
CNN Accelerator Throughput
Improvement using High-Level

Synthesis for FPGA

Matthijs van Minnen
MSc. Thesis
April 2022

Supervisors:
dr. ir. S.H. Gerez

dr. ir. N. Alachiotis
dr. C.G. Zeinstra

Computer Architectures and
Embedded Systems Group

Faculty of Electrical Engineering,
Mathematics & Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

ABSTRACT

The number of applications for neural network is growing, which increases the demand for pro-
cessing power to run these networks. General purpose solutions are available, but specialised
hardware can provide better performance at a lower energy cost. An accelerator is developed
for FPGA to increase the throughput for the convolutional layers of the YOLOv4 Tiny CNN.
Catapult HLS is used to speed up development of the accelerator. Using HLS, a design is
developed that is inspired by the Eyeriss architecture. As the tool does not natively infer DSP-
blocks in the design, a custom design flow is derived to instantiate these blocks to perform the
MACC operations. With this implementation, a MACC operation is performed in 1 clock cycle.
A schedule is found to optimise the hardware usage for the given CNN, using the Timeloop tool.
This yields 99% utilisation of the hardware. The hardware implementation is simplified to meet
the throughput requirements for providing data for the MACC operations. With the optimised
schedule and improved hardware, it is estimated that the accelerator provides a throughput of
4GOPS, whilst simultaneously reducing the resource utilisation by ~30%, compared to other
works.

i

LIST OF ACRONYMS

AC Algorithmic C
AGEN Address generator
AI Artificial intelligence
AP Average precision
ASIC Application specific integrated circuit
CNN Convolutional neural network
COCO Common objects in context
CSC Compressed sparse column
DPU Deep learning processing unit
FC Fully connected
FF Flip-flop
FLOPS Floating-point operations per second
FPS Frames per second
GLB Global buffer
GMACC Giga multiply-accumulates
GOPS Giga operations per second
GUI Graphical user interface
HDL Hardware description language
HLS High-level synthesis
ifmap Input feature map
IoU Intersection over union
LN Local network
LUT Look-up table
MACC Multiply-accumulate
mAP Mean average precision
MC Multicast controller
NN Neural network
NoC Network-on-chip
ofmap Output feature map
PE Processing element
PL Programmable logic
PS Processing system
psum Partial sum
ReLU Rectified linear unit
RLC Run length compression
RS Row stationary
RTL Register transfer level
SoC System-on-chip
spad Scratchpad
YOLO You Only Look Once

ii

CONTENTS

Abstract i

List of acronyms ii

Contents iv

1 Introduction 1
1.1 Research questions . 1
1.2 Contributions . 3
1.3 Outline . 3

2 Convolutional neural networks 4
2.1 Neural network background . 4

2.1.1 Activation functions . 5
2.1.2 Layer types . 5
2.1.3 Performance metrics . 7

2.2 Dimensionality . 9
2.3 Theoretical reuse . 11

2.3.1 Topologies . 11
2.4 YOLO Version 4 Tiny . 12

2.4.1 Practical reuse . 15
2.5 Timeloop . 15

2.5.1 Usage . 16

3 Accelerator architectures 19
3.1 Definitions . 19
3.2 Topologies . 20

3.2.1 Data management . 20
3.2.2 Optimisation of computations . 24

3.3 Implementations . 26
3.3.1 Heinsius . 26
3.3.2 Xilinx . 27
3.3.3 Summary . 28

4 High-level synthesis 29
4.1 Catapult . 30

4.1.1 Writing source code . 30
4.1.2 Analysis . 33
4.1.3 Building for a target . 35

5 Method 37
5.1 Throughput of the processing element (PE) . 37

iii

CONTENTS

5.1.1 DSP48E1 primitive . 38
5.1.2 Black-box implementation . 39

5.2 Processing element array . 40
5.2.1 Schedule . 41

5.3 Network-on-Chip . 46
5.3.1 Theoretical bound network-on-chip bandwidth 46
5.3.2 Revision of implementation . 47

5.4 GLB configuration . 48
5.4.1 Parsing schedule . 49
5.4.2 AGEN loops in Catapult . 50

5.5 Expected throughput improvement . 50

6 Results 52
6.1 Processing element throughput . 52
6.2 Network-on-chip throughput . 53
6.3 Overall system performance . 54

7 Conclusion 56

8 Discussion 58
8.1 Recommendations . 58

Bibliography 60

A Catapult implementation 63
A.1 Catapult . 63
A.2 Timeloop . 65

iv

1. INTRODUCTION

Artificial intelligence (AI) is applied to a growing number of applications, trying to make sense
of data. The performance of these AI systems can be outstanding after sufficient training, but
can also be a high computational burden due to the sheer number of operations required for
one inference of the algorithm. Specialised hardware has been used successfully to improve
both performance and power requirements over general purpose processors, as specialised
hardware can be tailored for a specific set of instructions or operations, but more importantly,
can perform computations in parallel.

In the field of image classification, where images are scanned for objects and subsequently
scored for a fixed range of classes, networks are generally characterised as CNNs. This name
is derived from the large number of convolution operations that are performed on the input image
with different filter kernels. There are a variety of popular models that are used to perform this
image classification: AlexNet, MobileNet [13], ResNet, VGG and YOLO [25].

These networks are ranked based on performance on the one hand, and complexity, the number
of computations, on the other. Often times, a higher complexity results in a higher performance.
A trend can be observed the last few years, where the performance per complexity metric has
improved over time, which becomes even more prevalent for mobile applications with for in-
stance MobileNet.

One kind of CNN is the You Only Look Once (YOLO) network, which has seen multiple versions,
the current one being Version 4. Based on this YOLO Version 4, an optimised model has
been created focused on memory-limited devices: YOLOv4 Tiny [25]. It reduces the memory
requirement of the model by scaling down the number of weights in the network. Effectively, the
number of computations is reduced from 59.56FLOPS to 6.91FLOPS (floating-point operations
per second). This affects the overall performance, when compared to the original YOLOv4.
This CNN was the target of an accelerator created by Heinsius [12] to improve the throughput.
The accelerator is based on the Eyeriss architecture [7] and was implemented using Catapult
[21], a HLS tool, on the Zedboard FPGA platform with a Xilinx Zynq-7020 system-on-chip (SoC).
The premise of HLS is that it can accelerate the development of hardware designs, by working
at an abstraction level higher than hardware description language (HDL) and enabling higher
level simulations. That work accelerates the computations 3.84 times over just the processing
system (PS) in the SoC whilst simultaneously reducing power requirements. However, the goal
to achieve real-time processing was not achieved.

1.1 Research questions

This research proceeds on the work of Heinsius with the aim of exploring means to improve
the throughput. The same boundary conditions will be applied. The CNN to be accelerated is
YOLOv4 Tiny and will be implemented using Catapult HLS on the Zedboard. The goal by Hein-
sius was to deliver real-time performance, defined as 30frames per second (FPS) when process-
ing images. As the absolute performance is largely dependant on the scale of the hardware, the

1

1.1 Research questions

goal of this work is adjusted to increase the throughput and optimise it for the Zedboard—whilst
maintaining a flexible framework that can support a variety of CNN algorithms and frameworks.
Optimally, the performance of the new Accelerator should approach the theoretical maximum of
the hardware platform. Given this objective, the following research question can be formulated:

How can the throughput of a hardware accelerator for a CNN be improved to approach the
theoretical upper bound using HLS for FPGA?

In order to compare the performance against the theoretical limit, this limit must be known. When
designed for a specific device, the performance is limited by the available hardware. To stay
more general, an analysis is performed which is hardware agnostic. To provide a reference, the
design is then synthesised for the Zedboard, as a reference. To derive an upper bound for the
performance the following question must be answered: What is the theoretical upper bound for
a CNN accelerator’s performance on the Zedboard and how does this compare to performance
in literature?

Heinsius finds several points of improvements to increase the throughput of his design. There
is communication between the off-chip memory and the Accelerator as well as an network-on-
chip (NoC) to distribute data on-chip. Heinsius identifies a bottleneck in these communication
networks providing data for the computations. More specifically, the NoC seems to lack the
throughput to sustain the rate of computations. To address this, the following sub-research
question is formulated: Can the network-on-chip bandwidth bottleneck in the work by Heinsius
be identified and resolved?

The goal is to utilise HLS to accelerate the development of the new architecture. However,
HLS is written at a different abstraction level when compared to HDL. Development times could
be shortened and simulations can be performed faster, but performance may be impacted. To
evaluate the effect of using HLS, the following sub-research question is formulated: Does a
workflow with High-Level Synthesis influence the performance of a CNN accelerator? In the
Accelerator by Heinsius, no DSP-blocks from the FPGA fabric were used to accelerate the
MACC operations. Given the computational qualities of the DSP-blocks, it is expected that
using their processing power will provide a significantly higher throughput for MACC operations
than using look-up tables (LUTs) for these computations. Since they were not implemented in
the original Accelerator, a work-around should be found to implement them using HLS. This
topic is covered by the following sub-research question: How can DSP-blocks be implemented
in the Accelerator design using the high-level synthesis workflow?

The research questions are summarised below:

• How can the throughput of a hardware accelerator for a CNN be improved to approach the
theoretical upper bound using HLS for FPGA?

• What is the theoretical upper bound for a CNN accelerator’s performance on the Zedboard
and how does this compare to performance in literature?

• Can the network-on-chip bandwidth bottleneck in the work by Heinsius be identified and re-
solved?

• Does a workflow with high-level synthesis influence the performance of a CNN accelerator?

• How can DSP-blocks be implemented in the Accelerator design using the high-level synthesis
workflow?

2

1.2 Contributions

1.2 Contributions

This work provides a number of aspects to improve the throughput of the CNN accelerator. To
speed up the MACC computations, DSP-blocks are implemented in the design. This occurs
outside of Catapult, as the tool is not able to automatically infer these blocks for all FPGA
families. To achieve this, the processing element (PE) will be implemented using a black-box
structure in Catapult, such that it can later be substituted for an IP-block (the DSP48E1 primitive
in case of the Zynq 7020 fabric).

Moreover, an analysis is performed of the throughput requirements of the NoC, which provides
data to the PE-array. Using the Timeloop tool, an optimal schedule is derived which is opti-
mal for the hardware. With this, the design of the array is simplified to be 1 dimensional and
optimised based on the found requirements. This uses the hardware more efficiently, yielding
better performance at a lower hardware cost. As hardware is freed up, it can be re-deployed to
perform more computations in parallel, yielding even higher throughput.

1.3 Outline

To get acquainted with the topic of CNNs and the relevant aspects for creating hardware accel-
erators, Chapter 2 discusses the theoretical background and will introduce relevant terminology.
It will also discuss the properties of YOLOv4 Tiny and how these are relevant for the Accelera-
tor. Finally, the operation of the Timeloop tool will be explored such that it can be utilised later.
Chapter 3 discusses existing topologies for hardware accelerators and explores their merits.
Secondly, similar works also targeting the Zedboard, or more generally the Zynq 7020 FPGA,
are summarised to provide a comparison for performance and derive a reasonable upper bound
for the performance. Here the work by Heinsius will also be explored in more depth to under-
stand the shortcomings. Chapter 4 explores the Catapult tooling and describes the workflow for
setting up an Accelerator using HLS.

In Chapter 5 three contributions will be provided. First, the workflow to implement DSP-blocks
in the design is described. Secondly, the PE-array is re-evaluated. To lastly, optimise the
throughput of the array. The results of these efforts will be discussed in Chapter 6, along with
the presentation of a schedule, derived with the Timeloop tool, that is optimised for the presented
architecture and the YOLOv4 Tiny network.

Conclusions will be drawn from these results in Chapter 7 and further discussed in Chapter 8.
In this final chapter, possible recommendations and points for improvement will be presented.

3

2. CONVOLUTIONAL NEURAL NETWORKS

There are many sub-classes of AI networks. To perform object detection in images, CNNs are
the prevalent technology. As described, YOLOv4 Tiny will be used to infer the objects. However,
to get a better understanding of CNNs, a general description of NNs is provided to discuss the
topics relevant for this work. The description will not deal with the topic of object detection or
how an algorithm would perform that task. Instead, a more abstract view of the computations
is provided, which aids in the development of an Accelerator for those computations.

2.1 Neural network background

Objects are detected in an image by the CNN. It does so by convolving the image with a number
of filters. Using these computations, the network distills features from the image as the different
filters reveal structures (e.g. edges, textures or colours) in the image and identifies objects based
on these structures and classifies the object to one of the available classes, available from a
fixed list.

The computations in a NN are derived from the electrochemical processes inside neurons and
especially how they are interconnected in the (human) brain. NNs are inspired by the operation
of the brain to execute complex tasks, using a mathematical model. The computations in the
NN are largely similar to a biological brain, as signals on interconnections from other neurons
are gathered in the cell body and propagated. A formal definition of the NN’s operation is given
as:

y = f

(N∑
i=0

xiwi

)
(2.1)

Here N is the number of interconnections with other neurons, xi the different inputs and wi

are the weights. In the brain the summed signal should pass a threshold to initiate a chemical
reaction, such that the neuron fires. This threshold introduces non-linearity and is also important
for the operation of a NN. Without this non-linearity, the network could be rewritten as one large

Σ
w1

w2

w3

Input0 (bias)

Input1

Input2

Input3

Activation Output to next
neuron(s)

Figure 2.1: Graphical representation of a neuron.

4

2.1 Neural network background

matrix multiplication and ultimately be resolved by multiplying a matrix of inputs with a matrix
of filter values. For NNs the firing of the neuron is decided by an activation function, which
is applied on the sum of the weighted inputs. In Equation (2.1) f() is this activation function.
Figure 2.1 represents the general structure of an artificial neuron, including the multiplication
with weighting factors, accumulation and the application of an activation function.

The activation functions are further discussed in Section 2.1.1. The different neurons are con-
nected in layers. Besides the regular neurons described previously, there are also alternative
layers which will be discussed in Section 2.1.2. To distinguish different networks they need to
be comparable on some metrics, these are discussed in Section 2.1.3.

2.1.1 Activation functions

The concept of a threshold that needs to be exceeded before a neuron fires is modelled using
the rectified linear unit (ReLU), which is formally described as:

f(x) =

{
0 for x ≤ 0
x for x > 0

(2.2)

This activation function is non-linear. From a computational point of view this is beneficial; any
future multiplications or additions with this output of the neuron can be omitted, as it has a
value of zero. This technique is leveraged in [6]. For a NN, having many neurons with zero as
output might starve the network, and stop it from producing a sensible output. Hence, there are
alternative activation functions which can be used that do not starve the network. An example
is leaky ReLU which is similar to ReLU, but does not produce zeros at the output, as it multiplies
negative values with a coefficient:

f(x) =

{
αx for x ≤ 0, with 0 < α < 1
x for x > 0

(2.3)

As a neuron will always produce an output, albeit very small, it means that the provided inputs
will always propagate through the network, thus avoiding starvation of the network. There are
alternative functions with more complex descriptions, such as the sigmoid 1

1+e−x or hyperbolic
tangent tanh(x) = e2x−1

e2x+1
. These last two functions are computationally more intensive but

can provide a smoother transition region which might be beneficial for the performance of the
network. The different activation functions discussed here are plotted in Figure 2.2. Alternatively
there is the Softmax function which is often used in classification layers. It normalises the inputs
based on the dimension of the input vector x to a probability density function. It is defined as:

y(x)i =
exi∑dim(x)

j=1 exj

(2.4)

2.1.2 Layer types

A CNN consists of different layers, each with different characteristics. In Section 2.1 the general
background was discussed with more information on neurons. These neurons provide the basic
building blocks for the most important layers of a CNN. A neuron can have a variable number of
inputs which are connected to the outputs of neurons from a previous layer. Three layers types
are discussed here: fully connected (FC), convolutional and pooling layers.

A FC layer is also built from neurons and connects all neurons from the prior layer to all neurons
of the next layer, thus fully connecting both layers. In convolutional layers, a convolution kernel

5

2.1 Neural network background

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

x

y

ReLU
Leaky ReLU (α=0.05)
Sigmoid
Tanh

Figure 2.2: Different activation functions for neural networks.

is applied to the inputs (for example, see Figure 2.6). In this case, a neuron computes one
output value of the convolution and is only connected to a number of inputs equal to the size of
the convolution kernel. A FC layer has a neuron for every neuron in the next layer (Nout) and
a weight for every input (Nin), which results in Nin ×Nout different weights and multiplications.
The number of weights for a convolutional layer is significantly lower as a kernel of dimensions
n×m (usually square n = m and n ≫ Nin andm ≫ Nout) is applied to all inputs. Applying this
kernel to all inputs is realised by reusing the same weights in different neurons. In the process
of training a NN, the weights in these layers are adjusted to improve the performance of the
entire network. This performance is ranked according to a loss-function. The selection of this
function is an important aspect of training a network. With the lower number of weights used
in convolutional layers, it becomes easier to train the network, as fewer parameters have to be
optimised. FC layers are typically used in the last few layers of a CNN, as the dimensions (Nin

and Nout) are significantly smaller compared to the input of the network.

For object classification networks like YOLO, the FC layer is used to perform the classification.
The output of the classification network provides a decision if an object belongs to a number
of fixed classes, represented by individual neurons. After an input image is processed and
reduced using several convolutional layers, it is passed to the FC layer for classification. Next
it is weighted by every neuron and an activation function is applied to make a binary decision if
an object belongs to a specific class, or a probability for a match is derived using the softmax
function.

Another common layer in CNNs is the pooling layer. In contrast to the previously discussed
layers, this layer cannot be trained, as it is not built up from neurons and thus does not contain
trainable weights. Instead, the pooling layer is used to reduce the dimensions of the layers,
effectively downsampling the inputs. By pooling data, multiple adjacent values are pooled to
form 1 output. Multiple pooling strategies are possible. Max and average pooling are most
common. Max and average pooling respectively find the maximum and average value of all
values from an n × m rectangle and use this to determine the single output value. This is
visualised in Figure 2.3, where the rectange is size 2× 2. The n×m rectangle can be used to
reduce the dimensions of a 2D plane, but can also be applied to reduce the number of channels
of the data, flattening the layer.

An alternative for reducing the dimensions of the data is applying a stride to the inputs. Under
normal operation, when the stride is 1, the kernel is moved 1 position at a time over the inputs.

6

2.1 Neural network background

3 16 9 2
6 8 14 13
4 12 7 10
11 5 15 1

→ 16 14
12 15

Max
8.25 9.50
8.00 8.25

Average

Figure 2.3: An example of max and average pooling applied to a random 4x4 matrix.

When a non-unit stride is applied, the kernel is shifted over the inputs by the stride factor (S),
thus moving over S input values. This reduces the amount of times the kernel is multiplied with
the input, creating fewer output values. This scales down the output dimensions similar to how
a pooling layer would. Typically, a pooling layer is applied directly after a convolutional layer
and pooling is thus performed after the activation function. When stride is applied, the reduc-
tion is performed before the activation function. This difference affects the performance of the
network. From a hardware point of view, stride is more efficient, as it does not require additional
computations to reduce the output dimensions. The pooling layer applies an additional opera-
tion (either finds an average or maximum) on the input data, which requires additional hardware
resources.

Preferably, stride would be applied over pooling, as it cuts down the number of computations
whilst reducing the dimensions. However, for this work YOLOv4 Tiny is used, which applies a
combination of stride and pooling layers.

2.1.3 Performance metrics

Section 2.1.2 briefly discussed the topic of training. It is the process of tuning the weights, or
parameters, inside the network to provide a better performance. These weights are part of
the convolutional and FC layers. Here, the term performance will be defined in the realm of
CNNs. It is twofold, on the one hand is the performance in terms of accuracy of the network,
as discussed in Section 2.1.3. This is contrasted with the complexity required to achieve that
accuracy, which is further discussed in Section 2.1.3.

Accuracy

NNs can be applied to a variety of tasks where the accuracy is determined as how well it per-
forms that task. To make that more concrete for the application of YOLOv4 Tiny, object detection
and classification, the accuracy is defined by how accurate the estimate for the object is and
whether the identified class is correct. This accuracy is summarised in the mean average pre-
cision (mAP) metric. After inference of YOLO or a general object classification algorithm, the
network provides one or more bounding boxes for the objects it identified and a confidence
score of the most likely class for those items. There are a fixed number of classes based on
the dataset that the network is trained with. For this work that dataset is common objects in
context (COCO) [15], as it was used to train the YOLOv4 Tiny network by Heinsius [12]. The
COCO dataset contains a variety of colour pictures describing every-day life scenes. It contains
80 classes, ranging from vehicle⇒bicycle to food⇒broccoli. An example of the detection and
classification capabilities of YOLOv4 Tiny is given in Figure 2.4; it demonstrates the bounding
boxes, which also specify the identified class together with the confidence score.

To determine the accuracy of the bounding boxes, the position is compared to a ground-truth—
the bounding box that was manually defined by the creators of the dataset—using the inter-
section over union (IoU) metric, defined as the overlap of the estimation and the ground-truth,
divided by the total area of the estimate and the ground-truth together. If the boxes overlap
completely, the IoU is 1. To determine a mAP rating for the network, the IoU value is combined

7

2.1 Neural network background

(a) Pascal VOC 2007 (b) COCO

Figure 2.4: Examples of the output from YOLOv4 Tiny on images from different datasets.

with the classification. To do so, four classes are defined. Their definitions are given below:

tp An object should be identified, and
the classification confidence score is higher than the confidence threshold, and
the predicted class matches the ground-truth class, and
the IoU rating is higher than the IoU threshold.

tn No object should be detected, and
all values are correctly below their respective thresholds.

fp No object should be detected, but
the IoU is higher than the threshold, and/or
the classification confidence score is higher than the confidence threshold.

fn An object should be identified, but
the IoU is lower than the threshold, and/or
the classification confidence score is lower than the confidence threshold.

To determine the accuracy of the network, the type of the prediction is determined using the def-
initions above for the images in the dataset and a specific object class, e.g. the vehicle⇒bicycle.
To determine the average precision (AP), the precision (p) is plotted against the recall (r), as
given by Equations (2.5) and (2.6) respectively, and the area under this plot is found for recall
values in the range [0,1]. To find the mAP, the full description for which is given in Equation (2.7),
the average is found for the AP value of allK different object classes in the dataset. This metric
determines the accuracy and can be improved by further training the network, e.g. tweaking the
weights in the neurons such that the resulting mAP score improves. With a mAP of 100%, the
estimation is perfect.

p =
tp

tp + fp
(2.5)

r =
tp

tp + fn
(2.6)

mAP =
1

K

K∑
i=1

(∫ 1

0
pi(r)dr

)
(2.7)

8

2.2 Dimensionality

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

Recall

Pr
ec
is
io
n

Recall original
Recall interpolated

Figure 2.5: A precision recall plot, values derived from [12].

Complexity

A neural network performs a fixed number of computations based on the dimensions of the
layers and their constitution. Within the fixed layers with fixed dimensions, the weights of the
neurons can still vary, which help determine the mAP. However, for the same computational
cost, a neural network may have varying accuracy. During computations, activation functions
like ReLU may introduce zeros into the data, which allows for optimisations, as further compu-
tations with a zero may be skipped. Without these kind of optimisations, any value will be used
regardless in subsequent layers. Hence, each inference of a neural network will require the
same number of computations. This number of computations is often expressed in FLOPS, or
more generally (also including fixed point operations) GOPS.

For CNNs, the dominant type of computations are the MACCs, as was found by Heinsius[12,
Sec. 5.2] who reports 99.67%of the inference time of YOLOv4 Tiny was spend on theCONV_2D
kernel, so theMACC operations. As such, these operations are often used as benchmark for the
computational complexity of a CNN, often expressed as giga multiply-accumulates (GMACC)
or GMACC/s. Since the MACC multiplies and accumulates, it counts as 2 operations.

2.2 Dimensionality

There are benefits and disadvantages to the CNN computations. The computations are highly
regular, with no conditions during operation; hence it is known in advance what data will be used.
The downside is that the computations have many dimensions, complicating the scheduling of
the computations to efficiently use the available hardware.

To make a schedule it is important to understand the dimensions of the computations. An
overview of the different terms is given in Table 2.11. The input feature map (ifmap) represents
the input of the NN (layer) and is convolved with filter kernels to produce an output feature map
(ofmap). As the convolution requires multiple products to be accumulated, there are intermedi-
ate values, called partial sums (psums), to represent incomplete ofmaps. These terms: ifmap,
kernel, psum and ofmap are referred to as datatypes as they constitute the different types of
data are handled during computations. The formal representation of a 4D convolution is given

1The alternative terms are used throughout the implementation in Catapult and the configuration tool of Sec-
tion 5.4 and are an artefact from the original schedule and configuration tool.

9

2.2 Dimensionality

* =
IW

IH

IC

KW
KH

IC

OC

OW

OH

OC

Figure 2.6: Graphical representation of a 3D convolution with a stride of 2, one set of corre-
sponding values is highlighted.

here:

O[oc][oh][ow] =

IC−1∑
ic=0

KH−1∑
kw=0

KW−1∑
kw=0

I[ic][oh · S + kh][ow · S + kw] · K[oc][ic][kh][kw] (2.8)

where 1 ≤ oc < OC, 1 ≤ oh < OH and 1 ≤ ow < OW

To support the formal representation, the terms are visualised in Figure 2.6, which presents a
convolution with a stride (S) of 2. The ifmap and ofmap have 3 dimensions: the width, height
and a number of channels2. The kernel also has a width and height dimension and a number
of channels that must be equal to IC, but there are also output channel (OC) filters to create
OC output channels for the ofmap, thus the filter has a total of 4 dimensions. This makes the
convolution 4D over dimensions input height (IH), input width (IW), IC and OC. The number of
computations required to compute 1 ofmap value is given by:

Nof = KW ·KH · IC (2.9)

For the convolutional layer, the only means to reduce the dimensions of the ifmap is using stride.
The stride reduces the computations in 2 dimensions. This results in a square factor reduction
for non-unit stride. The relation between the ofmap dimensions and the ifmap dimensions can
thus be expressed by:

IH · IW
S2

= OH ·OW (2.10)

Given Equation (2.9) as the computations for 1 ofmap position, the number of computations
required for 1 layer can be expressed as Nlay. With Equation (2.10) this can be expressed by
means of the output dimensions:

Nlay = IH · IW ·KH ·KW · IC ·OC/S2 = OH ·OW ·KH ·KW · IC ·OC (2.11)

2The input for a CNN is often an RGB-image which has one channel for each colour component, so the ifmap
usually has 3 input channels (ICs).

10

2.3 Theoretical reuse

Table 2.1: An overview of the different CNN dimensions, their abbreviations and extreme values
for the YOLOv4 Tiny algorithm[25].

Abbrev. Alt. name Full name Min. value Max. value
S - Stride 1 2
B N Batch size 1 1
IW - Ifmap width 13 416
IH - Ifmap height 13 416
KW S Kernel width 1 3
KH R Kernel height 1 3
IC C Input channels 3 512
OC M Output channels 32 512
OW E Ofmap/psum width 13 416
OH F Ofmap/psum height 13 416

2.3 Theoretical reuse

The main advantage of the regularity of CNNs, is the opportunity to reuse data. As values
are used multiple times during the computation of the complete ofmap, optimisations can be
applied. The theoretical maximum reuse will be derived for the ifmap and kernel datatypes, and
reuse hierarchies will be explored.

In Equation (2.9) it was derived that for 1 ofmap value, Nof multiplications are required. Since
the ifmap has independent channels, 1 ifmap value can be reusedKH ·KW times. By unrolling
the OC dimension of the ofmap, the 4D-convolution can be simplified to 3D convolutions of the
same ifmap with OC different filters. Hence, the number of opportunities for reuse, expressed
by the reuse factor (RF), for 1 ifmap value is:

RFif = KH ·KW ·OC (2.12)

There is a different filter kernel for every OC, and the IC dimension of the kernel matches the
IC dimension of the ifmap. This means that 1 kernel value can only be applied to the 2D layer
of dimensions IH · IW . Assuming that this layer is padded and taking into account the stride,
the single kernel value should be multiplied with every ifmap value in this 2D-space making the
reuse factor for a kernel value (using Equation (2.10)):

RFk = IH · IW/S2 = OH ·OW (2.13)

2.3.1 Topologies

Given these maxima, different topologies can be applied to implement this reuse, they are pre-
sented in Table 2.2. The operations are performed on PEs, which represent the atomic com-
putational blocks. For the purpose of CNNs, these PE perform MACC operations. There are
two choices for the implementation of reuse: spatial or temporal. For a spatial implementation
computations are preformed in parallel, where each PE can be provided with the same data.
For instance, RFif parallel executions such that one ifmap value can be broadcast to all compu-
tational block to be optimally reused. The outputs of these computations must be accumulated
to form 1 ofmap value and stored. By reducing them in a fanin fashion, fewer values need to
be stored. As 1 ofmap value is constituted of Nof psums, the hardware can be designed to
accumulate these prior to storing them, saving transfer bandwidth. The benefit of a spatial im-
plementation is the parallel processing, speeding up a design. The downside is the additional
hardware required for this processing.

11

2.4 YOLO Version 4 Tiny

Table 2.2: Different hardware implementations for spatial reuse, based on [14].

Communication type Implementation choices
Spatial Temporal

Multicast
Global
Memory

PE

PE
PE
PE
PE

Fanout (e.g. bus, tree)

PE PE PEPE PEPE PE PEPEPEPE PE

Store or forward (e.g. systolic ar-
ray)

Reduction

PE

PE

PE
Global
Memory

PE

+
+

+

Fanin (e.g. adder tree)

PE PE PEPE PEPE PE PEPEPEPE PE

Reduce and forward (e.g. sys-
tolic array)

The alternative is temporal reuse. Here, a value is provided to a (systolic) array where a value
can be reused by storing it locally and reusing it over time. There are two options which will be
illustrated by providing examples for optimal reuse of an ifmap value. Store is when an ifmap
can be kept stationary in an element of the array and allKH ·KW ·OC kernel values can be sent
to this element sequentially to compute 1 ofmap in place. Alternatively, there is the forwarding
technique. Then the ifmap can be sent to the first element of the array, be used to compute a
psum with one of theKH ·KW ·OC kernel values and then forwarded to the next element in the
array to be used in a calculation with an other kernel value. The ifmap is optimally reused when
the array is RFif elements wide. In both cases, communication bandwidth to the (systolic) array
is reduced to theminimum as the ifmap value is only sent once. In the reduction row of Table 2.2,
the systolic array is also implemented for reducing the psums and writing back to memory. An
example of such an implementation is the situation where the ifmaps are kept stationary, kernel
weights can be sent through the array and the resulting psum can be forwarded too, if the array
has the appropriate dimensions, the output is the complete ofmap as the only value to be stored
back to memory. Temporal reuse provides the benefit of reuse, with the downsides that local
storage is required and computations are sequential resulting in longer execution times.

To find a trade-off between resource-heavy spatial reuse and slow temporal reuse, a combi-
nation of the two implementations can be constructed that fits the resource and throughput
requirements.

2.4 YOLO Version 4 Tiny

The first version of YOLO was released in 2016 for the Darknet framework and delivered real-
time performance. Computational complexity is measured in FPS, of which it delivers 45FPS
on unspecified hardware. Nevertheless, it provided a mAP of 63.4 on the Pascal VOC 2007
dataset3 [19]. The design was incrementally improved. Up until version 3 this was done by
the original authors. Afterwards, development was taken over and multiple different versions
were created. In 2020 version 4 was released which delivers 43.5% mAP on the COCO dataset
with 59.56 GFLOPS [4]. To run on an embedded device, 11 GFLOPS is still a large number
of computations, so an alternative version YOLOv4 Tiny was designed. It performs worse than

3The Pascal VOC 2007 dataset contains 9,963 annotated images containing 24,640 annotated objects out of 20
classes. An example image is given in figure 2.4.

12

2.4 YOLO Version 4 Tiny

Table 2.3: Layer specifications of YOLOv4 Tiny [25].

Layer Ifmap
dimensions

Total
ifmaps

Kernel
dimensions

Total
kernels

MACCs
per ofmap

Total MACCs
(·106)

0a 416x416x3 519168 3x32x3x3 864 27 37.38
1a 208x208x32 1384448 32x64x3x3 18432 288 199.36
2 104x104x64 692224 64x64x3x3 36864 576 393.63
3 104x104x64 692224 64x32x3x3 18432 576 98.41
4 104x104x32 346112 32x32x3x3 9216 288 98.41
5b 104x104x64 692224 64x64x1x1 4096 64 44.30
6 52x52x128 346112 128x128x3x3 147456 1152 388.56
7 52x52x128 346112 128x64x3x3 73728 1152 97.14
8 52x52x64 173056 64x64x3x3 36864 576 97.14
9b 52x52x128 346112 128x128x1x1 16384 128 44.30
10 26x26x256 173056 256x256x3x3 589824 2304 378.54
11 26x26x256 173056 256x128x3x3 294912 2304 94.63
12 26x26x128 86528 128x128x3x3 147456 1152 94.63
13b 26x26x256 173056 256x256x1x1 65536 256 44.30
14 13x13x512 86528 512x512x3x3 2359296 4608 358.88
15 13x13x512 86528 512x256x1x1 131072 512 22.15
16 13x13x256 43264 256x512x3x3 1179648 2304 179.44
17c 13x13x512 86528 512x255x1x1 130560 512 22.06
18 13x13x256 43264 256x128x1x1 32768 256 5.54
19 26x26x384 259584 384x256x3x3 884736 3456 567.80
20c 26x26x256 173056 256x255x1x1 65280 256 44.13
Total - 6922240 - 6243424 - 3310.73
aThis layer has a stride of 2, default is a stride of 1.
bThis layer is followed by a maxpool operation.
cThis layer has a linear activation function instead of default Leaky ReLU.

13

2.4 YOLO Version 4 Tiny

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

2,400,000

YOLOv4 Tiny Layers

Va
lu
es

of
da
ta
ty
pe

Ifmap
Kernel
Ofmap

0

50

100

150

200

250

300

350

400

450

500

416

208

104 104 104 104

52 52 52 52

26 26 26 26
13 13 13 13 13

26 26

3

32

64 64

32

64

128 128

64

128

256 256

128

256

512 512

256

512

256

384

256

D
im
en
si
on
s

Input Height/Width
Input Channels

Figure 2.7: The number of values for each layer of YOLOv4 Tiny, per datatype.

the full version 4, at an mAP of 22.0%, but does so using only 6.91FLOPS [25]. The original
network uses 16 bit floats for all weights and inputs. The network was ported to the Tensorflow
framework by Heinsius to make it compatible with embedded hardware and it uses 8 bit fixed
point values. This allows to generalise to 6.91 GOPS for 1 inference of YOLOv4 Tiny. It can be
derived from the dimension of the network in Table 2.3 that 1 inference performs 3.31 MACCs,
which amounts to 6.62 GOPS, which is 95.8% of the computations.

Next, the relevant characteristics of the YOLOv4 Tiny network are discussed. Its dimensions
are visualised and the information from Section 2.3 is applied to this network to provide insights
for the remainder of this work. Table 2.3 describes the whole YOLOv4 Tiny network, with the
dimensions of each layer’s input and the corresponding filter kernels. It also specifies the num-
ber of values that are used for every datatype and the number of MACCs required to compute
1 ofmap as well as the total required number of MACCs for the entire layer. These values are
visualised in Figure 2.7 and should give insight into the dimensions of the network.

General trends for the network are that the dimensions of ifmaps shrink over time, as stride
and pooling layers are applied. The number of channels does grow, which affects the number
of ifmaps, but more so the dimensions of the filter kernels. For deeper layers, the number of
channels grows, which largely affects the number of kernels. Figure 2.7 demonstrates that
after layer 9, the dimensions of the kernels are generally larger than those of the ifmaps. This
knowledge can be applied when designing a strategy for loading these datatypes. This strategy
might be tailored on a per-layer basis based on the dimensions of the ifmap and kernel.

14

2.5 Timeloop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1,000

2,000

3,000

4,000

5,000

28
8 57
6

57
6

28
8

28
8

64

1,
15

2

57
6

57
6

12
8

2,
30

4

1,
15

2

1,
15

2

25
6

4,
60

8

25
6

4,
60

8

25
5

12
8

2,
30

4

25
5

43
,2
64

10
,8
16

10
,8
16

10
,8
16

10
,8
16

10
,8
16

2,
70

4

2,
70

4

2,
70

4

2,
70

4

67
6

67
6

67
6

67
6

16
9

16
9

16
9

16
9

16
9

67
6

67
6

YOLOv4 Tiny Layers

R
eu
se

fa
ct
or

Ifmap reuse
Kernel reuse

Figure 2.8: Representation of reuse terms for layers of YOLOv4 Tiny.

2.4.1 Practical reuse

Given the bounds for the reuse of the ifmap and kernel, respectively RFif and RFk, it can be
found that reuse heavily depends on the layer’s characteristics. In layers where the kernel size
is 1, the reuse of the ifmaps only depends on OC (which does grow for higher layers). On the
other hand, the kernel is dependent on the dimensions of the ifmap, which shrinks for higher
layers, limiting the reuse. To indicate the possible reuse over time, these reuse metrics are
plotted in Figure 2.8. Again, it can be observed that the first 9 layers mainly favour reuse of
ifmaps, whilst the deeper layers allow more reuse of kernels.

Given the characteristics of the layers from Table 2.3 and figure 2.7 and the RFs from Figure 2.8,
it can be found layer 5 is most constrained as RFk is low and as the K = 1, the number of
MACCs is low for this layer. Optimisations should be based around this layer as it might be the
bottleneck for computations otherwise.

2.5 Timeloop

The high dimensionality of the computations was discussed in Section 2.2. The number of pos-
sible configurations with these dimensions grows very large, especially when combined with
different possible hardware layers. To navigate this solution-space, the Timeloop tool [17] has
been developed. Timeloop analyses the feasibility of different schedules in the architecture de-
sign space based on the utilisation of the hardware and energy usage. It is possible to construct
a custom hierarchy of memory objects and apply an arbitrary NN by providing a description of
the network in a Timeloop format.

The constructed design space will be searched using a search routine, for which there are
several options: linear exhaustive, linear pruned4, random, random pruned4 or hybrid. Each
routine will navigate the space attempting to find mappings which are more optimal for the
provided metric. It is possible to have Timeloop optimise for four different metrics: energy,
delay, energy-delay product or last-level-accesses (accesses to the outermost memory level).
Given the search routine, a number of mappings will be compared on one or more of these
heuristics and themost optimal foundmapping will be reported. For the exhaustive linear search

4A pruned search space removes unnecessary permutations of unit-factors for each possibility at a given dimen-
sion that is visited.

15

2.5 Timeloop

Listing 2.1: An example of a Timeloop description of a 1D convolution. YAML

1 problem:
shape:

name: 1D-Convolution
dimensions: [K, O] # K = kernel size, O = output size

5 data-spaces:
- name: Weights

projection:
- [[K]]

- name: Inputs
10 projection:

- [[K], [O]] # K+O input values
- name: Outputs

projection:
- [[O]]

15 read-write: True
instance:

K: 3 # Kernels are 3 wide
O: 16 # 16 Output values

all possibilities will be explored (which is very time consuming, for the large search space) and
it is guaranteed that the most optimal mapping is found. For the other routines, it cannot always
be guaranteed that the best mapping is found.

2.5.1 Usage

In the most simple form, an architecture, the dimensions of the NN, and a description of the
operations are provided to Timeloop and it will construct a model of the operations. As output,
it indicates the utilisation and energy usage of that schedule. To derive these metrics, Timeloop
requires a description like the one provided in Listing 2.1. It is in YAML format and describes
the problem given the shape of the computations and the size of the instance. This description
describes a 1D convolution of an ifmap with O+ K = 19 values, with a kernel with K = 3 values.
This convolution results in an output map of 16 values. The same syntax can be used to describe
higher-order convolutions and complete CNNs. As the dimensions of the network vary from
layer to layer, a different description is required for each. However, as the problem is projected
on the same hardware, the other descriptions remain the same between layers.

Next to the dimensions of the problem and datatypes, an architectural description like Listing 2.2
is required to ensure the problem fits the hardware. This description is similar to Eyeriss [7], as
it also contains 3 memory hierarchy layers; an (off-chip) DRAM, a global buffer (GLB) and a PE,
which contains a register file and the MACC operation. The class of each object defines the
size and speed as well as its energy requirement. The designer can provide an energy estimate
or work with the Accelergy tool [27], which is complementary to Timeloop, to derive a power
estimate. An accurate estimation here aids Timeloop in estimating the total energy requirement
of the schedules it evaluates. The smartbuffer_RF class is an RF complemented with the logic
to place data in the appropriate location using address generators (AGENs), this increases the
energy requirement but is a better approximation of a real architecture. As the goal is to reach
the highest throughput, not the lowest energy usage, the exact usage is not relevant. The order
of magnitude does bring information, as higher memory hierarchy layers require more energy. If
energy usage is low, indicating a lower utilisation of for instance the MainMemory (DRAM) or the
GlobalBuffer (SRAM), reuse is implied. Hence, lower energy usage suggests higher reuse of

16

2.5 Timeloop

Listing 2.2: A Timeloop architecture description of a hierarchy with 3 levels. YAML

1 architecture:
version: 0.2
subtree: # This subtree specifies all objects in the architecture
- name: 3level-CNN-accelerator

5 local: # Set properties of objects at this level
- name: MainMemory

class: DRAM # The class of the memory determines the energy usage
attributes:

width: 256
10 block-size: 32

word-bits: 8
subtree: # This subtree specifies all 'on-chip' objects
- name: On-chip

local:
15 - name: GlobalBuffer

class: SRAM
attributes:

depth: 8192
width: 256

20 block-size: 32
word-bits: 8

subtree: # This subtree specifies all objects in the PE
- name: PE # Indicate multiple elements using array syntax: [0..X]

local:
25 - name: RegisterFile

class: regfile
attributes:

depth: 64
width: 8

30 block-size: 1
word-bits: 8

- name: MACC
class: intmac # Actual MACC computations are performed here
attributes:

35 datawidth: 8

data at the lowest levels.

With these constraints, the design space remains large, even though the hardware architecture
is taken into account. To aid the scheduler, the designer can provide additional constraints,
primarily to provide a more complete description of the architecture. For instance, to implement
the row stationary (RS) dataflow suggested in [7] (see Section 3.2.1), more constraints must be
provided to indicate the order of executing the dimensions. There are three different constraints
types:

• Bypass: Applies to memories and indicates what datatypes are stored.

• Spatial: Applies to hierarchy layer, allows spatial partitioning, spreading over that loop,
e.g. O = 1 indicates that outputs cannot be computed in parallel.

• Temporal: Applies to hierarchy layer, indicates how many of a datatype are stored, e.g.
O = 1 does not store outputs at that level. Undefined loops are free to be stored.

Using the factors it is possible to indicate that a loop should be spread spatially or in time. Us-

17

2.5 Timeloop

ing the permutations, the order of the loops can be indicated, going from first loop on the left
to last on the right. Given these constraints it becomes possible to steer the tool in finding a
schedule that adheres to the physical hardware, some additional constraints derived from the
hardware and finally it is possible to add mapping_constraints in the same way as the architec-
ture_constraints. These mapping constraints are based on the designers initiative or intuition
and can help derive a schedule that is better than what the tool itself might derive based on the
search pattern it employs.

Listing 2.3: Timeloop architecture constraints. YAML

1 architecture_constraints:
targets:
- target: MainMemory

type: temporal
5 factors: O=1 K=1

permutation: OK # Indicate loop order with left being innermost
- target: GlobalBuffer

type: bypass # Specifies what datatypes are stored at this level
bypass: [Weights] # Don't store weights (they fit in the RegisterFile)

10 keep: [Inputs, Outputs] # Do store ifmaps and ofmaps
- target: RegisterFile

type: temporal # Indicate how many loops are stored at this level
factors: O=1 K=3 # Use complete kernel before moving to next ofmap
permutation: KO

18

3. ACCELERATOR ARCHITECTURES

To determine how well an accelerator performs for speeding up the operation of a CNN. The
following lists highlights all relevant metrics according to [24]:

1. Accuracy of the CNN, measured in mAP (see Chapter 2).

2. Throughput of the accelerator, measured in GMACC/s, GOPS or FPS.

3. Latency of the accelerator, measured as the delay from input to output in clock cycles.

4. Energy and power consumption, measured using the average power consumption or ex-
pressed as operations per energy unit: GMACC/J.

5. Hardware costs, measured in monetary cost, e.g. $ or e.

6. Flexibility and scalability, measured as how the performance varies when the available
resources vary.

Since the goal is to improve the accelerator, metrics 2 and 3 are most important, which can be
summarised to overall performance of the accelerator. However, metric 1—accuracy—cannot
just be sacrificed to achieve higher performance. It should also be taken into account when
comparing accelerators. The accelerator should not be optimised to specific hardware or a
specific CNN, to maintain flexibility and scalability, in correspondence to metric 6. Much work
has been dedicated to reducing the power consumption of CNN accelerators, but that metric is
deemed secondary for this research.

3.1 Definitions

It is concluded that throughput of the design is one of the most important metrics. It is expressed
as a quantity of MACCs, operations or frames, per second. Heinsius defines a metric to define
the processing latency of the CNN accelerator [12]:

plat =
Workload
MACC/s · P

(3.1)

Given a batch size of 1 (e.g. processing 1 image at a time), it is inversely related to the through-
put. This in turn can be used to express the performance of the accelerator. In the equation,
the workload is defined as the number of multiply-accumulates (MACCs) that are required for
one inference. P represents the number of processing elements (PEs) (for more details see
Section 5.1) processing in parallel. If there are more PEs, and all can be used optimally, the
latency is scaled by the number of PEs.

This parameter is largely dependent on the available hardware, as larger FPGA boards can
accommodatemore PEs. For this reason, the performance should not depend on this parameter
and the throughput will be normalised to the number of PEs. As is demonstrated in the work by
Heinsius [12], the utilisation of a PE array is not always optimal if the scheduling is not flexible

19

3.2 Topologies

enough. This may lead to performance differences for varying PE array dimensions or a varying
number of PEs. This effect remains when normalising, whilst the scaling effect is removed,
providing accurate insight in the performance. This metric—the throughput per PE—is defined
as:

TPE =
1/plat
P

=
MACC/s
Workload

(3.2)

The parameters in this equation can be optimised to achieve higher throughput. The first term,
MACC/s, should be increased, which demands a higher throughput from individual PEs. This
can be achieved by optimising the processing speeds of the PE and providing it with sufficient
data to utilise the hardware constantly.

The workload can be reduced, e.g. by reducing/optimising the operations for the current CNN
model or developing a new CNN model. For this work, the workload is fixed to 3.31 GMACCs
for one inference of YOLOv4 Tiny [25].

3.2 Topologies

In literature, there are many designs for CNN accelerators accelerating various different net-
works on different hardware platforms, e.g. different FPGA families and dedicated ASICs. They
each implement a different hierarchy of the same basic elements: off-chip DRAM, on-chip large
global memory (SRAM), on-chip small local memory (scratchpads (spads)/registers) and com-
putational units executing the MACC operations. As larger memories might generally be slower
and more power intensive, reuse techniques are implemented to support local reuse of data.
These techniques are based on the findings in Section 2.3. The findings from literature are
divided into two categories, data management, which deals with the distribution of data and
the hierarchy described above and optimisation of computations, which adjusts the (order of)
computations to make them more efficient.

3.2.1 Data management

With data management the goal is to optimise the Accelerator’s hierarchy to be most efficient
for the computing units or processing elements, thus increasing the MACC/s rating. Heinsius
utilises the Eyeriss network [7], but alternative architectures will also be explored, the compari-
son of which is summarised in Table 3.1. Each architecture benchmarks their performance with
the AlexNet NN. This network is not specifically optimised for high throughput performance and
accepts 227×227 images as input. It requires 666 MMACCs to classify an image with a mAP of
31.0%, compared to the 3.31 GMACC operations and a mAP of 40.2% for YOLOv4 Tiny [25].

Reuse topologies were explored in Section 2.3. These are also (implicitly) applied by the topolo-
gies discussed here. For instance, Eyeriss makes use of fanout data distribution, using busses
to deliver data to multiple PEs. VWA [5] also applies the fanout methodology, but uses a tree
structure to provide the different blocks with data. The other two architectures, Chain-NN [26]
and the Shift architecture [2], make use of a systolic array of PEs to pass on data. Chain-NN
passes on both ifmaps and filter kernels, whereas the Shift architecture optimises for passing
just the filter kernels.

Eyeriss

Eyeriss [7] is the architecture currently applied in the implementation by Heinsius and it imple-
ments a number of novel solutions over other architectures. The authors identify the require-

20

3.2 Topologies

ment of reusing data to optimise acceleration. To achieve this they optimise data flow using
their RS methodology. In contrast to methodologies that optimise for kernel weights, ifmaps or
ofmaps exclusively, RS optimises for all data types simultaneously. This is combined with pro-
cessing convolutions row-by-row (1D), which allows kernel weights to be reused in a PE (tem-
poral reuse). A PE is a structure that performs a MACC operation and contains local memory in
the form of spads, one for each datatype, and complementary logic. Within the architecture, all
data is initially stored off-chip in DRAM and fetched when required. To enable local reuse, data
is cached in a GLB on-chip and sent to the spads to be processed. Communication between
GLB and spad occurs using an Y and X bus, to distribute data to a 2D-array of PEs. This allows
fanout to occur in two dimensions.

Scaling the hardware is possible, the number of PEs can be adjusted freely and can be used
optimally if it matches the dimensions of the CNN algorithm. Themain problem when scaling the
hardware is the communication. Given the 2D busses that provide point-to-point communication
from the GLB to each individual PE, it is not very scalable, as all-to-all communication is costly
in hardware.

Eyeriss makes two further optimisations. To reduce the transfers between memories, Eyeriss
implements run length compression (RLC) which compresses ‘runs’ of up to 31 zeros down to
a 5-bit number. This compression occurs when data is moving off-chip and to the DRAM. This
reduces the bandwidth occupation of transferring the partial sums and thus reduces the power
used to fetch data from DRAM. The second improvement is data gating, which is applied in the
PEs, and disables computation of a convolution if the ifmap is zero. With zero as an operand,
the MACC always adds zero and can thus be skipped. This technique of data-gating is efficient
for NNs that apply ReLU-like activation functions, where (many) zeros are introduced in the
data. However, as YOLOv4 Tiny uses leaky-ReLU no zeros are introduced by the activation
function reducing the effectiveness of this technique. Both improvements aid to reduce the
power consumption of the architecture, but do not provide gains in processing speed.

Row stationary dataflow— The RS dataflow is unique to the Eyeriss architectures and aims to
reduce data movements, so it is well suited to alleviate the demands on the NoC by reducing
the data it needs to transfer, by optimising the reuse at the spad level, so it will be discussed
in more depth. “The RS-dataflow minimizes data movement for all data types (ifmap, filter,
and psums/ofmap) simultaneously and takes the energy costs at different levels of the memory
hierarchy into account.”[7] To do so, the 4D convolution are divided into 1D convolutions, where
1 row of ifmaps and 1 row of kernels are convolved to produce 1 row of psums. Each 1D
convolution is executed on 1 PE, which allows to keep values constant in the PE. To create an

Table 3.1: Comparison of performance of different data management architectures, all support
the AlexNet network with mAP = 31.0%.

Eyeriss v1
[7]

Eyeriss v2
[6]

Chain-NN
[26]

Shift archi-
tecture [2]

VWA [5]

Batch size 4 1 4 1 1
PEs 168 192 576 96 168
Peak throughput
(normalised) [GOPS]

84.0 (0.5) 153.6 (0.8) 806.4 (1.4) 76 (0.79) 168 (1.0)

Latency [ms] 115.3 28.8 353.17 436.4 9.18
Frequency [MHz] 200 200 (up-to) 700 400 500
Power [mW] 278 159.5 567.5 254 154.98
Hardware (CMOS) 65nm 65nm 28nm 65nm 40nm
On-chip storage [kB] 181.5 246 352 43 191

21

3.2 Topologies

Ifmap row
0 1 2

Filter Row
0 1 2

Psum Row

3

4

0 3 41 2

1

2

0

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0 1 2 0 1 20 3 41 2

0

1

2

* =

* =

* =

* =
* =

* =

* =
* =

* =
Figure 3.1: The RS dataflow, where weights are kept stationary. Highlighted values are used for
the computation, K = 3 so three values are accumulated for 1 ofmap. Values inside the black
boxes are stored in memory of the PE. Data on the edges shows when it can be loaded/stored.

ofmap, the psums from the different 1D convolutions must be accumulated1. Either the ifmaps
or the kernel values can remain stationary in the PE, whilst the other can be multicast (see
Section 2.3) to different PEs.

Figure 3.1 visualises this dataflow, with a small row of ifmaps (IW = 5) and a small kernel
(K = 3). Weights are kept stationary as new ifmaps are streamed in. The labels on the left
indicate when ifmaps can be loaded into the memory indicated by the black box. Values 1-3
can be pre-loaded or could be streamed in directly, whilst new values 3 and 4 are loaded when
processing of the first and second ofmap are completed.

Eyeriss v2

Eyeriss v2 [6] is an improvement on the original Eyeriss [7] architecture by the same authors.
This architecture is specifically designed to be efficient for compact CNNs. YOLO with its small
convolution kernels was designed to be compact and thus can benefit from this structure. It
is 42.5 times faster and 11.3 times more power efficient than the original Eyeriss for (sparse)
AlexNet, even though it has a batch size of 1 compared to Eyeriss’ batch size of 4 [6].

The main improvement over the original Eyeriss architecture is the implementation of an hier-
archical mesh structure. This structure is implemented between the external DRAM and the
on-chip GLB. The available PEs are divided in local clusters where each has their own GLB.
The mesh network connects all the local clusters. This implementation makes it more scalable

1Eyeriss achieves this using a local network (LN), which allows communication between PE that can be used to
forward psums such that they can be accumulated.

22

3.2 Topologies

as there is no all-to-all communication for all PEs, but only within a local cluster. This means
that adding more PEs does not add much additional routing hardware, as it will be within a new
local cluster. The only additional overhead is the new connection of the hierarchical mesh to
the new cluster. Given the Zynq 7020 hardware with limited resources, it is unlikely that the
accelerator will have too many PEs such that the routing hardware becomes too large.

Besides the improvements in the data management architecture, Eyeriss v2 also implements
optimisations for the processing of sparse networks. It compresses data using compressed
sparse column (CSC), which compresses successive zeros in a stream of ifmaps and kernels
to 5 bits, allowing it to accumulate up to 31 successive zeros. To complement this compressed
data, the structure of a PE is updated to store both the value and address of the ifmaps and
kernels. If either one of these data types is zero, the computation can be skipped and another
value can be fetched from the memory in its place.

Chain-NN

The Chain-NN architecture [26] also makes use of PEs to processes the MACC operations. In
contrast to the Eyeriss architectures however, a PE in Chain only has a single register to store
the intermediate values of the ifmap and psum, but keeps a larger local storage, kMemory, to
store filter kernels and distribute them in a fanout pattern. New ifmaps and psums are streamed
in using the PEs themselves, using the store-and-forward principle. They are arranged in a
chain where the input ifmap and calculated psum are passed along the chain of elements, this
allows for reuse of the ifmap and accumulation of the psum. The PEs are used optimally if
the number of elements is a multiple of the kernel size squared (K2). This means scaling is
possible, but utilisation might be lower for configurations that are not a multiple of K2. As data
is passed along the chain, there is no additional overhead for the transfer of data, other than
passing it to the next PE.

As can be observed from Table 3.1, the latency for this architecture is significantly higher than
other architectures, as data has to pass each PE in the chain (and Chain-NN also has by far the
largest number of PEs) before arriving at the output. This work is a long pipeline, instead on a
wide parallel array, thus resulting in a large latency. This is contrasted by the high normalised
throughput.

Shift architecture

The architecture in [2] introduces a schedule to process convolutions on PEs. They propose
to utilise IH × IW PEs to perform the required IH × IW × IC × OC computations. The
advantages of such a schedule is that kernel weights can be passed on from PE to PE, using the
store-and-forward principle. This lowers the bandwidth requirements of the NoC and reduces
local buffering, leading to just 43kB of on-chip storage. The utilisation is kept high by reusing
PEs, which results in a utilisation factor of P

P+2 , where P is the number of PEs. In contrast to
Chain-NN, the systolic array only passes the kernel weights and not the partial sums. These
are accumulated locally in one PE.

The downside to this approach is the high latency, as it takes several clock cycles to process
one convolutional frame (for VGGNet): 3× (P + 2)× IC ×OC × OH×OW

P clock cycles.

By increasing the number of PEs, the utilisation of each PE goes up and more PEs are used
leading to higher parallel processing and higher reuse of the filter kernels. On the other hand,
more accesses to the ifmaps are required, leading to more bandwidth usage for this data type.
Thus, it is possible to scale this architecture, without introducing much overhead. Higher band-
width is required for the ifmaps, but kernels are provided using a general network which is used
more optimally if there are more PEs.

23

3.2 Topologies

Table 3.2: Comparison of performance of different efficient computational networks.

Fused Layer [1, 32] Winograd [3]
Network (mAP) AlexNet (31.0) YOLOv2 (48.1)
Batch size 1 1
PEs 448 153
Peak throughput
(normalised) [GOPS]

61.62 (0.14) 281 (1.84)

Latency [ms] 21.61 124
Frequency [MHz] 100 125
Power [mW] 18610 2700
Hardware (FPGA) Virtex-7 XC7V690T PYNQ-z2 XC7Z020
On-chip storage [kB] 362 (36,864 in [32]) 880

VWA

The final architecture, VWA [5], employs a structure similar to Eyeriss v2. It groups arrays of
7 × 3 PEs into PE-blocks. There are global blocks of on-chip SRAM that cache data for the
different data types, which can multicast to the PE-blocks. Within the PE-block, weights are
stored in a local SRAM and passed to all PEs in a column (fanout). Ifmaps are stored in 3
local SRAM blocks, which provide individual data for each element in a row. The resulting
psums are accumulated horizontally (fanin), where data can be transferred between rows. With
this structure there is no possibility to address individual PEs, so no all-to-all communication is
required which means that this architecture is more scalable. More PE-blocks can be added
which are supplied with data from the global SRAM blocks.

This work has the lowest latency, which can be accredited to the fan structure with a high degree
of parallel processing. It also has a relatively high clock speed, which makes it outperform the
Eyeriss architectures.

3.2.2 Optimisation of computations

Given a trained CNN architecture, YOLO in this case, the computations that are to be performed
are set. They are divided in a number of layers and provide a defined accuracy, expressed in
mAP. New CNN networks are designed and trained to yield higher accuracy with fewer com-
putations. Nevertheless, there are opportunities to simplify the workload (in Equation (3.2)) for
a given CNN network. This section explores some opportunities identified in literature, the per-
formance of which is summarised in Table 3.2. What stands out is that unlike Section 3.2.1,
the three implementations ([32] and [1] are largely similar) make use of different CNN networks,
making the comparison less fair.

Fused layer

Most algorithms process CNNs layer by layer, as the input for one layer is the output of the
one before. As local storage is limited, this often results in ofmaps to be stored off-chip before
initiating a new layer. Storing and loading these maps takes time and consumes energy as the
external DRAM is addressed. This work fuses the processing of layers to significantly reduce
the amount of off-chip traffic[1]. As the computations in a CNN network are very regular, it
is known beforehand what input pixels are required to compute specific output pixels. This
concept can be extended over multiple layers, such that one pixel a few layers down can be
computed directly from the input map, by directly continuing processing on the intermediate
results, instead of storing them. This alters the order in which computations take place, which

24

3.2 Topologies

alleviates the bandwidth of the off-chip memory, but reduces flexibility and reuse of filter kernels,
as several layers have to be loaded to compute one pixel and then reloaded to compute another.

The algorithm utilises [32] as a basis for the CNN computations. The performance in Table 3.2
is largely based on the data from [32], under the assumption that the fused layer algorithm per-
forms equal or better. The architecture does not make use of PEs, but implements processing
engines which have a multiplier for each input, followed by an adder tree to accumulate the
products. The optimal dimensions for these processing engines, according to the paper, are 7
inputs and in total 64 engines, resulting in an equivalent of 448 PEs.

Winograd algorithm

The Winograd algorithm proposed in [3] reduces the number of multiplications and instead re-
quires more additions to compute the convolutions in a CNN. As adders are more efficient in
hardware than multipliers, this could aid to reduce the utilisation of hardware. This comes at
the cost of some mAP accuracy loss, 8.32% for YOLOv2, when also adjusting the bit-width rep-
resentation from 32 bit floats to 8 bit fixed-point [3]. Here the convolution of input values i and
filter kernel values k, is converted to an addition of multiple p (psum) terms:

[
i0 i1 i2
i1 i2 i3

]k0k1
k2

 =

[
p0 + p1 + p2
p1 − p2 − p3

]
=

[
o0
o1

]
(3.3)

Where:

p0 = (i0 − i2)k0

p1 = (i1 + i2)
k0 + k1 + k2

2

p2 = (i2 − i1)
k0 − k1 + k2

2
p3 = (i1 − i3)k2

Three p terms need to be added (or subtracted), on top of the computations to derive the p terms.
The latter consists of an addition of two input terms, before multiplying with a (composition of)
kernel term(s). The filter terms k0 and k2 are straightforward to use, but the other two are
composites of multiple kernel terms. Several options can be considered to work with these
kernels. The composite terms could be pre-computed to reduce online overhead, but 4 terms
would need to be loaded on chip, instead of 3 for the regular computation. Alternatively, just the
k1 + k2 term could be pre-computed and then reused to compute the composite kernel terms
for p1 and p2 respectively. This would require an addition and a bit shift for each term.

The reduction of the number of multiplications for 1 channel of the network is considerable,
from OH · OW · KH · KW for regular convolution to (OH + K − 1)(OW + K − 1) [3, eq. 4]
for the Winograd convolution. For the first layer of YOLOv4 Tiny, where OH = OW = 208
and KH = KW = 3, the Winograd convolution requires 11.3% fewer multiplications when
compared to a normal convolution.

What stands out from Table 3.2 is that the implementation in [3] utilises 880kB of on-chip storage.
This is likely dependent on the specific implementation. On the other hand, the peak throughput
normalised to the number of PEs is high, with over 1GOPS per PE.

25

3.3 Implementations

Off-Chip
DRAM

Config

Top-Level Control

Global
Buffer

NxM PE Array

Filter

Ifmap

Psum

Psum

Filter

Ifmap

Ofmap

PL

Spad
MAC

Control

Processing
Element

Bias

Output Multiplier

Output Shift

PS

Done
Top-level Control

Figure 3.2: Overview of entire accelerator by Heinsius [12].

3.3 Implementations

The Zedboard, or more generally the Zynq 7020 FPGA is usedmore often for CNN inference [12,
3, 31, 9], the performance of these other works can be used as a benchmark to compare against
the contributions of this work and help define the theoretical upper bound for the performance of
the Zedboard. To make a proper comparison, the performance of selected other works utilising
the Zynq 7020, is compared in Table 3.3. Two works will be analysed in more detail. First,
the work by Heinsius will be discussed, as it provides the basis for this work. Secondly, an
implementation using Xilinx’ deep learning processing unit (DPU) is discussed as it provides
the highest performance and is designed by the developer of the FPGA.

3.3.1 Heinsius

The accelerator by Heinsius implements a complete design utilising both the PS as well as
the programmable logic (PL) of the Zedboard. The application runs a version of Tensorflow
[16], optimised for microcontrollers without an OS, Tensorflow Lite Micro[8], on the PS. After
profiling the inference of YOLOv4 Tiny running on only the PS, Heinsius identified that 99.67%
of the computation time is spent on the CONV_2D kernel. This is expected for a CNN, and
indicates that accelerating this operation brings significant performance gains. Hence, the PL is
configured to perform convolutions as they are offloaded from the PS. The PS remains in charge
of all other computations required for the CNN; applying the activation functions, processing
non-convoluting layers, etc. Communication between the two platforms is performed using
AXI-busses and a shared memory. Prior to inference, the PS can store data on the shared
memory. During inference, the PL can load data from this memory, process it and store it back.
Figure 3.2 describes this entire overview and provides a more detailed description of the PL
which is discussed next.

Programmable logic

The PL is subdivided into three parts, configuration, top control and the actual PE array. As the
schedule and dimension and thus order of execution varies between layers of the YOLOv4 Tiny,
different configurations are loaded onto the PL. The configuration block sets loop boundaries
for the top control and the PE array. Inside the PL, there are two local memories that avoid the
long delays of fetching from the off-chip DRAM. The top control block contains the GLB that

26

3.3 Implementations

Psum Spad
(p x 32b)

X +
0

1

32b

32b

32b 32b

32b

8b

8b

8b

9b

psum_in

kernel_in

ifmap_in

config Control

Fmap Spad
(q x KW x 8b)

Filter Spad
(p x q x KW x 8b)

Figure 3.3: The PE implemented in the work by Heinsius, where p represents the number of
output channels processed by the PE and q the number of input channels.

is implemented as SRAM and can store all datatypes. The GLB is filled in the order specified
by the configuration, using AGENs, of which there is 1 for each datatype. Data is streamed
sequentially into the PE array. The array is built up from individual PEs, which each contain
three parts; spads (the most local storage level) to store each of the different data types, the
MACC operation and the logic to determine the order of operations (configurable with a signal
from the configuration block).

The PE is given in Figure 3.3. It is supplied with data of the different datatypes (ifmap, kernel and
psum). As new data is available on the input ports, it is immediately written to the respective
spad. The config input and control block dictate where the data is stored in the spad. The
psum_in is directly accumulated with the value stored in the spad position, using the adder
which is implemented inside the psum spad, this utilises the read and write opportunity of the
spad for that cycle (assuming the spad to be simple, this exhausts the read-write opportunity).
This method requires an additional cycle to accumulate the new psum_in, as it is multiplexed
with the product of the multiplier.

The multiplication and accumulation are disjoint, separated by a multiplexer, where the accumu-
lation is performed in the psum spad. By grouping these computations, a consolidated MACC
operation can be performed which, when implemented correctly, can be executed by the DSP-
blocks on the FPGA. In the current implementation the computation of 1 psum requires 6 cycles.

The NoC is implemented using an X- and Y-bus, to provide the 3x4 array of PEs of data. In
contrast to the Eyeriss implementation with 168 PEs and bus-width of 4 elements, the imple-
mentation by Heinsius only supports 1 element of a type of the bus [12]. It is identified that the
throughput of the NoC in this way might be a bottleneck for the performance, as not enough
data is available to perform the computations in the PEs. This might raise the efficiency from
the 24% in Heinsius implementation [12] to the optimal maximum of 100%, allowing all PEs to
compute continuously.

3.3.2 Xilinx

It must be noted that the throughput for the Xilinx implementation of ResNet-50 is only theoret-
ical, as the Zedboard is not able to supply enough power to support a clock speed of 200MHz
for the designed operation [9]. Instead, a clock speed of 90MHz is recommended, bringing the
performance down to 103.5GOPS.

27

3.3 Implementations

Table 3.3: Performance results of CNN accelerators on the Zynq 7020 FPGA, from literature.

Heinsius
[12]

Winograd
[3] Yu [31] Xilinx [9] ZynqNet

[11]
SCALENet
[20]

Neural network YOLOv4
Tiny YOLOv2 YOLOv3

Tiny
ResNet-
50 ZynqNet AlexNet

DSPs 19 153 160 164 739 ?
Peak through-
put [GOPS]

0.12 281 10.45 230 0.27 2.05

Latency [ms] 59091.4 124 532 16.5 1955 390
Frequency
[MHz]

125 125 100 200 200 100

Power [W] 2.32 2.70 3.36 ? 7.8 2.85

The Xilinx documentation for the DPUCZDX8G DPU [29] specifies several tiers of convolution
cores that incrementally use more hardware to provide more performance. The largest size that
fits the hardware dimensions of the Zedboard is the B1152 tier, which theoretically can provide a
throughput of 1150 operations per clock cycle. According to the documentation, the theoretical
maximum output for the Zedboard is 230GOPS [29], which is in line with the figures found in
[9]. The B1152 tier accelerator does not utilise all the available DSP-blocks in the hardware, 97
remain unused.

3.3.3 Summary

The performance of the works that have been described is summarised in Table 3.3. Further-
more it should be noted that all works are designed using the Vivado HLS tool, with the exception
of the Xilinx DPU design, which is a custom IP block by Xilinx. When comparing all works, it
can be found that the power utilisation is in the same order of magnitude for all works. How-
ever, with the same power budget, some accelerators are able to provide more performance,
as (peak) throughput varies largely. It can be found that despite using a more modern network
(YOLOv4 Tiny), the throughput by Heinsius is lower than other works. This demonstrates that
the capabilities of the hardware are underutilised by the accelerator.

As not all works list the number of processing elements, or similar structures, the number of
DSP blocks is listed. What stands out is the low utilisation for the work by Heinsius compared
to all others and especially the ZynqNet implementation (which uses by far the most blocks). It
is likely that the number of DSP blocks is indicative of the number of PEs in the design, which
indicates a far lower degree of parallel processing in the work by Heinsius. This leads to a lower
throughput when compared to other works and in turn the latency to far exceed that of other
works. Given that all works are developed using HLS, it is unlikely that HLS causes the large
difference in performance.

The DPU design by Xilinx demonstrates that a continuous throughput of 103.5GOPS can be
achieved on the Zedboard. This theoretical throughput may serve as an upper bound for the
performance of the CNN accelerator. Given the required GOPS per inference of YOLOv4 Tiny
of 6.910, roughly 15 images could be processed per second.

A note must be made that the Winograd work reports a maximum throughput of 281GOPS,
exceeding the limit specified by Xilinx. This might be thanks to the Winograd algorithm which
reduces multiplications to additions which might reduce the workload and this improve through-
put.

28

4. HIGH-LEVEL SYNTHESIS

The hardware accelerator will be implemented using the Catapult HLS tool. To understand the
implementation and the optimisations that are applied, this chapter provides an introduction for
the tool and highlights relevant aspects.

The premise of HLS is that hardware can be described using higher-level languages, like C,
C++, System C or Matlab. With these languages, development of the hardware design should
be faster as development with these languages should be more straightforward. Partially so
because HDL related practises, like clock and reset signals, are not required. The HLS tool
will convert this high-level description into a hardware description (for most tools in either Verilog
or VHDL).

Like hardware description languages, the high-level language should be used to describe hard-
ware and not for programming. An example is given in [22, Ch. 5] on the scheduling of mem-
ories. The memory properties should be taken into account, it cannot sustain unlimited reads
and writes in a clock cycle. Taking the hardware’s limitation into account when describing the
hardware will provide significantly better results. The high-level description can be applied to
any platform supported by the tool, as the HLS tool can synthesise the design for the appropri-
ate target: some FPGA family or ASIC. The high-level description has limited directives on how
to allocate and schedule computations. In Section 4.1.1 directives are introduced that indicate
to the tool how computations should be divided spatially. It is the tool however that performs the
temporal scheduling of computations to clock cycles, or C-steps as they are known in Catapult.

Besides the development of a design, the verification of this design is also more efficient, as
verification can be performed with a high-level language simulator, instead of HDL simulators.
In contrast to these HDL simulators, the high-level verification does not have to simulate all clock
edges and thus be much faster. When high-level verification succeeds, the HLS tool ensures
that the generated HDL corresponds to this description and is functionally equivalent.

These benefits justify the use of HLS during the development of the Accelerator as it should
reduce the development time. However, as indicated in Chapter 1, there are concerns if the
use of HLS influences the performance of the Accelerator. As higher-level languages are used
instead of HDLs, some of the fine-grained control over the hardware might be lost. This will be
explored in this chapter.

There are several available HLS tools, including both academic as well as commercial tools.
The most common are commercial tools from well-known vendors: Symphony C (Synopsys),
HDL Coder (Mathworks), Catapult (Siemens), Intel High Level Synthesis Compiler (Intel/Altera)
and Vivado HLS (Xilinx). Each of these tools support roughly the same workflow. However, as
the constraints set out in Chapter 1 demand that the Catapult tool is used over other tools, it
will be described in more detail. Throughout this work, version 2021_1.1 of Catapult [21] and
corresponding documentation [23] is used.

29

4.1 Catapult

4.1 Catapult

The Catapult tool was originally developed by Mentor graphics and has since been acquired by
Siemens EDA. It accepts three languages as input: C, C++ and Catapult C. The functionality
of those language is largely supported and there are specific constructs that help in describing
the hardware. Section 4.1.1 describe how relevant C++ constructs are applied can be applied
to this work. Recursion is on the features that is not supported by the tool. The design flow for
Catapult lists the following steps[23]:

1. Writing and Testing the Source Code

2. Analyzing the Algorithm

3. Creating the Hardware Design

4. Performing Timed Simulations

5. Synthesizing the RTL Design

The writing of source code in Catapult will be explored elaborately, after which the tools provided
by Catapult to evaluate the design will be discussed. The next step afterwards is to walk through
the remaining steps of the Catapult design process, 3-5, to find how the design is brought from
a valid high-level description to a synthesised RTL design.

4.1.1 Writing source code

To understand how the Accelerator is designed an implemented in Catapult, some C++ coding
concepts and how they are applied when using Catapult HLS must be understood. These
concepts are discussed in this section.

Datatypes

As a high-level programming language is used to descirbe hardware, more accurate descrip-
tions of (sub-byte) datatypes are required. Catapult allows the implementation of different num-
ber formats, including integers, fixed and floating point numbers with variable bit widths. These
datatypes are described using the syntax in Listing 4.1:

Listing 4.1: Formats for specifying different Catapult datatypes. C++

1 ac_int<W,S> // requires #include <ac_int.h>
ac_fixed<W,I,S> // requires #include <ac_fixed.h>
ac_float<W,I,E> // requires #include <ac_float.h>

Where W: (mantissa) width, S: signedness, I: integer width. Given these definitions, a signed
8-bit fixed point number with 3 integer bits can be expressed as: ac_fixed <8,3,true>. Dif-
ferent descriptions can be created for the different types of data in the Accelerator, e.g. ifmap,
kernel or psum. For more complex a Q and O argument can be passed representing the quan-
tization and overflow modes. These are not exploited for this work.

It is possible to use a slice of the bits in these datatypes, which is achieved using the slice
functionality in Catapult. It is possible to set and retrieve a slice of bits from one of the datatypes.
The two operations are given in Listing 4.2. lsb is the position of the least significant bit where
the slice will be set or retrieved. When setting a slice, an ac_int type is used.

30

4.1 Catapult

Listing 4.2: Formats for working with data slices in Catapult. C++

1 variable.slc<W>(int lsb);
variable.set_slc(int lsb, const ac_int<W,S> &slc);

Templates

A hierarchical design in Catapult is described using C++ classes. These can be instantiated
and used to create a hierarchy of different building blocks. However, it is not possible to pass
arguments to the constructor of a class, which means it cannot be configured individually. In-
sead, C++ templating functionality can be exploited to make instantiating classesmore versatile.
Given the datatypes from section 4.1.1 or constant dimensions, it becomes possible to instan-
tiate building blocks given those constraints. An example is given on line 7 of listing 4.3, where
the dType variable indicates the datatype of the objects that are stored in the circular buffer and
SIZE the number of objects that can be stored in the buffer. The power of C++ templates can be
exploited here to allow the creation of circular buffers for different datatypes, e.g. ifmap, kernel
or psum.

Listing 4.3: C++ description of a circular buffer class. C++

1 #include <ac_channel.h>
#include <ac_int.h>
#ifndef CATAPULT_INDEPENDENT
#include <mc_scverify.h> // Include for CSS_BLOCK macro

5 #endif

template <class dType, int SIZE>
8 class Circular_buffer {

private:
10 dType _buf[SIZE]; //Circular buffer

typedef ac_int<ac::nbits<SIZE>::val,false> pointer; // Create pointer
with enough bits to point to all objects in buffer

pointer _read, _write;
bool _full, _empty, _available[2];

15 void reset_ptr(){ // Function to reset entire buffer
_read = 0;
_write = 0;
_full = false;
_empty = true;

20 _available = {0}; //Set all values to 0
}

public:
Circular_buffer(){

25 #pragma hls_unroll yes
BUF_RST: for (int i=0; i<SIZE; i++) {

27 _buf[i] = 0;
}

}
30

#pragma hls_design interface
#ifndef CATAPULT_INDEPENDENT

void CCS_BLOCK(run)(
#else

31

4.1 Catapult

35 void run(
#endif

ac_channel <dType> &data_in,
ac_channel <bool> &read,
ac_channel <dType> &data_out) {

40 _available[0] = (data_in.size() > 0);
41 _available[1] = (read.size() > 0);

if (_available[0]){ // Write data to buffer
// Logic omitted

45 _buf[_write] = data_in.read();
46 }

if (_available[1]){ // Read data from buffer
// Logic omitted

50 read.read(); //Read channel to empty it
data_out.write(_buf[_read]);

}
}};

Pragmas

With custom datatypes and templating, a C++ description can be made. To optimise this de-
scription to be converted to hardware, pragmas can be used. These are additional directives on
top of existing #pragma, to indicate the compiler how the C++ description should be applied in
the hardware. Catapult provides different pragmas to indicate different functionality and these
can be divided in a number of categories: hierarchy, constraints and directives. The most rel-
evant pragmas are discussed here, all pragmas are described in the Catapult user reference
[23, ch. 26].

The hierarchical pragmas indicate how different blocks/classes are interconnected and which
class is the top of the design. These are indicated with for instance: #pragma hls_design
interface for a hierarchical interface and #pragma hls_design top for the top. Addition-
ally, properties can be assigned to the hierarchical module, it can for instance be assigned as a
CCORE block or black box. Catapult allows allocation of CCORE (Catapult optimised reusable
entities) blocks for modules by reusing the synthesised result to shorten the run-time when
instantiating these blocks. A block can be indicated as CCORE or black box using #pragma
hls_design ccore or #pragma hls_design blackbox respectively, which can be an

addition to the existing interface or top directive.

Constraints can be set on the performance using a different set of pragmas. These involve un-
rolling and pipelining of design blocks and loops and largely corresponds to the settings available
in the architecture step (section 4.1.2). If these settings are fixed for a given design, they can
be set in the C++ description using the following pragmas: #pragma hls_pipeline_init_
interval 4 and #pragma hls_unroll yes to set an initiation interval of every 4 clock

cycles and allow a loop to be unrolled.

Hierarchy

To construct a complete design it is common practise in Catapult to work with a hierarchy (al-
though it is also possible to implement a design using purely functions). Using pragmas, the
top of the design can be designated, and sub-blocks can be labelled with the interface label.
To allow blocks to run at the same rate, they should be interconnected using ac_channel <T>
objects, which serve as a FIFO buffer between the hierarchical blocks. The channel can serve

32

4.1 Catapult

Figure 4.1: The architecture window in Catapult, illustrating Unroll and Pipeline options for an
implementation of a circular buffer, _buf_fmap.

to transport different datatypes, including arrays, and are able to provide data at a constant
rate. In hardware, data is read from the output of the channel, regardless if data is available
and/or valid. In HLS however, a read cannot be performed on an empty channel as no data is
available, thus a programming exception is returned. In order to circumvent exceptions when
simulating the HLS description, guards are put in place to prevent untimely reads. An example
is given on line 40 of listing 4.3, where the size of the data_in channel is found, when there
are elements in the channel, a read can be performed on line 45, which is otherwise skipped
until the next inference of the run() function. These guards are removed when the hardware
is synthesised as they are then no longer required, providing the best results in hardware.

Listing 4.4: C++ description for calling the circular buffer class. C++

1 typedef ac_fixed <8,3,true> exampleType;
Circular_buffer <exampleType ,16> buf; // Constant size of 16 elements
ac_channel <exampleType > data_in; // Data should be written to this channel
ac_channel <bool> read;

5 ac_channel <exampleType > data_out; // Read from this channel to retrieve
data

buf.run(data_in, read, data_out);

Any hierarchical block can either contain purely hierarchy or purely logic. In hierarchical blocks,
the channels are used to interconnect sub-blocks with higher hierarchy layers, or with other sub-
blocks. The arguments of the run() function are all channels passed by reference, which is
mandatory, as it creates the desired connection, instead of instantiating a local channel. Starting
from a top-level hierarchical block, the circular buffer example class can be called. For the
hierarchy, each class should have a run() function, which can have multiple ac_channel <
T> as an interface. An example is given in listing 4.4, where a custom datatype is created to
instantiate a circular buffer buf, together with a constant size of 16 elements. Subsequently,
channels are created for that custom datatype exampleType to connect the buffer to the higher
level object from which it is called. By calling the run() function, the function body is executed
once, this allows it to run at the same interval as the higher hierarchical blocks.

4.1.2 Analysis

This design can be analysed using the tools provided by Catapult. In a graphical user interface
(GUI), it is possible to explore the description in the architecture window, as in Figure 4.1. This

33

4.1 Catapult

(a) Schedule viewer (b) Statistics corresponding to
the _buf:vinit block.

Figure 4.2: The Schedule window (Gantt chart) in Catapult, showing the performance for the
initialisation of a circular buffer.

window shows how architecture constraints are applied to the design: are loops sequential or
unrolled for parallel execution? The figure presents the options for unrolling and pipelining the
design, by a user settable factor. Catapult will try and generate a design that adheres to these
instructions. Like with HDLs, it might not be possible to meet these requirements given a certain
clock speed (HDL tools usually lower the clock speed), Catapult report an error. To resolve this
either the architecture constraints should be relaxed, or the design must be adjusted e.g. by
implementing logic such that it is executable within a single clock cycle.

Schedule viewer

After the architecture setting have been updated for the design, a schedule of the operations
can be created. This schedule can be viewed in the form of a Gantt chart, see Figure 4.2. It
specifies the operations and how they are scheduled and can be an important tool in identifying
bottlenecks in the design and the operations that are slowing down operation. In this example,
a circular buffer is initialised in a logical block named _buf:vinit. This block is implemented the
following way:

Listing 4.3 shows how the circular buffer is initialised by looping through all elements and setting
them to 0 on line 26. This loop is unrolled using one of Catapult’s pragmas (see Section 4.1.1).
This behaviour can also be identified in the Gantt chart, as there are two operations: acc for
incrementing the loop bound i and write_mem is the assignment of the _buf variable to write
to the memory. The arrows in Figure 4.2a indicate the data dependencies, where the write to
memory is based on the loop bound i, which should first be incremented. The red box around
the acc operation indicates the freedom in scheduling the operation anywhere in the available
time for the loop.

From the statistics in Figure 4.2b it can be found that executing these two operations takes 2
C-steps per iteration. As the SIZE of the buffer is set at 5000 elements, the total initialisation
takes 10000 cycles as indicated by the (Total) Cycles In and Throughput Period. Working with
the assumption that the buffer is written to before reading, the initialisation value is not relevant.
Hence, the initialisation can be updated to:

Listing 4.5: Improved C++ description for initialising a circular buffer. C++

1 #include <ac_int.h>
static bool initValid = ac::init_array <AC_VAL_DC >(_spad,SIZE);

34

4.1 Catapult

Using the ac::init_array function from Catapult’s algorithmic C (AC) int library it is possible
to initialise the array in 1 execution, in this case initialising all values to AC_VAL_DC, don’t cares.
The function returns a boolean to indicate if the operation was successful. Using this implemen-
tation the initialisation occurs during compile time, completely eliminating all delays. Compared
to the original initialisation, this removes a significant number of C-steps which improves the
throughput of the Accelerator. Using the Schedule viewer, opportunities for optimisations are
more easily discovered. To fully analyse a schedule, the meaning of important statistics from
Figure 4.2b will be listed here:

Csteps “C-steps are roughly equivalent to states in a finite state machine
(FSM). If the design has complex conditional statements, several
finite state machine state may map to the same C-step.”[23]

Period The clock period.
% Sharing Allocation The percentage of the clock period used for sharing data, see grey

area inside the C-steps in Figure 4.2a (default 20%).
Delay Execution time for 1 inference of the block.

Iterations # iterations in loop.
Unroll Unroll factor for the loop (0 is no unrolling).

Pipelined Is the loop pinelined.
Initiation Initiation interval of the pipeline.
Stages The # stages in the pipeline.

Total Cycles In # of cycles in loop (Iterations + ramp-up).
Total Cycles Under The # cycles inside this block.

Total Cycles Total number of Cycles In and Cycles Under.
Reset Latency Latency for resetting, dependent on memories in the design.

Throughput Period The throughput rate of the block.

4.1.3 Building for a target

Finally, the optimised design should be prepared for the hardware. Here, some final configu-
rations must be performed to give a complete description of the hardware. The same design
can be built for a variety of targets, based on the available hardware libraries. For this work the
Zynq family of FPGAs is targeted, specifically the Zedboard (xc7z020clg484-1). With the library
description of this device, Catapult creates a default configuration with a selection of hardware
for the different operations and memories. One of the goals is to utilise the DSP-blocks avail-
able in the Zedboard. During normal synthesis opportunities to apply DSP-blocks are inferred
by the synthesis tool. As the design flow with Catapult is different, Catapult should infer the
location of DSP-blocks in the description. Catapult is only able to extract DSP operations for
the Xilinx Virtex-u (plus) and Altera Stratix 10 and Arria 10 families [23, Ch. 22]. An alternative
is sought for implementing DSP-blocks outside of the automatic design flow, this topic is further
discussed in Section 5.1.2.

The architecture step also includes options to configure what hardware is used. It is possible
to select individual components for operations (Catapult selects the best area component that
meets the timing requirements) and to select the hardware for memories. The circular buffer
has the array element _buf:rsc for which the memory is set to a Xilinx RAM Block by default,
based on the (large) size of the buffer. However, alternate RAM blocks can be selected, or the
choice can be made to implement this memory as a register file in favour of performance. After
setting these final configurations, register transfer level (RTL) files can be generated.

Steps 4 and 5 from the list (see Section 4.1) are left. Given the RTL files, timed simulations can
be performed to verify the performance. These simulations can be performed in the simulation

35

4.1 Catapult

tool of choice, e.g. Questasim orModelsim. Simulations can be performed on both a behavioural
and RTL level. If the design meets the requirements, it can be synthesised, using an external
tool. As the Zedboard is a Xilinx device, Vivado is used to perform this final step. Given the RTL
files, this step is straightforward, as Vivado is launched and a TCL script executed to synthesise
the RTL design.

36

5. METHOD

The work by Heinsius serves as the foundation for this work. In Section 3.3.1 the design of
the hardware accelerator implemented in the Zedboard’s PL is discussed. A number of short-
comings are identified which will be addressed. In this chapter, the accelerator will be described
bottom-up. Three main topics will be discussed. At the lowest level, the throughput of the PEs
is improved in Section 5.1. For this, the implementation of the PE should be adjusted such that
the multiply and accumulate computation are performed in the same place. Next, that place will
be implemented as a black-box in Catapult that can be exchanged for a DSP48E1 primitive to
ensure that the MACC is executed on the Zedboard’s DSP primitives.

Secondly, the structure of the PE array—implementing the individual PE blocks—will be revised
in Section 5.2. In the work by Heinsius the array is implemented as a 3x4 array, with two
dimensions, as derived from the Eyeriss architecture. For the application specific integrated
circuit (ASIC) application of Eyeriss it is logical to take spatial planning into account such that
PE are spread over the silicon. Since the array description from Catapult is synthesised and
then mapped to the FPGA fabric, the spatial information from Catapult is not relevant, as it is
the synthesis tool that will provide a mapping for the hardware. That is why the array will be
implemented as a 1D array. This simplifies both scheduling and the NoC providing data to the
PEs. The new structure also demands a different schedule, created with Timeloop, to optimise
the computations for the new hardware implementation.

The third and final improvement is an update to the NoC to ensure that it is no longer the
bottleneck for the computations. The first step is already made, as the PE array now requires
just one bus, reducing complexity of the NoC. This is discussed in Section 5.3.

5.1 Throughput of the PE

The very core of the accelerator are the MACC operations, of which billions are required to
compute a layer of YOLOv4 Tiny. In the work by Heinsius, the MACC operation requires 6 clock
cycles to complete within a PE and is structurally similar to the PE in Eyeriss. However, the
PEs in that work achieve a throughput of 1 on their ASIC. An improvement could be expected to
approach the optimal throughput of 1 MACC per clock cycle for the Catapult implementation. It
requires 6 cycles due to the current implementation. Catapult is not able to schedule or pipeline
the operation required for the PE to within 1 cycle. For the multiplications, a XXX pipelined
multiplication component is used. Using the pipeline, a product is produced every cycle. Next,
the addition needs to be performed which is also requires 1 or more cycles. Finally there is
some surrounding operations which account for the last cycles, adding up to 6.

Since there are multiple PEs in the Accelerator, the throughput of the entire accelerator is
higher, but by optimising the throughput of the individual PE, the performance of the accel-
erator increases by a factor equal to the number of PEs. The original design was analysed in
Section 3.3.1 and two points of improvement were found for the PE. The psum in should be mul-
tiplexed with the value from the spad instead of the product of the multiplication to avoid stalling

37

5.1 Throughput of the PE

DSP48E1

Psum Spad
(p x 32b)

x

+
0

1
32b

32b

32b

32b

8b

9b

8b

9b

psum_in

kernel_in

ifmap_in

config Control

Fmap Spad
(q x KW x 9b)

Filter Spad
(p x q x KW x 8b)

psum_out0

1
P

Figure 5.1: Improved PE, where MACC is implemented in a DSP48E1 primitive and psum_in
is multiplexed with the spad output.

computations when loading new data.Also, the multiply and accumulate operation should be
consolidated, such that it can be implemented in a DSP primitive. A topology with these im-
provements is given in Figure 5.1.

5.1.1 DSP48E1 primitive

The goal is to increase the throughput of the individual PEs. This improvement should be two-
fold, the computations, the multiply-accumulate, should be performed faster and data should be
readily available for these computations. This demands a speedup of the spads, as the ifmap
and kernel spads should be able to provide 1 value per cycle. According to [12, Ch. 7], more
resources are available as none of the fabric’s resource types is fully utilised.

ADD
25b

MULT
25bx18b

ALU

B

S M

D

A

C

P
P

PCINACINBCIN

PCOUT

B

A

D

C

ACOUT BCOUT

Figure 5.2: A simplified DSP48E1 slice.

In the original design, the DSP-blocks go unused for the MACC computations. DSP-blocks
in the FPGA fabric are able to provide custom digital signal processing operations at high ef-
ficiency, both in power and speed. The DSPs available on the Zedboard are the DSP48E1
primitive, which are available on all 7 series Xilinx FPGAs. They provide a range of config-
urable operations, including the MACC [28]. Figure 5.2 represents a simplified overview of the

38

5.1 Throughput of the PE

DSP primitive. It contains a number of internal registers to allow for pipelining operations and
subdiving the block into 3 stages: pre-add1 (A+D), multiplication (B*S) and an ALU operation,
for this purpose MACC (M+P) or post-add (M+C).

The in and outputs of this primitive can be divided into two types, the user accessible (A, B, C, D
and P) and the ports only available within the DSP-column in the FPGA fabric to allow inter-DSP
communication (ACIN, BCIN, PCIN, ACOUT, BCOUT and PCOUT). The first can be manually
connected, whereas the latter is routed by the synthesis tool through the DSP-column. Using
control signals it is possible to select between either of the ports, during run-time. This enables
the forwarding of partial sums to the next PE in the column, or the sharing (broad- or multicast)
of ifmap and kernel values between PEs, like the store and forward methods from Section 2.3.1.

In general operation, the A and B ports would be used to provide the ifmap and kernel values.
Depending on the computation, the resulting product can be accumulated in register P, or the
C-port can be utilised to provide offset values as an initial value for the psum. The P value
can be passed out of the DSP block using the PCOUT port to an adjacent PE and be used to
accumulate along PEs, or directly passed out of the DSP using the regular P-port.

5.1.2 Black-box implementation

Catapult provides the opportunity to implement computations on DSP-blocks using the DSP_
EXTRACTION directive. However, this directive is only supported for selected families: Xilinx’
Virtex-u and Virtex-u plus and Altera’s Stratix 10 and Arria 10 [23, Ch. 22]. The intended target
for the Accelerator is Xilinx’ Zedboard, with a Zynq family FPGA, which is thus not supported. As
the DSP-blocks are paramount to realising the intended performance, an alternative is required.

According to [23, Sec. 2.3] it is possible to instantiate custom IP-blocks in a Catapult design.
In Vivado an IP-block is available for the DSP48E1 primitive described in Section 5.1.1. To
insert such a block, a black-box is instantiated in its place in Catapult. The black-box is cre-
ated as a dedicated class, which includes a run() function which is preceded by the following:
#pragma hls_design interface ccore blackbox, which indicates that this class should be
implemented as a CCORE black-box. The run() function itself should provide a C++ descrip-
tion of the operation of the black-box and the special ac_blackbox() instances to provide a link
to the corresponding HDL file(s) and information on the area and delay of the box. This imple-
mented as in Listing 5.1. The information to specify this black-box in Catapult can be derived
from Vivado; the DSP-block is pipelined, with 4 register stages, resulting in a latency of 4 clock
cycles. After synthesis, the area of the DSP IP-block is found to be 1 DSP, 3 LUTs, 98 flip-flops
(FFs). Catapult uses the LUTs as indication of the area, so the footprint of a DSP-block is very
small.

The VHDL file xbip_dsp48_macro.vhd can be created using the IP-catalog in Vivado. The IP-
block can be configured to implement a number of operations. To provide optimal flexibility
when implementing the PE-array, the DSP-blocks should provide the following functions:

• A(CIN)*B(CIN)+P output: P(COUT)

• A(CIN)*B(CIN)+PCIN output: P(COUT)

• A(CIN)*B(CIN)+C output: P(COUT)

For this work individual DSP-blocks are implemented, making that the CIN and COUT ports
might not be used directly. However, there would be opportunities to create large black-boxes
where these connections can be exploited instead of using the regular routing resources of the

1The pre-adder can be helpful when implementing e.g. symmetrical FIR-filters, or the computations of the Wino-
grad terms from Section 3.2.2, but goes unused for the MACC operation.

39

5.2 Processing element array

Listing 5.1: The MACC black-box class in Catapult. C++

1 template <class mType, class dType, class rType>
class MACC_BB {

public:
MACC_BB() {}

5

#pragma hls_design interface ccore blackbox
void run(

//inputs
mType ifmap, dType kernel, rType psumIn,

10 //outputs
rType &psumOut) {

static rType regP; // P register , maintains value
regP += psumIn;
regP += ifmap * kernel;

15 psumOut = regP;

ac_blackbox()
.library("work")
.entity("MACC")

20 .architecture("bhv")
.vhdl_files("xbip_dsp48_macro.vhd")
.outputs("psumOut")
.area(3) // #LUTs, 98 flip-flops and 1 DSP are also used
.delay(1) // Delay is 1 clock cycle

25 .latency(4) // Latency is 4 clock cycles
.clock_name("clk")
.posedge_clock(true)
.end();

}
30 };

fabric. Moreover, it may provide the desired store and/or forward topologies, as implemented
in Chain-NN or the Shift architecture from Section 3.2.

5.2 Processing element array

In Section 5.1, the throughput of the individual PE is discussed. With the introduction of the DSP-
blocks, the PE can process a MACC operation in 3 clock cycles. By moving the computational
load to the DSP-blocks, resources utilised by the PE-array are freed up. The PE-array amounted
for 21177/53200 = 39.8% of total utilisation [12, Ch. 7]. This can significantly be reduced by
replacing the MACC logic by DSP-blocks, as they only utilise 3 LUTs. In a PE utilised 646 LUTs,
this brings a large reduction for the individual PE, and a reduction in LUT utilisation of 36.44%
for the PE-array and 18.36% for the entire Accelerator. The PE-array can be further scaled up
with the newly available resources as other resources are still readily available.

Moreover, the array is implemented as a 3x4 array, spatially divided in two dimensions which
is inspired by the Eyeriss architecture. However, Eyeriss was implemented in ASIC technology
where spatial planning is required. The Accelerator in this work will be implemented on an
FPGA, where the fabric is fixed and the design will be mapped to this hardware by the synthesis
tool. Hence, there is no strict need for a 2D-array. In fact, the DSP blocks and BRAM modules
are aligned vertically in the fabric of Zynq devices [28].

40

5.2 Processing element array

Top Control

Global
Buffer

Kernel

Ifmap

Psum

Ofmap (GON)

MC Ifmap

MC Kernel

MC Psum
Kernel
read

AGEN

Psum
Read
AGEN

Ifmap
read

AGEN

br
oa

dc
as

t b
us

PE

PE-Block

MC Ifmap

MC Kernel

MC Psum
PE

PE-Block

br
oa

dc
as

t b
us

br
oa

dc
as

t b
us

GIN

GIN

GIN

GIN

GIN

GIN

Psum (LIN)

Figure 5.3: An overview of the improved PE-array.

The 2D-array provides the benefit of sharing psums from different 1D convolutions as part of
the RS dataflow. By creating 3 rows of PEs, and vertically accumulating, the top PE can output
the complete ofmap. It is also possible to share these psums over the 1D array using other
means, for instance using the CIN and COUT ports of the DSP primitive, or simply forwarding
data along the PEs. The best method will depend on the schedule that will be applied for the
calculations. This schedule, with the most optimal utilisation of the array’s resources is derived,
in Section 5.2.1.

The array is simplified such that the PE_array hierarchical block contains P PEs, without an
additional hierarchy layer. Figure 5.3 visualises this structure. This omits the 2D hierarchy from
Figure 3.2 and broadcasts data from the AGENs in the top control to the PE-blocks. Concerns
regarding this structure and the impact of the NoC on the performance of the accelerator are
discussed in Section 5.3.

5.2.1 Schedule

As the old Timeloop schedule was made for the 2D-array it is no longer applicable. To make a
new schedule, the architecture description for Timeloop must be updated. Additionally, there is
an opportunity to optimise the schedule. In the original accelerator, the array was not always
optimally utilised; the total utilisation factor for all layers was 66%, which leaves a large margin
for improvement. To identify why the original schedule was not 100% efficient, that schedule
will be analysed first. Afterwards, the updated schedule will be presented in Section 5.2.1.

Original accelerator

A Timeloop description corresponding to Section 3.3.1 is available, with three hierarchical mem-
ory layers: off-chip DRAM, a GLB and the local spads. It is given in Listing 5.2. The architecture
contains 12 PEs, in a 3x4 arrangement. To describe this in Timeloop, an additional Dummy-
Buffer is implemented and the meshX directive is added. The dummy buffer is implemented
with the regfile class, but is only intended as a routing layer, this is indicated using constraints,
see Lines 4 and 12 in Listing 5.3. The bypass constraints indicates none of the datatypes should
be stored at that layer and the temporal constraint reiterates that by setting all factors to 1. Us-

41

5.2 Processing element array

ing the dummy buffers, 3 rows are created. Using the meshX attribute, the 12 PEs are divided
such that there are 4 in the x direction, again creating 3 rows of PEs. To ensure proper routing
of data, additional architecture constraints are applied to map the RS dataflow from Eyeriss to
the 3x4 array.

Listing 5.2: Timeloop architecture description of the original Accelerator [12],
only relevant attributes are included. YAML

1 architecture:
subtree:

- name: system
local:

5 - name: DRAM
class: DRAM

subtree:
- name: eyeriss

local:
10 - name: shared_glb

class: smartbuffer_SRAM
- name: DummyBuffer[0..3]

class: regfile
attributes:

15 meshX: 4
subtree:
- name: PE[0..11]

local:
- name: ifmap_spad

20 class: smartbuffer_RF
attributes:

memory_depth: 24
meshX: 4
read_bandwidth: 3

25 write_bandwidth: 3
- name: weights_spad

class: smartbuffer_RF
attributes:

memory_depth: 288
30 meshX: 4

read_bandwidth: 3
write_bandwidth: 3

- name: psum_spad
class: smartbuffer_RF

35 attributes:
memory_depth: 32
update_fifo_depth: 3
meshX: 4
read_bandwidth: 3

40 write_bandwidth: 3
- name: mac

class: intmac
attributes:

meshX : 4

Going through the constraints, it can be found that the GLB allows parallel processing over the
output height (OH) dimension, as all other dimensions are spatially constrained. The dummy
buffer allows parallel processing over the kernel height (KH) and IC dimensions. Inside the PE,

42

5.2 Processing element array

with all spads, the temporal constraints and thus the access pattern of data from the higher
hierarchy layers. Using temporal constraints, 1 ifmap is processed at a time. By relaxing the
temporal constraints for the weights and psum spads, the respective IC and kernel width (KW),
and OC loops can be processed for that PE. The KH dimension is the outermost loop for all
spads and all temporal factors are set to 1, as the KH will be accumulated outside the PE. The
mapping space is constrained using two sets of mapspace constraints; the access patterns of
the RAMs are specified using arbitrary but sensible orderings.

Listing 5.3: Timeloop architecture constraints of the original Accelerator [12].
Except for the dummy buffer, bypass constraints are omitted. YAML

1 architecture_constraints:
targets:
Bypass
- target: DummyBuffer

5 type: bypass
bypass: [Inputs, Outputs, Weights]

Higher level constraints
- target: shared_glb #Global Memory (X-axis)

type: spatial
10 permutation: OH OC IC OW B KW KH

factors: OC=1 IC=1 OW=1 B=1 KW=1 KH=1
- target: DummyBuffer #DummyBuffer (Y-axis)

13 type: temporal
factors: KH=1 IC=1 OH=1 OC=1 B=1 OW=1 KW=1

15 - target: DummyBuffer
type: spatial
permutation: KH IC OC OH OW KW B
factors: OC=1 OH=1 OW=1 KW=1 B=1

Constraints inside PE
20 - target: ifmap_spad

type: temporal
permutation: OC IC KW OH OW B KH
factors: OC=1 IC=1 KW=1 OW=1 B=1 OH=1 KH=1

- target: weights_spad
25 type: temporal

permutation: OC IC KW OH OW B KH
factors: OC=1 B=1 OH=1 OW=1 KH=1

- target: psum_spad
type: temporal

30 permutation: OC IC KW OH OW B KH
factors: IC=1 KW=1 OH=1 OW=1 B=1 KH=1

Mapping space constraints
mapspace_constraints:

targets:
35 - target: DRAM

type: temporal
permutation: CME NSRF
factors: N=1 S=1 R=1 F=1 C=1

- target: shared_glb
40 type: temporal

permutation: FCM NSRE
factors: S=1 R=1 E=1 N=1

A different schedule is created for every layer of YOLOv4 Tiny. To analyse the result of the
original Timeloop description, layer 0, as given in Listing 5.4, will be discussed. The ifmap is

43

5.2 Processing element array

loaded 4 rows at a time from DRAM, as this matches the number of columns in the PE-array. In
the DummyBuffer layer, kernel rows are applied, one for each row of the PE-array. The psums
can then be accumulated vertically, to form 1 ofmap.

Inside the PE, one plane with dimensions KW · IC (so 9 ifmap values for this layer) is accu-
mulated for 32 different output channels. Using this store topology, an ifmap value is reused
KW ·OC times inside the PE. Using the GLB, it can be reused KH more times as it is loaded
into the next row of the PE-array, but this does require the NoC. This means only partial local
reuse of ifmaps is realised for this first layer. For this layer there are a total of 864 kernel val-
ues, which are divided over the rows of the PE-array. Each PE can store 864/KH = 288 kernel
values. So, a kernel value is stored once and then fully reused as all ifmap columns and rows
are sequentially processed.

As this schedule is not flexible, the utilisation and reuse is not optimal for all layers. An example
is layer 5, where the Spatial-Y dimension of the PE-array is used to process ICs (as K = 1,
so it cannot be spread over that dimension). As layer 5 has 64 input channels—and all loop
iterations should be homogeneous—only two rows of the array are used, instead of all three as
the layer dimensions are not a multiple of 3. This results in only 66.67% hardware utilisation
for the entire layer [12]. This inefficiency is introduced for every layer where K = 1, such that a
different loop must be used for the Spatial-Y dimension which can not efficiently be divided by
the three rows.

Listing 5.4: Timeloop schedule for layer 0 of YOLOv4 Tiny, based on the original constraints.
1 DRAM [Weights:864 Inputs:521667 Outputs:1384448]
--
| for OH in [0:52)
shared_glb [Inputs:11259 Outputs:26624]

5 ---
| for OW in [0:208)
| for OH in [0:4) (Spatial-X)
DummyBuffer []

10 | for KH in [0:1)
| for KH in [0:3) (Spatial-Y)
ifmap_spad [Inputs:9]

| for KH in [0:1)

15 weights_spad [Weights:288]

| for KW in [0:3)
| for IC in [0:3)
psum_spad [Outputs:32]

20 ------------------------
| for OC in [0:32)

Improved schedule

The original schedule provided good reuse of datatypes, but made inefficient use of the hard-
ware for layers where K = 1. Reuse should remain high, whilst the loop mapped for spatial
reuse should always be an integer multiple. The smallest ifmap dimensions are 13x13 and all
larger dimensions are an integer multiple of that. Thus, the OH or output width (OW) loop can
be used if the PE-array contains 13 elements. The OC dimension can also be used. This di-
mension is at least an integer multiple of 32, so an even number of PEs can be used in the

44

5.2 Processing element array

array. To remain in the same order of magnitude, 16 would be a valid number of PEs. If much
more hardware becomes available in a new design, it would be possible to process 2 or more
ifmap rows (OH) of 13 elements (OW) simultaneously, or 32 output channels (OC).

The Timeloop architecture description for the new design is similar to Listing 5.2, except for the
removal of the dummy buffer and themeshX attribute (the new Timeloop description is provided
in Listing A.2). The PE-array is made 16 elements wide, with the target of processing OCs in
parallel. The original schedule implements the ifmap and kernel spads using BRAMs, which are
a fixed size in the FPGA fabric. As these BRAMs are not dynamically allocated, it allows the
accelerator to utilise the entire specified BRAM. Given the Zynq BRAM structure, this is half a
18kB BRAM for each datatype [30]. This allows the maximum size of the ifmap and kernel spads
to be 18kB, significantly larger than the original, without increasing the hardware utilisation.

The ifmap spad processes 1 ifmap at a time, where the psum spad stores multiple OCs. The
weights spad allows storage for the KW, KH and IC dimensions. These are all required dimen-
sions to fully compute 1 ofmap. As psums are now accumulated in a PE, the dataflow is no
longer row stationary. When moving to the next ofmap position for computations, kernel size
(K) ifmap elements are dropped, of which only one has completely been used. The remaining
K − 1 values will have to be re-fetched later. The authors of Eyeriss describe this new dataflow
as output stationary [7], as the psums remain stationary in the PE. The impact of changing the
dataflow type is discussed in Section 5.3.1.

Listing 5.5: Timeloop architecture constraints of the improved Accelerator. By-
pass constraints are omitted. YAML

1 architecture_constraints:
targets:
Global buffer
- target: shared_glb

5 type: spatial
permutation: B KH KW IC OC OW OH
factors: B=1 KW=1 IC=1 OW=1 OH=1 # Only branch out OC and/or KH

#Ifmap_spad - Row Stationary
- target: ifmap_spad

10 type: temporal
permutation: B IC OW OH KH KW OC
factors: B=1 IC=1 OW=1 OH=1 KH=1 KW=1 OC=1

#Weight_spad - Row Stationary
- target: weights_spad

15 type: temporal
permutation: B OC OW OH KW KH IC
factors: B=1 OC=1 OW=1 OH=1

#Psum_spad - one ofmap position but of different output channels
- target: psum_spad

20 type: temporal
permutation: B IC OW OH KH KW OC
factors: B=1 IC=1 OW=1 OH=1 KH=1 KW=1

Using these constraints, the schedule in Listing 5.6 is created. Again layer 0 serves as an
example. It adheres to the constraints and processes OCs in parallel using the array and ac-
cumulates an entire ofmap in the PE. For 1 ofmap, Nof ifmap values are required. For layer 0,
Nof = 27 values, as is found for the number of values stored in the ifmap spad. As layer has
32 output channels, 2 OCs are computed in each PE. This requires 2 sets of kernels, which
coincides with the number of weights in the spad. ifmap values are reused in the PE-array by

45

5.3 Network-on-Chip

multicasting to 16 parallel PEs. Inside the PE, they are reused to compute 2 ofmaps. New ifmap
values are streamed in to compute for a new ofmap position. As the concept of 1D convolutions
from the RS-dataflow is no longer applied, reuse along either the KH or KW dimension can no
longer be realised and ifmap values are buffered in the GLB. As layer 0 has a limited number of
kernels, all of them can be stored in the PEs (864/16 = 54) and reused optimally. This allows
all kernels to be reused for the full RFk and the ifmaps for a factor rfif = KW ·OC.

Using these constraints, schedules for all layers are create that utilise the hardware for 99.05%
for a complete inference. The remaining inefficiency is not caused by sub-optimal scheduling,
but by the (limited) bandwidth of the NoC and memories, which means that PEs are waiting for
data during the first cycles of executing a layer, as data is loaded in. The GLB is exclusively used
to store ifmaps and no longer for other datatypes. As psums are now accumulated entirely to
form ofmaps, they do not have to be stored intermittently. As reuse for ifmaps is optimised, the
bandwidth for the kernel NoC should be optimised to provide sufficient data to sustain optimal
parallel processing, even during those early cycles.

Listing 5.6: Timeloop schedule for layer 0 of YOLOv4 Tiny, based on the new constraints.

1 DRAM [Weights:864 (864) Inputs:521667 (521667) Outputs:1384448 (1384448)]

| for OH in [0:208)
shared_glb [Inputs:3753 (3753)]

5 ---------------------------------
| for OW in [0:208)
| for OC in [0:16) (Spatial-X)
ifmap_spad [Inputs:27 (27)]

10 | for KH in [0:1)
weights_spad [Weights:54 (54)]

| for IC in [0:3)
| for KH in [0:3)

15 | for KW in [0:3)
psum_spad [Outputs:2 (2)]

| for OC in [0:2)

5.3 Network-on-Chip

Heinsius makes several recommendations to improve the performance of the CNN accelerator.
One of the first observations is that the throughput of PEs is limited by the bandwidth of the net-
works providing the data, as becomes evident by a non-optimal utilisation of the PE [12, section
7.5]. It is unclear if the bottleneck is the channel to the external DRAM, or the fetching of data
from the local GLB, but given the available bandwidth for the AXI-bus to the external DRAM2

it is expected the bottleneck is the NoC. Both could be improved, Heinsius proposes multiple
solutions to speed up the bus to the external DRAM and specifies that the implementation of
the NoC transfers one parameter at a time, whereas [7] transfers 4 parameters simultaneously.

5.3.1 Theoretical bound network-on-chip bandwidth

To determine the allowed time to load all data without limiting the speed of the computations, a
theoretical analysis is performed. With the improvement of the PE throughput, it now takes 3

2The bus-width is 32 bits and 8 busses are used in the current implementation. Each operates at the design’s
clock speed of 125MHz, providing an effective bandwidth of 4GB/s.

46

5.3 Network-on-Chip

cycles to perform a MACC. The number of MACCs is known to be Nlay, which are executed on
P parallel PEs. Using this information the number of cycles to compute 1 layer of a CNN can
be calculated as:

#cycles =
Nlay

P
=

OH ·OW ·KH ·KW · IC ·OC

P
(5.1)

To achieve optimal performance, data should always be available to perform these computa-
tions, otherwise the NoC bottlenecks performance and the PEs cannot be utilised optimally. In
the worst case, the NoC is used to provide each operand for the MACCs individually. With a
separate network for each datatype, this would require the GLB to provide one of each datatype
every 3 cycles and the NoC to relay it in a pipeline with a throughput period of 3 cycles in parallel
for the P PEs. To relax the constraints on the GLB and NoC, data is reused locally in the spads,
such that the number of fetches for the same operand can be reduced.

At the least, all individual ifmaps and kernels must be loaded. If values are optimally reused,
they need only be fetched once and can be reused later. It is known that an ifmap can be
reused RFif = KH · KW · OC and kernels RFk = IH · IW/S2 times (see Section 2.3). As
indicated in Section 5.2.1, optimal reuse is not always realised. Thus, values must be fetched
more than once, demanding a faster NoC. As such, the speed at which data must be fetched
can be related to these optimal reuse factors, RFif and RFk, and the realised reuse rfif and rfk,
which is derived from the improved schedule. Using this information, the required throughput
(λ) of the NoCs for respectively ifmaps and kernels can be derived:

λif =
RFif

rfif
· #cycles
#ifmaps

=
KH ·KW ·OC

KW ·OC
·

IH·IW
S2 ·K2·IC·OC

P

IH · IW · IC
=

K3 ·OC

S2 · P
(5.2)

λk =
RFk

rfk
· #cycles
#kernels

=
IH·IW

S2

OH ·OW
·
OH·OW ·K2·IC·OC

P

K2 · IC ·OC
=

OH ·OW

P
(5.3)

A sanity check verifies that for a higher number of parallel executing PEs, the NoC needs to
provide more data and thus should provide higher throughput. These expressions also indicate
that for higher reuse factors rfif and rfk, the throughput requirement is lowered. The reuse
factors are fixed for a given schedule. For the improved Accelerator this is the schedule from
Section 5.2.1. Given this realised reuse, which is constant for all layers, the least optimal layers
can be found based on the layer parameters.

It was noted previously how layers where K = 1 are more stringent for data throughput. This
is understated by Equation (5.2), where the resulting numerator only depends on OC. Layer
5 creates the highest demand for λif as it has the lowest number of output channels (OC =
64) in combination with this unit kernel size (K = 1). This results in a throughput demand of
λif = 13·64

12·16 = 4. The throughput for kernels depends on the dimensions of the ofmap, which
is smallest in layers 13–17, in which case the minimum required throughput is: λk =

⌈
13·13
16

⌉
=

⌈10.5625⌉ = 11. When the NoC adheres to these bounds, it will not starve the PEs. For this
analysis the start-up latency is not taken into account, which means that during the first cycles
of executing a new layer, data is not directly available, resulting in temporary inefficient usage
of the PEs. This is resolved during run-time when data is reused from the spads, allowing the
NoC to catch-up fetching data.

5.3.2 Revision of implementation

Given the bounds derived in Section 5.3.1, the requirements of the NoC are known. The archi-
tecture of the PE-array has been adjusted to a 1 dimensional array, a presented in Figure 5.3.

47

5.4 GLB configuration

The Catapult description is updated accordingly such that all design blocks fromGLB to PEmeet
the throughput requirement. Data is loaded from the GLB using the respective AGENs and for-
warded to a broadcast bus which provides the multicast controllers (MCs) in each PE-block with
input values.

The broadcast bus is used since all hierarchical interfaces are implemented using ac_channels
which can only have one producer and one consumer. Therefore, the broadcast bus reproduces
the input for each outgoing channel, as described in Listing 5.7. The for-loop is completely
unrolled such that the data is written to all output channels simultaneously. The data is of the
mc_data datatype, which is a struct containing both the data, as well as an ID to represent the
intended PE. The description is given on Lines 1 to 5 of Listing 5.7. The ID is compared in the
multicast controllers inside the PE-block, the data is accepted if the ID matches and dropped
from the ac_channel otherwise.

Listing 5.7: Catapult description of the broadcast bus. C++

1 template <typename dType, typename idType>
2 struct mc_data {

dType data;
idType id;

5 };
6

template <class dType, class idType, int LEN>
class Broadcast_bus {
public:

10 Broadcast_bus(){}

#pragma hls_design interface
void run(ac_channel <mc_data<dType, idType> > &data_in,

ac_channel <mc_data<dType, idType> > data_out[LEN]) {
15 if (data_in.size()>0){

mc_data<dType, idType> data = data_in.read();
#pragma hls_unroll yes

for (int i=0; i<LEN; ++i) {
data_out[i].write(data);

20 }
}

}
};

5.4 GLB configuration

TheNoC provides data to the PE in the array. It derives this data from theGLBwhich can provide
storage for all datatypes and provides larger, albeit slower, local storage when compared to the
spads. Moreover, by using the NoC, the GLB can provide data to all PEs, allowing for more
reuse opportunities.

Inside the GLB, circular buffers can be created to provide storage for each datatype. Sur-
rounding the GLB are address generators (derived from [18]), which are subdivided into two
categories. First, there are the fill AGENs, which determine the order in which data is loaded
from DRAM into the GLB. Secondly, there are read AGENs, which read data from the GLB and
label it with an ID which is used to indicate what the intended PE(s) are. The IDs are compared
by the MCs inside the PEs. This architecture is visualised in Figure 5.4.

A mapping is required that applies the schedule from Section 5.2.1 to these AGENs, as the

48

5.4 GLB configuration

Global Buffer

Kernel

Ifmap

Psum
GIN

Psum
GON

Ifmap

Kernel

Ofmap

Bias

Output Multiplier

Output Shift

Done

Circular
buffer

Circular
buffer

Kernel fill
AGEN

Kernel
read

AGEN

Psum fill
in AGEN

Psum
Read
AGEN

Psum
fill out
AGEN

 Top Control

Ifmap
fill AGEN

Ifmap
read

AGEN

Psum
Post

Process

Psum
bias

storage

PE
-A

rr
ay

O
ff-

C
hi

p
D

R
A

M

Figure 5.4: An overview of the GLB and surrounding AGENs.

order in which data is fetched also determines the order in which computations are performed.
To achieve this, the text format schedule created using Timeloop (e.g. Listings 5.4 and 5.6)
is parsed, such that the relevant parameters and loop order is obtained. As schedules and
layer parameters vary between the layers of YOLOv4 Tiny, a separate configuration is created
for each layer, the information must thus be generalised such that the final description can
describe all layers. From this complete description, a C++ array of configurations is created
that can be send to the Accelerator during run-time and forwarded to the AGENs, to indicate
how data should be loaded.

This configuration controls the bounds of for-loops. To provide full flexibility for all schedules, a
loop would be designated for every possible dimension and hierarchical level. As only a frac-
tion of the possible loops is used by any given schedule, many loops would only iterate once
as unused loops would be iterated at most 1 time. If this loop bound is static, it could be re-
moved by the compiler. Given that a configuration is provided to the accelerator, it cannot be
guaranteed that a loop will go unused during compile time. Hence, all loops are implemented
in hardware, introducing unnecessary logic. This impacts both the hardware footprint and per-
formance, which is why the implementation of loops in the Catapult description is not part of the
automated configuration tool. The tasks that are implemented by the configuration tool is given
in the next section.

5.4.1 Parsing schedule

A configuration tool exists for the original Accelerator, which is adjusted to be more generally
applicable to any schedule. It parses Timeloop’s text schedule and identifies the loop types with
the dimensions from Table 2.1 and the hierarchical level according to Table 5.1. Five hierarchical
levels are identified, level 1 represents the level between the first and second dimension of the
PE-array and is exclusively used for the original Accelerator. It goes unused in the transition to
the 1D array. The configuration tool has been adjusted, but maintains this layer to support 2D
PE-array configurations in the future. To remain general, it is assumed that any dimension can
have a loop at any hierarchical level.

49

5.5 Expected throughput improvement

Table 5.1: The hierarchical level in the schedule.

Description of level
4 Off-chip memory (DRAM)
3 Global buffer (SRAM)
2 Network-on-chip Spatial-X
1 Network-on-chip Spatial-Y
0 PE with all spads

As an example, the loops from the improved schedule for layer 0 of YOLOv4 Tiny in Listing 5.6
are extraced. The loops that are identified from that schedule are: OH4, OW3, OC2, KH0,
IC0, KH0, KW0, OC0. It must be noted that the first KH loop only exists to provide any loop
for the ifmap spad and is overwritten by the next occurrence of an KH loop at the PE level. If
all layers are parsed, some additional loops are used: OC4, OC3. The first layer only has 32
output channels, whereas higher layers of the network have many more output channels, which
are implemented at the GLB and DRAM level. Going forward it will be these loops that are
implemented in the hardware, other combinations of dimension and level will be omitted.

5.4.2 AGEN loops in Catapult

To understand how the loops for the AGENs are defined, the usage of the different datatypes
will be explored. This analysis is based on the improved schedule:

Ifmap These are broadcast to all PEs and loaded in the following order: KW→KH→IC→OW→OH.
Such that for a given ifmap position, the values to compute the corresponding ofmap are
loaded (KW→KH→IC).

Kernel As different OCs are computed at the different PEs, there is no opportunity for multicast-
ing. Instead, kernel values are loaded round-robin for each PE. This occurs in the order:
OC2→OC0→KW→KH→IC.

Psum These are computed in place, so only the bias values are loaded during the first initialisa-
tion. Again, these are loaded round-robin for each PE; so in order: OC2→OC0. This loop
is repeated every time when the PEs start calculations for a new set of psums.

The fill AGENs are responsible for loading the data from the off-chip DRAM in the correct order
in the GLB. Data is stored in the order corresponding to the Timeloop schedule. Given the loops
in Section 5.4.2, it is possible to derive how the AGENs are programmed to load the different
datatypes.

The read AGENs retrieve the data from the GLB and send it to the NoC. Data is loaded in
order from the GLB, and labelled according to the Timeloop schedule to ensure that the data is
received by the correct PEs.

5.5 Expected throughput improvement

Given the proposed solutions, an expected throughput improvement can be formulated. This is
based on four components. First, the throughput of the individual PE will increase by a factor 6.
Secondly, improved schedule makes better use of the available array. Heinius reports an overall
utilisation of 66% [12], which reaches 99% with the improved schedule (see Section 5.2.1), a
1.5 times improvement. Thirdly, the array now contains 16 elements, to better fit the schedule.
This increases the available computational power by 1.33 times. Finally, the NoC bottleneck is
addressed which raises the efficiency of the array. Heinsius reported 22.68% efficiency [12],

50

5.5 Expected throughput improvement

which is largely influenced by the sub-optimal utilisation. As the new architecture adheres to
the theoretical bounds from Section 5.3.1, the efficiency should rise to 100%, a 4.41 times
improvement. Overall this yields a theoretical speed up of 52.9 times. Given this theoretical
performance, inference is performed in 1.106 seconds.

51

6. RESULTS

6.1 Processing element throughput

The PE described in Section 5.1 is implemented in Catapult, the recorded latency and through-
put values are recorded in Table 6.1. Additionally, to verify the performance gain, the improved
PE could be simulated in Vivado. A test bench for this simulation can be created directly in Cat-
apult. This way, all the relevant ports that Catapult infers are automatically connected to the test
bench. Provide the PE as the design under test. Dummy data can be provided as test vector
for the computations. It should follow a realistic schedule where KH = 1 to ensure results for
old and new PE are equivalent.

The throughput of the original PE is 6 cycles, where the MACC operations requires 1 cycle
for multiplication and 1 for addition, which are distributed between other PE operations. The
improved PE realises a throughput of 1 MACC. This is thanks to the DSP primitive, and set-
ting pipeline directives. Using the pipeline setting at most a throughput of once every two cy-
cles could be achieved, by setting the sharing allocation to 0%, a schedule can be found that
achieves a throughput of 1.

Achieving this also requires an improvement to the spads, which could not reach the desired
throughput. Some of the improvements for the spad are given in Listing 6.1, with the full code
available in Appendix A. The spad is implemented as an augmented circular buffer, with addi-
tional features to aid providing data during computations. A spad is instantiated to accommo-
date the largest size in the entire neural network; for smaller layers the tempMaxSize channel
indicates the temporary upper bound of the memory. This allows looping around the circular
buffer and loading data multiple times (e.g. the filter kernels). After computations for a row are
finished, the spad can be reset, which is achieved by resetting the read and write pointers. The
data_in and data_out ports are for inserting and retrieving data from the spad.

As found in Section 5.2.1, the datatypes are iterated in loops. Depending on how the loops
are iterated and how data is stored in the spad, some values will have to be dropped freeing
space for new elements. This is the case for ifmap values. Therfore, a different description
is made for the ifmap spad which provides additional features. Using the read_start_inc
channel, it becomes possible to indicate how many elements should be skipped to derive the
memory location of the next ifmap position (thus taking into account the other dimensions, such

Table 6.1: The throughput results of the PE, derived using Catapult.

Latency Throughput
Test vector 3 1
MACC 2 1
PE controller 2 1
Ifmap spad 3 1
Other spad 3 1

52

6.2 Network-on-chip throughput

as the IC number of elements that should be skipped). Moreover, given the improved schedule,
the same ifmap value is used multiple times sequentially to be multiplied with filter values for
different output channels. Hence, the read pointer for the spad should not shift over before all
computations with it are performed. This is realised with a separate read_inc channel, which
is driven by the PE controller to indicate when the pointer can be moved. For the other spads
incrementing the pointer occurs automatically after each read.

On Line 14 of Listing 6.1 an if-statement is used to implement the wrap-around of the pointer,
once it surpasses the (virtual) end of the buffer. This implementation can more effectively be
converted to hardware, when compared to a modulo operation to achieve the same result. As
such, the wrap-around is preferably implemented using this if-statement.

Listing 6.1: Improvements to the implementation of the spads inside the PE,
complete implementation is found in Listing A.1. C++

1 SPAD(){ // Constructor for SPAD class
static bool initValid = ac::init_array <AC_VAL_DC >(_spad,SIZE);

}

5 void run(//Inputs
ac_channel <pointerType > &tempMaxSize ,
ac_channel <pointerType > &read_start_inc ,
ac_channel <bool> &reset,
ac_channel <storageType > &data_in,

10 //Output
ac_channel <storageType > &data_out) {

// Other logic omitted
_read_start += read_start_inc.read(); //Update starting position SPAD
if (_read_start > _max_size) { // If out of (virtual) bounds

15 _read_start -= _max_size;
_full = false; // As spaces are freed up, new data can be loaded

}
}

The PE can achieve a throughput of 1 MACC per cycle, using the DSP48E1 primitive IP block.
This provides an acceleration of 6 times for the processing of MACCs. These improved PEs
can next be applied in the new PE-array.

6.2 Network-on-chip throughput

As most operations in the NoC are simple (e.g. reproducing channels in the broadcast bus, or
comparing IDs in the MCs) the speed of the network is high. Pipeline directives are provided
to the hierarchical blocks to meet the desired throughput. This is verified using the Catapult
cycle report in Table 6.2. The table provides an overview of each hierarchical block and its
latency and throughput measurement according to Catapult. The report shows difficulties in
determining the throughput of the psum_post_process block. In this block, the psum originating
from the PE-array is quantised before it sent back to the off-chip DRAM. The directives indicate
that processing should occur in a pipeline with an interval of 4. As its throughput should not
be the bottleneck for processing, the post-processing should meet the requirement that it can
process ofmaps, as the PE-array produces them. This occurs every: Nof

P = KH∗KW∗IC
P cycles.

For YOLOv4 Tiny, the worst case is layer 5: Nof = 12 ·64. Hence, the interval is 4 when P = 16.

In Table 6.2 the hierarchical blocks that are part of the path supplying the PE-array are high-
lighted. The table shows that each of these blocks provides sufficient throughput, as the min-
imum for ifmaps is 4 cycles, which is met, as each block has an initiation interval of 3 cycles.

53

6.3 Overall system performance

Table 6.2: The performance result of the hierarchical blocks in the NoC, derived using Catapult.

Latency Throughput
Config 31 32
Broadcast bus 1 3
Multicast controller 1 3
PsumC out 1 3
PsumC in 1 3
MACC 2 1
Psum spad 3 1
Kernel spad 3 1
Ifmap spad 3 1
PE controller 2 1
Psum read AGEN 1 3
Ifmap read AGEN 1 3
Kernel read AGEN 1 3
Psum post process 269? 260?
Psum fill out AGEN 1 2
Ifmap fill AGEN 17 27
Kernel fill AGEN 16 26
Psum bias storage 4 7
Circular buffer 3 4

On the return path from the array, data can temporarily be stored in the ac_channels, such that
it does not stall the computations. Hence, this result from Catapult demonstrates that the NoC
bottleneck has been lifted.

6.3 Overall system performance

Verification with the individual PEs indicate that they perform the correct operations. They con-
stitute the array inside of the Accelerator. The functional correctness of the overall array has
not been verified. As its correct operation depends on the ordering of the loops, which would
have to interchange order, the final implementation will not be largely different. The resource
utilisation, too, should not be largely dissimilar from the current architecture.

The entire design is passed through the Catapult design flow and synthesised with Vivado, for
a clock speed of 125MHz. Before synthesis the DSP IP-blocks are provided to the project such
that the synthesis tool can include those in the designated black-box positions. After synthesis,
Vivado provides an estimate of the resource utilisation, this is presented in Table 6.3. The
utilisation is compared to the original implementation. The table demonstrates that the new
design reduces LUT utilisation by 30.7% and the number of FFs by 20.5%. As the storage for
psums is removed from the global buffer, the BRAM utilisation is also reduced. The remaining
BRAMs are primarily used by the PEs. These reductions in utilisation are in the face of an
increase in the array’s size.

Noteworthy is the resource utilisation of the individual PE, which increases in the improved
design, despite the use of the DSP. The improved design uses 228% more LUTs and 281%
more FFs, as well as the additional DSP block.

To understand which parts of the design now require less resources, the utilisation is broken
down into the individual hierarchical blocks in Table 6.4. In the original accelerator the top control
amounted to 10798 LUTs and 11821 FFs [12, ch. 7]. The improved design uses a fraction of

54

6.3 Overall system performance

Table 6.3: Resource utilisation of the original designs and the improved PE and complete Ac-
celerator (post-synthesis). Utilisation by AXI components is not taken into account.

LUT FF BRAM DSP
Original PE 674 580 1.0 0
Original Accelerator 37934 47731 65.5 19
Improved PE 1539 1629 1.0 1
Improved Accelerator 26300 37924 19.5 29
Available on Zedboard 53200 106400 140 220

Table 6.4: Resource utilisation for the improved Accelerator (post-synthesis), broken down per
hierarchical block.

LUT FF BRAM DSP
Config 1086 1426 0.0 0
Top control 3324 2868 3.5 13
PE-array 18697 23604 16.0 16
Other 3193 10026 0.0 0

those resources, a reduction of 324% and 412% respectively. The utilisation of the PE-array
remains in the same order of magnitude, even though the size of the array has grown with 50%.

In Section 5.5 an estimation was made of the performance increase. From the presented so-
lutions, the throughput of the PE is improved, the utilisation of the array is realised and the
array is resized. As the functional correctness of the Accelerator is not validated, the efficiency
cannot be measured. Given that NoC the bottleneck is successfully eliminated, the efficiency
is assumed to be optimal. In this case, the Accelerator is able to perform 16 MACCs per cycle,
at a clock speed of 125MHz. This yields a theoretical throughput of 2GMACC/s, or 4GOPS (as
a MACC is 2 operations: multiplication and addition).

55

7. CONCLUSION

This work set out to answer the following research questions: How can the throughput of a
hardware accelerator for a CNN be improved to approach the theoretical upper bound using
HLS for FPGA? The sub-questions will first be answered to derive the final answer to the main
research question:

• What is the theoretical upper bound for a CNN accelerator’s performance on the Zedboard
and how does this compare to performance in literature?

• Can the network-on-chip bandwidth bottleneck in the work by Heinsius be identified and
resolved?

• Does a workflow with High-Level Synthesis influence the performance of a CNN acceler-
ator?

• How can DSP-blocks be implemented in the Accelerator design using the high-level syn-
thesis workflow?

In Chapter 3 different works were discussed. Specifically, alternative works implemented on
the Zedboard were compared. It was found the Xilinx DPU implementation yields the highest
indicative performance, with a peak throughput of 230GOPS. This serves as the upper bound
for the performance of the accelerator.

In Section 5.3, a theoretical analysis was performed to determine the throughput requirements
for the NoC. It was found that it depends on the layer characteristics as well as the number of
PEs. In the worst case, the NoC providing ifmap values would need a pipeline initiation inter-
val of 4, when 16 PEs are used. Several hierarchical blocks in the design by Heinsius did not
meet this requirement. Hence, the NoC did prove a bottleneck for that design. In Table 6.2 the
throughput periods for the different hierarchical blocks, as derived by Catapult, were presented.
The blocks providing data to the PE-array are found to have a throughput period meeting the
requirement. The blocks retrieving data from the array are not bound by a throughput require-
ment and the ac_channels connecting the different blocks provide a buffer to store ofmap values
temporarily as the NoC sends them out.

Throughout the design Catapult HLS was used to create the architecture description. Using
the custom datatypes, templates and pragmas, a proper description can be created for the
accelerator. The tool lacks means to infer DSP-blocks directly in the design. So, instead an
alternative work-flow was created to insert these after RTL was created in Catapult. By instan-
tiating a black-box in the design, the option is left open to substitute it during synthesis. This
is performed in Vivado, where the DSP48E1 primitive is inserted in the place of the black-box.
Given this solution, a PE can be created that provides a throughput of 1 MACC per cycle, a 6
times improvement over the original PE by Heinsius.

Outside of DSP-block usage, no direct indication was found to suggest that Catapult of HLS
in general provides a sub-optimal design. All designs implemented on the Zedboard in Sec-
tion 3.3 were created using (Vivado) HLS. Using the tool’s handles, control can be exerted over

56

timing/scheduling of designs. When correct coding practises are applied (as suggested by the
user reference [23]), efficient hardware can be created. Using the possibility for high-level sim-
ulation accelerates debugging and optimising of the architecture, prior to synthesis. This could
cut down on development times.

Using this information the main research question can be answered. Throughout this work
multiple improvements for the Accelerator were proposed. Firstly, the previously discussed
improvement for the PEs, which speeds up MACCs six times. Moreover, the structure of the
Accelerator was adjusted to be more efficient and be better utilised based on the schedule
created by Timeloop. The schedule divides the computations spatially over the PE-array. The
array’s size was increased to 16 elements to better accommodate the dimensions of YOLOv4
Tiny’s layers. The array was simplified to be one dimensional, to reduce the NoC’s complexity
(and thus aid in resolving the throughput bottleneck). This leaves the spatial planning to the
synthesis tool. With this updated schedule, the hardware utilisation is improved from 66% to
99%, a 50% increase. The efficiency of the Accelerator could not be derived without performing
inference on the complete system on the Zedboard’s SoC. The intended improvement of 4.41
times acceleration for the efficiency can thus not be validated.

The individual PE was functionally validated, whereas the entire Accelerator was not. Never-
theless, an indication can be provided of the Accelerator’s resource utilisation. In Section 6.3,
the synthesised Accelerator is compared to the work by Heinsius. The utilisation by the PEs has
grown, despite the application of DSP-blocks to accelerate the MACC operation. The number
of LUTs grows by 228% and the number of FFs increases almost threefold with 281%. Never-
theless, the entire Accelerator uses less resources, primarily thanks to the reduction in size of
the top control. The storage for psum values was eliminated thanks to the improved schedule.
Moreover, some of the AGENs were simplified, for instance the ifmap read AGEN, which can
broadcast each ifmap value to all PEs. In total this results in a reduction of 30.7%, 20.5% and
70.2% of LUTs, FFs and BRAM respectively. As each PE now contains a DSP, but some of the
hardware is more efficient, the number used grows from 19 to 29.

Concluding, this works presents a number of aspects that can, and have been, improved. These
efforts have resulted in an architecture, which has not been fully functionally validated, but
shows a promising outlook both in terms of throughput as well as resource utilisation. An av-
erage throughput of 4GOPS is estimated. This is 57.5 times slower than the Xilinx DPU imple-
mentation, but also 52.9 times faster than the implementation by Heinsius, which achieved a
peak throughput of 0.12GOPS. Therefore, a considerable step is made towards the theoretically
achievable throughput on the Zedboard platform.

57

8. DISCUSSION

The conclusion presents a promising architecture that provides gains in both throughput as
well as resource utilisation. The latter indicates that more resources are available to provide
further parallel processing, even on the Zedboard. The PE-array can be extended to contain
more elements. However, the schedule should be taken into account to guarantee optimal
utilisation of the hardware. As indicated in Section 5.2.1, the array is optimised to process OCs
in parallel. The smallest layers two have 32 OC. Hence, the array can be scaled to 32 elements
effortlessly. Increasing the number of PEs above this value will result in inefficiencies when
utilising the hardware, if no alternative schedule is created. Additionally, the parallel processing
can be extended by reinstating the RS-dataflow, where PEs forward psums such that each PE
processes only 1 row of ifmap values. This improves the realised reuse factor for ifmaps (rfif)
to 100% reuse. This dataflow can also be achieved in the 1D array and could be inspired by
the Chain-NN work. The local network from the work by Heinsius [12] is still available and can
be applied for this purpose. This would require an adjustment of the configuration data to guide
the flow and timing of psums. As well as an extension of the NoC, as the throughput demand
grows further as the number of PEs grows (according to Equations (5.2) and (5.3)).

To characterise the current design however, some steps remain to be taken. Firstly, a full
functional verification should be performed such that the Accelerator provides a bit-accurate re-
placement for the work by Heinsius. Afterwards, the accelerator should be deployed on actual
hardware, in conjunction with the Tensorflow program. It could be deployed on the Zedboard to
compare performance results and fully validate the increased throughput.

8.1 Recommendations

Based on the findings in this work, more opportunities for further acceleration can be explored.
The expansion of the PE-array, as described previously, can be considered. With the com-
prehension of the scheduling, the array can be extended to process in parallel over multiple
dimensions, primarily OC and KH.

In the design, a complete BRAM is used per PE, which has the same hardware cost as using
only a fraction of the BRAM’s storage capacity. However, only a fraction, 14.9%, of the available
BRAMs are used. It might be feasible to assign multiple BRAMs to a single PE to provide larger
local spads, without sacrificing throughput. The BRAMs available on the Zedboard and other
Xilinx 7-series devices provide more opportunities for utilising the BRAMs, such as the current
2x18kB, 1x36kB or cascaded 1x64kB [30]. Larger spads allow more flexible scheduling and
could allow for more (energy) efficient schedules for layers where there are many OCs and they
are also scheduled at higher hierarchical levels of the architecture.

The Winograd algorithm and an application for NNs was discussed in Section 3.3. According
to the work, the architecture achieved a peak throughput exceeding that of the Xilinx DPU, with
281GOPS. This indicates the opportunities with the Winograd algorithm. The authors of the
work specify that the NN loses some accuracy, but there is no break down between bit-width

58

8.1 Recommendations

representation and the implementation of the Winograd algorithm. If the accuracy losses due
to applying Winograd are conceivable, it might be a good candidate for further accelerating the
MACC operations. This could be achieved by exploiting more of the DSP-block’s capabilities,
including the pre-adder to compute the psum terms from Equation (3.3). A condition is that the
k1 + k2 term is pre-computed offline, to avoid increasing the number of filter kernels.

Besides the optimisations based on processing layers sequentially, the opportunity of fusing
layers might also be explored. Exploiting inter-layer reuse may provide additional performance
gains. It is known that the ofmap values from one layer serve as the ifmap values for the next.
By keeping these on-chip, this saves bandwidth to and from the off-chip DRAM and possibly
the NoC as data could even be kept locally in the spads.

This concept is further elaborated in [32], where the order of computations is changed in order
to fuse layers. It is known beforehand which ifmap values from layer 0 correspond to the ofmap
values from deeper layers. A schedule can be created which takes this inter-layer storage/reuse
into account. OCCAM [10] was developed to derive such a schedule. The premise for this work
is to find the conditions for optimal reuse of data, comparable to Section 2.3. Next the goal is
to find and schedule a dependence closure, a sufficient condition for full reuse. The authors
propose a dynamic scheduling algorithm to provide optimal inter-layer reuse which could be
applicable to YOLOv4 Tiny too.

59

BIBLIOGRAPHY

[1] Manoj Alwani et al. “Fused-layer CNN accelerators”. In: 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2016, pp. 1–12. DOI: 10.1109/
MICRO.2016.7783725.

[2] Arash Ardakani et al. “An Architecture to Accelerate Convolution in Deep Neural Net-
works”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 65.4 (2018),
pp. 1349–1362. DOI: 10.1109/TCSI.2017.2757036.

[3] Chun Bao et al. “A Power-Efficient Optimizing Framework FPGA Accelerator Based on
Winograd for YOLO”. In: IEEEAccess 8 (2020), pp. 94307–94317. DOI: 10.1109/ACCESS.
2020.2995330.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal
Speed and Accuracy of Object Detection”. In: CoRR abs/2004.10934 (2020). arXiv: 2004.
10934. URL: https://arxiv.org/abs/2004.10934.

[5] Kuo-Wei Chang and Tian-Sheuan Chang. “VWA: Hardware Efficient Vectorwise Acceler-
ator for Convolutional Neural Network”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 67.1 (2020), pp. 145–154. DOI: 10.1109/TCSI.2019.2942529.

[6] Yu-Hsin Chen et al. “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Net-
works on Mobile Devices”. In: IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 9.2 (2019), pp. 292–308. DOI: 10.1109/JETCAS.2019.2910232.

[7] Yu-Hsin Chen et al. “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks”. In: IEEE Journal of Solid-State Circuits 52.1 (2017),
pp. 127–138. DOI: 10.1109/JSSC.2016.2616357.

[8] Robert David et al. “TensorFlow Lite Micro: Embedded Machine Learning on TinyML Sys-
tems”. In: CoRR abs/2010.08678 (2020). arXiv: 2010.08678. URL: https://arxiv.org/abs/
2010.08678.

[9] Antonello Di Fresco and Giovanni Guasti. Long Form Answer Record 73058: ResNet-50
CNN application implemented on a ZedBoard using Vivado and PetaLinux 2019.2. Tech.
rep. Xilinx, Nov. 2019.

[10] Ashish Gondimalla et al. OCCAM: Optimal Data Reuse for Convolutional Neural Net-
works. 2021. arXiv: 2106.14138.

[11] David Gschwend. “ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Net-
work”. In: CoRR abs/2005.06892 (2020). eprint: 2005.06892.

[12] L.R. Heinsius. Real-Time YOLOv4 FPGA Design with Catapult High-Level Synthesis.
June 2021. URL: http://essay.utwente.nl/86465/.

[13] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications”. In: CoRR abs/1704.04861 (2017). URL: http://arxiv.org/abs/1704.
04861.

60

https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/TCSI.2017.2757036
https://doi.org/10.1109/ACCESS.2020.2995330
https://doi.org/10.1109/ACCESS.2020.2995330
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/TCSI.2019.2942529
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/JSSC.2016.2616357
https://arxiv.org/abs/2010.08678
https://arxiv.org/abs/2010.08678
https://arxiv.org/abs/2010.08678
https://arxiv.org/abs/2106.14138
2005.06892
http://essay.utwente.nl/86465/
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

[14] Hyoukjun Kwon et al. “MAESTRO: A Data-Centric Approach to Understand Reuse, Per-
formance, and Hardware Cost of DNN Mappings”. In: IEEE Micro 40.3 (2020), pp. 20–29.
DOI: 10.1109/MM.2020.2985963.

[15] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: Computer Vision
– ECCV 2014. Ed. by David Fleet et al. Cham: Springer International Publishing, 2014,
pp. 740–755. ISBN: 978-3-319-10602-1.

[16] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[17] Angshuman Parashar et al. “Timeloop: A Systematic Approach to DNN Accelerator Eval-
uation”. In: 2019 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 2019, pp. 304–315. DOI: 10.1109/ISPASS.2019.00042.

[18] Michael Pellauer et al. “Buffets: An Efficient and Composable Storage Idiom for Explicit
Decoupled Data Orchestration”. In: ASPLOS ’19. Providence, RI, USA: Association for
ComputingMachinery, 2019, pp. 137–151. ISBN: 9781450362405. DOI: 10.1145/3297858.
3304025. URL: https://doi-org.ezproxy2.utwente.nl/10.1145/3297858.3304025.

[19] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:
CoRR abs/1506.02640 (2015). arXiv: 1506.02640. URL: http://arxiv.org/abs/1506.02640.

[20] Colin Shea, Adam Page, and Tinoosh Mohsenin. “SCALENet: A SCalable Low Power
AccELerator for Real-Time Embedded Deep Neural Networks”. In: Proceedings of the
2018 on Great Lakes Symposium on VLSI. GLSVLSI ’18. Chicago, IL, USA: Association
for Computing Machinery, 2018, pp. 129–134. ISBN: 9781450357241. DOI: 10 .1145 /
3194554.3194601. URL: https://doi.org/10.1145/3194554.3194601.

[21] Siemens. Catapult High-Level Synthesis and Verification. Tech. rep. v2021.1_1. Siemens
Digital Industries Sofware, Nov. 2021.

[22] Siemens. Catapult® Synthesis HLS Bluebook. Tech. rep. v2021.1_1. Siemens EDA, Nov.
2021.

[23] Siemens.Catapult® Synthesis User andReferenceManual. Tech. rep. v2021.1_1. Siemens
EDA, Nov. 2021.

[24] Vivienne Sze. “How to Evaluate Deep Neural Network Accelerators”. Conference on Com-
puter Vision and Pattern Recognition. 2020.

[25] Chien-YaoWang, Alexey Bochkovskiy, andHong-YuanMark Liao. “Scaled-YOLOv4: Scal-
ing Cross Stage Partial Network”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). June 2021, pp. 13029–13038.

[26] Shihao Wang et al. “Chain-NN: An energy-efficient 1D chain architecture for accelerating
deep convolutional neural networks”. In: Design, Automation Test in Europe Conference
Exhibition (DATE). 2017, pp. 1032–1037. DOI: 10.23919/DATE.2017.7927142.

[27] Yannan N.Wu, Joel S. Emer, and Vivienne Sze. “Accelergy: An Architecture-Level Energy
EstimationMethodology for Accelerator Designs”. In: IEEE/ACM International Conference
On Computer Aided Design (ICCAD). 2019.

[28] Xilinx. 7 Series DSP48E1 Slice, User Guide. Tech. rep. UG479 (v1.10). Xilinx Inc., Mar.
2018.

[29] Xilinx.DPUCZDX8G for Zynq UltraScale+MPSoCs. Tech. rep. v3.3. Xilinx Inc., July 2021.
[30] Xilinx. DSP48 Macro v3.0, LogiCORE IP Product Guide. Tech. rep. PG148. Xilinx Inc.,

Nov. 2015.

61

https://doi.org/10.1109/MM.2020.2985963
https://www.tensorflow.org/
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/3297858.3304025
https://doi-org.ezproxy2.utwente.nl/10.1145/3297858.3304025
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.1145/3194554.3194601
https://doi.org/10.1145/3194554.3194601
https://doi.org/10.1145/3194554.3194601
https://doi.org/10.23919/DATE.2017.7927142

BIBLIOGRAPHY

[31] Zhewen Yu and Christos-Savvas Bouganis. “A Parameterisable FPGA-Tailored Archi-
tecture for YOLOv3-Tiny”. In: Applied Reconfigurable Computing. Architectures, Tools,
and Applications. Ed. by Fernando Rincón et al. Cham: Springer International Publishing,
2020, pp. 330–344. ISBN: 978-3-030-44534-8.

[32] Chen Zhang et al. “Optimizing FPGA-Based Accelerator Design for Deep Convolutional
Neural Networks”. In: Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. FPGA ’15. Monterey, California, USA: Association
for Computing Machinery, 2015, pp. 161–170. ISBN: 9781450333153. DOI: 10 .1145 /
2684746.2689060.

62

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

A. CATAPULT IMPLEMENTATION

This work discusses a number of the hierarchical blocks in the Catapult design of the Acceler-
ator, and provides several Timeloop descriptions. The complete code is not presented in the
relevant sections, as it contains irrelevant sectoins for the provided examples. For complete-
ness, the complete code for these topics is presented in this chapter.

A.1 Catapult

Listing A.1: Improvements to the implementation of the spads inside the PE. C++

1 #include <ac_channel.h>
#include <ac_int.h>
#ifndef CATAPULT_INDEPENDENT
#include <mc_scverify.h>

5 #endif

template <class storageType , int SIZE>
class SPAD
{

10 private:
//Circular buffer
storageType _spad[SIZE];

//Pointers
15 typedef ac_int<ac::nbits<SIZE>::val,false> pointerType;

pointerType _read_index;
pointerType _write_index;
pointerType _max_size;
bool _full;

20

void reset_ptr() {
_read_index = 0;
_write_index = 0;
_full = false;

25 }

void increment_ptr(pointerType* itr) {
if (*itr < _max_size) {

(*itr)++;
30 } else {

*itr = 0;
}

}

35 public:

63

A.1 Catapult

SPAD(){
static bool initValid = ac::init_array <AC_VAL_DC >(_spad,SIZE);
if (!initValid) {

std::cout << "Initialisation of SPAD failed!" << std::endl;
40 }

reset_ptr();
}

#pragma hls_design interface
45 #ifndef CATAPULT_INDEPENDENT

void CCS_BLOCK(run)(
#else

void run(
#endif

50 //Inputs
ac_channel <pointerType > &tempMaxSize ,
ac_channel <bool> &reset,
ac_channel <storageType > &data_in,
//Outputs

55 ac_channel <storageType > &data_out) {

// Reset pointers if system is reconfigured
if (reset.size() > 0) { // See if a new value is available

reset.read(); // A value in the channel indicates a reset , actual
value not relevant

60 reset_ptr();
}

// Find if there is a new max size
if (tempMaxSize.size() > 0) {

65 _max_size = tempMaxSize.read();
}

// Write if new data is available
if (data_in.size() > 0){

70 _spad[_write_index] = data_in.read();
increment_ptr(&_write_index);
_full = _write_index == _max_size;

}

75 // Read if indices are not equal (e.g. don't read unwritten positions)
// Except when the SPAD is full, in which case a read can safely be

performed of every element
if (_full || _write_index != _read_index) {

data_out.write(_spad[_read_index]);
increment_ptr(&_read_index);

80 }
}

};

64

A.2 Timeloop

A.2 Timeloop

A new architecture description was made for the 1D PE-array. This omits the meshX attribute
and completely removes the DummyBuffer hierarchical layer compared to Listing 5.2.

Listing A.2: Timeloop architecture description of the improved Accelerator. YAML

1 architecture:
subtree:

- name: system
local:

5 - name: DRAM
class: DRAM
attributes:

type: LPDDR3
width: 64

10 block-size: 4
word-bits: 16

subtree:
- name: accelerator

local:
15 - name: shared_glb

class: smartbuffer_SRAM
attributes:

memory_depth: 30000
memory_width: 32

20 n_banks: 112
block-size: 1
word-bits: 8
read_bandwidth: 3
write_bandwidth: 3

25 subtree:
- name: PE[0..15]

local:
- name: ifmap_spad

class: smartbuffer_RF
30 attributes:

memory_depth: 18432 # Half a RAM-block
memory_width: 8
block-size: 1
word-bits: 9

35 read_bandwidth: 1
write_bandwidth: 1

- name: weights_spad
class: smartbuffer_RF
attributes:

40 memory_depth: 18432 # Half a RAM-block
memory_width: 8
block-size: 1
word-bits: 8
read_bandwidth: 1

45 write_bandwidth: 1
- name: psum_spad

class: smartbuffer_RF
attributes:

memory_depth: 16
50 memory_width: 20

update_fifo_depth: 3

65

A.2 Timeloop

block-size: 1
word-bits: 20
read_bandwidth: 1

55 write_bandwidth: 1
- name: mac

class: intmac
attributes:

datawidth: 8

66

	Abstract
	List of acronyms
	Contents
	Introduction
	Research questions
	Contributions
	Outline

	Convolutional neural networks
	Neural network background
	Activation functions
	Layer types
	Performance metrics

	Dimensionality
	Theoretical reuse
	Topologies

	YOLO Version 4 Tiny
	Practical reuse

	Timeloop
	Usage

	Accelerator architectures
	Definitions
	Topologies
	Data management
	Optimisation of computations

	Implementations
	Heinsius
	Xilinx
	Summary

	High-level synthesis
	Catapult
	Writing source code
	Analysis
	Building for a target

	Method
	Throughput of the PE
	DSP48E1 primitive
	Black-box implementation

	Processing element array
	Schedule

	Network-on-Chip
	Theoretical bound network-on-chip bandwidth
	Revision of implementation

	GLB configuration
	Parsing schedule
	AGEN loops in Catapult

	Expected throughput improvement

	Results
	Processing element throughput
	Network-on-chip throughput
	Overall system performance

	Conclusion
	Discussion
	Recommendations

	Bibliography
	Catapult implementation
	Catapult
	Timeloop

