ROBOTICS
MECHATRONICS

REVERSE ENGINEER DISCONTINUED KUKA I-DO
ROBOTS AND MAKE THEM APPLICABLE FOR
EDUCATIVE USE

C. (Cliff) ten Berge

BSC ASSIGNMENT

Committee:

dr. ir. E. Dertien
dr. ir. J.F. Broenink
D.P. Davison, Ph.D

April, 2022

013RaM2022

Robotics and Mechatronics
EEMathCS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

UNIVERSITY | TECHMED UNIVERSITY | DIGITAL SOCIETY
OF TWENTE. | CENTRE ~ OF TWENTE. | INSTITUTE

ii Reverse engineer discontinued I-do robots and make them applicable for educative use

Cliff ten Berge University of Twente

iii

Abstract

Recently the University of Twente has been donated 5 I-do social robot systems from KUKA
(a German company). Due to the absence of documentation, these robots were not directly
usable by the university. The first aim of this research is to reverse engineer the robotic plat-
form and to create new documentation on it. In this report, all the relevant functionalities of
the components on the I-do platform are described. The second part of this research is to use
the new insights on the robot to adapt it to use at the university. Upon discovery that it would
be very difficult to reuse the original software, the decision was made to partially replace the
custom hardware, allowing the circumvention of the original software. The design choices that
came along with this new set of hardware are all explained in the report, along with the re-
structuring of the power management. The new hardware made it possible to develop a new
ROS-based software architecture from the ground up. This research goes into detail on which
ROS packages were chosen and how they work together. The end product of this research is
a working robot, that can be easily modified by students for use in projects. Because of this,
a step-by-step approach to operating the basic functionalities of the robot is supplied in the
appendix.

Robotics and Mechatronics Cliff ten Berge

iv Reverse engineer discontinued I-do robots and make them applicable for educative use

Contents
Abstract iii
1 Introduction 1
2 Analysis 2
2.1 Background e e
22 Hardware e e e e e e 2
2.3 Software e e e 11
24 Designgoals e 11
2.5 Requirements L e e 12
3 Design 13
3.1 Hardware o o e e e e e e e e 13
3.2 Software e e e e 15
3.3 Howtousetherobot i 20
4 Results 21
4.1 Plcontrol. e e e 21
4.2 Navigation e e e e e 21
4.3 Applicability for educativeuse o 22
5 Discussion 23
6 Conclusion 24
A Appendix 25
Al Powerratings i i it 25
A2 Rqtgraph of the (reduced) ROSnetwork 26
A3 TFtreeoftheROSnetwork 27
A.4 Step-by-step approach to using the basics of the I-do platform 28
A5 Arduinocode e 29
A.6 Hardwareinterfacecode 38
A.7 Launchfilecode (fulllaunch) 40
Bibliography 42
Cliff ten Berge University of Twente

1 Introduction

Recently the University of Twente has been donated 5 I-do robot systems by KUKA in Germany.
These prototypes were part of a now-canceled social robot project at this company. With the
canceling of this project, the prototypes served no clear use anymore at KUKA, which sparked
the idea to donate them to the University of Twente where they could possibly be put to bet-
ter use. The robots are interesting for the University of Twente, as the prototypes come with
numerous interesting hardware components, and therefore have a lot of potential.

As the robots’ purpose at KUKA is not necessarily the same as the purpose they would serve
at the university, the robots have to be adapted to fit this new role. The main problem with
this project is that documentation from KUKA appears to be completely missing, making it
very challenging to reuse the robots. Therefore the first part of this research focuses on reverse
engineering the entire I-do platform in the state that it was donated to the university, this report
serves as the new documentation of the robot. It was important to also evaluate the state of
every individual component (like the batteries), as the robot had been sitting for a while at the
start of this research.

The second stage of this research is about the adaptation of this robot platform into the educa-
tional environment. As the entire research is oriented on not letting a possibly good robot go to
waste, it is highly preferred to reuse as many components of the original I-do platform as pos-
sible. For clarity purposes, the expected role for the robot within this educational environment
is not about having a role as a robotic tutor, but more as an easily modifiable robotic platform
for student projects.

Although this research is specific to the I-do platform, it is also certainly possible to use the
same hardware and software structure in other (differential drive) robots.

Robotics and Mechatronics Cliff ten Berge

2 Reverse engineer discontinued I-do robots and make them applicable for educative use

2 Analysis

2.1 Background

The I-do robot platform has been developed in Germany by KUKA. Their commercial prod-
ucts consist mainly of robotic arms for factories, meaning that with the development of the
I-do platform the company has been researching a new segment outside of its normal prod-
uct range. KUKA showcased a prototype at the Hannover Messe of 2018, which is one of the
biggest industrial technology fairs in the world. The prototypes differed in the pieces of equip-
ment mounted onto them, showcasing that the I-do platform is very modular. The equipment
options consist of a sound system from Bang & Olufsen, an air conditioner, a photo camera,
and even a coffee machine. The I-dos with the mounted photo camera were driving around
taking pictures of people that posed in front of them. One of the attendees of the event was the
then German chancellor Angela Merkel, who was photographed by one of the I-do’s. After the
Hannover Messe, KUKA decided to discontinue the entire I-do project. As the prototypes that
were produced had no clear use anymore, they moved the I-do’s into storage, after which the
University of Twente (UT) convinced KUKA to donate the prototypes to them with the idea to
use them for education and experiments.

2.1.1 KUKA

As mentioned above, the company that developed the I-dos is a German company called KUKA.
KUKA is one of the world’s leading robotic systems suppliers and was founded in 1898 in Augs-
burg. The company offers modular systems capable of (semi) automating entire production
lines in a wide variety of sectors. Their most sold product line is their distinctive orange (com-
pany color) robotic arms segment. KUKA has a large selection of these robotic arms, each with
its own capabilities like maximum lift capacity. These arms are heavily used by the German
automotive industry. Besides this, the company also offers different robotic systems ranging
from automatic foundry systems to (rotational) welding systems (3).

2.1.2 Savioke

When we take a brieflook at the I-do platform, we can see that another company had a big part
in the project and that KUKA did not build the I-do’s from the ground up. KUKA used a mobile
robot base from a company called Savioke, which is a robotics company based in San Jose,
California in the United States of America. Savioke has one main product for sale, and that is
the Relay robot. The Savioke Relay is an autonomous delivery robot designed to operate in
hotels and hospitals, it tries to distinguish itself from possible competitors by being relatively
easy to install and a cost-effective option to make deliveries autonomous. According to the
Savioke website, one of the main reasons for this is that the Relay is able to mechanically push
buttons of elevators, this allows the robot to operate in buildings with multiple floors without
the need for expensive adjustments (2). The I-do platform shared the differential drive moving
base with the relay robot and also uses the same software as was made for the relay.

The company also has a connection to the well-known Robotic Operating Software (ROS), that
is because the CEO of Savioke, Steve Cousins, used to be the CEO of Willow Garage (7). Willow
Garage was a US-based company and had a large role in developing ROS as we know it today.

2.2 Hardware

Like most autonomous robots, the I-dos have a lot of different components working together
to give the robot the desired functionalities. The I-dos have numerous high-tech sensors which

Cliff ten Berge University of Twente

CHAPTER 2. ANALYSIS 3

made the platform very desirable to have for the UT. In the sections below, I will cover all the
different components that made up the I-do platform. In these sections, I will often refer to
the segment division that I made myself while taking the robot apart. This segment division is
purely for clarity purposes. The three segments that I divided the robot into are the tower, the
entertainment system, and the Savioke base. The I-dos had different entertainment systems,
therefore this analysis will be based on the robot that I took apart, recognizable by the sticker
with "Eugeen" written on it, this is the name the robot was given by the KUKA engineers.

|

Savioke base

Figure 2.1: Section division

2.2.1 Batteries

The robot Eugeen has four batteries in total, which are all Li-Ion-based batteries. The main
question at the start of the project was whether the batteries had survived the long storage time
at KUKA. It was completely unknown whether the batteries had been looked after, therefore
it was decided to take a closer look at each battery individually, before connecting the entire
system up to the chargers.

One battery is located halfway up the tower segment and is a 12 Volts 192 Wh battery made by
Super-B (product name: 12V-15Ah). The battery has an integrated battery management sys-
tem (BMS) in it, this protects the battery from very high (dis)charge currents and also provides
cell balancing(16). The battery voltage after the long storage period was 13.31 Volts, which was
a good indicator that the battery had survived the inactivity. To confirm that it was indeed in
pristine condition, the battery was connected to a load, and no strange behavior was observed.
This battery is charged using the round charging port located in the tower. This battery has
a small breakout board connected to it, this board has a USB connection with the main com-
puter, giving the computer the ability to disconnect the battery from the system.

Robotics and Mechatronics Cliff ten Berge

4 Reverse engineer discontinued I-do robots and make them applicable for educative use

The entertainment system differs per robot, Eugeen has a battery pack in the entertainment
system consisting of two (quite similar to the above-mentioned 12 Volts Super B Li-Ion batter-
ies) Andrena 12V25aH-SC connected in parallel. These batteries have a capacity of 320Wh each
and also come with an integrated BMS (17). The exact same tests were performed for this bat-
tery pack, the starting voltage was measured at 13.29 Volts and also this battery pack appeared
to function properly under a load. This battery pack is charged by using the loose connector
that was hanging close to the battery pack.

Finally, there is also a battery all the way in the bottom part of the Savioke base. Unlike the
other batteries, this was a 24 Volts battery made by U-charge. The battery belongs to the RT
series of the manufacturer, the exact product name is U1-24RT. The measured voltage of the
battery upon removing it from the robot was approximately 0.0 Volts, meaning that this battery
was drained far below its minimum voltage level. The U1-24RT has an integrated battery man-
agement system (BMS)(18), these circuits are normally used to prevent wrongful use and thus
should protect the battery and the load. Although it is impossible to know for sure, the power
usage of the BMS (although very small) may have been the reason why the battery slowly self-
discharged over time (more than the Super-B batteries), and thus was destroyed. In order to
make sure that the voltage over the Li-ion cells themselves did not differ from the voltage over
the output terminals of the BMS, the cover of the battery was removed to measure the voltage
on the cells directly. Unfortunately, this did not result in a different reading. The battery used
to be charged through the motor control board (which is covered below), which in its turn was
connected to the 24 Volts power connector on the dashboard, located in the lower back of the
robot.

2.2.2 Powerboard

Because of the large variety of components on the I-do platform, the robot has a custom power-
board that is used to supply the correct voltage to a large part of the components, like the
ethernet switch, the LiDAR scanner, the main computer, and the Cradlepoint modem. The
powerboard is not just responsible for powering electronics, as it also handles the data from
the ultrasound modules at the top of the robot. The power distribution is explained more ex-
tensively in the power management section.

The powerboard is also directly connected to the dashboard, meaning that while charging the
U1-24RT the current goes through the powerboard into the motor control board, which then
directs it into the battery itself. During discharge, the powerboard is powered through the mo-
tor control board by the battery.

2.2.3 Motor control board

The main function of the motor control board is as the name suggests, controlling the mo-
tors. In order to accomplish that, the board has two full H-bridges integrated into the circuit,
which control what current can flow into the DC motors. Additional functionalities of the mo-
tor control board are receiving the data from both encoders and also receiving the data from
the bumper board (elaborated further in the bumpers section below). The last purpose of the
board is to (de)charge the U1-24RT battery and also to monitor its state through the Ethernet
cable which connects the board to the BMS.

2.2.4 Computers
ROS computer

The I-do system has 2 separate computers running various tasks. The main computer does not
have a brand and is therefore referred to as the ROS computer. This computer runs all the robot
movement-related programs. In order to do that it is connected to the motor control board, the

Cliff ten Berge University of Twente

CHAPTER 2. ANALYSIS 5

powerboard, the internet modem, and the LiDAR scanner through the Ethernet switch. The
computer uses an Intel i7-6700TE as the processor and comes with 16 GB RAM memory. The
computer does not have a dedicated graphics card, but uses the integrated MESA Intel HD
Graphics 530.

Intel NUC

The second computer mounted on the robot is an Intel NUC, which is Intel’s small size com-
puter series, because of the compact design it is very useful for onboard robot applications.
The Intel NUC on the I-do is a 7th generation of the type NUC7i5BNH. It used to control the
tablet (which is missing), besides that is also controls the camera head on top. The NUC is con-
nected to the Canon camera using USB, this allows the computer to take pictures and instantly
save them on the hard drive. The NUC also has a USB connection to the camera control board,
giving it control over the stepper motors in the camera head.

2.2.5 Internet capabilities

The local network on the robot is created using a TRENDnet TI-G80 Ethernet switch, this switch
connects the various Ethernet-dependent components like the powerboard, the motor control
board, the LiDAR scanner, and the ROS computer to each other. The switch is mounted in the
Savioke base. As will be further explained in the software section, the I-do platform has a great
dependency on a stable connection to the internet. To not depend on WiFi networks, the I-do
platform comes with a Cradlepoint modem, which gives the robot the option to connect to the
4G network.

2.2.6 Sensors

The I-do platform uses a combination of sensors to determine what the surrounding area looks
like and what the robot should do next. In figure 2.2 and figure 2.3 all the sensors on the I-do
platform can be seen with their respective field of view roughly drawn into it. The field of view
of the ultrasound sensors is drawn in blue, the field of view of the LiDAR is drawn in red, the
bumpers are drawn as light green blocks and the angle of the depth cameras is represented by
the grey arrows.

Robotics and Mechatronics Cliff ten Berge

6

Reverse engineer discontinued I-do robots and make them applicable for educative use

Figure 2.2: Front view of the I-do with the sensors and their respective field of view

Cliff ten Berge University of Twente

CHAPTER 2. ANALYSIS 7

Figure 2.3: Side view of the I-do with the sensors and their respective field of view

LiDAR

One of the sensors on the I-do platform is a SICK TiM571 2D LiDAR sensor. LiDAR stands for
light detection and ranging and is a method for determining how far an object is from the sen-
sor. The way it works is that the sensor emits a very short laser beam pulse in the preferred
measured direction, when the laser beam hits an object, part of the beam reflects back in the
direction of the sensor. By measuring the time delay between the emitted beam and the mea-
sured reflected beam, the distance to the object can be calculated. The main advantage of using
light for these measurements is that the response rate is very high, due to the extremely high
velocity of light.

As the name of the sensor would imply, the LiDAR on the I-do platform is a 2D sensor, meaning
that the sensor only performs measurements in one plane compared to the sensor. The SICK
TiM571 model uses a light source with a wavelength of 850 nm, which falls under the infrared
category. Performance-wise, the TiM571 has a field of view of 270 degrees and has a typical
range of up to 8m, this can be seen in figure 2.4. The resolution of the scanner is 0.33 degrees,
which results in 810 measurements per full 270 degrees scan (14). The sensor itself is located
on the front part of the Savioke base and is thus mounted very close to the floor.

Robotics and Mechatronics Cliff ten Berge

8 Reverse engineer discontinued I-do robots and make them applicable for educative use

Scanning range in m (feet)

30 r
(98.43) 180°

225°

20
(65.62)

10
(32.81) 270°

10
(32.81)

20
(65.62)

-45°

30 o
(98.43) 39 20 10 0 10 20 30
(98.43) (65.62) (32.81) (32.81) (65.62) (98.43)

Scanning range in m (feet)

[scanning range max. 25 m (82.02 feet)

D Scanning range typical 8 m (26.25 feet)
for objects up to 10 % remission

Figure 2.4: Range diagram of the SICK TiM571(13)

Ultrasound

The robot also has three Parallax PING))) ultrasound modules mounted on the top front part
of the robot. These ultrasound sensors have the same principle as the LiDAR sensor explained
above, but instead of using light reflection, it uses sound reflection to determine the distance.
These sensors have a fixed measurement direction and are not capable of constructing a full
surrounding scan (without moving the sensor) as the SICK LiDAR can. The PING module is
able to measure objects up to 3 meters away and uses sound waves of 40kHz for the operation.

The added value of the ultrasound sensors can be explained by taking a look at the field of
view of the LiDAR sensor. In order to ensure that the laser beams of the LiDAR do not skip
over objects that could cause a problem for the wheels, the sensor has to be mounted very
close to the floor. The downside of this is that the LiDAR data could indicate that an area with
an overhang is clear (like the middle of a table for example), while the top of the robot would
bump into it. This is where the ultrasound sensors come in, these give the robot a little bit
more information about the area in front of the robot at the same height as the top. This could
also be solved by installing an additional LiDAR sensor near the top, but since these are a lot
more expensive than ultrasound sensors, and the robot doesn’t need a very high-quality precise
picture of the objects near the top of the robot, the ultrasound sensors suffice.

Bumpers

The I-do platform also comes with three sensors that detect whether the robot has hit anything.
The robot has a separate structure, the bumper, surrounding the main hull of the robot. This
separate structure is being held in place by springs but is able to move a little bit when a force
is applied directly on the bumper, like when the robot runs into a wall. In order for the robot to
measure whether it has hit anything, it must be able to measure whether the bumper structure
has moved. To do that it uses three Hall effect sensors. These sensors use the Hall effect, which
creates a voltage based on the magnetic field around the sensor and the current through it.
When the iron structure moves over the sensor it alters the magnetic field, which is measured by
the sensors and sent to the custom breakout board at the back of the robot. The three Hall effect

Cliff ten Berge University of Twente

CHAPTER 2. ANALYSIS 9

sensors only measure bumps from the front left, the front, and the front right. Meaning that
the robot needs to take into account that it could hit objects while driving backward without
noticing it.

Realsense D410

Another way that the robot can get an overview of its surroundings is by using its two Intel
RealSense D410 depth cameras. These cameras have a resolution of 1280x720 pixels and are
able to determine the depth of each pixel up to 10 meters. The cameras are mainly used for
navigation on the I-do platform, one of the cameras is looking straight to the front and one of
them is looking downwards at an angle. This means that the downward-facing camera can also
be used to determine whether the robot is able to move forwards, as almost every path blocking
obstacle would have to be in the field of view of this camera.

2.2.7 Canon camera

Some of the I-do platforms come with a head that has a Canon camera inside. The I-dos used
this to take pictures of posing people. Because the primary focus of this research is to get the
basics of the robots operational again, the camera head portion is considered out of the scope
of this research.

2.2.8 DC motors

In order to move the robot, the I-do platform has a differential drive system, meaning that two
fixed wheels are powered by motors and that the other rotation wheels are there to keep the
robot stable. The robot is able to turn by having the wheels rotate at a different speed, therefore
it does not require skid steering to steer the robot. To power the wheels, the robot has two DC
motors rated at an operating voltage of 18 Volts, while using a current of up to 2 Ampere. The
two DC motors combined therefore can have a typical power consumption of up to 72 Watt.

Optical encoders

To be able to measure the position of the shaft through the DC motor, an optical encoder is
mounted on top of it. An optical encoder is a type of rotary encoder, which uses light to measure
the rotational position of the shaft. There are multiple designs for these types of encoders, one
of the designs has a disk mounted at the end of the DC motor’s shaft. This disk has an evenly
spaced set of holes in it. By placing a light source on one end of the disk and a light detector
on the other end with a mask between them, a binary signal is created that goes high as long as
the holes in the disk and the mask line up with the light source and the detector. This means
that a pulsing signal is created whenever we spin the shaft, giving us the possibility to calculate
the position of the shaft by counting the pulses. The only problem with this is that this system
would not be able to measure the movement direction, which is why (optical) rotary encoders
have two sets of these light sources and detectors. By measuring which one pulses first when a
hole approaches, the movement direction can be determined. The inner workings of an optical
encoder is visualized in figure 2.5.

The optical encoders mounted on the I-do platform use a differential output, meaning that the
signals are not outputted over a single wire, but rather over a (differential) pair, where one is
the reverted signal of the other. The original signal can be constructed on the receiving end
by taking the difference between the wires and dividing the result by two. The advantage of
this approach is that the wires are far less susceptible to interference because the noise would
impact both wires, meaning that the difference between the two wires would not be influenced.
This is especially useful for situations that require the wires to be relatively long.

Robotics and Mechatronics Cliff ten Berge

10 Reverse engineer discontinued I-do robots and make them applicable for educative use

shaft

rotating
codewheel

Figure 2.5: The inner workings of an optical encoder

2.2.9 Power management

The original power management on the I-do platform is sketched in figure 2.6. The same color
codingis used as in figure 2.1, meaning that the blue components are mounted in the entertain-
ment pack, the red components in the Savioke base, and the green components in the tower.
The individual power requirements of the components can be found in Appendix A.1.

Super B Andrena 12V

24V charging
pack Super B Andrena 12V U-charge U1-24RT 24V port

A
T 1
I | | ! .
Motor control
board

Voltcraft 19V Mean Well 12V AC converter Mean Well 12V +——» Power board

l l ‘v l ‘ v v { A4 F:‘;jg?;

WiFi LED IR LED Hall effect

amera Optical
board > module module sensors

Intel NUC
encoders. > LED strip

ROS
DC motors " computer
Legend
T— e »ooSK
Entertainment pack
Savioke base
| TRENDnet
1 Batery Ethermet
3 Converter Sl
<> Power user

Figure 2.6: Overview of the power distribution

2.2.10 Bang & Olufsen sound system

Eugeen comes with a very high-quality speaker from Bang & Olufsen. The speaker is a
Beosound 2 and uses Bluetooth as audio input. It is normally connected straight to the grid
at 230 Volts, on the robot it is powered by the battery pack, where a transformer turns the 12
Volts DC into 230 Volts AC.

2.2.11 LEDs

The I-do platform comes with three different LED segments that can be independently con-
trolled. The LED strip at the top of the robot (behind the "KUKA" letters) is controlled by a
WiFi LED controller, this controller operates at 12V and can control the patterns and the colors
either through a WiFi LED remote or through a phone application. The LED strip on the casing
of the robot is controlled with an IR LED controller, which is controlled by an IR remote. This

Cliff ten Berge University of Twente

CHAPTER 2. ANALYSIS 11

controller also operates at 12V and is also able to set a lighting pattern and color of your choice.
The final LED strip on the robot is mounted around the Savioke base and contains 193 LEDs,
which operate at 5V. This LED strip does not come with a controller but is controlled through
the powerboard. The cable of the LED strip has 3 inputs, one 5V supply, one ground, and a
digital (green) input that is used to control the LEDs.

2.3 Software

In order to be able to use the robots for a different task than was originally intended by KUKA,
the software needs to be understood. This turned out to be the biggest challenge with this
robot platform, as the computers did not seem to be very user-friendly. Upon starting up the
ROS computer, the computer seemed to cut off the video output as soon as it had finished the
booting procedure. The ROS computer runs on Ubuntu 12.04 Xenial and without access to
the file system, it would be impossible to reuse the original software. To circumvent the boot-
ing procedure from KUKA, the computer was booted in recovery mode, this made it possible
to open a root terminal, which gave insight into the file system. After spending a lot of time
going through every single folder on the computer, it appeared that the software has a large
dependency on an active connection to the servers of Savioke. Unfortunately, the majority of
the interesting named programs were all pre-compiled, making it very hard to reverse engineer
the software. The main focus was on finding out how the robot communicated with the motor
control board, as that would be crucial in order to let the robot execute tasks to our liking. Even
at this low-level control, evidence was found that the software used external servers of Savioke
to control the motors through WebSocket connections. It is unclear why Savioke decided to
take this approach, but it does explain why there was a need to give the I-do platform access to
the 4G network.

2.3.1 ROS

With the history of Savioke, it was to be expected that the company had used the Robotic Oper-
ating System (ROS) as the framework for the robot. After another extensive search through the
file system looking for anything related to ROS, a few programs were found that sporadically
contained pieces that looked like they were to function inside a ROS network. Unfortunately,
no "normal" ROS network was found anywhere in the file system, further confirming the earlier
finding that the I-do platform mostly relied on WebSocket connections. It is up to a different
engineer with more knowledge of ROS, whether there was a modified ROS network operating
on the system, but for the scope of this research, it was decided that it would be better to refrain
from putting more hours into sifting the file system and instead focus on how to work around
the need to reuse the existing software.

2.4 Design goals

In order to make changes to the robot, it is very important to have a good of idea what the I-do
platform is going to be used for. As the platform is so versatile, the University of Twente has
numerous options. First of all the University could use the robots during events, just like KUKA
did. The purpose of the robots is then to have as many people interact with the robot, boosting
the reputation of the University as a technologically advanced institute.

The second purpose is to use the robots for research purposes, possibly useful fields would
be to study the relationship between humans and (social) robots. As discussed before, the I-
do platform comes with a variety of equipment, all of which are focused on aiding humans,
making the robot very suitable for this kind of research.

Another use of the I-do platform could lie in the educational field. The main functionalities of
the robots are quite basic, making the platform a good learning project for students. A possi-

Robotics and Mechatronics Cliff ten Berge

12 Reverse engineer discontinued I-do robots and make them applicable for educative use

bility would be to remove a piece of software and let the students redesign that specific part as
a project.

2.5 Requirements

To make the list of requirements as concrete as possible, it is important to keep the previously
mentioned design goals in mind. First of all the robot should be able to construct a map of the
environment and navigate itself around.

In order to make the robot applicable for a wide variety of uses, the robot should be able to
accept simple coordinate targets for the robot to navigate to. The speed and the accuracy for
this navigation should be reasonably modular, as there are so many different use cases possible,
with each a different environment and thus different desirable traveling speeds and accuracies.

It is quite likely that the robot will be used indoors, therefore it should be able to handle con-
fined spaces (like door openings) without any problems.

Safety is also incredibly important in this project, as the robot could be used by students, there-
fore the possibility of unsafe commands should be considered. In order to guarantee safety for
all people involved, the robot should contain a low-level safety feature that stops the robot no
matter what commands are sent from the top-level structure when the robot gets into a dan-
gerous situation.

As this research is about reusing an original robot, the new set requirements should be met
while recycling as many components on the original I-do as possible.

Cliff ten Berge University of Twente

13

3 Design

3.1 Hardware

As the original pre-compiled software was not easy to reverse engineer, it was concluded that
the custom motor board and power board could not be reused. Therefore both of these boards
were removed from the robot. This presented the opportunity to design a system that is more
focused on the specific design goals that were set in the analysis chapter. To save as much
original hardware as possible, it was decided to try to keep the main robot programs on the
existing ROS computer, freeing processing power from the custom PCBs’ replacements.

With the removal of the custom PCBs, a new set of hardware had to be found that could execute
the following tasks.

* Read the analog signals of the bumper sensors (3 analog pins).

* Read the digital signals of the ultrasound sensors and the optical encoders (5 digital pins
+ 2 interrupt pins).

* Supply the DC motors with the intended voltage for driving the robot.
* Supply a constant voltage to all of the components.
e Write digital signals to the LED strip (1 digital pin).

e Communicate with the intended ROS network on the ROS computer.

3.1.1 Arduino Mega

Because of the before-mentioned decision to leave the majority of the processing up to the ROS
computer, the new hardware should be mostly focused on handling the inputs and the outputs
of the signals. Therefore a microcontroller would be better suited for this job compared to a
single-board computer like a Raspberry Pi. However, that still leaves a lot of possible options
on the table. Keeping the design goal in mind to have the total system easily understandable for
students, a microcontroller which the majority of students have previously worked with would
be of great value. Therefore it was decided to go with one of the Arduino microcontrollers. The
Arduino family consists of multiple boards that could be well suited for the tasks at hand.

The first candidate is the Arduino Uno, this is the microcontroller the majority of EE students at
the University of Twente have started out with in earlier projects. The board has an operating
voltage of 5 Volt and is based on the ATmega328p microcontroller. The board comes with 14
digital I/0 ports, from which 6 are able to produce a PWM signal and only 2 are suited for
interrupts. Furthermore, the board also comes with 6 analog input pins and has 32 KB of flash
memory.

The second candidate is the Arduino Nano, this board has exactly the same specifications as
the Arduino Uno, but it comes in a different size package and thus lacks some features like the
DC power plug.

The last candidate is the Arduino Mega, the Mega is a board that unlike the Uno and the Nano
uses the ATmega2560 microcontroller. This microcontroller also operates at 5 Volt and comes

with 54 digital I/0 pins, from which 15 are able to produce a PWM signal and 8 are able to han-
dle interrupts. Finally, the board comes with 16 analog input pins and 256 KB of flash memory.

All 3 candidates have enough digital I/0 and analog pins to accommodate all of the sensors,
the relevant differences lie mostly in the flash memory and the available interrupt pins.

Robotics and Mechatronics Cliff ten Berge

14 Reverse engineer discontinued I-do robots and make them applicable for educative use

The flash memory determines mostly how many variables can be maintained at one point in
time, a larger flash memory would therefore allow a bigger program with more (global) vari-
ables to run on the microcontroller. Considering that the I-do platform could be further devel-
oped by students, a larger flash memory could be beneficial in the future.

The amount of pins that are able to handle interrupts determines how many signals can be re-
ceived that can temporarily stop the program. This will be used by both the encoders to ensure
that position is incremented or decremented with each pulse of the encoder. This means that
at least 2 interrupt pins will be used by the sensors. As this is already the maximum amount
on both the Arduino Uno and the Nano, and it is preferred to have a few spare pins for further
development, it is concluded that with the previously set design goals the Arduino Mega is the
best-suited microcontroller for the I-do platform.

3.1.2 Pololu motor drivers

As the Arduino Mega is unable to supply the DC motors with 18 Volts, especially with the rated
current, an extra component is needed to handle this task. On the custom-made PCBs, this was
done in the Motor Control board, which has an integrated full H-bridge for each DC motor. But
with the removal of this motor control board, external motor drivers are required. As briefly
discussed in the analysis section, the DC motors have a maximum rated voltage of 18 V, and
have a typical current draw of 2 A each. With these specifications, there is a wide variety of
medium to high power motor drivers available. For the first prototype of the I-do platform, it
was decided to use the High-power 36v20 CS motor driver from Pololu, the main reason for this
is that there was a set of these motor drivers already available. The specifications (12) of these
drivers are quite a bit better than necessary for this project, therefore it could be investigated
to replace these with cheaper options when the other I-do robots are rebuilt.

3.1.3 Step down DC-DC converter

Another component that was powered by one of the custom PCBs was the LED strip mounted
on the Savioke base. This LED strip uses 5V and can use up to 1A, which is far too high for
the Arduino to deliver (the only 5V source so far), therefore an additional Step down DC-DC
converter is required to supply the LED strip with sufficient power. The converter that was
chosen is the LM2596S DC-DC adjustable step-down converter, the main reason for this is that
it was one of the cheaper options while being able to supply more than enough current (up to
2A).

3.1.4 Power management

The original power management of the I-do platform is drawn out in figure 3.1. The shapes in
the figure represent what kind of component it is, the squares are the batteries, the rounded-
off squares are the converters, and the ovals are the power users. The colors represent in which
section of the robot the component is located, blue stands for the entertainment system, red
is the Savioke base, and the yellow/green components are located in the tower segment. The
exact voltage and power ratings of the (power using) components can be found in Appendix
A.1, the power ratings of the converters can be found in Appendix A.2.

Cliff ten Berge University of Twente

CHAPTER 3. DESIGN 15

Legend
The tower
Entertainment pack
savioke base Super B Aggliena 12v Super B Andrena 12V
1 Battery P
C— Converter
<> Power user ‘
Step down
Voltcraft 19V Mean Well 15V AC converter Mean Well 12V DC-DC
converter 5V
TRENDnet B&O
ROS SICK 2 5
computer LIDAR H-bridges Ethe_rnet Beosound LED strip
switch 2
Arduino WiFi LED > IRLED
Mega ERHEETS module module
Optical Parallax Hall effect ¢ Camera
encoders PING))) Sensors Intel NUC > board

Figure 3.1: Overview of the power distribution

3.2 Software

Since the original software was not reusable, the entire software structure needs to be com-
pletely rebuilt. In order to do that it was decided that the software should be built on the previ-
ously mentioned Robotic Operating System, or ROS in short. The main reasons for this are that
ROS makes a robotic system very modular, this is because ROS is completely open-source and
the users can always add new packages to the existing software. This plays very well into the re-
quirement, that was earlier set, that the platform should be easily modifiable by students. Next
to this, the original software also (partly) uses ROS, this leaves the option open to reuse the orig-
inal software if it was somehow still extracted from the I-dos. The advantages that ROS brings
to any robotic system make it very popular within the developers’ community, this makes ROS
a very useful framework to learn as a student. All of these advantages combined make ROS
a very good base to use for the software. In figure 3.2 a software overview can be seen from
the entire platform. The squares represent software packages (on the ROS computer) or soft-
ware sections (on the Arduino). The oval shapes are used for sensors and the hexagons are the
(physical) H-bridges.

Robotics and Mechatronics Cliff ten Berge

16 Reverse engineer discontinued I-do robots and make them applicable for educative use

- /may
gmapping B ——

—— move_base
Jfultrasound_...
ROS computer
Jscan Jemd_vel Jodom
sick_tim fleft_wheel angle diff_drive_controller | /right wheel angle
e p——
T feft_wheel_wvel l Iright_wheel_vel
i Arduino
LiDAR > Pl control -
PWM + DIR|
v A
5f : Right
5 Left Right :
epfical Hbridge H-bridge optical

encoder encoder

Ultrasound

sensors Bl

Sensors

Figure 3.2: Overview of the total navigation network

3.2.1 ROS architecture

In appendix A.2 the rqt graph of the ROS network is shown, containing all the relevant nodes,
topics, and services on the network. The packages with the corresponding nodes, topics, and
services are further explained in the sections below.

move_base

The package that is responsible for the path planning and the creation of velocity commands
is the move_base package, an overview is sketched in figure 3.3. The move_base package uses
a global planner, which calculates a path using a global static costmap, and a local planner,
which uses a local dynamic costmap. The package combines these two planners to navigate
the robot through the environment towards its goal. When comparing figure 3.3 with figure
3.2, the implementation of the platform-specific nodes can be seen. The I-do has two types
of sensor sources, the SICK LiDAR, and the ultrasound sensors. In order to use the ultrasound
sensors, the package "range_sensor_layer" was added, which adds an additional layer to the
costmap of both planners. The optional amcl package is normally used to determine the pose
(location) of a robot on an existing map, the I-do uses SLAM (covered below) and therefore
does not require amcl. The output of the move_base package is a velocity command that gets
sent to the diff_drive_controller package. This velocity command contains both the preferred
translational velocity and the preferred rotational velocity. Because the I-do has two fixed pow-
ered wheels, it can only move forward, backward, and turn around its axis, therefore only the
velocities on and around these axes will be sent to the diff_drive_controller package.

Cliff ten Berge University of Twente

CHAPTER 3. DESIGN 17

"move_base_simple/goal" ; T
geometr[msgfs/PogeStgamped Navigation Stack Setup

)
move_base l

"fmap"
¥ nav_msgs/GetMap

map_server

global_planner -—— global_costmap

g internal T sensor topics ‘

tf/tfMessage nav_msgs/Path | (recovery_behaviors [sensor_msgs/Laserscan |

sensor_msgs/PointCloud

local_planner -<—— local_costmap

amcl

i

sensor transforms Sensor sources

"odom"
nav_msgs/Odometry

odometry source

"cmd_vel" |geometry_msgs/Twist

Y provided node
optional provided node
platform specific node

base controller

Figure 3.3: Overview of the move_base node(11)

gmapping
In order to construct a map from the laser data, a package called "gmapping" is used. The

package is specifically designed to perform Simultaneous Localization and Mapping (SLAM)
using the laser scan message type incorporated into the sensor messages in ROS.

In order to build an accurate map, the algorithm needs to have an accurate pose of the robot
on said map. This creates a problem because odometry data from the wheel encoders alone
has a long-term drift from the actual position. Therefore the gmapping package also needs
to localize the robot on the map that it has been building using the laser scanner. The need to
simultaneously perform localization and mapping creates a chicken-and-egg problem which is
further explained in paragraph 5.2 of (6). The Rao-Blackwellised Particle Filter that is discussed
there, is also the approach that is used by the gmapping package.

Sick_tim

In order to be able to use the SICK TiM571, a ROS package is needed named "sick_tim", this is
a wrapper that wraps the sensor data into the LaserScan message from ROS. The SICK scanner
from the original I-do platform was configured with a certain IP address, therefore every SICK
scanner needs to be reset using the SOPAS engineering tool from SICK (15) before they can be
used in the robots.

Diff drive_controller

As previously described, the move_base package sends a single velocity command that con-
tains both the translational and the rotational target velocities. The I-do platform how-
ever has two independent motors, which means that the single velocity command needs to
be split up into two separate target speeds for the individual motors. This is done by the
diff_drive_controller, which besides splitting the velocity command, also does the exact oppo-
site, as it combines the data from both the wheel encoders into a single odometry message(10).
The odometry message consists of the pose of the robot and the current translational and rota-
tional velocity.

The diff_drive_controller package is part of ros_control, which is a set of controllers that all
work according to a template. The data flow of this type of controller is sketched in figure 3.4.
A controller manager loads the controller and functions as the node for the controller. The
orange part in figure 3.4 is the hardware interface, which is the link between the controller
and the hardware. To make ros_control more flexible, this hardware interface is supposed to
be written for every type of robot independently, as a robot can have many different ways of

Robotics and Mechatronics Cliff ten Berge

18 Reverse engineer discontinued I-do robots and make them applicable for educative use

getting the commands across to the motors. The robot-specific code is mostly written in the
write() and the read() functions. These functions are called by the controller framework and
allow programmers to implement their own communication protocol with the hardware. In
the case of the I-do, the communication is done through ros_serial (see below), therefore the
write() and the read() functions publish and subscribe to the topics of ros_serial. The full code
of the hardware interface that was written for the I-dos can be found in appendix A.6.

33 ROS control Controller

e.g. joint_position_controller
Dynamically alloc ated from loaded controller plugin.

eg.PID
Controller

Data flow of contrallers

list_controllers o | Controller Manager
load controller o | | gads, unioads and calls
uninad_controliery | updates to controllers
swiich_controller

Hardware Resource Interfice Layer

QIO SO, %\\\\\\\\\\\\\\\-‘\\\\\\\\\\\\\\\\\w
\ Joint Command |m=r1nnes Joint State Interface
€. Effortlointinterface \ . JointStatelnterface
N N

E e N

Controller 1 Robot Commands Robot States
£.. joint efforts - N.m| g/ joint states - radians
hardware |interface::RobotHW
Controller 2
Jmm e : (" Forward) Stae
i Enforce limits (opfional) Transmissions
Controller 3 -

Real mechanical state
f (onaues to motc torques
=
u N
write() read()
Mechanism States

RN NN | \\\\\\\\\\\\\\\\\\

— CLCONDEE gy
—oad controler y,,
— e T
— WD oD

A

Actuaior Efforts P~
Communication Bus -
eqg. current e, Ethercat, e.g. encoder ficks
Serial, USB

Real Robot Y

Embedded Controllers
eg. PID koop to follow

effort setpoint
i Optional 3 Hardware /
{ Components {| Embedded Actuators ‘ ‘ Encoders
Actuators e
Duavve ColEman lﬂhﬂt
:Jan:;d Jun24, 2013
Figure 3.4: General functioning of ROS_control (5)
Rosserial

In figure 3.2 the connection between the ROS computer and the Arduino Mega can be seen. To
accomplish this connection a package called "rosserial" is used. This package makes it possible
to establish a serial connection to other devices. This means that every connection between the
grey and the orange part in figure 3.2 goes through the rosserial package. When looking at figure
A.1 in appendix A.2 it can be seen that the rosserial package creates a node that functions as
the Arduino. This node can be thought of as a sort of black box containing everything that is
behind the serial port. The serial connection with the Arduino Mega does have downsides, due
to the limited resources (like SRAM) on the Arduino there is a maximum amount of subscribers
and publishers. The ATMega2560 that is used by the Arduino Mega is able to have 25 publishers
and 25 subscribers simultaneously on the serial port, which is more than enough for the I-dos,
which at the current configuration use 5 publishers and 2 subscribers.

TF

The package "TF" is crucial for the robot because it links the different frames together. All the
sensors publish their data with the name of their frame attached to it. This frame is linked to
the base frame (base_link) of the robot by several static_transform_publishers, who send TF

Cliff ten Berge University of Twente

CHAPTER 3. DESIGN 19

messages containing the position and orientation of the frames. These static publishers are
located in the general launch files for the I-dos. In general, frames are not static, an example of
this is the base frame of the robot that moves over the (global) map frame. In appendix A.3 the
TF tree can be seen, this shows how all the frames are connected to each other.

3.2.2 Arduino architecture

The Arduino Mega has the following tasks on the I-do platform.

e Publish and subscribe to the required topics through rosserial_arduino

* Read encoder data to calculate the position of the wheels

Read the ultrasound sensors and filter the data

* Determine the wheel velocities and filter the data

e Calculate the required duty cycle to set the motor speeds to the target speeds
* Read the bumper sensors and implement a low-level kill switch

* Control the LED strip

Wheel position calculation

Both encoders have one output wired up to an interrupt pin on the Arduino. This allows the
Arduino to interrupt the loop whenever a pulse is sent from the encoders, indicating that the
motor shaft has rotated. In order to check the direction of the movement, the callback function
reads the state of the other output of that encoder (and thus the direction) that is wired up to
a normal I/0 pin. Whenever the shaft of one of the motors rotates, the Arduino increments
or decrements, depending on the direction, the position counter variable of that motor. This
variable represents the position of the wheel in ticks, which can then be converted into radians.
The number of ticks per wheel revolution was unfortunately not known, because the motor has
a gearbox mounted on it with an unknown gearing ratio. Therefore the amount of encoder ticks
per wheel revolution is calculated by letting the wheel spin a large number of times and then
taking the average amount of ticks per revolution.

PI control

In order to use the motors effectively, the Arduino Mega should be able to adjust the duty cycle
of the PWM signal to both motor drivers in such a way that the individual target speeds for both
motors are (quickly) reached. Because of the number of factors that impact the steady-state
speed of the motor at a specific duty cycle, a closed-loop control system is highly preferred. In
order to keep the implementation relatively simple, the PID controller approach was chosen
to control the system. The target of the closed-loop system is in radians per second, therefore
to keep the system intuitive, the entire control loop will be in radians per second. In order to
calculate the current wheel velocity, the position (from the encoders) needs to be differentiated.
This could lead to noise-related problems, therefore the resulting velocity will have to be low-
pass filtered. A full PID controller differentiates the error, resulting in extra additional noise.
Therefore it was decided to leave the differentiating block out of the controller, resulting in a
PI controller. The downside to this is that the PI controller could have a larger overshoot and
a longer settling time compared to a full PID controller(9). The PI controller should in theory
suffice for the project, as the majority of the control relies in higher layers of the software (like
in move_base). This means that the performance demands (overshoot and settling time) are
not very strict. These loose requirements make it possible to tune the controller with a trial-
and-error approach.

Robotics and Mechatronics Cliff ten Berge

20 Reverse engineer discontinued I-do robots and make them applicable for educative use

3.3 How to use the robot

In this section I will sketch the bigger picture on how the robot can be used, an exact step-by-
step approach can be found in appendix A.4.

3.3.1 Connectivity

The required ROS nodes have to be launched with the terminal window (shell prompt) on the
ROS computer. In order to do that one can either use a monitor and keyboard directly on the
computer or open the terminal window through a different laptop (or computer) using SSH.
As it would be quite cumbersome to attach a monitor and keyboard for every command, the
SSH method is recommended. The local IP address on the local network (made by the Ethernet
switch) is 192.168.0.5 (static). As mentioned above, the step-by-step approach can be found
in appendix A.4. It is also possible to use rviz on the remote laptop, but this requires some
additional steps as the ROS network needs to be set up properly (see the same appendix).

3.3.2 Initialization

The entire system can be initialized at once with the use of launch files, these files can be found
in the "launch_ido" package in the folder "launch". There are 3 launch files available to the
user, the "full.launch" file starts every single node that is required for the normal operation of
the robot. The "full_rviz.launch" file does the same thing, but also launches a preconfigured
rviz environment, rviz is the graphical interface built within ROS. The last launch file that was
written for the I-do platform is "teleop.launch", this launch file (only) launches the required
nodes to create velocity commands with the PlayStation 3 controller.

3.3.3 Controlling the robot

The robot itself can be controlled in two ways. The first one is the most straightforward and is
through the "cmd_vel" topic. All the commands that are published on this topic, will be exe-
cuted by the moving base. Although the localization and the mapping still work, the navigation
(move_base) system is simply on standby. One of the easier ways to do this is by launching
the above-mentioned PlayStation 3 controller launch file, this allows the user to drive the robot
with the controller. This manual driving could be very useful, as the robot learns and maps
the environment while it’s being driven around. This information can then be used to navigate
autonomously.

The other option to work with the robot is by publishing a goal pose on the "move_base_simple_goal"
topic. This sends the command to the navigation stack to start planning and following a path

to the desired location. The easiest way to do this is through the rviz environment, which
allows you to send the goal location by clicking on the map.

Cliff ten Berge University of Twente

21

4 Results

4.1 PIcontrol

As described in the design chapter, the controller parameters (K, and K;) are found using a
trial-and-error approach(8). As a starting point, K; was set at 0, this means that the controller
is only proportional. Then the proportional gain (K,) was increased until the system had a
noticeable overshoot but still recovered to the steady-state within a few oscillations. The pro-
portional gain that matched that criteria turned out to be 57.

With the proportional gain set, the integral gain could be determined. The integral component
is there to remove the remaining error to the reference velocity. A correct integral gain results in
a system that has (roughly) the same quick settling time that was achieved before, but without
the offset in the steady-state. The integral gain that was found to be working well is 62.

The step response of the system with these parameters can be seen in figure 4.1, this graph
contains the measured responses of both motors to a reference velocity of 3 rad/s.

Pl control performance

Left wheel Right wheel Target velocity

v AN N A ST AT TG T T =

Wheel velocity (rad/s)
w

0 0,5 1 15 2 2,5 3 3,5 4 4,5

Time (s)

Figure 4.1: Performance of the PI controller

4.2 Navigation

Figure 4.2 contains a map that was created by an I-do (Eugeen) of RaM lab 1. The I-do was
driven around manually using a PlayStation 3 controller. There are three doorways visible on
the map, two in the lower part and one on the left side. During this session the robot was not
driven outside of the lab, therefore the mapping of the areas behind the doorways was purely
created by the view that the robot was able to get from within the lab.

Robotics and Mechatronics Cliff ten Berge

P\ Do /N
~

N/,

22 Reverse engineer discontinued I-do robots and make them applicable for educative use

Figure 4.2: A map that was created of RaM lab 1

4.3 Applicability for educative use

In the design goals section of the analysis chapter, it was discussed how the I-do platform could
be of use in the educational field. This made it very desirable to have a system that is easily
understandable by students, who could use the I-do platform during projects. The knowledge
that is required by these students to be able to work with the robot depends a lot on the type of
project. These projects can be divided into two types, the first type requires students to use the
current functions of the robot, while the other type also requires students to add new features.

Looking at the steps that need to be followed to get the robot operational, it is safe to say that
students do not necessarily need to have any knowledge of ROS to work on projects of the first
type. This is mainly because the step-by-step approach (found in appendix A.4) allows students
to treat the I-do platform as a black box, only making use of the intuitive graphical interface
rviz.

The second type of project requires students to have more knowledge on ROS, as they have
to write new nodes that use the existing topics on the network. To get an idea of how long
it would take for students to get comfortable enough with ROS to make meaningful changes
to the system, we can take a look at my own experience with ROS. When I started with this
research I had no prior knowledge of ROS whatsoever. After finishing the first 11 tutorials on
the ROS website (1) I was able to understand the key concepts and write my own nodes, this
process took me about a full day. Adding some additional time for students to understand the
I-do specific software structure, it is to be expected that even students that do not have any
prior knowledge of ROS are able to get up to speed within a few days.

Cliff ten Berge University of Twente

23

5 Discussion

The performance of the PI controllers can be assessed by looking at the step response of the
individual motors to a new reference velocity in figure 4.1. Here it can be seen that with the
exception of the first peak (which is exaggerated due to wheel slip), the system settles at the
reference velocity without multiple oscillations, this means that the robot is quite responsive
while maintaining the required accuracy for indoor usage. The PI controllers’ parameters could
be further tuned to different priorities, an example of this would be to reduce the wheel slip and
overshoot to ensure that the robot does not make unexpected movements, this could be bene-
ficial in extremely confined spaces. For the requirements that were set in the analysis chapter
the current performance is good enough, this is mainly due to the higher level of control that
is implemented in the ROS network. This extra layer of feedback control will intervene and
change the reference velocities whenever the PI controllers’ imperfections threaten the opera-
tion of the I-do.

The mapping performance of the robot is assessed with the map that was created by the I-do
(see the results chapter). Looking at this result it can be concluded that the robot is able to
map the environment reliably and that there are no problematic localization issues. This can
be derived from the fact that the walls in figure 4.2 of the results are straight and that there are
no clear faulty angles between them.

In the results chapter, my own learning experience with ROS was used as an indication on how
difficult it would be for other students start working on the I-do platform. Further research
on this could be done by a trial with an actual set of students that have never worked with
ROS before. This information could then also be used to improve the step-by-step guide in the
appendix.

Robotics and Mechatronics Cliff ten Berge

24 Reverse engineer discontinued I-do robots and make them applicable for educative use

6 Conclusion

Looking back on the first stage of the research, the reverse engineering, we see that new doc-
umentation on the robot platform has been made. Because of this, it should now be possible
for a student with no prior knowledge of the I-do platform to start adding new features without
having to disassemble and research the entire robot.

The design stage focused mainly on restoring the basic functionalities, like driving and map-
ping, while keeping the entire system easy to use for students. Comparing the driving perfor-
mance of the robot with the requirements that were set in the analysis chapter, we can conclude
that the robot is indeed able to move around precisely enough to operate safely in confined
spaces.

The safety is ensured by the speed limits in the ROS network, which is configurable in the con-
figuration files, and by the low-level kill switch that is implemented on the Arduino. This kill
switch is automatically activated by the bumper sensors and hereby tries to prevent additional
damage after the first bump.

The robot combines the previously mentioned mapping and driving features to navigate au-
tonomously. As set in the requirements, for this to work the robot only needs the goal coor-
dinates on the map frame. This makes it very easy to control the robot and to change its goal
during operation. With the use of ultrasound sensors, the robot is able to navigate itself around
objects that are not directly perceivable by the LiDAR sensor, making the robot much more
effective for autonomous indoor usage.

The newly designed robot only comes with 3 batteries instead of the original 4, this makes
it easier for the university to maintain them, especially as they are all of the same manufac-
turer and operating voltage. Besides it being easier to maintain, all the hardware and software
components are now all open-source, removing all the "black box" components that were pre-
viously on the platform. These aspects combined make the robot less complex to work on,
making it more suitable for use in an educative environment.

Although the robot passed every requirement that was mentioned in the analysis chapter, it is
not perfect. Further fine-tuning of the PID parameters could prevent wheel slip, which could
reduce the long-term drift in the odometry data, making it more reliable. This problem is now
compensated by the gmapping package, but this uses more resources on the ROS computer
and is therefore not desirable.

Further development on the robot could bring additional interesting features to the robot, an
example of this is the incorporation of the D410 Realsense depth cameras. These could be used
to implement the people tracking software that was developed for the EU FP7 project SPENCER
(4). Another use for the depth cameras could be to use them as additional sensors for mapping
the environment. Besides these possible features, additional research could also be done on
the camera head of the original I-do platform.

Cliff ten Berge University of Twente

A Appendix

A.1 Power ratings

Component(s) Voltage (range) rating Maximum power or
maximum current usage
B&O Beosound 2 230V AC 100 W
ROS computer 19V DC unknown
DC motors 18V DC 4A
TRENDnet Ethernet switch 12V - 56V DC 5W
SICK LiDAR 9V - 28V DC 4 W
WiFi LED module 12V DC unknown
IR LED module 12V DC unknown
Intel NUC 12V - 19V DC 65 W
Camera board 12V DC unknown
LED strip 5VDC 5W
Optical encoders 5V DC 72 mA (total)
Parallax PINQ))) 5VDC 105 mA (total)
Hall effect sensors 5VDC 15 mA (total)

Table A.1: Power rating components

Converter Voltage range maximum power or
maximum current
Belkin F5C412Eb300W 230V AC 300 W
Voltcraft SMP-125 USB 15V - 24V DC 120 W
Mean Well SD-100A-12 10V - 16V DC 102W
LM2596S DC-DC step-down 1.5V - 30V DC 2A
converter
Arduino Mega 5VDC 0.5 A (USB powered)

Table A.2: Power ratings of the converters

Robotics and Mechatronics

Cliff ten Berge

26 Reverse engineer discontinued I-do robots and make them applicable for educative use

A.2 Rqtgraph of the (reduced) ROS network

TOTOS0Z TLSWA SIS/

;
$
£
§

k)
'3
i :
H
B
3 g
= |z| | B
: L
: 2 'E '3
AR AN
ENNE
g '3
3
s il
i el |2
LR
i
i3
b s
i
g 3
2
s
3 = § H H H
gl |a -g g E s § g
: il |¢ g g | H
i 1% ¢ g 2 § 5 3
H g \® g §
3 5
g 2
I 3
s
i bl
3 5
g g
1

Figure A.1: Rqt graph of the ROS network

Cliff ten Berge University of Twente

27

Recorded at time: 1649334882.7353382

Broadcaster: /slam_gmapping

Average rate: 20.953

Buffer length: 1.05

Most recent transform: 1649334882.752
Oldest transform: 1649334881.702

Broadcaster: /hardware_interface
Average rate: 11.0

Buffer length: 1.0

Most recent transform: 1649334882.691
Oldest transform: 1649334881.691

Broadcaster: /footprint_to_link

Average rate: 99.691

Buffer length: 1.073

Most recent transform: 1649334882.711
Oldest transform: 1649334881.638

base_link

Cliff ten Berge

A.3 TF tree of the ROS network

APPENDIX A. APPENDIX

Broadcaster: /link_to_rightsonar
Average rate: 99.667
Buffer length: 1.074

Broadcaster: /laser_to_link
Average rate: 99.537
Buffer length: 1.075

Most recent transform: 1649334882.711
Oldest transform: 1649334881.636

Broadcaster: /link_to_centersonar
Average rate: 99.549
Buffer length: 1.075

Broadcaster: /link_to_leftsonar
Average rate: 99.565

Buffer length: 1.075

Most recent transform: 1649334882.711
Oldest transform: 1649334881.638

Most recent transform: 1649334882.711 Most recent transform: 1649334882.711
Oldest transform: 1649334881.636 Oldest transform: 1649334881.636

ultrasound_left_frame

ultrasound_center_frame ultrasound_right_frame

laser_mount_link

Broadcaster: /robot_state_publisher
Average rate: 10000.0

Buffer length: 0.0

Most recent transform: 0.0

Oldest transform: 0.0

Figure A.2: The TF tree of the ROS network, containing all the frames

Robotics and Mechatronics

28 Reverse engineer discontinued I-do robots and make them applicable for educative use

A.4 Step-by-step approach to using the basics of the I-do platform

Note: Skip the setup if you want use the command prompt on the local ROS computer on the
robot (not recommended).

Note: It is possible to SSH into the local ROS computer using a computer that runs on Windows
(using Putty), however this makes it a lot more difficult to use the graphical interface rviz (not
recommended).

A.4.1 Setup

1. Download and install Ubuntu as your (second) operating system, the dual booting
procedure is described here: https://itsfoss.com/install-ubuntu-1404-dual-boot-mode-
windows-8-81-uefi/.

2. Download and install ROS (noetic) on your laptop using the steps described here (this is
to run rviz on your laptop): http://wiki.ros.org/noetic/Installation/Ubuntu.

3. Connect the loose power cables on the I-do, this starts up the system.

4. Connect your laptop or computer to the robot with an Ethernet cable, the Ethernet port
on the robot is located on the backside, close to the floor.

5. Set up a static IP address for your laptop by following this guide (scroll down to the
desktop variant guide): https://pimylifeup.com/ubuntu-20-04-static-ip-address/. The
required static IP address is "192.168.0.2", the required gateway is "192.168.0.1" and the
netmask is "255.255.255.0".

6. Start an SSH connection with the robot, you do this with the following command: "ssh
eugeen@192.168.0.5". The password is "eugeen". This shell prompt is now accessing the
ROS computer on the robot.

7. In order to run rviz on your own laptop, the ROS network needs to be setup
properly. To do that you will have to start a second (new) shell prompt and run
the following two commands (you need to do this every time you start a new
shell prompt): "export ROS_MASTER_URI=http://192.168.0.5:11311" and "export
ROS_HOSTNAME=192.168.0.2". You could also add these two commands to the /.bashrc
file (command: "gedit /.bashrc"), this executes it automatically every time you open a
new shell prompt.

A.4.2 Launching ROS nodes

You can launch the required ROS nodes by using the command "roslaunch", with this com-
mand we can run launch scripts, which essentially launches all the required nodes at once. All
the commands that you want to execute on the robot (like the command right below), you'll
have to execute in the shell prompt which runs SSH.

1. Execute the follow command to launch the required ROS nodes for the robot to function:
"roslaunch launch_ido full.launch".

Optional If you have a monitor connected to the ROS computer, you can also run: "roslaunch
launch_ido full rviz.launch". This command launches the same nodes as the first com-
mand, but also brings up the preconfigured rviz environment on the ROS computer.

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX 29

A.4.3 Usingrviz to control the robot on your own laptop

1. After running the above mentioned commands, you are able to launch rviz on your own
computer. You do this by executing the following command: "rviz" in the shell prompt
that you did not use for SSH!

Optional Download the config file at the link supplied by the project supervisor.

Optional In the rviz environment, go to file -> Open Config and load the supplied file. This loads a
preconfigured rviz environment.

2. You can send a goal to the robot by first clicking on the "2D Nav Goal" button followed by
a click on the position of the map you want the robot to move to.

A.4.4 Controlling the robot with a PlayStation 3 controller

In order to drive the robot around manually, you can send velocity commands directly to the
robot base with a PlayStation 3 controller.

1. First connect the PlayStation 3 controller to the ROS computer with a USB cable.
2. Press the PlayStation logo, now the player 1 light should light up.

3. In the SSH shell, run: "roslaunch launch_ido teleop.launch". The robot should now re-
spond to the controller. You can drive forwards and backwards with the left stick, and
turn the robot with the right stick.

A.5 Arduino code

#include <ros.h>

#include <std_msgs/Float32.h>

#include <sensor_msgs/Range.h>

#include <NewPing.h>

#include <SimpleKalmanFilter.h>

#include <util/atomic.h> // For the ATOMIC BLOCK macro
#include <FastLED.h>

// Pins right motor

#define PNMMR 6 // orange - PAM out
#define DIR R 22 // Yellow - DIGI out
#define ENA R 40 // Green - DIGI in
#define ENB R 2 // White - Interrupt pin

/! Pins left motor
#define PWNM L 7 // Orange - PAM out

#define DIR_L 30 // Blue — DIGI out
#define ENA L 34 // Green - DIGI in
#define ENB_L 3 // White - Interrupt pin

// Pins Sonar

#define leftSonarPin 45 // Orange
#define centerSonarPin 47 // Yellow
#define rightSonarPin 43 // White

/! Pin LED strip
#define DATA I1ED 50 // Green

Robotics and Mechatronics Cliff ten Berge

30 Reverse engineer discontinued I-do robots and make them applicable for educative use

// Pins Bumper

#define leftBumper A0
#define frontBumper Al
#define rightBumper A2

// Sonar constants

#define SONAR NUM 3 // The number of sensors.

#define MAX DISTANCE 100 //Mad distance to detect
obstacles.

#define PING_INTERVAL 33 // Looping the pings after 33
microseconds.

unsigned int cm[SONAR NUM]; /! Variable where the ping
distances are stored.

unsigned int kal [SONAR NUM]; /! Variable where the filtered
ping distances are stored

unsigned long _timerStart = 0; /! Global used for setting the
starting time of the timer

int LOOPING = 40; /! Constant that determines how

often the ultrasound sensors measure the distance

/! Led strip globals and constants

#define NUM IEDS 193

CRGB leds [NUM IEDS];

int LED nr = 0;

uint8_t hue = 0; /! The color that the led strip is displaying

#define bumperThreshold 10 // Threshold value used for the
colission detection (lower -> more sensetive detection)

ros :: NodeHandle nh; /! ROS node handler definition

/! Messages used for the angle feedback
std_msgs :: Float32 msgs_pubL;
std_msgs:: Float32 msgs_pubR;

/! Message definitions used for the ultrasound data
sensor_msgs :: Range range_left;

sensor_msgs :: Range range_center;

sensor_msgs :: Range range_right;

/! Globals

bool allowedToDrive = true; /! The boolean that sets
whether the robot is allowed to drive

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX 31

/! Defining the ultrasound sensors as an array
NewPing sonar [SONAR NUM] = {
NewPing(leftSonarPin, leftSonarPin, MAX DISTANCE), // Trigger pin
, echo pin, and max distance to ping.
NewPing(centerSonarPin, centerSonarPin, MAX DISTANCE) ,
NewPing (rightSonarPin, rightSonarPin, MAX DISTANCE)
b

/! Defining the corresponding filters (for the ultrasound) as an
array

SimpleKalmanFilter kalfilt [SONAR NUM] = {

SimpleKalmanFilter (2, 2, 0.01),

SimpleKalmanFilter (2, 2, 0.01),

SimpleKalmanFilter (2, 2, 0.01)

}s

/! Motor control:
long prevT = 0; // Variable used for determining the time
difference for the differentiating

// Left:

volatile double pos_i_L = 0; /! Variable used to store the
wheel position in ticks

long posPrev_L = 0; // Variable used for storing the
previous position for the velocity calculation

float eintegral L = 0; /! Variable used for integrating

the error for the PI controller

float radsFilt_L = 0; /! Variable for storing the
filtered velocity in rad/s
float radsPrev_L = 0; /! Variable for storing the

previous velocity, used in the filtering

float target_L = 0; /! The reference velocity for the
PI controller

// Right:

volatile double pos_i_R = 0; /! Variable used to store the
wheel position in ticks

long posPrev_R = 0; // Variable used for storing the
previous position for the velocity calculation

float eintegral_R = 0; // Variable used for integrating

the error for the PI controller

float radsFilt_R = 0; /! Variable for storing the
filtered velocity in rad/s
float radsPrev_R = 0; /! Variable for storing the

previous velocity, used in the filtering

Robotics and Mechatronics Cliff ten Berge

32 Reverse engineer discontinued I-do robots and make them applicable for educative use

float target_R = 0; /! The reference velocity for the
PI controller

/! Callback function to set the new reference velocity

void setVellL (const std_msgs:: Float32& left_wheel_vel) {
target_L = left_wheel_vel.data;

}

// Callback function to set the new reference velocity

void setVelR (const std_msgs:: Float32& right_wheel_vel) {
target_R = right_wheel_vel.data;

}

/! Create the subscribers and publishers objects

ros:: Subscriber <std_msgs:: Float32> subL("/my_robot/left_wheel _vel"
, &setVell);

ros:: Subscriber <std_msgs:: Float32> subR("/my_robot/right_wheel vel
", &setVelR);

ros:: Publisher pubL("my_robot/left_wheel_angle", &msgs_pubL);
ros:: Publisher pubR("my_robot/right_wheel_angle", &msgs_pubR);

ros:: Publisher pub_range_left("/ultrasound_left", &range_left);

ros:: Publisher pub_range_center("/ultrasound_center", &range_center
)

ros:: Publisher pub_range_right("/ultrasound_right", &range_right);

void setup () {
Serial.begin(9600);

TCCR4B = TCCR4B & B11111000 | B00000001; // Set the PAM
frequency to 31372.55 Hz, which is outside the audible range

/! Intitialize the ROS node and subscribe/advertise the required
topics

nh.initNode () ;

nh.subscribe (subL) ;

nh. subscribe (subR) ;

nh.advertise (pubL) ;

nh. advertise (pubR) ;

nh.advertise (pub_range_left);

nh. advertise (pub_range_center) ;

nh. advertise (pub_range_right) ;

/! Setup the pins for the left motor
pinMode (DIR_L, OUTPUT) ;
pinMode (ENA_L, INPUT);
pinMode (ENB_L, INPUT);

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX

33

pinMode (PWM_L, OUTPUT) ;
attachInterrupt(digitalPinToInterrupt (ENB_L), readEncoder_L,
RISING) ; /! Attach the callback function to the interrupt

pin

/! Setup the pins for the right motor

pinMode (DIR_R, OUTPUT) ;

pinMode (ENA_R, INPUT);

pinMode (ENB_R, INPUT) ;

pinMode (PWM_R, OUTPUT) ;

attachInterrupt(digitalPinToInterrupt (ENB_R), readEncoder_R,
RISING) ; // Attach the callback function to the interrupt

pin

// Initialize the messages for the ultrasound sensors
sensor_msg_init(range_left, "ultrasound_left_frame");
sensor_msg_init (range_center, "ultrasound_center_frame");
sensor_msg_init(range_right, "ultrasound_right_frame");

/! Initialize the LED strip

FastLED .addLeds<WS2812,DATA LED,RGB>(leds ,NUM IEDS) ;
FastLED.setBrightness (84);

void loop () {

double pos_L 0;
double pos_R = 0;
ATOMIC BLOCK(ATOMIC RESTORESTATE) { // To avoid any misreads,
the positions are read in an atomic block
pos_L = pos_i_L;
pos_R = pos_i_R;
}

/! Compute the time delay for the loop, this is used for the
differentation

long currT = micros();

float deltaT = ((float) (currT - prevT)) / 1.0e6;

/! Compute the left wheel velocity

float velocity_L = (pos_L - posPrev_L) / deltaT;
posPrev_L = pos_L;

/! Compute the right wheel velocity

float velocity_R = (pos_R - posPrev_R) / deltaT;
posPrev_R = pos_R;

prevl = currT;

/! Convert count/s to rad/s

Robotics and Mechatronics Cliff ten Berge

34

Reverse engineer discontinued I-do robots and make them applicable for educative use

float rads_ L velocity_L % 0.000427;
float rads_R = velocity_R * 0.000427;

/! Low-pass filter left wheel velocity (25 Hz cutoff)

radsFilt L = 0.854 = radsFilt L + 0.0728 = rads_L + 0.0728 =
radsPrev_L;

radsPrev_L = rads_L;

/! Low-pass filter right wheel velocity (25 Hz cutoff)

radsFilt R = 0.854 x radsFilt_ R + 0.0728 = rads_R + 0.0728 =«
radsPrev_R;

radsPrev_R = rads_R;

/! PI controller parameters

float kp = 57.3; /! Proportional gain

float ki = 62.1; // Integration gain

float e_L = target_L - radsFilt_L; /! Calculate the
error

eintegral_L = eintegral L + e_L * deltaT; // Integrate the
error

float uL = kp = e L + ki = eintegral_L; /! Calculate the

control signal

float e_ R = target_R - radsFilt_R; // Calculate the
error

eintegral R = eintegral R + e R * deltaT; // Integrate the
error

float uR = kp = e_.R + ki = eintegral_R; /! Calculate the

control signal

/! Limit the control signal to 255 (max dutycycle)
int pwr_L = (int) fabs(u_L);
if (pwr_L > 255) { //255
pwr_L = 255;
}

/! Limit the control signal to 255 (max dutycycle)
int pwr_R = (int) fabs(u_R);
if (pwr_ R > 255) { //255
pwr_R = 255;
}

/! If the robot needs to stop, cut the motors off (this prevents
small oscillations)
if (target_L == 0 && target_R == 0) {
pwr_L = 0;
pwr_R = 0;

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX

/! Send the motor command if the robot is allowed to drive
if (allowedToDrive) {
setMotor (readDir (u_L), DIR_L, pwr_L, PWML);
setMotor (readDir (u_R) , DIR_R, pwr_R, PAMR);
}
else { // Cut of the power if it is not allowed to drive
setMotor (readDir (u_L), DIR_L, 0, PWM.L);
setMotor (readDir(u_R), DIR R, 0, PAMR);

/! Calculate the wheel position in radians (from ticks)
msgs_pubL.data = pos_L / 2342;
msgs_pubR.data = pos_R / 2342;

/! Publish the wheel position data
pubL. publish (&msgs_publL) ;
pubR. publish (&msgs_pubR) ;

sonarLoop () ; /! Run the sonar loop

checkBump () ; /! Check whether the bumper sensors have exceeded
the threshold

nh.spinOnce (); // Update the ROS network

/! If the LED counter is at the last LED, go back to the first
if (LED_nr > NUM_IEDS-1) {
LED nr = 0;
}
leds [LED_nr++] = CHSV(hue, 255, 255); // Set the LED color and

brightness
FastLED .show () ; // Show the leds
fadeall () ; /! Fade every LED, this

creates the fading tail
}

/! Determine the required direction of movement
int readDir (int u) {
if (u<0) {
return 0;
}
else {
return 1;

/! Set the correct PAM dutycycle and direction pin
void setMotor(int dir, int dirPort, int pwmVal, int pwmPort) {

Robotics and Mechatronics Cliff ten Berge

36 Reverse engineer discontinued I-do robots and make them applicable for educative use

digitalWrite (dirPort, dir); // Set the direction on the motor
driver
analogWrite (pwmPort, pwmVal) ; /! Adjust the dutycycle

}

/! Callback function for the left wheel
void readEncoder_ L () {
if (digitalRead (ENA_L) == IOW) { // Determine the movement
direction of the motor shaft
pos_i_L++;
}
else {
pos_i_L-—-;
}
}

/! Callback function for the right wheel
void readEncoder R() {
if (digitalRead (ENA R) == IOW) { // Determine the movement
direction of the motor shaft
pos_i_R++;
}
else {
pos_i_R--;
}

//looping through the ultrasound sensors
void sensorCycle () {
for (uint8_t i = 0; i < SONARNUM; i++) {

cm[i] = sonar[i].ping cm(); // Read the
distance in cm

kal[i] = kalfilt[i].updateEstimate(cm[i]); // Filter the data

if (em[i] < 10) { /! If the reading

is too close, set the output as maximum, this prevents the
costmap from putting false objects on the robots position
kal[i] = MAX DISTANCE;

// Store the current time
void startTimer () {
_timerStart = millis () ;

}

/! Check whether a certain interval has passed
bool isTimeForLoop (int _mSec) {
return (millis () - _timerStart) > _mSec;

}

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX

/! The loop that handles the ultrasound sensors
void sonarLoop () {
if (isTimeForLoop (LOOPING)) {

sensorCycle () ; /! Loop through the
sensors
startTimer () ; // Start the timer

/! save the data into the message

range_left.range (float) kal[0] / 100;
range_center.range (float) kal[l] / 100;
range_right.range (float) kal[2] / 100;

/! Implement the time
range_left.header.stamp = nh.now() ;
range_center.header.stamp = nh.now() ;
range_right.header.stamp = nh.now() ;

/! Publish the data

pub_range_left. publish(&range_left);
pub_range_center. publish(&range_center) ;
pub_range_right.publish(&range_right);

/! Fill the sensor message
void sensor_msg_init (sensor_msgs::Range &range_name, char =
frame_id_name)

{
range_name.radiation_type = sensor_msgs::Range :: ULCTRASOUND;
range_name. header.frame_id = frame_id_name;
range_name. field_of_vie 0.1;
range_name.min_range =
range_name.max_range =

)

)—'O€|
o~

’

/! Fade every LED
void fadeall () {
for(int i = 0; i < NUMIEDS; i++) {
leds[i].nscale8(252);
}

/! Check whether one of the sensors has exceeded the threshold
value
void checkBump () {
if (max(analogRead (leftBumper), max(analogRead (frontBumper) ,
analogRead (rightBumper))) > bumperThreshold && allowedToDrive
) A
emergencyStop () ;

}

Robotics and Mechatronics Cliff ten Berge

38 Reverse engineer discontinued I-do robots and make them applicable for educative use

/! Perform an emergency stop
void emergencyStop () {

allowedToDrive = false; /! Prevent any motor control
commands from being send
hue = 96; // Set the LED color to red

/! Set all the LEDs immediately to the red color
for(int i = 0; i < NUMIEDS; i++4) {
leds[i] = CHSV(hue, 255, 100);
// Show the leds

FastLED .show () ; /! Update the LEDs

A.6 Hardware interface code

#include <ido_interface/MyRobot_hardware_interface.h>

MyRobot : : MyRobot (ros : : NodeHandle& nh) : nh_(nh) {

/! Declare all JointHandles, JointInterfaces and
JointLimitInterfaces of the robot.
init () ;

/! Create the controller manager

controller_manager_.reset (new controller_manager::
ControllerManager (this, nh_));

// Set the frequency of the control loop.
loop_hz_=10;

ros::Duration update_freq = ros::Duration(1.0/loop_hz_);

//Run the control loop

my_control_loop_ = nh_.createTimer (update_freq, &MyRobot::
update, this);

MyRobot:: ~MyRobot () {
}

void MyRobot::init () {

/! Create joint_state_interface for JointA (left wheel)
hardware_interface::JointStateHandle jointStateHandleA ("
wheel_left_joint", &joint_position_[0], &joint_velocity_
[0], &joint_effort_[0]);

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX

39

joint_state_interface_.registerHandle (jointStateHandleA) ;
/! Create effort joint interface as JointA accepts effort command.
hardware_interface::JointHandle jointVelocityHandleA (
jointStateHandleA, &joint_velocity_command_[0]);
velocity_joint_interface_.registerHandle (jointVelocityHandleA) ;

/! Create joint_state_interface for JointB (right wheel)
hardware_interface ::JointStateHandle jointStateHandleB ("
wheel_right_joint", &joint_position_[1], &joint_velocity_
[1], &joint_effort_[1]);
joint_state_interface_.registerHandle (jointStateHandleB) ;
/! Create effort joint interface as JointB accepts effort command.
hardware_interface::JointHandle jointVelocityHandleB (
jointStateHandleB, &joint_velocity_command_[1]);
velocity_joint_interface_.registerHandle (jointVelocityHandleB) ;

// Register all joints interfaces
registerInterface(&joint_state_interface_);
registerInterface(&velocity_joint_interface_);

/! Advertise the publishers

left_wheel_vel _pub_ = nh_.advertise<std_msgs:: Float32>("
my_robot/left_wheel_vel", 1);

right_wheel_vel_pub_ = nh_.advertise<std_msgs:: Float32>("
my_robot/right_wheel_vel", 1);

/! Subscribe to the required topics

left_wheel_angle_sub_ = nh_.subscribe ("my_robot/
left_wheel_angle", 1, &MyRobot::leftWheelAngleCallback,
this) ;

right_wheel_angle_sub_ = nh_.subscribe ("my_robot/
right_wheel _angle", 1, &MyRobot:: rightWheelAngleCallback,
this) ;

/! This is the control loop

void MyRobot::update(const ros::TimerEvent& e) {
elapsed_time_ = ros::Duration(e.current_real - e.last_real);
read () ;
controller_manager_->update (ros::Time::now() , elapsed_time_);
write (elapsed_time_) ;

}

/! This function gets called to input data into the controller
void MyRobot::read () {

joint_position_[0] = _wheel_vel [0];

Robotics and Mechatronics Cliff ten Berge

40 Reverse engineer discontinued I-do robots and make them applicable for educative use

joint_position_[1] = _wheel_vel[1];

/! This function gets called to output data from the controller
void MyRobot:: write (ros:: Duration elapsed_time)
{
// Create a new message and fill it with the data, then
publish it
std_msgs:: Float32 left_wheel_vel_msg;
std_msgs:: Float32 right_wheel_vel_msg;
left_wheel_vel_msg.data = joint_velocity_command_[0
right_wheel_vel_msg.data = joint_velocity_command_ [
left_wheel_vel_pub_.publish (left_ wheel_vel_msg);
right_wheel_vel_pub_.publish (right_wheel_vel_msg);

1;
1];

int main(int argc, chars+ argv)

{

//Initialze the ROS node.
ros::init(argc, argv, "MyRobot_hardware_interface_node");
ros ::NodeHandle nh;

/! Create the object of the robot hardware_interface class and
spin the thread.
MyRobot ROBOT (nh) ;

//Separate Spinner thread for the Non-Real time callbacks such
as service callbacks to load controllers

ros :: MultiThreadedSpinner spinner (0);

spinner.spin () ;

return O0;

A.7 Launch file code (full.launch)

<launch>

<!— Start the rosserial node, with the correct settings. If
there is an error, check whether the board is connected at
/dev/ttyACMO ——>

<node name="serial_node" pkg="rosserial_python"
type="serial_node.py">

<param name="port" type="string"
value="/dev/ttyACMO" />

<param name="baud" type="int"

value="57600"/>

Cliff ten Berge University of Twente

APPENDIX A. APPENDIX

41

</node>

<!— Start the hardwrae interface ——>

<node name="hardware_interface" pkg="ido_interface"

type="MyHardware_interface">

</node>

<!—— Run all the required launch files -—>

<include file="$(find_ido_interface)/launch/Mylnterface.launch"
/>

<include file="$(find_sick_tim)/launch/sick_tim571_2050101.
launch" />

<include file="$(find_gmapping)/launch/ido_gmapping.launch" />

<include file="$(find_my_2d_nav)/launch/move_base.launch" />

<!—— Start all the static TF publishers —-—>

<node pkg="tf" type="static_transform_publisher" name="
footprint_to_link" args="0_0_0.08_0_0_0 _base_footprint_,
base_link_10" />

<node pkg="tf" type="static_transform_publisher" name="
laser_to_link" args="0_0_0.23_0_0_3.14159_base_link_,
laser_mount_link_10" />

<node pkg="tf" type="static_transform_publisher" name="
link_to_leftsonar" args="0.11_0.05,1.04_0.21_0.785_0_,
base_link_ultrasound_left_frame_ 10" />

<node pkg="tf" type="static_transform_publisher" name="
link_to_centersonar" args="0.11_0_1.04_0_0_0_base_link_,
ultrasound_center_frame_10" />

<node pkg="tf" type="static_transform_publisher" name="
link_to_rightsonar" args="0.11_-0.05_,1.04_-0.21_0.785_0_,
base_link_ultrasound_right_frame_10" />

</launch>

Robotics and Mechatronics Cliff ten Berge

42 Reverse engineer discontinued I-do robots and make them applicable for educative use

Bibliography

[1] Ros wiki tutorials. http://wiki.ros.org/ROS/Tutorials.

[2] Saviokerelay. https://www.savioke.com/relay-plus.

[3] Website kuka. https://www.kuka.com/en—de/company/about—-kuka.
4

] Motion planning under socially normative constraints. http://www.spencer.eu/
deliverables/d5_3.pdf, 2014.

[5] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo Ro-
driguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar, Gennaro
Raiola, Mathias Liidtke, and Enrique Ferndndez Perdomo. ros_control: A generic and sim-
ple control framework for ros. The Journal of Open Source Software, 2017.

[6] N. Murphy K Doucet, A. de Freitas and S Russel. Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks. 2000.

[7] Erico Guizzo Evan Ackerman. Wizards of ros: Willow garage and the mak-
ing of the robot operating system how a small band of silicon valley engi-
neers started a global robotics revolution. https://spectrum.ieee.org/
wizards—-of-ros-willow—-garage—and-the-making-of-the-robot-operating-system,
2017.

[8] Manuel Gréaber. Practical pid tuning guide. https://tlk-energy.de/blog—en/
practical-pid-tuning-guide, 2021.

[9] Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design, and
technology. IEEE Transactions on Control Systems Technology, 2007.

[10] Bence Magyar. Ros package: diff _drive_controller. http://wiki.ros.org/diff_
drive_controller.

[11] Eitan Marder-Eppstein. Ros package: move_base. http://wiki.ros.org/move_

base.
[12] Pololu. Pololu High-Power Motor Driver 36v20 CS. https://www.pololu.com/
product/1457/specs.

[13] SICK. Sick tim571 working range diagram. https://www.sick.com/be/en/
detection-and-ranging-solutions/2d-lidar—-sensors/timb5xx/
£tim571-2050101/p/p4l2444.

[14] SICK. SICK TiM571 datasheet. https://cdn.sick.com/media/pdf/4/44/444/
dataSheet_TiM571-2050101_1075091_en.pdf, 2020.

[15] SICK products. SOPAS. https://www.sick.com/nl/nl/
sopas—engineering-tool/p/p367244",.

[16] Super B. Andrena 12V15aH. https://s3.eu-central-1.amazonaws.com/
superb-com/sulu/uploads/media/08/datasheet-andrena_1l2vl15ah_
vl-1.pdf.

[17] Super B. Andrena 12V25aH-SC. https://s3.eu-central-1.amazonaws.
com/superb-com/sulu/uploads/media/07/datasheet-mason—-12v25ah_
vl-1.pdf.

[18] Valence. U-Charge U1-24RT. https://www.rdbatteries.com/upload/729/
Ul-24RT-Datasheet-Aug-2015.pdf, 2015.

Cliff ten Berge University of Twente

http://wiki.ros.org/ROS/Tutorials
https://www.savioke.com/relay-plus
https://www.kuka.com/en-de/company/about-kuka
http://www.spencer.eu/deliverables/d5_3.pdf
http://www.spencer.eu/deliverables/d5_3.pdf
https://spectrum.ieee.org/wizards-of-ros-willow-garage-and-the-making-of-the-robot-operating-system
https://spectrum.ieee.org/wizards-of-ros-willow-garage-and-the-making-of-the-robot-operating-system
https://tlk-energy.de/blog-en/practical-pid-tuning-guide
https://tlk-energy.de/blog-en/practical-pid-tuning-guide
http://wiki.ros.org/diff_drive_controller
http://wiki.ros.org/diff_drive_controller
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
https://www.pololu.com/product/1457/specs
https://www.pololu.com/product/1457/specs
https://www.sick.com/be/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim571-2050101/p/p412444
https://www.sick.com/be/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim571-2050101/p/p412444
https://www.sick.com/be/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim571-2050101/p/p412444
https://cdn.sick.com/media/pdf/4/44/444/dataSheet_TiM571-2050101_1075091_en.pdf
https://cdn.sick.com/media/pdf/4/44/444/dataSheet_TiM571-2050101_1075091_en.pdf
https://www.sick.com/nl/nl/sopas-engineering-tool/p/p367244",
https://www.sick.com/nl/nl/sopas-engineering-tool/p/p367244",
https://s3.eu-central-1.amazonaws.com/superb-com/sulu/uploads/media/08/datasheet-andrena_12v15ah_v1-1.pdf
https://s3.eu-central-1.amazonaws.com/superb-com/sulu/uploads/media/08/datasheet-andrena_12v15ah_v1-1.pdf
https://s3.eu-central-1.amazonaws.com/superb-com/sulu/uploads/media/08/datasheet-andrena_12v15ah_v1-1.pdf
https://s3.eu-central-1.amazonaws.com/superb-com/sulu/uploads/media/07/datasheet-mason-12v25ah_v1-1.pdf
https://s3.eu-central-1.amazonaws.com/superb-com/sulu/uploads/media/07/datasheet-mason-12v25ah_v1-1.pdf
https://s3.eu-central-1.amazonaws.com/superb-com/sulu/uploads/media/07/datasheet-mason-12v25ah_v1-1.pdf
https://www.rdbatteries.com/upload/729/U1-24RT-Datasheet-Aug-2015.pdf
https://www.rdbatteries.com/upload/729/U1-24RT-Datasheet-Aug-2015.pdf

	Abstract
	Contents
	1 Introduction
	2 Analysis
	2.1 Background
	2.2 Hardware
	2.3 Software
	2.4 Design goals
	2.5 Requirements

	3 Design
	3.1 Hardware
	3.2 Software
	3.3 How to use the robot

	4 Results
	4.1 PI control
	4.2 Navigation
	4.3 Applicability for educative use

	5 Discussion
	6 Conclusion
	A Appendix
	A.1 Power ratings
	A.2 Rqt graph of the (reduced) ROS network
	A.3 TF tree of the ROS network
	A.4 Step-by-step approach to using the basics of the I-do platform
	A.5 Arduino code
	A.6 Hardware interface code
	A.7 Launch file code (full.launch)

	Bibliography

