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Clinical Introduction

Figure 1: An example of a RECIST measurement for a patient at two
different time-points. Visualized are two axial thorax CT slices with their
respective RECIST measurements. The sum of the maximum diameters has
increased by 75 percent, defining this as progressive disease. The diameters
for a real RECIST measurement do not have to be located on the same slice.

Immunotherapy is a relatively new type of treatment for cancer com-
pared to surgery, chemo- and radiotherapy[1]. The basic premise of im-
munotherapy is that the immune system can recognize and control tumor
growth, and therefore it is possible to stimulate the immune system to fight
the cancer. Several types of immunotherapy are already used in clinical care
for different advanced-stage cancers such as melanoma, non-small cell lung
cancer and bladder cancer. The most notable types of immunotherapy are
antibodies for inhibitory immune checkpoints CTLA-4 and PD-1, which
initiate an anti-tumor response [2]. As cancer care is highly personalized,
patient monitoring is necessary for guiding further treatment.

Imaging is key for the monitoring of cancer patients receiving immunother-
apy. Follow-up imaging, performed at a regular time interval, is the main
method used for detecting disease progression, assessing the effect of treat-
ment and related toxicity[3, 4]. Imaging modality is most often CT, but
MRI is also used depending on the anatomical location of lesions. Assess-
ment of imaging is mostly done qualitatively. Currently, the only stan-
dardized, quantitative method for image assessment is the Response Eval-
uation Criteria in Solid Tumors (RECIST). A slightly adapted version of
RECIST was developed specifically for patients receiving immunotherapy,
iRECIST[5, 6], namely accounting for phenomena like pseudo-progression,
but not often used in clinical trials.

RECIST evaluates a maximum of five lesions quantitatively, using the
change of the sum of maximum diameters between scans. Other lesions are
assessed in a qualitative manner[5]. Treatment response is defined as a 30
percent decrease of the sum of diameters and disease progression is defined
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as an increase of 20 percent. Any changes that cannot be characterized as
either progression or response are defined as stable disease. Continuation of
treatment, starting a different treatment, or stopping treatment altogether
is partly based on this categorization[5]. A visualization of a RECIST
measurement can be seen in Figure 1.

RECIST shows a high intra- and interobserver variability[7, 8]. A reason
for the high variability is that different observers choose different tumors to
measure, leaving much room for subjectivity. Criteria for the selection of
target lesions are vague. Finding the maximum dimension of a tumor can
be difficult, especially in irregularly shaped tumors. RECIST reduces the
quantitative assessment to five unidimensional measurements, thereby not
including information relevant for clinical decision making such as treat-
ment toxicity, growth of high-risk lesions, and inflammation[9, 10]. As
manual measurements are required in RECIST, it can be a time-consuming
task. RECIST is therefore a suboptimal method for the quantitative as-
sessment of treatment response or disease progression.

As important clinical decisions are being made using RECIST measure-
ments, overcoming these limitations could lead to significant improvements
for cancer patients. For example, earlier and more accurate identification of
treatment response or disease progression would lead to prompt interven-
tion, and higher chances of improvement of the conditions of the patient,
while reducing effects caused by unnecessary treatments[11]. Waiting time
and costs associated with radiological assessments can also be reduced by
implementing a less time-consuming method. An automated quantitative
method for image assessment would therefore have the potential to increase
the quality of life for cancer patients in several ways.

To address the limitations inherent to RECIST, a new method should
be:

• able to combine changes throughout the whole body quantitatively
into a prognostic score;

• fast and fully-automatic, able to evaluate a scan in the order of sec-
onds;

• explainable, in order to be deployed in clinical practice;

• able to handle heterogeneous data.

New methods are being developed that try to quantify morphological
changes between scans to thereby tackle the limitations of RECIST. How-
ever, most of these methods are segmentation-based[11–14]. Tumors are
segmented and the change of tumor volume is linked to clinical response.

3



Since ground-truth segmentations are very time-intensive to obtain, most
segmentation-based methods are often only trained for one certain cancer
type, making these methods not generalizable to other cancer types. Fur-
thermore, using only the change of tumor volume disregards a lot of clinical
information that is present outside of the tumor. Other methods use more
information than just tumor volume, but they only include the local area
around the tumor and therefore also need segmentations[13]. One of the
methods used for response prediction uses FDG-PET/CT scans, where the
PET scan provides physiological information[15]. As PET-scans are not
taken routinely for treatment monitoring, a method is desired that only
uses CT imaging.

A new method, the prognostic AI monitor (PAM), that can predict sur-
vival using longitudinal CT-imaging of patients receiving immunotherapy,
has been proposed[16, 17]. Pilot studies showed that PAM could predict
survival for patients with lung and bladder cancer receiving immunotherapy
with an AUC of respectively 0.69 and 0.73. However, these pilot studies
had several limitations including the usage of small datasets containing low-
resolution CT-imaging, focussing on one cancer type only. The predictions
of PAM lacked explainability, making clinical implementation difficult. In
this thesis, these limitations of PAM will be addressed. Chapter 1 will
present improvements to PAM making it capable of prognostication on a
larger pancancer cohort of patients receiving immunotherapy. In Chapter
2, the problem of explainability is tackled by disentangling the features
used for prognostication. Chapter 3 will improve the realism of the image
registration by implementing adversarial loss for training.

Technical Introduction

Machine Learning

Machine learning is the process by which algorithms learn without explicit
instructions by drawing inferences from patterns in data. Different statis-
tical machine learning models exist such as decision trees, random forests,
and neural networks. To explain the techniques used in this thesis, ran-
dom forests and neural networks will be briefly introduced. To understand
a random forest, an understanding of a decision tree is needed. Decision
trees take an input that branches in several directions, based on a certain
decision such as exceeding a threshold or by chance, where each branch
can lead to one of the outputs. An ensemble of decision trees used on ran-
dom subsets of the data can be used to increase the model’s accuracy, a
technique called random forest. In the last decade, neural networks have
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Figure 2: Left: Example of a neural network with the circles representing
the nodes and the black lines the connections between the nodes. Right:
Example of the mathematical operations that transform the input x to the
output y. W indicates the weight, b the bias and σ a non-linearity.

become the staple for problems relating to unstructured data such as im-
ages and text. Neural networks take input values as separate nodes, such
as words in a sentence or pixels in an image, and connect these to a sub-
sequent layer of nodes. Connections represent a mathematical operation:
y = σ(Wx+ b) where the weight W and bias b are trainable parameters. A
node in a specific layer is connected to all nodes in the previous layer. The
final layer of the neural network predicts the output. The neural network is
optimized to minimize the difference between the predicted output and the
desired output. The difference between predicted and the desired output
is backpropagated through the neural network, changing the weights and
biases. An example of a simple neural network is visualized in Figure 2.
[18]

Due to improvements in computational power, neural networks have
become larger and larger to capture more patterns present in the data.
Training these larger models has been coined deep learning. Besides a spe-
cific model architecture, several other parts are needed for training a deep
neural network: a loss function and an optimizer. The loss function maps
the difference between the predicted and desired output to an optimizable
metric. It is therefore a metric that indicates how well the model performs
on the training data. Examples of loss functions are (binary) cross-entropy
and mean square error. As the loss function indicates how well the model
performs, an optimizer is needed to determine in what manner and when
the weights of the model should be updated to optimize the value of the
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loss function. Examples of optimizers are (stochastic) gradient descent and
ADAM. [19]

In the field of computer vision, neural networks have also taken over
more classical heuristic-based approaches for image classification, segmen-
tation, and object detection. Especially a subtype of neural networks, con-
volutional neural networks (CNN), has made significant improvements to
the state-of-the-art. CNNs use trainable convolutional kernels, which can
be interpreted as small filters, to extract relevant features from images. Ini-
tial convolutional layers extract features such as edges and boundaries while
subsequent convolutional layers extract features such as certain shapes. Dif-
ferent architectures of CNN exist, some of the most famous being VGG,
Inception, and ResNet. [19]

A special kind of neural network used in computer vision is the autoen-
coder, which is composed of two parts. The first part, the encoder, encodes
the input to a smaller-dimensional representation, a point in the latent
space. The second part, the decoder, decodes a point in the latent space
to a larger-dimensional output. This larger dimensional output can be a
reconstruction of the input image. Autoencoders are therefore typically
used for dimensionality reduction as the smaller dimensional latent space
can be used as input features for different tasks, such as classification[19].
An architecture that looks similar to an autoencoder is the U-Net[20]. The
U-net is also composed of an encoder and decoder, but aside from the la-
tent space, there are other connections between the encoder and decoder.
These skip layers transfer information, thereby reducing the bottleneck ef-
fect of the latent space, allowing for a higher resolution output. U-nets are
typically used for image-to-image tasks, such as segmentation, denoising,
and image registration.

Image Registration

Image registration is the alignment of one image, the moving image, to
the target image, the fixed image. It is often used in the medical imag-
ing domain, especially for radiation treatment planning. Treatment plans
are made on a pre-treatment scan, and image registration is used to trans-
late those plans to scans obtained during treatment. Image registration is
most often performed in two steps: first an affine transformation and then
an elastic deformation. The affine transformation corresponds to a rough
alignment of both images, making use of translation, rotation, shearing,
scaling, and reflection. In the case of medical imaging, the images are a
volume. The 3D affine transformation can be mathematically expressed as
a 4x4 matrix, A. The affine transformation matrix can then be multiplied
to a certain voxel’s location [x, y, z, 1]T , obtaining the location of the voxel
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after the affine transformation.
Performing only a rigid affine transformation on medical images often

yield suboptimal results, as physiological and pathological processes change
the location, size, and shape of organs. To compensate for these changes,
the moving image needs to be elastically deformed. Over the last decades,
many different techniques have been proposed that model these elastic de-
formations. Examples of techniques used are B-splines and radial basis
functions[21], with more recently neural networks obtaining state-of-the-
art results[22]. Most of the techniques employing deep learning, model the
elastic deformation using a dense displacement vector field, where for every
voxel in the original volume a vector is given specifying the exact magnitude
and direction of the deformation. [21, 22]

Deep learning can also be used for tasks such as image registration. A
difference can be made between the supervised and unsupervised training
of these models. [23] In the supervised setting, pairs of images are needed
with known transformations between the scans. However, as these transfor-
mations are not known they need to be artificially generated, which could
lead to the model only being able to capture artificial transformations. An-
other approach is to use a transformation made by an expert, however,
these are time-consuming to create. Currently, unsupervised methods have
pushed the state-of-the-art as large and real datasets can be used making
the models able to capture clinically relevant deformations. The model is
trained to maximize a similarity metric between both input images while
regularization is used to constrain and guide the model. VoxelMorph is
one such example of an algorithm that is tasked to perform image regis-
tration in an unsupervised manner. [24] The model calculates sequentially
the affine transformation matrix and elastic deformation field between two
input images. An example of the two sequential steps are partly visualized
in Figure 3.
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Chapter One 



Unsupervised Image Registration for the

Quantification and Prognostication of

Morphological Changes in Longitudinal

CT-Imaging

Abstract

CT imaging is performed for the monitoring of treatment response in cancer
patients receiving immunotherapy. RECIST is currently used for prognos-
tication but has several limitations. This study implements a novel deep
learning approach on a large pancancer dataset that predicts survival by
quantifying morphological deformations. The network was pretrained for
image registration using thorax CT scans, and features were extracted from
the latent space of the network. These features are then linked to 1-year sur-
vival using a classifier. n=1007 patients were included, resulting in n=5253
scan pairs. The classifier was able to predict 1-year survival with AUC =
0.61 (p<0.0001) for the test-set. Split by type of cancer, the highest AUC
was achieved for patients with thoracic cancers AUC = 0.64 (p<0.0001).
AUC varied during the treatment timeline for thoracic cancers, with an
AUC of 0.78 for scans obtained between 17 and 43 weeks after the start of
treatment. This study showed that features extracted from an image regis-
tration model can be linked to survival, resulting in a moderate prognostic
performance.

1.1 Introduction

Longitudinal CT imaging is routinely performed for the monitoring of treat-
ment response in cancer patients receiving immunotherapy. Quantitative
assessment of these scans is commonly performed using RECIST, which
calculates the change of the sum of diameters of a maximum of five lesions,
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with the rest of the lesions assessed qualitatively[5, 25]. However, this
method has high intra- and interobserver variability, is time-consuming,
and ignores relevant clinical information such as treatment toxicity[7, 8].

An objective reader that can accurately assess longitudinal, whole-body
patient imaging would overcome RECIST’s limitations, resulting in more
accurate clinical decision-making. Recently, two pilot studies have been
performed based on artificial intelligence (AI) architectures that can be
used for prognostication, called the prognostic AI monitor (PAM)[16, 17].
The architecture is visualized in Figure 3.

A first pilot study showed that PAM could predict 1-year survival from
longitudinal chest CT images in patients with stage-IV non-small cell lung
cancer, with an average AUC of 0.68[16]. A subsequent pilot study per-
formed on abdominal CT-imaging from patients with stage-IV urothelial
cancer obtained an AUC of 0.73[17]. However, these studies have several
limitations: PAM was only trained on relatively small datasets containing
one cancer type. To fully assess the prognostic performance of PAM, a pan-
cancer cohort of patients is needed to capture the heterogeneity in imaging
phenotype. Patient populations can then be identified where PAM is most
effective. These populations can for example be based on cancer type, age,
and treatment type. The pilot studies also used low-resolution CT scans.
The low resolution of these input scans can cause clinical information to
be lost, such as smaller lesions, which can negatively impact prognostic
performance.

In this study, we will tackle these limitations by adapting PAM to use
high-resolution CT scans as input and studying the prognostic performance
of PAM on a wide variety of cancer types. A comparison will be performed
between PAM and RECIST 1.1. To summarize, the unique contributions
of this study are as follows:

• Implementing PAM on a larger pancancer dataset.

• Using higher resolution imaging as input.

• Providing a quantitative comparison between RECIST 1.1 and PAM.

1.2 Methods

Architecture

PAM is not directly trained to predict survival but pre-trained to perform
image registration. Quantitative features are obtained from an embedding
layer and subsequently linked to survival using a classifier. An overview of
the method can be seen in Figure 3. More specifically, the first part of the
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Figure 3: General overview of PAM, with the image registration (blue
box) and prognostication (red box) modules, which are trained separately.
The full model is comprised of an affine registration, an elastic registration,
and the linkage of features to survival using a classifier.

Figure 4: Model architecture used for unsupervised image registration
adapted from [16].

network architecture consists of six convolutional blocks followed by a fully-
connected layer, which calculated the affine transformation matrix between
the moving image and the fixed image. The affine transformation matrix is
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then applied to the moving image, resulting in a transformed image. The
purpose of the affine transformation is to align the patient between the two
scans, and correct for different positions they might have assumed during
acquisition. The affine-transformed moving image is concatenated to the
fixed image, serving as input to the second part of the network. The second
part of the network generates a deformation field, which is applied to the
aligned moving image which generates the deformed moving image. This
allows the network to model anatomical changes between follow-ups. It has
a U-Net architecture [20], with six down- and up-sampling layers, with skip
layers in between the down- and up-sampling convolutional layers. The
output of the network is an elastic deformation field. The affine and elastic
parts of the network are trained together. The specifics of the architecture
can be found in Figure 4.

Data for Image Registration

To train the unsupervised image registration model, thorax CT scans are
needed. CT scans with a maximum axial resolution of 1.0 mm from The
Cancer Imaging Archive (TCIA) uploaded before the 21st of April 2020
were obtained. The thorax, which included all slices between the lower-
neck and the lowest parts of the diaphragm, was automatically extracted
using the method of Zhang et al [26]. All scans were clipped between -120
(fat) and 300 (cancellous bone) Hounsfield Units (HU), to obtain only soft-
tissue and help reduce computational memory. Scans were then normalized
between 0 and 1. To avoid intensity stretching artifacts from the affine
registration, each volume was padded with a 0-valued pixel, creating a 1-
pixel edge at all borders of the volume.

Unsupervised Image Registration

Scans were randomly paired and training was performed using PAM with
the ADAM optimizer[27] such that the cross-correlation loss between the
fixed and affinely transformed moving image was minimized, as well as be-
tween the fixed image and elastically deformed moving image. Deformation
penalties were implemented, on both the affine (orthogonality and deter-
minant loss) and elastic transformation (total variation loss) that punishes
large deformations as was done in[28]. The final loss function is:

L = Laffinecc + 0.1(Laffinedet + Laffineortho ) + Lelasticcc + 0.1(Lelasticvariation) (1)

To improve the training, it was performed using a curriculum method. The
cross-correlation loss was computed on a smoothed version of the image,
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gradually decreasing the amount of smoothing during training. Smooth-
ing was implemented using average pooling, with the kernel k being the
smoothing parameter that was decreased during training.

To assess registration quality, a simplified variant of the AQUIRC method
was used [29]. Three scans are randomly selected from the dataset. PAM
is used to calculate the transformation from scan 1 to scan 2: T 2

1 . This is
repeated to obtain the transformation T 3

2 and T 1
3 . The three transforma-

tions are then applied to a randomly chosen point with location x in scan
1, resulting in T 2

1 (T 3
2 (T 1

3 (x))). The Euclidean distance can be calculated
between the original point x and the transformed point. This is used as
a measure for registration error. Registrations for circuits with large eu-
clidean error distances were qualitatively inspected.

Data for Prognostication

All patients that started immunotherapy before January 1, 2019, at the
Netherlands Cancer Institute were included. The study was reviewed and
approved by the Institutional Review Board. Immunotherapy was defined
as any treatment including anti-PD1, PDL1, or CTLA4. Cancer types
were grouped based on the WHO classification, with only patients with the
four most common groups of cancer being included. These were thoracic
cancers (C3), skin cancers (C4), breast cancers (C5), and genito-urinary
cancers (C6). Diagnostic thorax CT scans were collected and preprocessed
using the same protocol as scans from the TCIA dataset. One baseline
scan, performed before the start of treatment, and all follow-up scans were
included. Scans of the same patient were paired if obtained within a time
interval of 6 months, or less. Scans were equally split between training and
independent test-set, on a patient basis in a stratified manner to ensure
equal distribution of scans based on WHO classification, age, and overall
survival.

Survival prediction

Features were extracted from the embedding layer of the network using
scan pairs as input. A random forest classifier was trained to predict 1-year
survival. Statistical analysis was performed using bootstrapping (n=1000
repeats), while results were corrected for multiple hypothesis testing using
the false discovery rate method. Statistical significance, which was set at
p<0.05, was assessed using the Mann-Whitney-U test. For the Kaplan-
Meier curves, patients were split into three groups based on the predicted
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Figure 5: Diagram with patient exclusion criteria and number of patients
included and excluded.

probability of survival, and statistical significance was tested using the log-
rank test.

A radiologist qualitatively assessed a selection of scan pairs and gave a
prediction for the survival of the patient based on these scan pairs. Pre-
dictions of the radiologist were compared to the predictions of PAM. A
different radiologist performed a quantitative analysis using the RECIST
1.1 guidelines. Results for survival analysis were compared for the RECIST
1.1 analysis and PAM.

1.3 Results

A total of 10,294 scans from TCIA were included for unsupervised image
registration, resulting in 5,462 scan pairs. To assess image registration
performance, 100 image registration circuits were generated containing 3
scans per circuit. 100 points were randomly chosen in the first scan of the
registration circuit, and these points were transformed through the whole
registration circuit. The median error was 34 mm +/- 27 mm. Qualitative
analysis of outliers showed that points with large deformations were most
often located at the highest and lowest axial slices. This most often hap-
pened in scan pairs where the highest and lowest axial slices of each scan do
not correspond to the exact same anatomical location. Other cases showed
unrealistic deformations at areas where registration error was highest.

2345 NKI patients were screened for inclusion. 1007 patients were in-
cluded, resulting in 5253 scan pairs. Figure 5 shows the number of patients
excluded at each step. Table 1 shows patient characteristics in both the
training and test set and split by cancer type. The scan pairs were fed
through the registration network and features were extracted. These fea-
tures were linked to survival using the random forest classifier. Prognostic
results for the whole test-set showed AUC = 0.61 (p<0.0001). Split by type
of cancer, results for thoracic cancers showed AUC = 0.64 (p<0.0001), skin
cancers AUC = 0.55 (p<0.01), breast cancers AUC = 0.62 (p<0.001) and
genito-urinary cancers AUC = 0.54 (p=0.16).
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patients scan pairs age % mortality months survival

Total 621 3362 59 32 12.2 (11.0)
Training set 503 2628 59 28 12.1 (10.9)
subset

Thoracic cancers 187 1089 62 29 14.4 ( 12.5 )
Skin cancers 209 1052 55 24 11.5 ( 10.3 )
Breast cancers 45 244 57 40 11.6 ( 7.8 )
Genito-urinary cancers 62 243 60 28 10.1 ( 6.7 )

Test set 504 2625 60 28 11.2 (10.1)
subset

Thoracic cancers 192 1082 63 34 11.0 ( 10.8 )
Skin cancers 215 1001 55 19 12.7 ( 10.3 )
Breast cancers 39 261 57 47 9.4 ( 7.7 )
Genito-urinary cancers 58 281 64 25 10.6 ( 9.0 )

Table 1: Patient characteristics for the training set and test set. Numbers
in parentheses represent standard deviation.

To more accurately determine the prognostic performance, ROC-AUC
was calculated by applying a sliding temporal window of 6 months during
the treatment timeline. Results are shown in Figure 6 for the whole test-
set and the two cancer types with most patients, as the others had too few
patients to perform temporal analysis. Only for thoracic cancers, a trend
was visible that AUC increased during treatment, with a maximum AUC
of 0.78 that was achieved for the time interval of 17 to 43 weeks after the
start of treatment.

Kaplan Meier curves were generated using the predictions of PAM,
also shown in Figure 6. Differences between probability groups for the
full test-set and the thoracic cancer cohort were all statistically significant
(p<0.001). For the skin-cancer cohort, only the difference between the low-
and high-probability was statistically significant (p<0.05).

Thirteen scan pairs of patients with thoracic cancers were assessed qual-
itatively by a radiologist. Qualitative assessment of the input scans showed
that for cases where PAM correctly predicted the outcome, the radiologist
predicted the same. For cases where the network did not correctly pre-
dict treatment outcome, the radiologist also in a few instances incorrectly
predicted survival.

Baseline and the first scan during treatment were obtained for 304 pa-
tients. These scan pairs were assessed using RECIST 1.1 guidelines by a
radiologist. Kaplan-Meier curves were generated where patients were split
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according to the RECIST 1.1 classification: progressive disease, stable dis-
ease, or treatment response. 118 of these scan pairs were also available in
the NKI dataset. The classifier of PAM was retrained to make sure all of
the 118 patients were not seen during training of the random forest clas-
sifier. For the 118 patients, Kaplan-Meier curves were also generated for
predictions using both the RECIST 1.1 guidelines and PAM. These curves
are visualized in Figure 7.

1.4 Discussion

Results showed statistically significant prognostic performance on the inde-
pendent test-set in both thoracic and skin cancers, but for genito-urothelial
and breast cancers no statistically significant performance was shown. As
only CT thorax imaging was used, it was expected that thoracic cancer
would have highest prognostic performance as the tumors are located pri-
marily in the thorax. This generally also holds for metastasis of skin can-
cers, which could explain the higher prognostic performance compared to
abdominal cancers. Another explanation could be the lack of data for the
genito-urothelial cancers, leading to worse prognostic performance.

PAM was pre-trained to perform image registration, so to assess image
registration performance an adapted AQUIRC measure was used. A me-
dian registration error of more than 30 mm indicates that the registration
could still be improved. However, the scans that were used to assess regis-
tration quality were from the TCIA dataset, which is very heterogeneous.
Patients in this dataset differed in age, body size, and anatomy. Using
these scans to assess registration performance overestimates registration
error. As prognostication was done on scans from the same patient, the
registration error would be expected to be lower. The voxels where registra-
tion error was highest, corresponded to voxels at the upper and lower edges
of the volume. As the anatomical location of these edges can slightly differ,
it is not strange that the registration error is higher at these locations. Due
to time constraints, it was not possible to more accurately assess registra-
tion quality, by for example not taking into account registration accuracy
at the edges of the volume.

Initially, the same network presented in the pilot studies was trained
to perform image registration, however, the network did not converge to
an adequate registration loss. It was hypothesized that due to the increase
in image resolution, the network was too small to model all deformations.
Therefore, to compensate for the increase in image resolution, the size of
the network was increased compared to the pilot studies. This allowed the
network to converge to a lower registration loss, which is hypothesized to
have also increased the capability of the network to model morphological
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Total Test Set

Thoracic Cancers

Skin Cancers

Figure 6: Left: ROC-AUC with a sliding temporal window. X-axis repre-
sent temporal window in which both CT scans were performed with respect
to start of treatment. Black bar represent statistical significant results at
that time-point. Right: Kaplan Meier curves, with the timeline represent-
ing months after second scan and the y-axis percent survivals. Patients were
split into three groups based on the predictive probability of the patient
not surviving: high, medium and low risk groups, splits were performed
on the 33rd and 67th percentile. Lighter colors around lines indicate 95%
confidence interval. Upper row represent results for the total test-set, the
middle row for the thoracic cancer cohort and the bottom row for the skin
cancer cohort.
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Figure 7: Upper row visualized the Kaplan-Meier for the RECIST 1.1
analysis on the total dataset of 304 patients. Middle row visualizes the
results for the 118 patients that are also present in the NKI dataset. Lower
row visualizes for this same subset the results obtained using PAM. For
the RECIST evaluations patients were split into three groups: partial re-
sponse, PR, stable disease, SD, and progressive disease, PD. For the results
obtained with PAM patients were split into three groups based on the pre-
dictive probability of the patient not surviving: high, medium and low risk
groups, splits were performed on the 33rd and 67th percentile.
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changes. As the increase in image resolution also allowed for the inclusion
of small lesions, there are extra morphological changes that can be modeled
by the network. Both the increase of the network size and the inclusion of
small lesions by the increased image resolution might have contributed to
higher prognostic performance.

Our results show that prognostic performance for thoracic cancer in-
creases further into treatment. This could be because the effects of im-
munotherapy are more visible further into treatment, making survival pre-
diction easier as morphological changes are more present. This effect is
less visible in the results from skin cancer patients and absent from the
other cancer types. This trend can also be caused by a selection bias, as
patients with a very poor short-term prognosis, and therefore large morpho-
logical changes between scans might choose to forego immunotherapy. The
remaining patients, those that are included in this study, could therefore
have fewer morphological changes between scans at the start of treatment.

The comparison between RECIST 1.1 and PAM shows that PAM has
a similar prognostic performance as RECIST 1.1. Patients classified as
progressive disease using RECIST 1.1 have a worse prognosis than the pa-
tients in the high-risk group using PAM. This indicates that RECIST 1.1 is
currently still a better predictor for clinical outcomes. However, there are
three points where PAM could easily be improved to obtain a better perfor-
mance. Firstly, RECIST 1.1 evaluations were performed using thoracic and
abdominal imaging, in contrast to PAM where only the thoracic imaging
was used. Secondly, to better compare different architectures the classifier
used to link features to survival was not optimized. Lastly, patients were
split into risk groups using the 33rd and 67th percentile. This is a coarse
method for classification, not taking into account the actual distribution
of treatment outcomes. Tackling these three points might further improve
prognostic performance.

The prognostic performance of PAM, even for thoracic cancers, is still
moderate. A cause could be the lack of information about survival in the
latent space features. This information is not guaranteed to be present in
the features, as the latent space is optimized for image registration. The
features are therefore not optimized for prognostic performance. To opti-
mize the prognostic features, an approach has been implemented using the
pre-trained network but swapping the elastic decoder to a neural network
that predicts survival from the latent space. This network was then trained
end-to-end for survival but did not produce any significant results. A bet-
ter implementation would be to incorporate an extra regularization term
that incorporates survival while still training the network to perform image
registration. This method would maximize the chance that the features are
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prognostically relevant. Due to time constraints, this was not implemented
for this study.

PAM was trained to predict survival; however, RECIST assesses re-
sponse to treatment. With no ground truth available for the response as-
sessment, it is not possible to train a network to predict treatment response.
The current standard is RECIST, but using this as the ground-truth would
just train the network to replicate RECIST, which as noted earlier is an
inaccurate and subjective metric. Predicting one-year survival can be seen
as a proxy for predicting treatment response, as a response to treatment is
likely to correlate to longer survival. Survival however is a coarse metric
to use, as there are a host of other factors that influence one-year survival,
that might not all be present in imaging. Training a network to predict
one-year survival is also difficult because of edge cases, changes in scans
for a patient that survives for 11 months versus 13 months will not seem
that different, this can cause training to be difficult. Future investigation
should expand to more clinical and biological endpoints.

Overall prognostic performance of PAM on thoracic cancers shows low
sensitivity but high specificity. The low sensitivity is caused by the presence
of false negatives. A false negative corresponds to PAM predicting that the
patient will survive for more than one year, but in reality, the patient
did not. The low sensitivity could hint at the absence of prognostically
relevant morphological changes in scans of patients that were classified
as a false negative. The qualitative assessment showed that these false-
negative scan pairs often did not exhibit any morphological changes between
both scans. In contrast, scans pairs from patients where PAM correctly
classified the patient as not surviving for more than one year exhibited
large morphological changes such as increase of tumor size and increase of
the amount of atelectasis.

The features that were linked to survival are, being generated by a
neural network, not independent of each other. In other words, they are
entangled. Entangled features cannot be interpreted in a similar way that
other clinical parameters can be interpreted, which makes it difficult to
assess why and to what extent these features are clinically relevant. Error
analysis is therefore difficult to do, which limits the extent to which PAM
can be deployed clinically as it is difficult to assess when and why PAM
is failing. More interpretable features would overcome this problem and
will allow for more accurately determining specific patients populations for
which PAM is most suitable.

21



1.5 Conclusion

AI-analysis of longitudinal chest CT scans has prognostic value in patients
receiving immunotherapy, especially for patients with thoracic cancer. The
proposed method has a prognostic performance comparable to RECIST
1.1, the current gold standard for quantitative assessment of longitudinal
imaging.
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Chapter Two 



Explainability of the Deformation Field

via Disentangled Representation Learning

Abstract

Explainability is important for deploying machine learning into a clinical
setting. Earlier research showed that a deep learning model pre-trained
for image registration is capable of predicting survival for cancer patients
receiving immunotherapy. However, it is not straightforward to understand
what the features that are used to generate survival predictions represent.
One of the reasons is that these features are not independent of each other,
but rather “entangled”. To enforce a disentangled feature representation,
the Hessian Penalty (HP) was used during training. For comparison, two
identical networks were trained, only one of which used the HP. The net-
work with HP achieved an AUC of 0.60, p<0.01 for the subset of patients
with thoracic cancers, comparable to the network without HP (AUC of
0.59 p<0.01). Cohen’s kappa statistic was 0.53 between both networks, in-
dicating moderate agreement between prognostic predictions. While both
networks showed a decreased predictive performance compared to the net-
work presented in chapter 1, the qualitative analysis showed that the model
with HP managed to disentangle different factors of variations compared to
the model without HP. The disentangled features were correlated with large
deformations in specific anatomical locations, but no fine-grained clinically
interpretable deformations were detected. Further research should incorpo-
rate disentanglement procedures in the original architecture, that improve
prognostic performance and obtain features representing clinically signifi-
cant deformations.

2.1 Introduction

A deep learning network, PAM, that can be used for prognostication, was
presented in Chapter 1. However, PAM still has several limitations such as
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a lack of explainability. It is not known what deformation is represented
by which input feature, and therefore it is unclear how the predictions
are exactly made. Legally, certain black-box models are allowed to be
used in a clinical setting if they have an ”appropriate level of transparency
(clarity) of the output and the algorithm aimed at users”[30]. Besides legal
arguments, explainability is essential for the further improvement of PAM.
Explainable features can be used to assess which imaging characteristics are
important for predicting survival. For example, these characteristics might
represent currently unknown clinical information that is relevant for patient
survival. Another reason for explainability is to study the limitations of
PAM. Explainable features can also be monitored to identify artifacts, e.g.
if input features are different from the ones the network was trained on,
the predictions have a higher chance to be incorrect.

The problem that makes the features used for predicting survival not
explainable is that they are entangled. An entangled representation is
one where components of the representation do not independently capture
the true underlying factors that explain the data[31]. A representation
where the components independently describe the factors of variation is
called disentangled. An ideal disentangled representation has at least these
three properties: modularity, compactness, and explicitness[31]. Modular-
ity means that a factor of variation in the data only affects a subset of the
representation, and no other factors of variation affect this subset. The
size of the subset is determined by the property of compactness, e.g. a fac-
tor of variation in the data only affects the smallest possible subset of the
representation. One also wants the representation to completely describe
the factors of interest, which is the property of explicitness. For survival
prediction, a change of the representation space, which in our case are
the features, should not influence different factors of variation (modular-
ity) and should describe relevant factors of variation (explicitness). Among
the methods proposed to obtain disentangled features, the Hessian Penalty
(HP) is one of the few that can work with small-batch sizes[32].

The Hessian matrix represents the second partial derivative of a func-
tion. In a neural network, the Hessian matrix represents how changing two
latent components changes the output. In an ideal case, where all compo-
nents are independent of each other, the Hessian would be diagonal. An
off-diagonal term represents how changing one latent component has an
effect on the change of a different latent component to the output. For
example, having a generator function G with as input latent components
z, a non-diagonal term of the Hessian of this matrix would represent.

Hij =
∂2G

∂zi∂zj
=

∂

∂zj

(
∂G

∂zi

)
(2)
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Therefore, minimizing off-diagonal terms would increase independence be-
tween latent components. The Hessian Penalty is a regularization function
that tries to minimize the sum of the squared off-diagonal terms. The fea-
tures PAM uses for predicting survival are obtained from the latent space of
the U-Net and are responsible for the elastic deformation. Disentanglement
in this case means that a change in one feature will lead to elastic defor-
mation of a single component or aspect of the image, which is independent
of a change in a different feature.

In this study, the Hessian Penalty will be implemented to achieve a dis-
entangled representation. The effect of this disentanglement on the prog-
nostic performance will be studied. The upsampling part of the U-Net can
be seen as a generator, generating a deformation field from several input
features. The effect of changing a feature in the latent space on the de-
formation field can therefore be directly visualized. This will be done in a
qualitative manner, as no definite quantitative metric exists that can ad-
equately capture disentanglement. Different quantitative metrics disagree
in a large way about the degree of disentanglement[31, 33]. Our unique
contributions are as follows:

• Implementation of the Hessian Penalty for image registration in PAM.

• Qualitative assessment of the degree of disentanglement.

• Study the effect of the Hessian Penalty on prognostic performance
with PAM.

2.2 Methods

PAM is not suited for the implementation of HP as the U-Net responsible
for creating the elastic deformation field has skip layers. In other words,
the decoder, besides the features in the latent space, has other inputs origi-
nating from earlier layers of the encoder. To solve this problem, an autoen-
coder, without skip-layers, was added to a pre-trained instance of PAM,
with the task of reconstructing the elastic deformation field generated by
PAM. The pre-trained PAM was the same as the network trained in Chap-
ter 1. The combination of PAM with the autoencoder will be named the
‘combined network’. This autoencoder consists of 6 down- and upsampling
layers, which can be seen in Figure 11.

This autoencoder was trained using four loss terms. The first is the
correlation loss between the fixed image and the elastically deformed im-
age, using the reconstructed deformation field. The second term is the
mean square error between the original and reconstructed elastic deforma-
tion field. The third term is the Hessian Penalty. The last term is the
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Figure 8: The architecture of the autoencoder that is added to the original
network. The architecture of the original network can be found in figure 4.
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total variation penalty on the reconstructed deformation field, stimulating
smoothness. The loss function used was:

L = LCC + LMSE + 0.1LHP + 0.001LTV P (3)

with CC being the correlation loss, TVP the total variation penalty and
MSE the mean square error.

The processed TCIA dataset, the specifics of which are discussed in
Chapter 1, was again used for pre-training the combined network, once
with HP and once without. Other architectures and training regimes were
also implemented, but those did not result in convergence.

Feature extraction from the latent space of both models and survival
analysis was performed in a similar fashion as in Chapter 1. Wilcoxon
signed-rank test was used to assess if the AUC were statistically different
between both networks with and without HP and the original network.
Cohen’s kappa statistic was calculated to assess the concordance of the
predictions of both networks with and without HP. Both networks were also
compared to the original network. Shapley values were calculated and the
top 5 most predictive features were chosen for qualitative analysis. Effects
of changing individual features on the registration were visually inspected
for both the network with and without the HP.

2.3 Results

The combined networks with and without HP converged to a correlation
coefficient loss between the fixed image and the transformed moving image
of 0.45. This is comparable to the correlation coefficient loss of the origi-
nal network of 0.40. The combined network that was trained without HP
achieved an AUC of 0.58 for the total test set, and 0.59 for the subset of
patients with thoracic cancers. Results for the network trained with HP
achieved an AUC of 0.59 for the total test set, and 0.60 for the subset of
patients with thoracic cancers. There was no significant difference in prog-
nostic performance between both networks (p=0.97). The original network
achieved an AUC of 0.61 on the whole test-set and 0.64 on the subset of
patients with thoracic cancers. No significant difference was found between
the original network and the networks with and without HP ( p=0.97 and
p=0.94, respectively). Scan pairs in the test set were categorized in a low,
medium, or high risk of survival based on the predictions of PAM using
the 33rd and 67th percentile as thresholds. Cohen’s kappa statistic was
equal to 0.53 between the predictions of the network with and the network
without HP. Figure 9 shows the results of the more fine-grained survival
analysis for both networks.
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Adjusting the features in the latent space of the registration network for
an input scan pair will result in an accordingly modified deformation field.
Figure 10 exemplifies these changes in elastic deformations by adjusting in
opposite directions the top 5 predictive features according to the Shapley
values. It can be seen that deformations are more localized and of a smaller
magnitude for the network trained with Hessian Penalty. Some features
change the position of the anterior thoracic wall, while a different feature
deforms the lateral wall. In contrast, the results for the network trained
without the Hessian Penalty show that changing a feature in the latent
space results in deformations throughout the whole volume, not specific to
any anatomical location. Similar results were obtained for different scan
pairs.

2.4 Discussion

The results show that HP enforces a more disentangled representation.
Deformations are more localized to certain anatomical regions and are also
of a lesser magnitude. The deformations are mostly localized in the thoracic
wall, where different features of the latent space change the shape of the
thoracic wall in different directions. For example, features respectively
deform the anterior, posterior, and lateral parts of the thoracic wall. No
clear clinical significance can be given to these deformations.

To implement HP an autoencoder was added, which resulted in de-
creased prognostic performance. Not only that, but both combined net-
works converged to a higher correlation coefficient loss, which indicates
worse registration performance. The cause can be the single bottleneck
layer in the autoencoder, as the original U-Net network did not have a bot-
tleneck layer. The skip-layers transferred information from the encoder to
the decoder. State-of-the-art image registration architectures use U-Nets,
which might explain why a simplified version of a U-Net, the autoencoder,
produces worse image registrations. HP can be implemented such that mul-
tiple inputs can be used, making it suitable for integration with a U-Net.
Further research that focuses on disentangling image registration models
could implement this. Due to hardware constraints, it was not possible to
implement it in this study.

The results also show a decrease in predictive performance in both the
network with and without HP, compared to the results of the original net-
work. However, this degradation is not statistically significant. There is
no significant difference in prognostic performance between both combined
networks, indicating HP does not limit the capacity of the model to capture
morphological changes. As HP can be adjusted to incorporate multiple in-
puts, it would be interesting to implement HP into the original network.
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With Hessian Penalty

Without Hessian Penalty

Figure 9: Left: ROC AUC with a sliding temporal window. The X-axis
represents the temporal window in which both CT scans were performed
with respect to the start of treatment. Black bars represent statistically
significant results at that time-point. Right: Kaplan Meier curves with the
timeline representing months after the second scan and the y-axis percent
survivals. Patients were split based on the predictive probability of survival
in three groups: high (blue), medium (yellow), and low (red) probability
split on the 33rd and 67th percentile. All results were generated for the
subset of patients with thoracic cancers. The upper row represents the
network with HP and the lower row the network without HP.
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HP No HP

Figure 10: Plots represent the absolute difference between two elastically
deformed images. These are created by changing one feature in a positive
direction for one image and in a negative direction for the other image.
Changing a feature results in a change in the elastically deformed image.
Left column: network with Hessian Penalty. Right column: network with-
out Hessian Penalty. The five rows represent the top 5 most predictive
features with the top row representing the most predictive feature.
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However, due to the presence of skip-layers between the encoder and de-
coder the explainability of the model is limited, as the features from the
latent space will not fully represent the deformations. A choice has to be
made between increased prognostic performance and explainability, which
will guide the direction of further research.

HP enforces more anatomically localized deformations, and with a smaller
magnitude, as we observed. For a disentangled representation, a smaller
magnitude of deformation could be the result of minimizing the effect on
the deformations caused by other features. The smaller magnitude of defor-
mations can be seen However, the deformations obtained from the network
trained with HP are not that fine-grained, and thus interpretable enough,
such that clinical prognostic factors can be easily identified. As only the
most prognostic features are changed, we hypothesized that these features
would contain information about tumor growth, degree of inflammation,
change in volume of atelectasis. However, the disentangled features seem
to mainly influence relatively large deformation that seems to influence the
general shape of the patient, e.g. change in muscle mass, and the volume of
the lungs. We hypothesize that by implementing HP on a larger network,
better capable of image registration, more fine-grained clinically relevant
deformations might be obtained. Currently, however, the results indicate
that disentanglement was partially successful as we obtained a modular
representation but lack of explicitness.

We obtained a disentangled feature space but more measures are needed
to create explainable predictions. Knowing what deformations a single
feature represents does not in and of itself lead to explainability, as it is not
clear how these features are combined to produce a final prediction. Also,
using more than several features leads to a loss in explainability, as a very
sparse feature space is necessary to obtain an explainable model.

2.5 Conclusion

Two deep learning models were trained to perform image registration, with
and without the implementation of the Hessian Penalty, to study the effect
of feature disentanglement on registration quality. Features from the disen-
tangled model were extracted and linked to survival using a Random Forest.
Effects of disentanglement on prognostic performance were studied. Results
showed the model was capable of predicting 1-year survival to a statisti-
cally significant degree. Visual analysis of the image registration showed
that a more disentangled latent space was achieved, as deformations were
anatomically localized. However, the specific method for implementing the
Hessian Penalty caused a drop in prognostic performance.
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Chapter Three 



Anatomical Fidelity and Realism in

Morphological Changes via Adversarial

Learning

Abstract

Chapter 1 showed that a deep learning model pre-trained for image regis-
tration is capable of predicting survival for cancer patients receiving im-
munotherapy. We hypothesize that increasing the capacity of the network
to model morphological changes will increase the prognostic performance.
The total variation penalty on the deformation field was lowered to ac-
commodate for large morph ological changes. Furthermore, a discrimina-
tor was added that had to differentiate between a real and a fake image.
The real image was the affinely transformed image and the fake image is
the elastically deformed image. Two networks were trained to perform
image registration with this reduced penalty, one with and one without
the discriminator. Training with the discriminator was hypothesized to
limit unrealistic deformations. Quantitative and visual analysis showed
that training with the discriminator resulted in a deformation where less
folding occurred. Reducing the penalty had a positive effect on prognos-
tic performance; however, the difference was not statistically significant.
No difference was found in prognostic performance between the network
trained with and without the discriminator. Future research should study
the impact of the discriminator on the realism of the deformation field.

3.1 Introduction

A deep learning network, PAM, was presented in Chapter 1 that can be used
for prognostication. PAM is initially trained to perform image registration
on CT scans, but features from the latent space of the network also are used
to predict survival using a random forest classifier. It is hypothesized that

34



the features which are generated by the network are clinically significant, as
the network is capable of capturing morphological changes between scans.
However, there are opportunities for improvement in pre-training the net-
work to perform image registration as in some cases the network cannot
model large deformations between two scans. One approach to model large
deformations is based on elastic registration which uses the total varia-
tion penalty [28] since it minimizes large unrealistic deformations. Despite
the usefulness of the regularization penalty, it could lead to an inability of
the network to model large clinically significant deformations(e.g. whole
lung atelectasis). Reduction of this penalty might therefore lead to an in-
crease in prognostic performance. However, reducing the penalty can lead
to large discontinuities in the deformation field, losing trustworthiness in
registration quality. Therefore, to improve the prognostic performance of
the network it is essential to maximize the capacity of the network to model
morphological changes while keeping the quality of the image registration
realistic.

One of the most recent approaches to obtain realistic high-quality im-
ages in the deep learning domain is using generative adversarial networks[34].
A generative adversarial network consists of two neural networks known
as generator and discriminator, which compete together. The generator
is trained to generate images while the discriminator is trained to distin-
guish real from generated images. To improve the realism of the generated
output, an adversarial loss is employed, which uses the capacity of the dis-
criminator to detect fake images. A regularization term is added to the loss
function of the generator that during training is minimized such that the
generator produces images that can not be differentiated from real images
by the discriminator. The generator and discriminator are trained in an al-
ternating fashion, thereby improving both the generator and discriminator
during training.

In the domain of medical image, registration adversarial loss has been
implemented in both supervised and unsupervised settings [35][36][37]. How-
ever, the focus of these studies is to increase registration accuracy and not
necessarily create realistic deformations. We hypothesize that training an
image-registration network with adversarial loss will lead to an improve-
ment of the capacity of the network to model morphological deformations
while keeping the number of discontinuities to a minimum. In this study,
an adversarial loss will be implemented to the original PAM network and
a qualitative assessment will be performed to assess the realism of the reg-
istration. Quantitatively, both the smoothness of the deformation field
as well as the effect of adversarial loss on prognostic performance will be
assessed.
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Figure 11: The architecture of the discriminator. The input to the dis-
criminator are the aligned moving image (real image) and deformed moving
image (fake image) from PAM. The location where these images are gener-
ated in PAM can be seen in Figure 4.

To summarize the contributions are as follows:

• Study the effects of adversarial loss on prognostic performance.

• Comparing quantitatively the smoothness of the deformation fields
for the network with and without adversarial loss.

3.2 Methods

A discriminator was implemented, the architecture of which is depicted in
Figure 11. The discriminator needs two inputs, a real and a generated im-
age. The real image is the affinely transformed volume and the generated
image is the elastically deformed image. The affinely transformed volume
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was chosen instead of the fixed or moving image because the affine transfor-
mation creates boundaries around the volume that can be easily detected
by the discriminator. Unrealistic deformations are in most cases caused by
the elastic deformation, so the affinely transformed image can be used as
the real image.

The loss function of the discriminator is:

Ldiscriminator = BCE0
real +BCE1

fake (4)

with BCE representing the binary cross entropy, and the superscript de-
noting what the prediction should be compared to, with 0 representing a
real image and 1 a fake image.

Only the elastic part of the generator is trainable. The loss function of
the generator is:

Lgenerator = Lelasticcc + 0.01Lelasticvariation + 0.1BCE0
fake (5)

The last term represents the loss from the discriminator, which was left out
for the network trained without the discriminator. To minimize this term,
the generator has to produce an image that can not be differentiated from
a real image, in this case, the affinely transformed image.

Unsupervised training to perform image registration was performed on
the same dataset as Chapter 1. To assess the regularity of the deformation
field, φ, the Jacobian matrix around a voxel p is calculated using the vox-
elmorph package[24]: Jφ(p) = ∇φ(p) ∈ R3×3. For 20 input scan pairs all
voxels with |Jφ(p)| ≤ 0 were counted, because these voxels represent ar-
eas where sharp deformations occur. These sharp discontinuities are called
folding, as the vectors in the deformation field tend to overlap in these ar-
eas. This was performed for the same scan pairs for both the original and
the adversarial network.

To perform a qualitative assessment of the registration quality, the de-
formation fields were visualized and compared to assess differences. To
visualize the areas where the discriminator is focussing on, attention maps
using the GradCAM method were plotted [38]. Feature extraction from the
adversarial network was performed using the same protocol and dataset as
also mentioned in Chapter 1. To study the impact of the adversarial loss
on the prognostic capabilities of the network, results for the survival anal-
ysis of the adversarial network were compared to the results of the network
trained without adversarial loss.

3.3 Results

The correlation loss reached for the network trained without the discrimi-
nator was 0.18, while the network trained with the discriminator reached
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a cross-correlation loss of 0.26. To assess registration quality, the deforma-
tion fields were generated using both the network trained with and without
the discriminator. Figure 12 shows the moving image and the deformation
field. Figure 12 also shows the location of the voxels with a negative Jaco-
bian determinant since these voxels represent areas where folding occurs.
This figure also illustrates the areas where the discriminator focuses on to
assess unrealistic deformations.

The mean number of negative Jacobian determinant voxels was calcu-
lated for both networks with 30 scan pairs used as input. 0.42%±0.26 of all
voxels had a negative Jacobian determinant for the network trained without
the discriminator. In comparison, 0.13%± 0.10 of all voxels had a negative
Jacobian determinant for the network trained with the discriminator.

The network trained without the discriminator achieved an AUC of 0.64
for the total test set, and 0.65 for the subset of patients with thoracic can-
cers. Results for the network trained with the discriminator achieved an
AUC of 0.64 for the total test set, and 0.66 for the subset of patients with
thoracic cancers. There was no significant difference in prognostic perfor-
mance between both networks. Scan pairs in the test set were categorized
in a low, medium, or high risk of survival based on the predictions of PAM
using the 33rd and 67th percentile as thresholds. Cohen’s kappa statistic
was equal to 0.49 between the predictions of the network with and without
the discriminator.

3.4 Discussion

The results show that the discriminator causes the network to converge to
a higher correlation loss, indicating worse registration performance. How-
ever, as the original network with the larger penalty had an even higher
correlation loss, both of the networks trained in this chapter had an increase
in registration performance. The number of voxels with a negative Jacobian
determinant was lower for the network with the discriminator, indicating
less folding caused by the deformation field. There was a slight improve-
ment visible in prognostic performance for both of the networks trained in
this chapter compared to the original network; however, the difference was
not statistically significant.

As we want to constrain the deformation field to provide a realistic
registration it might seem counter-intuitive to then train a discriminator on
the images instead of the deformation field. However, as we are training the
registration algorithm in an unsupervised manner, it is not straightforward
to get examples for the desired (and therefore real) deformation field to
train a discriminator. One method could be a version of PAM trained with
a higher penalty to generate deformation fields which will serve as the real
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Figure 12: The first row is the target image for registration. The sec-
ond row shows the deformation field overlaid on the affinely transformed
moving image, where different colors represent the direction of the defor-
mation. The third row shows the value of the determinant of the Jacobian
at each voxel. The last row shows the GradCAM activation heatmap for
the elastically deformed moving image.
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image for the discriminator. The fake image will then be provided by the
instance of PAM trained with a lowered penalty. The main problem with
this approach is computational restraints, as two instances of PAM need
to be active at the same time. Further research might try this approach to
see if this increases performance.

Minimizing the occurrence of folding should not be a goal in and of
itself. But having an excessive amount of folding indicates highly unlikely
registration performance. Due to differences in the anatomy caused by the
disease or the treatment, the deformation field might produce sharp de-
formations to accommodate these anatomical deformations. Folding might
therefore be desired because these anatomical deformations might contain a
lot of clinical information. Qualitative analysis showed that a large portion
of the voxels where folding occurs is located in the bottom and top slices
in the axial direction. These slices contain a registration artifact due to
the affine transformation. Folding in these slices is more pronounced in the
deformation field created by the network trained without the discriminator.

The network trained with the discriminator converges to a higher cor-
relation loss compared to the other network. There are two possible ex-
planations for this behavior. The first is that the discriminator keeps the
network from deforming the volume in an unrealistic manner, thereby hav-
ing a trade-off between realism and registration accuracy. This was the
goal of including the discriminator. However, another possible explanation
is that without the discriminator the network converges in a more stable
and smoother way. This could indicate that training with the discrimi-
nator introduces too much noise to the loss making the network unable
to converge to an optimal registration performance. The attention maps
show that the discriminator is primarily focussing on areas with larger de-
formations, but no specific correlations can be seen with areas with a lot
of voxels with a negative Jacobian determinant. No difference can be seen
in attention maps in the results of both networks.

Survival analysis shows that decreasing the total variation improves
the prognostic performance for both networks; however, this improvement
is not statistically significant. The explanation for the increased prognostic
performance for both networks is that because of the lowered total varia-
tion penalty the networks have a better capacity to model morphological
changes.

Future work to improve registration performance should try to qualita-
tively evaluate which deformations are desired, and which ones are unreal-
istic. Improving the quality of the registration should focus on eliminating
specific unrealistic deformations while increasing the registration accuracy.
This might lead to increased prognostic performance. However, it is not
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known how much further prognostic performance can be pushed by increas-
ing the quality of the registration.

3.5 Conclusion

Training PAM with a discriminator allows for more realistic deformations
because of the minimization of folding in the deformation field. Decreasing
the total variation penalty increases the prognostic performance; however,
no statistical difference was obtained.
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General Conclusion

In this thesis, we have shown that PAM, a deep learning model trained to
perform image registration, can extract prognostic features from thoracic
CT scans of patients receiving immunotherapy. This supports the central
hypothesis that morphological changes between scans can be captured using
image registration, and that these changes contain prognostic information.
We have shown that the quality of the image registration correlates with
prognostic performance, further supporting this hypothesis. PAM was also
compared to RECIST 1.1 and results showed that the prognostic perfor-
mance of PAM is similar to RECIST.

We have studied two aspects of PAM’s architecture. The first, pre-
sented in Chapter 2, is the disentangled feature space by implementing the
Hessian Penalty. Disentangled features pave the way for increasing PAM’s
explainability, as PAM in the current state is a black-box model. As the
disentangled features obtained in Chapter 2 are not yet fine-grained enough,
they could not be directly linked to any clinically interpretable changes in
the body. Further research should focus on extracting finer-grained mor-
phological changes from prognostic features. The second aspect, presented
in Chapter 3, is the improvement of the quality of the registration, by
lowering the penalty on the elastic deformation field while keeping the de-
formation field realistic by training PAM with a discriminator. Reducing
the penalty resulted in an increased prognostic performance compared to
the network trained in Chapter 1. Also, training with the discriminator
has been shown to reduce the number of unrealistic deformations in the
deformation field compared to a similar network trained without the dis-
criminator. However, the increased realism did not translate to an increase
in prognostic performance. This indicates that only lowering the penalty
affects prognostic performance. Because training with a discriminator is
difficult, it should be considered if the added gain of a discriminator, the
realism of the deformation field, outweighs the increased complexity.

Outlook

It is recommended that future research should first focus on implementing
PAM for other anatomical regions, specifically the abdomen. The prognos-
tic results from PAM can then be compared to RECIST, which should be
done on a highly curated multi-center dataset. PAM was trained on data
from the Netherlands Cancer Institute, which is a highly specialized can-
cer center. As this patient population is different from those at a general
hospital, it is important to assess the prognostic performance of PAM on a
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diverse patient population to ensure robust performance. The desired level
of performance and accuracy needs to be quantified, which can be done
by comparing with RECIST. PAM should be optimized to achieve this de-
sired level of performance while reducing complexity as much as possible,
maximizing the chances for clinical adoption. A quantified goal for the per-
formance will give a clear indication in what way PAM needs to be further
improved upon before clinical deployment.

PAM is currently trained to predict survival, but other outcomes might
be more useful for clinicians. Survival was used as an easily obtainable
proxy for treatment response, but survival is also a very noisy outcome
metric. For example, patients can die from other causes not related to their
disease or treatment, which is not accounted for in this study. It is therefore
recommended to analyze if a model that can sufficiently predict survival will
provide a benefit to the patient, or if other outcome metrics provide better
value. An alternative outcome is pathological response, but in metastatic
patients, this information is not available (patients cannot be followed-up
by serial biopsies) nor can be considered representative (response of one
lesion vs response of remaining lesions). An outcome that can also be used
is the change in the experienced quality of life by patients. Information
about the quality of life is however expensive to obtain, difficult to measure
due to subjectivity, and not readily available in a retrospective cohort. As
RECIST is currently used to assess radiological response, and the goal of
PAM is to overcome the limitations of RECIST, it is not recommended to
train PAM to predict radiological response based on RECIST. Similarly,
total tumor volume (via segmentation) is expensive to obtain, and has
intrinsic limitations that cannot be overcome (e.g. pseudo-progression).
All alternatives to survival as an outcome have their drawbacks but might
provide more clinical value.

If PAM can tackle RECIST’s limitations, while increasing the prognostic
performance, PAM can be highly beneficial to both patients and clinicians.
However, a black-box model that can predict survival can be difficult to
get accepted in a clinical setting. If clinical adoption proves difficult, PAM
can still provide key insights into which morphological differences in longi-
tudinal imaging are prognostic. A key prerequisite is that PAM can link
and visualize prognostic features to fine-grained deformations, therefore
providing explainability.

In a future scenario where PAM will be implemented in clinical prac-
tice, it is important to consider the specifics of the implementation. PAM
should give quantitative prognostic information, where the contribution of
single deformations to the prognosis can be visualized. For example, vi-
sualizing for a patient that PAM detected a decrease in tumor volume,
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contributing to an improvement of 30% of the final outcome, and the onset
of atelectasis, contributing to a decrease of 20% to the final outcome. The
quantitative prognostic information output by PAM can then be taken into
account when the patient is discussed at the tumor board. The AI system
will serve as one of many tools used by doctors to find the best course of
action for the patient. The doctors need to balance different objectives such
as maximizing survival, maximizing the quality of life of the patient while
also incorporating specific wishes of the patient. PAM could help to pro-
vide information that will lead to more objective clinical decision-making,
resulting in better outcomes for the patient. To maximize the potential of
PAM, clinical studies need to be performed to investigate in what context
PAM provides a benefit, with direct comparisons to current standards such
as RECIST. These results can then be translated into clinical guidelines,
which will be needed to get PAM to be accepted by clinicians.

In conclusion, this work shows that AI can be used to obtain quan-
titative prognostic information from medical images. This work tries to
contribute to the exploration of AI systems for possible implementation in
clinical practice, to thereby improve healthcare and increase the quality of
life for individual patients. The thesis serves as a base for further research,
which is needed for eventual clinical adoption.
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