

MASTER THESIS

EXTRACTING UNSEEN

CLASSES FROM CAPSULE

NETWORK FEATURE

SPACE

Floor Couwenberg

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF BIOMECHANICAL ENGINEERING

EXAMINATION COMMITTEE

DR. E.H.F. VAN ASSELDONK
DR.IR. M. VLUTTERS
DR.IR. D.C. MOCANU

DOCUMENT NUMBER

 BE - 849

11-04-2022

i

ACKNOWLEDGEMENTS

I have many people to thank for my graduation. Firstly, many thanks my daily supervisor Mark

Vlutters for the support during this thesis, for having us team up at the new lab and for our

philosophical talks that I enjoyed a lot. Thank you to Edwin van Asseldonk for providing your

time as committee chair and the necessary feedback on my process and report. Similarly, I

would like to thank Decebal Mocanu for joining the committee and providing valuable insight

during the beginning of the thesis. And academics-wise, lastly I want to thank Ghada Sokar for

helping me start my research into incremental learning.

Naturally, thank you to my partner Jaap who was instrumental in helping me through some

rough times and who continues to love me still. To my family for always supporting me, special

thanks to my dad for having many long, fun and informative talks with me about this subject

and my brother for being so kind as to proofread everything.

Lastly, I want to thank some friends. Michelle, for sparring with me and helping me with the

visualisation. Laura, for coming over and studying (and relaxing) together with me, you’re

definitely responsible for some of my most productive days. Rosalyn, for our frequent music

quiz breaks during our online work sessions. Anouk, also for sparring with me and helping me

to not feel crazy sometimes. Also thanks to Steyn, my study friends, and my housemates from

La Vache Aviante. Finally, thanks to everyone who I have not named but has been there for me.

ii

TABLE OF CONTENTS

Acknowledgements i

1. General Introduction 1

2. Research Paper 3

1. Introduction 4

2. Materials & Methods 7

3. Results 13

4. Discussion 21

5. Conclusion and Recommendations 24

References 26

3. General Discussion and Conclusion 28

General References 29

Appendices 30

1

1. GENERAL INTRODUCTION

Healthcare professionals are in short supply, a shortage that will continue to increase in the

coming years [1]. A part of the solution for this problem might be found in autonomous

robotics, by having a robot shouldering some of the care providers’ diverse workload.

Unfortunately, the current robotic systems are not yet autonomous enough to function in

such an environment with a diverse set of tasks. Working in an environment with varying

tasks demands knowing about and being able to identify a wide range of objects in the robot’s

surroundings, what they look like and e.g. how heavy they are.

While robots are not yet able to know about every object or task, deep learning (DL)

techniques have at the very least provided a stepping stone to autonomy using either vision

or another sensory input to obtain information. Deep learning refers to a type of learning by a

computational model or network that incorporates multiple layers of ‘neurons’ to extract

features of the input that it gets presented with. This is mostly done by using convolutional

layers, where the input image is convoluted on pixel-level with certain kernels, revealing for

example all edges in the y-direction. The connections between all the layers are weighted, and

those weights get updated after every run through the network, called backpropagation. This

method is a way of machine learning that most approaches the way humans learn and has

provided promising results in fields such as computer vision, natural language processing

and object recognition. [2][3]

A subfield of DL is incremental learning, which is what robots will need in order to function

autonomously in any environment. Incremental learning can enable a robot to learn new

information on the job, which eliminates the problem of having to teach the robot every

possible thing beforehand. However, incremental learning approaches have so far been

unsatisfactory for a real-world robotic application and continue to suffer from a problem

called catastrophic forgetting. For every new task the network learns, it forgets part of the

old tasks and performance therefore decreases over time. This happens because the weights

between the layers are adapted for every new piece of information that is taught to the

network, an adaptation that is often not beneficial for the previous information. [4-6]

Another issue autonomous robots or any applied neural network suffers from is

generalization in computer vision. Currently, deep learning approaches have not been able to

generalize as well as humans do, i.e. learn what one tree looks and be able to recognize all

other trees as being a ‘tree’ as well. This lack of generalization is amongst other things caused

by neural networks being designed to throw away position and orientation information. Since

the network does not know either of those things, it cannot generalize to new points of view

for objects in an image. [7]

The solution to both incremental learning and generalization issues that is proposed in this

work is an approach using capsule networks. This type of network is designed specifically to

keep position and orientation information and generalize to different points of view. The

network consists of several convolutional layers, followed by two capsule layers. These

capsule layers are not so different from the layers of other networks, except that the neurons

are grouped together within several capsules. This grouping allows the network to keep

position and orientation information. [7]

Additionally, the network proposed in this work uses a different algorithm between layers to

form strong parts-to-whole connections, taking into account the orientation of the parts

(features) with respect to the whole (object). This self-attention algorithm ensures that for an

object in an image to be recognized as that object, multiple of the capsules in the layer below

must agree on it being that object. [8]

2

This work furthermore proposes to use a fixed basic network, trained on a wide range of

features (i.e. parts) before the weights are fixed. To that end, I assume that by knowing a set

of varied features, any object can be learned from an image by simply combining the features

in a different way than another object. By fixing the basic network, catastrophic forgetting is

ruled out since the weights cannot be adapted anymore. The combining of features into new

objects is be done by a clustering algorithm and combinations can be stored for future

reference. This work aims to provide a proof of concept that any new object might be learned

without changing the network, by learning new combinations of features.

The remainder of this thesis is structured as follows. In chapter two, the paper containing the

methods, results and a discussion of the conducted research is presented. Chapter three

provides a general discussion of this work. Lastly, additional figures are provided in the

appendices.

3

2. RESEARCH PAPER

4

EXTRACTING UNSEEN CLASSES FROM CAPSULE NETWORK

FEATURE SPACE

Floor Couwenberg

ABSTRACT

A shortage of healthcare professionals already is the norm, and the shortage will continue to

increase even more in the next years. Autonomous robotics might be able to provide some

relief for these professionals and our healthcare system. However, robots have not yet been

able to achieve enough autonomy to function in such a setting with many unknowns. It has

not been possible to teach robots everything they might need to know beforehand, prompting

the rise of incremental learning. Incremental learning would allow the robot to learn on the

job and therefore adapt to new situations, but most state-of-the-art methods still suffer from

catastrophic forgetting. In this work, I argue that incremental learning can best be achieved

by learning a broad basis of elements and combining these into new classes.

In this research, two capsule networks are built and investigated: Efficient CapsNet and

Small CapsNet. In order to test the generalizing capabilities and the ability of this type of

network to learn new information, MNIST data is augmented in several ways. The digits in

the images are scaled and translated, a second digit is added to the image and one digit class

is left out of training completely, to be later introduced during inference. Results are

evaluated using test accuracies and losses, T-distributed Stochastic Neighbor Embedding and

K-Means clustering.

The results indicate that Small CapsNet is able to learn a scaling and translation factor, but

cannot yet generalize to data augmentations it has not seen before. In addition, both Efficient

and Small CapsNet show that it is possible to learn a new class, based only on the information

already known from other classes. The results indicate that a broad basis of classes is

necessary, but that as long as the unfamiliar class contains similar elements it should be

possible to combine these separate elements into a new class.

Keywords – Deep Learning, Neural Networks, Incremental Learning, Catastrophic

Forgetting, Capsule Networks

1. INTRODUCTION

By 2030 the Netherlands will be dealing with a shortage of 102.600 care providers, divided

over hospitals, nursing homes, home care, youth care, and social work [1]. While some

solutions include attracting more young professionals to the discipline, another solution

might be found in autonomous robotics.

Autonomous robots could be of added value in the field of healthcare by shouldering some of

the care providers’ diverse workload. Circa 50 percent of care providers in the Netherlands

indicate that they regularly perform physically straining tasks requiring a substantial amount

of strength [2]. Care robots could take over some of this heavy labor, relieving the care

providers.

5

Various robots have already been developed for specific nursing tasks, such as robotic

nursing beds and patient-lifting robots [3]. However, not many advances have been made in

robotic systems that are capable of performing multiple nursing tasks (e.g. patient-lifting and

carrying equipment), let alone systems capable of learning new tasks on the job.

For such a robot to be able to perform multiple tasks and even learn new ones, it needs to be

able to deal with different unknowns. It needs to know about a wide range of objects, e.g.

what they look like, what shape and weight they have. Next to that, it must be able to identify

the objects from different viewpoints. Since it is not (yet) possible to teach a robot about

every object in every situation beforehand, the robot will need to learn incrementally about

objects and semantics in the field.

Vision is an important part of this problem since humans obtain most of their information

about objects from what it looks like. As such, it makes sense that a robotic system must be

capable of identifying objects based on vision. Within the field of machine learning, various

solutions have been proposed to this image classification problem. With the rise of deep

learning (DL) advancements in classification accuracy have been made [4, 5]. These

improvements are mostly due to DL methods being able to learn features when provided with

enough data, allowing for a bigger range of features than in conventional machine learning

algorithms [5].

Although DL has provided excellent results on specific classification tasks, there are several

downsides to conventional DL networks. When neural networks learn incrementally, most of

them suffer from catastrophic forgetting. This means that they tend to ‘forget’ some of the

information of the previously learned task. As a result, they can no longer accurately discern

the difference between an image of class A and B when it has learned the second task

consisting of classes C and D. While solving the problem of catastrophic forgetting has been

investigated the last few years and network performance on incremental learning has

increased, no widely adopted solution has been found yet [6-8].

Most current incremental learning solutions try to avoid catastrophic forgetting for example

by storing part of the training data to reuse later [9, 10] or by generating sample images from

old classes using techniques such as generative networks [11, 12]. Both approaches show a

decrease in classification accuracy after more classes are incrementally added and both

require large amounts of data in order to train. In addition, these approaches require the

entire model to be retrained for every new class, something that is undesirable for a robot in

the field.

Other incremental learning approaches [13, 14] therefore include memories only consisting

of learned features and try to incorporate few-shot learning to limit the amount of training

data needed. These cases also show deterioration of the accuracy between increments.

Furthermore, it is unknown how well these methods generalize to new objects in completely

different surroundings or from different points of view.

Most of these current incremental learning approaches use some form of Convolutional

Neural Networks (CNNs) or another similar type of network that uses an operation called

pooling [15]. Networks with a pooling operation look at features, or clusters of active pixels,

and their orientations with respect to the image frame, which makes them inherently bad at

generalization outside of the seen training data [16-18]. This can be attributed to the pooling

layer, where clusters of neurons in one layer are combined into one neuron in the layer above

[19]. While this pooling reduces the network size, it also makes the network invariant to the

locations of the features. As a result, these networks merely encode whether a certain feature

exists (anywhere) in the image and lose the information about the relation between different

features [16]. Whereas in some cases this invariance is preferable, it gives rise to incidents

6

such as recognizing a Picasso as a human face, even though the proportions and locations of

features such as the eyes and nose are all wrong. This makes these networks inherently bad at

seeing Picasso’s paintings, or any object that contains similar features to a previously learned

object, as a separate class.

A network type capable of keeping orientation and position information is a capsule network

[16]. This type of network has no pooling layers but instead combines the learned features

into capsules of multiple dimensions. The output of these capsules is therefore a vector

instead of a scalar, keeping the orientation and position information. The operation between

capsule layers ensures that the network learns the relative orientations of features with

respect to each other, instead of the image frame. By learning the relation between feature

orientations, the network becomes viewpoint invariant.

In [16], it is argued that capsules aid in the generalizing capability of a neural network by

encoding properties of each class in the dimensions of the capsules. By perturbing the capsule

dimensions individually, they showed dimensions encoding for scale, thickness, translation,

and more with the MNIST dataset [20]. These properties were learned by the network even

when it was only trained with 2-pixel translations.

While the Capsule Network is promising, it is computationally expensive due to the specific

routing operation between the capsule layers [16, 21]. The implementation of capsule

networks used in [22] builds on this work and reduces the number of parameters of the

network by performing a depthwise convolution and a self-attention routing instead of a

dynamic routing between capsule layers. This network architecture makes it less

computationally expensive.

Using a capsule network, features and their orientation can be learned and combined into

higher-level concepts. Humans are good at generalizing to new objects because most of them

exist of features that we have already seen. Simply learning the new configuration of features

allows us to discriminate the object as a new class. I argue that the same can be done for

machine learning. By learning a wide enough range of basic features using deep learning, new

image classes can be added by learning a new configuration of the basic features.

The advantage of this approach is that the neural network can be frozen after initial training

of basic features and combinations of these features may be saved in a database as the object

classes. Similar to [13], the network is only used to extract features from a new image, after

which the feature vector is used to create a new class or match the image to an existing class

in the database. Using this method eliminates the problem of catastrophic forgetting and

allows for incremental learning by adding new classes to the database.

This work aims to provide a proof of concept for incremental learning, using capsule

networks to obtain information about MNIST [20] digit images. To this end, the generalizing

capabilities of the network as implemented in [22] are investigated using several different

augmented datasets. Furthermore, a smaller network is proposed and evaluated since such a

relatively simple database is used. A smaller network might encode different information in

the capsule dimensions than a complex network.

This paper is structured as follows. First, the network structures and experimental settings

are described in section 2. The experimental results are presented in section 3, followed by a

discussion of the findings in section 4. Finally, conclusions are drawn based on this work and

future recommendations are made in section 5.

7

2. MATERIALS & METHODS
2.1 STANDARD NETWORK ARCHITECTURE

The basic network in this study, Efficient CapsNet, is comprised of four convolutional layers,

a primary capsule layer and a digit capsule layer as specified in table 1 and illustrated in

figure 1. The four convolutional layers are responsible for finding the features in the images

and the depthwise convolutional layer assigns the high-dimensional features into capsules.

The primary capsule layer consists of 16 capsules, the same amount used in [22]. The digit

capsule layer contains one capsule for each class and is formed by self-attention routing as

per [22].

This self-attention routing mechanism follows the idea that the lower-level capsules of the

primary capsule layer combine to form a whole in the digit capsule layer. It is very similar to

a fully-connected layer because all ten digit capsules are a combination of all 16 primary

capsules. However, which primary capsules have the most influence on a digit capsule is

determined by this routing mechanism. Each primary capsule forms a prediction for each

digit capsule, which are then compared to all other primary capsule predictions. If two or

more primary capsules have similar predictions for a digit capsule, they are taken into

account more for that digit capsule than other primary capsules. Each training batch, these

coupling coefficients are combined with probabilities that a specific primary capsule belongs

to a digit capsule. This allows primary capsules and digit capsules to form meaningful

connections.

After the self-attention is done, classification takes place by taking the magnitude of the digit

capsule output vectors ‖𝑣𝑘‖, where 𝑘 is a digit capsule, followed by a Softmax operation.

Figure 1: Schematic representation of Efficient CapsNet, from [22]. The convolutional layers detect
local features and map them to a higher dimensional space. The depthwise convolution allows the
formation of the primary capsules. The digit capsule layer is formed by a self-attention routing
mechanism that correlates the primary capsule vector output to the digit capsules.

8

During training, the digit capsule output is also fed through a simple decoder made up of

ReLU activated fully connected layers to make image reconstructions, in order to compare

them to the original images for the loss function.

Table 1: The network structure for both Efficient CapsNet and Small CapsNet.

Network Convolutional
layers

Fully connected
layers

Primary capsule
layer

Digit capsule
layer

in
_

ch
a

n
n

els

o
u

t_
ch

a
n

n
els

k
ern

el size

strid
e

in
_

fea
tu

res

o
u

t_
fea

tu
res

ca
p

su
les

in
_

ch
a

n
n

els

o
u

t_
ch

a
n

n
els

k
ern

el size

d
im

en
sio

n
s

ca
p

su
les

in
_

ch
a

n
n

els

d
im

en
sio

n
s

Efficient
CapsNet

1
32
64
64

32
64
64
128

5
3
3
3

1
1
1
2

 16 128 8 9 8
10

8

16

Decoder
Efficient
CapsNet

 160
512
1024

512
1024
784

Small
CapsNet

1
32

32
32

5
3

1
2

 8 32 4 11 4
10

4

8

Decoder
Small
CapsNet

 80
512
1024

512
1024
784

For some experiments, the network and decoder structure was adapted slightly to fit the

larger image dimensions. These adaptations mainly were a larger stride or kernel in several

layers. The specifics of this adaptation can be found in the appendix (A.1).

2.2 NETWORK AUGMENTATION

To investigate the influence of the size of the network on generalizability, amount of

convolutional layers and capsule dimensions was reduced. This new network, Small CapsNet,

is comprised of only two convolutional layers, a primary capsule layer and a digit capsule

layer. Both capsule layers contain capsules with half the amount of dimensions as Efficient

CapsNet has and the primary capsule layer only contains eight capsules instead of 16. The

properties of each layer are summarized in table 1.

Similar to Efficient CapsNet, several changes in the network structure had to be made for

some experiments to adapt to larger image dimensions. The network structure for these

experiments can be found in the appendix (A.1).

2.3 DATASETS

Multiple datasets were developed to perform the desired experiments, an overview of these

datasets is available in table 2.

Standard dataset

9

The MNIST dataset used in this research contains 60,000 training and 10,000 test images

[20]. Unless otherwise mentioned, no alterations have been made to this dataset in training

and testing. Images in the dataset are 28 by 28 pixels in size.

Scaling datasets

In order to investigate generalizability of both Efficient CapsNet and Small CapsNet,

experiments on downscaled images were performed. For the scaling experiments a training

set was developed based on the standard dataset with 2400/60000 images downscaled to 20

by 20 pixels. These downscaled images were then zero-padded back to 28 by 28 pixels.

Following that, testing was done on the standard test set and on a scaled test set with only

downscaled digits.

Translation datasets

In addition to scaling, the ability of Efficient CapsNet and Small CapsNet to deal with the

translation of the digits was investigated. MNIST images were zero-padded to make the

images 56 by 56 pixels, which allows the digits to be translated to four corners of the image.

Each of the network types was trained on the left translation dataset (see table 2) and on a

translation dataset with 2400/60000 (1-in-25) or 30000/60000 (half-half) images translated

to the top right image corner.

The left translation dataset in this experiment is the dataset with the 56 by 56 pixel images,

with the digit in the top left corner. The 1-in-25 and half-half dataset images have the digit in

the top right corner (28 pixels to the right) for the amount specified (table 2). The translation

was chosen to be 28 pixels because of the next experiment with two digits in the same image.

Inference was done on either the left translation dataset or the right translation dataset.

The training time differs for the two networks in this experiment, with 50 epochs of training

for Efficient CapsNet and 20 epochs of training for Small CapsNet. Efficient CapsNet was

given more training epochs because preliminary results showed that with only 20 epochs the

network was unable to correctly classify more than 50% of the digit images. In order to

compare the two networks on generalizability, it was chosen to train Efficient CapsNet longer

until a saturation of the classification accuracy was reached.

For this experiment, the adapted network structures were used to fit the larger image

dimensions.

Two-digit dataset

The third experiment introduces a second digit to the networks, in order to investigate

whether the networks would be able to use their class knowledge to create a new class for

two-digit numbers. For this experiment, the networks were trained on the same enlarged

images as in the translation experiment. During inference, the second digit was introduced in

the top right corner of the image.

For this experiment, the adapted network structure of Efficient CapsNet was used to fit the

larger image dimensions. This experiment was not performed with Small CapsNet.

New-digit datasets

Lastly, the networks’ ability to generalize the features they have learned to new objects was

investigated. This was done by leaving either one or multiple digit(s) out of the training

dataset and then introducing that digit during inference in the test dataset. These new-digit

training datasets are named after the digit that was left out (e.g. minus-9).

10

Table 2: Overview of all dataset modifications.

Dataset name Properties Example of modified
image

Standard dataset MNIST images

Scaled training
set

2400/60000 downscaled images

Scaled test set 10000/10000 downscaled images

Left translation
dataset

All images enlarged with digits in the top left corner

Right translation
dataset

All images enlarged with digits in the top right corner

Half-half
translation test
set

5000/10000 images with the digit in the top right
corner, the other images have the digit in the top left
corner

Four-quadrant
translation test
set

2500/10000 images with the digit in the top left corner,
2500 images with the digit top right, 2500 images with
the digit bottom left, 2500 images with the digit bottom
right

1-in-25
translation
training set

2400/60000 images with the digit in the top right
corner, the other images have the digit in the top left
corner

Half-half
translation
training set

30000/60000 images with the digit in the top right
corner, the other images have the digit in the top left
corner

Two-digit test
set

All test images have two digits, one top left and one top
right

New-digit
training sets:
minus-X

All images with digit X are replaced with a randomly
chosen other digit image

11

2.4 TRAINING PROCEDURE

Each training session consists of a number of epochs, in this study networks were mostly

trained for 20 epochs unless mentioned otherwise. During each epoch all 60,000 MNIST

training images are passed through the network in batches of 100. After every batch, the total

loss is calculated and backpropagated through the network to update the weights. This total

loss consists of two parts, a margin loss and a reconstruction loss. The purpose of the margin

loss is to force the capsules to encode information for one digit class only. This loss is

calculated as per [16]:

𝐿𝑚 =∑𝑙𝑘

𝑘

𝑖=1

, 𝑙𝑘 = 𝑇𝑘max(0,𝑚
+ − ‖𝑣𝑘‖)

2 + 𝜆(1 − 𝑇𝑘)max(0, ‖𝑣𝑘‖ − 𝑚−)2

(1)

where 𝑘 stands for each digit capsule and ‖𝑣𝑘‖ represents the magnitude of the output vector

of each capsule of the digit capsule layer. As mentioned before, a large magnitude of a capsule

corresponds to the certainty of that capsule that it is correct. The loss is calculated for each

digit capsule and then summed, with 𝑇𝑘 = 1 if capsule 𝑘 corresponds to the present digit

class. For each capsule that the digit class does not correspond to, the second term starting

from the lambda ensures a higher loss. With 𝑚+ = 0.9 and 𝑚− = 0.1, the loss is tuned to the

certainty of the correct and incorrect capsules. A correct capsule with large magnitude gets a

loss close to zero, while an incorrect capsule with a large magnitude gets a large loss. The 𝜆

factor is set at 0.5 to ensure that the capsules are not faced with a loss too large in the

beginning of training.

In addition to the margin loss, reconstructed images are made by a decoder in order to

compute a reconstruction loss. The output of the digit capsule layer is masked such that only

the output vector of the correct digit capsule is left. The vectors are concatenated, forming an

array of 160 elements with 16 non-zero values (80 and 8 in case of Small CapsNet). This

array is then fed through the decoder through three fully-connected layers, see the

architecture in figure 2.

The output of the sigmoid layer is an image of the same size as the input images were, which

can thus be compared to the original input image. The reconstruction loss is calculated using

a mean squared error loss function:

𝐿𝑟 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

(2)

where 𝑦 is the original image and �̂� the reconstructed image. The images are compared pixel-

wise, with 𝑛 the number of pixels in the image. The reconstruction loss as formulated in

Figure 2: The decoder architecture, schematic from [16].

12

equation 2 is multiplied with a regularization factor of 0.0005 to ensure that the margin loss

is prioritized. The total loss is a sum of the margin loss and the regularized reconstruction

loss.

𝐿 = 𝐿𝑚 + 0.0005𝐿𝑟 (3)

Training configuration

The networks were implemented in the Pytorch framework and the code was adapted from

[22] to merge the self-attention routing of [21] with the capsule network basis of [16]. The

optimizer used was the Adam optimizer. All training was done on a private PC with an Intel®

UHD Graphics 630 GPU and an NVIDIA Quadro P1000 GPU. Unless mentioned otherwise,

networks were trained for 20 epochs.

2.5 EXPERIMENT EVALUATION

The experiments were evaluated using several methods. Prediction matrices were made of

each epoch of the training phase in order to visualize the network’s performance during

training. These matrices were constructed using the network’s predictions and the true image

labels. In addition, test accuracy and the test loss were used as a performance measure. Test

accuracy is defined here as the percentage of correctly classified digits during inference. The

test loss consists of the sum of the margin and reconstruction loss.

Furthermore, the digit capsule dimensions were perturbed individually before the image was

reconstructed, providing insight into the features that the capsules dimensions encode. The

individual dimensions were perturbed with steps of 0.05 in the range of [−0.10, 0.10].

Lastly, the feature space was visualized by first reducing the dimensionality using T-

distributed Stochastic Neighbor Embedding (t-SNE) [23] and then plotting the datapoints in

a 2D graph. It is important to note that each run of the t-SNE algorithm provides a different

mapping of the feature space and therefore can plot the same batch of images differently each

time.

K-Means clustering

For the new-digit experiment specifically, the K-Means algorithm from the Scikit-learn

python package [24] was used to perform clustering. K-Means is an algorithm that iteratively

updates the centroids (center of data clusters) by minimizing the sum of the squared

distances of data points to the centroids.

The network was trained on a minus-X dataset, while inference was done with the standard

dataset but with a batch size of 1000 images. The clustering algorithm was given the

information that there should be ten clusters for all ten digits. Clustering was done directly

on the output of the digit capsule layer, in the high-dimensional feature space. To this end,

the digit capsule output was concatenated to one 160-dimensional vector. Due to the larger

batch size, clustering was performed on a 1000 test set images at the same time.

The evaluation of this method was done using t-SNE figures. After performing K-Means and

having the algorithm assign each image a label, the dataset was visualized using t-SNE. To

compare, another t-SNE figure was made with the true labels of each image. If K-Means has

labelled the same images together that also share their true labels, that means that the

clustering was successful.

13

3. RESULTS
3.1 BASELINE PERFORMANCE

Training on the MNIST database with Efficient CapsNet results in a test accuracy of 98.7%.

This accuracy describes the percentage of images correctly predicted by the network. Figure 3

shows separate clusters for each digit, indicating that the network is able to learn distinctive

features for each digit class. Several digits have been misclassified, mainly digits that are

similar such as the four and the nine.

Additionally, figure 4 shows several digit reconstructions picked at random together with

their true labels. Most of the reconstructions form a clear digit, but some digits have not been

formed correctly. In this case, one of the sevens is of bad quality, possibly because of

misclassification. Notably, within each digit class the reconstructed digits are similar in

shape.

Efficient CapsNet on the standard test set Efficient CapsNet reconstructions

Figure 3: t-SNE mappings of the digit capsule feature space for
Efficient CapsNet using the standard test set. The network was
trained on the standard training set. The colours indicate the
predicted label, while the numbers plotted are the true label.
Datapoints with a black border and red annotation represent
misclassified images.

Figure 4: Reconstructed images of the
test set and their true labels using
Efficient CapsNet trained on the
standard training set.

3.2 PERFORMANCE ON AUGMENTED DATA

Scaling

The performance of Efficient CapsNet on the scaled dataset is reported in table 3. When the

network is trained with the standard dataset and inference is done with the scaled test set,

the accuracy drops and the loss increases compared to the performance for the standard test

set. However, while the overall accuracy is lower for the scaled training set, the drop in

accuracy to the scaled test set becomes smaller. Interestingly, the accuracy is higher for the

scaled test set when the network is not trained on any scaled images, compared to when the

scaled training set is used.

Small CapsNet on the other hand shows a higher accuracy with the scaled training set both

for the standard and scaled test sets. This would indicate that Small CapsNet benefits from

14

having several scaled images in the training set, whereas Efficient CapsNet performs poorer

for it.

Table 3: Scaling experiment accuracies in percentages and losses for Efficient CapsNet and Small CapsNet, after
training and inference on either the standard or scaled training sets.

Training / Test set

Efficient CapsNet Small CapsNet

Accuracy
(%)

Loss Accuracy
(%)

Loss

Standard / Standard 98.70 0.0466 94.18 0.5195

Standard / Scaled 93.02 0.3552 81.33 0.8337

Scaled / Standard 87.58 0.8258 95.07 0.5076

Scaled / Scaled 85.35 0.8725 87.62 0.7717

That Efficient CapsNet has more difficulty training with the scaled training set than the

standard training set is supported by the prediction matrices in figure 5. These matrices show

that the network trained on the scaled dataset has not reached the same classification

accuracy as the network trained on the standard dataset. The network trained on the scaled

training set is uncertain still about digits 1 and 8, confusing them with each other. This

confusion is the cause of the lower accuracies reported in table 3.

Figure 5: Prediction matrices showing the true and predicted labels in the last epoch of
training. Left: Efficient CapsNet trained on the standard training set. Most of the true labels
coincide with the predicted labels. Right: Efficient CapsNet trained on the scaled training set.

In addition to Small CapsNet showing an increase in accuracy when trained on the scaled

training set, it also shows a scaling factor in the reconstructed images (figure 6). Efficient

CapsNet does not show any scaling when the capsule dimensions are perturbed. These

reconstructions indicate that Small CapsNet learns some scaling parameter when trained

with the scaled training set, which might be why the accuracy is better than for Efficient

CapsNet. However, it should be noted that not every digit reconstructed using Small CapsNet

shows this scaling factor (see A.2).

15

 Efficient CapsNet Small CapsNet

Figure 6: Reconstructions of a digit image during inference, using networks
trained on the scaled training set. Each capsule dimension is perturbed
individually (-0.10, -0.05, 0, +0.05, +0.10). Left: Efficient CapsNet. Right:
Small CapsNet. The red box indicates a dimension where the scaling factor is
visible.

Translation

Table 4 reports the accuracies and losses for the translation experiments, with the training

sets being the 1-in-25 and the half-half training sets. Similar to the scaling experiment,

Efficient CapsNet’s accuracies drop and losses increase when more augmented images are

used in the training dataset (half-half). This phenomenon further supports the notion that

Efficient CapsNet does not benefit from seeing more augmented images in the training set.

The accuracies reported in table 4 for Small CapsNet are noticeably higher than for Efficient

CapsNet, and the losses are lower. Small CapsNet especially shows a better performance than

Efficient CapsNet on the half-half training set.

D
im

en
si

o
n

s

Perturbations

Perturbations

16

Table 4: Accuracies and losses for the translation experiments with Efficient CapsNet and Small CapsNet
trained on either the 1-in-25 or the half-half translation training sets, resp.

Training / Test set

Efficient CapsNet Small CapsNet

Accuracy
(%)

Loss Accuracy
(%)

Loss

1-in-25/ Left 96.80 0.9442 98.22 0.0371

1-in-25/ Right 92.82 0.8712 97.07 0.0850

Half-half / Left 89.91 0.8481 98.08 0.0322

Half-half / Right 81.89 1.2525 98.23 0.0299

The t-SNE mappings for Efficient CapsNet in figure 7 clearly show two separate groups for

each digit position. Nevertheless, the predicted labels show that the network classifies the top

left digits in the same class as their corresponding top right digits. While there are more

misclassified digits that with the standard test set, the distance in the feature space does not

prevent the network from still recognizing the digits as the same.

However, the separation of the digit clusters within the groups is not as clear as for the

standard test set, indicating that the network sees less differentiating features within the

groups (positions). Additionally, when trained on the half-half training set, the network is not

able to separate the digit clusters within the groups as clearly as when it is trained on the 1-

in-25 training set. This is in accordance with the reported accuracies in table 4 that are lower

for the half-half training set.

Efficient CapsNet trained on the 1-in-25 set Efficient CapsNet trained on the half-half set

Figure 7: t-SNE mappings of the digit capsule feature space for Efficient CapsNet using the half-half
translation test set. Colours represent the predicted label, while the annotation represents the true label.
Datapoints with a black border and red annotation represent misclassified images. Left: Trained on the 1-in-
25 training set. Right: Trained on the half-half training set.

However, while Efficient CapsNet exhibits two separate groups after being trained on

translated images, Small CapsNet does not. Figure 8 illustrates that Small CapsNet groups

the top-positioned digits together when trained on the 1-in-25 training set. Notably, there are

two different clusters for most digits, but they are not in separate groups as with Efficient

CapsNet. It is interesting that some digit classes do not get divided over two clusters, such as

the nines and the ones in this example.

17

Small CapsNet inference on half-half set Small CapsNet inference on four-quadrant set

Figure 8: t-SNE mappings of the digit capsule feature space for Small CapsNet after training on the 1-in-25
translation training set. Datapoints with a black border and red annotation represent misclassified images.
Left: Inference with the half-half translation test set. Right: Inference with the four-quadrant test set.

When inference is done with the four-quadrant test set with Small CapsNet, a separate

groups do form. Presumably, one group is for the top left and top right digits, one for the

bottom right digits, and one for the bottom left digits. The formation of additional groups

with the four-quadrant test set indicates that Small CapsNet does not generalize to

translations other than what it has seen during training. Additionally, most of the digits in

either of the untrained positions are misclassified.

Lastly, the capsule dimensions after perturbation are shown in figure 9. The reconstructions

made with Efficient CapsNet do not show any noticeable differences compared to

reconstructions in other experiments. The digit is always depicted in the same corner and

some effect of the perturbation can be seen regarding thickness and shape of the digit. The

position of the digit in the reconstruction does change with the test image. It should also be

noted that some of the reconstructions for the translated digits were empty, or of very poor

quality.

On the contrary, the reconstructions made with Small CapsNet indicate that in multiple

dimensions a translation factor is encoded. In the example shown in figure 9, five out of eight

dimensions show a clear translation corresponding to a perturbation. The middle image

shows the digit divided over the two positions, and depending on the perturbation the digit

shifts to either the top left or top right position.

18

Figure 9: Reconstructions of perturbed dimensions of digit images after training both networks on the
half-half translation training set and running inference with the half-half translation test set. Each row of
images represents a digit capsule dimension. Each column corresponds to a perturbation value
(−0.10,−0.05, 0, 0.05, 0.10). Left: Efficient CapsNet with digit nine. Right: Small CapsNet with digit three.

Two-digits

Similar to the translated images, the two-digit images form their own separate group in the

feature space, see figure 10. As with the translated images, this indicates that Efficient

CapsNet understands that these two-digit images are different. However, within the two-digit

group there is no definite separation such as in the standard dataset. Some of the images are

clustered based on either the first or last digit, suggesting that the network does find some

similar features.

Efficient CapsNet inference on partly two-digit dataset Efficient CapsNet inference on only two-digit dataset

Figure 10: t-SNE mapping of the digit capsule feature space using Efficient CapsNet trained on the half-half
translation dataset. Left: Inference is done with 25 of 100 being two-digit images. Two digit images are
coloured bright green to contrast the one-digit images. Right: Inference is done with only two-digit images.
The colour represents the true label of the first digit.

19

New-digit

Figure 11 shows the results of the new-digit experiment, with Efficient CapsNet either

trained on a minus-9 or minus-5 training set. For both datasets, a separate cluster for the

left-out digit can be seen with the ground truth labels in column A. Not all nine and five digit

images are mapped into that cluster however, as there are outliers mapped near to other digit

clusters.

Column B in figure 11 shows that the K-Means algorithm has given most of the images within

the new-digit cluster the same label and therefore managed to find the new-digit cluster

correctly, although the outliers are not accounted for. Examples where K-Means has not been

able to find the new-digit cluster correctly can be found in A.3. Furthermore, in this case of

the minus-5 dataset, the three and the eight are inseparable for the clustering method and

become one large cluster attached to the new-digit cluster.

A B C

Figure 11: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after
training Efficient CapsNet on a minus-X training set. Column A shows the mapping with the ground truth
labels. Column B shows the mapping with the labels assigned by K-Means clustering. The colours of the K-
Means labels are not the same as for the ground truth labels, because K-Means randomly initiates clusters
and therefore labels, as such the colours are used to differentiate the clusters only. The large black circles
indicate the cluster of the new digit. Column C shows the prediction matrices of the last epoch in the training
phase. Top: Efficient CapsNet trained on a minus-9 training set, inference with standard test set. Bottom:
Efficient CapsNet trained on a minus-5 training set, inference with the standard test set.

20

That the network is unable to correctly identify a three and an eight is also indicated by the

prediction matrix at the end of training (column C of figure 11). This matrix shows that all

eight digits are misclassified as threes. In case of the experiment with the nine left out, the

prediction matrix shows no such misclassification problems. It should be noted that the

problem with classification of the eight does not happen every time the network is trained on

the minus-5 training set. In other training runs, other digits are harder to learn for the

network, indicating that the initialization of the weights plays a role in which digits are

harder to classify.

Finally, the new-digit experiment was also performed with Small CapsNet. During the

training phase, the network learned to classify digits correctly quicker than Efficient CapsNet.

Most predictions were already aligned with the true labels of the digits after the first epoch.

As a result, there were no cases such as the minus-5 training set on Efficient CapsNet, where

the network had a low classification accuracy after training for any specific digits.

 A B

Figure 12: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after
training Small CapsNet on a minus-X training set. Column A shows the mapping with the true labels. Column
B shows the mapping with the labels assigned by K-Means. The colours of the K-Means labels are not the
same as for the ground truth labels, because K-Means randomly initiates clusters and therefore labels, as
such the colours are used to differentiate the clusters only. The large black circles indicate the cluster of the
new digit. Top: Small CapsNet trained on a minus-9 training set, inference with standard test set. Bottom:
Small CapsNet trained on a minus-4 training set, inference with the standard test set.

21

The minus-9 example in figure 12 is a completely separate cluster from the others.

Interestingly, the cluster of fours with the minus-4 training set is intertwined with the

clusters of nines and sevens respectively. This indicates that the network needs more

information to distinguish a four from a nine or a seven, while this is not necessary for the

minus-9 training set. Separate clusters for the fours, sevens and nines are still found by K-

Means, and the centroids correspond to the middle of the clusters. In some cases for the

minus-4 dataset, a separate cluster cannot be identified by K-Means, see A.4.

The difference between the minus-9 and the minus-4 datasets becomes clear in figure 13. The

mean class probabilities show that most of the time, a four-digit image is classified as a nine

for the minus-4 dataset. However, this is not seen for the nine-digit images, for which the

probabilities are evenly divided between the digit capsules. This suggests that the ninth digit

looks enough like all other digits to not be pulled towards one cluster in the feature space.

Figure 13: Bar charts of the mean class probabilities of the digit capsules. Left: mean probabilities for 94
nine-digit images. The ninth digit was left out of training. Right: mean probabilities for 104 four-digit
images. The ninth digit here is encoded in the fifth capsule and the four was left out of training.

4. DISCUSSION

The results have exposed several important differences between the two networks used in

this study. Efficient CapsNet performs relatively well for most of the augmented datasets, but

mostly produces lower accuracies and higher losses than Small CapsNet. In addition,

Efficient CapsNet shows no indication of learning some scaling or translation characteristics,

whereas Small CapsNet does. The new digit experiment results show that the clustering of a

new digit class is possible, although not perfect. This applies to both Efficient and Small

CapsNet. All of these results and their implications are discussed in more detail in this

section.

As described in the introduction, one of the important factors aiding in incremental learning

is the ability of neural networks to generalize outside of the training data. In general, the

results show that Small CapsNet is better at generalization than Efficient CapsNet. This is

suggested by both the scaling and the translation experiments, where Small CapsNet showed

a scaling and translation factor and Efficient CapsNet did not.

Additionally, where the accuracies and losses did not vary much between training sets for

Small CapsNet, Efficient CapsNet produced lower accuracies and higher losses for more

complex training sets. It is clear that the larger network of the two has more trouble training

when there are more augmented images in the training set, given its lower performance for

the half-half translation training set than the 1-in-25 training set for example. The higher

losses for the augmented test sets could indicate that the network has started to overfit the

22

data and is looking in too much detail at digit characteristics. This could also be why Efficient

CapsNet does not show any scaling or translation factors in the capsule dimensions, even

while the accuracy is still above 80 percent: the network is learning about details for each

digit class, but as a result it does not see encompassing characteristics such as scaling and

translation.

The fact alone that it was necessary with Efficient CapsNet to upscale the number of training

epochs to reach an accuracy above 50 percent for the translation experiment suggests that the

network structure is not working for these datasets. Small CapsNet is fully trained in each

experiment after 20 epochs, without relinquishing its high performance rates. Network

overfitting is a common problem and is also known to affect generalization capabilities [25].

Often this is caused by too many neurons (i.e. nodes) and therefore too many weights that

can be tuned, allowing the network too much room to look at the details.

Where Efficient CapsNet is possibly too complex, Small CapsNet is not. It contains less

primary capsules than digit capsules, forcing the network to more carefully choose the

information it encodes. With the self-attention routing, primary capsules effectively ‘vote’

which of the ten digit capsules correspond with their output. But with only eight primary

capsules, there are simply less votes, meaning that those votes must individually be more

important. In a way, this is similar to the reasoning behind sparsity, where weights are

penalized for being non-zero, forcing the network to use less space to encode the same

amount of information [26, 27]. Since sparsity has been known to improve a network’s

generalizing capabilities, it would not be unreasonable to assume the same for Small

CapsNet’s architecture.

However, while Small CapsNet shows scaling and translation in the digit reconstructions, it

does not yet seem capable of generalizing outside of the training data. The test with the four-

quadrant translation test set illustrates this inability. The two new positions do form separate

groups and show some clustering, but certainly not good enough for classification. The

question rises how many examples of e.g. different positions the network would need before

being able to generalize to any position, for any digit.

Furthermore, not every digit class shows the scaling and translation factors in the capsule

dimensions of Small CapsNet. This indicates that part of the network still looks at the

different scaling possibilities and the two possible digit positions as being separate features

instead of a feature with multiple possibilities. The network seems to see a small digit and a

normal-sized digit, and similarly a left digit and a right digit, instead of a digit that can be

small or normal-sized, and left or right. The reconstructions for the translation experiment of

Efficient CapsNet are more alike these Small CapsNet cases, where the position of the digit is

always the same as in the original image it is reconstructing.

This dependence of the position of the digit on the original image suggests that part of Small

CapsNet and the whole of Efficient CapsNet first look at the position of the digit, before even

determining what the digit class is. On the other hand, the rest of Small CapsNet seems to

first look at what digit class it is and only after that what the digit’s position is. Otherwise the

digit would not be visualized as being divided over the two corners in the reconstruction.

Looking at the position first is more complicated, since then the rest of the digit must still be

identified. In this way, the network must basically learn everything twice for every digit class:

once for the digit translated to the left, and once for the digit translated to the right. This

would explain why the digit clusters are so far apart in the feature space for Efficient

CapsNet, and not for Small CapsNet. For the same reason, it would explain why Efficient

CapsNet needs more training time than Small CapsNet.

23

Both Efficient CapsNet and Small CapsNet do show signs of generalization in the

reconstructed digit images. Most of the reconstructed digits look alike within their classes,

indicating that the network learns a general representation of each digit class. This was not

the case in other capsule network implementations [16, 22], where each digit reconstruction

was more like its original image. The cause of this difference could be the network

architectures, or the value of the reconstruction loss. The low value of this loss ensures that

good reconstructions are not a priority.

Reconstructed images were sometimes empty or of poor quality for translated digits, while

the reconstructions of scaled and standard images were of good quality and identifiable. At

least one issue for the decoder with the translated images is that three-quarters of the image

is zero. Since the reconstruction loss is an MSE loss, the network can easily minimize the loss

by giving every pixel a zero-value. If it does that, already more than three-quarters of the

reconstruction pixels equal the original image pixels, resulting in a low loss. This can be

achieved early on in the training process, practically leaving the network with only the

margin loss to learn the digit features. This could also contribute to the long training time of

Efficient CapsNet.

A second important aspect of incremental learning is being able to learn new classes or

information, naturally. The two-digit experiment does not provide any proof that Efficient

CapsNet might be able to learn two-digit numbers when it already knows all one-digit

numbers. However, this is not surprising considering the fact that the network did not learn

to see the concept of a digit as a whole. It sees edges and corners, groups of active pixels, but

it has not been taught to look at space between entire groups of active pixels. For humans it is

easy to see that there are two objects in the image, but a network is not able to do this without

extra help. An example of a network that is able to localize and classify objects is YOLO [28],

but it was trained to also predict bounding boxes and constrained to predict only one class

per specified grid cell in the image. Efficient CapsNet could probably recognize the two digits

separately if trained with the same specifications as YOLO, but it still would not learn a new

class for each two-digit number.

On the other hand, the new-digit experiment does suggest that a capsule network might be

able to learn new classes incrementally. The results of the experiment show that it is possible

to recognize new digits as being new and different from all the other known classes. Both

networks tested in this work enabled the clustering of the new digit images together in some

cases, though not all.

Additionally, the new-digit images are not separated from the other digits as well as these

other digit clusters are separated from each other. This might be attributed to a number of

reasons, one of them being that K-Means is not very well suited for high-dimensional data

clustering since it works based on Euclidean Distance, and distance starts to mean less and

less with each dimension added [29]. Another explanation could be that the networks have

not been given enough training time, especially Efficient CapsNet. Lastly, K-Means offers a

variety of possible settings that have not been tweaked at all in this work, which could also

result in a better performance.

Similar to the translation experiment, Efficient CapsNet needed more training time with the

new-digit experiment to reach a similar accuracy to Small CapsNet with the standard training

epochs. Even after giving Efficient CapsNet more epochs, it still has trouble correctly

identifying each digit class. This is odd, given the fact that it has one less digit to train. While

it is likely that which digit is harder for the network to classify is dependent on the weight

initialization, it is unlikely that this is also the reason for the network struggling with the

classification in general. Each training run with the minus-5 dataset resulted in classification

issues with other digit classes. It is more likely that this difference compared to the standard

24

dataset has something to do with the missing digit. With a digit class left out of training, the

network simply has less features to use for the recognition of the digit classes.

Interestingly, having less features to use for training does not seem to have an equal effect for

each digit that is left out. When looking at the results for Small CapsNet, it is clear that when

trained on the minus-4 dataset, the clustering is less successful because the four-digit images

are always attached to the nine-digit clusters. However, this is not the case when the roles are

reversed and the nine is left out of training. The nine-digit images do not lie close to the four-

digit clusters in the feature space. This difference is clearly explained in the bar charts, which

strongly indicate that the nine simply shares its features with the other digits and the four

mostly shares features with the nine. This would indicate that a wide range of basic features

is important and also does the job (for the nine). The MNIST dataset clearly does not provide

a wide enough range of features to recognize the four as something separate.

5. CONCLUSION AND RECOMMENDATIONS

This work presents a proof of concept for an incremental learning approach that is based on

capsule networks. The approach consists of a fixed basic network, trained such that it

contains a wide range of features, and a clustering method to combine these features into a

new class or concept. To this end, the generalizing capabilities of the networks were

investigated, and the ability to discern new classes from trained ones.

The scaling and translation experiments have provided valuable insights about the

generalizing capabilities of the two networks Efficient CapsNet and Small CapsNet. Small

CapsNet in particular shows promising results with regards to generalization, with the

presence of scaling and translation factors in the capsule dimension reconstructions. As

expected, Small CapsNet performed better than Efficient CapsNet on this dataset (MNIST),

the latter possibly being too large and overfitting on the data.

Generalizing to new positions or scales or any other slightly changed class characteristic is

necessary to be able to recognize new objects regardless of viewpoint. Ideally, these

characteristics would be universal and encoded in the fixed basic network of the incremental

learning approach. The results have shown that while some classes did seem to contain a

universal translation or scaling factor, not every class did and generalization outside of the

training data was not seen at all. This is a problem that needs solving before this approach

can work on a large scale.

The second part of the approach is to use known features from the fixed network to learn new

classes. The two-digit experiment did not provide proof for this method, mainly because the

networks were not trained to also see separate objects in the same image. Without additional

training procedures, the network will not be able to define a class for a two-digit number.

However, the new-digit experiment did suggest that learning new classes is possible with this

approach. The results revealed that both networks are able to cluster new images, separately

from other classes. The differences between the results for the different minus-X datasets

provide more proof that a wide range of features enables the clustering of new images into a

new class.

In conclusion, the results of this work suggest that having a fixed basic network before

clustering the features into new classes could work as an incremental learning approach. It is

proven that new classes can be discerned from the ones the network has trained on and the

first steps towards generalization have been made.

25

Recommendations

Naturally, there is room for improvement and further research on this specific topic. Several

suggestions are discussed here.

First of all, this research was still limited with respect to dataset variety and augmentation,

leaving room for improvement. More types of data augmentation should also be tested,

including for example a smaller translation. The translation used in this work was relatively

large, which probably made it more difficult for the networks to learn. A smaller translation

might even lead to the networks being able to generalize to other translation directions too.

A question that this work has not answered with regards to the data augmentation is how

many augmented images are actually needed for the network to learn some scaling or

translation parameter? Now, mostly one in 25 training images was augmented, but it might

be more beneficial to have either more or less augmented images.

Another aspect that undoubtedly affects the generalizing capabilities of the networks is the

loss function. As such, a different loss function or even a different approach to the

combination of the reconstruction loss and the margin loss might help the network generalize

better.

The two-digit experiment in this work pointed out that just because a network is able to

extract features and combine them, does not mean that it can understand higher level

concepts without help. While the network might be able to learn new classes, it will still need

help finding objects in images, i.e. segmentation. An approach that might be suitable is one

from [30], where the network is two-part. First, the network identifies the different parts in

order to then assign them to wholes.

As mentioned, K-Means clustering is not well-suited for high-dimensional data, so it would

be beneficial to try out other clustering algorithms. The new-digit experiment results might

improve with dimensionality reduction first or using a different clustering algorithm

altogether. Another benefit of a different algorithm might be that it is not necessary to

provide the number of clusters you’re expecting to see. Hardcoding this number is naturally

not desirable for an autonomous system.

Additionally, the new-digit experiments were only performed with one digit left out of

training, but it is not yet known how this experiment would go if more than one digit is left

out. Would the second new digit also be separate from the first new digit and all other digit

clusters? Answering this question is particularly important, because if the networks are

unable to discern between two different new classes the whole approach does not work.

Admittedly, MNIST might not be the best dataset to test this out with, since it only has ten

classes. Leaving two out already might compromise the wide range of features that the fixed

basic network is supposed to have.

Lastly, both networks were only trained for either 20 or 50 epochs. While the dataset is not

that complicated, it should at least be investigated if this training time is the right one. This

should however be treated carefully because as mentioned networks might start to overfit if

trained too long. Next to the training time, learning rate and the optimizer were also chosen

arbitrarily and could possibly be helpful in tweaking the performance.

26

REFERENCES

1. Ministerie van Volksgezondheid Welzijn en Sport, Nadere toelichting arbeidsmarktprognose.
2020. Available from: https://www.rijksoverheid.nl/ministeries/ministerie-van-
volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-
arbeidsmarktprognose.

2. Centraal Bureau voor Statistiek, Fysieke arbeidsbelasting werknemers; beroep. 2021.
Available from:
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/84435NED/table?ts=1625052796876.

3. Jiang, J., et al., Research progress and prospect of nursing robot. Recent Patents on
Mechanical Engineering, 2018. 11(1): p. 41-57.

4. Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 2012. 25: p. 1097-1105.

5. Alom, M.Z., et al., The history began from alexnet: A comprehensive survey on deep learning
approaches. arXiv preprint arXiv:1803.01164, 2018.

6. van de Ven, G.M. and A. Tolias, Three scenarios for continual learning. ArXiv, 2019.
1904.07734.

7. Ramasesh, V.V., E. Dyer, and M. Raghu, Anatomy of Catastrophic Forgetting: Hidden
Representations and Task Semantics. arXiv e-prints, 2020. 2007.07400.

8. Hadsell, R., et al., Embracing Change: Continual Learning in Deep Neural Networks. Trends in
Cognitive Sciences, 2020. 24(12): p. 1028-1040.

9. Rebuffi, S.-A., et al. icarl: Incremental classifier and representation learning. in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition. 2017.

10. Castro, F.M., et al. End-to-end incremental learning. in Proceedings of the European
conference on computer vision (ECCV). 2018.

11. Xiang, Y., et al. Incremental learning using conditional adversarial networks. in Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2019.

12. Ven, G.M.v.d. and A. Tolias, Generative replay with feedback connections as a general
strategy for continual learning. ArXiv, 2018. abs/1809.10635.

13. Ayub, A. and A.R. Wagner. Tell me what this is: Few-shot incremental object learning by a
robot. in IEEE International Conference on Intelligent Robots and Systems. 2020.

14. Zhang, C., et al. Few-shot incremental learning with continually evolved classifiers. in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

15. Masana, M., et al., Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277, 2020.

16. Sabour, S., N. Frosst, and G.E. Hinton, Dynamic Routing Between Capsules. ArXiv, 2017.
abs/1710.09829.

17. Azulay, A. and Y. Weiss, Why do deep convolutional networks generalize so poorly to small
image transformations? arXiv preprint arXiv:1805.12177, 2018.

18. Engstrom, L., et al., A rotation and a translation suffice: Fooling cnns with simple
transformations. 2018.

19. LeCun, Y., et al., Handwritten digit recognition with a back-propagation network. Advances in
neural information processing systems, 1989. 2.

20. Lecun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 1998. 86(11): p. 2278-2324.

21. Mukhometzianov, R. and J. Carrillo, CapsNet comparative performance evaluation for image
classification. arXiv preprint arXiv:1805.11195, 2018.

22. Mazzia, V., F. Salvetti, and M. Chiaberge, Efficient-CapsNet: Capsule Network with Self-
Attention Routing. arXiv preprint arXiv:2101.12491, 2021.

23. Van der Maaten, L. and G. Hinton, Visualizing data using t-SNE. Journal of machine learning
research, 2008. 9(11).

https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-arbeidsmarktprognose
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-arbeidsmarktprognose
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-arbeidsmarktprognose
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/84435NED/table?ts=1625052796876

27

24. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of machine
Learning research, 2011. 12: p. 2825-2830.

25. Zhang, C., et al., Understanding deep learning (still) requires rethinking generalization.
Commun. ACM, 2021. 64(3): p. 107–115.

26. Ng, A., Sparse autoencoder. CS294A Lecture notes, 2011. 72(2011): p. 1-19.
27. Louizos, C., M. Welling, and D.P. Kingma, Learning sparse neural networks through $ L_0 $

regularization. arXiv preprint arXiv:1712.01312, 2017.
28. Redmon, J., et al. You only look once: Unified, real-time object detection. in Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016.
29. Aggarwal, C.C., A. Hinneburg, and D.A. Keim. On the Surprising Behavior of Distance Metrics

in High Dimensional Space. 2001. Berlin, Heidelberg: Springer Berlin Heidelberg.
30. Kosiorek, A.R., et al., Stacked capsule autoencoders. arXiv preprint arXiv:1906.06818, 2019.

28

3. GENERAL DISCUSSION AND CONCLUSION

The aim of this study was to provide a proof of concept for a novel incremental learning

approach based on a fixed capsule network and a clustering algorithm. The concept rests on

the assumption that with a wide enough range of features, any object can be learned using

different combinations of the fixed features. To investigate whether the concept has merit,

the generalizing capabilities of two capsule networks were investigated, and the ability to

discern new classes from trained ones.

With regards to the networks’ ability to generalize, the results indicate that the smaller

network, Small CapsNet, performs better than the larger network, Efficient CapsNet. On the

augmented scaled and translated datasets, Small CapsNet obtains higher accuracies than

Efficient CapsNet. In addition, it shows a scaling and translation factor in some of the digit

classes, which is expected if a network is to generalize outside of training data. However,

while the scaling and translation factors might attribute to the higher accuracies, it does not

yet allow Small CapsNet to generalize to new scaled or translated images.

The difference in performance between the two networks suggest that a smaller network is

beneficial, while a larger network might be too complex. The larger a network is, the more

space (i.e. neurons) it has to look too much at the details, resulting in a network that is very

capable when used on exactly what it was trained for, but not new information.

Small CapsNet continues to outperform Efficient CapsNet in the new-digit experiment.

Efficient CapsNet needs more than twice the training time of Small CapsNet, even though it is

a larger network and has one digit less to train. This is another indication of the network

simply being too large, since Small CapsNet does not seem to have any problems with

training.

When looking at the incremental learning capabilities of the networks, both show promising

results. The clustering algorithm succeeds in some cases in finding the new-digit images and

is able to keep them separate from the other digits. This suggests that learning about a new

object in an image, using only features of objects the network already knows is possible. How

well different new digits are separated from the old digits also supports the assumption that

the basic network needs to contain a wide enough range of features for it to be able to learn a

new set of features.

In conclusion, this work has shown that having a neural network learn about new objects

using a fixed set of features is possible. Naturally, more research is needed about the best

training datasets for these kinds of experiments, the most ideal network architecture and

clustering algorithms.

29

GENERAL REFERENCES

1. Ministerie van Volksgezondheid Welzijn en Sport, Nadere toelichting arbeidsmarktprognose.
2020. Available from: https://www.rijksoverheid.nl/ministeries/ministerie-van-
volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-
arbeidsmarktprognose.

2. Deng, L. and D. Yu, Deep Learning: Methods and Applications. Foundations and Trends in Signal
Processing, 2014. 7(3–4): p. 199-201.

3. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444.
4. van de Ven, G.M. and A. Tolias, Three scenarios for continual learning. ArXiv, 2019.

1904.07734.
5. Ramasesh, V.V., E. Dyer, and M. Raghu, Anatomy of Catastrophic Forgetting: Hidden

Representations and Task Semantics. arXiv e-prints, 2020. 2007.07400.
6. Hadsell, R., et al., Embracing Change: Continual Learning in Deep Neural Networks. Trends in

Cognitive Sciences, 2020. 24(12): p. 1028-1040.
7. Sabour, S., N. Frosst, and G.E. Hinton, Dynamic Routing Between Capsules. ArXiv, 2017.

abs/1710.09829.
8. Mazzia, V., F. Salvetti, and M. Chiaberge, Efficient-CapsNet: Capsule Network with Self-

Attention Routing. arXiv preprint arXiv:2101.12491, 2021.

https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-arbeidsmarktprognose
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-arbeidsmarktprognose
https://www.rijksoverheid.nl/ministeries/ministerie-van-volksgezondheid-welzijn-en-sport/documenten/publicaties/2020/11/09/nadere-toelichting-arbeidsmarktprognose

30

APPENDICES
A.1 NETWORK STRUCTURES FOR THE LARGER IMAGES

Table 5: The network structure for both Efficient CapsNet and Small CapsNet for the translated image datasets
with 56 by 56 pixels.

Network Convolutional
layers

Fully connected
layers

Primary capsule
layer

Digit capsule
layer

in
_

ch
a

n
n

els

o
u

t_
ch

a
n

n
els

k
ern

el size

strid
e

in
_

fea
tu

res

o
u

t_
fea

tu
res

ca
p

su
les

in
_

ch
a

n
n

els

o
u

t_
ch

a
n

n
els

k
ern

el size

d
im

en
sio

n
s

ca
p

su
les

in
_

ch
a

n
n

els

d
im

en
sio

n
s

Efficient
CapsNet

1
32
64
64

32
64
64
128

5
3
3
3

1
1
2
2

 16 128 8 11 8
10

8

16

Decoder
Efficient
CapsNet

 160
512
1024

512
1024
3136

Small
CapsNet

1
32
32

32
32
32

5
3
3

1
2
2

 8 32 4 12 4
10

4

8

Decoder
Small
CapsNet

 80
512
1024

512
1024
3136

31

A.2 SCALING FACTOR SMALL CAPSNET

As mentioned in the results, not all digit classes show a scaling factor when Small CapsNet is

trained on the scaled training set. Figure 14 gives several examples of classes where no

scaling factor is visible.

Figure 14: Reconstructions of digit images during inference, using Small CapsNet trained on the scaled training
set. Each row represents a capsule dimension. Each column corresponds to a perturbation value (-0.10, -0.05, 0,
+0.05, +0.10).

32

A.3 ADDITIONAL NEW-DIGIT FIGURES FOR EFFICIENT CAPSNET

For some batches of the new-digit experiment, the clustering did not go successfully, as

shown in figure 15. In these cases, the K-Means algorithm was unable to identify the new-

digit images separately from the rest.

Figure 15: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after training
Efficient CapsNet on a minus-X training set. All four images are examples of new-digit cases where K-Means
has not been able to label the new-digit images together.

33

A.4 ADDITIONAL NEW-DIGIT FIGURES FOR SMALL CAPSNET

For some batches of the new-digit experiment, the clustering did not go successfully for Small

CapsNet either, as shown in figure 16. In these cases, the K-Means algorithm was unable to

identify the new-digit images separately from the rest.

Figure 16: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after training
Small CapsNet on a minus-X training set. The two images are examples of new-digit cases where K-Means has
not been able to label the new-digit images together.

