , P0 =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 . (4.57)

4.4 External force estimation results

In this section, the performance of the LKF is tested based on data collected from multiple
experiments. In these experiments, the end-effector was excited either by the actuators or by
pushing the force sensors against it by hand. The external forces estimated by the LKF were
then compared to the forces measured by the force sensors in the setup. The results of each
experiment are shown in one figure, which show the displacements measured by the encoders,
the forces exerted by the actuators, and the estimated force compared to the measured force
in each direction.
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4.4.1 Results: end-effector held in place by actuator

To start, the end-effector was held in place by the actuators in different positions, while the
force sensors were pushed against it by hand. In doing so, the dynamic behavior of the 2DOF
manipulator plays almost no role in the estimated external forces. This data can be used to
test the performance of the LKF based on the actuator forces alone. The results are shown in
figures 4.10 to 4.18.

The estimated external forces in y-direction seem to be estimated very accurately for all data
sets. Unfortunately, the estimated x-forces seem to be coupled to the estimated y-forces. While
the estimated x-forces should be zero at all times, they have a similar shape as the estimated
y-forces. This may indicate that the actuator forces are not included correctly in the model.
This can cause the LKF perceive an external force that is in reality not acting on the system.
In each of the results, the erroneously estimated x-forces are about 10% of the magnitude of
the y-forces. Alternatively, this could be explained by friction between the end-effector and the
surface of the y-force sensor. This force would not be observed by the x-force sensor, but
would still influence the estimated external forces. Despite that only a force in the y-direction
was applied, a friction force may still have been induced because the displacements xeff and
yeff of the system are coupled.
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Figure 4.10: End-effector held in place in nominal position
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Figure 4.11: End-effector held in place at xeff = 0mm, yeff = 20mm
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Figure 4.12: End-effector held in place at xeff = 0mm, yeff = 40mm

64



0 5 10 15 20 25 30
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01
Encoder displacements (m)

x
y

0 5 10 15 20 25 30
-4

-2

0

2

4

6

8

10
Force applied by actuators (N)

x
y

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Measured VS estimated x-force (N)

Estimated
Measured

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Estimation error x-force (N)

0 5 10 15 20 25 30
-12

-10

-8

-6

-4

-2

0

2
Measured VS estimated y-force (N)

Estimated
Measured

0 5 10 15 20 25 30
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Estimation error y-force (N)

Figure 4.13: End-effector held in place at xeff = 0mm, yeff = −20mm

65



0 5 10 15 20 25 30
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02
Encoder displacements (m)

x
y

0 5 10 15 20 25 30
-4

-2

0

2

4

6

8

10

12
Force applied by actuators (N)

x
y

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Measured VS estimated x-force (N)

Estimated
Measured

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Estimation error x-force (N)

0 5 10 15 20 25 30
-12

-10

-8

-6

-4

-2

0
Measured VS estimated y-force (N)

Estimated
Measured

0 5 10 15 20 25 30
-6

-5

-4

-3

-2

-1

0

1

2
Estimation error y-force (N)

Figure 4.14: End-effector held in place at xeff = 0mm, yeff = −40mm
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Figure 4.15: End-effector held in place at xeff = −5mm, yeff = −20mm
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Figure 4.16: End-effector held in place at xeff = 5mm, yeff = −20mm
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Figure 4.17: End-effector held in place at xeff = −5mm, yeff = 20mm
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Figure 4.18: End-effector held in place at xeff = 5mm, yeff = 20mm
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4.4.2 Results: displacement by external force without actuators

In a second round of tests, the actuators were turned off completely while the sensors were
pushed against the end-effector by hand. This data can be used to test the performance of
the LKF based on the dynamic behavior of the 2DOF manipulator without the influence of the
actuators. The results are illustrated in figures 4.19 to 4.22.

In figures 4.19 and 4.20, the y-force sensor was pushed against the end-effector while the x-
force sensor was not in contact with the end-effector. The estimated values for the y-forces
seem very accurate. However, the estimated x-forces are not zero as they should be. Again,
this could be explained by friction induced by the force sensor. In an attempt to reduce the
influence of this friction, these experiments were repeated where it was ensured that the end-
effector remained in contact with the x-sensor as well. The results for these experiments are
shown in figures 4.21 and 4.22. Although it cannot be guaranteed that the effects of friction
were removed, the estimates of the x-forces seem to have improved slightly.
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Figure 4.19: End-effector pushed in y-direction without actuator data set 1
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Figure 4.20: End-effector pushed in y-direction without actuator data set 2
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Figure 4.21: End-effector pushed in y-direction without actuator and contact with both sensors
data 1
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Figure 4.22: End-effector pushed in y-direction without actuator and contact with both sensors
data 2

75



4.4.3 Results: end-effector following a reference path without external forces

In a third round of tests, the end-effector was set to travel along a reference path without any
external forces acting on the system. This data tests the performance of the EKF when both
the actuators and the dynamic behavior of the system play a role, but without the influence of
external forces. The results are shown in figures 4.23 and 4.24. Figure 4.23 shows the results
where the reference path was set to move in a plus-shape in the first ten seconds. Afterward,
the end-effector was instructed to move to and hold multiple different positions for a short time.
Figure 4.24 shows the results where the reference path was set to move in spirals with varying
radius at first. Then, after a brief delay, the end-effector was instructed to move in a circular
path.

The results of these tests are quite satisfactory. The estimation errors mostly lie within a range
of 0.1N . The estimated forces in figure 4.24 have a small offset, which can be recognized at the
times when the system is in its resting position. This is probably caused by a small error in the
calibration of the encoders, since the y-actuator is also inducing a force in its resting position.
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Figure 4.23: End-effector reference-path cross, followed by different positions
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Figure 4.24: End-effector reference-path spirals, followed by circle
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4.4.4 Results: end-effector colliding with sensor on its reference path

In the last round of tests, the end-effector was set to travel along a reference path where it would
collide with the force sensors. The results are shown in figures 4.25 and 4.26.

In figure 4.25, the end-effector started in a deflected position, and was set to collide with the
x-force sensor after a delay. These results show that the forces are also accurately estimated
in x-direction, and similar errors as found before show up in the y-force estimates.

Figure 4.26 shows the results where the end-effector path was set to collide with the y-force
sensor. In this experiment, a small mass was placed on the rail to increase the external force
exerted. The end-effector collides multiple times with the sensor during the measurements,
taking a small step back between each collision. The sensors are able to move in y-direction,
so the end-effector pushes the sensors along the rails during the experiment. The results are
not perfect, but agreeable. Again, similar estimation errors coupled to the y-forces are observed
as before in the x-forces.
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Figure 4.25: End-effector collides with x-force sensor
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Figure 4.26: End-effector collides with y-force sensor

81



4.5 Discussion: 2DOF manipulator experiments

There were some limitations and complications in the testing phase, which will be discussed
next. The force sensors were mounted on a rail, which limited the range of positions in which
the system could be tested while external forces were acting on the system. The rail only allows
the sensors to move in y-direction, so data for the external forces could only be collected when
the end-effector was positioned on the y-axis.
Furthermore, because the force sensors were fixed in a construction on the rails in vertical po-
sition, they could not be calibrated. Comparing the estimated forces to the force data collected,
it was notable that the estimates were exactly a scalar multiple of the force sensor data. It was
assumed that this was caused by incorrect calibration of the force sensors. To fix this, the data
was corrected by scaling it by the inverse of that factor. This seemed plausible, as the estimates
significantly improved for all data sets gathered. Nevertheless, this step does not improve the
reliability of this data. Additionally, it was found that the force sensors had an offset in their
measurements. This was observed in data where there were no forces acting on the sensors.
These offsets have been removed from the measured data as well.
During data collections, it was observed that the force sensors also applied friction forces to
the end-effector tangential to the direction in which they measure. After a force was applied
and removed, the end-effector would ’shoot’ back in direction perpendicular to the force that
was being applied. These friction forces were not be measured by the other sensor, hence they
have a detrimental effect on the validation data.
Another observation that was made is that when the end-effector was nudged slightly from its
nominal position, the system did not revert back to its original position. Two data sets from
which this can be seen are shown in figure 4.27. This occurred despite that there were no
actuator or external forces (intentionally) acting on the system. It is suspected that these offsets
are caused by hysteresis induced by the cables of the sensors and actuators. Although these
external forces may ’correctly’ be estimated by the LKF, they were not included in the validation
data measured by the force sensors.
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Figure 4.27: 2DOF manipulator rest positions after multiple nudges

Finally, the encoders were calibrated multiple times to set the nominal position of the 2DOF
manipulator to zero. This was not done perfectly, however. As a result, some of the encoder
measurements have a slight offset. Where this has occurred, a small error will be introduced in
the external forces estimated by the LKF.
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It is possible that the estimated external forces are more accurate than they appear. Any of the
mentioned uncertainties may have negatively influenced the validation data. For example, the
friction induced by the force sensors is not present in the validation data, but will be estimated by
the LKF. This was illustrated in section 4.4.2, where the estimated external forces were improved
slightly by ensuring contact with both force sensors. As shown in figure 4.27, it is clear that the
system is influenced by hysteresis. Forces caused by hysteresis will also be included in the
estimated external forces, but these are not measured either.

The estimation errors could also have been caused by modelling errors. As was found from
the tests on the double pendulum, differences in the dynamic behavior between the real system
and the model used by the LKF will result in fictitious forces to be estimated. Based on the
shape of the estimation errors, it is suspected that this has occurred in the 2DOF manipulator
tests as well. It is striking that the estimation errors generally are of the same shape as the
external forces and actuator forces applied in perpendicular direction. The dynamic behavior
of the 2DOF manipulator in x- and y-directions is coupled, which can be recognized from figure
4.26 for example. In this experiment, a movement purely in y-direction was accomplished by
applying a force with both actuators. It is possible that the coupling between these forces is not
correctly incorporated in the model. As a result, the ’expected displacement’ caused by these
actuator forces based on the model would not comply with the measured displacement. The
LKF will attribute this difference to a fictitious external force acting on the system, which will lead
to an estimation error. However, it is difficult to determine to what extent the estimation errors
are caused by modelling errors or uncertainties such as friction.

In conclusion, it is difficult to judge the performance of the LKF exactly based on the data gath-
ered with the current setup. The validation data does not include all external forces acting
on the system, which makes it possible that the estimation errors are in actuality smaller than
they appear. The estimation errors could also be caused by modelling errors, but the effects
of modelling errors and uncertainties such as friction cannot be differentiated from the results.
Despite all complications, the estimated external forces seem reasonably accurate. In general,
the magnitude of the estimation errors depend on the magnitudes of the applied actuator and
external forces. The magnitude of the estimation errors were in general within a range of 10%
of the magnitude of these forces.
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5 CONCLUSION

In this report, external force estimation was applied based on linearized Kalman filters (LKF). A
method was derived to set the LKF parameters, and this method was tested based on a double
pendulum model in simulations. The method gave promising results based on tests on a double
pendulum in simulations. In ideal circumstances, the external forces could be estimated very
accurately. It was found that the quality of the results heavily depend on the accuracy of the
model, however. Any difference in the dynamic behavior of the real system and the model used
by the LKF will result in fictitious forces observed in the estimates.

The LKF was subsequently applied to the 2DOF manipulator using the developed method.
Although uncertainties were minimized in the design of the 2DOF manipulator, it was found that
these were not absent in the experiments. The force sensors used to collect validation data
as well as the cables connected to the actuators and encoders exerted (unmeasured) friction
forces. Although these forces will be estimated by the LKF, these were not included in the
validation data. The estimation errors could also have been caused by errors in the model used
by the LKF, but it is difficult to determine to what extent the estimation errors were caused by
undeterministic behavior or modelling errors.

Although the results were influenced by friction and hysteresis, their contributions were small
enough such that the estimation errors were reasonably small. The magnitude of the estimation
errors were dependent on the magnitude of the external and actuator forces applied. In general,
the estimation errors did not exceed a magnitude of 10% of the external and actuator forces.
Since it is likely that the validation data does not include all external forces acting on the 2DOF
manipulator, the performance of the LKF might be better than shown by these experiments.

5.1 Recommendation

From the results in this report, it was difficult to determine to what extent estimation errors were
caused by modelling errors or errors in the validation data. The performance of the LKF could
be judged better if the validation data represents the external forces on the end-effector more
accurately. Main contributions to the errors in the validation data were (unmeasured) friction
forces. Some friction was caused by the cables conntected to the actuators and encoders,
although these effects were already minimized in the design process of the 2DOF manipulator.

A more promising point of improvement is the force sensor setup. The force sensors were set
up such that these could apply a friction force tangential to its surface. This has a detrimental
effect on the validation data, since this force would not be measured. Furthermore, the current
setup limited the extent to which the LKF could be tested. The sensors could move on a rail in
only one direction. As a result, the LKF could only be tested in a limited range of positions of
the 2DOF manipulator.
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A PARTIAL DERIVATIVES OF THE DOUBLE PENDULUM
EQUATIONS OF MOTION

This appendix shows expressions for the partial derivatives of the functions f3 and f4 in (3.21)
with respect to each state xi and input ui. In the derivation of these expressions, the partial
derivative of the denominator of the summation terms in the functions f3 and f4 with respect to
x2 was found as,
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]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x4

−
2
[
m1m2 +m2

2

]
L3
1L2 sin (x2) + 2m2

2L1L
3
2 sin (x2) + 2m2

2L
2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3

(A.12)
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∂f4
∂x4

= − [m1 +m2]L
2
1d2 +m2L

2
2d2 + 2m2L1L2d2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

− 2m2
2L1L

3
2 sin (x2) +m2

2L
2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x3 −
2m2

2L1L
3
2 sin (x2) +m2

2L
2
1L

2
2 sin (2x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

x4

(A.13)

∂f4
∂x5

= − m2L
2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

(A.14)

∂f4
∂x6

=
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

(A.15)

∂f4
∂u1

= − m2L
2
2 +m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

(A.16)

∂f4
∂u2

=
[m1 +m2]L

2
1 +m2L

2
2 + 2m2L1L2 cos (x2)[

m1m2 +m2
2

]
L2
1L

2
2 −m2

2L
2
1L

2
2 cos (x2)

(A.17)
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B ALTERNATIVEDERIVATIONOFTRANSFORMATIONMA-
TRIX

In section 4.2.4, the equations of motion were transformed from the perspective of the inde-
pendent coordinates to the end-effector positions. This was achieved by using the inverse of
a sub-matrix. This inverse needs to be calculated using Matlab’s symbolic toolbox. However,
due to the complexity of the symbolic expressions, Matlab’s symbolic toolbox has difficulties
calculating the inverse. This appendix offers an alternate approach to find the transformation
matrix, where an inverse needs not be calculated.

The goal is to find the transformation matrix that reflects the forces on the independent coordi-
nates q to the end-effector position xeff . This can be achieved by defining the kinematic relation
of the independent coordinates expressed in terms of the positions of the end-effector as

q = G(xeff ) ,

q̇ = G,xeff
ẋeff .

(B.1)

The forces can be transformed by applying the Jacobian as

Feff = GT
,xeff

Fq. (B.2)

The geometric transfer function G(xeff ) can be found by defining the triangles shown in figure
B.1.

(a) Triangle x-arm (b) Triangle y-arm

Figure B.1: Triangles defined to determine the geometric transfer function

To find and expression for the geometric transfer function G(xeff ), the angles αi and θeff,i are
required. The angles θeff,i can be found from the end-effector position and the arctangent as
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θeff,x = tan−1

(
y10 − y2
x10 − x2

)
,

θeff,y = tan−1

(
y10 − y1
x10 − x1

)
.

(B.3)

The angles αi can be found using the cosine rule as

αx = cos−1

(
L2
C + L2

sx − L2
D

2LCLsx

)
,

αy = cos−1

(
L2
A + L2

sy − L2
B

2LALsy

)
.

(B.4)

where the lengths Lsx and Lsy can be found as

Lsx =

√
[x10 − x2]

2 + [y10 − y2]
2,

Lsy =

√
[x10 − x1]

2 + [y10 − y1]
2.

(B.5)

An expression for the angles of the lower arms θA and θC as a function of the end-effector
position then be found as

θA = θeff,y − αy,

θC = θeff,x + αx.
(B.6)

Finally, an expression for the encoder positions is derived by rewriting equation 4.9 as

xenc = renc [θC,nom − θC ] ,

yenc = renc [θA − θA,nom] ,
(B.7)

which gives an expression for the geometric transfer function G(xeff ). The transformation ma-
trix G,xeff

can be found using Matlab’s symbolic toolbox.
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C VALIDATION OF MODELLING METHOD APPLIED ON
2DOF MANIPULATOR

The process of deriving a model for the 2DOF manipulator using Matlab’s symbolic toolbox
can be validated using the double pendulum model. State-space matrices for the double pen-
dulum derived analytically are already available. To test the modelling process used on the
2DOF manipulator in chapter 4, the same process can be repeated on the double pendulum
and compared to the analytically derived state-space matrices. Applying the parameter values
described in section 3.5 to the analytically derived state-space matrices (3.24) gives

Alin =



0 0 1 0 0 0
0 0 0 1 0 0

−399 1287 −0.4 0.8 3920 −9147
931 4611 0.9 −3 −9147 32761
0 0 0 0 0 0
0 0 0 0 0 0

 , Blin =



0 0
0 0

3920 −9147
−9147 32761

0 0
0 0

 . (C.1)

Then, an alternative set of state-space matrices can be derived by applying the process de-
scribed in chapter 4. The equations of motion of the double pendulum (3.7) are defined in
Matlab using its symbolic toolbox. These symbolic expressions are then linearized as in sec-
tion 4.2.6, and converted to a (continuous-time) state-space system as in section 4.2.7. The
resulting state-space matrices can be compared to the analytically derived state-space matrices
(C.1) by subtracting as

∆A = Alin −Aalt,

∆B = Blin −Balt.
(C.2)

with∆A and∆B the difference between the state-space matrices, andAalt andBalt the state-
space matrices derived using Matlab’s symbolic toolbox.

The differences between these state-space matrices become

∆A = 10−12 ·



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −0.0001 0 0 0

0.1137 0 −0.0001 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , ∆B =



0 0
0 0
0 0
0 0
0 0
0 0

 . (C.3)

Given the order of magnitude of the elements shown in (C.1), these differences are insignificant.
This indicates that the methods used in chapter 4 to derive a model for the 2DOF manipulator
are valid.

93


