
Private Information Retrieval applied to Biometric Verification

Martijn P. de Vries
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente
m.p.devries@student.utwente.nl

April 2022

Contents

1 Introduction 2

2 Background 3
2.1 Notation . 3
2.2 Homomorphic Encryption . 3
2.3 Precomputed log-likelihood ratio classifier . 4

2.3.1 Template encryption . 4
2.3.2 Biometric verification protocol . 4

2.4 Private information retrieval . 5
2.5 Dong and Chen . 5

2.5.1 Fully homomorphic encryption . 6
2.5.2 Tree-based compression . 6
2.5.3 Protocol description . 7

3 Related Work 7
3.1 Biometric verification systems . 7
3.2 Oblivious data structures . 7

4 Design 8
4.1 Design 1: Retrieving the full template . 8
4.2 Design 2: Retrieving the similarity scores . 9

5 Experiments and Results 11
5.1 Implementation . 11
5.2 Results . 12

5.2.1 DC-PIR . 12
5.2.2 Second design . 12

6 Discussion 12
6.1 Interpretation of results . 12

6.1.1 Design 1 . 12
6.1.2 Design 2 . 13

6.2 Future research . 13

7 Conclusion 14

8 Acknowledgements 14

1

Abstract

Biometric verification is convenient, since
you always have your ’key’ with you, so there
is no risk of forgetting or losing it. However, it
also poses a security risk, since biometric char-
acteristics are hard to keep secret and can con-
tain privacy sensitive medical information [1].
To keep this secure biometric template protec-
tion can be applied in various ways, includ-
ing feature transformation and biometric cryp-
tosystems. We propose using an oblivious data
structure, namely private information retrieval,
to retrieve a biometric template and similar-
ity scores in a biometric verification system.
The results show that retrieving the template
in most cases is too slow for practical use, but
retrieving the similarity scores shows promise
for small template sizes.

1 Introduction

Biometric verification is a form of identity verifica-
tion that uses the principle of ‘something you are’,
as opposed to ‘something you have’ (e.g. a key) or
‘something you know ’ (e.g. a password). This is
achieved through biometric recognition that automates
the recognition of individuals based on their biological
and behavioural characteristics, such as fingerprints or
gaits.

Biometric Sensor

Feature Extractor

Template
Database

Biometric Sensor

Feature Extractor

Comparator

Similarity
Score S

T

S> T

Biometric
Sample

Verification
Result

ID

Template

Figure 1: A diagram of a biometric verification system.
The identity claim is accepted when the similarity score
S exceeds the threshold T , and rejected otherwise.

In general, a biometric verification system comprises
two phases. First, there is the enrollment phase, where
a biometric sensor (also referred to as client) captures
the user’s biometric sample. A feature extractor ex-
tracts features from the user’s raw biometric data in
the form of a feature vector. This feature vector repre-
sents a template, that is stored in a template database
on a server under a unique identification key, where it
can later be retrieved and used as a biometric reference.
Second, there is the verification phase. The first two
steps of the verification phase are the same as the en-
rollment phase, producing a feature vector called probe
from a live biometric sample. In the verification phase
the user makes an identity claim and the client fetches
the corresponding template from the server’s database.
The probe is compared to the template and a similar-
ity score is computed. The identity claim is accepted if
the similarity score S exceeds the threshold T , and re-
jected otherwise. A diagram of such a system is shown
in Figure 1.

Biometric verification is appealing, since it is conve-
nient to use and there is no risk of forgetting or losing
something. On the other hand, biometric characteris-
tics are hard to keep secret and impossible to replace.
For example, a person’s fingerprints are left everywhere
and can easily be obtained, but are impossible to re-
place once lost. Additionally, some biometric charac-
teristics contain medical information of individuals that
is privacy sensitive and should be kept secret [1]. The
inherent disadvantages of biometric characteristics also
threaten the security of biometric verification systems,
since templates and probes leak sensitive information
related to individuals and thus must be protected.

To remedy this, biometric template protection can
be applied, as shown in the research by Jain et al. [2].
Jain et al. broadly classify template protection schemes
into two main categories, namely, feature transforma-
tion and biometric cryptosystem. Another category is
biometric recognition in the encrypted domain, which is
used in Peeters et al. [3]. Peeters et al. propose a pro-
tocol that is designed to prevent the server from finding
out the user’s biometric information and the result of
the verification. It also prevents the user from accessing
the biometric information of other users stored in the
server’s database. It does so by leveraging the ElGa-
mal homomorphic encryption scheme [4] and likelihood-
ratio-based biometric verification [5] to achieve secure
biometric verification in the semi-honest model.

Homomorphic encryption allows arithmetic opera-
tions to be performed on ciphertexts. When a cipher-
text is decrypted, the result will be the same as if the
arithmetic operations had been applied to the plaintext.
A biometric comparison can be performed in the en-
crypted domain using homomorphic encryption to keep

2

the probe and template secret. To apply homomorphic
encryption Peeters et al. propose using the precom-
puted log-likelihood ratio classifier. This method gen-
erates a lookup table with similarity scores for each
feature in the feature vector. The probe and template
select a column and row, respectively, and the sum of
all selected scores is checked against the threshold to
determine an accept or reject.

Protected table lookup can also be used with other
cryptographic systems such as oblivious data struc-
tures. Two common oblivious data structures are
Oblivious RAM (ORAM) and Private Information Re-
trieval (PIR). ORAM was originally proposed by Gol-
dreich and Ostrovsky [6]. It provides a way for a user
with a database stored on (multiple) untrusted remote
server(s) to hide their access pattern to their database.
Similarly, a PIR protocol allows a user to retrieve infor-
mation from a database on a remote server without re-
vealing what item has been retrieved. PIR is the more
fitting option, since ORAM was designed for a single
client with a private database, whereas PIR was de-
signed with multiple clients and a public database in
mind. In the case of biometric verification there are
usually multiple clients that require access to the same
database.

PIR was first introduced by Chor et al. [7][8],
who used a multi-server approach. The downside of
storing the database on multiple servers is that the
amount of storage needed is multiplied by the amount
of servers used. On the other hand, a single server
approach requires less storage, but in return is more
costly computation-wise. One such single server PIR
protocols was proposed by Dong and Chen [9].

With the properties of the precomputed log-
likelihood ratio classifier and PIR in mind we ask our-
selves the question:

What are the consequences of applying
private information retrieval to biomet-
ric verification with the precomputed log-
likelihood ratio classifier?

To answer this question, we identified two possible ap-
plications of PIR to biometric verification with the
precomputed log-likelihood ratio classifier. First, we
present a method to hide the user’s identity from the
server by using PIR to retrieve the user’s template.
Second, we present a method to retrieve the similarity
scores relevant to the probe directly from the template
using PIR.

The rest of the paper is structured as follows. In
section 2 we provide more background information on
the concepts introduced above. In section 3 we look at
work related to this paper. With section 4 we show the
designs we came up with and in section 5 we explain

the experiments we conducted with implementations
following these designs and show their results. Next,
in section 6 we discuss the results and finally, in section
7 we present our conclusion.

2 Background

In this section we will provide additional background
information on homomorphic encryption, the precom-
puted log-likelihood ratio classifier, and PIR, which
were introduced in the previous section. We start with
a short section on notation used in the paper.

2.1 Notation

For the rest of the paper we will be using the following
notation. Single values are denoted with a regular let-
ter x, vectors are denoted with an arrow over a letter
~x, and bit strings (a vector where each value is either a
0 or a 1) are denoted with a bold letter x. The sum of
multiple values, like the sum of a vector, is denoted with
a capital letter X. Finally, we denote matrices with a
bold capital letter X. Other notations are introduced
as their respective concepts are explained.

2.2 Homomorphic Encryption

Homomorphic encryption (HE) allows arithmetic oper-
ations to be performed on ciphertexts. When a cipher-
text is decrypted, the result will be the same as if the
arithmetic operations had been applied to the plain-
text. A fully homomorphic encryption (FHE) scheme
can perform an arbitrary amount of operations on a
ciphertext of multiple types. Other types of HE, such
as somewhat homomorphic encryption (SHE) and par-
tially homomorphic encryption (PHE), are more re-
stricted and can only perform a limited amount of oper-
ations of certain types. Therefore, FHE offers the most
functionality out of all HE types.

Peeters et al.’s protocol uses ElGamal, a PHE
scheme. Its security is based on the Decisional Diffie-
Hellman (DDH) assumption [10]. A PHE algorithm
can only evaluate one type of operation, e.g. addition
or multiplication. ElGamal is multiplicative homomor-
phic, but can be made to be additive homomorphic.
ElGamal is built around a cyclic group G of order p
and generator g. ElGamal can be made to be addi-
tive homomorphic by encoding the message m as an
exponent of the generator gm: JgmKJgm

′
K = Jgm+m′K.

However, it can only be decrypted for a small message
space, i.e. m ∈ {0, 1}.

Dong and Chen’s protocol uses BGV [11], which
is an FHE scheme. BGV’s security is based on the
ring-LWE (RLWE) [12] problem. Let Φm(x) be the

3

m-th cyclotomic polynomial with degree φ(m), where
φ(·) represents Euler’s totient function. We then have a
polynomial ring A = Z[x]/Φm(x). The ciphertext space
of BGV then consists of polynomials over Aq = A/qA,
which are elements in A reduced modulo q, where q is
an odd integer. Similarly, the plaintext space consists
of the ring A2 = A/2A, which are binary polynomials
of degree up to φ(m)− 1.

In the rest of this paper we will denote homomor-
phic operations the following way. Homomorphic addi-
tion with �, homomorphic multiplication with �, and
homomorphic rotation with / (shift left) and . (shift
right).

2.3 Precomputed log-likelihood ratio
classifier

A biometric verification system determines whether a
user’s biometric signature is a match by checking a sim-
ilarity score against a threshold. The similarity score
is calculated from a biometric comparison. Performing
this calculation under encryption is expensive, there-
fore Peeters et al. [3] suggest using precomputed log-
likelihood ratio classifiers. This section gives a short
summary on how Peeters et al.’s biometric verification
system works, for more information, refer to their paper
[3].

The precomputed log-likelihood ratio classifier has
a lookup table for each feature f . It is denoted by Tb,f
and has a size of 2b × 2b. It contains all possible sim-
ilarity scores sx,y of a single, quantized feature, where
x and y denote the observation during enrollment and
the observation during verification, respectively.

Tb,f =

s0,0 s0,1 · · · s0,2b−1
s1,0 s1,1 · · · s1,2b−1

...
...

. . .
...

s2b−1,0 s2b−1,1 · · · s2b−1,2b−1

 (1)

For every feature f the x-th row of its lookup table

(T (x)
b,f) contains all possible similarity scores for that

enrollment observation. Any verification observation
y will then select the y-th column and thus the indi-
vidual score sx,y for that feature. Each feature has
its own lookup table, so for a biometric sample de-
scribed by a k-dimensional feature vector, k lookup
tables Tb,f0 , Tb,f1 , . . . , Tb,fk−1

can be constructed. The
template is formed by taking the row of each lookup ta-
ble that corresponds to the enrollment observation for
each feature. For each row in the template there exists
a column that corresponds to the verification observa-
tion of that feature. The sum of the individual scores
yields the final score that is then compared against a
biometric threshold.

2.3.1 Template encryption

As mentioned in 2.2, Peeters et al. have opted to use
ElGamal to keep the probe and template private. El-
Gamal can be used in additive homomorphic mode by
using a small message space. This property is used in
the verification protocol to determine an accept or re-
ject.

Another property of ElGamal is that it can be
used in a threshold variant, which was first shown by
Desmedt and Frankel [13]. The threshold variant allows
users to perform a partial decryption by splitting the
secret key into two secret shares sk = sk1 + sk2. No
single partial key can fully decrypt the message and a
partially decrypted ciphertext is indistinguishable from
a full encryption. For notation we use double brackets
to denote an encrypted value J·K and single brackets to
denote a partially decrypted ciphertext [·]. For a secret
key sk with 2 secret shares sk1 and sk2 a message m is
encrypted by applying the encryption function E with
the joint public key pk, we get Epk(m) = JmK. The
message can be partially decrypted using the function
D with secret share sk1, we get Dsk1(JmK) = [m]. The
full decryption uses the same function D with the re-
maining secret share sk2, we get Dsk2(Dsk1(JmK)) = m.

In Peeters et al.’s protocol the message to be en-
crypted is the user’s template and the secret key is
shared among a client and a server. By applying ho-
momorphic operations the template is transformed into
a similarity score and checked against a threshold, the
result of which the server decrypts partially. The client
then applies the final decryption, revealing the result of
the verification.

2.3.2 Biometric verification protocol

In Peeters et al.’s protocol, there are two parties, the
sensor device and the verification service. The sensor
device captures the user’s biometric data and receives
the end result of the comparison. The verification ser-
vice holds the templates and does the threshold com-
parison.

Recall from the introduction that a biometric veri-
fication system consists of two phases, the enrollment
phase and the verification phase. During the enroll-
ment phase of Peeters et al.’s protocol, a feature vector
~r is sampled, where each element ri selects the ri-th
row of the i-th feature’s lookup table. These rows are
organized in a list to generate the template Tu for user
u:

Tu =
(

(T (r0)
b,f0

)>|(T (r1)
b,f1

)>| . . . |(T r(k−1)

b,fk−1
)>
)>

(2)

4

The sensor device encrypts the template Tu with
the joint public key of the threshold cryptosystem El-
Gamal, resulting in JTuK. They then send it to the
verification service, which will store it in their database
with the user’s identity u as the unique identifier.

Then the verification phase begins, which is
sketched in Figure 2. The protocol starts with the sen-
sor device calling Capture() to get the quantized feature
vector ~p and sending an identity claim u to the verifi-
cation service. The verification service uses u to find
the corresponding encrypted template JTuK and sends
it to the sensor device.

Sensor Device Verification Service

u, ~p← Capture()

J~sK← Lookup(JT uK, ~p)
JSK← J0 +

∑k−1
i=0 siK

C ← D2([C])
∃c ∈ C : c = 0 =⇒ S ≥ t

JT uK← FetchTable(u)

JCK← Compare(JSK, t)
π(JCK)
[C]← D1(JCK)

u

JT uK

JSK

[C]

Figure 2: Peeters et al.’s biometric verification protocol
[3].

The template JTuK consists of k rows and the probe
~p consists of k values, one per feature. For each fea-
ture fi, with 0 ≤ i < k, the sensor device selects the
pi-th column of the row JTuKi, essentially performing a
lookup of Tb,fi with ri as row and pi as column. This re-
sults in a vector of encrypted similarity scores J~sK. The
scores are summed under encryption using ElGamal’s
homomorphic property to get J0+

∑k−1
i=0 siK = JSK. The

0 is added to randomise the outcome of the sum. This
prevents an attacker who has the encrypted template
from guessing the elements which yield the same value
as JSK, since that would leak the probe.

JSK is sent to the verification service, which com-
pares it to a threshold t. Unfortunately, the compar-
ison operation does not exist in homomorphic encryp-
tion, but checking for equality is possible JS− tK = J0K.
Due to the quantization steps in creating the biomet-
ric template, the score distribution S becomes finite
and therefore there exists a maximum value for the
scores, max(S). By calculating JS − t − iK for all
0 ≤ i ≤ max(S) − t it is possible to check whether
the value of S lies between the threshold and the max-
imum score, essentially checking whether S is greater
or equal to t.

So instead of comparing JSK to the threshold, a re-
sult set JCK is calculated as JCK = {Jr(S − t− i)K|∀0 ≤
i ≤ max(S) − t, r ∈R [1, |G|]}, where r is a random
value used as a multiplicative blind to hide the scores.
The order of the result set is then scrambled using a
random permutation π(JCK).

The verification service then partially decrypts the
result set and sends it to the sensor device as [C]. The
sensor device fully decrypts it and can check whether
the result set contains a 0. The claim is accepted if,
and only if S ≥ t; otherwise it is rejected.

2.4 Private information retrieval

PIR was first introduced by Chor et al. [7], [8]. A PIR
protocol allows a user to retrieve data from a database
on a server without the server finding out what has been
retrieved. In the trivial case, a client can download the
entire database and retrieve the information it needs
without the server finding out anything. Obviously, for
large databases this approach is impractical as the com-
munication complexity is O(n) for a database of size n.

At first, PIR was studied in the multi-server set-
ting. The database was copied to databases on multi-
ple non-colluding servers and they would jointly answer
the queries of the client. The security of multi-server
PIR schemes relies on no single server seeing all queries
made by the client. The obvious disadvantage of such
schemes is the need for extra storage space compared
to a single server. Additionally, the servers need to be
non-colluding, increasing the amount of involved par-
ties.

Using only a single server avoids those issues, but
this approach has problems of its own. To achieve infor-
mation theoretic PIR in the single-server setting Ω(n)
bits are required for a database of size n, which is al-
ready achieved with the trivial case. However, Kushile-
vitz and Ostrovsky [14] found that this is not the case
for computational PIR schemes. They showed that
single-server computational PIR schemes can achieve
sublinear communication complexity.

2.5 Dong and Chen

A fast, single server PIR scheme was proposed by Dong
and Chen [9] (from this point onward, we will refer
to this protocol as DC-PIR). This scheme focuses on
achieving a low server-side computation complexity, in-
stead of the more traditional low communication com-
plexity. According to Sion and Carbunar [15] nontrivial
single-server PIR protocols may often have low com-
munication complexity, but are slower than the trivial
solution, due to high server-side computation complex-
ity. Dong and Chen claim that their protocol is fast

5

in comparison to other schemes and focuses on server
computation instead of communication, which can lead
to a greater overall gain in run-time.

DC-PIR uses the following concept. Let x be an
n-bit integer database on the server of which the client
wants to retrieve the ith bit xi. The server picks an
integer t < n and arranges their database into an n′× t
matrix X, where n′ = dnt e. xi has now become Xjk for
some j and k in the matrix, where j represents a specific
row in the matrix X, and k a specific column. The client
only needs to retrieve the j-th row to find Xjk. They do
this by creating an n′-bit query string q = q1q2 . . .qn′ ,
such that all bits are 0 except qj . The query string is
sent to the server, which calculates the inner product
of q and X as q1 ·X1 + q2 ·X2 + · · ·+ qn′ ·Xn′ . The
resulting inner product equals Xj (the jth row of the
matrix), since only qj is 1. The server sends the result
back to the client, who checks the kth bit of the result
(recall that this bit is Xjk), which is the i-th bit of the
database x.

2.5.1 Fully homomorphic encryption

Recall from 2.2 that Dong and Chen use BGV [11] to
keep the query and retrieved data private during the
protocol. The BGV scheme allows packing plaintexts
and batching homomorphic computation, which was
first observed by Smart and Vercauteren [16]. Pack-
ing plaintexts can be done, because the plaintext space
A2 can be partitioned into a vector of plaintext slots.
We can factor Φm(x) modulo 2 into l irreducible fac-
tors, where each factor has a degree of d = φ(m)/l. We
get a mapping π : Fl2d → A2, which packs l elements in
field F2d into a single element A2. This element can be
encrypted with BGV, since it is in the BGV plaintext
space. To unpack the plaintext we apply the inverse
mapping π−1 : A2 → Fl2d . Homomorphic operations
can be applied to a packed ciphertext, which will per-
form the operations on the entire plaintext vector in an
SIMD (single instruction multiple data) fashion.

2.5.2 Tree-based compression

To retrieve data privately from the server, DC-PIR cre-
ates a query string that is encrypted with BGV. How-
ever, applying BGV inflates the communication com-
plexity, therefore, DC-PIR proposes a tree-based com-
pression scheme to reduce the length of the query string.
The basic idea of the compression scheme is to fold a
query string, consisting of all 0’s and a single 1, into
a matrix and extract a row and column, which indi-
cate the position of the 1. Let q be a query string of
length n′ = 2ζ , with ζ ∈ Z+, consisting of only 0’s
except the bit at index j, which is set to 1 (Figure 3
shows an example with n′ = 16 and j = 9). To fold

it, a d1 × d2 matrix M is created, which is filled with
the query string q starting from the top leftmost cell
and wrapping at the end of each row. The matrix now
consists of all 0’s and a single 1 at Mαβ . Two strings
u and v of length d1 and d2, respectively, are obtained
such that in u the bit at index α is 1 and in v the bit
at index β is 1. To unfold, a matrix M′ is created and
filled using u and v such that for each 1 ≤ a ≤ d1,
1 ≤ b ≤ d2, M′

ab = ua · vb. The original query string q
is recovered by concatenating the rows of M′.

Figure 3: Example of the folding algorithm (from [9])

The strings u and v are also strings with a sin-
gle bit set to 1, so they can be folded the same way
q was. Folding a query string of length n′ repeatedly
compresses it into log n′ strings, each 2-bit long. To
be deterministic, a tree structure is defined that directs
how to fold and unfold a string recursively, hence tree-
based compression scheme.

This folding tree is a binary tree, such that each non-
leaf node has exactly two children. Each node stores a
number that determines the length of the string to be
folded or unfolded at that node. To generate such a
tree, we provide the length of the query string, store it
at the root and split it into two integer shares, with a
difference in value of at most 1. We use these shares to
recursively generate the node’s children. If a share has
a value of 2, it becomes a leaf node. An example of a
folding tree is shown in Figure 4.

Figure 4: Example of a folding tree generated with a
query string of length 27, the values show the length of
the query string to be folded or unfolded at that node.

6

2.5.3 Protocol description

We now have all the building blocks to describe DC-
PIR. For correctness and security proofs refer to the
full paper [9]. Recall we can pack l elements into a sin-
gle ciphertext and process it in an SIMD fashion. We
can use this to run l instances of the basic protocol (sec-
ond paragraph of subsection 2.5) simultaneously. The
database can be represented as an n′ × l matrix with
d-bit binary vectors as elements, where d comes from
the BGV FHE scheme (see section 2.5.1). The client
creates a query string q of length n′, which they fold
into s, reducing the length to 2 log n′. The client can
then pack s into a single ciphertext and send it to the
server. This works, because we can always find BGV
parameters, such that 2 log n′ ≤ l. The protocol, where
a client wants to know the i-th bit of the server’s n-bit
database x, then consists of the following 4 algorithms:

1. Init(x): The client generates the BGV key pair
(pk, sk). Given φ(m) and the number of plaintext
slots l, the server represents its n-bit database x
as an n′ × l matrix X, where n′ = d n

φ(m)e. Each

element Xi ∈ X is a d-bit binary vector, where

d = φ(m)
l .

2. QGen(i, n′, l): The client converts i into
(α, β, γ), where xi is the γ-th bit in the element
at Xαβ . The client creates a query string q, with
all bits set to 0, except the α-bit, which is set to
1. The client generates a folding tree with input
n′ and folds q into s. They pad s with 0’s to get
a length of l and circularly shift s to the right to
get s′ = s � (β − 1). Now, the β-th bit in s′ is
the first bit in s. The client packs s′ and encrypts
it to get s = Epk(π(s′)) and sends it to the server.

3. RGen(s): The server creates a vector c of 2 log n′

ciphertexts where c1 = s and for each 2 ≤ k ≤
2 log n′, ck = s/(k−1). The server then generates
a folding tree with input n′ and homomorphically
unfolds c into c′. The vector c′ contains n′ cipher-
texts. The server uses c′ and the packed columns
of the matrix X to homomorphically compute the
inner product r = (c′1 � π(X1)) � (c′2 � π(X2)) �
· · ·� (c′n′ � π(Xn′)). The response r is then sent
to the client.

4. RExt(r): Finally, the client decrypts r and ob-
tains a vector with l elements. The γ-th bit in
the β-th element in the vector is the bit xi they
want to retrieve.

In Figure 5 we see a small example of DC-PIR. The
parameters for the example are n = 32, φ(m) = 8,
n′ = 4, l = 4, d = 2, α = 3, β = 2, and γ = 1. The

server’s database is organized as a 4 × 4 matrix with
2-bit elements and the client wants to retrieve the first
bit in the element at X3,2.

3 Related Work

In this section we summarize related research done on
biometric verification and oblivious data structures.

3.1 Biometric verification systems

Trauring was the first to publish research on automated
biometric recognition in 1963 with his article on fin-
gerprint matching [17], closely followed by Pruzansky
[18] on voice recognition. Afterwards, research on au-
tomated recognition of other biometric traits was pub-
lished, such as for signature by Mauceri [19] and for
face by Bledsoe [20]. Ernst [21] patented a system for
hand geometry and in 1993 Daugman wrote a paper on
a biometric system based on the iris [22]. Later research
focused on finding new techniques and improving exist-
ing ones. Bazen and Veldhuis [5], for example, showed
that for multi-user verification the use of the likelihood
ratio is optimal in terms of average error rates. This was
later used by Peeters et al. [3] to design their system,
which focuses on high accuracy, high performance, and
privacy protection. Later, Bassit et al. [23] extended
this work to include an additional attacker model.

Biometric verification systems are vulnerable to a
variety of attacks, for example, spoof attacks, linkabil-
ity attacks, and identity creep. With a spoof attack an
attacker uses a counterfeit biometric trait that is not
obtained from a live person to fool the system [24]. An
example of a spoofed biometric trait is a photograph of
a person’s face or a gummy finger. Research has been
dedicated to developing liveness detection techniques
to prevent spoofing as shown in Nixon et al. [25]. A
linkability attack is when an attacker links users cross
applications based on their biometric data [26]. Finally,
identity creep occurs when an attacker makes repeated
attempts to take on the identity of a legitimate user of
the system and succeeds due to a false match [26].

Biometric template security is a critical step in min-
imizing the security and privacy risks associated with
biometric systems, according to Jain and Nandakumar
[24]. This is where oblivious data structures can be
useful, since they focus on protecting access behavior
and/or their users.

3.2 Oblivious data structures

Kushilevitz and Ostrovsky [14] first showed that single-
server PIR schemes with sublinear communication com-
plexity were possible. Later, various such schemes were

7

Figure 5: Example of DC-PIR (* denotes a bit we do not care about) (from [9])

proposed by e.g. Cachin et al. [27], Kushilevitz and Os-
trovsky [28], Gentry and Ramzan [29], and Lipmaa [30].
Sion and Carbunar [15] found that nontrivial single-
server PIR schemes like these may often have low com-
munication complexity, but are slow due to high server-
side computation. Some other solutions take this to
heart, like the scheme we use in this research, Dong and
Chen [9], and Corrigan-Gibbs and Kogan [31], which
uses an offline/online model. This means they split
the protocol in two phases. The linear-time server-side
computation is performed in a query-independent of-
fline phase, so the subsequent online phase can be com-
pleted in sublinear time. Next to PIR there is exists
another oblivious data structure, namely ORAM.

ORAM was originally proposed by Goldreich and
Ostrovsky [6] and it allows a user to store data on a re-
mote server and access it without revealing the access
pattern. This is done by arranging the data in such a
way that the user never touches the same piece more
than once. It was initially proposed for the client-server
setting, where the data stored on the server is owned
by a single client. The server does not need to perform
any (heavy) computation, but the communication com-
plexity becomes quite high. Additional schemes have
been proposed that lower the communication complex-
ity but increase the client memory, such as Path ORAM
by Stefanov et al. [32].

Gordon et al. [33] has adapted ORAM to cre-
ate RAM-based secure computation (RAM-SC). It uses
ORAM techniques to perform secure computation, in
which two or more parties evaluate a function together
using secret input from the parties. No party should
learn anything about the data or access pattern, only
the result of the computation is revealed. Zahur et al.
[34] implemented a version, which uses Goldreich and
Ostrovsky’s original square-root ORAM scheme for se-
cure multi-party computation.

4 Design

We identified two possible applications for PIR to bio-
metric verification with the precomputed log-likelihood
ratio classifier. First, we use PIR to retrieve the user’s
template from the database, effectively hiding the user’s
identity as described in section 4.1. Second, we retrieve
the similarity scores of the user’s probe and template
combination with PIR to protect the template as de-
scribed in section 4.2.

4.1 Design 1: Retrieving the full tem-
plate

Applying PIR to retrieve the user’s full template en-
sures their identity is kept secret. In Peeters et al.’s
protocol (see section 2.3.2) the sensor device sends an
identity claim u to the verification service to retrieve
the corresponding template. By applying PIR in this
step, the template can be retrieved without revealing
the claim to the verification service. This is important
in a biometric verification setting, since a user’s identity
can be linked to their biometric template [35].

Figure 6: Design 1 uses a user database to store the lo-
cation of each user’s template in the template database.
In this toy example each template is 1024 bits long.

First, we explain our design on an intuitive level;
then, we give a more formal explanation. We start with

8

the enrollment phase, which is the same as in Peeters
et al.’s protocol (see section 2.3.2), where the sensor
device generates a template Tu, encrypts it, and sends
it to the verification service, which stores it in the tem-
plate database. Additionally, the verification service
keeps a second, smaller database, which we call the
user database as shown in Figure 6. It keeps track of
the starting bit of each user’s template in the template
database and is thus used to determine which bits the
sensor device must retrieve with PIR.

The verification phase starts with the sensor device
capturing the user’s biometric probe. They then access
the verification service’s user database to determine the
index of the template’s first bit. The user database can
either be downloaded in its entirety or be accessed with
PIR, depending on whether the focus lies on reducing
computation or communication complexity. The user
database is very small in comparison to the template
database. The sensor device uses the template’s index
to generate the DC-PIR query and sends it to the veri-
fication service. The verification service then generates
a response and returns it to the sensor device. Finally,
the sensor device extracts the user’s template from the
response. The rest of the protocol is the same as Peeters
et al.’s protocol discussed in section 2.3.2.

Sensor Device Verification Service

u, ~p← Capture()
i← Lookup(u)
s← QGen(i)

JT uK← RExt(r)
J~sK← Lookup(JT uK, ~p)
JSK← J0 +

∑k−1
i=0 siK

C ← D2([C])
∃c ∈ C : c = 0 =⇒ S ≥ t

r← RGen(s)

JCK← Compare(JSK, t)
π(JCK)
[C]← D1(JCK)

s

r

JSK

[C]

Figure 7: Verification phase of design 1. The red text
shows where this design differs from Peeters. et al’s
verification protocol (see Figure 2).

We now present the verification protocol more for-
mally using the notation introduced in section 2.1. We
begin the verification phase (Figure 7) with the sensor
device calling Capture() to get the probe ~p and the iden-
tity claim u. The sensor device then calls Lookup(u) on
the user database to determine the index i of the first
bit in the template in the template database. The sen-
sor device calls QGen(i) to get s, which they send to
the verification service. The verification service calls
RGen(s) to get r, which they send back to the sen-
sor device. The sensor device calls RExit(r) to get the

template JTuK, finishing up DC-PIR. The rest of the
protocol is the same as in Peeters et al.’s protocol (see
section 2.3.2).

4.2 Design 2: Retrieving the similarity
scores

We have also applied PIR to retrieving the similarity
scores from the user’s template directly. This method
addresses the user’s template being sent to the sensor
device. There is no system in place to preserve integrity,
so the homomorphic property of the encrypted tem-
plate can be leveraged to attempt to generate synthetic
biometric data to get a false acceptance. Therefore,
in our approach, the verification service does not send
the user’s template to the sensor device. Instead, the
template acts as the database for the PIR protocol,
so each column corresponding to the user’s probe can
be retrieved without the verification service finding out
which column was retrieved. We also use a double addi-
tive blinding instead of HE to keep the template private.
The advantage of a blinding instead of HE is that the
result is much smaller in size. Computational complex-
ity in PIR scales with the database size and we use the
template as database, hence blinding instead of HE sig-
nificantly reduces the computational costs of the PIR
scheme. The double blinding consists of a client blind
applied during enrollment, and a server blind, which is
different for each run of the verification. This prevents
an attacker from running the protocol multiple times
to get the entire template. The additive blinding also
affects how the rest of the protocol is performed.

Again, we first explain our design on an intuitive
level after which we give a more formal explanation.
In the enrollment phase the sensor device generates a
template and a client blind and adds them together.
The blinded template is then sent to the verification
service. Then in the verification phase the sensor cap-
tures the user’s probe and generates the DC-PIR query
with it. The result is sent to the verification service,
which generates a server blind and adds it to the tem-
plate. Afterwards, we use the template as database
and generate a DC-PIR response to the sensor device’s
query. The response is sent to the sensor, where we
apply the final DC-PIR step to get a blinded similarity
score. We sum the score and add a random integer as
additional blinding to the template blindings. The ran-
dom integer is also added to the summed client blind
and encrypted using an FHE scheme inherently used
by DC-PIR, so no additional scheme is needed. Both
the blinded similarity score and the encrypted blind are
sent to the verification service. Here we do a threshold
comparison under blinding, similar to the comparison
under encryption in Peeters et al.’s protocol (see section

9

Sensor Device Verification Service

1. u,~r ← Capture()
2. Tu ← TGen

(
~r, {Tb,f0 , . . . , Tb,fk−1

}
)

3. 〈Tu〉 ← Tu + ~cb

3. Store 〈Tu〉 in template
database with u as identifier

u, 〈Tu〉

Figure 8: Enrollment phase of design 2

2.3.2). During the comparison a multiplicative blind
vector is applied to the result vector as well. We then
homomorphically add the summed server blind to the
encrypted client blind and homomorphically multiply
it with the multiplicative blind vector. We get a vector
of encrypted blindings, each corresponding to a value
in the result vector. We apply the same permutation
to both the encrypted blind vector and result vector.
Both are then sent to the sensor device. The sensor de-
vice decrypts the blind vector and subtracts it from the
result vector. If the result vector then contains a zero,
the verification is accepted, otherwise it is rejected.

We now present the protocol more formally using
the notation introduced in section 2.1. An overview of
the enrollment protocol is depicted in Figure 8 and of
the verification protocol in Figure 9. The enrollment
phase starts by generating a template Tu. However,
instead of encrypting it with ElGamal, we now gen-
erate a blinding for the template. For each similarity
score in the template we generate a random integer and
add it to the score to get the single blinded template
〈Tu〉 (we use single angle brackets to denote a single
blinded value 〈·〉 and double angle brackets for a double
blinded value 〈〈·〉〉). We gather the random integers to-

gether to form the client blind vector ~cb, which we can
sum together to get the client blind CB = sum(~cb).
The template is then sent to the verification service
along with the identity u, where they are both stored
in the template database.

In the verification phase (Figure 9) we start with
the sensor calling Capture() to obtain u and ~p. The
sensor device then begins DC-PIR by calling QGen(~p)
to produce s, which is sent to the verification service
along with u. The verification service then generates a
server blind vector ~sb, similar to the client blind vec-
tor ~cb in the enrollment phase. However, for every row
in the template a random integer value is generated
that is used for each similarity score in that row. So
~sb consists of k (= number of features) random inte-

gers, where ~cb consists of k · 2b random integers. We
then add SB = sum(~sb) to the template to produce
a doubly blinded template 〈〈Tu〉〉, which we use as the
database for RGen(s) to produce r, which is sent back
to the sensor device. The sensor device now finishes the
PIR protocol by calling RExt(r), obtaining 〈〈~s〉〉.

The sensor device now sums 〈〈~s〉〉 and adds a random
integer r to get the blinded value 〈〈S〉〉 (r ensures the
verification service cannot guess which similarity scores
were accessed from the template). This value now con-
sists of the summed similarity scores, the summed client
blind, the summed server blind, and the random inte-
ger r; 〈〈S〉〉 = S+CB+SB+ r. The sensor device then
adds r to CB and encrypts it using a FHE scheme
|CB| ← Enc(CB + r). The sensor device then sends it
to the verification service, along with 〈〈S〉〉.

To check the similarity score against the threshold t,
we need a vector ~θ that contains every integer between
t and the maximum value the summed similarity score
can be, which we call max(S); ~θ = {t, t+1, . . . ,max(S)},
with order `. We also generate a vector of random,
non-zero integers ~a of order ` as additional, multi-
plicative blinds. Then, we compute a vector ~c, where
for each i ∈ [0, ` − 1] we have 〈〈ci〉〉 ← ai (〈〈S〉〉 − θi).
The verification service then homomorphically adds the
server blind SB to the encrypted client blind to get
|CB + SB| ← |CB| � SB. We then apply a permu-
tation π to ~a and 〈〈~c〉〉, to avoid leaking information on
the similarity score. After applying the permutation we
homomorphically multiply ~a with |CB +SB| and send
the result to the sensor device, along with 〈〈~c〉〉.

The sensor device decrypts the encrypted blinds to
get ~a(CB + SB), which we subtract from 〈〈~c〉〉 to get
the result set ~c. If there exists a 0 in the result set, we
can conclude that S ≥ t, otherwise S < t.

Security: Intuitively, the verification protocol is se-
cure, since the communicated data is blinded with CB
and SB. Neither one of the two parties can undo all

10

Sensor Device Verification Service

u, ~p← Capture()
s← QGen(~p)

〈〈~s〉〉 ← RExt(r)

〈〈S〉〉 ← 〈〈
∑k−1
i=0 si〉〉+ r

|CB| ← Enc(CB + r)

~a(CB + SB)← Dec (|~a(CB + SB)|)
~c← 〈〈~c〉〉 − ~a(CB + SB)
∃c ∈ ~c : c = 0⇒ S ≥ t

〈〈Tu〉〉 ← 〈Tu〉+ ~sb
r← RGen(s), with 〈〈Tu〉〉 as database

〈〈~c〉〉 ← Compare(〈〈S〉〉, t)
|CB + SB| ← |CB|� SB
|~a(CB + SB)| ← π(~a) � |CB + SB|
π(〈〈~c〉〉)

u, s

r

〈〈S〉〉, |CB|

〈〈~c〉〉, |~a(CB + SB)|

Figure 9: Verification phase of design 2

blindings on the data single-handedly. The blindings
themselves are encrypted by the sensor device using
BGV, so the verification service cannot use them to
undo the blindings on 〈〈S〉〉. In addition, a random per-
mutation π hides the index of the comparison result in
〈〈~c〉〉 and ~a randomizes all its non-zero values, so the
sensor device cannot determine the value of S.

Correctness: For each i ∈ [0, `−1] we can write 〈〈~c〉〉
as 〈〈ci〉〉 = ai(S+SB+CB−θi) = ai(S−θi)+ai(CB+
SB), if we then subtract ai(CB+SB) we are left with
ai(S − θi). If ai(S − θi) = 0, then S − θi = 0, which

means that S ∈ ~θ, and therefore S ≥ t.

5 Experiments and Results

We implemented the designs and conducted all exper-
iments on a desktop with an Intel Core i5-8400 2.8
GHz CPU and 16 GB RAM running Ubuntu 21.04.
We first implemented DC-PIR to test its computational
and communication complexity. Afterwards, we imple-
mented design 2, retrieving similarity scores directly
from the template.

5.1 Implementation

We implemented our designs on C++ using the open
source lattice crypto software library Palisade1, as it
provides an API for BGV. Palisade uses the value of
the ring dimension φ(m) for the plaintext vector space
l. In DC-PIR these values are separate, because if φ(m)

and l are the same, the matrix element size d = φ(m)
l

becomes 1. This greatly reduces the amount of bits that
can be retrieved from the database at once. Luckily, we
can artificially use a different l as DC-PIR parameter,
which we call l′, and fit multiple DC-PIR queries in a
single ciphertext, similar to how Dong and Chen use
the SIMD property in the original protocol. We create
multiple queries of size l′ and pack them into a single
ciphertext. The queries do not have to be sequential.

We incorporated optimizations suggested by DC-
PIR as well. First, we have tree pruning, where we
prune the compression tree, which decreases the mul-
tiplication depth of BGV and therefore reduces com-
munication cost. Second, we use multithreading dur-
ing unfolding and calculating the inner product, which
greatly reduces server-side computation time.

1https://palisade-crypto.org

11

https://palisade-crypto.org

Database Size → 218 219 220 221 222 223 224 225

Bits ↓
128 0,103 0,1892 0,3817 0,735 1,4557 1,7973 3,3093 6,4698
256 0,206 0,3784 0,7634 1,47 2,9114 3,5946 6,6186 12,9396
640 0,515 0,946 1,9085 3,675 7,2785 8,9865 16,5465 32,349
1024 0,824 1,5136 3,0536 5,88 11,6456 14,3784 26,4744 51,7584
3456 (BMDB) 2,781 5,1084 10,3059 19,845 39,3039 48,5271 89,3511 174,6846
13568 (FRGC) 10,918 20,0552 40,4602 77,91 154,3042 190,5138 350,7858 685,7988
18816 (PUT) 15,141 27,8124 56,1099 108,045 213,9879 264,2031 486,4671 951,0606

Table 1: Time (in seconds) needed to retrieve a number of bits from a database of a certain size. All rows from the
second row onward are extrapolated from the values of the first row.

5.2 Results

5.2.1 DC-PIR

We measured the average time it takes to complete a
single run of DC-PIR where we retrieve 128 bits at once
for different database sizes. We used φ(m) = 8192,
l′ = 512, and d = 16. We extrapolated the time it
would take to retrieve more bits, in multiples of 128.
The results are shown in table 1. The last three rows
represent template sizes of three biometric datasets.
These are BMDB [36] of 36 features and a lookup table
of 16 × 16, FRGC [37] with 46 features and a lookup
table of 49 × 49, and PUT [38] with 49 features and a
lookup table of 64×64. Each value consists of 6 bits, so
the final template sizes are 3456 bits for BMDB, 13524
bits for FRGC, and 18816 bits for PUT.

We also measured the size of the communicated data
for a run of DC-PIR with a database of a certain size.
We used Palisade’s serialization feature to output the
query and response in separate files and measured their
sizes in bytes. The results are shown in table 2. They
are mostly the same size, except for the response for
the larger three database sizes, which might be due to
the way Palisade serializes its ciphertexts.

Database size Query Response
220 (1 MB) 387 KB 387 KB
221 (2 MB) 387 KB 387 KB
222 (4 MB) 387 KB 387 KB
223 (8 MB) 387 KB 264 KB
224 (16 MB) 387 KB 264 KB
225 (32 MB) 387 KB 264 KB

Table 2: Communication cost for different database
sizes (in bits)

5.2.2 Second design

For the second design we did three tests using the tem-
plate sizes from the biometric databases mentioned in
section 5.2.1. We used different DC-PIR parameters

for each template size to optimize runtime. We used 8
bits per template element and d = 8 as the base for the
other DC-PIR parameters as well. The parameters and
runtime are shown in table 3. DC-PIR runs make up
most of the runtime with the rest of the protocol tak-
ing less than 100 milliseconds for each database type.
Taking l′ = k is in general a good starting point for the
DC-PIR parameters. However, in some cases it does
not work for practical reasons, such as with FRGC,
where l′ 6= k.

6 Discussion

In this section we will interpret and discuss the results
from section 5. We will start with design 1 and then
move on to design 2. We also present a short discussion
on future research at the end of this section.

6.1 Interpretation of results

6.1.1 Design 1

First, we will discuss design 1, DC-PIR applied to re-
trieving the full template. From table 1 we can see that
DC-PIR is slow when used with large databases. Even
with the BMDB database, which has a template size of
3456 bits, it takes almost 3 seconds to retrieve template
from a database of 218 bits (∼ 75 templates). Doubling
the database size approximately doubles the time to re-
trieve a template as well. If we then look at databases
such as FRGC and PUT, which have larger templates,
the amount of runs necessary to retrieve a single tem-
plate also increases. This leads to even longer retrieval
times, making design 1 for large databases infeasible in
most cases.

Even databases that use small templates of 256 bits
become slow when they contain a large amount of tem-
plates. From table 1 we see it takes almost 3 sec-
onds to retrieve a 256-bit template from a database
of size 222 bits, which holds 214 = 16384 entries. This
shows that design 1 is not yet fast enough to be used in

12

Database
Template size
(bits)

k φ(m) n′ l′
Time per
DC-PIR run

DC-PIR
runs

Total time

PUT 25088 49 392 64 49 190,308 ms 13 2,574 s
FRGC 18816 46 294 64 36 186,769 ms 12 2,341 s
BMDB 4608 36 288 16 36 64,08 ms 9 0,677 s

Table 3: Time needed to perform a run of design 2 per database type. In this table we also show the following
parameters, k as the number of features, φ(m) as the ring dimension, and n′ and l′ as the number of rows and
columns in DC-PIR’s database matrix, respectively.

use cases that require a large amount of entries (more
than 10000). However, in use cases that require smaller
amounts of entries it reaches more acceptable speeds.
An example of such a use case is a door in a building
that should only be accessible to authorized personnel.
The number of authorized personnel should be rela-
tively low (less than 100).

Communication cost is mostly the same for differ-
ent database sizes, as shown in table 2. This is because
each run uses the same ciphertext size, regardless of
database size. The ciphertext size depends on the BGV
parameters, which we keep the same for the different
database sizes in this test. The bottom three responses
are smaller in size than the rest, we are unsure why
this is the case. We expected it to be the same as the
other response files, since they also consist of a single
ciphertext. We believe it might have something to do
with the way Palisade serializes ciphertexts to file, but
we cannot say for certain.

6.1.2 Design 2

Second, we discuss design 2, DC-PIR applied to re-
trieving the similarity scores from the template. In this
design we used the PUT, FRGC, and BMDB database
template sizes again for testing. In table 3 we can see
that most of the runtime is taken up by DC-PIR runs,
which need to be run multiple times to retrieve every
similarity score from the template. The amount of runs
depend on the amount of features in the template. The
PUT database consists of 49 features, FRGC consists
of 46, and BMDB consists of 36. This translates to the
number of DC-PIR runs in the table. We know that
the runtime of the DC-PIR runs depends on the size of
the database, which is the template itself in this case.
PUT and FRGC have template sizes of the same or-
der (215), and so their runtime per DC-PIR run is very
similar. These factors translate to the PUT and FRGC
database tests having very similar total time, 2,574 and
2,341 seconds, respectively.

On the other hand, BMDB is much faster, since
its template size is considerably smaller and it consists
of less features. The full run takes less than a second
to complete and its runtime is not dependant on how

many templates are stored in the server’s database, so it
is scalable. This shows that design 2 is promising when
combined with moderately sized templates. Design 2
relies on the template not being encrypted, but rather
it uses an additive blind to protect the template’s con-
tent. An additive blind does not inflate the template
size (or does so minimally), so DC-PIR’s runtime re-
mains within acceptable ranges.

The biometric performance of design 2 remains the
same as the biometric verification system it is based
on. The design does not change the results, since the
way the underlying biometric comparison is performed
is not altered. The design only changes the way the (in-
termediate) results are protected and communicated.

6.2 Future research

As mentioned in the previous section, design 2 uses
an additive blind to ensure the template sizes remain
small. However, there is no formal proof of the security
of this method, which is necessary to further flesh out
the design. This is therefore a great place to start fu-
ture research. Alternatively, instead of using blinding
future research could look at the use of an HE scheme
with a small ciphertext space, so it does not (signifi-
cantly) slow down DC-PIR in comparison.

Research could also be focused on finding new tech-
niques to obtain smaller template sizes, as this would
decrease DC-PIR runtime in both designs. This could
possibly be accomplished by using less features in a
template. This has the added benefit that less features
corresponds to less DC-PIR runs in design 2, decreas-
ing its overall runtime. We did not look at the relative
effect on design 2’s runtime of using smaller templates
versus using less features. It would be interesting to
see which of the two is more beneficial for the overall
runtime.

A final, obvious topic for future research is faster,
single-server PIR schemes. The biggest bottleneck in
both designs is DC-PIR, so finding a PIR scheme that
has a notable runtime improvement would have great
effect. In this paper we focused on single-server PIR,
but future research could also look into the use of multi-
server PIR schemes to see whether the pros outweigh

13

the cons.

7 Conclusion

In this paper we looked at two methods of applying
PIR to biometric verification. We first sought to hide
the user’s identity claim from the server by retrieving
the user’s biometric template with DC-PIR in design 1.
We then used DC-PIR to retrieve only the relevant sim-
ilarity scores from the user’s template directly in design
2, never revealing the template itself. We found that
design 1 is very slow with large databases, especially
when the template itself is also large, since it requires
multiple runs of DC-PIR. Smaller databases, especially
with smaller templates as well, have much better run-
times and could be used in certain situations. Design 2
shows more promise with moderately sized templates,
achieving a runtime of less than a second for the BMDB
database test. However, design 2 is not entirely fleshed
out yet, since the blind to keep the template secret has
not been formally proven secure yet.

We have shown that PIR can be applied to biomet-
ric verification to some extent. Use cases with small
databases and small template sizes can already bene-
fit from this combination. Systems with moderately
to large sized templates still need more research before
they can be used in practice.

8 Acknowledgements

I would like to thank Florian Hahn for helping me shape
this research paper and giving me direction when I was
unsure of where to go next, his guidance taught me a
lot about scientific research. I would also like to thank
Amina Bassit for her insight in all matters biometric
and her assistance with coming up with design 2, in
particular. Their feedback in general was a great boon
to the quality of this work. Lastly, I would like to show
my gratitude to Raymond Veldhuis for taking the time
to assess my work and galloping through the examina-
tion procedure, so I could finish my thesis in a timely
manner.

References

[1] E. Mordini. Biometrics, Human Body, and
Medicine: A Controversial History, pages 249–
272. 01 2009.

[2] A.K. Jain, K. Nandakumar, and A. Nagar. Bio-
metric template security. EURASIP J. Adv. Signal
Process, 2008, January 2008.

[3] J.J. Peeters, A. Peter, and R.N.J. Veldhuis. Fast
and accurate likelihood ratio based biometric ver-
ification in the encrypted domain, August 2016.

[4] T. ElGamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. In
G.R. Blakley and D. Chaum, editors, Advances in
Cryptology, pages 10–18, Berlin, Heidelberg, 1985.
Springer Berlin Heidelberg.

[5] A.M. Bazen and R.N.J. Veldhuis. Likelihood ratio-
based biometric verification. IEEE transactions on
circuits and systems for video technology, 14(1):86–
94, January 2004. Imported from DIES.

[6] O. Goldreich and R. Ostrovsky. Software protec-
tion and simulation on oblivious rams. J. ACM,
43(3):431–473, May 1996.

[7] B. Chor, O. Goldreich, E. Kushilevitz, and M. Su-
dan. Private information retrieval. In Proceedings
of the 36th Annual Symposium on Foundations of
Computer Science, FOCS ’95, page 41, USA, 1995.
IEEE Computer Society.

[8] B. Chor, E. Kushilevitz, and O. Goldreich. Pri-
vate information retrieval. J. ACM, 45:965–981,
11 1998.

[9] C. Dong and L. Chen. A fast single server private
information retrieval protocol with low communi-
cation cost. In M. Kuty lowski and J. Vaidya, ed-
itors, Computer Security - ESORICS 2014, pages
380–399, Cham, 2014. Springer International Pub-
lishing.

[10] W. Diffie and M. Hellman. New directions in cryp-
tography. IEEE Transactions on Information The-
ory, 22(6):644–654, 1976.

[11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan.
(leveled) fully homomorphic encryption without
bootstrapping. In Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference,
ITCS ’12, page 309–325, New York, NY, USA,
2012. Association for Computing Machinery.

[12] V. Lyubashevsky, C. Peikert, and O. Regev. On
ideal lattices and learning with errors over rings. In
H. Gilbert, editor, Advances in Cryptology – EU-
ROCRYPT 2010, pages 1–23, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[13] Y. Desmedt and Y. Frankel. Threshold cryptosys-
tems. In G. Brassard, editor, Advances in Cryptol-
ogy — CRYPTO’ 89 Proceedings, pages 307–315,
New York, NY, 1990. Springer New York.

14

[14] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single database, computationally-private
information retrieval. In Proceedings 38th Annual
Symposium on Foundations of Computer Science,
pages 364–373, 1997.

[15] R. Sion and B. Carbunar. On the computational
practicality of private information retrieval. 01
2007.

[16] N. P. Smart and F. Vercauteren. Fully homomor-
phic simd operations. In Designs, Codes and Cryp-
tography, volume 71, pages 57–81, 2014.

[17] M. Trauring. Automatic comparison of finger-ridge
patterns. volume 197, pages 938–940, 1963.

[18] S. Pruzansky. Pattern-matching procedure for au-
tomatic talker recognition. The Journal of the
Acoustical Society of America, 35:354, 1963.

[19] A. J. Mauceri. Feasibility study of personnel
identification by signature verification. Techni-
cal report, NORTH AMERICAN AVIATION INC
DOWNEY CALIF SPACE AND INFORMATION
SYSTEMS DIV, 1965.

[20] W. W. Bledsoe. Man-machine facial recognition.
Panoramic Research Inc., Palo Alto, CA, 1966.

[21] R. H. Ernst. Hand id system, U.S. Patent 3576537,
1971.

[22] J. G Daugman. High confidence visual recogni-
tion of persons by a test of statistical indepen-
dence. IEEE transactions on pattern analysis and
machine intelligence, 15(11):1148–1161, 1993.

[23] A. Bassit, F. W. Hahn, J. J. Peeters, T. Keve-
naar, R. N. J. Veldhuis, and A. Peter. Fast and
accurate likelihood ratio based biometric verifica-
tion secure against malicious adversaries. IEEE
transactions on information forensics and security,
16:5045–5060, October 2021. Publisher Copyright:
Author.

[24] A. K. Jain and K. Nandakumar. Biometric authen-
tication: System security and user privacy. Com-
puter, 45(11):87–92, 2012.

[25] K. A. Nixon, V. Aimale, and R. K. Rowe. Spoof
detection schemes. 2008.

[26] A. K. Jain, K. Nandakumar, and A. Ross. 50
years of biometric research: Accomplishments,
challenges, and opportunities. volume 79, pages
80–105, 2016.

[27] C. Cachin, S. Micali, and M. Stadler. Compu-
tationally private information retrieval with poly-
logarithmic communication. In Proceedings of
the 17th International Conference on Theory and
Application of Cryptographic Techniques, EURO-
CRYPT’99, page 402–414, Berlin, Heidelberg,
1999. Springer-Verlag.

[28] E. Kushilevitz and R. Ostrovsky. One-way trap-
door permutations are sufficient for non-trivial
single-server private information retrieval. In
B. Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000. EUROCRYPT 2000. Lecture
Notes in Computer Science, volume 1807, pages
104–121. Springer Berlin Heidelberg, 2000.

[29] C. Gentry and Z. Ramzan. Single-database private
information retrieval with constant communica-
tion rate. In L. Caires, G.F. Italiano, L. Monteiro,
C. Palamidessi, and M. Yung, editors, Automata,
Languages and Programming. ICALP 2005. Lec-
ture Notes in Computer Science, volume 3580,
pages 803–815. Springer Berlin Heidelberg, 2005.

[30] H. Lipmaa. An oblivious transfer protocol with
log-squared communication. In J. Zhou, J. Lopez,
R.H. Deng, and F. Bao, editors, Information Se-
curity. ISC 2005. Lecture Notes in Computer Sci-
ence, volume 3650, pages 314–328. Springer Berlin
Heidelberg, 2005.

[31] H. Corrigan-Gibbs and D. Kogan. Private infor-
mation retrieval with sublinear online time. In
39th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings,
volume 12105 of Lecture Notes in Computer Sci-
ence. Springer, 2020.

[32] E. Stefanov, M. Van Dijk, E. Shi, T.-H. Hubert
Chan, C. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path oram: An extremely simple oblivious ram
protocol. J. ACM, 65(4), April 2018.

[33] S.D. Gordon, J. Katz, V. Kolesnikov, F. Krell,
T. Malkin, M. Raykova, and Y. Vahlis. Secure two-
party computation in sublinear (amortized) time.
In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12,
page 513–524, New York, NY, USA, 2012. Associ-
ation for Computing Machinery.

[34] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Do-
erner, D. Evans, and J. Katz. Revisiting square-
root oram: Efficient random access in multi-party
computation. In 2016 IEEE Symposium on Secu-
rity and Privacy (SP), pages 218–234, 2016.

15

[35] Q. Tang, J. Bringer, H. Chabanne, and
D. Pointcheval. A formal study of the privacy
concerns in biometric-based remote authentication
schemes. In L. Chen, Y. Mu, and W. Susilo,
editors, Information Security Practice and Ex-
perience, pages 56–70, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[36] Javier Ortega-Garcia, Julian Fierrez, Fernando
Alonso-Fernandez, Javier Galbally, Manuel R.
Freire, Joaquin Gonzalez-Rodriguez, Carmen
Garcia-Mateo, Jose-Luis Alba-Castro, Elisardo
Gonzalez-Agulla, Enrique Otero-Muras, Sonia
Garcia-Salicetti, Lorene Allano, Bao Ly-Van,
Bernadette Dorizzi, Josef Kittler, Thirimachos
Bourlai, Norman Poh, Farzin Deravi, Ming N. R.
Ng, Michael Fairhurst, Jean Hennebert, Andreas
Humm, Massimo Tistarelli, Linda Brodo, Jonas

Richiardi, Andrezj Drygajlo, Harald Ganster, Fed-
erico M. Sukno, Sri-Kaushik Pavani, Alejandro
Frangi, Lale Akarun, and Arman Savran. The mul-
tiscenario multienvironment biosecure multimodal
database (bmdb). IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(6):1097–
1111, 2010.

[37] P.J. Phillips, P.J. Flynn, T. Scruggs, K.W.
Bowyer, Jin Chang, K. Hoffman, J. Marques, Jae-
sik Min, and W. Worek. Overview of the face
recognition grand challenge. In 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages
947–954 vol. 1, 2005.

[38] A. Kasiński, A. Florek, and A. Schmidt. The put
face database. Image Processing and Communica-
tions, Vol. 13, no 3-4:59–64, 2008.

16

	Introduction
	Background
	Notation
	Homomorphic Encryption
	Precomputed log-likelihood ratio classifier
	Template encryption
	Biometric verification protocol

	Private information retrieval
	Dong and Chen
	Fully homomorphic encryption
	Tree-based compression
	Protocol description

	Related Work
	Biometric verification systems
	Oblivious data structures

	Design
	Design 1: Retrieving the full template
	Design 2: Retrieving the similarity scores

	Experiments and Results
	Implementation
	Results
	DC-PIR
	Second design

	Discussion
	Interpretation of results
	Design 1
	Design 2

	Future research

	Conclusion
	Acknowledgements

