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Executive Summary

When investing in assets that are traded in a foreign currency, pension funds are
exposed to currency risks. Especially because monthly payments are to be paid
in the home currency. The asset managers of the pension funds can use different
techniques to hedge themselves against this risk. As a part of this protection, the
managers execute a significant amount of foreign exchange (FX) spot transactions.

Within the FX spot market, the time frame, 15:57:30 to 16:02:30 UTC, is very sig-
nificant, as it is used to determine the fixing rate (Fix). This time window is called
the WMR 4 pm fixing window and is used for fixing orders and as a benchmark to
measure the performance of foreign investments, as a reference rate to settle deriva-
tive contracts, and for numerous other reference purposes. Because the FX market
runs 24 hours per day, Monday to Friday, the fix is used as the alternative bench-
mark instead of the close, which is generally the benchmark in markets for other
securities e.g. equities and bonds.

This thesis aims to develop a deep learning model that can be used to predict the
WMR of a currency pair, one day in advance, by finding patterns in FX datasets
and market data analysis. This model can provide traders with a prediction of fu-
ture movements in the market, which can then be used to optimise the execution
strategy or execution moment, given the FX orders that need to be traded. While
a model can provide investors with information to help increase execution efficiency
and to reduce risk, the FX market’s complexity makes FX prediction and forecasting
a challenging research topic.

In terms of data, especially the end-of-month hedge rebalancing data is of interest.
Therefore, we built a model that estimates these hedge rebalancing flows that have
to occur at the end of each month. The results of this model are used as input for
the neural network. Finally, the aim is to compare different models and test the
best-performing model on robustness and parameter sensitivity.

The study objective is formulated as following:

Apply data wrangling and engineering techniques on relevant datasets, to prepare
the data to be fed into a theoretically backed deep learning architecture, and
evaluate the performance to forecast the WMR fiz one day in advance

As input for the model, we used the following datasets, consisting of data since
01-01-2000:
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1. A FX data set from New Change, consisting of the EUR/USD open, close,
high, and low price, of the pair in minute granularity.

2. EuroStoxx50 and SP500 datasets from Bloomberg, consisting of the close
prices in daily granularity.

3. Bond yield dataset of the US and EU 10 year generic bonds, in daily granu-
larity. This data is used as an indication of interest rates.

4. Bond return dataset (LUATTRUU Index) from Bloomberg, consisting of the
US Treasury Index, which measures US dollar-denominated, fixed-rate, nomi-
nal debt issued by the US Treasury and the Pan-European unhedged govern-
ment total return index (102513EU Index).

5. Dataset containing the daily WM /Reuters fix benchmark. Obtained from
Bloomberg.

From the results, we chose a CNN-LSTM neural network as best performing model.
This model consists of a convolutional layer for feature extraction and an LSTM
layer for time series forecasting. Using this model, we can confirm that the end-of-
month hedge rebalancing data increases the deep learning model performance. This
proposed model outperforms the naive benchmark and has a Theil’s U score below
1, for both direction and prediction, indicating superiority over random selection.
When we assume no transaction costs, this translates to a return of 8.15% over two
years when we would buy when the model predicts the WMR will go up and sell
when the model predicts that the WMR will go down. The returns consist of -4.73%
over 2020 and a 13.5% return over 2021. But, the black box of neural networks re-
mains a problem, and, essentially, no causality between the hyperparameters and
the model performance on validation loss can be found.

Although the results of the CNN-LSTM are significant, there is much to test and
improve upon this model. Especially, because the proposed model lacks conver-
gence. This could be the result of the neural networks having trouble learning from
the data, as the data is extremely noisy. Indicating that there might be a limited
amount to learn from this data to base a prediction upon.

A first step to improve the models proposed in this research is to formulate a more
extensive estimation model on the end-of-month hedge re-balancing flows. A sec-
ond step is to perform more model tuning and test a wide range of neural network
architectures. In this study, only three possible architectures are tested, and many
more can be tested. We also focused on the main parameters during tuning, yet,
there are many more parameters that can be tuned to increase model performance.
This thesis, however, provides a framework and a new benchmark to beat in terms
of performance.

To conclude, the model can easily be applied to practice as support for the traders of
MN and PGGM. They have to trade significant flows of EUR/USD, and this model
can help the traders in their decision making process regarding the most efficient
trading strategy for executing the required flow on a given day.
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1. Introduction

This first chapter describes the context of the research and provides background
information on important topics to better understand this thesis. The WM/R Fix,
order books, and an execution strategy are discussed. The chapter concludes with
the objective of this thesis.

1.1 Background Information

For pension funds, it is important to achieve the most optimal financial returns
possible for their clients, given a predefined risk profile. The aimed result and
achieved result can depend on multiple factors, for example, the risk appetite and
age distribution of the clients. But, by investing in assets that are traded in a foreign
currency, pension funds are exposed to currency risks. Especially because monthly
payments are to be paid in the home currency. The asset managers of the pension
funds can use different techniques to hedge themselves against this risk. As a part of
this protection, and due to the trading of foreign denominated assets, the managers
execute a significant amount of foreign exchange (FX) spot transactions.

1.1.1 WMR Fix

Within the FX spot market, the time frame, 15:57:30 to 16:02:30 UTC, is very signif-
icant, as it is used to determine the fixing rate (Fix) (Michelberger & Witte, 2016).
This time window is called the WMR 4 pm fixing window and is used for fixing
orders and as a benchmark to measure the performance of foreign investments, as a
reference rate to settle derivative contracts, and for numerous other reference pur-
poses (Evans, O’Neill, Rime, Saakvitne, et al., 2018). Because the FX market runs
24 hours per day, Monday to Friday, the fix is used as the alternative benchmark
instead of the close, which is generally the benchmark in markets for other securities
e.g. equities and bonds.

Generally, the methodology of determining the fix is the following: (Reuters, 2017)
Each second in the window, a sample is recorded. This sample contains a single
trade, with the trade price, whether it is a bid/ask trade and the opposing side’s
best bid or ask price. At the end of the window, the bid (ask)trade prices and
opposing bid (ask)prices are pooled together for all 300 samples. Then a median is
calculated for each bid and ask pool. Finally, the midpoint between the two medians
is calculated and used as the WMR 4 pm fix.



To avoid tracking errors in comparison to their benchmarks, many market partic-
ipants want to execute during the window. This results in high liquidity, which
generally, results in lower volatility and transaction costs. However, during the
window, large orders can create an unequal liquidity supply. These aggressive, or
‘liquidity taking’ orders can deplete the order book on one side, with large spot rate
movements as a result (Michelberger & Witte, 2016). During the window, the prob-
ability of these local and global extrema in spot price is much higher than compared
to other market hours. These movements are also larger in size on average, which
makes it difficult to realise the fixing rate in practice (Michelberger & Witte, 2016).

1.1.2 Order Book

When an order is submitted, it is sent to a venue and placed in an order book. Every
millisecond multiple orders are sent to venues. The order book is a list of orders,
which is used to record the interest of buyers and sellers in a particular currency
pair. A matching engine uses this order book to determine which orders can be
executed. Each venue has its own order book, which results in the possibility of
discrepancies in spot prices between different venues.

An order book has two sides, the bid side, containing the buy orders and volumes,
and the ask side containing the sell orders and volumes. The buy or sell is called the
direction. The top-of-book bid (B, (t)) is the highest available buy order for volume
v at time ¢, and the top-of-book ask (A,(t)), the lowest available sell order for vol-
ume v at time t. The difference between the bid and ask is called the bid-ask spread,
or just spread, which is given by: S(t) = A(t) — B(t). The price point in the middle
between the best ask and best bid is the mid-price, given by: M (t) = (A(t)—B(t))/2.

The book is dynamic and thus constantly updated in real-time. When submitting
an order, it can be placed more passively or aggressively in the order book. Where
passive means lower in the order book, where the chances of fast execution are lower,
or aggressive means higher in the order book, closer to the bid when buying, or ask
when selling. When fast execution is important, or the price is less important, then
an order can also be placed very aggressively by ‘crossing the spread’. This means
that the trader buys at the lowest ask, or sells at the highest bid, and thus, crosses
the spread.

1.1.3 WMR Execution Strategy

An effective strategy to approach the benchmark is to spread the order over the
whole window, thus making the execution price a weighted function p = >""  w;p;,
where w; is the weight of transaction ¢, p; the price of transaction . The Time
Weighted Average Price (TWAP) Execution Algorithm (EA) cuts the (parent)order
up into smaller (child)orders and equally spreads the volume of the order over the
whole window. The parent order is the complete order that we want to execute,
which can be split up into multiple smaller orders called child orders. The sum of
the child orders is equal to the parent order. Besides decreasing market impact,
another objective of the TWAP is to execute smaller orders to achieve an average
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price over a certain time window, which can be, for example, the fix.

This EA is effective, but achieving the WMR fix remains difficult. However, previ-
ous research (Evans, 2018; Husselmann & Kasikov, 2020) showed that the market
dynamics during the WMR window can display predictable behaviour. Evans (2018)
shows that the momentum of the price of a certain currency pair in the 15 minutes
before the WMR window tends to keep going for the rest of the window, and reverses
after the closing of the window. It is possible, although very unlikely, that market
participants are unaware of the trading opportunity this represents. Other, more
compelling, arguments why this anomaly still existed at the time of the research, is
that (some) participants are exploiting it, but the effect of their trades on the rates
is offset by another countervailing factor. Or it could be possible that exploiting this
anomaly is not profitable enough because of transaction costs or risk exposure. In
conclusion, there are reasons to believe that data-driven research can improve the
FX execution strategies with respect to the Fix benchmark.

1.2 Research Objective

As previously stated, this EA is quite effective in intraday trading. Thus, our focus
will go to improve interday trading. While prediction of rates can provide investors
with information to help increase execution efficiency and to reduce risk, the FX mar-
ket’s complexity makes FX prediction and forecasting a challenging research topic
(Hu, Zhao, & Khushi, 2021). However, older research (Evans, 2018) has shown some
predictive possibilities.

Artificial intelligence is being used more in many research fields and practical appli-
cations due to continuous development (Hu et al., 2021). These developments have
also led to an increasing number of investors applying deep learning (DL) models
to forecast FX and stock markets recently (Hu et al., 2021). Previous studies have
demonstrated that the non-linear, highly complex relationship of deep learning could
predict fluctuations in stock and FX prices (Rundo, 2019; Sirignano & Cont, 2019).
The focus of this paper is thus on deep learning models, as they have proven that
they can yield better return and accuracy in the field of financial forecasting and
prediction than more traditional linear models (Hu et al., 2021; Yang, Zhai, & Tao,
2020). This is in line with the Universal Representation Theorem (URT).

This theory states that when the hidden layers, k, in a standard feed-forward neural
network, is large enough, every continuous function that is continuously differen-
tiable can be approximated arbitrarily closely, uniformly over any bounded set by
functions realised by neural networks with one hidden layer (Dixon, Bilokon, &
Halperin, 2020). What hidden layers and feed-forward networks are, is explained in
Chapter 4. The URT is important because essentially a Neural Network (NN) can
approximate any continuous function, however, there are some important limita-
tions, mainly being the concern for over-fitting and while the NN can approximate
any function, it does not imply that the performance can be generalised on out-of-
sample datasets (Hornik, Stinchcombe, & White, 1989).
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To improve the trading execution, a DL model that has predictive capabilities re-
garding market movements of the 4 pm WMR fixing window is constructed. This
model uses both currency and ‘external’ data. Although the FX data is in a high
frequency, the other data sets have less frequent data points. The expectation is
that this exogenous data can be used to predict market behaviour of the specific
currency pair in and around the fixing window. Aspects that will be looked at, for
the scope of this thesis:

e Relations with the behaviour of historical and contemporaneous data of the
currency pair.

e Relations with the market dynamics of other asset classes (stocks, bonds, etc.).
(Cho, Choi, Kim, & Kim, 2016; Turkington & Yazdani, 2020)

e Information embedded in the month-end effects of hedge rebalancing (Noual
and Kasikov, 2009).

The aim of this thesis is to develop a DL model that can be used to predict the
WM /Reuters fixing rate of a currency pair, using historical and contemporaneous
data of the currency pair, as well as other endogenous data. These models can
provide traders a prediction of future movements in the market, which can then be
used to optimise the execution strategy or execution moment, given the FX orders
that need to be traded. A prerequisite is that the output of the model should be
actionable. The predictive capabilities of the DL model could be applied in multiple
ways:

e To optimise the trading execution, the model can dynamically adjust the EA,
so that orders can be timed based on expected future market movements,
instead of spreading the child orders equally over time.

e The DL model can be applied to predict the fix before the window starts, so
trades can be executed before or after the window to achieve a better rate
than what would have been predicted during the window.

e Finally, the model can be used to predict the fix a day into the future, such
that non-time-constrained orders can be executed on the day that has the
expected most favourable fix.

This thesis will focus on the last application as the implementation within an exe-
cution algorithm is out of the scope of this thesis. Thus, the goal of the DL model
is to predict the price of the fix a day in advance. As results, due to the special
market dynamics of the fix, we suggest that the efficient market hypothesis, during
this window, does not hold (Michelberger & Witte, 2016).

1.3 Novelty

Many of the published papers focus on the creation of a novel algorithm (Hu et al.,
2021). The data mostly consists of the price and order flows of the asset aimed to
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predict. The novelty in this thesis is that a large range of other variables is used as
input for a DL model, to predict a specific currency pair.

Although the WMR 4 pm fixing window is one of, if not the most important bench-
mark rate, not much academic research has been done on the observable market
structure around this window (Michelberger & Witte, 2016). This thesis will also
contribute to the literature on this topic.

Finally, we will do extensive hyperparameter analysis and tuning, on a DL model
that is fitted on (highly noisy) time series data, to get an insight into how different
hyperparameters influence the outcome of the model. This, as far as we are aware,
has not been done extensively.
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2. Study Objective

The aim of this thesis is to investigate if a prediction can be made of the WMR one
day in advance, by applying deep learning techniques. Additionally, data wrangling
and engineering techniques are applied to a collection of datasets, where especially,
the end of month rebalancing data is of interest, to create a data pipeline that
transforms raw data into data primed for machine learning. Finally, the aim is to
compare different models and test the best performing model on robustness and
parameter sensitivity.

The study objective is formulated as following:

Apply data wrangling and engineering techniques on relevant datasets, to prepare
the data to be fed into a theoretically backed deep learning architecture, and
evaluate the performance, to forecast the WMR fix one day in advance

This research is intended as a first step in applying deep learning techniques on
(highly noisy) financial time-series data in this organisation. Where we define highly
noisy as the phenomena where the exact same data input can result in different
outputs of the target variable. Deep learning models are complex and require a lot
of training and tuning before they are optimised. The study objective to find an
optimised deep learning architecture is limited by time and computing power, which
means that, realistically, the outcome will not be the absolute best model for the
situation. The study, however, will provide a framework on which more tuning can
be applied.

2.1 Research Questions

To achieve the study objective, a main question is formulated. This main question
will be answered with the help of several research questions.

Main Question: “What is the forecasting performance of the proposed machine
learning models on the WMR Fix one day in advance, when using historical FX,
bonds, and equity market data?”

Hypothesis: We believe that the machine learning model, using FX, bonds, and eq-
uity market data, will be able to predict price movements, especially when using

14



end-of-month FX hedge re-balancing data of asset managers and pension funds

To indicate how accurate the machine learning model is, we define performance
measurement in section 4.4.

Sub-question 1: “How can the selected models be applied to FX spot market
prediction?”

An extensive literature research is conducted in order to get a broad overview of
which models have the best potential to perform well on the forecasting of the WMR
Fix.

Sub-question 2: “What is the performance and robustness of the models on
predicting the FX spot market movements?”

The robustness of the models is tested by measuring convergence variability. The
model is trained multiple times on the same data, using different seeds. This ran-
domises the start of the optimisation and could result in divergent outcomes when
the model is not stable.

Sub-question 3: “How do the different hyperparameters affect the model
performance?”

The best performing model is analysed more deeply and important hyper-parameters
are discussed. This results in a clearer view of the mechanics of the model.

2.2 Scope and Limitations

e The research is focused on predicting the EUR/USD currency pair. The
method is applicable for other currency pairs, but that is out of the scope
of this thesis.

e The DL model can be implemented for the timing of an execution algorithm,
however, this implementation is out of the scope for this thesis.

e The ability to accurately predict does not guarantee a profitable strategy.
Complex issues regarding exchange matching rules, position constraints, price
impact, queue position, latency, and investment mandate constraints all influ-
ence the profitability of a strategy. Designing a profitable application for the
developed algorithm is out of scope for this thesis.
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3. Data, Algorithms, and Software

In this chapter, academic research is summarised about what data could provide
insights into the WMR 4 pm fixing window. As well as research about which algo-
rithms have the best predictive capability when using financial time series data.

Not much academic research has been conducted into what data could have pre-
dictive capabilities of the WMR 4 pm Fix specifically. So, most cited research will
concentrate on a general relationship between certain data and a currency pair, not
specifically during the window. However, due to the compression of a large order
flow into the window, a special market dynamic is created (Michelberger & Witte,
2016). This could result in a different outcome than described in the literature.

3.1 Data Literature Review

The purpose of this section is to explore the literature for external factors that could
have predictive value for currencies.

3.1.1 Stocks and Bonds
Bonds

The International debt securities market makes it possible for borrowers and lenders
to get involved in the buying, selling, and issuance of bonds that are denominated
in different currencies. In theory, often, the uncovered interest parity (UIP) is as-
sumed. This theory defines that the difference in interest rates between two countries
is equal to the relative change in FX rates over the same period. When this the-
ory does not hold, there is opportunity to make a risk-free profit using FX arbitrage.

Although the theory is clear on the UIP, Cohen (2005) state that; “the empirical ev-
idence for this relationship is weak”. They find that when a given currency is strong
relative to historical averages then generally more debt is issued in that currency,
also when a weak currency has the same expected return. The same source finds
that more debt is also issued in a certain currency when the long-term interest rate
is high relative to other major currencies. Although these conclusions are based on
data from 1993 Q3 till 2004 Q4, and shows the reverse causality compared to what
we are looking for, the paper does indicate that historical data on debt issuance and
bond yield could provide predictive value for a currency pair.
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Ang and Chen (2010) find that; “in a no-arbitrage framework, variables that affect
the pricing of domestic yield curve have the potential to predict foreign exchange
risk premiums.” In particular currencies with large changes in interest rate levels
tend to appreciate and currencies where the term spread is steep tend to depreciate.

Stocks

Links between the equity and FX markets have been studied thoroughly, but ev-
idence of a strong link is relatively rare (Turkington & Yazdani, 2020). However,
Turkington and Yazdani (2020) developed a strategy where currency positions are
taken based on the trailing 12-month equity index returns for the particular coun-
tries. They found that the differential in recent equity market returns between
countries offers a consistent prediction of next month’s currency returns. This re-
sult is remarkably robust over time to changes in construction and parameters. The
proposed motivation behind this is that investors’ demand increases for outperform-
ing equity markets. This results in an appreciating exchange rate for countries with
the strongest equity return in the previous year.

Djeutem and Dunbar (2018) also found empirical evidence in favour of equity re-
turns as exchange rate predictor. The paper estimates that the US expected excess
equity returns are responsible for 70-90% of the expected exchange rate changes for
Canada, Japan, and the UK. Smales and Kininmonth (2016) also summarises mul-
tiple papers that found relations between equities and FX price movements. This
result is promising for the objective of this thesis, as equity returns could provide
predictive value for a currency pair.

3.1.2 Hedge Rebalancing

When investment managers invest in international investments, they can hedge the
currency exposures associated with the exchange rate risk, e.g. in order to match
the benchmark for their fund. Typically this hedge is rebalanced at the last busi-
ness day of each month and during the WMR 4 pm window (Melvin & Prins, 2015).
Melvin, Pan, and Wikstrom (2020) show that a mid-month rebalancing, which is 11
days before month end, realises 0.97 times the average costs. The reduction in costs
is the result of seasonalities in the spreads. The same paper finds that Fridays and
quarter-end, especially, have higher rebalancing costs.

In contrast to the previous section, where higher performance in the equity market
indicated higher performance for that particular currency. Hau and Rey (2006) finds
that higher returns in the home equity markets compared to foreign equity markets
are associated with the depreciation of the home currency. Melvin and Prins (2015)
find similar results, they find that around the end-of-month Fix, the equity market
out-performance of a certain market is highly significantly correlated with a currency
depreciation in the hours leading up to the Fix. This depreciation partially reverts
after the Fix. This hedging of the exchange rate adjustment is most notable for the
currencies of the largest equity markets by capitalisation; the Eurozone, Japan, and
the U.S. The same paper also indicates that despite the fact that the behaviour of
hedgers is known to the rest of the market, and predictable in advance, the short-run
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effect remains significant.

Melvin and Prins (2015) quantify the result further, they found that a 10% appre-
ciation in equity prices in a month leads to 14 basis points of home currency depre-
ciation during the WMR end-of-month Fix. This result is statistically significant
and although the effect seems quite small, the currency depreciation is concentrated
in the hour leading up to the WMR Fix. The same paper finds evidence for price
reversion after the Fix on all days, because of intra-month hedge rebalancing. To
quantify this further, the paper found that 72% of the price movement in the hour
leading up to the Fix is reversed before noon of the next day. Making the reversion
effect on end-of-month days, two times larger than other days.

Hau and Rey (2004) also finds that exchange rate returns, equity portfolio flows and
equity market returns are consistent with a dynamic rebalancing of foreign equity
positions by global investors.

A seemingly opposing view is publish by Ritchie (2021) on Bloomberg. They report
that the month-end models that look to predict the re-balancing flows of the FX
exposure have deteriorated in performance since 2021. Therefore, some banks dis-
continued their models, while others chose to update them. These ‘updated’ models
are less focused on the final day of the month and now have an extended period
to three days before the end-of-month, where it aims to predict re-balancing flows.
This seems to significantly increase returns, as the updated model is reported to
have an annualised return of 5.74% when back-dated, compared to a 0.38% return
of the former algorithm.

Summarising, this means that during the end-of-month period, data of the stock
returns could provide serious predictive benefit for the model. Especially because,
during the window, the whole month’s worth of hedging is concentrated in a small
time frame.

3.2 Algorithms Literature Review

This section aims to provide an overview of best-performing DL models that were
applied to the relevant context in earlier published papers.

Many different models have been suggested for Forex and financial time series pre-
diction in general, but Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Long Short-Term Memory (LSTM) are commonly used (deep)
neural network models (Yang et al., 2020). Each neural network has its strengths
and weaknesses, it is important to choose the right algorithm for the right task
(Islam, Hossain, Rahman, Hossain, & Andersson, 2020). To take advantage of the
different strengths, it is popular to construct a combination model from these neu-
ral networks to enhance the performance, such as a hybrid CNN and LSTM model
(Yang et al., 2020). Jain, Gupta, and Moghe (2018) found that the CNN-LSTM ar-
chitecture is superior to an LSTM and CNN in stock price movement prediction. An
explanation is that such a hybrid model can take advantage of the superior feature
extraction of CNN and the preferable time series prediction capabilities of LSTM.
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Li et al. (2019) improved upon this architecture by adding an attention mechanism,
further increasing prediction accuracy. Interestingly, more recently, van der Meulen,
Vermeulen, and Tetereva (2021) found that, in their context, the LSTM standalone
outperforms a.o. an Attention-LSTM hybrid. Suggesting that a hybrid, or more
sophisticated model, does not necessarily outperform the more simple architectures.

3.2.1 Feature Extraction

There is a large variety of variables that can be used for making market predictions.
Raw price data, data from other markets that are connected to the target market,
and technical indicators extracted from historical data are some examples. Because
of the diversity of the information, it is not straightforward to accumulate the data
in a way that the prediction algorithm can use it. Therefore, ideally, an automatic
approach is used to dissect the useful features from the different data sets that could
be beneficial for Forex prediction.

Hoseinzade and Haratizadeh (2019) designed a feature extraction algorithm based
on a CNN and Yang et al. (2020) expanded on that model. The CNN is designed in
the computer vision and image processing field and is more recently being applied
in extracting market features. Experimental results show high effectiveness and this
research will thus deploy the CNN for feature extraction.

3.2.2 Time Series Forecasting

RNN is a deep learning methodology that is mainly used for time series analysis
because it has feedback connections inside the network that allow past information
to remain. This results in superior non-linear and time series prediction capabilities,
compared to conventional artificial neural networks (Islam et al., 2020). An LSTM
network, or just LSTM, is a deep RNN model that is built from LSTM units. The
advantage of an LSTM is that it assigns weights to data, which extends the RNN’s
memory. In this paper, LSTM is used for the time series forecasting segment of the
algorithm. An LSTM uses hidden neurons, which makes it very efficient in time
series prediction (Islam et al., 2020). The same reason also makes it a popular
choice as a Forex prediction method in the literature (Hu et al., 2021). We develop
an LSTM because it has been shown to outperform other RNNs on tasks involving
long time lags (Gers, Schraudolph, & Schmidhuber, 2002).

3.2.3 Attention Mechanism

Attention mechanisms were initially developed to improve neural machine transla-
tion (Luong et al., 2015). When applied to time series forecasting, the attention
mechanism can adaptively select relevant driving series and capture long-term tem-
poral dependencies (Qin et al., 2017). NNs using this mechanism can outperform
state-of-the-art methods for time series prediction (Li et al., 2019; Qin et al., 2017)
However, Qin et al. (2017) also warn that this mechanism might not be suitable for
time series forecasting. When there are multiple driving exogenous series are avail-
able, as can be the case with time series, it can result in difficulties for the network
to explicitly select driving exogenous series.
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3.3 Data Sets

The following data sets are used, consisting of data since 01-01-2000:

1. A FX data set from New Change, consisting of the EUR/USD open, close,
high, and low price, of the pair in minute granularity.

2. EuroStoxxb0 and SP500 datasets from Bloomberg, consisting of the close
prices in daily granularity.

3. Bond yield dataset of the US and EU 10 year generic bonds, in daily granu-
larity. This data is used as indication of interest rates.

4. Bond return dataset (LUATTRUU Index) from Bloomberg, consisting of the
US Treasury Index, which measures US dollar-denominated, fixed-rate, nomi-
nal debt issued by the US Treasury and the Pan-European unhedged govern-
ment total return index (102513EU Index).

5. Dataset containing the daily WM /Reuters fix benchmark. Obtained from
Bloomberg.

3.4 Software

Preprocessing, data handling, data visualisation, and model creation are conducted
in Python (version 3.8). The scientific libraries, Pandas, and Numpy are extensively
used. For model creation the Scikit-learn, Tensorflow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2019) libraries are used. For model tuning the AWS cloud
is used.
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4. Methodology

In this chapter relevant research is dissected and used as a solid methodology, this
will provide a theory-ingrained backbone to the thesis and algorithm. This back-
bone is used at the end of the chapter to answer sub-question one:

Sub-question 1: “How can the selected models be applied to FX spot market
prediction?”

We have the following dilemma for the Methodology section. This section goes
over the functioning of neural networks, and how the different layers and gates
work. This, however, is not the central matter of this thesis, and this thesis does
not provide new insights into this knowledge field. This also is, by no means, the
expertise of the author.

Nevertheless, we do think that it is crucial to understand the complexities and the
general fundamentals of neural networks for this thesis. For this reason, the chapter
is not placed in the Appendix.

4.1 Neural Networks

Before going into the technical side of the neural network that is built during this
thesis, we will go over how a basic neural network functions and over some basic
definitions.

The input of an NN is features. A feature is a column of data values, that the
engineer of the NN thinks will provide information that the NN needs to make a
prediction. For example, the close prices of a stock index when predicting the stock
price of that index. The NN itself consists of multiple layers of neurons. The net-
work always starts with the input layer, where every neuron represents a feature.
So when the input data consist of four features, the input layer needs four neurons
to process this data.

The last layer of the NN is the output layer. The number of neurons in this layer
depends on the number of outputs the engineer requires from the network. When
only one variable needs to be predicted, the final layer requires only one neuron.
But when the network has to identify a picture and decide if it contains a cat, a
dog, or neither, then the network requires three neurons in the output layer.

21



The layers between the input and the output layer are called the hidden layers.
These hidden layers can theoretically have any number of neurons, but, more neu-
rons require more computing power and do not always increase performance. The
neurons of each sequential layer are connected, but the neurons within a layer are
not, as can be seen in 4.1. These connections are the weights, which dictate how
much information of a neuron gets passed on to the next neuron.

Input layer hidden layer hidden layer output layer

Figure 4.1: The architecture of a basic neural network with two hidden layers

To optimise the NN, the weights get changed between each training round, where
the loss function of the output dictates if the change in weights is beneficial or
not. By training and sub-sequentially changing weights, the NN can ‘learn’ which
information is important to predict the target variable.

4.2 The Models

This section provides the framework of the different models. During this thesis, three
different Neural Networks are built based on the literature from 3.2. The models
are an LSTM, a CNN-LSTM, and an Attention-CNN-LSTM, making it possible to

compare more sophisticated and hybrid models with a simpler model.

4.2.1 Input Tensor

A tensor is the way the input data of the NN is stored. For example, when a
scalar is used as input it is a O-dimension tensor, and an array and a matrix are
respectively a 1-dimensional and 2-dimensional tensor. The difference is that a
tensor can take advantage of hardware acceleration, making the computations more
quickly. The tensor used for the models in this thesis is a 2-dimensional tensor,
where the dimensions represent the input dimension (features), the time steps, and
the batch size. An example of such a tensor is visualised below in figure 4.2.
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Input_dim

Time_steps

Batch_size

Figure 4.2: An example of a three-dimensional input tensor (Govani, 2020)

Time steps is defined as the number of historical observations that are used to make
the current forecast. In this study the time steps is set at 260, or a little more than
a year of data. This is discussed further in subsection 5.2.2. This means that for a
prediction, the 260 previous observations are used as information.

The batch size is the number of training examples that are utilised in one iteration,
which is discussed further in subsection 5.6.2. The batch size is set by an tuning
algorithm. The input dimension or number of features used as input is 33, which is
discussed in Chapter 5.

Input dimension

Gunduz, Yaslan, and Cataltepe (2017) find that a CNN presented with specifi-
cally ordered features outperforms a CNN that is presented with randomly ordered
features. For this reason, the Pearson Product-Moment Correlation Coefficient
(PPMCC) is used to order the features. PPMCC is used to determine the de-
gree of linear correlation between two variables, the formula of PPMCC is found in
equation 4.1.

PPMCCILQ _ nz?:l (xp’t j ‘fp)(‘z‘;%t B ‘fq} . (41)
\/thl (@pe — Tp)? Dy (Tgr — Tg)?
Where z,, and , are the average values of the p-th and ¢-th feature and z,; and z,,
are the values of the p-th and ¢-th feature on the ¢-th day index. n is the number of
data points, like the number of trading days in a sample. When PPMCC < 0, then
the correlation is negative, consequently when PPMCC > 0 then the correlation is
positive.
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The batch size and time steps of the tensor are discussed in subsection 5.6.2 and
5.2.2 respectively.

4.2.2 CNN

A CNN consists of multiple layers, such as the input layer, output layer, the convo-
lutional layer, the fully connected layer, and the pooling layer.

Convolution Layer

The convolution layer is designed for convolution operations on the input data, which
can be considered as a filter for the input data. The filter works the following way:
there is an input layer, L — 1, which is an NxN matrix, followed by a convolutional
filter, which is an FxF matrix. Layer L is the output layer, and the input of this
layer is calculated by applying the filter to the input data, which is visualised below
in Figure 4.3.

Wi, 1 .WLF
We, WFF
Vi Vie _V;L_n
Via : Vie
Ve Ve Veu
Vea Vee
VN,l VN,F VN,N

Figure 4.3: Applying a FxF filter to the NxN input layer, to get outcome v; ; in the
output layer (Hoseinzade & Haratizadeh, 2019)

The values of the output layer are calculated by the filter, this is displayed in Formula
4.2:

F—1F-1
! -
Vij = 5(2 Z wk,m‘/i+k1,j+m) (4.2)
k=0 m=0
Where ’UZZ.J is the output value at row 7, column j of layer [, Vlﬂ:kl j+m 18 the input of

the filter, wy,,, is the weight at row k, column m of the filter and dis the activation
function. Equation 4.3 is a commonly used non-linear activation function called
ReLU, which we will go over more in-depth in subsection 5.5.2.

f(z) = maz(0,x) (4.3)
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Pooling Layer

Deep models, like CNN, generally, have many parameters. This makes the models
susceptible for overfitting (Hoseinzade & Haratizadeh, 2019). The pooling layer is
responsible for subsampling the data, which reduces the computational costs of the
learning process but also helps manage the overfitting problem. In a pooling layer,
the input values are transformed into only one value. This conversion reduces the
input size, and so the number of parameters that the model has to learn, which
reduces the risk of overfitting. The most common type of pooling is Max Pooling,
where simply the maximum value in a certain window is chosen.

Fully Connected Layer

The fully connected layer has the purpose to convert the, in previous layers extracted,
features to the final output. The relation is defined in the formula below.

v

ol =60 vl M) (4.4)

k

Where, bis again the activation function, wizl is the weight of the connection be-

tween neuron k from layer j — 1 and neuron ¢ from layer j. The value of neuron ¢
at the layer j is represented by v] (Hoseinzade & Haratizadeh, 2019).

4.2.3 RNN

The advantage an RNN provides over other Artificial Neural Networks is its memory
feature, which makes it better suited to extract temporal patterns in data (Chung
& Shin, 2018). In an RNN the specific timestamp or position in the sequence is
preserved. Each layer has a single input corresponding to the specific position in
the sequence, instead of having a sequence in a single input layer. Depending on
the position in the sequence, the input of a timestamp is allowed to interact with
the hidden layer h;. This is repeated for all timestamps in the sequence, which gives
the neural network the name Recurrent. Each layer takes as an additional argument
the previous timestamp’s hidden state h;_;. This results in Formula 4.5.

hy = 5(Wh[ht_1, ZEt] + bh) (45)

Where, W), is the hidden weight matrix, x; is an input vector and by is a bias.
This produces hidden activation h;, and the prediction ¢, is given by Formula 4.6.
The flow of an RNN process is shown in figure 4.4. When the RNN cannot extract
consequential temporal patterns, then it can happen that the bias b, becomes the
main output of the hidden layer, this is called saturation.

U = 5(WyThtbh) (4-6)

The weights and biases determine the mapping from z; to ;. During the training of
the network, the goal is to optimise the value of the loss function, by changing the
weights and biases of the network. This is achieved by the gradient descent-based
training which starts at the gradient with respect to the output and propagates
the derivatives backwards through the network using the chain rule, to find the lo-
cal minima (Rumelhart, Hinton, & Williams, 1986). In RNN the gradient descent
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training of the network is called the backpropagation through time because the er-
ror derivatives are backpropagated through the network and through time via the
recurrent connections (Werbos, 1990).

&)

tanh

)

Figure 4.4: Flow of an RNN process (Jung & Choi, 2021)

Hidden

state

Typically, RNNs use activation functions such as the logistic sigmoid (o) or the
hyperbolic tangent (tanh). The derivative of both these functions lies in the interval
[0,1], this results in a smaller squeezed gradient with respect to a weight (Hochreiter,
1998). Because the propagating backwards uses the chain rule, the gradient gets
smaller and smaller the further the network goes back in time. This results in a
vanishing gradient for earlier layers, or that new layers become unproportionally
large. This vanishing and exploding gradient is a known problem for RNNs. A way
to overcome this problem is by using an LSTM architecture which has an additional
pathway called the cell state. The cell state allows the LSTM to remember gradients
through long time sequences (Hochreiter & Schmidhuber, 1997).

4.2.4 LSTM

LSTM networks are specially designed for learning long-term dependencies (Hochre-
iter & Schmidhuber, 1997). The network has an additional pathway, the cell state,
which is updated by three different gates. The gates are described later in this
section. These gating units control how the input, x; and the recurrent input h;_1,
change the cell state in order to produce an update cell state C;. The logistic sigmoid
function, o(z) = H%, is important in the gating operations of the LSTM cell. It
controls the information flow through the gates, by taking the weighted inputs and
recurrent inputs and maps them to the [0,1] interval. Where 0 means no information
is passed through, and 1 means that all information is passed through the gate. The
flow process of an LSTM network is visualised in figure 4.5.
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state

Figure 4.5: Flow of an LSTM process (Jung & Choi, 2021)

The Input Gate

The objective of the input gate is to preserve the information of the cell state, which
is a representation of the information from previous time steps. It selectively updates
the cell state with new information. The gate i; employs a sigmoid to control this
information flow:

it = O'(Wi[ht_l, ZEt] + bz) (47)

And to update the cell state with new information a new set of candidate value C,
is generated, generally a hyperbolic tangent is defined by equation 4.8.

Cy = tanh(W[hy_y, x] + b,) (4.8)

The Forget Gate

The purpose of the forget gate is to determine which cell state is passed on to the
next time step. This is again achieved by a sigmoid gatekeeper function:

fo=oWylher, 2] + by) (4.9)

Where f; is the forget gate. Then, f; is multiplied by C;_; to select the information
that is passed onto the next step, 0 implying no information, and 1 implying that
all information is kept.

The Output Gate

This gate determines the prediction of the LSTM, using the current input z; and
cell state C;. To produce a version of the cell that is scaled to the interval [-1,1] a
hyperbolic tangent is applied to the values of the current cell state:

C; = tanh(Cy) (4.10)
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The output gate determines which information to pass to the output layer and thus
to the next time steps in the hidden state hy:

0y = O'(Wo[ht_l, l’t] + bo) (411)

To construct the output of the current timestep, o, and C} are multiplied:

h = 0,0 C* (4.12)

h; represents the recurrent input at time t+1 and functions as a basis for the pre-
diction at time t. The o operator stands for a composition of functions. If two
functions g : X — Y and f : Y — Z, then f o g is a function from X to Z. For
example, for x € X, (f o g)(x) = f(g(x)) holds.

New Cell State

The new cell state, C}, is based on the input and forget gate and is obtained by
updating the old cell state, C;_;, with the new candidate values from C;. The
updated cell is passed on to the next time step, ¢ + 1:

Ct - ft O Ct—l + it o C’t <413)

4.3 Attention Layer

Luong et al. (2015) have proposed two different attention categories, global and lo-
cal. In this study, we focus on the global category, also known as the Luong-style
attention.

At time step t, the attention layer takes hidden state h; as input, with the objective
to derive a context vector ¢;. This vector captures relevant source information to
help predict the target y;. The idea of a global attention mechanism is to consider
all the previous hidden states when deriving context vector ¢;. A variable-length
alignment vector a;, whose size is equal to the time steps in the input, is derived by
comparing the current hidden state h;, with each respective input hidden state h,:

- exp(score(hy, hy))

= align(hy, hy) = Z 4.14
ai(s) = align(fu, hs) S exp(score(hy, hL)) (4.14)

Where score is defined, in this study, as:
score(hy, hs) = hy - hy (4.15)

This results in a layer that, at each time step ¢, infers a variable-length alignment
weight vector a;, based on the current target state h; and all input states h,. Than
a global context ¢; is computed as the weighted average according to a;, over all
input states. This process is visualised in Figure 4.6.
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Attention Layer

Context vector

Global align weights

Figure 4.6: Attention Mechanism (Luong et al., 2015)

4.4 Operationalisation of Performance

The purpose of this section is to operationally define performance, we defined a
cost function for this purpose. This function is optimised during the training of the
model. A well-performing cost function is crucial, as the model is trained on this
metric. This function is also called the loss function, or objective function.

4.4.1 Loss function

The loss function evaluates the fitness of § to f(x), or of the predicted values on
the actual values. The difference between gy and f(z) are called residuals and can
be calculated in several different manners. In this paper, the loss is calculated by
the Huber loss function, which is defined below in formula 4.16.

50— f(2))?, for [ — f(z)| <6

(]9 — f(x)] — 59), otherwise (4.16)

Where ¢ is the threshold where the Huber loss function changes from a quadratic
to a linear loss function. In this study, the ¢ is set at 1.0, as this is the default
in the Tensorflow package. The results of this loss function are quadratic for small
residuals and linear for large residuals. This is desirable because the model gets
punished harshly for wrong predictions, similar to the Mean Squared Error (MSE)
loss function. however, when there are outliers in the data then the model gets
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punished less harshly, similar to a Mean Absolute Error (MAE) loss function. This
makes the optimisation less sensitive to outliers.

4.4.2 Validation Loss

The dataset is split into three different sets, the training-, validation-, and test-set.
This will be discussed in 5.2. During training, the performance of the NN is mea-
sured, and thus optimised on the validation loss. This increases generalisation and
avoids overfitting on the training set. The best-performing model on the validation
set is evaluated on a held-back test set.

4.4.3 Benchmark, and Performance Metrics

The model performances are measured on the test set. As, performance reporting
metrics, the MAE, MSE, and Theil’s U are used and compared to a naive prediction,
which is the benchmark. A naive prediction is using the WMR Fix at time ¢ as
prediction for time ¢+ 1. Meaning, using the WMR Fix value of today as prediction
for tomorrow. The equations for each metric are formulated below.

MAE - 2=y = il (4.17)
n

Where y; is the prediction of sample i, z; is the actual value of sample ¢, and
n is the total number of data points. This metric measures the absolute difference
between the predictions and actual values, and averages it out over the whole dataset.
Measuring the expected residual per prediction regardless of the error being negative
or positive.

n

1 2
MSE =~ ;(yz ;) (4.18)
The MSE is quite similar, yet, there is an important difference. This metric squares
all residuals, meaning, that outlier predictions, where the predictions are far from
the actual values, are weighted larger than with the MAE, due to the squaring of
the errors. A disadvantage of this metric is that when the model makes one bad
prediction, or if the data has outliers that the model does not generalise well on, it

results in a large MSE.

n_l(yt+1*zt+1 )2

Theil'sU = | =2t (4.19)
t=1 (yH;t = )2

The Theil’s U is a relative accuracy measure that compares the forecasted result
with naive forecasting. When the outcome U < 1, then the forecasting technique is
better than guessing, when U = 0, it is just as good as guessing, and when U > 1,
the forecasting technique is worse than guessing.

4.5 Data Wrangling

One of the most crucial, and most time-consuming, aspects of data analysis is data
wrangling (Kandel et al., 2011). Data wrangling is putting the data into a format
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usable for downstream analysis tools, which can be anything from data visualisation
to model fitting. During data wrangling it is important to look at data quality is-
sues, missing data, inconsistent values and unresolved duplicates. But also, deciding
if the data has enough quality, and how the data has to be transformed and cleaned
to bring it to a usable state for the model.

This section goes over the data model of the thesis to set a framework of what data
is necessary and in which form it is usable. This section also aims to provide an
overview of the data and data structures and how this data is transformed to be
usable.

4.5.1 Data Model

A data model, for this thesis, is a conceptualisation of the data that is necessary for
the, in this case, algorithm. It visualises how the data is related to each other and
what elements of the data sets are used by the model. This framework is helpful
during the data wrangling phase, as it defines what the data should look like after
the wrangling. The main data model is displayed in table: 4.1, where a column can
represent multiple variables. These variables are further dissected in subsequent
subsections and presented in tables 4.2, 4.3 and 4.6.

Table 4.1: Data Model: Conceptual Overview

Date FX  vari- | Index and | End-of- Hedge Target
ables Bond wvari- | Period re-balance | variable
ables variables variables values
2000/01/01
2021/12/31

All data sets are linked through the date variable. The FX variables, Index, and
Bond variables in the table are comprised of their respective daily returns among
other variables. The end-of-period variables are represented by one column, however
in the model each month, quarter and year have their own feature to indicate when
the end of the period occurs. This variable is explained more in-depth in the feature
engineering chapter 5.3. The hedge re-balance column represents the estimated
data of the hedge re-balance flows that have to occur in that particular month. This
variable is also discussed more in-depth in section 5.3. The final column represents
the target variables.

FX Features

The FX column in the conceptual overview consists of the daily “EUR/USD” FX
performance. To summarise the properties of each day, variables are added like the
standard deviation of the rates within this day.
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Table 4.2: Data Model: FX Features

Date FX performance | daily FX data | daily FX data
“EUR/USD” std.dev high-low spread
daily

2000/1/1

2021/12/31

Index and Bond Features

The Index and Bond column in the main overview consists of the daily returns of
the US and EURO indexes, as well as the daily returns of the US and EURO bonds.
Then a variable is added that represents the compounded return of each index and
bond. The aim of the added variable is to better capture the possible re-balancing
flows at the end of the week, month, quarter, and year.

Table 4.3: Data Model: Index and Bond Features

Date US index and | EURO index | compounded  return
bond daily re- | and bond daily | per month/year for
turn return each index/bond

2000/1/1

2021/12/31

End-of-Period Features

The end-of-period variables are required to give an indication to the NN of when
the end of, for example, a month is approaching. It is important that the NN has
an indication of when certain periods end, as the hedge re-balancing flows have to
be re-balanced before the start of the next period. This feature does not occur in
the data, and as such has to be engineered.

Table 4.4: Data Model: End-of-Period Features

H Date
2000/1/1

H End-of-Month ‘ End-of-Quarter End-of-Year H

2021/12/31
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Hedge Re-balance Flows Feature

The hedge re-balancing flows variable has to quantify which net hedge flows are
expected at the end of each period. The net hedge flow means that the hedge re-
balancing flows of the EU and US are cancelled out against each other, resulting in
the net hedge re-balancing flow. This flow is calculated for every day of the month
cumulatively, and ’resetting’ each start of the month, indicating that all hedges
should have been re-balanced.

Table 4.5: Data Model: Hedge re-balance flows

Date Net Hedge Flow

2000/1/1

2021/12/31

Target Variable

The final column in the main data model represents the target variable. The target
variable is the variable that the algorithm will predict. Important is to keep in mind
the stoppage time, so no information ’'leaks’ into the future. As the model uses
data that is measured end-of-day, no prediction can be made of the WMR that is
measured during that same day. When the model is trained in using information at
time ¢, it would use information that is only available in the future, after the WMR
of that day is already established. Therefore, each day, at the end of the day, the
WMR fix of the next day is predicted.

Table 4.6: Data Model: Target Variable

Date Target variable: WM/R + 1 day

2000,/1/1

2021/12/31

Overview

Essentially the process looks like the following: all data is cleaned and necessary
features are added, then all datasets are merged together. The next stage is feature
engineering, where the 'end-of-period” and ’hedge-rebalancing’ features are added,
based on domain knowledge. This complete dataset is used as input for the neural
network, where hyperparameters are set that fit our specific objective. Eventually,
this NN will make a prediction for the target variable. This process is set out in
Figure 4.7.
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Figure 4.7: Overview data model to predicted value

4.5.2 Data Cleaning

All data is fairly clean. There are no unexplainable outliers or quality issues. There-
fore, the data cleaning process is relatively straightforward. The five data sets have
most cleaning steps in common, these are displayed in Figure 4.8.

nnnnnnnnnnnnnnnnn Database Pracess Terminator Data set specific

Missing data? process Add features
— ) P G| e J
$3 raw data Load data and Chg:_k data for $3 clean data
bucket perform data missing values Yes bucket
type conversion

Get more data Missing data less Add missing dates with
then 1% of data? the average value of the

day before and after

Figure 4.8: Data flow chart of the cleaning process

Additionally, the equity and bond return datasets have in common that we add the
daily, monthly, and yearly cumulative return features.

Because the New Change FX dataset is in a minute granularity it requires data
processing as well. We take the mean price of each day to set the EUR/USD value of
each day. To capture the characteristics of the EUR/USD price development during
a day, the high-low spread of the day, the EUR/USD price standard deviation, and
the high-low spread standard deviation are added as variables. Where the high-low
spread is the difference between the highest price and lowest price during a certain
time period.
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4.6 Methodology Conclusion

This section brings together the outcomes of previous literature review subsections
3.1 and 3.2, and the current chapter, in order to answer sub-question one.

Sub-question 1: “How can the selected models be applied to FX spot market
prediction?”

In terms of data, both equity and bond data have the potential to be valuable in
the prediction of FX spot market behaviour. Most promising, however, is data on
the end-of-month hedge rebalancing flows.

The most promising models to be applied to this data and forecast the WMR fix
are neural networks. Although the literature is divided on which neural networks
have the best potential in this situation, the LSTM architecture, the CNN-LSTM
and Attention CNN-LSTM hybrid architectures seem to be the best choices.

35



5. dolution Design

In this chapter, the data is visualised, analysed, and prepared for the model. Station-
arity is discussed and several statistical tests are performed. This chapter discusses
the design of the DL algorithm and the different hyper-parameters that need to be
set to optimise the DL model.

5.1 Data Analysis

To get more insight into the data, we decompose the WMR variable utilising the
STL (Seasonal-Trend decomposition using LOESS) filtering procedure, proposed by
Cleveland, Cleveland, McRae, and Terpenning (1990). The STL consists of a se-
quence of LOESS smoothers, where LOESS stands for LOcal regrESSion, and it
decomposes a seasonal time series into three components; trend, seasonality, and
remainder (Resid). Where the trend is the low-frequency variation in the data to-
gether with long-term nonstationary changes in level. The seasonal component is
the variation in the data at or near the seasonal frequency. Lastly, the remainder is
the variation in the data that is not yet captured in the previous two components.

When we decompose the WMR fix time series, it is clear that this data is non-
seasonal, as can be seen in figure 5.1.

There is no clear long-term trend, no seasonal short-term cycle, and large residuals.
The decomposed data is not used as input for the neural network. As, Ouyang,
Ravier, and Jabloun (2021) show that although the STL decomposition as a prepro-
cessing step of the data can benefit forecasting using statistical methods, it harms
the machine learning ones.

5.1.1 Delta WMR Fix

In order to predict the WMR fix at t 4+ 1, we aim to predict the difference, or delta
(A), between the WMR fix of ¢ and t + 1, making the naive prediction of the WMR
delta equal to 0. After which we add this delta to the WMR fix of ¢ to make the
prediction of the WMR fix of ¢t + 1. This method is called differencing and results
in the target variable being the delta WMR fix. Besides being a more accurate tar-
get variable, this could also result in the target variable being normally distributed.
Yet, based on the D’Agostino and Pearson’s test (D’Agostino & Pearson, 1973), that
resulted in a p-value of 3.17758e-109, we reject the null hypothesis that the WMR
delta observations come from a normally distributed population. The distribution
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Figure 5.1: WMR decomposition

of the WMR delta is shown in 5.2.
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Figure 5.2: WMR delta distribution
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Stationarity

Many engineering studies overlook verifying essential diagnostics such as the Dickey-
Fuller test for testing stationarity of the time series (Shivarova, 2021). Informally,
stationarity is when the auto-covariance is independent of time. It is decisive in
characterising the prediction problem and the choice whether to use a more advanced
architecture. We tested the target variable on stationarity and this resulted in a p-
value < 0.05, rejecting non-stationarity based on this test, as shown in Table 5.1.

Table 5.1: Dickey-Fuller test for stationarity

ADF Statistic: -71.072384

p-value: 0.000000
Critical Test Statistics Values:

1%:  -3.432
5%:  -2.862
10%: -2.567

Other input variables are not stationary, this, however, is not an issue. We use
LSTMs which have the ability to take into account temporal dynamics, since these
models exhibit dynamic autocorrelation structure (Ryll & Seidens, 2019; Shivarova,
2021). It is important to not use a plain RNN, as they are not suited for non-
stationary time series modeling (Shivarova, 2021).

5.2 Data Preparation

5.2.1 Data split

The data split is according to a straightforward 0.8/0.1/0.1 split. Meaning that 80%
of the data set is used for training, 10% for validation during training, and 10% as a
test set for the model. We used a larger portion of the data for the training set than
what might be usual, the reason being that the total data set is relatively small for
the training a neural network. The data set is not shuffled and is split according to
time order, meaning the 80% that is the training data is the first 80% of the data
set, ordered by time. Random sampling is not a good idea as this causes look-ahead
bias. Each observation in the time series is dependent on previous observations. The
ordering of the observations therefore matters and the data is not i.i.d. Thus, the
split has to be in the training, validation, test order. The look-ahead bias is touched
upon further in subsection 5.2.4. This results in a training set of 3801 observations,
a validation set of 507 observations, and a test set of 501 observations.

5.2.2 Time Steps

By defining the time steps variable, we define how many past observations are used
to make the current forecast. We chose 260 observations, which is a little more
than the number of working days per year. This makes sure the all information of
the past year, including the same date in the previous year, is used for the fore-
cast. This results in the finished input tensor for the training-, validation- and
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test-set of respectively (3801, 260, 33), (507, 260, 33), and (501, 260, 33). Where
the first dimension is the number of observations in each set, the second dimension
is the number of time steps, and the third dimension is the number of input features.

The 260 time steps together is called a window. This window is used to make a
forecast of the next day, after which this window slides forward one observation.
Meaning that the 260th observation is dropped, and the current WMR Fix is added
as the first time step. This is called a rolling window, which is shown in Figure 5.3.

Complete Training set

Time

o
w1 260 Training Samples -
w2 260 Training Samples -
.

.
.
Wn 260 Training Samples -

Figure 5.3: Rolling window dataset

Windows

5.2.3 Data scaling

When using machine learning for prediction, it is important to scale the data to
avoid one feature dominating over another, due to disparate scales. For example,
when hypothetical variables X; >> X5, X, gets assigned a larger weight, with as a
result unequal importance for X; and X,. Additionally, unequal weights of variables
result in slower model convergence during training, as is displayed in figure 5.4. The
convergence is slower as the optimiser has more trouble when optimising the gradi-
ent descent. This hypothetical gradient decent is shown in red in the figure, where
in blue a function f(w) is visualised.

Gradient descent without scaling Gradient descent with scaling
X1 >>X; 0<X1 <1
0< X221
W2 W2
f(w) f(w)

W1 W1

Figure 5.4: Example of gradient descent, with and without scaling
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To scale the data a quantile transformer is used. This method transforms the fea-
tures into a uniform or normal distribution. This results in the most frequent values
being spread out and reduces the impact of outliers. This scaler distorts the linear
correlations between features measured at the same scale, however, it makes vari-
ables measured at different scales more directly comparable. data leakge can occur
when the scalar it not fitted correctly, this is discussed in subsection 5.2.4.

Below, in table 5.2, the comparison between different scalers is shown. This com-
parison is based on a CNN-LSTM model, which architecture is shown in table 5.3.
The model performance is measured on validation-loss, while training is done for
20 epochs. 20 epochs is chosen based on trial and error, more epochs were not
necessary, as can be seen in table 5.2. Model training is stopped early when the
model didn’t improve for 5 consecutive epochs, to save time and computing power.
The number of epochs is the number of passes that the fine-tuning algorithm takes
through the training dataset. Every epoch the weights of the neurons are changed
based on the outcome of the previous epoch. While the MAE between the differ-
ent scalers differs greatly, it is important to realise that also the naive prediction is
scaled differently. Thus, the MAE results cannot be directly compared to each other.
Another noticeable statistic is that different scalers do not influence the direction
that the model predicts the WMR moves towards (up or down), only how the same
data and outliers get represented.

Table 5.2: Comparison of Scalers

Scaler Early  Stop- | MAE MAE %  Improve- | MSE % Correct:
ping(Y/N) Naive ment  Upon | (x107°) | up-down
Predic- | Naive MAE
tion
MinMax || N(Epoch 20) | 0.0330 0.0383 %15.95 1.96 %53.04
Scaler 211440
Robust || Y(Epoch 7) 0.4300 0.5513 %28.19 1.96 %53.04
Scaler 210603
Standard|| Y(Epoch 10) | 0.4645 0.5899 %27.00 1.96 %53.04
Scaler 210585
Quantile || Y(Epoch 11) | 0.1852 0.2342 %26.44 1.96 %53.04
Trans- 211022
former

%Improvement Upon Naive MAE is calculated according to the following:

__ NaiveMAE—MAE
Y%Improvement = RVE * 100 .

The quantile transformer does not realise the largest improvement in MAE upon
the naive forecast. However, we still use this transformer for the data, as it makes
variables measured at different scales more directly comparable.
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Table 5.3: Scalar comparison CNN-LSTM

Layer (type) Neurons Param #
Conv1D 256 42496
MaxPooling1D None (Pool size 2) 0
Dropout None (10% dropout) 0
LSTM 32 36992
Dropout None (10% dropout) 0
Flatten None 0
Dense 1 3809
Total params: 83297

Trainable params 83297

Non-trainable params: 0

Batch Size = 64, Optimiser = Adam(Learning rate = 0.0001),
Loss Function = Huber Loss, Validation Split = 0.1

5.2.4 Look-Ahead Bias

In time series analysis, data ‘leakage’ happens easily. Data leakage is when data is
used by the model, that should not have been available to it at that point in time.
For example, when a model needs to predict ¢ at time ¢, using data from time ¢t — 1,
but also has access to some information from ¢ or t + 1. Less abstractly this means
that a model that needs to predict the WMR  fix today, using information from the
past, accidentally can access information from today or tomorrow on which it can
base its prediction.

Another form of data leakage can occur during the data split. For example, in the
subsection 5.2.1 on the data split, we did not mention a k-fold split. Although this
can be a useful tool to make the most of small datasets, it also is the cause of data
leakage during time series analysis. During a k-fold split, the data is sliced into
smaller pieces, and each of these pieces is used k — 1 times in the training set, and
one time as test set. This results in data of ¢t + 1,7+ 2...t +n, being used to predict
t for example, as shown in figure 5.5. Using a k-fold split would eliminate the auto-
correlation structure of the data.

The look-ahead bias is also a topic during data scaling. To avoid this bias, we must
scale the training data without knowledge of the validation and the test sets. Thus,
we simply fit the data scaler on the training set, and to avoid systematic bias into
the other sets we use the identical scaler on them as well.

5.3 Feature Engineering

Feature Engineering (FE) is well defined by Khurana, Samulowitz, and Turaga
(2018): “The task or process of altering the feature representation of a predictive
modeling problem to better fit a training algorithm is called feature engineering”.
FE generally involves using mathematical functions to transform a certain feature
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Training data Test data

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 5.5: K-fold split example, with five folds

space, with the goal to reduce the prediction error. Which features need to be
changed or created is often the result of domain knowledge or intuition.

5.3.1 End-of-period Features

In subsection 3.1.2 we found that the hedge re-balancing flows at the end of certain
periods can provide significant value for the NN in terms of prediction. As such, it is
decisive that we provide a feature to the NN that indicates the end of these periods.
This feature is constructed so the last five data points before the next month get a
sequentially bigger value. Resulting in month-end getting assigned a value of one,
the day before 0.8, two days before 0.6, etc. This example is displayed in table 5.7.

Table 5.4: Example: End-of-Period variables where T = end-of-quarter

H Time H End-of-Month ‘ End-of-Quarter ‘ End-of-Year H
T-5 0.0 0.0 0.0
T-4 0.2 0.2 0.0
T-3 0.4 0.4 0.0
T-2 0.6 0.6 0.0
T-1 0.8 0.8 0.0
T 1.0 1.0 0.0
T+1 0.0 0.0 0.0

For each end-of-month, quarter and year variable a separate feature is constructed
that will keep track of its respective cycle. It is chosen to start each month with
zero. Another option would be to decrease the value from one to zero in a similar
way after month-end. So that the first day of the month gets 0.8, the second day
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0.6 etc. However, we believe that hedge re-balancing flows are pulled earlier in the
month, and not pushed after the month-end. This is supported by the decisions the
banks made, mentioned in the Bloomberg article in subsection 3.1.2. Where they
extended the end-of-month hedge rebalancing model to include the few days before
the end-of-month, but not the few days after month-end

5.3.2 Hedge Re-balancing Flows Feature

Estimating the hedge re-balancing flows that will have to occur each month could be
a thesis by itself. In this research, however, we formulated a relatively simple model,
using some assumptions. The goal of this feature is to make an approximation of
the actual flows.

The Model

Previously, in subsection 3.1.2, we mentioned that an increase in the home equity
markets compared to foreign markets leads to a depreciation of the home currency.
The logic behind the depreciation is that foreign asset managers need to re-balance
their hedges when the home markets have increased more in value than the foreign
markets. Thus, to estimate the net hedge re-balancing flows at the end of a month, it
is required to estimate how much re-balancing the home asset managers and foreign
asset managers have to do, due to the performance of their respective asset markets.
In this case, we have decided to split the returns, in returns of risky assets, like
equity, and non-risky assets, like government bonds.

This resulted in the following model:

AHedgeg’é = AUMp « W57 s« Hid sr™ 4 ¢ (5.1)

The delta hedge represents the hedge that needs to be re-balanced of country B (B)
that invests in the stock market of country A during time t. Where A is country
A, with j as the asset market denominated in its currency. This is calculated by
multiplying the Assets Under Management (AUM) of country B with the Weight
(W) of the portfolio that is invested in the asset markets of A, with the hedge ratio
(H) that investors from B use for assets from A and eventually it is multiplied with
the return (r) of the investment in that particular period. At the end, we add an
error term, denoted by &, as the equation does not result in the exact AHedge flows.

For example:
USEquities __ USEquities U S Equities U S Equities
A‘[{edgeEUfunds,t - AUMEUf”LmdS * WEUfunds * HEUfunds *Ty (52)

The result is the amount of money that asset managers from B have to re-balance
as a consequence of their hedges and the investment performance of the assets from
country A. The data required to make this basic estimation of the hedge re-balancing
flows consist of, at least, yearly AUM data of EU and US funds, average portfolio
weights of equity and fixed income assets, and the hedge ratio on these respective
asset categories. Unfortunately, not much academic research is published on this
data.
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Data: Assets Under Management

Boston Consultancy Group (BCG) publishes every year a Global Asset Management
Report, which includes specifically the AUM of European and North-American asset
managers. We use these reports as estimation for the AUM for each year from 2007
till 2020 and 2002'. Although this data might not be exactly correct, due to the
nature that the exact numbers of AUM are practically impossible to measure, the
methodology stays consistent over the years, which is crucial. For the years where
no AUM amounts can be found, using the same methodology, the AUM is linearly
interpolated between known years. For 2000, 2001, and 2021, the same growth rate
as reported in 2002 and 2020 are used respectively for extrapolation. This data can

be found in table 5.5, where the years that are interpolated or extrapolated are in
bold.

Table 5.5: Assumed AUM of EU and US asset managers from 2000 till 2021 in
Trillion Dollars

Year EU AUM | US AUM EU growth | US growth
rate rate
2000 9.3 13.5 1.1 1.1
2001 10.2 15.1 1.1 1.1
2002 (Kramer et al., 2011) 11.1 16.8 1.1 1.1
2003 12.1 18.7 1.1 1.1
2004 13.3 20.8 1.1 1.1
2005 14.5 23.2 1.1 1.1
2006 15.8 25.9 1.1 1.1
2007 (Shub et al., 2012) 173 98.8 1.1 .1
2008 (Heredia et al., 2020) | 11.6 18.7 0.7 0.6
2009 (Heredia et al., 2021) 13.5 22.1 1.2 1.2
2010 (Shub et al., 2012) 17.5 27.6 1.3 1.2
2011 (Shub et al., 2012) 17.4 27.7 1.0 1.0
2012 (Shub et al., 2014) 18.0 29.4 1.0 1.1
2013 (Shub et al., 2014) 19.3 34.0 1.1 1.2
2014 (Shub et al., 2016) 18.9 36.4 1.0 .1
2015 (Beardsley et al., 2017) || 17.2 31.2 0.9 0.9
2016 (Fages et al., 2018) 20.8 33.0 1.2 1.1
2017 (Fages et al., 2018) 21.2 37.2 1.0 1.1
2018 (Heredia et al., 2020) 20.2 35.4 1.0 1.0
2019 (Heredia et al., 2021) 23.5 42.2 1.2 1.2
2020 (Heredia et al., 2021) 25.7 48.6 1.1 1.2
2021 28.1 56.0 1.1 1.2

IThe reason that some data is missing is because these reports are not stored centrally, but
are distributed on different web pages on the internet. Therefore, not all reports since 2000 were
found.
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Data: Assets Under Management Invested in Foreign Assets

With the data on AUM of the US and EU obtained, we need to know what per-
centage of those AUM of European investors are invested in the US and vice versa.
For the European asset managers, we assume that 19.86% of the AUM are invested
in dollar-denominated assets (Pojarliev, 2018). For asset managers from the US, we
assume that 7.92% of the AUM have Euro exposure (Pojarliev, 2018).

Data: Risky/Non-risky Asset Allocation

The next piece of the required information is the ratio of which EU and US in-
vestors invest in risky and non-risky assets. This information is not widespread
either, however, Andonov et al. (2012) published a paper in 2012 from which the
risky /non-risky asset ratios of EU and US investors can be calculated. The numbers
in table 5.6 are extracted from that paper, with as result, a 0.635 and 0.702 ratio of
risky /non-risky assets for the EU and US investors respectively.

Table 5.6: Statistics on pensionfunds extacted from Andonov et al. (2012)

Summary statistics in 2012 U.S. Europe

Public Private Public Private
Funds 63 127 4 34
%Risky 0.745 0.617 0.749  0.560

Averege Fund Size in $Billion 32.543 8.085 100.131 17.896

Funds * Average Size 2050.209 1026.795 400.524 608.464
%Risky Total 0.702 0.635

Data: Asset Hedge Ratio’s

Now we know the AUM that are invested in the EU and the US by, respectively, the
US and the EU, and how those funds are divided over risky and non-risky assets,
the next data that has to be acquired is which share of the risky and non-risky asset
exposures are hedged. We could not find any published data on the specific hedge
ratios of the risky and non-risky assets by European and American funds. Hence,
we assume that the hedge ratio of the risky and non-risky assets is the same. This
results in the assumption that European investors hedge 80% of the Dollar exposure,
while investors from the US hedge 50% of the Euro exposure (Melvin & Prins, 2015).

Assumptions and Limitations

To start with the assumptions on AUM data, we only have data from the end of
each year. It is assumed that the AUM grows in the growth rate mentioned in table
5.5. To estimate the AUM at each day between the known periods, which are each
end of the year, the AUM is calculated according to formula 5.3.
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AUM (1) = AUMA(t—=1) (W f5 () WA (6)+ W, e £5 () + W rB (1)) + F,

(5.3)
Where AUM;; (t) is the AUM of the asset managers of country A. The AUM on
t depens on the AUM of the managers on ¢t — 1, the weight of the portfolio that is
invested respectively in risk free and risky assets assets from country A (W;‘}a, WA
multiplied with their respective returns on time t (rf4(¢),74(¢)). And it depends on
the weight the managers invested in risk free and risky assets from country B (Wﬁ”,
WA») multiplied with their respective returns on time ¢ (rf5(¢),rB(t)). Finally, F;
denotes the inflow or outflow of AUM.

This daily change is calculated with the risky/non-risky asset allocation together
with the amount that is invested in the EU for US investors, and vice versa. The
discrepancy between the AUM that is measured by BCG and the AUM that is cal-
culated, is assumed as inflow /outflow of money in/out of the market. This flow is
uniformly distributed over the whole year and represented as F; in formula 5.3. An
example of this flow from the period 2001 to 2002 for European AUM is depicted
below in figure 5.6. FU_AUM w_R is the AUM that we expect based on returns.
To make this fit with the AUM measurement of 2002, from BCG, we calculated the
cumulative (in)flow over the year, which is denoted by CUMU_EU _in flow in the
previously mentioned figure 5.6 and F} in the previously mentioned formula 5.3

2 /
_,—(—'_'_H_'_'_
— EU_AUM
/ EU_AUM_w_R
0 e —— CUMU_EU_inflow
'Q\I 'Q";I o ’ ol 4 o : :\X‘ 'Q\I
Al e Bl Al AN e o

date

Figure 5.6: European AUM 2001-2002 with flow

Other assumptions we have to make as a consequence of the lack of data are that
the hedge ratios, the risky/non-risky asset ratios, and the portfolio weights of assets
invested in the EU and US stay constant over the whole period from 2001 till 2021.
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Finally, the current model is restricted to the re-balancing flows as a result of EU
and US investors. However, re-balancing flows also occur because of other countries
investing in the EU and US, these flows are not taken into account. The flows
that occur because of corporate actions and hedged corporate revenue are also not
taken into account. The consequence being that there might be a larger discrepancy
between the estimated hedge flows and the actual hedge flows that occur, then what
would be the case if we would take these other flows into account as well.

Implementation

When fully implemented, the estimation of formula 5.3 results in the ‘weight’ of
which part of the returns needs to be re-balanced as a consequence of the hedges.
For example, these ‘weights’ mean that all things being equal, and US equities in-
crease by 1%, the expected hedge re-balancing flow = is estimated by multiplying
the weight with the returns, so x = W x r. These weights over time are depicted in
figure 5.7, where the y-axis is in Billion US Dollars.
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—— EU hedge weight for US Equities

EU hedge weight for US Bonds
——— S hedge weight for EU Equities

——— S hedge weight for EU Bonds
25
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— o
L (=1

-
=
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Figure 5.7: Evolution of hedge rebalancing weights over time (2001-2021)

With these weights and the returns of each respective category, the total hedge
rebalancing flows are calculated. The results are shown in figure 5.8, where

EU _total_hedge_flow is the hedge flow expected from EU investors in the US, and
US_total_hedge_flow vice versa. Net_hedge_flow is the sum of the EU and US
expected hedge flows. These net hedge flows are isolated in figure 5.9 for better
visualisation.
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Figure 5.8: EU,US and net hedge flows (2001-2021)
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Figure 5.9: Net end-of-month hedge rebalancing flows (2001-2021)

5.4 Complete Data Set

The complete data set has 5069 samples, starting on 02-01-2001 and ending on 23-
12-2021. The number of samples is the first dimension in the tensor. The second
dimension is the window size, which is the 260 time steps. The third, and final,

48



dimension are the 33 features, which can be found in Appendix A.2.

5.5 Algorithm Design

Empirical studies have shown that, in most circumstances, a more complex ML
model, with deeper (i.e., more layers) and more width (i.e., more neurons per layer)
work better than the models with a simple structure (He, Zhang, Ren, & Sun,
2016; Zagoruyko & Komodakis, 2016). The downside of the more complex models
is that they are more difficult to train, and require more computational resources.
Zagoruyko and Komodakis (2016) show that making a network deeper quickly results
in diminishing returns, where each fraction of a percentage of improved accuracy
costs nearly a doubling of the number of layers. The same paper suggests a network
with a much wider architecture, that achieves a far superior result over the deep
counterparts.

5.5.1 Optimiser

The cost function is optimised by the optimiser. A standard optimiser is a gradient
descent, which is described in Subsection 4.2.3. The optimiser’s task is essentially
to optimise the loss function, it depends on the function if it has to be minimised
or maximised. Essentially, the loss function measures how good the predictions of
the model are compared to the actual values. The optimiser determines in which
direction and with what magnitude changes should be made to the parameters in
order to improve the cost function.

Learning Rate

The learning rate influences the size of the steps that the optimiser takes when opti-
mising the parameters of the model. When the learning rate is large, the optimiser
makes large steps towards the seemingly right direction, sometimes overshooting the
actual optimum value. When the learning rate is small, the optimiser takes small
steps towards the optimum, however, as these steps are small, the optimisation
process is slow and overfitting can occur (Smith, 2018).

Adam Optimser

The optimiser we use is the Adam optimiser. This is a method for efficient stochastic
optimisation (Kingma & Ba, 2014). The advantage of this method is a.o. that it does
not require a stationary objective function and is appropriate for very noisy gradients
(Kingma & Ba, 2014). Reddi, Kale, and Kumar (2019) proposed an updated version
of Adam, as situations do occur when Adam does not converge to the optimal
solution. This updated version is called AMSGrad, which we implement in our
algorithm.

5.5.2 Activation Functions

The most commonly used activation functions are non-linear activation functions.
Due to non-linear characteristics of real world errors, non-linear activation functions
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are preferred over their linear counterparts in a Neural Network (Sharma, Sharma,
& Athaiya, 2017). In our case, the tanh function seems to be the most promising.
The function can be defined as:

f(z) = tanh(z) = 2

_ — 5.4
14e2 (54)

The function is continuous and differentiable, which is important for the optimisa-
tion phase. The values of the function lie in the range -1 to 1, where large input
values get mapped closer to 1, and large negative values closer to -1.

Using the Rectified Linear Units (ReLLU) as activation function is generally conven-
tional for deep NNs (Agarap, 2018). The ReL.U function is defined as:

f(z) = ReLU(x) = max(0, ) (5.5)

This function works by thresholding values at 0, so it outputs 0 when x < 0, and
otherwise it outputs a linear function when x > 0. The tanh and ReLU functions
are shown in appendix A.1. Both functions are used to find the best-performing
model.

5.6 Hyper-parameters and Optimisation

Hyper-parameters optimisation is crucial, as sub-optimal parameters result in unnec-
essarily long training times and an underperforming model (Smith, 2018). However,
optimisation of the parameters is not easy, Smith (2018), and Snoek, Larochelle,
and Adams (2012) even call it a ‘black art’ that needs years of experience to master.

5.6.1 Epochs

The epochs are the number of passes that the fine-tuning algorithm takes through
the training dataset. After each epoch, the weights of the neurons are changed based
on the outcome of the previous epoch. After a certain number of epochs the model
improvements diminish or vanish completely. That is why generally, the model
training is stopped early if the model does not improve anymore after a certain
number of epochs.

5.6.2 Batch Size

The batch size is the number of training examples that are utilised in one iteration.
So when batch size = 10, ten samples are passed to the network in a ‘batch’, after
which the weights are updated. Small batch sizes have been recommended for regu-
larisation effects, but other research has shown that larger batch sizes could achieve
a higher forecasting accuracy (Smith, 2018).

5.6.3 Dropout

Dropout is a way to perform regularisation. This is crucial, as a relatively small
dataset can easily overfit, and perform poorly on held-out test data. Dropout re-
moves randomly a certain percentage of neurons from a layer during training. This
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makes the network more robust as the network cannot rely on just a few specific
neurons (Smith, 2018).

5.7 Hyper-parameter Optimisation

To assist with the hyper-parameter optimisation, AWS cloud is used. All three mod-
els are given a hyperparameter-range from which 50 different models are created and
trained per architecture. The 50 architectures per model are not chosen randomly
but optimised by a Bayesial search algorithm that estimates the possibly best model
on the previously trained models. This algorithm is discussed in subsection 5.7.1
below. The hyperparameter ranges are discussed later in subsection 5.7.2.

5.7.1 Bayesian Optimisation

To optimise the hyperparameter tuning, a Bayesian search algorithm is deployed.
Snoek et al. (2012) have shown that using this automatic approach to optimise the
hyperparameters can reach or surpass human expert-level- optimisation.

Bayesian optimisation is used to find the minimum of a function f(z), in our case
the objective function, on some bounded set x. The algorithm constructs a proba-
bilistic model for f(x) and then makes a decision about where in y to next evaluate
the function, using all information available from previous evaluations of f(z).

During the model tuning, it is chosen to train five models simultaneously. The
Bayesian optimiser can benefit from previously trained models, but training all
models sequentially takes too much time, while the probability of better model
performance is small.

5.7.2 Hyperparameter Ranges

For the Bayesian optimisation to work we need to define the bounded set x. In the
next subsubsections, this bounded set is discussed per hyperparameter.

Epochs

The maximum epochs that each model will train is set at 100. However, when the
model does not improve for 15 consecutive epochs then the training is halted early,
to save computing time.

Hyperparameter Range: Batch Size

For the batch size hyperparameter values of 2%, 25,...,2° are chosen. This results in

a minimum batch size of 16 and a maximum of 512 which is a relatively standard
range for our small dataset. It is also standard to use exponents of two (Smith,
2018).
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Hyperparameter-Range: Learning Rate

The learning rate is set as a continuous parameter between 1 x* 107 and 1 % 1071,
meaning that any value between those boundaries can be set as learning rate. The
scale on which the learning rate is chosen is logarithmic, so the smaller values are
chosen more often. This results in a minimum learning rate of 0.0001 and a maximum
learning rate of 0.1. This is smaller than standard (Smith, 2018), however, a lower
learning rate is appropriate due to the extreme noise in our data.

Hyperparameter Range: Neurons

The three models all have LSTM layers, the neurons for this layer are set as any
integer between 8 and 256. For the models that have CNN layers, the neurons are
separately set, as any integer between 8 and 256 as well. A useful reference point is
that the number of hidden units should be, at least, equal to the number of input
neurons for enough expressibility (Shivarova, 2021). We use 33 input neurons, so
we expect that the optimised architectures have at least 33 hidden neurons.

Hyperparameter Range: Dropout
The allowed dropout values for the bounded set are set at 0.2, 0.3, and 0.4, meaning
that at each layer a random selection of neurons between 20% and 40% are dropped.

Hyperparameter Range: Activation Functions

As mentioned earlier in subsection 5.5.2, the tanh activation function seems promis-
ing in our particular case, and the ReLLU activation function is conventional, therefor
both functions are tested during the tuning.

Table 5.7: Hyperparameter Ranges for Tuning

H Hyperparameter H Range Type H
Batch Size 24 25 .., 29 Categorical
Learning Rate 1107 = >1 %1071 Continuous
CNN Neurons 8— > 256 Integer
LSTM Neurons 8— > 256 Integer
Dropout 0.2,0.3,04 Categorical
Activation Function Tanh, ReLLU Categorical
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0. Results

This chapter describes the architecture and performance metrics of the best models
of each type. As well as how different parameters affect the objective function during
tuning. Eventually, the best-performing model is tested on robustness. At the end
of this chapter sub-questions two and three are answered:

Sub-question 2: “What is the performance and robustness of the models on
predicting the FX spot market movements?”

Sub-question 3: “How do the different hyperparameters affect the model
performance?”

6.1 Model Architectures

In this section, all model architectures are quickly discussed. The architecture of the
Attention CNN-LSTSM has a lot more parameters than the other models. Initially,
the number of parameters was more close, however, the architecture of the LSTM
and CNN-LSTM seem to cause saturation, which resulted in the choice for fewer
layers.

6.1.1 LSTM

The architecture of the LSTM NN consists of one LSTM layer and one dropout
layer, in total with 27,813 trainable parameters, as shown in table 6.1. The initial
architecture consisted of three of both layers, as shown in appendix B.1, however,
this possibly resulted in neuron saturation, as the prediction of this model is constant
as well.

6.1.2 CNN-LSTM

For this model, the initial architecture was more sophisticated as well. It consisted
of two convolution layers, followed by the combination of three LSTM and three
dropout layers, as shown in appendix B.2, however, this possibly resulted in neuron
saturation, as the prediction of this model is almost constant.
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Table 6.1: LSTM Architecture Results

Layer (type) Neurons Param #
LSTM 64 27744
Dropout None (40% dropout) 0
Dense 1 69
Total params: 27.813

Trainable params 27.813

Non-trainable params: 0

Batch Size = 260, Optimiser = Adam(Learning rate = 0.04137), Loss
Function = Huber Loss, Validation Split = 0.1, Activation = Tanh

The current model consists of a one-dimensional convolutional layer, followed by a
pooling layer and a dropout layer. The final layers of the model are an LSTM and
a dropout layer, followed by the output layer, as shown in table B.2. This results in
a model with 68,133 parameters.

Table 6.2: CNNLSTM Architecture Results

Layer (type) Neurons Param #
ConvlD 218 21800
MaxPooling1D 0 (pooling size = 2) 0
Dropout None (20% dropout) 0
LSTM 44 46288
Dropout None (20% dropout) 0
Dense 1 45
Total params: 68.133

Trainable params 68.133

Non-trainable params: 0

Batch Size = 512, Optimiser = Adam(Learning rate = 0.00012), Loss
Function = Huber Loss, Validation Split = 0.1, Activation = Tanh

6.1.3 Attention CNN-LSTM

The Attention CNN-LSTM has significantly more parameters than the other two
models, partly because it has more layers, and also because the tuning resulted in
more neurons for the CNN and LSTM layers. It starts with an LSTM layer, followed
by an Attention layer, one-dimensional convolutional layer, and dropout layer. The
final layers consist of an LSTM layer, dropout layer, and output layer, as shown in
table 6.3. This results in a model that has 682,332 parameters.
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Table 6.3: Attention-CNNLSTM Architecture Results

Layer (type) Neurons Param #
LSTM 209 178620
Attention 0 0
Conv1D 210 25376
LSTM 209 173160
Dropout None (40% dropout) 0
LSTM 209 304980
Dropout None (40% dropout) 0
Dense 1 196
Total params: 682.332

Trainable params 682.332

Non-trainable params: 0

Batch Size = 32, Optimiser = Adam(Learning rate = 0.00018), Loss
Function = Huber Loss, Validation Split = 0.1, Activation = Tanh

6.2 Model Performance

The performance of the NNs on the prediction of the WMR is displayed in table
6.4. The performance is fairly similar. Yet, the CNN-LSTM exceeds the LSTM
and Attention CNN-LSTM in terms of MSE and MAE performance, while all NNs
perform equally in terms of Theil’s U. The Theil’s U < 1, meaning that all NNs
outperform guessing when predicting the WMR, albeit marginally. All NNs outper-
form the benchmark, which is the naive prediction.

Although the WMR is the target variable, we established earlier that we want to
predict the difference between the WMR at t and t 4 1, the WMR delta. Measuring
performance on the WMR delta also makes more sense, as the predicted WMR at
t + 1 consists in a large part of a known variable, the WMR at ¢, resulting in only
small differences between the predictions of the WMR at ¢ + 1. The performance of
the NNs on the prediction of the WMR delta is presented in table 6.5.

Table 6.4: Model Performance on WMR

Model MSE MAE (WMR) | Theil's U WMR
(WMR)(x1077)

Naive 2.326 213 144 1.812 150 000 1.00011

LSTM 2.240 954 746 1.777 602 249 0.98095

CNN-LSTM 2.240 948 561 1.777 600 047 0.98095

Attention CNN- || 2.240 951 835 1.777 600 283 0.98095

LSTM

When we analyse the results of the performance metrics on the actual prediction,
which is the WMR delta, then the divergences are more pronounced. The LSTM
outperforms both the Attention CNN-LSTM and CNN-LSTM on the MSE and
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MAE, contrary to the previous results. Still, the CNN-LSTM outshines the At-
tention CNN-LSTM and LSTM in terms of Theil’s U of the prediction and actual
values. In terms of Theil’s U (delta: up-down), the CNN-LSTM and Attention
CNN-LSTM perform equally. This metric is based on if the NN predicts correctly
whether the delta is positive or negative and thus if the WMR will go up or down.
Both the Theil’s U metrics of the hybrid NNs are smaller than 1, indicating that
they outperform guessing, while the Theil’s U metrics of the LSTM are larger than
1, indicating that it performs worse than guessing. All NNs outperform the naive
prediction in terms of MSE, MAE, and Theils’s U.

Table 6.5: Model Performance on WMR delta

Model MSE MAE Theil’'s U | Theil’s % Correct:
(delta) (delta) (delta: up, | U (delta: | up-down
down) X,Y)
Naive 0.09201 0.24299 * * **51.896%
49.984%

Linear Regres- || 0.00031 0.00434 2.05059 1.41403 48.915%
sion
Polynomial Re- || 0.00031 0.00434 2.14820 5.04561 43.984%
gression (4 de-
grees)

Random Forest || 0.00025 0.00371 1.11747 23.13992 | 50.690%
(1000 trees)

LSTM 0.04926 0.18621 1.00053 1.00004 53.094%
CNN-LSTM 0.05281 0.19255 0.99841 0.99978 52.894%
Attention 0.05222 0.19054 0.99841 0.99999 52.894%
CNN-LSTM

*No Theil’s U metrics can be calculated for the naive prediction, as the delta is
always = 0.

** 51.896% is the % that is correct when the prediction is that the delta is always
positive, 49.984% is the % that is correct when the prediction is that the delta is
always negative.

We value the outcome of the Theil’s U higher than the outcome of the MSE and
MAE. The reason being that when predictions are not better than guessing, the
MSE and MAE do not contain much value.

Thus, following this logic, the LSTM model performs the worst, even though it re-
sulted in the best MSE and MAE. Consequently, making the CNN-LSTM the best
performing model in this particular case.

The naive prediction is based on 0 parameters. As another comparison we fitted a
linear model, a 4th degree polynomial model and a 1000 trees random forest model
on the data. The linear and polynomial models perform extremely well on MSE
and MAE, however, the performance on the Theil’s U is significantly worse than
guessing, indicating that these models might be overfitted. In terms of predicting
a positive or negative movement of the WMR at time ¢ + 1, it is better to always
predict that the WMR will go up, or always down, than to use the linear or polyno-
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mial prediction. The random forest even outperforms all models on MSE and MAE,
however, it performs poorly on the Theil’s U metrics as well.

6.2.1 CNN-LSTM results

In this subsection, we go more in-depth into the results of the CNN-LSTM as it
is selected as the best model. This model seems to only sporadically make large
enough deviations to really impact the outcome of the predictions. This is clear to
see in figure 6.2.
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Figure 6.1: Distribution of the predicted and actual values of the CNN-LSTM

It seems that the model is not able to obtain enough meaningful temporal trends to
make a significant prediction. The distribution of the predictions and actual values
that supports this is shown in figure 6.2. Where the distribution of predictions has
a significantly smaller range than the distribution of the actual values. Thus, with
everything else equal, a larger standard deviation could indicate a model with more
potential, as it better extracts the long-term temporal dependencies.
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Figure 6.2: Distribution of the predicted and actual values of the CNN-LSTM

It is also interesting to look at the MAE of the predictions and actual values over
time. When there is a clear trend in the MAE then the model might require more
training. The difference over time is shown in Figure 6.3.
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Figure 6.3: MAE over time of the CNN-LSTM

The MAE over time seems to not follow any clear pattern. The ideal situation is
when the line is random, otherwise, it may indicate that the model is not sufficiently
trained, which seems to not be the case.

6.2.2 Ljung-Box Test

In order to reject if the model is under-fitted we perform a Ljung-Box test on the
out-of-sample residuals. This statistic is used to test whether this error is auto-
correlated. When the p-values of the Ljung-Box test are < 0.05 we can reject the
Null-hypothesis at the 95% confidence level, indicating that the model is under-fitted
(Shivarova, 2021). The Ljung-Box test is formulated as:

m ~9

Qm)=T(T+2))

=1

(6.1)

Where T is the number of observations, 77, are the sample auto-correlations of the
residual at lag [, and m is the maximum lag used in the test. This statistic follows
an asymptotically chi-squared distribution with m degrees of freedom. The decision
rule is to reject the Null-hypothesis if Q(m) > x2, where x?2 is the 100(1 — a)®"
percentile of a chi-squared distribution.

The largest p-value that resulted from the Box-Ljung Test is 0.0405. Hence, we can
reject the Null-hypothesis in favour of the alternative hypothesis at a 95% confidence
level. Thus, rejecting the hypothesis that the model is under-fitted.

6.3 Black Box

Once a NN is trained, several important issues surface around how to interpret the
model parameters. This interpretability is a prominent issue for practitioners in
deciding whether to use a NN or to opt for other ML or statistical methods. Even
if the latter’s predictive accuracy is inferior (Dixon et al., 2020).

In this section we will show the effect that the different parameters have on the
result of the NNs, this is more of a ‘peek’ into the black box, instead of ‘opening it
up’. Unfortunately, there does not seem to be a good solution to 'opening up’ the
NNs. In the section on future research 7.4, we will go more in-depth on possible
solutions for this problem.

The robustness and sensitivity tests are only performed on the best performing model
that was established earlier, the reason being computational and time constraints.
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6.3.1 Hyperparamter Range Performance

Below, the outcomes of the hyperparameter tuning jobs are displayed. These are
the parameters that the Bayesian optimiser set and the respective validation loss it
achieved. It is possible to plot a line in the plots to visualise a possible linear corre-
lation. However, we think that no correlation is prevalent enough to be meaningful,
and we do not want to convey the impression of causality. Especially because the
results are influenced by confounding parameters, which are not randomly set, but
set probabilistically by the Bayesian optimiser.

Keep in mind that a lower val_loss on the y-axis, means better performance.

Objective vs N_UNITS_LSTM Objective vs dropout
0.029 - 0.029 —

0.028 = 0.028 =
0.027 < 0.027 =

0.026 0026 =

0.025 =

val_loss

val_loss

0.025
P . 0.024 -
0.024 7 . 0.024

0.023 4 . 0023 4
4 - . . .

oozz 4 * . . 0.022
1 L]

1 . .
rr——T—T—t T T Tt T T T T T T Tt T t
0 50 100 150 200 250 "oz "0.3" "0.4"

N_UNITS_LSTM dropout

Cjective va Tearminy a_rate Objective vs activation_function Objective vs BATCH_SIZE

Figure 6.4: Result of the hyperparameter tuning of the LSTM Neural Network

We can only make two conclusions from these results. Mainly being that the tanh
activation function produces better results than the ReLU activation function, in
our particular case, for every NN. The Bayesian algorithm also uses the tanh func-
tion more often, which supports this conclusion.

Secondly, as mentioned before, there does not seem to be a clear correlation and
causality between certain hyperparameters and the performance on the Validation
Loss of the NN. This implies that we cannot simply improve the neural network
by increasing or decreasing a parameter, but the validation loss depends on the
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Figure 6.5: Result of the hyperparameter tuning of the CNN-LSTM Neural Network

combination of hyperparameters. The parameters are also much intertwined, Smith
(2018) for example, correlates the optimal batch-size to the learning rate, which
makes it difficult to isolate causality.

6.3.2 Performance End-of-Period Features

It is difficult to precisely test our hypothesis that the NN performs better towards
month-end, the reason being that the model is trained, not just on month-end
periods, but on all data. There are also too few end-of-month data points to train
an NN on. A possibility to test the hypothesis, is to remove the end of month
features, and see how the models compare!. The results are shown in table 6.6.

The model performance without the hedge rebalancing features is better for the
MSE and MAE metric, however, the model performs worse on the Theil’s U of the
actual predictions. We, again, argue that the CNN-LSTM with the hedge rebal-
ancing features outperforms the CNN-LSTM without, using the same arguments as
before.

The predictions of the model without the features also have a lower standard devi-
ation, meaning that predictions are centered closer to the mean of the WMR delta
distribution.

!This results in the removal of the following features: ‘Net_hedge_flow’,
‘end_month_estimated_hedge_flow’, ‘month_end_value’, ‘quarter_end_value’, ‘CUMU_US_inflow’,
‘year_end_value’, ‘CUMU_EU_inflow’, which are described in appendix A.1.
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Figure 6.6: Result of the hyperparameter tuning of the Attention CNN-LSTM Neu-

ral Network

Table 6.6: Model Performance without End-of-Period Features on WMR delta

Model MSE (delta) | MAE (delta) | Theil’s U | Theil’s U
(delta:  up, | (delta: x,y)
down)

CNN-LSTM || 0.05281 0.19255 0.99841 0.99978

w/ hedge

variables

CNN-LSTM 0.05089 0.18968 0.99841 0.99998

w/o  hedge

variables

Table 6.7: Model Performance without End-of-Period Features on WMR delta

hedge variables

Model Prediction Mean Prediction Standard
Deviation

CNN-LSTM w/ hedge || 0.48288926 0.042286146

variables

CNN-LSTM w/o || 0.49669522 0.025146397

6.3.3 Robustness

Neural networks weights are initialised randomly. In order to make the training
reproduce-able and the outcome (almost) deterministic, a seed, which is normally
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random, can be set. These seeds are created in programming languages to avert
randomness in a random process, making it reproducible. The weights initialisation
of the NN is determined by this ‘random’ seed. In order to test the robustness of
the model, we make use of this randomness, by training the CNN-LSTM 25 times,
using different seeds. This results in different weight initialisation, so we can test
if the model performance is stable, or if results are widely divergent. The model
performance is measured and compared in validation loss. In table 6.8 the results
are displayed, while in appendix B.6 these results are plotted.

Table 6.8: Model Robustness Validation Loss

H H Seed Validation Loss H
Original CNN- || - 0.0219
LSTM
11 317.0 0.0219
24 72.0 0.0220
1 156.0 0.0220
18 389.0 0.0221
4 284.0 0.0221
5 194.0 0.0221
15 334.0 0.0221
13 331.0 0.0221
23 350.0 0.0221
20 333.0 0.0222
12 226.0 0.0222
7 272.0 0.0222
10 488.0 0.0222
8 362.0 0.0223
16 399.0 0.0223
17 381.0 0.0223
2 480.0 0.0223
22 59.0 0.0223
0 178.0 0.0223
9 38.0 0.0224
14 174.0 0.0224
21 185.0 0.0224
6 202.0 0.0225
3 412.0 0.0225
19 292.0 0.0236

Only one of the 25 trained models actually performs just as well as the original
model on validation loss. The other 24 models that were trained, with exactly the
same hyperparameters, perform worse. From this, we can conclude that the model
has trouble with convergence. This conclusion is backed up by figure 6.7. This
Figure shows the training and validation loss of the CNN-LSTM per epoch. What
stands out is that the validation loss barely goes down after a few epochs, which
indicates that the model has trouble finding fitting weights for convergence.
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Figure 6.7: Loss per Epoch

6.3.4 Parameter Sensitivities

To investigate how different hyperparameters affect the variance of the validation
loss, we train the CNN-LSTM 15 times per hyperparameter. In each of these 15
model training rounds, this hyperparameter value is chosen randomly, while all oth-
ers remain unchanged. The result is a range of outcomes for every hyperparameter,
from which we can decompose the sensitivity towards the validation loss.

To compare and visualise the loss, we use the percentage change of the hyperpa-
rameter in comparison to the mean of the hyperparameter and equivalent for the
validation loss. Then we use the linear correlation, R? and STD to quantify the
strength of the relationship. These results can be found in table 6.9. A logarithmic
scale is used for the learning rate parameter since the range is significant. Conse-
quently, the negative values are displayed in red.

Table 6.9: Parameter Sensitivity Coefficients

Batch Size | Neurons | Neurons | Learning | Dropout | Validation
LSTM CNN Rate Loss
Mean 181.8418 87.9242 | 99.7430 | 0.0039 0.2475 0.02229
Correlation || -0.4274 0.1687 -0.2313 | -0.2778 | -0.0178 | -
R? 0.1826 0.0285 0.0535 0.0772 0.0003 -
STD 0.8428 0.6285 1.5713 1.4018 1.0554 -

The standard deviation of the realised validation losses, gives an indication of the
sensitivity that the validation loss has towards a hyperparameter. Although, this
metric does not present information about the direction and explainability of affect
of the parameter. The correlation and R? give a better view in terms of these
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The number of CNN neurons and the learning rate most significant affect the val-
idation loss in this test, based on the standard deviation. The batch size has the
largest correlation with the produced validation loss, thus best explaining the linear
direction of the change in validation loss. While the correlation between the CNN
neurons and dropout might be better explained by a convex function, as can be
seen in figure 6.8. Another notable outcome is that the number of neurons of the
LSTM is the only hyperparameter that is positively correlated with the validation
loss. Meaning that increasing the neurons in this layer, actually results in worse
outcomes.
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Figure 6.8: Hyperparameter Sensitivity Plots
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6.4 Results Conclusion

Returning to sub-question two:

Sub-question 2: “What is the performance and robustness of the models on
predicting the FX spot market movements?”

We have prepared data, added features, and defined the performance metrics. Here-
after, we have constructed, trained, validated, and tested the three models we defined
earlier. Based on the Theil’s U metric we conclude that the CNN-LSTM model per-
forms the best, as it resulted in a Theil’s U of 0.99978 on the predictions. This
means that this model outperforms guessing, but only marginally. From these re-
sults, we can conclude that the hybrid architectures outperform the regular neural
network architectures in this study.

We have evaluated the robustness of CNN-LSTM model through training 15 models
with different random seeds. We found that the model convergence is inconsis-
tent, resulting in divergent model performance. We think that the reason for this
inconsistency is the highly noisy target variable we try to predict. Due to this in-
consistency, the model architecture and hyperparameters need substantially more
testing and tuning, before we can conclude that this is the absolute best performing
model for this situation.

Coming back to our third sub-question:

Sub-question 3: “How do the different hyperparameters affect the model
performance?”

We have trained 15 models per hyperparameter, changing it’s value randomly, while
keeping everything else equal. We then decomposed the variability of the validation
loss towards different hyperparameters and ranked them according to their signifi-
cance.

The number of CNN neurons and the learning rate have the most significant affect on
the validation loss, based on the resulting standard deviation of respectively 1.5713
and 1.4018. The batch size has the largest correlation with the produced validation
loss, thus best explaining the linear direction of the change in validation loss. All
parameters, except for the number of LSTM neurons are negatively correlated with
the validation loss. Where the dropout has the least significant linear correlation of
only -0.0178.
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7. Discussion

This chapter discusses the results of this thesis, answers the main research question
and we go over the implications for machine learning on highly noisy financial time
series data. The chapter is closed by the recommendations for MN and suggestions
for future research.

7.1 Conclusion of the Main Research Question

In previous chapters, we have seen how the relevant data is primed for the models
and how some extra features are engineered. We have also looked at the best fitting
models according to the theory, and constructed and evaluated them. Moreover, we
have answered the sub-questions, so returning to the main question:

Main Question: “What is the forecast performance of the proposed machine
learning models on WMR Fixz one day in advance, when using historical F'X,
bonds, and equity market data?”

To start, based on our results, it seems that hybrid-NNs outperform the sole LSTM
model. The LSTM model performs dreadfully on the Theil’s U metrics. It does,
however, have the lowest MAE and MSE, and also predicts the direction of the
change correctly the most often (53.094%). We argue that the MSE and MAE only
should be looked at when the Theil’s U is below 1.0 or when this metric is equivalent
between models.

It is debatable as well if adding the Attention layer to an CNN-LSTM architecture
improves predictions. Again, we argue that it does not, as the Theil’s U of the
predictions performs worse. Hence, making the CNN-LSTM the best performing
model in this particular case.

Thus, we propose a hybrid neural network consisting of one CNN layer and one
LSTM layer with a dropout layer in between for regularisation. The best perform-
ing model that we found during tuning consists of 218 neurons in the CNN layer, a
dropout of 20%, and 44 neurons in the LSTM layer, resulting in 68,133 parameters.
It also has a batch size of 512 and a learning rate of 0.00012. We can confirm that
the proposed tanh activation function outperforms the conventional ReLLU function
for every model.
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Coming back to our hypothesis:

We believe that the machine learning model, using FX, bonds, and equity market
data, will be able to predict price movements, especially when using end-of-month
FX hedge re-balancing data of asset managers and pension funds.

We can confirm the hypothesis, as far as the results from this study go. The model is
able to predict price movements, as the Theil’s U of both the direction and prediction
are respectively 0.99841 and 0.99978, marginally outperforming random selection.
However, marginally outperforming random selection can result in significant out-
performance over time. In a hypothetical scenario, where we start with 1 Million
Dollars, assume no transaction costs, and assume that we can always trade on the
WMR fixing rate. In this scenario we buy the EUR/USD at the WMR FIX when
the model predicts a higher WMR tomorrow, and sell when the model predicts a
lower WMR tomorrow. This results in 1.08 Million at the end of the out-of-sample
test set. This means that the model achieves a return of 8.15% during the test set,
which consists of around 2 years of observations. When we look at 2020 and 2021
separately, the returns are -4.73% and 13.5% respectively. Assuming no transaction
costs is more reasonable than it seems, as the goal of the algorithm is to improve
the timing of the transactions that MN has to make, regardless of the prediction.

Although the direction of the movements are predicted decently, when we compare
the predictions to the actual values, then it seems that the model has issues extract-
ing temporal dependencies of the relevant driving series. The predictions are much
more centered around zero than the actual values, thereby resulting in predictions
with toned-down volatility. This might not be surprising, as there might be very
few relevant dependencies in historical data.

In our hypothesis we mentioned the end-of-month hedge rebalancing. We tested,
and we can confirm, that the model performs better with the end-of-month hedge
rebalancing estimations on these on the Theil’'s U. Yet, it performs worse on the
MAE and MSE. We argue that the reason is that the standard deviation of the
predictions of the proposed CNN-LSTM is larger.

We tested the proposed CNN-LSTM on robustness, by training 25 identical mod-
els, using different initialisation seeds. This resulted in widely divergent outcomes,
where only one of the 25 trained models performed as good as the original CNN-
LSTM. This means that the model has trouble with optimal convergence.

To increase the explainability of the neural network we performed a sensitivity anal-
ysis by training 15 models per parameter, testing a range of each parameter, while
keeping all others equal. In this analysis the neurons of the CNN and the learning
rate came forward as having the most influence on the validation loss. While the
number of neurons in the LSTM has a positive correlation with the validation loss.
Meaning that an increase in the neurons in this layer results in a worse outcome.
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7.2 Limitations

This study into the application of deep learning methods for forecasting the WMR
fix has several limitations. First, the hedge rebalancing flows are, according to the
literature, an important predictor for the WMR. Yet, we had to make some signif-
icant assumptions to make an estimation of these flows, resulting in a potentially
error-prone feature. It is expected that a more complete estimate of these flows will
increase model performance.

Another limitation of this study is the lack of convergence of the model we argue
has the best performance. The consequence of this is that tests on the importance
of the hedge rebalancing feature, and the sensitivity analysis can be influenced by
chance.

We also observed possible saturation in two initial architectures for the LSTM and
CNN-LSTM networks. This could be the result of the neural networks having trou-
ble learning from the data, as the data is extremely noisy. Indicating that there
might be a limited amount to learn from this data to base a prediction upon.

The last limitation is time. Although we were fortunate enough to be able to use
extensive computing power and resources, with more time, the outcomes might be
improved by testing significantly more architectures and performing more tuning
jobs. We were only able to test three main architectures recommended by the
literature, still, many more architectures with potential can be tested. We also
focused on the main parameters during tuning, yet, there are many more parameters
that can be tuned to increase model performance.

7.3 Recommendations

Although the results of the CNN-LSTM are significant, there is much to test and
improve upon this model. The recommendations are aimed at improving the current
model, as implementation is still far-fetched.

A first step to improve the models proposed in this research, is to formulate a more
extensive estimation model on the end-of-month hedge re-balancing flows. The
hedge re-balancing model that is used as input for the deep-learning models is rel-
atively simple and can be much improved upon. This model uses limited data on
AUM, risk appetite, and hedging ratios, by improving this data quality, the model
consequently increases in quality as well. We also did not take possible corporate
hedge contracts into account, which could have an important impact on the estima-
tions.

A second step is to perform more model tuning and test a wide range of neural net-
work architectures. When a model is performing satisfactorily, it can be validated
in live testing, after which a transaction cost analysis (TCA) can provide more in-
sights into the added values of implementing a DL enhanced method. TCA is not
only performed to provide insights into the transaction costs, but also for execution
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performance pertaining to the benchmark, which is more relevant here.

In this study, only three possible architectures are tested, and many more should be
tested. This thesis, however, provides a framework and a new benchmark to beat in
terms of performance. It also shows that a NN can outperform a naive benchmark
and simply guessing, which is promising.

7.4 Future Research

The future research is similar to the recommendations, as both go over further de-
velopments on top of this study. The suggestion for further research is more general
and is going back on the choice to use neural networks. The choice for neural net-
works was made due to their predictive ability, however, in finance, a crucial part
of model creation is also model intelligibility. In previous research into stock and
FX prediction researchers often use NNs or basic machine learning models, yet, in
this research we want to suggest moving towards models such as a Temporal Fusion
Transformer (TFT). This model is still a high achiever, while it is also less of a "black
box’ method. A TF'T provides the researcher more insight into how predictions are
made, for example, which time steps impact the result the most, which is shown in
Figure 7.1. Where time index 0 is the current day, and time index -260 is 260 obser-
vations back. The Attention variable on the y-axis is the importance certain days
have for the prediction. For example, in Figure 7.1, everything more than -140 days
back is much less important than more recent observations. And the data point at
t-100 is the most important data point for the current predictions. This data point
is the observation made 100 days prior to the prediction we want to make. There
is no explanation why the TFT assigns a larger significance to certain data points
over others.

Attention
0.010 A
0.008
§ 0.006 1
=
(=
3
£
< 0.004 A
0.002
-250 -200 -150 -100 -50 0
Time index

Figure 7.1: TF'T attention over time index

The TFT also provides information on which features are most important to come
up with the current prediction, as shown in Figure 7.2 and 7.3. It is important to
keep in mind that the outcome is not necessarily which features are most important
for WMR fix prediction in general, just which features are most important for the
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current model to predict the WMR fix. Descriptions of the variables can be found
in appendix A.1.
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8. (Conclusion

This thesis set out to use deep learning techniques on the prediction of highly noisy
financial time series data. According to the literature review, the end-of-month
hedge rebalancing flows can have an important impact on the performance of this
deep learning model. Hence, we designed a model to capture and prime this data,
from which we can confirm that the end-of-month hedge rebalancing data increases
the deep learning model performance.

Another finding in the literature is that hybrid neural networks will outperform reg-
ular neural networks in most cases. We can confirm this finding, in the case of our
application, however, adding an attention layer does not improve the performance
further.

The proposed model outperforms the naive benchmark, linear, polynomial, and
random forest model, and has a Theil’s U score below 1, for both direction and
prediction, indicating superiority over guessing. When we assume no transaction
costs, this translates to a return of 8.15% over two years when we would buy when
the model predicts the WMR will go up and sell when the model predicts that the
WMR will go down. These returns consist of -4.73% over 2020 and a 13.5% return
over 2021.

But, the black box of neural networks remains a problem, and, essentially, no causal-
ity between the hyperparameters and the model performance on validation loss can
be found.

This model can easily be applied into practice at MN and PGGM. They have to
trade significant flows of EUR/USD, and this model can help the traders in their
decision making process regarding the most efficient trading strategy for executing
the required flow on a given day.

To conclude, the FX market is a notoriously difficult market to forecast. During
this thesis, we developed a model that outperforms both the naive benchmark and
random selection, on both direction and predictions, which is a big step in the right
direction. The model also achieves a significant return over the two year out-of-
sample test set. This study provided evidence of the added value that deep learning
can bring to financial time series predictions, and provided a framework on which
future developments can be built.
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A. Solution Design

A.1 Activation Functions

RelLU and Tanh Activation
Functions plotted

Figure A.1: ReLU and Tanh activation functions

A.2 Feature Order and Meaning Description

When ordering the variables according to the linear correlation with the target vari-
able, as described in 4.2.1, it results in the order that is shown in Table A.1. Where
the first feature has the lowest correlation with the target variable.
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Table A.1: Feature Order

and Meaning Description

Feature name

PPMCC in ab-

solute value

description

year_end_value 0.000442 The last five days of each year get the end-
of-period value of respectively 0.2, 0.4, 0.6,
0.8 and 1

EuroStoxx50 0.000821 The daily close of the EuroStoxx50 index

Comp_Y _Return EUR_BOND 0.003281 The compounded yearly returns of the
102513EU index

quarter_end_value 0.001134 The last five days of the quarter get the end-
of-period value of respectively 0.2, 0.4, 0.6,
0.8 and 1

CUMU_US_inflow 0.002200 The estimated cumulative inflow of the US
AUM

Comp_Y_Return EUR_EQUITY | 0.003281 Compounded yearly return of the Eu-
roStoxx50 index

EURUSD _high low_spread_std 1 0.004407 The standard deviation of the daily EU-
RUSD high low spread

Comp_Y Return USD _EQUITY | 0.004514 Compounded yearly return of the s&p500 in-
dex

month_end_value 0.006116 The last five days of each month get the end-
of-period value of respectively 0.2, 0.4, 0.6,
0.8 and 1

Comp_M_Return_USD_BOND 0.010554 Compounded monthly return of the LUAT-
TRUU index

CUMU_EU_inflow 0.011551 Cumulative estimated inflow of the EU AUM

month 0.012913 Variable that indicates each month

bond_yield USD 0.013238 The daily yield of the US 10 year generic gov-
ernment, bond

day 0.014245 Variable that indicates each day

SP500 0.015128 The daily close of the s&p500 index

Comp_Y_Return_USD_BOND 0.016123 The compounded yearly return of the LUAT-
TRUU index

US_bond_close 0.017856 The daily close of the LUATTRUU index

EU bond close 0.018497 The daily close of the 102513EU index

end_month_estimated_hedge _flow | 0.018603 The estimated hedge flows that are expected
at the end of the month, distributed over the
last three days

D_RETURN_EUR_EQUITY 0.018691 The daily return of the EuroStoxx50 index

bond_yield EUR 0.019254 The daily yield of the EU 10 year generic
government bond

year 0.019720 Variable that indicates each year

EURUS _close_std 0.021758 Standard deviation of the daily EURUSD
close

Comp_-M_Return EUR_BOND 0.022666 Compounded monthly return of the
102513EU index

EURUSD _high low_spread 0.024658 The daily high-low spread of the EURUSD

EURUSD _close 0.030118 The daily mean price of the EURUSD

Bench_today 0.034290 WMR fix at time t

Comp_M_Return EUR_EQUITY | 0.035197 Compounded monthly return of the Eu-
roStoxx50 index

D RETURN_EUR_BOND 0.045929 Daily return of the 102513EU index

D RETURN_USD_BOND 0.052042 daily return of the LUATTRUU index

Comp_M_Return_USD_EQUITY | 0.065739 Compounded monthly return of the s&p500
index

Net_hedge_flow 0.068200 The estimated net hedge flows accumulating
over each month

D_RETURN_USD_EQUITY 0.108225 Daily return of the s&p500 index

Following Variables Are Only
Used In THe TF'T Model

ID

ID given per certain time period as possible
indication of structural breaks

Time;dz

Counter that starts at zero, and counts up
for every observation
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B. Results

This is the Appendix of the results chapter. The first two sections go over alternative
architectures of the LSTM and CNN-LSTM NNs, as they resulted in a (almost)
constant prediction. The hypothesis is that this is caused by weight saturation.

B.1 LSTM Architecture with Saturation

The result of the three layer LSTM architecture shown below is completely constant,
even after hyperparameter tuning. This resulted in a MAE of 0.188836 and MSE of
0.05021.

Table B.1: LSTM Architecture Results with Saturation

Layer (type) Neurons Param #
LSTM 68 178620
Dropout None (0.4% dropout) 0
LSTM 68 304980
Dropout None (0.4% dropout) 0
LSTM 68 304980
Dropout None (0.4% dropout) 0
Dense 1 196
Total params: 788.776

Trainable params 788.776

Non-trainable params: 0

Batch Size = 32, Optimiser = Adam(Learning rate = 0.03156), Loss Function =
Huber Loss, Validation Split = 0.1, Activation = Tanh

The eventual result for the prediction of the WMR delta:

B.2 CNN-LSTM Architecture with Saturation

Although the saturation is not as prominent as in the LSTM architecture, the out-
come is still relatively constant.
The eventual result for the prediction of the WMR delta:
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Figure B.1: Result of a possibly saturated LSTM network

Table B.2: Scalar comparison CNN-LSTM

Layer (type) Neurons Param #
Conv1D 256 2600
MaxPooling1D None (Pool size 2) 0
Dropout None (20% dropout) 0
Conv1D 256 2054
MaxPooling1D None (Pool size 2) 0
Dropout None (20% dropout) 0
LSTM 26 173160
Dropout None (20% dropout) 0
LSTM 26 304980
Dropout None (20% dropout) 0
LSTM 26 304980
Dropout None (20% dropout) 0
Dense 1 196
Total params: 787.970

Trainable params 787.970

Non-trainable params: 0

Batch Size = 256, Optimiser = Adam(Learning rate = 0.00010), Loss Function =
Huber Loss, Validation Split = 0.1, Activation = Tanh
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Figure B.2: Result of a possibly saturated CNN-LSTM network
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B.3 CNN-LSTM results

This section displays the results of the CNN-LSTM model against the actual and
naive prediction values, as alternative to the zoomed-in version in the main body of
the thesis.

—— true
prediction
naive forecast

lle

WMR 1 day prediction

0 100 200 300 400 500
Time Step

Figure B.3: CNN-LSTM WMR prediction results against the actual and naive pre-
diction values
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B.4 Owutcomes of the Hyperparameter Tuning

Below the exact results of the hyperparameter jobs are shown. This includes the
different models that were trained, and in which order the Bayesian optimiser tried
the models.
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B.5 Visualised Results of the Models

The figures below display the visualised results from the LSTM and Attention CNN-
LSTM, similarly to how the results of the CNN-LSTM were displayed previously.

B.5.1 LSTM
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Figure B.4: LSTM delta prediction transformed
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Figure B.5: LSTM delta prediction with training

B.5.2 CNN-LSTM

This subsection shows some plots of the CNN-LSTM that were not displayed in the
main study.
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Figure B.6: LSTM delta prediction
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Figure B.8: LSTM Confusion Matrix
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Figure B.10: CNN-LSTM Confusion Matrix

B.5.3 Attention CNN-LSTM
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Figure B.11: Attention CNN-LSTM delta prediction transformed
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Figure B.12: Attention CNN-LSTM delta prediction with training
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Figure B.13: Attention CNN-LSTM delta prediction
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Figure B.14: LSTM Direction Plot
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Figure B.15: Attention CNN-LSTM Confusion Matrix
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B.6 Robustness

Objective vs seed
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Figure B.16: Robustness of CNN-LSTM performance
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