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Abstract—Advancing the research in face applications is
limited by proprietary databases and increasing data pro-
tection regulations, synthetically generated databases may
provide a solution. In this work the GANformer, a hybrid
generative image model, is explored for this application.
While only trained for unconditioned face generation like
many other models, this works shows the potential of two
use cases. First, the unique implementation of the attention
is examined for the application of segmentation. Results
indicate segmenting behaviour is present, though post-
processing is needed before its implementation in synthetic
databases. Second, real labeled faces are reconstructed
in latent space to find latent directions describing dis-
entangled attributes. This concept is brought in practice
by augmenting neutral to smiling faces, but could be
applied on other expressions and attributes as well. In
both the segmentation and the smile augmentation the
results indicate that the GANformer is able to be used
for multiple applications in synthetic database generation.
This work can be use as basis as it opens up two directions
for further research.

I. INTRODUCTION

The performance of neural networks used in computer
vision can increase logarithmically with the size of the
training data [1], however larger databases are often not
freely available. Common databases such ImageNet [2]
(1M images) and VGGFace2 [3] (3.3M faces) are small
compared to proprietary databases such as JFT-M300 [1]
(300M images) and the dataset used to train FaceNet [4]
(∼150M faces). Besides the limited size of the current
available databases, the privacy aspect of biometric
data makes it harder to compile larger databases. In
recent years, privacy regulations have been developed
such as the GDPR [5], which demands consent for
processing biometric and thus personal data. A database
like MS-Celeb-1M [6] (10M faces) was discontinued, it
contained faces of journalists and digital right activists
without their consent. As a solution, synthetic databases
containing generated faces may solve this problem,
mitigating the intensive process of collecting faces and
risk of privacy breaches.

The generation of synthetic faces has made huge
leaps forward in the past couple of years, notably the
style based architecture of StyleGAN [7, 8] delivers
high quality faces. With conditional generation, genera-
tive models can create variations upon these synthetic
identities by controlling the output. In the work of

Fig. 1: Cherry picked examples of smile augmentations
on neutral faces using the GANformer.

Colbois, Freitas Pereira, and Marcel [9] variations of
identities can be generated in an automatic manner using
StyleGAN2. A benefit of their exploit method is that it
can be done automatically and no additional training or
networks are needed.

Meanwhile a new machine learning type called trans-
formers was developed in the natural language pro-
cessing (NLP) field [10]. The transformer utilizes the
attention mechanism to enable interaction amongst each
input element on a global scale. Unlike of a local
interaction associated with the convolution operation,
found in a.o. StyleGAN. The successes in NLP [11, 12]
inspired the computer vision (CV) field, which in turn
have shown promising results in many applications such
as object detection and classification [13, 14, 15].

The GANformer by Hudson and Zitnick [16] is a
hybrid generative image model, based on the style
based architecture of StyleGAN while incorporating
transformers. Like many other transformer based works
it is unconditioned. Even so, the authors show additional
outputs in the form of attention maps with segmenting
behaviour. Unfortunately this is not shown in the case
of face generation, while the additional segmentation
information can yield a multi-purpose database. This
makes it an interesting candidate to explore further for
the sake of the creation of synthetic databases.

In this work the GANformer is explored and exploited
to gain a broader set of functions than the face gener-
ator is trained for. First the segmentation potential of
the attention mechanism is analysed. Furthermore the
conditional generation is enabled by the reconstruction
of labeled faces and using these to find latent directions
in the latent space, in line with the method of [9]. In
particular interest are variations in unambiguous expres-
sions such as smiling. Other attributes e.g. pose and
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illumination can also be acquired with other techniques
such as 3D modelling. Our main research question is:
To what extent can the GANformer be used for synthetic
face database generation? This will be answered using
three additional sub-questions:

• To what extend can we interpret the attention in
the synthesis network as a semantic segmentation
of the face?

• To what extend can we reconstruct existing identi-
ties from the latent space of the GANformer?

• To what extend can we control the smile expression
while maintaining the same identity?

The paper is structured as follows: In Section II the
related work is discussed. Next the interpretation of
the attention is addressed in Section III, after which
the reconstruction and semantic control are discussed
in Section IV. Both subjects will contain a method that
explains how the sub-questions are addressed, an exper-
iments and results sections and a conclusion. The final
conclusion in Section V will answer the main research
question using the results from the sub-questions.

II. RELATED WORK

A. Transformers

The transformer is a type of neural network block,
in which the attention mechanism plays a major role
[10]. While a convolution layer acts locally by shifting
a kernel along the data, in attention an operation is
applied on each input element and therefore enables
global interaction between the elements.

A commonly used type of attention is self-attention,
in which the data attends to itself. This is used in the
Vision Transformer (ViT) of Dosovitskiy et al. [13],
a discriminative classifier where all the convolutional
layers are replaced by transformers. A downside of
this approach is that with many input elements n, the
computational load becomes excessive. The fact that
every element attends to every other element results in
a quadratic computational load O(n2).

For the interested reader more background informa-
tion on transformers and the attention mechanism can
be found in Appendix A1.

B. Face Generation using Transformers

One of the fields using transformers is synthetic face
generation. Many works have been published, which can
be roughly divided into two categories. A pure approach
replacing all convolutional layers a transformer, such as
done in the ViT [13], or using the transformer besides
convolutional layers in a hybrid model. An overview of
the discussed models is shown in Table I.

Jiang, Chang, and Wang [17] propose TransGAN, a
basic GAN architecture, where the commonly used con-
volutions are replaced by transformers. In such a pure
transformer architecture the transformer synthesizes the

TABLE I: An overview of works using a transformer
in face generation. Including the use of the transformer,
whether the architecture is style based and the possibility
for conditional generation.

Works Transformer Style-b. Cond.Pure Hybrid
TransGAN [17] ✓
ViTGAN [18] ✓
HiT [19] ✓
NutsAndBolts [20] ✓ ✓ ✓
StyleSwin [21] ✓ ✓
StyleFormer [22] ✓ ✓
VQGAN [23] ✓ ✓
GANformer [16] ✓ ✓

image. The transformer architecture is very similar as
seen in the vision transformer of [13]. To handle the
quadratic computational complexity, the authors propose
grid self-attention. The image features are separated
into smaller grids, to reduce the number of elements
in one attention operation. In many successive works,
similar ideas with regards to a windowed transformer
are used to reduce the computational load [18, 19, 20,
21]. Instead of using the vanilla GAN architecture, a
style based architecture similar to StyleGAN [7] is used
in [22] and more recently in [20, 21]. More information
is elaborated on in Appendix A2.

Hybrid models use the transformer to benefit from
the long range interaction property of the attention
mechanism to act in the composition of the synthesized
image. In the work of Esser, Rombach, and Ommer [23],
a vector quantized GAN (VQGAN) made of CNNs is
used. The transformer models the composition of an im-
age auto-regressively using a discrete latent codebook.

In another work the GANformer is proposed by
Hudson and Zitnick [16], a StyleGAN adaptation with
bipartite attention. In bipartite attention, attention is ap-
plied between two disjoint sets. The intermediate latent
vector w is broken down into m latent components.
With the use of bipartite attention, the style information
is propagated to the n image features. Each latent
component can model long range spatial interactions
to guide the synthesis process. An additional benefit of
bipartite attention, is that the computational complexity
is reduced to a bilinear complexity O(mn). Next to the
capabilities of generating faces, the bipartite attention
mechanism gives insight into the synthesis of the faces
using attention maps. Background information on this
subject can be found in Appendix A3.

C. Conditional Face Generation

While face generation is an important step, one needs
to have control over the network to generate synthetic
identities with variations, while retaining the same
identity. This requires a generative model based on a
condition, such that semantics like pose and expressions
can be changed. None of the transformer based models
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provided such control over the synthesis process, taking
the TransGAN1, VQGAN2 and GANformer [17, 23, 16]
into consideration.

In the work of Colbois, Freitas Pereira, and Marcel [9]
three approaches to acquiring conditional synthesis are
distinguished. One can make a conditional model from
scratch or retrain an existing non-conditional model to
make it conditional. Another option is to use existing
unconditional models to synthesize faces, which can be
edited a posteriori. The last option that is presented is
to exploit an existing model, assuming small changes
within its feature or latent space result in changes in the
semantics while retaining the same identity.

1) Conditional Conversion
Current models can be adjusted such that these take

a conditional input besides their regular input. Architec-
tures may have different implementations. In an early
work the conditional GAN was proposed by Mirza
and Osindero [24], the model takes a conditional input
besides the initial noise vector. Outside of the computer
vision field, the authors of Keskar et al. [25] train a lan-
guage transformer model to condition on control codes
that govern style, content, and task-specific behavior.
The control code is prepended to the input sequence.

The major downside of this approach is that this
requires to adjust and retrain the complete model.

2) A posteriori
In a posteriori editing, real or synthesized faces are

changed. This approach requires two models, an existing
face generation model and an image-2-image model.

Many works feature GANs where the generator has
an auto-encoder structure, where the conditional infor-
mation is inserted into its latent space. Some works are
trained to change a selection of attributes, such as hair
color, glasses, mustache and age [26, 27, 28]. Not all
changes are useful in creating synthetic identities, such
as glasses and gender. Other works focus on optimizing
only one feature, such as expression or ageing [29, 30].

Rather than injecting conditional information into the
latent space, another method uses two encoders for the
identity and attribute face respectively and to combine
their latents. A model is trained such that the synthesized
face has the same identity as the identity face, but taking
the attributes such as hair, pose and background from the
attribute face [31, 32].

3) Exploiting
Instead of retraining or making additional models,

the already trained deep networks can be exploited.
Upchurch et al. [33] argue that if a discriminative CNN
is able to classify a certain class with a linear classifier,
this class must be linearly separable in one of the feature

1The authors show the results of interpolating in the latent space,
but this only provides indirect control over the output.

2The model is capable of several tasks, such as completing images,
depth-to-image reconstruction, semantically guided synthesis, pose
guided human body generation and class-conditional samples. No
fine grained solution to varying an identity is provided here.

spaces of the CNN. By mapping images with binary
classes into the feature space, such as with beard and
without beard, one can determine the attribute vector
as the difference between the mean of each class. To
gain either attribute while preserving the identity, the
reference image can be moved along this vector. The
mapping is reversed to obtain the resulting image.

Similar to this idea many works create variations of
identities by exploiting the latent spaces in StyleGAN
[7, 8]. Such an exploit can be divided into two processes,
the projection and the manipulation. The projection,
reconstruction or embedding, into a latent space is an
optimization process to find a latent vector, such that
the synthesized image is similar to the target image.
This can be done in both latent spaces Z and W . Other
spaces such as W+ and StyleSpace are proposed by
[34, 35] and [36], it is argued that these feature a higher
disentanglement and completeness.

Using the projections, one can analyse the latent
space to manipulate generated and real images. Shen
et al. [37] show that semantic attributes are linearly
separable in W . Using an auxiliary network, synthetic
faces are classified on their attributes. Subsequently
these faces are used as training data to fit linear support
vector machines (SVM) to define hyperplanes. Synthetic
and real projected faces can be manipulated by editing
the distance to the hyperplane. In the work of Wu,
Lischinski, and Shechtman [36] specific channels are
changed to detect local and attribute changes. As an
example the authors find four separate channels that
control the visibility, the shape and the presence of an
earring for the ear region. For the attributes an auxiliary
classifier is used, the authors argue to only 10 to 30
faces are needed to detect the attribute.

A downside to the above approaches is that the gener-
ator generates unlabelled data which must be classified
before it has any use. In [9], the authors project the
labeled dataset Multi-PIE [38], containing 337 identities
under 15 view points, 19 illumination conditions with 6
different facial expressions. Figure 12 shows an example
of aligned faces. Besides removing the need of an
auxiliary network, the projected identities incorporate a
scale that describes the local range of an identity within
the latent space.

In this work it is chosen to use the GANformer as a
base model, in which the latent space will be exploited
as done by [9]. This averts the resource intensive ad-
justing and training of a new model. Moreover with
the idea of creating a synthetic database, the additional
information that the attention maps may provide, such
as segmentation can yield a multi-purpose database.

III. ATTENTION AND SEGMENTATION

Hudson and Zitnick [16] mention that the attention as
seen in the attention maps correspond to segmentation
in lower layers and finer details in higher layers. This
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

(e) Layer 5 (f) Layer 6 (g) Layer 7 (h) Layer 8

(i) Layer 9 (j) Layer 10 (k) Layer 11 (l) Output

Fig. 2: Examples of the attention maps for one generated
face using the default model. The rightmost bottom
figure is the resulting face. As seen in layer 1, 2 and
6 only one latent component is represented. Layer 7 -
11 resemble a facial structure. Note that the resolution
increases at higher layers.

is interesting as it may provide segmentation labels next
to generated synthetic identities. However in the original
work of the GANformer the interaction of the attention
in face generation is not shown. This section will focus
on answering the first sub-question: To what extend can
we interpret the attention in the synthesis network as a
semantic segmentation of the face?

To answer this question, the segmentation of the
attention maps are analysed. Besides that, additional
models with varying parameters will be trained from
scratch to find out its effect on the attention mechanism.
An example of the attention maps is shown in Figure 2.

A. Methods

1) Segmentation
A qualitative analysis will investigate whether seg-

mented facial traits are present within the attention
maps. As an objective addition, the correlation [39] is
determined between the location of each active latent
component and parse labels which are determined by
a face parser [40]. Figure 3 shows the approach. It
should be noted that the quality of the parses is not
optimal, examples are shown in Figure 4. The parser
can be unsuccessful in differentiating between the left
and right facial features, such as the eyes, eyebrows and
ear. Since in early tests it was seen that the attention
maps did neither differentiate between the left nor right
facial features, the labels for these traits were combined.
The labels for glasses, earrings and hat are ignored as
well, these are underrepresented and are not semantics

Fig. 3: The approach for inspecting semantic segmen-
tation in attention maps, which is exported in each
attention layer. The correlation between the parse labels
and each latent component is determined. Only the
layers showing facial traits are used.

Fig. 4: Example results of the face parser on generated
faces. The left two parses are mostly successful, whereas
the right two parses are contain artifacts, likely due to
the low quality of the generated face.

of the face. This reduced the number of parse labels to
12.

2) Additional Models
To determine the robustness of the segmentation,

additional models are used. By retraining a model, its
repeatability on the segmentation is investigated. More-
over models with varying number of latent components
and their dimensions are trained, to study the effect on
the attention operation. These parameters have a direct
effect on the attention computation.

B. Experiments and Results

A pre-trained model is provided in [41], this will be
referred to as the default model. It should be noted that
the model parameters of this model are different with
regard to the model as described in the GANformer
paper [16]. Some highlighted differences are clarified
in the supplementary material in Appendix B.

First, the default model is analysed with regards to the
segmentation. Then the training of additional models is
elaborated on. At last the results of the additional models
are compared and discussed.
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Fig. 5: The correlation between the latent components
and the parse labels of layer 7 for the default network
based on 1000 generated samples. Only if the correlation
|c| > 0.1 the correlations are annotated within the figure.

1) Default model
With the default model 1000 faces and their corre-

sponding attention maps were generated. The first 100
were used in the qualitative analysis, of which the first
10 were investigated more closely. For the correlation
between the latent components and parse labels the
whole set of 1000 samples was used.

The attention maps of layer 1 to 6 do not suggest
any segmentation of facial traits, while these are seen
from layer 7 onward. Therefore correlation between
the active latent components and the parse labels was
only determined from layer 7 until layer 11, as shown
in Figures 5 and 23. While the other lower layers do
contain some information, no clear patterns were seen
that demanded further investigation. One phenomena
does stand out in the lower layers, as layer 2 and 6
are always ‘empty’. The ‘empty’ attention maps and
segmentation of facial traits is discussed hereafter.

a) Empty Attention Maps
In layer 2 and 6, only one latent component is

active, though this does not mean nothing happens. The
resulting attention is still processed, effectively only one
latent component attends to the image features. The
latent component acts as a global latent variable, as seen
in StyleGAN2.

Only the information of that latent is propagated
during the attention as described in Equation (6), as the
probabilities of other latent components is reduced to
zero. The result of the Softmax term has only one non-
zero column. Therefore the last matrix multiplication is
effectively an outer product between the probabilities
and the active latent component.

b) Segmentation
The attention maps from layer 7 onward can be

roughly divided into two groups. In layer 7, 8 and
9, as shown in Figures 2g, 2h and 2i, only a few

latent components seem to be active that each attend to
segments of the face. The skin, hair, eyes and mouth are
noticeable as segments. This is also shown in Figures 5,
23a and 23b, the labels corresponding to the regions tend
to have a distinctive latent component.

The nose on the other hand does not have such
specific attendance in these layers, but is incorporated
with the latent component that attends the skin as well.
It may be that the information of both features are
combined due to their similar texture, rather than the
very distinctive hair and eyes. Another possibility is that
their features are described separately within the latent
component, as seen with the skin and background in
layer 9.

In the highest layers 10 and 11 the attention map seem
to focus more on details, in line with the observation of
[16]. The attention maps are shown in Figures 2j and 2k,
the correlations are displayed in Figures 23c and 23d.
It is worth noticing that some attributes are attended
by more than one latent component, while some other
latent components focus on more than one attribute. It
is unclear why some attributes such as the hair and skin
are attended to by more than one latent component in
layer 10, as the uniform texture and colour of the output
do not show such a segmentation.

Overall most attention maps are consistent in terms of
the role latent components have in each layer over the
generated samples. On the other hand, the role of the
latent components seem to change in every layer. The
segmented facial traits are not perfect, but note that some
correlations have lower scores as the latent components
and parse labels are not congruent. For example, latent
component 3 in layer 7 attends to the whole facial region
and the neck, but as the parse labels are divided into
smaller elements including the eyes, mouth and nose,
the correlation of each individual pair is rather low. In
addition to that, the level of detail in the attention maps
is spread. Segmentation can be improved by combining
the information of latent components, such as taking the
separation of background and skin in layer 7, but using
the detail of the hair and eyes from layer 9. This suggests
that the latent components of this model can be used to
a certain extent with post-processing to acquire some
segmented labels.

It should be noted that the attention maps are a
simplification, as only the dominant latent component
is shown. The probability maps of each latent compo-
nent in every layer may provide more information, an
example is shown in Figure 6. Especially in layer 10
and 11, more latent components seem to attend to the
same image features. As a suggestion for future work,
it should be investigated whether the added information
of these maps are an addition to the segmentation
information.

2) Training Additional Models
As the default model suggests an opportunity for seg-

mentation, the additional models were (close) variants of
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Fig. 6: The probability map for each latent component
for attention layer 10. Each Pi indicates the probability
map for that layer component.

TABLE II: FID of the retrained models (16 − 32).
Underlined models are used in the additional analysis.

k steps 1427 2515 5008 8005
FID #1 16.7 12.2 8.4 7.1
FID #2 18.5 12.6
FID #3 18.2 12.9

this model. The variants will be referred to as (n − d)
where n is the number of latent components and d their
dimension.

The training algorithm was kept at default as provided
in [41], except for the varying model parameters. The
models were trained on the cropped and aligned FFHQ
database [7] at a resolution of 256x256. The general face
quality is determined using Fréchet Inception Distance
[42], a common metric which compares distribution
between the 50000 samples of training data and the
generated data. A lower FID describes a higher quality
generation.

For the repeatability of the results three models with
the default parameters (16− 32) were trained for about
1 GPU week on ∼2500k steps. To estimate the amount
of steps the default model was trained for, model 1 was
trained further to 8005k steps. The default model had a
FID of 7.35, the extended retrained model reached this
number between 7000k and 7200k steps. Their FIDs
are shown in Table II, the training progress is shown in
Figure 22.

To study the effect of varying model parameters,
eight variants were trained as well on about 2500k
steps. The resulting FIDs for the trained models are
shown in Table III, the training progress is shown in
Figure 21. The dimension of the latent components
seems to have the most significant influence on the
quality of the generated faces, a higher dimension seems
to be beneficial.

3) Segmentation of Additional Models
First the repeatability is discussed with the three

(16 − 32) models and the default model. Next for the
varying parameters, the first (16 − 32) model and four

TABLE III: FID of each trained model variant at about
2500k steps with the respective number of latent compo-
nents and their dimension. The models with underlined
annotation are chosen for the additional attention map
analysis. For the (16−32) models the mean is displayed.

FID Latent Dimension
32 16 12 8

32 / 14.9 20.3 28.1
16 12.6 15.9 19.5 /
12 12.5 16.0 / /

# Latent
Components

8 12.4 / / /

variants were chosen for further analysis: (12 − 32),
(8 − 32), (16 − 16) and (16 − 12). This selection
provides a wide range of latent components and their
dimensions. Note that the correlation is based on 500
samples, a reduction to cope with the computational
load of generating attention maps. Figure 24 shows all
attention maps for one generated face for each evaluated
model.

a) Repeatability
The correlations for model 1, 2, and 3 are shown in

Figures 25, 26 and 27 respectively. The attention shows a
similar behaviour, latent components attend in a holistic
manner onto the image features. Therefore only a small
number latent components are active and the information
provided for semantic segmentation is rather low. The
probability maps don’t provide extra data for this case.

The correlations for model 1 trained for 1427k, 5008k
and 8005k steps are shown in Figures 28, 29 and 30
respectively. For this model longer training results in
more ’empty’ maps and a detailed last layer. Like the
2500k model, the attention does not provide useful
segmentation information. The attention in the 2500k
and 8005k models are quite similar, which may suggest
that one does not need a fully trained model to eval-
uate whether the model will be useful with regards to
semantic segmentation.

It is clear that the trained models do not converge to
the default model, the attention behaviour is significantly
different. It might be that the default model is trained
for deviating parameters, since the three trained models
are highly similar. With this assumption, the process
is repeatable. This may suggest that with knowing the
training parameters of the default model, its highly
informative attention can be acquired in a robust manner.

b) Varying Model Parameters
The attention maps and the correlations are shown

in respectively Figures 7 and 8 and Figures 25 and 31
to 34. Note that for (16 − 32) only model #1 is taken
into account.

There is a clear distinction between models with d =
32, versus a lower dimension of d = [12, 16]. In the
high dimensional models only a small number of latent
components is active throughout the layers, attending
in a holistic manner on the face. On the contrary the
attention maps of d = [12, 16] seem to have more active
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(a) L8 (b) L9 (c) L10 (d) L11 (e) Output

(f) L8 (g) L9 (h) L10 (i) L11 (j) Output

(k) L8 (l) L9 (m) L10 (n) L11 (o) Output

Fig. 7: Examples of the highest attention maps for one
generated face per model, where the caption denotes the
layer number or resulting face. The first row corresponds
to model 8 − 32, the second to model 12 − 32 and the
third to 16− 32.

(a) L8 (b) L9 (c) L10 (d) L11 (e) Output

(f) L8 (g) L9 (h) L10 (i) L11 (j) Output

Fig. 8: Examples of the highest attention maps for one
generated face per model, where the caption denotes the
layer number or resulting face. The first row corresponds
to model 16− 12, the second to model 16− 16.

latent components in each layer, which provide a higher
level of semantic segmentation.

It seems that the focus during training lies on max-
imizing the information into a minimum number of
latent components. The many active components in the
d = [12, 16] models are mandatory, as the same level of
detail of the d = 32 models has to be described within
more latent components, due to a smaller embedding
dimension. The results of the training in Table III
supports this, as a smaller dimension seems to negatively
impact the generation quality in terms of FID.

C. Conclusion on Attention Maps

The attention mechanism does not provide a direct
means for segmentation, the attention layers are op-
timized to fool the discriminator, not to function as
a segmentation tool. Nevertheless the default model
does show segmented facial traits within several layers,
especially the background, the skin and hair have high
correlations. A suggestion for future research is to make

smarter use of this by combining the information in
these layers. The the probability maps may also be incor-
porated for layers with many active latent components,
to maximize the information input.

A major downside is the fact that there is no guar-
antee that a model’s attention maps will provide useful
information for segmentation, all trained models do not
reach the level of semantic segmentation as the default
model.

With the same training parameters, the attention’s
behaviour seems to be robust to retraining. It is shown
that by reducing the latent dimension, the amount of
semantic segmentation can be increased. Although this
does come with a lower general face quality as a trade-
off.

Instead a better recommendation is to find out what
distinguishes the default from the other models, as the
default model does provide useful semantic segmenta-
tion information. The results suggest that one does not
need a fully trained model to conclude this.

IV. SEMANTIC CONTROL

For synthetic face databases, generating identities is
a necessary step for e.g. the use of training face recog-
nition systems and 3D face reconstruction models. This
requires control to augment the generated faces in order
to get the variations. The GANformer is unconditioned,
meaning that this is initially not possible. In this section
the method as presented by [9] is used. An overview
of the process is shown in Figure 9. The process for
synthetic identity generation, as used in this work,
consists out of three parts:

1) Expression faces of the Multi-PIE dataset [38] are
projected into the latent space to acquire labelled
latent vectors.

2) Using the labeled data for the each neutral-
expression pair, the corresponding latent directions
are computed.

3) Reference faces are created using random gener-
ated w latent variables, the faces are neutralized
with regard of their expression. Augmented faces
are determined by moving the reference face in
the direction of the computed latent directions.

Since a projector has not been implemented on
the GANformer, research is done to answer the sub-
question: To what extend can we reconstruct existing
identities from the latent space of the GANformer?
Using this data the third sub-question will be answered:
To what extend can we control the smile expression while
maintaining the same identity?

The codebase of the implementation in StyleGAN2
can be found at [43]. It is adjusted where needed for
compatibility with the GANformer.
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Fig. 9: The process to gain control over the latent
space. Real faces are projected into the latent space,
using either SVD or SVM the latent direction can be
determined to augment sampled faces. Inspired by [9].

(a) Mean face (b) Step 30 (c) Step 60 (d) Target

Fig. 10: Typical projection of a generated face using the
default projector provided by StyleGAN2, showing the
results at step 0, 30, 60 and the target face. Left: the
synthesis of the latent variable acquired by taking the
mean over 10000 mapped vectors.

A. Methods

1) Projection
The GANformer is not provided with a projector like

the one implemented in StyleGAN2 [8]. However since
the GANformer is also a style-based architecture, the
StyleGAN2 projector was used as a base. More infor-
mation about the projector can be found in Appendix
A2a.

To asses the performance of the projector, it was first
applied on generated faces. After this real faces from the
Multi-PIE dataset [38] were projected in order to find
the latent directions of the attributes.

a) Projection of Generated Faces
The default projector was most of the times unable to

find a suitable projection and even a face, a typical result
is shown in Figure 10. Nevertheless the low resulting

losses pointed out that there are many local minimums,
while the projected latent variables w where not close
to the latent variables of the generated faces.

Subspace: It appears that Wface ⊂ W such that
Wface describes faces, but the projector is unable to
retain the faces within this subspace. On the other hand,
the mapping network is able to map random vectors
z → w ∈ Wface. Generation from W , by drawing
standard normal sample vectors w, results in non facial
images, as shown in Figures 37 and 38.

In order to analyse the subspace and present a proper
solution, the distribution of the subspace was approx-
imated by two methods. For both methods a set of
10000 mappings wm was used, note that this is the same
number as used in the projector for the initial latent. The
first method estimates the mean µm and standard devi-
ation σm of the distribution of the latent variables wm.
Samples were drawn with w ∼ N(µm, σm). The second
method approximated the distribution using singular
value decomposition (SVD) as shown in Equation (1).
Samples are drawn from a standard normal distribution
and scaled and transformed using S and U acquired
from the SVD. At last the vectors are translated with
mean µm and sample latent vectors w are acquired.

The synthesized results are shown in Figures 40
and 41 for the normal and SVD method respectively.
Based on a cosine dissimilarity on the latents, distances
between the approximated samples and the mapped sam-
ples are similar. Even though the synthesized approxima-
tions do result in face like images, the quality is inferior
to the mapped synthesized samples. Many approximated
samples contain artifacts and random patterns, a similar
effect as seen in the mean face as shown in Figure 10a.
This concludes that there is a subspace Wface, however
it is shown that it can not be fully described by one of
the two approximation methods.

U, S, V = SVD

(
X − µm√
dim(X)− 1

)
L ∼ N(0, 1)

w = USL+ µm

(1)

Mahanalobis Distance: The LPIPS loss of the pro-
jector only retains the overall colour of the synthesized
image and is therefore unable to retain wp within Wface.
Since Wface can be roughly approximated, the Ma-
hanalobis distance was added to regularize the projected
latent wp. Note that the Mahanalobis distance is only an
extra measure and cannot be applied solely, as it does
not compare wp to wtarget, since the latter is unknown
when projecting non-generated faces.

The Mahanalobis distance was implemented such that
it determined the distance of the projected vector wp

to the distribution of the subspace, based on µm and
its covariance as shown in Equation (2). The inverse
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Fig. 11: The Mahanalobis distance of based on 10000
wm variables, between µm and each of the 10000 wm

variables. The distances are between [16.3, 98.5].

covariance matrix S−1
m will scale the loss inversely pro-

portional to the scale of the approximated distribution.

DM (wp) =

√
(wp − µm)TS−1

m (wp − µm) (2)

The Mahanalobis distance can be applied on the same
mapped latents on which µm and S−1

m are based on. In
Figure 11 this distribution of distances is shown, with a
mean DM of 22.6. More interesting is that min(DM ) =
16.3, suggesting that µm /∈ Wface. This may explain that
the mean image, as shown in Figure 10a, has similar
artifacts in the synthesized faces as the approximated
generations, which are based on the mean of the mapped
distribution as well. The weight for the Mahanalobis loss
should not be too high.

Mahanalobis Loss: Both the initial latent vector and
the Mahanalobis distance are based on µm. Therefore
DM = 0|t=0 and a weight a should be added, such that
a = 0|t=0, to prevent keeping the projection at µm.

Several loss functions were implemented, shown in
Equation (3), these included a linear increasing loss
LMlin, a quadratic increasing LMq−inc and a quadratic
increasing and decreasing curve LMq−cur. Each loss
consisted out of a scaling factor aw and a time dependent
factor, which is 0 at time step t = 0 and 1 at time step
t = T . LMlin was included with a offset b. The param-
eters were optimized by minimizing the cosine distance
between the generated latents and their projected latents.

LMlin = a ∗DM + b

where a = aw ∗ t

T
LMq−inc = a ∗DM

where a = 4 ∗ aw ∗ t

T

2

+ 4 ∗ aw ∗ t

T
LMq−cur = a ∗DM

where a = −4 ∗ aw ∗ t

T

2

+ 4 ∗ aw ∗ t

T

(3)

b) Projection of Real Faces
With a working projector real faces can be projected

that serve as training data for the latent directions. In
an ideal case, the projected faces are identical to the
target faces and a perfect mapping is made into the
latent space. However it is likely that the latent space is
not complete. Important is that the difference between
the projected neutral and attribute faces describe only
that certain attribute, to acquire disentangled latent di-
rections. Therefore the projected faces within an identity
must have a similar identity.

The number of optimization steps was reduced to 500,
as 1000 did not show a major improvement. Before
the subjects of the PIE-dataset were projected, their
faces were cropped and aligned using the same tool are
applied on the FFHQ dataset.

The quality of the projected faces are validated using
FaceVACS 9.6, where 0.5 = 0.1% FAR. The score
between aligned and projected pairs, describe the perfor-
mance of the projector. In addition to that it illustrates
the GANformer’s latent space completeness in making
all types of varying faces. Whereas the scores between
faces in an identity describe the consistency of the
projected faces and their value as training data for the
latent directions.

For benchmark purposes the method is applied on
StyleGAN2 as well, like the GANformer the number
optimization steps for the projector was set at 500.
Note that the fully trained model of StyleGAN2 is used,
which is trained between 3x to 14x longer as stated in
Appendix B.

2) Latent Directions and Exploration
The latent of the projected faces can be used to

explore the latent space and as a training set to determine
the latent directions. For the exploration two methods
are applied, t-distributed stochastic neighbor embedding
(t-SNE) and SVD. For the latent directions, the SVD is
used as well as the method from [9], training a linear
SVM.

t-SNE is an unsupervised statistical method to visu-
alize high dimensional data in a low dimensional space
[44]. It can provide a view on how the projected latents
are related to one another. Note that due to the imple-
mentation, local pairwise distances are preserved. More
information about t-SNE can be found in Appendix C.

As mentioned earlier the latent space of the GAN-
former is hard to describe, it may be that the classes
are not linearly separable. Using SVD, the latent space
can be explored and a linear combination may be
able to describe the change between neutral and the
specific expression. The first step all pairwise vectors
are determined, that is wi,neutral − wi,expression. Then
SVD is applied on these vectors, as shown in Equa-
tion (1), where X are the vectors and µm the mean of
those vectors. By sampling L from a standard normal
distribution, multiple direction vectors are generated.
These can be added to the reference faces to find a
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suitable expression variation. As additional parameters
the number of singular components can be adjusted
to acquire a more or less specific movement and the
resulting sample vectors of USL can be scaled with a
scalar. The multiple samples show variations around the
expression acquired by moving the neutral latent with
the mean.

In the SVM method, to goal is to fit a linear SVM
as a hyperplane between the neutral and the expression
class. The normal onto this hyperplane describes the
direction between the neutral and expression. Among
other statistics the mean of the distance between both
classified populations to the hyperplane is determined.
This distance reflects the range of the Multi-PIE dataset,
which provides a scale as in how much variation can be
applied while preserving the identity. While statistics
can describe the performance of the fit, whether the
normal on to the learned hyperplane makes any sense,
must be concluded through the generation process.

3) Generation of Synthetic Identities
The generation of synthetic identities is done in two

subsequent steps, generate reference faces and adding
augmentations. The reference faces are sampled by
generating faces from Z, which return its mapped w
vector and the face itself. To ensure neutral and frontal
reference faces, the reference latent is first neutralized.

In [9] the authors note that StyleGAN2 mainly gener-
ates smiling and neutral faces. Therefore the neutraliza-
tion is done by moving the sampled latent towards the
neutral direction along the neutral smile vector.3

To prevent similar faces when creating a synthetic
database, a interclass threshold is applied. This threshold
is based on the squared Euclidean distance between the
embeddings of the generated face and all other generated
faces. The embedding is determined by a pre-trained
Inception-Resnet v2 model trained on MSCeleb [45].

The second part consists out of generating the aug-
mented identities. The SVD method samples direction
vectors while varying the number of singular compo-
nents as mentioned before. For the SVM method each
attribute face is determined by adding the mean of the
latent direction, normal to the found hyperplane.

B. Experiments and Results

The default model as referred to Section III-B is used
for this section as well.

1) Projection of Generated Faces
The additional Mahanalobis loss in the projector re-

tains the projections within the Wface, three variations
of loss functions are described in Equation (3). With
various preliminary tests the optimal range of the pa-
rameter aw for each loss function was decided. With a
too high aw, the Mahanalobis loss was too strict and
the resulting projection had loss of detail and similar

3The pose and illumination are neutralized as well in [9].

TABLE IV: The results based on the cosine distance
between the target and projected latents for each loss
function.

Quad Curve
a w 0.005 0.01 0.05 0.1 0.5 1 5 10
Mean 0.09 0.17 0.11 0.11 0.08 0.12 0.15 0.16
Median 0.03 0.09 0.04 0.05 0.04 0.05 0.15 0.15
Max 0.37 0.45 0.36 0.25 0.31 0.51 0.29 0.34
Min 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.06

Quad Increase
a w 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10
Mean 0.27 0.14 0.11 0.09 0.16 0.10 0.12 0.18 0.18
Median 0.25 0.03 0.04 0.03 0.05 0.05 0.06 0.18 0.18
Max 0.58 0.43 0.41 0.41 0.53 0.32 0.30 0.40 0.31
Min 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.07 0.07

Linear
a w 0.1 0.1 0.1 1 1 1 10 10 10
b 0 10 50 0 10 50 0 10 50
Mean 0.19 0.13 0.14 0.15 0.09 0.11 0.13 0.14 0.11
Median 0.09 0.03 0.08 0.10 0.04 0.04 0.14 0.10 0.06
Max 0.62 0.52 0.34 0.48 0.28 0.40 0.25 0.30 0.42
Min 0.02 0.02 0.01 0.02 0.02 0.02 0.05 0.05 0.03

artifacts as shown in Figure 10a, as the projection was
pulled towards the mean of the Wface. A too low aw
resulted in a higher chance to the projection to leave
Wface, similar as shown in Figure 10c. The effect of
offset b was not significant for low values between 0 and
10, however for higher values it performed better on the
outliers. Every loss function had a similar performance
without significant differences, as shown in Table IV.
Noticeable differences between the projections and the
generated faces were the direction of the eyes and
the teeth structure. The identity, pose, illumination and
expression were generally the same. For the subsequent
sections the linear loss function with aw = 0.1 and b = 5
was used.

2) Projection of Multi-PIE Faces
The expression dataset was projected, which was done

in well over 5 days, while only in 21 hours using
StyleGAN2.4

The projection of the expression dataset resulted in
1095 alignment projection pairs with 208 identities
ranging from 2 to 8 expressions divided over 1 to
4 sessions. There were 2964 unique pairs within the
identities themselves. The aligned identities may have
another appearance over the sessions, such as different
hairstyle or clothing.

a) Alignment Projection Pairs
The FaceVACS scores of the alignment and projected

pairs are shown in Figure 13a. The the pairs are re-
garded as non-mated, Figure 44 shows a selection of
the best projected pairs. A projected identity is shown
in Figure 12.

Only the smile expression seems to be successfully
projected in most cases. The model seems to be unable

4Using 8 Intel Xeon Silver 4216 cores and one NVIDIA RTX6000
GPU. The pose and illumination would have taken 22 and 60
days respectively. Results of the pose and illumination projections
are shown in Figures 42 and 43 as an indication of the network
projection performance. Note that the pose and illumination can also
be acquired via other methods such as 3D face modeling.
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(a) (b) (c) (d) (e)

(f) Neutral (g) Smile (h)
Surprised

(i) Squint (j)
Disgusted

Fig. 12: Example of one aligned (upper) and projected
(GANformer middle, StyleGAN2 bottom) identity with
a neutral face and various expressions.

to project open mouths and subtle details as found in
other expressions. The FFHQ dataset is likely to consists
mostly out of neutral and smiling faces, rather that
screaming and disgusted faces. Besides the expression
there are some other observations that shows the low
variability of the latent space; in some cases genders
are swapped, the model seems to have difficulties with
projecting faces with a dark skin tones and some pro-
jected identities seem similar while the aligned faces are
not. Examples are shown in Figures 45 and 46.

While the projection of generated faces was very
successful, the projection of the Multi-PIE expression
faces under performs. The projection of generated faces
is a more trivial task as the optimal solution does
exist somewhere in the latent space. Nevertheless the
GANformer has an understanding of a holistic face.
Note that the expression of smile is quite interpretable,
while expressions such as surprised and disgusted are
less clear. The next sections will look specifically at the
smile expression. As the latents of the projected faces
are the training data for the latent directions and the
majority of the expressions but smile is not correctly
projected.

b) Within Projected Identities
For the latent direction to be disentangled, the neutral

expression pairs need to be similar in identity. Note
that this is not a metric to asses the quality of the
expression itself, in some cases an expression face looks
very neutral and results in a high FaceVACS score.
Figure 13b shows the FaceVACS scores for each neutral
- expression pair. The projected faces shows a left-
skewed distribution with a mean of 0.766. It is noticed
that the variations of the subjects of the sessions such
as hairstyle can have a major impact on the resulting
face. Note that the aligned expression faces have a high
similarity with a mean of 0.990, despite the variation in
expressions.

The goal is to find identities with only some changing
attributes. As a suggestion for future work, after the first
neutral face is projected, the subsequent projections of
that identity can start at this neutral face latent, rather
than the distant mean face. This will likely reduce the
excessive computational load and a higher consistency
among the generated faces within an identity.

c) StyleGAN2
The projections of StyleGAN2 seem to be much more

similar to the aligned faces, as shown in Figures 12
and 13a. The model is able to project significantly more
details of the identity, among others: facial structure,
wrinkles, expression including scream, surprised and
disgusted and hairstyle. In a few cases the glasses or
earrings are removed during the projection. Besides
this the projected faces are sometimes washed out,
nevertheless the majority is considered as non-mated.

The score distribution of the projections within the
identities is similar that of GANformer. Although the
majority of the projections are in the range of [0.8, 0.9]
rather than [0.9, 1.0]. Although with the GANformer
some expressions were incorrectly projected and re-
sulted in similar faces, the expressions are projected
truthfully in the case of StyleGAN2. It is interesting that
for these high quality projections the are not regarded
as more similar, even though each projected sample is
a result of an independent optimization process. Further
research is needed whether this is due to the synthetic
nature of the projections.

3) Latent Space Analysis and Generating Synthetic
Identities

In this section the results of t-SNE, SVD and SVM
are shown and analysed to explore the latent space and
create smile augmented faces.

a) t-SNE
A t-SNE analysis is carried out on unfiltered and

filtered projected latents of the GANformer as well
unfiltered projected latents of StyleGAN2, shown re-
spectively in Figures 47, 48 and 49. The filtered results
were filtered on a minimal FaceVACS scores within the
projections of an identity.

The unfiltered results are distorted, even for iden-
tities that are clustered in the filtered results of the
GANformer. As there is no low dimensional structure
present in the unfiltered data, it is unlikely that the latent
directions can be acquired. Filtering the training data is
thus required.

The filtered results of the GANformer are clustered in
identities, like the t-SNE of the StyleGAN2 latents. Note
that some identities have a more distorted mapping in
the filtered GANformer results, which suggests that the
used filter is not optimal for removing distant latents.

b) SVD
The SVD method was used on the GANformer to

analyse the latent space around the face, moved with the
mean neutral smile vector. The neutral smile pairs with
various thresholds on their FaceVACS score were used
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(a) (b) (c)

Fig. 13: (a): The FaceVACS score distribution of the aligned - projected pairs using the GANformer and StyleGAN2.
(b): The FaceVACS score distribution of the neutral - expression pairs using the GANformer. (c): The FaceVACS
score distribution of the neutral - expression pairs using StyleGAN2. Zoom in for better visibility.

to determine the relevant SVD parameters. In all cases
the mean vector did not seem to transform the reference
face to a smiling face, neither was adding singular
components showing clear changes towards smiling.
Instead, by adding additional singular components the
face decayed quickly, as shown in Figure 14.

For StyleGAN2 the unfiltered mean vector was used.
In contrast to the GANformer, the mean neutral smile
vector did seem to represent the smile direction. The
added singular components augmented attributes such
as hair style and skin colour, as shown in Figure 14.
This variation is likely due to the orthogonal property
of the SVD. The latent space of StyleGAN is linearly
separable, therefore any other direction induced by the
multiple neutral-smile vectors acts on other linearly
separable attributes.

The contrasting results between the models support
the fact that the latent space of StyleGAN2 is better
described. This is something that is seen throughout this
method. As the GANformer needs an additional loss to
retain the projector within Wface. In addition to that
the lack of completeness is shown with the fact that
all but smile are not projected correctly. On the other
hand the space between faces is described as shown in
the interpolations in Z and W from mapped z samples
in Figures 38 and 39. It is expected that with longer
training the latent space will be more fully described.

c) SVM
In a linearly separable latent space, fitting a linear

SVM between the projected neutral and smile latents,
the normal onto the hyperplane describes the neutral
- smile latent direction. The training data is acquired
without supervision and therefore the labeled neutral and
smile may not be actually true to their label. While the
unfiltered set resulted in an accuracy of 99.6%, due to
the poor quality the latent direction was not representing
anything.

Finding a filter which resulted in a proper latent
direction was not a trivial task, as the classes needed
to be balanced and the FaceVACS score does not imply
correct labels. A proper filter was implemented by

TABLE V: Confusion matrix of linear SVM fit on
GANformer projected neutral and smile latents.

neutral-smile Predicted
156 Neutral Smile Accuracy 0.92

True
value

Neutral 82 5 True neutral rate 0.94
Smile 7 62 True expression rate 0.90

removing latents based on their FaceVACS entry if their
score was s < 0.9. A balanced neutral - smile ratio was
provided as shown in Table V.

The latent direction did seem to be oriented in the
neutral smile direction, causing smiles on neutral faces,
Figure 15 shows an example. In general the identities are
kept, but the neutralisation was not always successful.
In addition to this, latent direction is not completely
disentangled, the pose, hair color, eye direction, appear-
ance of glasses and teeth structure changes over the
augmentations. It should be noted that in some instances,
the latent direction did not change the expression at all.

The linear SVM on unfiltered projected StyleGAN2
latents was fitted perfectly and resulted in a representa-
tive latent direction, as shown in Figure 15. In contrast
to the GANformer, the neutralisation did work on all
samples. Like the GANformer, the latent direction was
not completely free of entanglement and male faces
got more feminine towards the smiling direction. It is
noted that the reference faces are closer to the smile
than the neutral face in the SVD method, as in SVM
mean distance from hyperplane is taken, rather that
the distance between the two populations in the SVD
method.

Figure 16 show the FaceVACS results between the
neutral and scaled smile faces for both models. While
the GANformer shows a higher similarity, the actual
variety in smile is smaller than in StyleGAN2. A higher
scale is needed for the same variation in smile. This
small augmentation is likely due to the scale acquired
during the training of the latent direction. Some pro-
jected neutral faces have slight smiles and while some
projected smile faces are very similar to the neutral
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Fig. 14: The results of the SVD generation on one identity for both models. The upper two rows use the GANformer,
while the bottom row uses StyleGAN2. The augmentations are done on the reference face using the mean vector
and additional sampled singular components. In the middle row the vector USL is scaled with 0.5, while the two
other rows have a scaling of 1.0.

Fig. 15: The results of the SVM generation on one
identity for both models. The first column shows the
reference face, whereas the resulting columns show the
augmentation with an increasing scale.

faces. Therefore the populations are closer to each other
and the inherent scale too small. While the filter filters
deviating identities to encourage disentangled data, this
does not guarantee a well defined neutral and smile pair
in terms of expression. In fact, it may even encourage
pairs that are too similar.

This also explains the fact that the neutralisation of
the GANformer does not work as well as of StyleGAN2,
as a higher scale is needed as well. Generations with
a higher neutralisation scales are shown in Figures 17
and 50.

The neutral smile latent direction of the GANformer
is not completely disentangled. One cause can be the that
the latent space has a limited separability and requires
more training. In addition to that, it may be that the
found latent direction is not optimal. As noted finding
a latent direction is not trivial, it is very sensitive to the
selection neutral smile latents. Another factor that may
influence the entanglement is the use of attention in the
architecture of the GANformer. As seen in Figures 5
and 23 the eyes and mouth do have overlapping latent
components, interaction between these two attributes is
possible, such as the changes in eye direction. On the
contrary, the hair tends to change in some identities as
well, while the latent components attending to the hair is
negatively correlated with those of skin, eyes, eyebrows
and mouth. The fact that this only happens to a small set

(a)

(b)

Fig. 16: (a): The FaceVACS score distribution of the
generated neutral smile pairs per scale using the GAN-
former. (b): The FaceVACS score distribution of the
generated neutral smile pairs per scale using the Style-
GAN2. Zoom in for better visibility.

Fig. 17: Effect of scaling the the distance for both
neutralisation and the smiling attribute on two generated
identities using the GANformer.
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of samples makes it less likely that this issue is present
due to the architecture, but rather an entangled latent
space.

The fact that a very specific set is needed is a
downside of the projection method. This method needs
to provide reliable results, such that the training set
for the SVM consists out of representative data. As
a recommendation for future research to improve this
method, a system that classifies the magnitude of the
smile and neutral expressions should be added. This can
advance this work in two directions. First, the current
training set is based on similar identities, but this still
allows mislabeled faces. The classifier may serve as an
extra quality control for a better latent direction. Second,
the current evaluation is done qualitatively and with
the use of FaceVACS. As shown some generated smile
and neutral faces are mislabeled. With the classifier the
expressions of the generated faces and the effect of the
scaling can be quantized, which leads in turn to a better
comparison between other models such as StyleGAN2.

To improve the separability of the latent space, the
model should be trained for more steps. This will
also improve the representation of under represented
expressions in the latent space, such as scream and
disgust.

C. Conclusion on Semantic Control

The first goal of this section was to evaluate whether
existing identities can be reconstructed from the latent
space of the GANformer. The projector on the current
model needs a regularization term, to retain the projected
latent in the subspace of faces, Wface. The FaceVACS
verification shows that none of the existing projected
pairs have the same identity. The qualitative results show
that only holistic attributes of the existing identities
are projected similarly. While the neutral and smile
expressions of existing identities are also found in the
projected faces, other more ambiguous and detailed
expressions are not projected correctly. It is argued that
these other expressions are under represented in the
training data and therefore not represented in the latent
space. As a suggestion for future work, more training
may lift this limitation. Even though the quality of the
expressions vary, the FaceVACS score suggests that the
projected faces of one existing identity do have the same
identity, a requirement for disentangled labeled data.

The second objective was to investigate to what extent
the smile expression can be controlled while maintaining
the same identity. It is shown that projected latents are
noisy and need to be filtered. While the SVD method
works on StyleGAN2, neither the mean vector and added
singular components can construct smiling faces in the
GANformer. The variations by adding the orthogonal
singular components emphasizes the linear separability
and high descriptiveness of the StyleGAN2 latent space,
while the lack of in the used GANformer model.

The SVM method is, with a specific subset of pro-
jected latents, able to find a latent direction that controls
the neutral smile attributes. The scale is inherently small
due to the training set. Therefore a larger scale is needed
to find similar degree of change in expression as found in
StyleGAN2. The found latent direction is not completely
disentangled. The latent direction is likely not optimal,
in addition to that the latent space is only linearly
separable to a certain extend. In some cases the latent
direction does not control the smile expression.

Two suggestions are provided. A classifier should be
used to classify the magnitude of the projected and
generated expressions, this improves the filtering and
makes the evaluation and comparison more explicit.
In addition to that, it is argued that the shortcomings
concerning the various expressions and entanglement
are mostly due to the lack of training. With further
training the latent space will likely head towards the
descriptiveness and disentanglement of the fully trained
latent space of StyleGAN2.

V. CONCLUSION

In this work the GANformer model is explored for
two uses in creating synthetic face databases, without the
need of training the model for the specific applications,
but general face synthesis instead.

First the attention is investigated on the use of
segmentation. This unique property makes this model
beneficial to use over well known models such as
StyleGAN2. The results show segmenting behaviour,
though more work is needed to put this into practice.
Suggestions for future work are to use multiple layers
and probability maps and to fine tuning model and
training parameters.

With augmentation multiple faces of the same identity
can be created, this requires generation based on a
condition. Using the reconstruction of faces to find latent
directions, it is seen that some control over the neutral
smile direction is gained. It is suggested to include a
expression classifier to improve and evaluate the process.
In addition to that the model should be trained longer
for a higher descriptiveness to include other expression
and to achieve a higher level of separability.

In both the segmentation and the smile augmentation
cases compelling results are shown and indicate the pos-
sibilities to use the GANformer for multiple applications
in synthetic face database generation. However further
work is needed in both objectives to acquire working
solutions and to create synthetic face databases.
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APPENDIX

A. Technical Background

1) Transformer
The transformer model is a type of neural network

block, like the multi-layer perceptron (MLP) and con-
volutional neural layer in a CNN. It operates using an
attention mechanism to enable long range interactions.
The transformer was introduced by [10] and consists out
of an encode-decoder architecture. Subsequent works
such as Generative Pre-trained Transformer 2 (GPT-2)
[12] and Vision Transformer (ViT) [13] only use the
encoder. While the original transformer encoder replaced
CNN’s and recurrent neural networks with a residual
multi-head attention and and a residual MLP stacked,
it seems that in literature sometimes only the residual
multi-head attention is referred to as the transformer and
the MLP is left out or replaced with a CNN, such as in
the work of the GANformer [16]. The attention mech-
anism provides insight, which is one of the additional
benefits [10, 14, 16].

This section will describe the attention mechanism
and some supporting elements of the transformer model.

a) Scaled Dot-Product Attention
The multi-head attention is the core part of the

transformer model. In this section, the computation for
one head is explained, whereas multi-head attention
is a combination of multiple heads. The operation of
one head is referred to as scaled dot-product attention
(SDPA) and is shown in Figure 18. SDPA takes three
inputs matrices, a query Q, a key K and a value
V . Multiple types of attention mechanisms have been
developed, such as the well known self-attention and
the bipartite attention used in the GANformer. The
various attention mechanism often differ in their input
and whether the SDPA is partitioned with for example a
shifting window. In self-attention the three matrices are
constructed out of one input matrix X using trainable
linear projection matrices as shown in Equation (5). Here
X is build up from a set of N input vectors with an
embedding dimension of D. For text N refers to the
embedding of words and for images N can be related
to the pixels or a patch in an image.

X ∈ IRN×D (4)

Q = XWQ K = XWK V = XW V (5)

Using the Q, K and V matrices the SDPA is per-
formed as shown in Equation (6). The result is a
weighted value matrix, where each element is weighted
by the attention score on all elements of the input
sequence X . First the matrix multiplication QKT gets
the inner product of the matrices. The resulting score is
a degree of attention, a similarity between the elements.
The scores are normalized, which enhances the gradient
stability [14]. Next the Softmax converts the values to

Fig. 18: Scaled Dot-Product Attention (left) and Multi-
Head Self-Attention (right) from [10]

probabilities. The last operation multiplies the probabili-
ties with the value matrix V to acquire a weighted value
matrix. Note that the input and output matrices have the
same dimension.

Due to the fact that every element attends to every
other element, global interaction is enabled. A downside
is the quadratic computational load O(n2) with large
dimensions or many elements.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (6)

Attention(Q,K, V ) ∈ RN×dv (7)

b) Multi-Head Self Attention
With a single attention mechanism as the one ex-

plained above the focus between different interactions
are averaged. By adding parallel attention mechanisms,
equally important interactions are not influenced by one
another. In addition to that, each attention mechanism
has its own weight matrices W . These transform the
input to different subspaces, each eventually trained for
specific patterns and tasks [10].

The combination of self-attention is the multi-head
self-attention (MSA), as shown in Equation (8), where
each attention mechanism is a head. A schematic of
MSA can be found in Figure 18.The outcome of each
head is concatenated and transformed with a weight
matrix W 0 as shown in Equation (8). Note that the
output has the same dimension as input matrix X .
To incorporate the output information of the attention
mechanism, a residual connection with normalisation
such as LayerNorm(X +MSA(X)) is performed.

MSA(Q,K, V ) = Concat(h1, ..., hh)WO

where hi = Attention(QWQ
i ,KWK

i , V W V
i )

(8)

c) Positional Encoding
While CNNs and RNNs process the input data in a

structured manner, due to the matrix multiplications of
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Fig. 19: A visual example of the entanglement problem
in the original GAN. (a) In the training data some
variations between attributes are missing, such as in the
combination with gender and facial hair. (b) To match
the latent space Z with the distribution of the training
data, the latent space is warped and entangled. (c) By
introducing a mapping network, these attributes can get
disentangled. Figure from [7].

all elements this is not inherently present in the attention
mechanism. Therefore information about the position of
the elements need to be added. A common method is
to add this information to the elements embeddings.
Multiple works have discussed how this should be
included for text and image based models, variating
between fixed, learned, absolute, relative, 1D and 2D. It
turns out that the implementation method is not relevant,
as long as the information is included [10, 13].

2) GANs and StyleGAN

The generative adversarial network (GAN) architec-
ture consists out of generator G and a discriminator
D that are training in a competitive game [46, 47].
In face generation the generator takes a random input
vector z and generates an output G(z) that resembles
a face based on the distribution of the training data,
such as FFHQ [8]. The goal of the generator is to fool
the discriminator by generating realistic images. The
discriminator is either presented with a real face x or
with a fake face G(z) and needs to detect whether it is
real or fake.

A problem in image generation is that the distribution
of latent space Z should match to the distribution of the
training set. This results in entanglement of attributes in
the latent space, as illustrated in Figure 19. The authors
of [7, 8] propose a style-based generator, consisting out
of a mapping f and a synthesis g network. A schematic
overview is shown in Figure 20. The sampled vector
z is first embedded into an intermediate latent vector
f(z) = w. Since the distribution of latent space W can
be learned, it tends to result in a more disentangled and
linear space. The synthesis network learns a constant,
before each convolutional layer the disentangled style
vector w inserted. With stochastic inputs at each layer
minor variations affecting for example freckles and hair
are introduced.

Fig. 20: A schematic overview of a regular generator
and a style based generator. The regular generator builds
the image on top of the latent z. In the style based
generator a mapping network f maps z → w in an
intermediate latent space W . The image is build up
from a constant value in the synthesis network, the style
vector is transferred in every layer.

a) Projector
The StyleGAN2 projector provides an optimization

framework to find a representative latent vector w that
synthesizes a similar looking image to a given target
image [8]. The initial latent w is the average over 10000
mappings. Besides this the noise maps that are inserted
in the layers of the synthesis network are optimised as
well. Due to this the loss function is based on an image
quality term and a weighted noise regularization term
as well. According to the authors the latter prevents that
the target image signal creeps into the noise maps. The
image quality term is based on the Learned Perceptual
Image Patch Similarity (LPIPS) distance [48].

3) GANformer
The GANformer is a style based model that includes

transformers within the mapping and synthesis networks
[16]. The authors recognize shortcomings in both the
StyleGAN model and the transformer model using self-
attention. First the main differences with StyleGAN
considering the implementation of the transformers are
clarified. After this bipartite attention, an alternative to
self-attention for high dimensional data is discussed in
the following section.

StyleGAN uses an intermediate latent vector w, as
an input to the synthesis network. A downside is that
the vector is applied globally, the vector is not able to
emphasize or only influence parts of the face such as the
hair or skin. The GANformer breaks the latent vector
down into a number of equally sized latent components
Y . The latent components attend to the image, which
is effectively a spatial operation. Therefore the style of
each latent component are applied locally in the image.

While in StyleGAN the style vector is inserted before
every convolutional layer, the latent components prop-
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agate from the start through the synthesis network. In-
stead of the modulation, the vectors attend to the image
features. Note that the value of the latent components is
not adjusted by the attention mechanism.

a) Bipartite Attention
In the following sections the notation of [16] is

kept, where the intermediate latent vector w equals the
flattened latent components Y .

In self-attention all pairwise relations of the input are
considered and each single element is updated by attend-
ing to all other elements. This process is computationally
expensive when it is applied on high dimensional data
such as images. Combining the idea of the latent vector
w and attention the authors of the GANformer propose
a more general attention mechanism, called bipartite
attention as shown in Equation (9). Instead of acting on
itself, a bipartite attention features a bipartite graph. Its
inputs can be divided into two disjoint and independent
sets X and Y , in which every element of each set is
connected to all the elements of the other set. It is a
generalisation such that when X = Y , regular self-
attention is applied.

In the GANformer Xn×d are the image features which
ultimately result in the generated image or face, where
the size of the image is represented by n = H × W .
Y m×d represents the latent variable, the concurrent
format for the intermediate latent vector w in the regular
StyleGAN2. m is the number of latent components,
whereas d is the dimension of either the image features
or the latent components, equal in both X and Y . Since
m ∈ [8, 32] and thus m < n, the computational com-
plexity is reduced to a bilinear complexity of O(mn).

a(X,Y ) = Attention(q(X), k(Y ), v(Y )) (9)

In general, bipartite attention a(A,B) propagates in-
formation from B to A. Note that the reverse operation
a(B,A) returns the same probability matrix, but trans-
posed: ABT = (BAT )T . The propagation is the result
of the last operation between the probabilities between
A and B and the value matrix.

b) Simplex Attention
Besides the bipartite input, two update rules are pro-

posed that include scaling and bias, these are the simplex
and duplex update rule. In simplex Equation (10), the
information is distributed in a single direction over the
bipartite graph.

The image features X are normalized to zero-mean
and unit-variance using Equation (11). The result of the
bipartite attention is mapped by γ and β to function
as scale and bias respectively on the normalized image
features. Note that this operation is very similar to
adaptive instance normalization (AdaIN), the operation
used to fuse the style vector w with the image features
in the original StyleGAN [7]. The difference is that
the style information is based on the attention between

the latent components and the image features, rather a
learned affine transformation of the style vector.

us(X,Y ) = γ(a(X,Y ))⊙ ω(X) + β(a(X,Y )) (10)

ω(X) =
X − µ(X)

σ(X)
(11)

c) Duplex Attention
In the duplex attention, information propagates in

both directions between the image features X and latent
variables Y . Instead of only storing the style content,
the latent variables Y form a key value structure on
their own, Y = (Km×d, V m×d). Here the value V stores
the style just as Y in the simplex attention, where the
addition is that the key K tracks the centroids of the
semantic segmentent it attends to. The duplex update
rule is shown in Equation (12). Note that the latter part
of the computation is similar to the simplex update rule
Equation (10), in which information is propagated from
the latent components to the image features.

However before this update is calculated, informa-
tion is also propagated from the image features to the
centroids K. The centroids K are defined by as in
Equation (13), note the order difference from X to Y .

Using this duplex structure the information flows both
ways. X updates the latent centroids K, whereas the
latents values V update the image features X . Note that
in this work duplex attention is used.

ud(X,Y ) = γ(a(X,K, V ))⊙ ω(X)

+ β(a(X,K, V ))
(12)

K = a(Y,X) (13)

4) Attention Maps
The GANformer returns the synthesised face as well

as multiple attention maps. The attention maps are pro-
duced in each attention layer and represents the attention
distribution between the latent components. These maps
can give insight into the attention mechanism and the
generative process. In the results on the CLEVR model
published by the authors, it is shown that the role of the
latent variables changes throughout the model. Whereas
layer components show segmenting behaviour in the
lower layers, the latent component in higher layers seem
to represent the surface normal.

Unfortunately such a analysis is not done for gener-
ated faces by the FFHQ face model. The behaviour of
the attention on generating faces will be analysed, an
example of which can be seen in Figure 2. In contrast
to the CLEVR scenes, a face is not a collection of indi-
vidual elements, but more like continuously connected
facial semantics.

The attention maps are a simplified graphical repre-
sentation of the probabilities as calculated in a(X,Y ),
that is the output of Softmax(QKT

√
dk

), thus before the
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value V is multiplied as shown in the attention Equa-
tion (6). For each image feature element, its probability
with each centroid of its latent component is given. The
latent component with the highest probability will be
shown for that pixel in the attention map. Therefore the
attention maps shows at every location the dominant
latent component. The attention maps do not show
how the image features are affected by the rest of the
network, such as the convolutions, or how the centroids
K are updated.

B. Implementation Details

As mentioned in Section III-B the model acquired
from [41] is different than described in the paper [16].
In this section the most noteworthy differences in the
implementation details of the default model is compared
to the details described in the paper.

Exact information about the model used in the paper
is not provided, nor is it clear for how many steps
the pre-trained model is actually trained for for a valid
comparison. On the Github [41], the author note that
the models are trained between 5k-15k kimg-steps. This
versus 50-70k kimg-steps for StyleGAN2.

One difference is that Y n=16,d=32 for the pre-trained
model, while the authors note that their dimensions were
Y n=8,d=16. Their choice was based on performance,
though not disclosing more information about the per-
formance metric and performance differences between
other implementations.

Besides that, the authors mention that multi-head
attention was used, while the default model only has
one head. This is odd, as all the attention in one layer,
thus all pairwise relations between the image and the
latent components, is averaged. This can be problematic
as equally important pairwise attentions, for example at-
tention to the mouth and the hair, influence one another.
In earlier work, such as in the vision transformer[13],
multi-head attention was applied as well.

Another major difference is the addition of a global
latent component, a vector with dimension d similar
to the latent component dimension. Before bipartite
attention is applied, the global latent modulates the
image features X uniformly. The idea is that the global
latent modulates ”holistic aspects of the image such as
global lighting conditions, global style properties for e.g.
faces, etc.”[41].

C. t-SNE

t-SNE is an unsupervised statistical method to visual-
ize high dimensional data in a low dimensional space
[44]. Its visualisation it is used for data exploration.
t-SNE estimates the distribution of high dimensional
points, or latents in this work. This distribution is then
reflected in an iterative manner to a lower dimensional

space, by minimizing the Kullback–Leibler (KL) diver-
gence between the high and low dimensional probability
distributions.

The probability distribution of the high dimensional
points is acquired with Equation (14). pij represents
the similarity between the points i and j. The set
of all similarities represents its probability distribution.
The probability of picking a certain pair (i, j) is then
proportional to the similarity of the pair. As the smaller
distances have a high probability, the local pairwise
structure of the space is maintained when minimizing
the KL divergence.

pij =
exp(−||xi − xj ||2)/2σ2∑

k

∑
l=k exp(−||xk − xl||2)/2σ2

(14)
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Fig. 21: The FID quality during the training for each trained model. The left plot shows the complete training,
the right plot shows the last 5000 kimg steps in detail. Each latent dimension is indicated with a different marker.
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Fig. 22: The FID quality during the training for the extended training of the 16− 32 model.
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(a) (b)

(c) (d)

Fig. 23: The correlation between the latent components and the parse labels of layer 8, 9, 10 and 11 for the default
network based on 1000 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated within
the figure.
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Fig. 24: Example of attention maps and outputs for each layer for each analysed trained model.
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Fig. 25: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-32 #1 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 26: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-32 #2 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 27: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-32 #3 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 28: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-32 #1 network trained for 1427k steps based on 500 generated samples. Only if the correlation |c| > 0.1 the
correlations are annotated within the figure.
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Fig. 29: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-32 #1 network trained for 5008k steps based on 500 generated samples. Only if the correlation |c| > 0.1 the
correlations are annotated within the figure.
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Fig. 30: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-32 #1 network trained for 8005k steps based on 500 generated samples. Only if the correlation |c| > 0.1 the
correlations are annotated within the figure.
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Fig. 31: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
8-32 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 32: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
12-32 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 33: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-16 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 34: The correlation between the latent components and the parse labels of layer 7, 8, 9, 10 and 11 for the
16-12 network based on 500 generated samples. Only if the correlation |c| > 0.1 the correlations are annotated
within the figure.
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Fig. 35: Generated faces from standard normal sampling
in the Z space

Fig. 36: Face generation by interpolating 5 random z
vectors using 8 steps.

Fig. 37: Generated faces from standard normal sampling
in the W space.

Fig. 38: Face generation by interpolating 5 random w
vectors using 8 steps.



April 20, 2022, Exploring the GANformer for Face Generation 35

Fig. 39: Face generation by mapping 5 z vectors to w
vectors and interpolating these using 8 steps.

Fig. 40: Face generation from random w based on a
normal distribution acquired by 10000 mappings.

Fig. 41: Face generation from random w based on
reconstructive sampling of the distribution using SVD
acquired by 10000 mappings.
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Fig. 42: A example of pose projection using the GANformer.
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Fig. 43: A example of illumination projection using the GANformer.
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Fig. 44: A selection of the highest scores alignment
projection pairs.

Fig. 45: An example of projecting faces with a dark skin
tone using the GANformer.
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Fig. 46: An example of similar projected faces using the GANformer while their aligned origins are more distanced.

Fig. 47: A t-SNE analysis on unfiltered projected latents
of the GANformer model. With a perplexity of 10.0

Fig. 48: A t-SNE analysis on filtered projected latents
with a threshold of 0.8 of the GANformer model. With
a perplexity of 10.0.

Fig. 49: A t-SNE analysis on projected latents of the
StyleGAN2 model. With a perplexity of 10.0.
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Fig. 50: Effect of scaling the the distance for both neutralisation and the smiling attribute.
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