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Abstract— Bipolar electrodes that record the electrical 

signals of the muscles have been the most common 
approach of surface muscle activity measurement in the 
past. In recent years, high-density electromyography (HD-
EMG) has shown to have its advantages in recording EMG 
signals of the muscles with considerably large areas. 
Previous EMG-driven models have been used to analyze 
lumbosacral joint moments; however, none of them was 
driven by HD-EMG, and therefore, it is unclear to what 
extent HD-EMG technology can benefit the analysis of 
joint moments. In the current study, we assessed effect of 
bipolar EMG (BP-EMG), HD-EMG and a new method of 
processing HD-EMG based on watershed algorithm for 
each muscle in driving a large-scale HD-EMG-driven 
model of trunk muscles to estimate the L5-S1 joint 
moments during different symmetric lifting tasks. We also 
compared the differences at EMG levels of BP-EMG and 
HD-EMG. Moreover, we provided a highly accurate map of 
thoracolumbar muscle activity during these movements 
using 512 HD-EMG channels (256 electrodes on each side 
of the spine). During our experiment, subject’s kinematics, 
ground reaction forces, HD-EMGs of thoracolumbar 
muscles and BP-EMGs of abdominal muscles were used 
in estimation of L5-S1 joint moment through inverse 
dynamics and HD-EMG driven modelling. One healthy 
male subject performed symmetric box lifting tasks with 5 
and 15 kg weight using squat and stoop techniques. We 
found 0,88 average correlation coefficient (R2) between the 
reference moments from ID and estimated joint moments 
using HD-EMG recordings and the root mean squared 
errors (RMSE) ranging from 19.23 to 25.07 Nm. This study 
represents the first step for developing a framework that 
allows estimating thoracolumbar joint moments which has 
the potential to be used together with emerging embedded 
textile electrodes, eliminating the need for palpation of 
spine to locate the precise sites of bipolar electrode 
placements. 
 

Index Terms— Exoskeleton, EMG-driven Modeling, high-
density electromyography 
 

I. INTRODUCTION 
ow back pain (LBP) is a prevalent and disabling work-
related musculoskeletal complaint encountered in variety  
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of industries. The point prevalence of low back pain (LBP) in 
2017 was estimated to be about 7.5% of the global population, 
or around 577.0 million people [1]. It is also estimated that 
between 70% and 85% of the population suffer from at least 
one low back pain episode in their live [2]. Epidemiological 
studies reveal that LBP is related to awkward postures, 
including trunk flexion with or without rotation, combined 
trunk flexion and manual lifting, frequent trunk bending and 
prolonged static trunk flexion [3]. This will not only affect the 
quality of life of the workers but also burdens economical 
detriments to care-taking institutes and employers through 
diagnosis, treatment, or in the worst case by replacing 
employees. 

Due to the advances in technology fields such as 
mechanical engineering, biomedical engineering, electronic 
engineering and artificial intelligence, robotic exoskeleton 
technology has acquired rapid development in recent years [4]. 
Exoskeletons developed significantly to be used for human 
power augmentation and robotic rehabilitation by means of 
producing assistive forces and torques to the human joints [4]. 
In the clinical setting, exoskeletons can be used in the 
rehabilitation of post-stroke patients and patients with sensory-
motor impairments to recover their lost abilities [5]. Besides 
clinical use, there is also a military use of exoskeletons in 
dismounted combatants who need to carry weights with high 
proportion to their weight [6]. As a result of successful 
medical and military developments of exoskeletons, there has 
been a huge upsurge in the industrial use of robotic 
exoskeletons in recent years [7]. Industrial robotic 
exoskeletons aim to reduce the mechanical loads that the 
workers endure during physically demanding tasks and, 
therefore, reduce the incidence of musculoskeletal injuries and 
resulting financial burden [7]. Back-support exoskeletons 
were developed in order to assist back muscles and support 
them in a way that reduces the risk of musculoskeletal injuries 
and especially LBP. Previous studies have shown that back-
support exoskeletons can reduce the amount of physical load 
on the back muscles about 10% to 40% by lowering the 
muscular activities [8]. The amount of decrease in physical 
load depends on the ability of the exoskeleton to provide 
assistive torque while retaining the moveability of the wearer. 
Since active devices have more potential in providing assistive 
forces and torques in a controlled manner, they might have 
better performance in reducing the physical load of muscles 
and the spine. 
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 Currently, there have been some studies that used different 
control strategies to control an active exoskeleton related to 
different parts of the body based on segment angles, 
interaction forces, muscle forces and a combination of these 
variables [9-14]. Being an open topic, there is no definite 
control strategy of a back-support exoskeleton for reducing the 
risk of LBP. However, some control strategies such as 
minimizing electromyographic (EMG) activity of back 
muscles have a physiological variable that can be measured 
using non-invasive techniques [12]. Since there is a highly 
non-linear relation between EMG and joint loading, a 
reduction in back muscle EMG does not necessarily result in a 
reduction in spinal loading [15]. On the other hand, it has been 
proven that the magnitude of back muscle forces directly 
affects the magnitude of the loading of intervertebral joints 
[12]. Hara et. al. studied the effect of muscle force on the 
lumbosacral (L5-S1) joint through a variety of lifting tasks 
[12]. Their study shows that the peak compression force on the 
aforementioned joint during lifting of 15kg box can go up to 
6000N. However, to the best of our knowledge, there is no 
controller considering estimates of back muscle forces and 
spine compressive forces in their control action. 

Another critical parameter in the back-support exoskeleton 
field that needs to be considered in the control strategy is the 
neuromechanics of the back muscles. Electrophysiological 
activation of a muscle leads to the production of mechanical 
force in that muscle [16]. This muscle activity can be 
measured by surface electrodes that show the EMG of muscles 
through electrical signals [16]. The classical method of 
recording such activity was using a bipolar (BP) electrode 
setup [17]. However, recording such muscles’ activity by 
using BP electrodes can lead to misinterpreting results. This 
can be traced back to the nature of back muscles that have 
considerably wide areas and span over multiple joints. 
Therefore, collecting data from large muscles like those in the 
back with a bipolar electrode might not contain the full muscle 
activation patterns since these muscles do not activate 
heterogeneously [18,19]. In recent years, high-density 
electromyography (HD-EMG) has provided a new perspective 
on the field due to its potential to measure large areas. These 
potentials can be referred to as electrode size, inter-electrode 
distance, collection density, and collection surface [19]. While 
the first three parameters showed not to have a significant 
improvement in muscle force estimations, the collection 
surface showed remarkable improvement (25% decrease in 
root mean squared deviation between BP-EMG and HD-
EMG) [19]. This would result in misinterpretation of muscle 
activation, which can be compensated using HD-EMG instead 
of conventional BP-EMGs. 

To the best of our knowledge, no previous study has 
assessed the effects of driving an EMG-driven model 
representing the trunk with HD-EMG signals. In this paper, 
we will drive a large-scale EMG-driven model of the trunk by 
using a large-scale setup (512 HD-EMG channels) to estimate 
lumbar joint moments. Therefore, the goal of the present study 
is to provide, for the first time, a highly accurate map of 
thoracolumbar muscle activity during symmetric box lifting 

tasks by using a large set of HD-EMG signals. Then, we 
compared lumbosacral joint moments estimated using bipolar 
and high-density electromyography to validate our models. 
Based on the previously mentioned advantages of HD-EMGs, 
we hypothesize that by using the HD-EMG in estimating 
thoracolumbar joint moments, the joint moment estimation 
error will be reduced with respect to the gold standard, which 
is using bipolar to drive an EMG-driven model. However, 
since muscle activity is one primary input to the model, our 
secondary research question aimed at assessing fundamental 
differences at EMG levels of bipolar and high-density EMG 
configurations. 

II. METHODS  
A. Subjects and Apparatus 

The subject of this study was a 26 years old male participant 
with 68.0 kg weight, 175 cm height and without any 
background of low back pain. The experimental protocol was 
approved by the Ethics Committee of the University of 
Twente and the participant gave written informed consent. 

To measure ground reaction forces (GRF) and moments, 
AMTI dual force-plate (AMTI, MA, USA) was used. During 
all experimental conditions, both feet of the subject were on 
the force plate (one leg on each side) and the sampling 
frequency of the recording was 2048 Hz. 

 

 
Fig. 1. Subject of the experiment with four grids o electrode on each side 

of the spine. The reflective markers and EMG recording systems are attached 
and the subject is standing on the force plate. 

 

The subject was being recorded through different box lifting 
tasks. Qualisys motion capture system (Qualisys Medical AB, 
Gothenburg, Sweden) was used to measure the kinematics of 
the full-body of the subject as well as the box. The 3D 
trajectories of 72 spherical reflective markers (64 on subject 
and 8 on each corner of the box) were recorded by 10 infrared 
Oqus cameras at a frequency of 128 Hz, see figure 1. Markers 
that were placed on the body of the subject can be divided into 
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two groups: bony landmark markers and cluster markers (or 
so-called, triplets). The first group was used to scale a generic 
model to match participant's anthropometric characteristics 
and the second group was used to drive inverse kinematics. 
Thirty-seven markers that were used to scale the model were 
placed on: first and fifth metatarsal tuberosity, medial and 
lateral malleolus, calcaneus, medial and lateral femur 
epicondyle, anterior and posterior superior iliac spine, T10, T6 
and C7 spinous process, sternum, clavicle, acromion, medial 
and lateral humerus epicondyle, ulna-styloid and radius-
styloid process and second and fifth knuckles of the hand of 
both right and left side of the body. The remainder of markers 
were placed in a triangular order to track the subject’s 
kinematics during inverse kinematics and were located on 
arm, forearm, thigh and shank. To track the hand, trunk, and 
foot; radius-styloid process and second and fifth knuckles of 
the hand; C7, acromion and clavicle, anterior and posterior 
superior iliac spine; and first and fifth metatarsal tuberosity 
and calcaneus markers were used, respectively. 

 

 
Fig. 2. Palpation of spinal processes and the adhered location of high-

density electrodes. 
 

During the experimental session (see part II-C), HD-EMG 
of erector spinae muscles and BP-EMG of abdominal muscles 
were measured, respectively. EMGs were measured using four 
Refa systems (TMSi, Oldenzaal, The Netherlands) and eight 
semi-disposable grids, each consisting of 64 electrodes placed 
in an 8×8 arrangement. These four Refas accounted for 536 
channels consisting of 512 HD-EMG channels and 6 BP-EMG 
channels. Each of the grids had a surface of 71×76 mm2, 
electrodes size of 1 mm with an 8.5 mm inter-electrode 
distance. The electrodes adhered to the skin on both sides of 
the spine with a 1cm lateral distance. The low edge of the 
bottom grid was leveled with the L5 spinous process and 
adhered above the posterior iliac spine, see figure 2. The other 
three grids of each side adhered to the skin on top of each 
other with a 3-5 mm distance between them. This resulted in 
the upper border of the most top grid to locate about the height 
of the inferior angle of the scapula. The activities of 

abdominal muscles were recorded at the following locations: 
approximately 15 cm lateral to umbilicus, above the inguinal 
ligament, and approximately 2 cm lateral to umbilicus for 
external oblique, internal oblique, and rectus abdominis, 
respectively. 

BP-EMGs, HD-EMGs, GRF, and marker trajectories were 
recorded with Qualisys Track Manager (QTM) software. Four 
digital signals going from the motion capture system to each 
of the four Refa systems were used to synchronize the data. 

B. EMG-driven musculoskeletal modeling 
To be able to investigate the differences between the 

recording of muscle activity via BP-EMG and HD-EMG, a 
musculoskeletal model was developed. For this purpose, a 
previously developed toolbox called Calibrated EMG-
Informed Neuromusculoskeletal (NMS) Modelling Toolbox 
(CEINMS) [20] was used. The model that is obtained by 
CEINMS, will be later able to estimate the net L5-S1 joint 
moment through different experimental conditions with the 
focus being only on thoracolumbar muscles. These muscles 
consist of longissimus thoracic, longissimus lumborum, and 
iliocostalis lumborum.  However, the model needs to be 
calibrated first. 

The calibration process involved an open-source application 
named OpenSim [21] in which several biomechanical 
properties such as joint moments, muscle-tendon unit (MTU) 
length, and moment arms could be calculated using inverse 
kinematics (IK), inverse dynamics (ID), and muscle analysis 
(MA) toolboxes. These results, together with the EMG 
recordings, make the base for calibrating the CEINMS model. 
The base model that is used in OpenSim is also a previously 
validated musculoskeletal model [22]. This model is also 
known as the lifting full-body model (LFB) which consists of 
30 different body segments with 29 degrees of freedom 
(DOFs) and 238 Hill-type MTUs that depute trunk muscles. 

C. Experimental protocol 
On the first hand, the participant was asked to shave any 

hairs on the back. However, before the start of the experiment, 
the skin was shaved to remove any potential remainders of 
hairs. Furthermore, the area was rubbed with specific skin 
wipes to remove dead skin or oily skin, potentially increasing 
the impedance between the skin and the electrodes. Afterward, 
the subject’s spine was palpated to mark all the relevant 
processes of the spine to determine the desired placement of 
the electrode. After that, the electrodes adhered to the skin, as 
discussed in Section II-A. Two maximum voluntary 
contractions (MVCs) were captured while the subject was 
pushing against a static hindrance to the best of his power, 
once for his back muscles and once for abdominal muscles. 
Recording MVCs would enable us to normalize the EMG 
recordings to be compared to others. Then the reflective 
markers were placed on the skin in the way described in 
Section II-A. The subject was then asked to stand on the force 
plates in a static posture. After the static trial, the subject was 
instructed about the desired tasks. The tasks consist of two 
symmetric box (22×40×30 cm) lifting tasks with two different 
weights of 5kg and 15kg. The first task is called squat (SQ) 
lifting, which is going down flexing the knees with keeping 
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Fig. 3.  General pipeline of the data analysis, consisting of MOtoNMS toolbox, OpenSim analysis, CEINMS calibration and CEINMS execution. The 
final outcome of the pipeline is the net estimated L5-S1 joint moment. 

 

the back as straight as possible and without the calcaneus 
leaving the ground. The second task is called stoop (ST) 
lifting, where the subject has to bent-over to grab the box 
while the knees are as straight as possible. This would lead us 
to a total number of 16 lifting trials in which the subject had to  
go down to grab the box, lift the box to the upright position for 
two repetitions within 20 seconds. The subject was provided 
with 1 minute of rest between each trial to avoid the fatigue 
effect. Moreover, to reduce the bias, trials were randomized 
based on technique and weight. 

D. Data analysis 
The 3D marker trajectories, ground reaction forces (GRF) 

and HD-EMG recordings, were processed using a MATLAB 
toolbox called MOtoNMS [23]. GRFs and marker trajectories 
were low-pass filtered with a cut-off frequency of 6 Hz. 

OpenSim software [21] was then used to scale the LFB 
model to comply with the participant’s anthropometric 
characteristics. The bony landmark markers that have been 
mentioned in Section II-A from the static trial were used to 
scale the model. After that, the 3D marker trajectories and the 
scaled model were used to run the inverse kinematics to obtain 
the joint angles. Later on, joint angles were used to run the 
muscle analysis to obtain the muscle-tendon unit length and 
moment arms of the desired muscles. The box’s weight was 
considered as vertical external forces that apply to both hands 
equally and simultaneously as the half of box’s weight for 
each hand. The onset of hands’ external force was when the 
box markers disengaged the ground about 1 cm. External 
forces of hands, GRFs, and joint angles from IK were then 
used to run the inverse dynamics to obtain the joint moments; 
see figure 3. Being the gold standard in calculation of inverse 
dynamics, the results of ID became our reference to evaluate 
the joint moment estimations from our EMG-driven 
musculoskeletal model [24].  

E. HD-EMG processing 
Following the data-processing, first, noisy or zero channels 

of HD-EMG recordings were interpolated based on the 
adjacent channels. Interpolation had three different conditions 
in which the faulty channels were recalculated based on their 
locations. If the channel was located in the corners, three 

adjacent channels were considered, and if the channel was 
located on edges or in the middle, five and eight adjacent 
channels were considered, respectively. Secondly, the raw 
EMG signals were mean subtracted and band-pass filtered to 
the 30-300 Hz. Then they were rectified, and in order to get a 
linear envelope, a low-pass filter with a cut-off frequency of 6 
Hz was applied to them. Finally, each HD-EMG channel was 
normalized based on the maximum values obtained from the 
MVC recordings of each specific channel, and to further 
smoothen the envelopes to obtain HD-EMG heatmaps, the 
moving root mean square (RMS) of each channel was 
calculated with a 250-millisecond window length. The 
processing steps mentioned above were applied to both BP-
EMGs and HD-EMGs. The difference arises in the next step, 
where we used HD-EMGs and BP-EMGs separately as an 
input to drive our musculoskeletal model. 

In order to calibrate and then drive the CEINMS model, we 
required a mapping between EMG recordings and LFB muscle 
model. While the common approach uses the BP-EMG, a new 
method uses HD-EMG to calibrate the model. Therefore, we 
provided two calibrated models based on common approach 
and the HD-EMG recordings. In the first place, the calibration 
of the model was done based on BP-EMG. Therefore, six 
muscles (longissimus thoracic, longissimus lumborum, and 
iliocostalis lumborum for both sides) for the back and six 
muscles for the abdominal area (rectus abdominis, internal 
oblique, and external oblique for both sides) were used to 
drive the 238 MTUs of the model. The virtual locations of 
bipolar configuration selected out of our HD-EMGs 
recordings were based on the distance of the grid from the 
spine, empty braid in the margin of the grid, and inter-
electrode distances. Therefore, the following points considered 
to locate the relevant channels’ number amongst all eight 
grids: 4 cm lateral to T10, 3 cm lateral to L1, and 6 cm lateral 
to L2 for longissimus thoracic, longissimus lumborum, and 
iliocostalis lumborum, respectively [15] (see figure 4). The 
located neighbor monopolar channels’ raw EMG signals were 
then subtracted from each other to produce the BP-EMG 
configuration. Calibration of the model was then done by 
taking the first repetition of four different trials into account 
(squat 5/15 kg and stoop 5/15 kg). BP-EMGs, joint moments, 
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moment arms, and the MTU lengths of these four conditions 
were used to calibrate the model. The calibrated model was 
then driven based on BP-EMG, moment arms, MTU length 
and the inverse dynamic results to check on the ability of the 
model to estimate the net L5-S1 joint moment through 4×8 
repetitions. In order to drive the CEINMS model based on 
HD-EMGs, we required a method to select and assign specific 
channels of our HD-EMGs to the muscles mentioned above to 
create a mapping between them. 

 
Fig. 4.  Images depicting the high-resolution heatmaps of back muscles for 

squat with 15 kg at the time frame in which inverse dynamics L5-S1 joint 
moment peaked during box-lifting. The stars are locations of bipolar 
configuration in case of using bipolar electrodes for longissimus thoracic, 
longissimus lumborum and iliocostalis lumborum from top to bottom, 
respectively [15]. 

F. Watershed algorithm 
The watershed technique in image processing had 

promising results in finding clusters of HD-EMG channels 
that compromise each other and represent one specific 
muscle’s activity. Therefore, we decided to use “marker-
controlled watershed segmentation” [25]. Watershed takes a 
gray-scale image and treats it as a surface where the lighter 
spots have high activations, and darker spots have low 
activations [26]. Then it locates the local maximums and, 
based on the diffusion of local activations, divides the surface 
into foreground and background and separates an image into 
specific segments [25,26]. Since the watershed uses a gray-
scale image, the colored heatmaps were converted into gray-
scale heatmaps, see figure 5, first row.  

The next step was to decide which time frame to select as 
the reference point to apply the watershed onto it within the 
experiment’s duration. Since we were going to use the clusters 
obtained at this step to drive the models, it has a substantial 
role. Thus, we produced heatmaps of three specific points 
based on the joint moments that we previously acquired with 
ID. These points include two box lifting and lowering peaks 
and the moment where the subject was standing while holding 
the box. Then based on the results of applied watersheds to 
them (see figure 5), we decided to select a specific time frame  

Fig. 5.  These images depict the steps that the watershed algorithm takes to 
produce clusters of HD-EMG channels. Images marked in 1 are the original 
gray-scale heatmaps of back muscles. Images marked in 2 are the resolution 
increased heatmaps of back muscles. Third images show the local maximums 
and the adjacent pixels that have close activations to them. Fourth images 
depict the clusters that are made by algorithm based on detected maximum 
and local minimums. The two bottom images consist of two layers that 
overlap each other. The base layer is the gray-scale heatmap of the back 
muscles (can be seen in the middle images), and the overlapping layer is the 
result of the watershed algorithm that shows each segment with a specific 
color. The stars are locations of bipolar configuration in case of using bipolar 
electrodes for longissimus thoracic, longissimus lumborum and iliocostalis 
lumborum from top to bottom, respectively [15]. 
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as a reference point. The process was applied to one repetition 
for each of the 4 experimental conditions (squat 5/15 kg and 
stoop 5/15 kg). This way, we obtained six clusters of channels 
for our six focused muscles for each of the experiment 
conditions, giving us cumulative 6×4 clusters. Since the 
clusters of channels within the heatmaps of all four conditions 
followed similar patterns, the highest peak of either lifting or 
lowering was selected as the reference time frame within the 
trial’s duration. For each reference time frame, the watershed 
algorithm found a set of clusters of channels that later on we 
mapped to specific muscles, and the same cluster of channels 
was used to drive a muscle for the rest of trials (three 
remaining trials of each experimental condition). We obtained 
six specific clusters for each of our four conditions, different 
from the clusters of other conditions. HD-EMG channels 
within each cluster were averaged to obtain the final signal 
that will drive the EMG-driven musculoskeletal model; see 
figure 5. The way to map cluster of channels to muscles was 
by checking which cluster of markers laid on the position 
where a bipolar electrode would have been placed. Hereafter, 
these results will be referred as HD-EMG inputs of the 
CEINMS execution to estimate the net L5-S1 joint moments. 

To take a further step toward automation of our mapping 
between HD-EMGs and the model’s muscles, we decided to 
implement a new method. Since, for each of the six muscles of 
our model, we had four different clusters of channels (based 
on four different experimental conditions), we overlapped the 
clusters and only took those that were common to the four 
experimental conditions. We also overlapped previously 
mentioned clusters to obtain the union of each muscle’s cluster 
channels, which consisted of all the present HD-EMG 
channels in either of the four clusters. We will call them high-
density intersection (HDI) and high-density union (HDU) of 
EMG recordings, respectively. We had only six clusters that 
could be mapped to the model’s muscles regardless of 
condition. Thus, we drove the model again, once using the 
HDI-EMGs of each muscle as an input to CEINMS execution 
and once using the HDU-EMGs of those muscles to estimate 
net L5-S1 join moments. 

In the second place, the calibration of the model was done 
based on HD-EMGs. This would provide an excellent 
database to investigate the differences between joint moment 
estimations from BP-EMG calibrated model and HD-EMG 
calibrated model. Therefore, a selected group of channels 
based on the previously mentioned watershed method were 
assigned to desired muscles and, together with the joint 
moments, moment arms, and the MTU lengths of those 
muscles used as an input to calibration the model. Same as the 
first approach, the HD-EMG driven model was executed 
through BP-EMGs, HD-EMGs, HDI-EMGs, and HDU-EMGs 
of all trials. 

In order to investigate our secondary research question, we 
compared the EMG recordings of BP, HD, HDI, and HDU 
EMG configurations, for each of six thoracolumbar muscles 
among all trials. Furthermore, to compare the results of model 
calibration based on BP-EMG and HD-EMG, we inquired the 
strength coefficients of the six relevant muscles between two 

calibrated models. strength coefficient is a parameter included 
in CEINMS that scales the maximum isometric force of the 
muscles in the EMG-driven model. This parameter is one of 
the parameters tuned in the calibration procedure. 

The root mean squared error (RMSE) and R2 values were 
calculated between the reference L5-S1 joint moment that was 
achieved via OpenSim ID and the estimates of EMG-driven 
models via CEINMS. At the EMG level, EMG recordings of 
four configurations were divided based on configurations and 
conditions, and the average EMG amplitude was calculated for 
numerical comparison of muscle activity levels. 

III. RESULTS 

A comparison of the net flexion-extension moment profiles 
of L5-S1 joint in BP-EMG, and HD-EMG calibrated CEINMS 
model that was driven with BP-EMGs, HD-EMGs, HDI-
EMGs, and HDU-EMGs; with the OpenSim ID moments can 
be seen in figures 6 and 7. Comparison is made through 
symmetric box lifting cycle (LC). For the BP-EMG calibrated 
model, ID moments were approximately 10 Nm through all 
conditions at the beginning of the trials, suggesting that the 
subject was in a bit of flexion concerning the upright position. 
However, this pattern was different for the model’s 
estimations. BP-EMG, HD-EMG, and HDI-EMG estimations 
started from approximately -2.75 Nm, -12.5 Nm, and -17 NM, 
respectively, which means that the subject was in small 
extension in the beginning. For the HDU-EMG estimations, 
there was a change between flexion and extension through 
different lifting techniques and weights. As it can be seen in 
the first row of figure 6, with the start of lifting the box, joint 
moment gradually raised to its maximum at about 25-30% of 
LC depending on the lifting condition and then reduced as the 
subject reached 50% of LC where he was standing in an 
upright position while holding the box for both ID and BP 
estimations. Moreover, with increased weight in the subject’s 
hands, it can be seen in the plots that the calculated and 
estimated joint moments via ID and BP-EMG were higher 
when the subject was in an upright position (30 and 80 Nm for 
5 and 15 kg). Results also show that the moment peaks for the 
stoop technique are slightly higher than that of the squat 
technique. Furthermore, while the BP-EMG followed ID to a 
reasonable extent in 5 kg conditions, for the 15 kg conditions, 
there is about 30 Nm shortcoming in maximum moment 
prediction for BP-EMG. The second row of figure 6 compares 
ID and HD-EMG estimations. Except for the stoop 15 kg 
condition, where there is almost no difference in L5-S1 joint 
estimation, the overall trend in this comparison is similar to 
the comparison between ID and BP-EMG. Lastly, it is clear 
that although the standard deviations for the 5kg conditions 
are pretty low for ID, BP-EMG and HD-EMG, in the case of 
15 kg conditions, the standard deviation for BP-EMG and HD-
EMG stands lower than ID. 

The root mean squared error between ID reference moments 
and the rest of the configurations that were driven on the BP-
EMG calibrated model can be seen in Table I. In the last 
column, the overall scores of each setup amongst all 
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Fig. 6.  Flexion-extension moments of the L5-S1 joint, calculated through inverse dynamics and estimated via CEINMS EMG-driven model. The model 
is calibrated with BP-EMG. Blue, red, green, orange and pink diagrams are the results of ID from OpenSim, CEINMS execution via BP-EMGs, HD-EMGs, 
HDI-EMGs, and HDU-EMGs respectively. Data are for four symmetric lifting conditions that discussed in section II-C. Solid lines show the mean of the 
moments of all repetition of each condition and shaded areas are ±1 standard deviation from the mean. 
 
 

Fig. 7.  Flexion-extension moments of the L5-S1 joint, calculated through inverse dynamics and estimated via CEINMS EMG-driven model. The 
model is calibrated with HD-EMG. Blue, red, green, orange and pink diagrams are the results of ID from OpenSim, CEINMS execution via BP-EMGs, 
HD-EMGs, HDI-EMGs, and HDU-EMGs respectively. Data are for four symmetric lifting conditions that discussed in section II-C. Solid lines show the 
mean of the moments of all repetition of each condition and shaded areas are ±1 standard deviation from the mean. 
 

conditions are calculated. For all conditions, the lowest RMSE 
belongs to BP-EMG followed by HD-EMG (except for squat 5 
kg where HDI-EMG has slightly lower RMSE). belongs to 
BP-EMG followed by HD-EMG (except for squat 5 kg where 
HDI-EMG has slightly lower RMSE). There is a fluctuation 
between HDI-EMG and HDU-EMG for having the highest 
RMSE among the four conditions. However, the lowest 
overall RMSE belongs to BP-EMG followed by HD-EMG, 
HDI-EMG, and HDU-EMG. Each setup’s RMSE increased 

about 2 Nm concerning its previous one. It is also evident 
from the table that for the same weights, the stoop lifitng 
technique has always a lower RMSE than that of squat. R2 
values do not follow a clear trend between each setup or each 
condition. As it can be seen in the last column of Table I, 
overall R2 values were the same for all four setups. This 
amount is 0.89 on average for the trials that were driven using 
BP-EMG calibrated model. 

The estimated moment patterns for the model that have been  
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TABLE I 
ROOT MEAN SQUARED ERROR (RMSE) AND R2 BETWEEN ID AND BP-EMG, 
HD-EMG, HDI-EMG AND HDU-EMG JOINT MOMENT ESTIMATIONS OF BP-EMG 

CALIBRATED MODEL FOR ALL EXPERIMENTAL CONDITIONS 

 
 

calibrated using HD-EMG signals were similar to those in the 
estimations of our model that was calibrated with BP-EMG 
signals. A similar comparison between the ID results and 
different EMG setups of the HD-EMG calibrated model in 
estimating net L5-S1 joint moment can be seen in Table II and 
figure 7. In comparison between BP-EMG and HD-EMG, 
except for squat 5 kg, the HD-EMG has lower RMSE across 
the conditions. However, there is an alteration between HD-
EMG and HDI-EMG in having the lower RMSE. In the case 
of HDU-EMG, RMSEs do not seem to follow a clear pattern. 
In an overall RMSE evaluation between setups, it is clear that 
the lowest RMSE belongs to HD-EMG, which is followed by 
HDI-EMG, and then comes the BP-EMG. HDU-EMG has the 
highest RMSE concerning other setups. In R2 value matching 
between four setups, there is not a recognizable gap between 
the setups, and their overall values are of the same order. An 
average amount of R2 for the trials that were driven using HD-
EMG calibrated model, was standing at 0.88. 
 

TABLE II 
ROOT MEAN SQUARED ERROR (RMSE) AND R2 BETWEEN ID AND BP-EMG, 
HD-EMG, HDI-EMG AND HDU-EMG JOINT MOMENT ESTIMATIONS OF HD-EMG 

CALIBRATED MODEL FOR ALL EXPERIMENTAL CONDITIONS  

 
 

Longissimus thoracic left side 
 

 
 

 
Fig. 8. Normalized EMG recordings of left longissimus thoracic muscle 

among four experimental conditions, and for BP-EMG, HD-EMG, HDI-EMG, 
and HDU-EMG configurations. 

 



Ghasem Zadeh Khoei et al.: Benefits of high-density electromyography for spinal moment estimation via 
musculoskeletal modeling.  

9 
 

Results of the normalized EMG recordings of left 
longissimus thoracic among four experimental conditions and 
for BP-EMG, HD-EMG, HDI-EMG, and HDU-EMG are 
shown in figure 8. As shown in figure 8, for all experimental 
conditions, BP-EMG has the lowest overall activity, followed 
by HDI-EMG, HD-EMG, and HDU-EMG. Moreover, as was 
expected, the overall activity is higher in the case of the higher 
weights; however, there is no significant difference between 
squat and stoop techniques for 5 and 15 kg weights. Detailed 
plots of all six muscles can be found in the appendices. The 
average normalized EMG amplitudes of different 
configurations can be seen in Table III. For longissimus 
thoracic (right and left), HDU-EMG shows the highest 
activity, followed by HD-EMG, HDI-EMG, and BP-EMG. 
However, the trend changes for longissimus lumborum (right 
and left), with BP-EMG having the highest activity. Then 
comes the HDU-EMG, HD-EMG, and HDI-EMG, 
respectively. Considering the iliocostalis lumborum, although 
HDU-EMG has a higher amplitude than BP-EMG on the left 
side, the order is the same as longissimus for the rest of the 
configuration lumborum. The BP-EMG and HD-EMG, HDI-
EMG, and HDU-EMG average amplitudes are within 19%, 
25%, and 21% of each other, respectively. 

Moreover, the comparison between strength coefficients of 
MTUs of the calibrated models with BP-EMG and HD-EMG 
relevant to our six focused muscles did not show any 
significant difference. The table of detailed strength 
coefficient values of both calibrated models can be fined in the 
appendices. 

TABLE III 
AVERAGE NORMALIZED EMG AMPLITUDES OF THE BP, HD, HDI, AND HDU 

CONFIGURATIONS AMONG DIFFERENT CONDITIONS 

 

IV. DISCUSSION 
The primary goal of the current study was validating back 

musculoskeletal models to estimate lumbosacral joint 
moments based on HD-EMG and compare the results with 
BP-EMG. Based on the previously validated pipeline [15], we 
used the CEINMS toolbox together with HD-EMG and BP-
EMG to separately calibrate two musculoskeletal models. We 
used one trial of each condition (squat 5/15 kg and stoop 5/15 
kg) to calibrate our model, once using BP-EMG as input and 

once using HD-EMG. Then we used each of calibrated models 
to estimate the net L5-S1 joint moment using BP-EMG, HD-
EMG, HDI-EMG, and HDU-EMG as input for different 
symmetric box lifting tasks. This means that once we calibrate 
the model based on a set of existing movements in the 
beginning, we can use the model to estimate the lumbosacral 
joint moments later on regardless of the motion condition. The 
reason for considering using HDI-EMG and HDU-EMG to 
estimate joint moments was that using these configurations we 
could assign a single cluster common for all conditions to a 
muscle through all conditions instead of assigning a specific 
cluster to each muscle for each of the conditions. Then we 
compared these results to the ID gold standard. 

Our results show a high correlation and low RMSE between 
ID and CEINMS estimations. This confirms the compliance of 
our estimations with the ID. We had a lower RMSE for the 
stoop lifting technique than for squat can be traced back to the 
calibration process. Our calibration optimized the muscle 
force with more focus on highly flexed postures such as stoop 
rather than squat, resulting in better estimations for the stoop 
technique. Moreover, the results were not surprising since we 
expected the setup with which we calibrated the model to have 
the lowest RMSE. However, it is worth to be mentioned that 
the highest HDU-EMG RMSE in both calibrations suggests 
that taking a union of each muscle’s relevant channels is 
somehow disrupting our applied watershed algorithm to 
classify each muscle’s EMG. This is because taking a unity of 
each muscle’s cluster within four experimental conditions 
gives a large cluster consisting of 94% and 77% of all EMG 
channels for thoracic and lumbar parts, respectively. 
Therefore, taking a union of each muscle’s cluster could result 
in spoiling our clustering algorithm. Another critical point is 
that the magnitude of RMSE of BP-EMG and HD-EMG, in 
both calibration methods, stands at about 10% compared to the 
maximum moment. While the RMSE reveals the magnitude of 
the error between two trials, R2 concerns the joint moment 
profiles of the trials. High and close R2 values for both 
calibration conditions and different EMG setups prove that all 
estimations can mirror the ID joint moment profile to a 
reasonable extent. This is an essential point since a common 
exoskeleton’s control strategy consists of producing torques 
on a specific joint based on its torque profile and a percentage 
of its maximum torque [4]. This means that our models have 
the potential to be implemented in the control strategy of an 
exoskeleton. 

Based on joint moment profiles, at the beginning of the 
trials, when the subject is upright, there is a deviation of the 
joint moment from zero (slight flexion for ID and small 
extension for CEINMS estimations; see Section III). This 
could be due to some errors in ID and CEINMS computations. 
When the subject halts straight without carrying any weights, 
the muscle activity is at its lowest; therefore, the other 
parameters such as passive muscle force and muscle geometry 
are the main parameters that affect the joint moment. 
Anthropometry scaling of the LFB model used in ID 
calculations can be improved by using medical imaging 
techniques to increase the accuracy of the ID. The current 
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CEINMS calibrations were done based on only dynamic trials; 
therefore, it was not unexpected to have greater errors 
compared to inverse dynamic in estimations of the joint 
moment in static postures. The ID calculated and CEINMS 
estimated joint moment profiles also suggest that the HD-
EMG has advantages in estimating maximum moments, 
especially in the stoop technique with higher weight. This 
means that using HD-EMG improved moment estimation for 
stooped postures. In this case, the maximum moment peak 
estimation error for BP-EMG and HD-EMG calibrated models 
are 33 and 44 Nm, respectively, while this magnitude is 2   
and 9 Nm for the estimation of HD-EMGs. Moreover, these 
profiles depict about 10% increment in L5-S1 joint moment 
for squat and stoop technique, with stoop being higher. This 
increment seemed higher when we increased the weight from 
5 kg to 15 kg for each squat and stoop technique by 50 Nm 
and 40 Nm, respectively. This means that our model is 
reacting to the changes in weights and conditions to a 
reasonable extent. 

EMG level analysis of the recordings was performed to 
investigate how the difference in EMG activity could affect 
the joint moments. The results show that for the lumborum 
regions of iliocostalis and longissimus BP-EMG has higher 
activity than HD-EMG which should in return result in higher 
joint moment estimation using BP-EMG. However, our results 
show that this does not hold necessarily. The reason to this is 
the highly non-linear relation between muscle activity and 
joint moments. The passive force production of MTUs and 
simultaneous activation of agonist and antagonist muscles 
could result in production of same joint moments while the 
activity of the muscles are not the same. EMG recordings of 
thoracic part of longissimus show that the HD-EMG activity is 
higher than that of BP-EMG in this area. A possible 
explanation for this is that due to a large cluster that the 
watershed algorithm provided in thoracic region, and by 
averaging the EMG channels of this cluster, we also exerted 
the activity of lower trapezius muscle in our EMG input which 
was supposed to only belong to longissimus thoracic. Since 
the lower trapezius muscle is also involved in lifting tasks, 
having a large area of channels in this region results in higher 
activity than longissimus thoracic per se. This is in agreement 
with a previous study that applied pre-processing techniques 
such as gradient, smoothed gradient, and equalization to the 
base grey-scale heatmap of muscle activity, indicating that in 
some cases, the clustering could improve [27].  

One main limitation of the current study is the limited 
sample size. This means that the subject was a young, healthy 
man, and therefore, the results cannot be interpreted for 
another age group or sex. The other limitation is the basic 
watershed algorithm, which has limited potential to cluster 
adjacent active regions precisely and provides a single region 
instead of two. This is evident in clustering failure in the 
thoracic region in our HD-EMG, where the activation of the 
lower trapezius was also considered.  

It is evident from the results that there is no significant 
difference in driving our model using HD-EMG 
intersection/union or BP-EMG to estimate joint moments 

(only 2 Nm and 4 Nm difference in RMSE on average, 
respectively, and 1% difference in R2). This means that the 
HD-EMG reflects the behavior of the selected BP-EMG 
signals for lumbar musculature. However, despite the 
differences in activity levels for thoracic musculature, no 
significant moment differences in joint moment estimations 
were found. It can also be concluded that the present 
difference in joint moment estimations via BP-EMG and HD-
EMG could track back to the differences in the activity of 
thoracic regions. Therefore, in our future research, we will 
further investigate the effect of thoracic and lumbar muscle 
forces in lumbosacral joint moments. Furthermore, we will use 
a priori information to match the obtained clusters via a 
watershed algorithm with the relevant muscles, which could 
result in the elimination of palpation requirement. 

We could use the 6 clusters that were obtained via our 
method to map from HD-EMG to model’s muscles of all 
conditions instead of specific clusters of each condition (24 
clusters in total). 

Some studies have shown promising results in controlling 
myoelectric prostheses by using embedded textile electrodes 
[28]. Therefore, we could use these emerging technologies in 
combination with our methodology to drive control strategies 
of a back-support exoskeleton in the future. Thus, by using an 
embedded textile electrode in a t-shirt, we only need to record 
the EMG activity of trunk muscles and run the watershed 
algorithm for different movements and locomotion. Then, 
once we compute the intersection/union of channels, we could 
estimate joint moments for all conditions, with only 3.5% 
error on average, by calibrating the model with HD-EMG 
without the need to have the BP-EMGs, which is the current 
gold standard.  

V. CONCLUSION 
Overall, we can conclude that using HD-EMG recording 

instead of common BP-EMG, and applying our developed 
methodology to the dataset to use 40-50% of the whole 
channels, does not reduce the accuracy of estimating 
lumbosacral join moments significantly. Moreover, although 
there is a difference in EMG activity level of the thoracic 
region due to limitations of the watershed algorithm, the final 
moment estimations did not change drastically. This implies 
the importance of the lumbar muscles in joint moment 
estimations. The current study also represents the first step in 
development of a framework that uses images processing 
techniques together with the EMG-driven musculoskeletal 
models, which has the potential to combine with embedded 
EMG textiles to estimate lumbosacral joint moments. This 
will, in return, allow control of exoskeletons without the need 
for precise palpation of the spine. 
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APPENDIX 

 
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Normalized EMG recordings of right longissimus thoracic muscle among four experimental conditions, and for BP-EMG, HD-EMG, HDI-
EMG, and HDU-EMG configurations. 

Fig. 2. Normalized EMG recordings of right longissimus lumborum muscle among four experimental conditions, and for BP-EMG, HD-EMG, HDI-
EMG, and HDU-EMG configurations. 
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Fig. 3. Normalized EMG recordings of right iliocostalis lumborum muscle among four experimental conditions, and for BP-EMG, HD-EMG, HDI-
EMG, and HDU-EMG configurations. 

Fig. 4. Normalized EMG recordings of left longissimus thoracic muscle among four experimental conditions, and for BP-EMG, HD-EMG, HDI-
EMG, and HDU-EMG configurations. 
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Fig. 5. Normalized EMG recordings of left longissimus lumborum muscle among four experimental conditions, and for BP-EMG, HD-EMG, HDI-
EMG, and HDU-EMG configurations. 

Fig. 6. Normalized EMG recordings of left iliocostalis lumborum muscle among four experimental conditions, and for BP-EMG, HD-EMG, HDI-
EMG, and HDU-EMG configurations. 
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TABLE I 
STRENGTH COEFFICIENTS OF BP-EMG AND HD-EMG CALIBRATED MODELS FOR DIFFERENT MUSCLE TENDON UNITS 

Calibrated model using BP-EMG Calibrated model using HD-EMG 
LTpT_T1_l 1 LTpT_T1_r 1 LTpT_T1_l 1 LTpT_T1_r 1 

LTpT_T2_l 1 LTpT_T2_r 1 LTpT_T2_l 1 LTpT_T2_r 1 

LTpT_T3_l 1 LTpT_T3_r 1 LTpT_T3_l 1 LTpT_T3_r 1 

LTpT_T4_l 1 LTpT_T4_r 1 LTpT_T4_l 1 LTpT_T4_r 1 

LTpT_T5_l 1 LTpT_T5_r 1 LTpT_T5_l 1 LTpT_T5_r 1 

LTpT_T6_l 1 LTpT_T6_r 1 LTpT_T6_l 1 LTpT_T6_r 1 

LTpT_T7_l 0.50000000007 LTpT_T7_r 0.50000000007 LTpT_T7_l 0.50000000208 LTpT_T7_r 0.50000000208 

LTpT_T8_l 0.50000000007 LTpT_T8_r 0.50000000007 LTpT_T8_l 0.50000000208 LTpT_T8_r 0.50000000208 

LTpT_T9_l 0.50000000007 LTpT_T9_r 0.50000000007 LTpT_T9_l 0.50000000208 LTpT_T9_r 0.50000000208 

LTpT_T10_l 0.50000000007 LTpT_T10_r 0.50000000007 LTpT_T10_l 0.50000000208 LTpT_T10_r 0.50000000208 

LTpT_T11_l 0.50000000007 LTpT_T11_r 0.50000000007 LTpT_T11_l 0.50000000208 LTpT_T11_r 0.50000000208 

LTpT_T12_l 0.50000000007 LTpT_T12_r 0.50000000007 LTpT_T12_l 0.50000000208 LTpT_T12_r 0.50000000208 

LTpT_R4_l 1 LTpT_R4_r 1 LTpT_R4_l 1 LTpT_R4_r 1 

LTpT_R5_l 1 LTpT_R5_r 1 LTpT_R5_l 1 LTpT_R5_r 1 

LTpT_R6_l 1 LTpT_R6_r 1 LTpT_R6_l 1 LTpT_R6_r 1 

LTpT_R7_l 0.50000000007 LTpT_R7_r 0.50000000007 LTpT_R7_l 0.50000000208 LTpT_R7_r 0.50000000208 

LTpT_R8_l 0.50000000007 LTpT_R8_r 0.50000000007 LTpT_R8_l 0.50000000208 LTpT_R8_r 0.50000000208 

LTpT_R9_l 0.50000000007 LTpT_R9_r 0.50000000007 LTpT_R9_l 0.50000000208 LTpT_R9_r 0.50000000208 

LTpT_R10_l 0.50000000007 LTpT_R10_r 0.50000000007 LTpT_R10_l 0.50000000208 LTpT_R10_r 0.50000000208 

LTpT_R11_l 0.50000000007 LTpT_R11_r 0.50000000007 LTpT_R11_l 0.50000000208 LTpT_R11_r 0.50000000208 

LTpT_R12_l 0.50000000007 LTpT_R12_r 0.50000000007 LTpT_R12_l 0.50000000208 LTpT_R12_r 0.50000000208 

LTpL_L5_l 0.50000008451 LTpL_L5_r 0.50000008451 LTpL_L5_l 0.50000008451 LTpL_L5_r 0.50000008451 

LTpL_L4_l 0.50000008451 LTpL_L4_r 0.50000008451 LTpL_L4_l 0.50000008451 LTpL_L4_r 0.50000008451 

LTpL_L3_l 0.50000008451 LTpL_L3_r 0.50000008451 LTpL_L3_l 0.50000008451 LTpL_L3_r 0.50000008451 

LTpL_L2_l 0.50000008451 LTpL_L2_r 0.50000008451 LTpL_L2_l 0.50000008451 LTpL_L2_r 0.50000008451 

LTpL_L1_l 0.50000008451 LTpL_L1_r 0.50000008451 LTpL_L1_l 0.50000008451 LTpL_L1_r 0.50000008451 

IL_L1_l 0.50000000051 IL_L1_r 0.50000000051 IL_L1_l 0.50000000114 IL_L1_r 0.50000000114 

IL_L2_l 0.50000000051 IL_L2_r 0.50000000051 IL_L2_l 0.50000000114 IL_L2_r 0.50000000114 

IL_L3_l 0.50000000051 IL_L3_r 0.50000000051 IL_L3_l 0.50000000114 IL_L3_r 0.50000000114 

IL_L4_l 0.50000000051 IL_L4_r 0.50000000051 IL_L4_l 0.50000000114 IL_L4_r 0.50000000114 

IL_R5_l 0.72449545298 IL_R5_r 0.72449545298 IL_R5_l 0.73308100372 IL_R5_r 0.73308100372 

IL_R6_l 0.72449545298 IL_R6_r 0.72449545298 IL_R6_l 0.73308100372 IL_R6_r 0.73308100372 

IL_R7_l 0.72449545298 IL_R7_r 0.72449545298 IL_R7_l 0.73308100372 IL_R7_r 0.73308100372 

IL_R8_l 0.72449545298 IL_R8_r 0.72449545298 IL_R8_l 0.73308100372 IL_R8_r 0.73308100372 

IL_R9_l 0.72449545298 IL_R9_r 0.72449545298 IL_R9_l 0.73308100372 IL_R9_r 0.73308100372 

IL_R10_l 0.72449545298 IL_R10_r 0.72449545298 IL_R10_l 0.73308100372 IL_R10_r 0.73308100372 

IL_R11_l 0.72449545298 IL_R11_r 0.72449545298 IL_R11_l 0.73308100372 IL_R11_r 0.73308100372 

IL_R12_l 0.72449545298 IL_R12_r 0.72449545298 IL_R12_l 0.73308100372 IL_R12_r 0.73308100372 
 


