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1. GENERAL INTRODUCTION 

Healthcare professionals are in short supply, a shortage that will continue to increase in the 

coming years [1]. A part of the solution for this problem might be found in autonomous 

robotics, by having a robot shouldering some of the care providers’ diverse workload. 

Unfortunately, the current robotic systems are not yet autonomous enough to function in 

such an environment with a diverse set of tasks. Working in an environment with varying 

tasks demands knowing about and being able to identify a wide range of objects in the robot’s 

surroundings, what they look like and e.g. how heavy they are.  

While robots are not yet able to know about every object or task, deep learning (DL) 

techniques have at the very least provided a stepping stone to autonomy using either vision 

or another sensory input to obtain information. Deep learning refers to a type of learning by a 

computational model or network that incorporates multiple layers of ‘neurons’ to extract 

features of the input that it gets presented with. This is mostly done by using convolutional 

layers, where the input image is convoluted on pixel-level with certain kernels, revealing for 

example all edges in the y-direction. The connections between all the layers are weighted, and 

those weights get updated after every run through the network, called backpropagation. This 

method is a way of machine learning that most approaches the way humans learn and has 

provided promising results in fields such as computer vision, natural language processing 

and object recognition. [2][3] 

A subfield of DL is incremental learning, which is what robots will need in order to function 

autonomously in any environment. Incremental learning can enable a robot to learn new 

information on the job, which eliminates the problem of having to teach the robot every 

possible thing beforehand. However, incremental learning approaches have so far been 

unsatisfactory for a real-world robotic application and continue to suffer from a problem 

called catastrophic forgetting. For every new task the network learns, it forgets part of the 

old tasks and performance therefore decreases over time. This happens because the weights 

between the layers are adapted for every new piece of information that is taught to the 

network, an adaptation that is often not beneficial for the previous information. [4-6] 

Another issue autonomous robots or any applied neural network suffers from is 

generalization in computer vision. Currently, deep learning approaches have not been able to 

generalize as well as humans do, i.e. learn what one tree looks and be able to recognize all 

other trees as being a ‘tree’ as well. This lack of generalization is amongst other things caused 

by neural networks being designed to throw away position and orientation information. Since 

the network does not know either of those things, it cannot generalize to new points of view 

for objects in an image. [7] 

The solution to both incremental learning and generalization issues that is proposed in this 

work is an approach using capsule networks. This type of network is designed specifically to 

keep position and orientation information and generalize to different points of view. The 

network consists of several convolutional layers, followed by two capsule layers. These 

capsule layers are not so different from the layers of other networks, except that the neurons 

are grouped together within several capsules. This grouping allows the network to keep 

position and orientation information. [7] 

Additionally, the network proposed in this work uses a different algorithm between layers to 

form strong parts-to-whole connections, taking into account the orientation of the parts 

(features) with respect to the whole (object). This self-attention algorithm ensures that for an 

object in an image to be recognized as that object, multiple of the capsules in the layer below 

must agree on it being that object. [8] 
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This work furthermore proposes to use a fixed basic network, trained on a wide range of 

features (i.e. parts) before the weights are fixed. To that end, I assume that by knowing a set 

of varied features, any object can be learned from an image by simply combining the features 

in a different way than another object. By fixing the basic network, catastrophic forgetting is 

ruled out since the weights cannot be adapted anymore. The combining of features into new 

objects is be done by a clustering algorithm and combinations can be stored for future 

reference. This work aims to provide a proof of concept that any new object might be learned 

without changing the network, by learning new combinations of features.  

The remainder of this thesis is structured as follows. In chapter two, the paper containing the 

methods, results and a discussion of the conducted research is presented. Chapter three 

provides a general discussion of this work. Lastly, additional figures are provided in the 

appendices.  
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EXTRACTING UNSEEN CLASSES FROM CAPSULE NETWORK 

FEATURE SPACE 

 

Floor Couwenberg 

 

ABSTRACT 

A shortage of healthcare professionals already is the norm, and the shortage will continue to 

increase even more in the next years. Autonomous robotics might be able to provide some 

relief for these professionals and our healthcare system. However, robots have not yet been 

able to achieve enough autonomy to function in such a setting with many unknowns. It has 

not been possible to teach robots everything they might need to know beforehand, prompting 

the rise of incremental learning. Incremental learning would allow the robot to learn on the 

job and therefore adapt to new situations, but most state-of-the-art methods still suffer from 

catastrophic forgetting. In this work, I argue that incremental learning can best be achieved 

by learning a broad basis of elements and combining these into new classes. 

In this research, two capsule networks are built and investigated: Efficient CapsNet and 

Small CapsNet. In order to test the generalizing capabilities and the ability of this type of 

network to learn new information, MNIST data is augmented in several ways. The digits in 

the images are scaled and translated, a second digit is added to the image and one digit class 

is left out of training completely, to be later introduced during inference. Results are 

evaluated using test accuracies and losses, T-distributed Stochastic Neighbor Embedding and 

K-Means clustering.  

The results indicate that Small CapsNet is able to learn a scaling and translation factor, but 

cannot yet generalize to data augmentations it has not seen before. In addition, both Efficient 

and Small CapsNet show that it is possible to learn a new class, based only on the information 

already known from other classes. The results indicate that a broad basis of classes is 

necessary, but that as long as the unfamiliar class contains similar elements it should be 

possible to combine these separate elements into a new class.  

Keywords – Deep Learning, Neural Networks, Incremental Learning, Catastrophic 

Forgetting, Capsule Networks 

 

1. INTRODUCTION 

By 2030 the Netherlands will be dealing with a shortage of 102.600 care providers, divided 

over hospitals, nursing homes, home care, youth care, and social work [1]. While some 

solutions include attracting more young professionals to the discipline, another solution 

might be found in autonomous robotics.  

Autonomous robots could be of added value in the field of healthcare by shouldering some of 

the care providers’ diverse workload. Circa 50 percent of care providers in the Netherlands 

indicate that they regularly perform physically straining tasks requiring a substantial amount 

of strength [2]. Care robots could take over some of this heavy labor, relieving the care 

providers. 
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Various robots have already been developed for specific nursing tasks, such as robotic 

nursing beds and patient-lifting robots [3]. However, not many advances have been made in 

robotic systems that are capable of performing multiple nursing tasks (e.g. patient-lifting and 

carrying equipment), let alone systems capable of learning new tasks on the job.  

For such a robot to be able to perform multiple tasks and even learn new ones, it needs to be 

able to deal with different unknowns. It needs to know about a wide range of objects, e.g. 

what they look like, what shape and weight they have. Next to that, it must be able to identify 

the objects from different viewpoints. Since it is not (yet) possible to teach a robot about 

every object in every situation beforehand, the robot will need to learn incrementally about 

objects and semantics in the field. 

Vision is an important part of this problem since humans obtain most of their information 

about objects from what it looks like. As such, it makes sense that a robotic system must be 

capable of identifying objects based on vision. Within the field of machine learning, various 

solutions have been proposed to this image classification problem. With the rise of deep 

learning (DL) advancements in classification accuracy have been made [4, 5]. These 

improvements are mostly due to DL methods being able to learn features when provided with 

enough data, allowing for a bigger range of features than in conventional machine learning 

algorithms [5]. 

Although DL has provided excellent results on specific classification tasks, there are several 

downsides to conventional DL networks. When neural networks learn incrementally, most of 

them suffer from catastrophic forgetting. This means that they tend to ‘forget’ some of the 

information of the previously learned task. As a result, they can no longer accurately discern 

the difference between an image of class A and B when it has learned the second task 

consisting of classes C and D. While solving the problem of catastrophic forgetting has been 

investigated the last few years and network performance on incremental learning has 

increased, no widely adopted solution has been found yet [6-8]. 

Most current incremental learning solutions try to avoid catastrophic forgetting for example 

by storing part of the training data to reuse later [9, 10] or by generating sample images from 

old classes using techniques such as generative networks [11, 12]. Both approaches show a 

decrease in classification accuracy after more classes are incrementally added and both 

require large amounts of data in order to train. In addition, these approaches require the 

entire model to be retrained for every new class, something that is undesirable for a robot in 

the field. 

Other incremental learning approaches [13, 14] therefore include memories only consisting 

of learned features and try to incorporate few-shot learning to limit the amount of training 

data needed. These cases also show deterioration of the accuracy between increments. 

Furthermore, it is unknown how well these methods generalize to new objects in completely 

different surroundings or from different points of view. 

Most of these current incremental learning approaches use some form of Convolutional 

Neural Networks (CNNs) or another similar type of network that uses an operation called 

pooling [15]. Networks with a pooling operation look at features, or clusters of active pixels, 

and their orientations with respect to the image frame, which makes them inherently bad at 

generalization outside of the seen training data [16-18]. This can be attributed to the pooling 

layer, where clusters of neurons in one layer are combined into one neuron in the layer above 

[19]. While this pooling reduces the network size, it also makes the network invariant to the 

locations of the features. As a result, these networks merely encode whether a certain feature 

exists (anywhere) in the image and lose the information about the relation between different 

features [16]. Whereas in some cases this invariance is preferable, it gives rise to incidents 
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such as recognizing a Picasso as a human face, even though the proportions and locations of 

features such as the eyes and nose are all wrong. This makes these networks inherently bad at 

seeing Picasso’s paintings, or any object that contains similar features to a previously learned 

object, as a separate class.  

A network type capable of keeping orientation and position information is a capsule network 

[16]. This type of network has no pooling layers but instead combines the learned features 

into capsules of multiple dimensions. The output of these capsules is therefore a vector 

instead of a scalar, keeping the orientation and position information. The operation between 

capsule layers ensures that the network learns the relative orientations of features with 

respect to each other, instead of the image frame. By learning the relation between feature 

orientations, the network becomes viewpoint invariant.  

In [16], it is argued that capsules aid in the generalizing capability of a neural network by 

encoding properties of each class in the dimensions of the capsules. By perturbing the capsule 

dimensions individually, they showed dimensions encoding for scale, thickness, translation, 

and more with the MNIST dataset [20]. These properties were learned by the network even 

when it was only trained with 2-pixel translations.  

While the Capsule Network is promising, it is computationally expensive due to the specific 

routing operation between the capsule layers [16, 21]. The implementation of capsule 

networks used in [22] builds on this work and reduces the number of parameters of the 

network by performing a depthwise convolution and a self-attention routing instead of a 

dynamic routing between capsule layers. This network architecture makes it less 

computationally expensive. 

Using a capsule network, features and their orientation can be learned and combined into 

higher-level concepts. Humans are good at generalizing to new objects because most of them 

exist of features that we have already seen. Simply learning the new configuration of features 

allows us to discriminate the object as a new class. I argue that the same can be done for 

machine learning. By learning a wide enough range of basic features using deep learning, new 

image classes can be added by learning a new configuration of the basic features. 

The advantage of this approach is that the neural network can be frozen after initial training 

of basic features and combinations of these features may be saved in a database as the object 

classes. Similar to [13], the network is only used to extract features from a new image, after 

which the feature vector is used to create a new class or match the image to an existing class 

in the database. Using this method eliminates the problem of catastrophic forgetting and 

allows for incremental learning by adding new classes to the database.  

This work aims to provide a proof of concept for incremental learning, using capsule 

networks to obtain information about MNIST [20] digit images. To this end, the generalizing 

capabilities of the network as implemented in [22] are investigated using several different 

augmented datasets. Furthermore, a smaller network is proposed and evaluated since such a 

relatively simple database is used. A smaller network might encode different information in 

the capsule dimensions than a complex network.  

This paper is structured as follows. First, the network structures and experimental settings 

are described in section 2. The experimental results are presented in section 3, followed by a 

discussion of the findings in section 4. Finally, conclusions are drawn based on this work and 

future recommendations are made in section 5. 
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2. MATERIALS & METHODS 
2.1 STANDARD NETWORK ARCHITECTURE 

The basic network in this study, Efficient CapsNet, is comprised of four convolutional layers, 

a primary capsule layer and a digit capsule layer as specified in table 1 and illustrated in 

figure 1. The four convolutional layers are responsible for finding the features in the images 

and the depthwise convolutional layer assigns the high-dimensional features into capsules. 

The primary capsule layer consists of 16 capsules, the same amount used in [22]. The digit 

capsule layer contains one capsule for each class and is formed by self-attention routing as 

per [22].  

This self-attention routing mechanism follows the idea that the lower-level capsules of the 

primary capsule layer combine to form a whole in the digit capsule layer. It is very similar to 

a fully-connected layer because all ten digit capsules are a combination of all 16 primary 

capsules. However, which primary capsules have the most influence on a digit capsule is 

determined by this routing mechanism. Each primary capsule forms a prediction for each 

digit capsule, which are then compared to all other primary capsule predictions. If two or 

more primary capsules have similar predictions for a digit capsule, they are taken into 

account more for that digit capsule than other primary capsules. Each training batch, these 

coupling coefficients are combined with probabilities that a specific primary capsule belongs 

to a digit capsule. This allows primary capsules and digit capsules to form meaningful 

connections.  

After the self-attention is done, classification takes place by taking the magnitude of the digit 

capsule output vectors ‖𝑣𝑘‖, where 𝑘 is a digit capsule, followed by a Softmax operation. 

 
Figure 1: Schematic representation of Efficient CapsNet, from [22]. The convolutional layers detect 
local features and map them to a higher dimensional space. The depthwise convolution allows the 
formation of the primary capsules. The digit capsule layer is formed by a self-attention routing 
mechanism that correlates the primary capsule vector output to the digit capsules. 
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During training, the digit capsule output is also fed through a simple decoder made up of 

ReLU activated fully connected layers to make image reconstructions, in order to compare 

them to the original images for the loss function.  

Table 1: The network structure for both Efficient CapsNet and Small CapsNet. 

Network Convolutional  
layers 

Fully connected 
layers 

Primary capsule  
layer 

Digit capsule 
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16 

Decoder 
Efficient 
CapsNet 

    160 
512 
1024 

512 
1024 
784 

        

Small 
CapsNet 

1 
32 

32 
32 

5 
3 

1 
2 

  8 32 4 11 4  
10 

 
4 
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Decoder 
Small 
CapsNet 

    80 
512 
1024 

512 
1024 
784 

        

 

For some experiments, the network and decoder structure was adapted slightly to fit the 

larger image dimensions. These adaptations mainly were a larger stride or kernel in several 

layers. The specifics of this adaptation can be found in the appendix (A.1). 

2.2 NETWORK AUGMENTATION 

To investigate the influence of the size of the network on generalizability, amount of 

convolutional layers and capsule dimensions was reduced. This new network, Small CapsNet, 

is comprised of only two convolutional layers, a primary capsule layer and a digit capsule 

layer. Both capsule layers contain capsules with half the amount of dimensions as Efficient 

CapsNet has and the primary capsule layer only contains eight capsules instead of 16. The 

properties of each layer are summarized in table 1.  

Similar to Efficient CapsNet, several changes in the network structure had to be made for 

some experiments to adapt to larger image dimensions. The network structure for these 

experiments can be found in the appendix (A.1).  

2.3 DATASETS 

Multiple datasets were developed to perform the desired experiments, an overview of these 

datasets is available in table 2.  

Standard dataset 
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The MNIST dataset used in this research contains 60,000 training and 10,000 test images 

[20]. Unless otherwise mentioned, no alterations have been made to this dataset in training 

and testing. Images in the dataset are 28 by 28 pixels in size.  

Scaling datasets 

In order to investigate generalizability of both Efficient CapsNet and Small CapsNet, 

experiments on downscaled images were performed. For the scaling experiments a training 

set was developed based on the standard dataset with 2400/60000 images downscaled to 20 

by 20 pixels. These downscaled images were then zero-padded back to 28 by 28 pixels. 

Following that, testing was done on the standard test set and on a scaled test set with only 

downscaled digits. 

Translation datasets 

In addition to scaling, the ability of Efficient CapsNet and Small CapsNet to deal with the 

translation of the digits was investigated. MNIST images were zero-padded to make the 

images 56 by 56 pixels, which allows the digits to be translated to four corners of the image. 

Each of the network types was trained on the left translation dataset (see table 2) and on a 

translation dataset with 2400/60000 (1-in-25) or 30000/60000 (half-half) images translated 

to the top right image corner. 

The left translation dataset in this experiment is the dataset with the 56 by 56 pixel images, 

with the digit in the top left corner. The 1-in-25 and half-half dataset images have the digit in 

the top right corner (28 pixels to the right) for the amount specified (table 2). The translation 

was chosen to be 28 pixels because of the next experiment with two digits in the same image. 

Inference was done on either the left translation dataset or the right translation dataset. 

The training time differs for the two networks in this experiment, with 50 epochs of training 

for Efficient CapsNet and 20 epochs of training for Small CapsNet. Efficient CapsNet was 

given more training epochs because preliminary results showed that with only 20 epochs the 

network was unable to correctly classify more than 50% of the digit images. In order to 

compare the two networks on generalizability, it was chosen to train Efficient CapsNet longer 

until a saturation of the classification accuracy was reached. 

For this experiment, the adapted network structures were used to fit the larger image 

dimensions.  

Two-digit dataset 

The third experiment introduces a second digit to the networks, in order to investigate 

whether the networks would be able to use their class knowledge to create a new class for 

two-digit numbers. For this experiment, the networks were trained on the same enlarged 

images as in the translation experiment. During inference, the second digit was introduced in 

the top right corner of the image.  

For this experiment, the adapted network structure of Efficient CapsNet was used to fit the 

larger image dimensions. This experiment was not performed with Small CapsNet. 

New-digit datasets 

Lastly, the networks’ ability to generalize the features they have learned to new objects was 

investigated. This was done by leaving either one or multiple digit(s) out of the training 

dataset and then introducing that digit during inference in the test dataset. These new-digit 

training datasets are named after the digit that was left out (e.g. minus-9).  
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Table 2: Overview of all dataset modifications. 

Dataset name Properties Example of modified 
image 

Standard dataset MNIST images 

 
Scaled training 
set 

2400/60000 downscaled images 

 
Scaled test set 10000/10000 downscaled images 

 
 

Left translation 
dataset 

All images enlarged with digits in the top left corner 

 
Right translation 
dataset 

All images enlarged with digits in the top right corner 

 
Half-half 
translation test 
set 

5000/10000 images with the digit in the top right 
corner, the other images have the digit in the top left 
corner 

 

Four-quadrant 
translation test 
set 

2500/10000 images with the digit in the top left corner, 
2500 images with the digit top right, 2500 images with 
the digit bottom left, 2500 images with the digit bottom 
right 

 

1-in-25 
translation 
training set 

2400/60000 images with the digit in the top right 
corner, the other images have the digit in the top left 
corner 
 

 

Half-half 
translation 
training set 

30000/60000 images with the digit in the top right 
corner, the other images have the digit in the top left 
corner 
 

 

Two-digit test 
set 

All test images have two digits, one top left and one top 
right 

 

New-digit 
training sets: 
minus-X 

All images with digit X are replaced with a randomly 
chosen other digit image 
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2.4 TRAINING PROCEDURE 

Each training session consists of a number of epochs, in this study networks were mostly 

trained for 20 epochs unless mentioned otherwise. During each epoch all 60,000 MNIST 

training images are passed through the network in batches of 100. After every batch, the total 

loss is calculated and backpropagated through the network to update the weights. This total 

loss consists of two parts, a margin loss and a reconstruction loss. The purpose of the margin 

loss is to force the capsules to encode information for one digit class only. This loss is 

calculated as per [16]: 

𝐿𝑚 =∑𝑙𝑘

𝑘

𝑖=1

, 𝑙𝑘 = 𝑇𝑘max(0,𝑚
+ − ‖𝑣𝑘‖)

2 + 𝜆(1 − 𝑇𝑘)max(0, ‖𝑣𝑘‖ − 𝑚−)2 
 
(1) 

where 𝑘 stands for each digit capsule and ‖𝑣𝑘‖ represents the magnitude of the output vector 

of each capsule of the digit capsule layer. As mentioned before, a large magnitude of a capsule 

corresponds to the certainty of that capsule that it is correct. The loss is calculated for each 

digit capsule and then summed, with 𝑇𝑘 = 1 if capsule 𝑘 corresponds to the present digit 

class. For each capsule that the digit class does not correspond to, the second term starting 

from the lambda ensures a higher loss. With 𝑚+ = 0.9 and 𝑚− = 0.1, the loss is tuned to the 

certainty of the correct and incorrect capsules. A correct capsule with large magnitude gets a 

loss close to zero, while an incorrect capsule with a large magnitude gets a large loss. The 𝜆 

factor is set at 0.5 to ensure that the capsules are not faced with a loss too large in the 

beginning of training.   

In addition to the margin loss, reconstructed images are made by a decoder in order to 

compute a reconstruction loss. The output of the digit capsule layer is masked such that only 

the output vector of the correct digit capsule is left. The vectors are concatenated, forming an 

array of 160 elements with 16 non-zero values (80 and 8 in case of Small CapsNet). This 

array is then fed through the decoder through three fully-connected layers, see the 

architecture in figure 2. 

 

The output of the sigmoid layer is an image of the same size as the input images were, which 

can thus be compared to the original input image. The reconstruction loss is calculated using 

a mean squared error loss function: 

𝐿𝑟 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 
 

(2) 

where 𝑦 is the original image and �̂� the reconstructed image. The images are compared pixel-

wise, with 𝑛 the number of pixels in the image. The reconstruction loss as formulated in 

Figure 2: The decoder architecture, schematic from [16]. 
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equation 2 is multiplied with a regularization factor of 0.0005 to ensure that the margin loss 

is prioritized. The total loss is a sum of the margin loss and the regularized reconstruction 

loss.  

𝐿 = 𝐿𝑚 + 0.0005𝐿𝑟 (3) 

Training configuration 

The networks were implemented in the Pytorch framework and the code was adapted from 

[22] to merge the self-attention routing of [21] with the capsule network basis of [16]. The 

optimizer used was the Adam optimizer. All training was done on a private PC with an Intel® 

UHD Graphics 630 GPU and an NVIDIA Quadro P1000 GPU. Unless mentioned otherwise, 

networks were trained for 20 epochs.  

2.5 EXPERIMENT EVALUATION 

The experiments were evaluated using several methods. Prediction matrices were made of 

each epoch of the training phase in order to visualize the network’s performance during 

training. These matrices were constructed using the network’s predictions and the true image 

labels. In addition, test accuracy and the test loss were used as a performance measure. Test 

accuracy is defined here as the percentage of correctly classified digits during inference. The 

test loss consists of the sum of the margin and reconstruction loss.  

Furthermore, the digit capsule dimensions were perturbed individually before the image was 

reconstructed, providing insight into the features that the capsules dimensions encode. The 

individual dimensions were perturbed with steps of 0.05 in the range of [−0.10, 0.10].  

Lastly, the feature space was visualized by first reducing the dimensionality using T-

distributed Stochastic Neighbor Embedding (t-SNE) [23] and then plotting the datapoints in 

a 2D graph. It is important to note that each run of the t-SNE algorithm provides a different 

mapping of the feature space and therefore can plot the same batch of images differently each 

time. 

K-Means clustering 

For the new-digit experiment specifically, the K-Means algorithm from the Scikit-learn 

python package [24] was used to perform clustering. K-Means is an algorithm that iteratively 

updates the centroids (center of data clusters) by minimizing the sum of the squared 

distances of data points to the centroids.  

The network was trained on a minus-X dataset, while inference was done with the standard 

dataset but with a batch size of 1000 images. The clustering algorithm was given the 

information that there should be ten clusters for all ten digits. Clustering was done directly 

on the output of the digit capsule layer, in the high-dimensional feature space. To this end, 

the digit capsule output was concatenated to one 160-dimensional vector. Due to the larger 

batch size, clustering was performed on a 1000 test set images at the same time. 

The evaluation of this method was done using t-SNE figures. After performing K-Means and 

having the algorithm assign each image a label, the dataset was visualized using t-SNE. To 

compare, another t-SNE figure was made with the true labels of each image. If K-Means has 

labelled the same images together that also share their true labels, that means that the 

clustering was successful. 
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3. RESULTS 
3.1 BASELINE PERFORMANCE 

Training on the MNIST database with Efficient CapsNet results in a test accuracy of 98.7%. 

This accuracy describes the percentage of images correctly predicted by the network. Figure 3 

shows separate clusters for each digit, indicating that the network is able to learn distinctive 

features for each digit class. Several digits have been misclassified, mainly digits that are 

similar such as the four and the nine.  

Additionally, figure 4 shows several digit reconstructions picked at random together with 

their true labels. Most of the reconstructions form a clear digit, but some digits have not been 

formed correctly. In this case, one of the sevens is of bad quality, possibly because of 

misclassification. Notably, within each digit class the reconstructed digits are similar in 

shape. 

Efficient CapsNet on the standard test set Efficient CapsNet reconstructions 

  
Figure 3: t-SNE mappings of the digit capsule feature space for 
Efficient CapsNet using the standard test set. The network was 
trained on the standard training set. The colours indicate the 
predicted label, while the numbers plotted are the true label. 
Datapoints with a black border and red annotation represent 
misclassified images. 

Figure 4: Reconstructed images of the 
test set and their true labels using 
Efficient CapsNet trained on the 
standard training set.  

 
3.2 PERFORMANCE ON AUGMENTED DATA 

Scaling 

The performance of Efficient CapsNet on the scaled dataset is reported in table 3. When the 

network is trained with the standard dataset and inference is done with the scaled test set, 

the accuracy drops and the loss increases compared to the performance for the standard test 

set. However, while the overall accuracy is lower for the scaled training set, the drop in 

accuracy to the scaled test set becomes smaller. Interestingly, the accuracy is higher for the 

scaled test set when the network is not trained on any scaled images, compared to when the 

scaled training set is used.  

Small CapsNet on the other hand shows a higher accuracy with the scaled training set both 

for the standard and scaled test sets. This would indicate that Small CapsNet benefits from 



14 
 

having several scaled images in the training set, whereas Efficient CapsNet performs poorer 

for it.  

Table 3: Scaling experiment accuracies in percentages and losses for Efficient CapsNet and Small CapsNet, after 
training and inference on either the standard or scaled training sets. 

 
Training / Test set 

Efficient CapsNet Small CapsNet 

Accuracy  
(%) 

Loss Accuracy  
(%) 

Loss 

Standard / Standard 98.70 0.0466 94.18 0.5195 

Standard / Scaled 93.02 0.3552 81.33 0.8337 

Scaled / Standard 87.58 0.8258 95.07 0.5076 

Scaled / Scaled 85.35 0.8725 87.62 0.7717 

That Efficient CapsNet has more difficulty training with the scaled training set than the 

standard training set is supported by the prediction matrices in figure 5. These matrices show 

that the network trained on the scaled dataset has not reached the same classification 

accuracy as the network trained on the standard dataset. The network trained on the scaled 

training set is uncertain still about digits 1 and 8, confusing them with each other. This 

confusion is the cause of the lower accuracies reported in table 3.  

 
Figure 5: Prediction matrices showing the true and predicted labels in the last epoch of 
training. Left: Efficient CapsNet trained on the standard training set. Most of the true labels 
coincide with the predicted labels. Right: Efficient CapsNet trained on the scaled training set.  

In addition to Small CapsNet showing an increase in accuracy when trained on the scaled 

training set, it also shows a scaling factor in the reconstructed images (figure 6). Efficient 

CapsNet does not show any scaling when the capsule dimensions are perturbed. These 

reconstructions indicate that Small CapsNet learns some scaling parameter when trained 

with the scaled training set, which might be why the accuracy is better than for Efficient 

CapsNet. However, it should be noted that not every digit reconstructed using Small CapsNet 

shows this scaling factor (see A.2). 
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                  Efficient CapsNet              Small CapsNet 

 

 

Figure 6: Reconstructions of a digit image during inference, using networks 
trained on the scaled training set. Each capsule dimension is perturbed 
individually (-0.10, -0.05, 0, +0.05, +0.10). Left: Efficient CapsNet. Right: 
Small CapsNet. The red box indicates a dimension where the scaling factor is 
visible. 

Translation 

Table 4 reports the accuracies and losses for the translation experiments, with the training 

sets being the 1-in-25 and the half-half training sets. Similar to the scaling experiment, 

Efficient CapsNet’s accuracies drop and losses increase when more augmented images are 

used in the training dataset (half-half). This phenomenon further supports the notion that 

Efficient CapsNet does not benefit from seeing more augmented images in the training set.  

The accuracies reported in table 4 for Small CapsNet are noticeably higher than for Efficient 

CapsNet, and the losses are lower. Small CapsNet especially shows a better performance than 

Efficient CapsNet on the half-half training set.  
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Table 4: Accuracies and losses for the translation experiments with Efficient CapsNet and Small CapsNet 
trained on either the 1-in-25 or the half-half translation training sets, resp. 

Training / Test set 

Efficient CapsNet Small CapsNet 

Accuracy  
(%) 

Loss Accuracy 
(%) 

Loss 

1-in-25/ Left 96.80 0.9442 98.22 0.0371 

1-in-25/ Right 92.82 0.8712 97.07 0.0850 

Half-half / Left 89.91 0.8481 98.08 0.0322 

Half-half / Right 81.89 1.2525 98.23 0.0299 

The t-SNE mappings for Efficient CapsNet in figure 7 clearly show two separate groups for 

each digit position. Nevertheless, the predicted labels show that the network classifies the top 

left digits in the same class as their corresponding top right digits. While there are more 

misclassified digits that with the standard test set, the distance in the feature space does not 

prevent the network from still recognizing the digits as the same. 

However, the separation of the digit clusters within the groups is not as clear as for the 

standard test set, indicating that the network sees less differentiating features within the 

groups (positions). Additionally, when trained on the half-half training set, the network is not 

able to separate the digit clusters within the groups as clearly as when it is trained on the 1-

in-25 training set. This is in accordance with the reported accuracies in table 4 that are lower 

for the half-half training set.  

Efficient CapsNet trained on the 1-in-25 set Efficient CapsNet trained on the half-half set 

 
Figure 7: t-SNE mappings of the digit capsule feature space for Efficient CapsNet using the half-half 
translation test set. Colours represent the predicted label, while the annotation represents the true label. 
Datapoints with a black border and red annotation represent misclassified images. Left: Trained on the 1-in-
25 training set. Right: Trained on the half-half training set. 

However, while Efficient CapsNet exhibits two separate groups after being trained on 

translated images, Small CapsNet does not. Figure 8 illustrates that Small CapsNet groups 

the top-positioned digits together when trained on the 1-in-25 training set. Notably, there are 

two different clusters for most digits, but they are not in separate groups as with Efficient 

CapsNet. It is interesting that some digit classes do not get divided over two clusters, such as 

the nines and the ones in this example.   
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Small CapsNet inference on half-half set Small CapsNet inference on four-quadrant set 

  
Figure 8: t-SNE mappings of the digit capsule feature space for Small CapsNet after training on the 1-in-25 
translation training set. Datapoints with a black border and red annotation represent misclassified images. 
Left: Inference with the half-half translation test set. Right: Inference with the four-quadrant test set.  

When inference is done with the four-quadrant test set with Small CapsNet, a separate 

groups do form. Presumably, one group is for the top left and top right digits, one for the 

bottom right digits, and one for the bottom left digits. The formation of additional groups 

with the four-quadrant test set indicates that Small CapsNet does not generalize to 

translations other than what it has seen during training. Additionally, most of the digits in 

either of the untrained positions are misclassified.  

Lastly, the capsule dimensions after perturbation are shown in figure 9. The reconstructions 

made with Efficient CapsNet do not show any noticeable differences compared to 

reconstructions in other experiments. The digit is always depicted in the same corner and 

some effect of the perturbation can be seen regarding thickness and shape of the digit. The 

position of the digit in the reconstruction does change with the test image. It should also be 

noted that some of the reconstructions for the translated digits were empty, or of very poor 

quality. 

On the contrary, the reconstructions made with Small CapsNet indicate that in multiple 

dimensions a translation factor is encoded. In the example shown in figure 9, five out of eight 

dimensions show a clear translation corresponding to a perturbation. The middle image 

shows the digit divided over the two positions, and depending on the perturbation the digit 

shifts to either the top left or top right position.  
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Figure 9: Reconstructions of perturbed dimensions of digit images after training both networks on the 
half-half translation training set and running inference with the half-half translation test set. Each row of 
images represents a digit capsule dimension. Each column corresponds to a perturbation value 
(−0.10,−0.05, 0, 0.05, 0.10). Left: Efficient CapsNet with digit nine. Right: Small CapsNet with digit three. 

Two-digits 

Similar to the translated images, the two-digit images form their own separate group in the 

feature space, see figure 10. As with the translated images, this indicates that Efficient 

CapsNet understands that these two-digit images are different. However, within the two-digit 

group there is no definite separation such as in the standard dataset. Some of the images are 

clustered based on either the first or last digit, suggesting that the network does find some 

similar features.  

Efficient CapsNet inference on partly two-digit dataset Efficient CapsNet inference on only two-digit dataset 

 
 

Figure 10: t-SNE mapping of the digit capsule feature space using Efficient CapsNet trained on the half-half 
translation dataset. Left: Inference is done with 25 of 100 being two-digit images. Two digit images are 
coloured bright green to contrast the one-digit images. Right: Inference is done with only two-digit images. 
The colour represents the true label of the first digit. 
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New-digit 

Figure 11 shows the results of the new-digit experiment, with Efficient CapsNet either 

trained on a minus-9 or minus-5 training set. For both datasets, a separate cluster for the 

left-out digit can be seen with the ground truth labels in column A. Not all nine and five digit 

images are mapped into that cluster however, as there are outliers mapped near to other digit 

clusters.  

Column B in figure 11 shows that the K-Means algorithm has given most of the images within 

the new-digit cluster the same label and therefore managed to find the new-digit cluster 

correctly, although the outliers are not accounted for. Examples where K-Means has not been 

able to find the new-digit cluster correctly can be found in A.3. Furthermore, in this case of 

the minus-5 dataset, the three and the eight are inseparable for the clustering method and 

become one large cluster attached to the new-digit cluster.  

A B C 

 

 

Figure 11: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after 
training Efficient CapsNet on a minus-X training set. Column A shows the mapping with the ground truth 
labels. Column B shows the mapping with the labels assigned by K-Means clustering. The colours of the K-
Means labels are not the same as for the ground truth labels, because K-Means randomly initiates clusters 
and therefore labels, as such the colours are used to differentiate the clusters only. The large black circles 
indicate the cluster of the new digit. Column C shows the prediction matrices of the last epoch in the training 
phase. Top: Efficient CapsNet trained on a minus-9 training set, inference with standard test set. Bottom: 
Efficient CapsNet trained on a minus-5 training set, inference with the standard test set. 
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That the network is unable to correctly identify a three and an eight is also indicated by the 

prediction matrix at the end of training (column C of figure 11). This matrix shows that all 

eight digits are misclassified as threes. In case of the experiment with the nine left out, the 

prediction matrix shows no such misclassification problems. It should be noted that the 

problem with classification of the eight does not happen every time the network is trained on 

the minus-5 training set. In other training runs, other digits are harder to learn for the 

network, indicating that the initialization of the weights plays a role in which digits are 

harder to classify.  

Finally, the new-digit experiment was also performed with Small CapsNet. During the 

training phase, the network learned to classify digits correctly quicker than Efficient CapsNet. 

Most predictions were already aligned with the true labels of the digits after the first epoch. 

As a result, there were no cases such as the minus-5 training set on Efficient CapsNet, where 

the network had a low classification accuracy after training for any specific digits. 

 A B  

 

 
Figure 12: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after 
training Small CapsNet on a minus-X training set. Column A shows the mapping with the true labels. Column 
B shows the mapping with the labels assigned by K-Means. The colours of the K-Means labels are not the 
same as for the ground truth labels, because K-Means randomly initiates clusters and therefore labels, as 
such the colours are used to differentiate the clusters only. The large black circles indicate the cluster of the 
new digit. Top: Small CapsNet trained on a minus-9 training set, inference with standard test set. Bottom: 
Small CapsNet trained on a minus-4 training set, inference with the standard test set. 
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The minus-9 example in figure 12 is a completely separate cluster from the others. 

Interestingly, the cluster of fours with the minus-4 training set is intertwined with the 

clusters of nines and sevens respectively. This indicates that the network needs more 

information to distinguish a four from a nine or a seven, while this is not necessary for the 

minus-9 training set. Separate clusters for the fours, sevens and nines are still found by K-

Means, and the centroids correspond to the middle of the clusters. In some cases for the 

minus-4 dataset, a separate cluster cannot be identified by K-Means, see A.4. 

The difference between the minus-9 and the minus-4 datasets becomes clear in figure 13. The 

mean class probabilities show that most of the time, a four-digit image is classified as a nine 

for the minus-4 dataset. However, this is not seen for the nine-digit images, for which the 

probabilities are evenly divided between the digit capsules. This suggests that the ninth digit 

looks enough like all other digits to not be pulled towards one cluster in the feature space.  

  
Figure 13: Bar charts of the mean class probabilities of the digit capsules. Left: mean probabilities for 94 
nine-digit images. The ninth digit was left out of training. Right: mean probabilities for 104 four-digit 
images. The ninth digit here is encoded in the fifth capsule and the four was left out of training.  

 

4. DISCUSSION 

The results have exposed several important differences between the two networks used in 

this study. Efficient CapsNet performs relatively well for most of the augmented datasets, but 

mostly produces lower accuracies and higher losses than Small CapsNet. In addition, 

Efficient CapsNet shows no indication of learning some scaling or translation characteristics, 

whereas Small CapsNet does. The new digit experiment results show that the clustering of a 

new digit class is possible, although not perfect. This applies to both Efficient and Small 

CapsNet. All of these results and their implications are discussed in more detail in this 

section. 

As described in the introduction, one of the important factors aiding in incremental learning 

is the ability of neural networks to generalize outside of the training data. In general, the 

results show that Small CapsNet is better at generalization than Efficient CapsNet. This is 

suggested by both the scaling and the translation experiments, where Small CapsNet showed 

a scaling and translation factor and Efficient CapsNet did not.  

Additionally, where the accuracies and losses did not vary much between training sets for 

Small CapsNet, Efficient CapsNet produced lower accuracies and higher losses for more 

complex training sets. It is clear that the larger network of the two has more trouble training 

when there are more augmented images in the training set, given its lower performance for 

the half-half translation training set than the 1-in-25 training set for example. The higher 

losses for the augmented test sets could indicate that the network has started to overfit the 
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data and is looking in too much detail at digit characteristics. This could also be why Efficient 

CapsNet does not show any scaling or translation factors in the capsule dimensions, even 

while the accuracy is still above 80 percent: the network is learning about details for each 

digit class, but as a result it does not see encompassing characteristics such as scaling and 

translation.  

The fact alone that it was necessary with Efficient CapsNet to upscale the number of training 

epochs to reach an accuracy above 50 percent for the translation experiment suggests that the 

network structure is not working for these datasets. Small CapsNet is fully trained in each 

experiment after 20 epochs, without relinquishing its high performance rates. Network 

overfitting is a common problem and is also known to affect generalization capabilities [25]. 

Often this is caused by too many neurons (i.e. nodes) and therefore too many weights that 

can be tuned, allowing the network too much room to look at the details.  

Where Efficient CapsNet is possibly too complex, Small CapsNet is not. It contains less 

primary capsules than digit capsules, forcing the network to more carefully choose the 

information it encodes. With the self-attention routing, primary capsules effectively ‘vote’ 

which of the ten digit capsules correspond with their output. But with only eight primary 

capsules, there are simply less votes, meaning that those votes must individually be more 

important. In a way, this is similar to the reasoning behind sparsity, where weights are 

penalized for being non-zero, forcing the network to use less space to encode the same 

amount of information [26, 27]. Since sparsity has been known to improve a network’s 

generalizing capabilities, it would not be unreasonable to assume the same for Small 

CapsNet’s architecture. 

However, while Small CapsNet shows scaling and translation in the digit reconstructions, it 

does not yet seem capable of generalizing outside of the training data. The test with the four-

quadrant translation test set illustrates this inability. The two new positions do form separate 

groups and show some clustering, but certainly not good enough for classification. The 

question rises how many examples of e.g. different positions the network would need before 

being able to generalize to any position, for any digit. 

Furthermore, not every digit class shows the scaling and translation factors in the capsule 

dimensions of Small CapsNet. This indicates that part of the network still looks at the 

different scaling possibilities and the two possible digit positions as being separate features 

instead of a feature with multiple possibilities. The network seems to see a small digit and a 

normal-sized digit, and similarly a left digit and a right digit, instead of a digit that can be 

small or normal-sized, and left or right. The reconstructions for the translation experiment of 

Efficient CapsNet are more alike these Small CapsNet cases, where the position of the digit is 

always the same as in the original image it is reconstructing.  

This dependence of the position of the digit on the original image suggests that part of Small 

CapsNet and the whole of Efficient CapsNet first look at the position of the digit, before even 

determining what the digit class is. On the other hand, the rest of Small CapsNet seems to 

first look at what digit class it is and only after that what the digit’s position is. Otherwise the 

digit would not be visualized as being divided over the two corners in the reconstruction. 

Looking at the position first is more complicated, since then the rest of the digit must still be 

identified. In this way, the network must basically learn everything twice for every digit class: 

once for the digit translated to the left, and once for the digit translated to the right. This 

would explain why the digit clusters are so far apart in the feature space for Efficient 

CapsNet, and not for Small CapsNet. For the same reason, it would explain why Efficient 

CapsNet needs more training time than Small CapsNet. 
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Both Efficient CapsNet and Small CapsNet do show signs of generalization in the 

reconstructed digit images. Most of the reconstructed digits look alike within their classes, 

indicating that the network learns a general representation of each digit class. This was not 

the case in other capsule network implementations [16, 22], where each digit reconstruction 

was more like its original image. The cause of this difference could be the network 

architectures, or the value of the reconstruction loss. The low value of this loss ensures that 

good reconstructions are not a priority.  

Reconstructed images were sometimes empty or of poor quality for translated digits, while 

the reconstructions of scaled and standard images were of good quality and identifiable. At 

least one issue for the decoder with the translated images is that three-quarters of the image 

is zero. Since the reconstruction loss is an MSE loss, the network can easily minimize the loss 

by giving every pixel a zero-value. If it does that, already more than three-quarters of the 

reconstruction pixels equal the original image pixels, resulting in a low loss. This can be 

achieved early on in the training process, practically leaving the network with only the 

margin loss to learn the digit features. This could also contribute to the long training time of 

Efficient CapsNet. 

A second important aspect of incremental learning is being able to learn new classes or 

information, naturally. The two-digit experiment does not provide any proof that Efficient 

CapsNet might be able to learn two-digit numbers when it already knows all one-digit 

numbers. However, this is not surprising considering the fact that the network did not learn 

to see the concept of a digit as a whole. It sees edges and corners, groups of active pixels, but 

it has not been taught to look at space between entire groups of active pixels. For humans it is 

easy to see that there are two objects in the image, but a network is not able to do this without 

extra help. An example of a network that is able to localize and classify objects is YOLO [28], 

but it was trained to also predict bounding boxes and constrained to predict only one class 

per specified grid cell in the image. Efficient CapsNet could probably recognize the two digits 

separately if trained with the same specifications as YOLO, but it still would not learn a new 

class for each two-digit number.  

On the other hand, the new-digit experiment does suggest that a capsule network might be 

able to learn new classes incrementally. The results of the experiment show that it is possible 

to recognize new digits as being new and different from all the other known classes. Both 

networks tested in this work enabled the clustering of the new digit images together in some 

cases, though not all.  

Additionally, the new-digit images are not separated from the other digits as well as these 

other digit clusters are separated from each other. This might be attributed to a number of 

reasons, one of them being that K-Means is not very well suited for high-dimensional data 

clustering since it works based on Euclidean Distance, and distance starts to mean less and 

less with each dimension added [29]. Another explanation could be that the networks have 

not been given enough training time, especially Efficient CapsNet. Lastly, K-Means offers a 

variety of possible settings that have not been tweaked at all in this work, which could also 

result in a better performance. 

Similar to the translation experiment, Efficient CapsNet needed more training time with the 

new-digit experiment to reach a similar accuracy to Small CapsNet with the standard training 

epochs. Even after giving Efficient CapsNet more epochs, it still has trouble correctly 

identifying each digit class. This is odd, given the fact that it has one less digit to train. While 

it is likely that which digit is harder for the network to classify is dependent on the weight 

initialization, it is unlikely that this is also the reason for the network struggling with the 

classification in general. Each training run with the minus-5 dataset resulted in classification 

issues with other digit classes. It is more likely that this difference compared to the standard 
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dataset has something to do with the missing digit. With a digit class left out of training, the 

network simply has less features to use for the recognition of the digit classes.  

Interestingly, having less features to use for training does not seem to have an equal effect for 

each digit that is left out. When looking at the results for Small CapsNet, it is clear that when 

trained on the minus-4 dataset, the clustering is less successful because the four-digit images 

are always attached to the nine-digit clusters. However, this is not the case when the roles are 

reversed and the nine is left out of training. The nine-digit images do not lie close to the four-

digit clusters in the feature space. This difference is clearly explained in the bar charts, which 

strongly indicate that the nine simply shares its features with the other digits and the four 

mostly shares features with the nine. This would indicate that a wide range of basic features 

is important and also does the job (for the nine). The MNIST dataset clearly does not provide 

a wide enough range of features to recognize the four as something separate. 

 

5. CONCLUSION AND RECOMMENDATIONS 

This work presents a proof of concept for an incremental learning approach that is based on 

capsule networks. The approach consists of a fixed basic network, trained such that it 

contains a wide range of features, and a clustering method to combine these features into a 

new class or concept. To this end, the generalizing capabilities of the networks were 

investigated, and the ability to discern new classes from trained ones. 

The scaling and translation experiments have provided valuable insights about the 

generalizing capabilities of the two networks Efficient CapsNet and Small CapsNet. Small 

CapsNet in particular shows promising results with regards to generalization, with the 

presence of scaling and translation factors in the capsule dimension reconstructions. As 

expected, Small CapsNet performed better than Efficient CapsNet on this dataset (MNIST), 

the latter possibly being too large and overfitting on the data. 

Generalizing to new positions or scales or any other slightly changed class characteristic is 

necessary to be able to recognize new objects regardless of viewpoint. Ideally, these 

characteristics would be universal and encoded in the fixed basic network of the incremental 

learning approach. The results have shown that while some classes did seem to contain a 

universal translation or scaling factor, not every class did and generalization outside of the 

training data was not seen at all. This is a problem that needs solving before this approach 

can work on a large scale. 

The second part of the approach is to use known features from the fixed network to learn new 

classes. The two-digit experiment did not provide proof for this method, mainly because the 

networks were not trained to also see separate objects in the same image. Without additional 

training procedures, the network will not be able to define a class for a two-digit number.  

However, the new-digit experiment did suggest that learning new classes is possible with this 

approach. The results revealed that both networks are able to cluster new images, separately 

from other classes. The differences between the results for the different minus-X datasets 

provide more proof that a wide range of features enables the clustering of new images into a 

new class.  

In conclusion, the results of this work suggest that having a fixed basic network before 

clustering the features into new classes could work as an incremental learning approach. It is 

proven that new classes can be discerned from the ones the network has trained on and the 

first steps towards generalization have been made.  
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Recommendations 

Naturally, there is room for improvement and further research on this specific topic. Several 

suggestions are discussed here. 

First of all, this research was still limited with respect to dataset variety and augmentation, 

leaving room for improvement. More types of data augmentation should also be tested, 

including for example a smaller translation. The translation used in this work was relatively 

large, which probably made it more difficult for the networks to learn. A smaller translation 

might even lead to the networks being able to generalize to other translation directions too.  

A question that this work has not answered with regards to the data augmentation is how 

many augmented images are actually needed for the network to learn some scaling or 

translation parameter? Now, mostly one in 25 training images was augmented, but it might 

be more beneficial to have either more or less augmented images.   

Another aspect that undoubtedly affects the generalizing capabilities of the networks is the 

loss function. As such, a different loss function or even a different approach to the 

combination of the reconstruction loss and the margin loss might help the network generalize 

better.  

The two-digit experiment in this work pointed out that just because a network is able to 

extract features and combine them, does not mean that it can understand higher level 

concepts without help. While the network might be able to learn new classes, it will still need 

help finding objects in images, i.e. segmentation. An approach that might be suitable is one 

from [30], where the network is two-part. First, the network identifies the different parts in 

order to then assign them to wholes. 

As mentioned, K-Means clustering is not well-suited for high-dimensional data, so it would 

be beneficial to try out other clustering algorithms. The new-digit experiment results might 

improve with dimensionality reduction first or using a different clustering algorithm 

altogether. Another benefit of a different algorithm might be that it is not necessary to 

provide the number of clusters you’re expecting to see. Hardcoding this number is naturally 

not desirable for an autonomous system. 

Additionally, the new-digit experiments were only performed with one digit left out of 

training, but it is not yet known how this experiment would go if more than one digit is left 

out. Would the second new digit also be separate from the first new digit and all other digit 

clusters? Answering this question is particularly important, because if the networks are 

unable to discern between two different new classes the whole approach does not work. 

Admittedly, MNIST might not be the best dataset to test this out with, since it only has ten 

classes. Leaving two out already might compromise the wide range of features that the fixed 

basic network is supposed to have.  

Lastly, both networks were only trained for either 20 or 50 epochs. While the dataset is not 

that complicated, it should at least be investigated if this training time is the right one. This 

should however be treated carefully because as mentioned networks might start to overfit if 

trained too long. Next to the training time, learning rate and the optimizer were also chosen 

arbitrarily and could possibly be helpful in tweaking the performance.  
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3. GENERAL DISCUSSION AND CONCLUSION 

The aim of this study was to provide a proof of concept for a novel incremental learning 

approach based on a fixed capsule network and a clustering algorithm. The concept rests on 

the assumption that with a wide enough range of features, any object can be learned using 

different combinations of the fixed features. To investigate whether the concept has merit, 

the generalizing capabilities of two capsule networks were investigated, and the ability to 

discern new classes from trained ones. 

With regards to the networks’ ability to generalize, the results indicate that the smaller 

network, Small CapsNet, performs better than the larger network, Efficient CapsNet. On the 

augmented scaled and translated datasets, Small CapsNet obtains higher accuracies than 

Efficient CapsNet. In addition, it shows a scaling and translation factor in some of the digit 

classes, which is expected if a network is to generalize outside of training data. However, 

while the scaling and translation factors might attribute to the higher accuracies, it does not 

yet allow Small CapsNet to generalize to new scaled or translated images. 

The difference in performance between the two networks suggest that a smaller network is 

beneficial, while a larger network might be too complex. The larger a network is, the more 

space (i.e. neurons) it has to look too much at the details, resulting in a network that is very 

capable when used on exactly what it was trained for, but not new information.  

Small CapsNet continues to outperform Efficient CapsNet in the new-digit experiment. 

Efficient CapsNet needs more than twice the training time of Small CapsNet, even though it is 

a larger network and has one digit less to train. This is another indication of the network 

simply being too large, since Small CapsNet does not seem to have any problems with 

training.  

When looking at the incremental learning capabilities of the networks, both show promising 

results. The clustering algorithm succeeds in some cases in finding the new-digit images and 

is able to keep them separate from the other digits. This suggests that learning about a new 

object in an image, using only features of objects the network already knows is possible. How 

well different new digits are separated from the old digits also supports the assumption that 

the basic network needs to contain a wide enough range of features for it to be able to learn a 

new set of features.  

In conclusion, this work has shown that having a neural network learn about new objects 

using a fixed set of features is possible. Naturally, more research is needed about the best 

training datasets for these kinds of experiments, the most ideal network architecture and 

clustering algorithms.  
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APPENDICES 
A.1  NETWORK STRUCTURES FOR THE LARGER IMAGES 

Table 5: The network structure for both Efficient CapsNet and Small CapsNet for the translated image datasets 
with 56 by 56 pixels. 
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A.2  SCALING FACTOR SMALL CAPSNET 

As mentioned in the results, not all digit classes show a scaling factor when Small CapsNet is 

trained on the scaled training set. Figure 14 gives several examples of classes where no 

scaling factor is visible. 

 
 

  

Figure 14: Reconstructions of digit images during inference, using Small CapsNet trained on the scaled training 
set. Each row represents a capsule dimension. Each column corresponds to a perturbation value (-0.10, -0.05, 0, 
+0.05, +0.10).  
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A.3 ADDITIONAL NEW-DIGIT FIGURES FOR EFFICIENT CAPSNET 

For some batches of the new-digit experiment, the clustering did not go successfully, as 

shown in figure 15. In these cases, the K-Means algorithm was unable to identify the new-

digit images separately from the rest.  

  

  
Figure 15: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after training 
Efficient CapsNet on a minus-X training set. All four images are examples of new-digit cases where K-Means 
has not been able to label the new-digit images together. 
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A.4  ADDITIONAL NEW-DIGIT FIGURES FOR SMALL CAPSNET 

For some batches of the new-digit experiment, the clustering did not go successfully for Small 

CapsNet either, as shown in figure 16. In these cases, the K-Means algorithm was unable to 

identify the new-digit images separately from the rest.  

  
Figure 16: t-SNE mapping of the digit capsule feature space with or without K-Means clustering, after training 
Small CapsNet on a minus-X training set. The two images are examples of new-digit cases where K-Means has 
not been able to label the new-digit images together. 

 


